1
|
Yuan S, Tu Y, Yu R, Nie F. Tunable Chemiluminescence Kinetics with Hierarchically Structured HKUST-1 and Its Sensing Application for Concanavalin A Analysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63760-63768. [PMID: 39500521 DOI: 10.1021/acsami.4c14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Introducing novel catalysts is essential for developing chemiluminescence (CL) systems that exhibit sustained and robust emission. Traditional Luminol-H2O2 systems typically feature flash-type CL emission. In this study, we discovered that the porous material HKUST-1 can induce a long-lasting and intense CL emission when combined with Luminol-H2O2. This long-term emission signal can be directly detected by the smartphone. By changing the calcination temperature, a series of microporous and hierarchically porous HKUST-1 materials were prepared as catalysts to adjust the kinetic characteristics of the CL signal of Luminol-H2O2 system from flash-type to glow-type. A systematic investigation into the influence of the central metal and ligand, aperture, and particle size of HKUST-1 on the CL kinetic properties revealed that the pore structure has the most pronounced impact on the dynamics of the Luminol-H2O2 CL reaction. Capitalizing on the intense emission of the HKUST-1-catalyzed Luminol-H2O2 system, we established a CL sandwich immunoassay strategy for concanavalin A (ConA), demonstrating good linearity and low detection limit. This research presents a significant endeavor in modulating the dynamics of CL signal emissions.
Collapse
Affiliation(s)
- Sijie Yuan
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, Shaanxi People's Republic of China
| | - Ying Tu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, Shaanxi People's Republic of China
| | - Ru Yu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, Shaanxi People's Republic of China
| | - Fei Nie
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, Shaanxi People's Republic of China
| |
Collapse
|
2
|
Bagherpour S, Pérez-García L. Recent advances on nanomaterial-based glutathione sensors. J Mater Chem B 2024; 12:8285-8309. [PMID: 39081041 DOI: 10.1039/d4tb01114g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Glutathione (GSH) is one of the most common thiol-containing molecules discovered in biological systems, and it plays an important role in many cellular functions, where changes in physiological glutathione levels contribute to the progress of a variety of diseases. Molecular imaging employing fluorescent probes is thought to be a sensitive technique for online fluorescence detection of GSH. Although various molecular probes for (intracellular) GSH sensing have been reported, some aspects remain unanswered, such as quantitative intracellular analysis, dynamic monitoring, and compatibility with biological environment. Some of these drawbacks can be overcome by sensors based on nanostructured materials, that have attracted considerable attention owing to their exceptional properties, including a large surface area, heightened electro-catalytic activity, and robust mechanical resilience, for which they have become integral components in the development of highly sensitive chemo- and biosensors. Additionally, engineered nanomaterials have demonstrated significant promise in enhancing the precision of disease diagnosis and refining treatment specificity. The aim of this review is to investigate recent advancements in fabricated nanomaterials tailored for detecting GSH. Specifically, it examines various material categories, encompassing carbon, polymeric, quantum dots (QDs), covalent organic frameworks (COFs), metal-organic frameworks (MOFs), metal-based, and silicon-based nanomaterials, applied in the fabrication of chemo- and biosensors. The fabrication of nano-biosensors, mechanisms, and methodologies employed for GSH detection utilizing these fabricated nanomaterials will also be elucidated. Remarkably, there is a noticeable absence of existing reviews specifically dedicated to the nanomaterials for GSH detection since they are not comprehensive in the case of nano-fabrication, mechanisms and methodologies of detection, as well as applications in various biological environments. This research gap presents an opportune moment to thoroughly assess the potential of nanomaterial-based approaches in advancing GSH detection methodologies.
Collapse
Affiliation(s)
- Saman Bagherpour
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona, 08028, Spain.
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Lluïsa Pérez-García
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona, 08028, Spain.
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
3
|
Deng Z, Cao J, Zhao L, Zhang Z, Yuan J. Trimetallic FeCoNi Metal-Organic Framework with Enhanced Peroxidase-like Activity for the Construction of a Colorimetric Sensor for Rapid Detection of Thiophenol in Water Samples. Molecules 2024; 29:3739. [PMID: 39202819 PMCID: PMC11356859 DOI: 10.3390/molecules29163739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
In recent years, nanozymes have attracted particular interest and attention as catalysts because of their high catalytic efficiency and stability compared with natural enzymes, whereas how to use simple methods to further improve the catalytic activity of nanozymes is still challenging. In this work, we report a trimetallic metal-organic framework (MOF) based on Fe, Co and Ni, which was prepared by replacing partial original Fe nodes of the Fe-MOF with Co and Ni nodes. The obtained FeCoNi-MOF shows both oxidase-like activity and peroxidase-like activity. FeCoNi-MOF can not only oxidize the chromogenic substrate 3,3,5,5-tetramethylbenzidine (TMB) to its blue oxidation product oxTMB directly, but also catalyze the activation of H2O2 to oxidize the TMB. Compared with corresponding monometallic/bimetallic MOFs, the FeCoNi-MOF with equimolar metals hereby prepared exhibited higher peroxidase-like activity, faster colorimetric reaction speed (1.26-2.57 folds), shorter reaction time (20 min) and stronger affinity with TMB (2.50-5.89 folds) and H2O2 (1.73-3.94 folds), owing to the splendid synergistic electron transfer effect between Fe, Co and Ni. Considering its outstanding advantages, a promising FeCoNi-MOF-based sensing platform has been designated for the colorimetric detection of the biomarker H2O2 and environmental pollutant TP, and lower limits of detection (LODs) (1.75 μM for H2O2 and 0.045 μM for TP) and wider linear ranges (6-800 μM for H2O2 and 0.5-80 μM for TP) were obtained. In addition, the newly constructed colorimetric platform for TP has been applied successfully for the determination of TP in real water samples with average recoveries ranging from 94.6% to 112.1%. Finally, the colorimetric sensing platform based on FeCoNi-MOF is converted to a cost-effective paper strip sensor, which renders the detection of TP more rapid and convenient.
Collapse
Affiliation(s)
- Zehui Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China;
- Shandong Institute of Metrology, Jinan 250014, China
| | - Jiaqing Cao
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, 666 Liaohe Road (S), Changzhou 213022, China
| | - Lei Zhao
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, 666 Liaohe Road (S), Changzhou 213022, China
| | - Zhao Zhang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, 666 Liaohe Road (S), Changzhou 213022, China
| | - Jianwei Yuan
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, 666 Liaohe Road (S), Changzhou 213022, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing 211816, China
| |
Collapse
|
4
|
An N, Li K, Wang Y, Shen W, Huang X, Xu S, Wu L, Huang H. Biodegradable bio-film based on Cordyceps militaris and metal-organic frameworks for fruit preservation. Int J Biol Macromol 2024; 262:130095. [PMID: 38346621 DOI: 10.1016/j.ijbiomac.2024.130095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
In this study, Cordyceps militaris matrix was employed for the first time to fabricate a biodegradable food packaging. Carmine and Ag@CuBTC were introduced to cross-link with mycelium and were uniformly dispersed within the matrix to enhance the water resistance, antimicrobial, and antioxidant properties of the bio-films. The bio-film displayed high biodegradability, with nearly 100 % degradation achieved after three weeks. The bio-film exhibited exceptional resistance to oxidation (49.30 % DPPH and 93.94 % ABTS•+), as well as effective inhibitory capabilities against E. coli and S. aureus, respectively. The composite film maintained a high CO2/O2 selective permeability, which was advantageous for mitigating fruit metabolism and extending shelf life. Simultaneously, food preservation experiments confirmed that these bio-films can decelerate the spoilage of fruits and effectively prolong the shelf-life of food. The experimental findings indicated that the prepared Bio-R-Ag@Cu film held promise as an environmentally friendly biodegradable material for food packaging.
Collapse
Affiliation(s)
- Nan An
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ke Li
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ying Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Weijian Shen
- Animal, Plant and Food Inspection Center of Nanjing Customs District, Nanjing 210023, China
| | - Xingxu Huang
- International Research Center of Synthetic Biology, Nanjing Normal University, Nanjing 210023, China
| | - Shiqi Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Lina Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| |
Collapse
|
5
|
Baranwal A, Polash SA, Aralappanavar VK, Behera BK, Bansal V, Shukla R. Recent Progress and Prospect of Metal-Organic Framework-Based Nanozymes in Biomedical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:244. [PMID: 38334515 PMCID: PMC10856890 DOI: 10.3390/nano14030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
A nanozyme is a nanoscale material having enzyme-like properties. It exhibits several superior properties, including low preparation cost, robust catalytic activity, and long-term storage at ambient temperatures. Moreover, high stability enables repetitive use in multiple catalytic reactions. Hence, it is considered a potential replacement for natural enzymes. Enormous research interest in nanozymes in the past two decades has made it imperative to look for better enzyme-mimicking materials for biomedical applications. Given this, research on metal-organic frameworks (MOFs) as a potential nanozyme material has gained momentum. MOFs are advanced hybrid materials made of inorganic metal ions and organic ligands. Their distinct composition, adaptable pore size, structural diversity, and ease in the tunability of physicochemical properties enable MOFs to mimic enzyme-like activities and act as promising nanozyme candidates. This review aims to discuss recent advances in the development of MOF-based nanozymes (MOF-NZs) and highlight their applications in the field of biomedicine. Firstly, different enzyme-mimetic activities exhibited by MOFs are discussed, and insights are given into various strategies to achieve them. Modification and functionalization strategies are deliberated to obtain MOF-NZs with enhanced catalytic activity. Subsequently, applications of MOF-NZs in the biosensing and therapeutics domain are discussed. Finally, the review is concluded by giving insights into the challenges encountered with MOF-NZs and possible directions to overcome them in the future. With this review, we aim to encourage consolidated efforts across enzyme engineering, nanotechnology, materials science, and biomedicine disciplines to inspire exciting innovations in this emerging yet promising field.
Collapse
Affiliation(s)
- Anupriya Baranwal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Shakil Ahmed Polash
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Vijay Kumar Aralappanavar
- NanoBiosensor Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Bijay Kumar Behera
- NanoBiosensor Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Ravi Shukla
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
- Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
6
|
Li JQ, Mao YW, Zhang R, Wang AJ, Feng JJ. Fe-Ni dual-single atoms nanozyme with high peroxidase-like activity for sensitive colorimetric and fluorometric dual-mode detection of cholesterol. Colloids Surf B Biointerfaces 2023; 232:113589. [PMID: 37857186 DOI: 10.1016/j.colsurfb.2023.113589] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Cholesterol is widely existed in nerve myelin sheath and various membrane structures, whose abnormal level would deteriorate human cells or even cause diseases. Herein, Fe-Ni dual-single-atom nanozyme was efficiently incorporated into N-doped carbon nanosheets (FeNi DSAs/N-CSs) by a simple calcination method. Its nanozyme activity and catalytic mechanism were investigated in details. The FeNi DSAs/N-CSs nanozyme showed superior peroxidase-like property, which was applied for the dual-mode determination of hydrogen peroxide (H2O2) and cholesterol. The colorimetric/fluorometric assays of H2O2 displayed the linear ranges of 1-50 mM and 5-40 mM with low limits of detection of 0.45 mM and 3.33 mM, respectively. In parallel, there exhibited the linear ranges of 0.5-5.0 mM and 0.25-5.0 mM for the colorimetric/fluorometric analysis of cholesterol, coupled with the limits of detection down to 0.19 mM and 0.044 mM, respectively. This work provided a rapid, cost-effectiveness and simple colorimetric/fluorometric method for sensitive dual-mode detection of cholesterol in human serum samples.
Collapse
Affiliation(s)
- Jia-Qi Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yan-Wen Mao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Rui Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
7
|
Preparation of novel HKUST-1-glucose oxidase composites and their application in biosensing. Mikrochim Acta 2022; 190:10. [PMID: 36472673 DOI: 10.1007/s00604-022-05563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022]
Abstract
Copper-based metal-organic frameworks (MOF) and multi-walled carbon nanotubes (HKUST-1-MWCNTs) composite were synthesized by one-step hydrothermal method, and PDA-enzyme-HKUST-1-MWCNTs composite was prepared by one-pot method for the construction of glucose biosensors, which realized the sensitive amperometric detection of glucose at 0.7 V (vs. SCE). The sensitivity of the sensor for glucose detection was 178 μA mM-1cm-2 in the wide linear range of 0.005 ~ 7.05 mM, the detection limit was 0.12 μM and the corresponding RSD was 3.8%. Its high performance is mainly benefitted from the high porosity and large specific surface area of HKUST-1, the good conductivity of MWCNTs, and the excellent adhesion and dispersion of PDA. The strategy of combining PDA and MWCNTs to improve the dispersion and conductivity of MOF is expected to achieve a wider application of MOF-based materials in the electrochemical biosensing field.
Collapse
|
8
|
Wang Y, Xue Y, Zhao Q, Wang S, Sun J, Yang X. Colorimetric Assay for Acetylcholinesterase Activity and Inhibitor Screening Based on Metal–Organic Framework Nanosheets. Anal Chem 2022; 94:16345-16352. [DOI: 10.1021/acs.analchem.2c03290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yu Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yu Xue
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qilin Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuang Wang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
9
|
Zhao Y, Chen Q, Zhang C, Li C, Jiang Z, Liang A. Aptamer Trimode Biosensor for Trace Glyphosate Based on FeMOF Catalytic Oxidation of Tetramethylbenzidine. BIOSENSORS 2022; 12:920. [PMID: 36354430 PMCID: PMC9688084 DOI: 10.3390/bios12110920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The stable and highly catalytic Fe metal-organic framework (FeMOF) nanosol was prepared and characterized by electron microscopy, and energy and molecular spectral analysis. It was found that FeMOF strongly catalyzed the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to produce TMBox, which had a fluorescence (FL) peak at 410 nm. When silver nanoparticles were added, it exhibited strong resonance Rayleigh scattering (RRS) activity and surface-enhanced Raman scattering (SERS) effect. This new FeMOF nanocatalytic trimode indicator reaction was combined with the glyphosate aptamer reaction to establish a new SERS/RRS/FL trimode biosensor for glyphosate. The sensor can be used for the analysis of environmental wastewater, and a new method for detecting glyphosate content in wastewater is proposed. The linear range of the sensor is 0.1-14 nmol/L, the detection limit is 0.05 nmol/L, the recovery is 92.1-97.5%, and the relative standard deviation is 3.6-8.7%.
Collapse
Affiliation(s)
- Yuxiang Zhao
- School of Public Health, Guilin Medical University, Guilin 541199, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China
| | - Qianmiao Chen
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China
| | - Chi Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China
| | - Chongning Li
- School of Public Health, Guilin Medical University, Guilin 541199, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China
| | - Zhiliang Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China
| | - Aihui Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China
| |
Collapse
|
10
|
Wang T, Hu X, Yang Y, Wu Q, He C, He X, Wang Z, Mao X. New Insight into Assembled Fe3O4@PEI@Ag Structure as Acceptable Agent with Enzymatic and Photothermal Properties. Int J Mol Sci 2022; 23:ijms231810743. [PMID: 36142657 PMCID: PMC9501236 DOI: 10.3390/ijms231810743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022] Open
Abstract
Metal-based enzyme mimics are considered to be acceptable agents in terms of their biomedical and biological properties; among them, iron oxides (Fe3O4) are treated as basement in fabricating heterogeneous composites through variable valency integrations. In this work, we have established a facile approach for constructing Fe3O4@Ag composite through assembling Fe3O4 and Ag together via polyethyleneimine ethylenediamine (PEI) linkages. The obtained Fe3O4@PEI@Ag structure conveys several hundred nanometers (~150 nm). The absorption peak at 652 nm is utilized for confirming the peroxidase-like activity of Fe3O4@PEI@Ag structure by catalyzing 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H2O2. The Michaelis–Menten parameters (Km) of 1.192 mM and 0.302 mM show the higher catalytic activity and strong affinity toward H2O2 and TMB, respectively. The maximum velocity (Vmax) value of 1.299 × 10−7 M∙s−1 and 1.163 × 10−7 M∙s−1 confirm the efficiency of Fe3O4@PEI@Ag structure. The biocompatibility illustrates almost 100% cell viability. Being treated as one simple colorimetric sensor, it shows relative selectivity and sensitivity toward the detection of glucose based on glucose oxidase. By using indocyanine green (ICG) molecule as an additional factor, a remarkable temperature elevation is observed in Fe3O4@PEI@Ag@ICG with increments of 21.6 °C, and the absorption peak is nearby 870 nm. This implies that the multifunctional Fe3O4@PEI@Ag structure could be an alternative substrate for formatting acceptable agents in biomedicine and biotechnology with enzymatic and photothermal properties.
Collapse
Affiliation(s)
- Teng Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Xi Hu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yujun Yang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Qing Wu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Chengdian He
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Xiong He
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Zhenyu Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Correspondence: (Z.W.); (X.M.)
| | - Xiang Mao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Correspondence: (Z.W.); (X.M.)
| |
Collapse
|
11
|
Zeng Y, Xu Z, Guo J, Yu X, Zhao P, Song J, Qu J, Chen Y, Li H. Bifunctional Nitrogen and Fluorine Co-Doped Carbon Dots for Selective Detection of Copper and Sulfide Ions in Real Water Samples. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165149. [PMID: 36014385 PMCID: PMC9416385 DOI: 10.3390/molecules27165149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 12/04/2022]
Abstract
Copper ions (Cu2+) and sulfur ions (S2−) are important elements widely used in industry. However, these ions have the risk of polluting the water environment. Therefore, rapid and quantitative detection methods for Cu2+ and S2− are urgently required. Using 2,4-difluorobenzoic acid and L-lysine as precursors, nitrogen and fluorine co-doped dots (N, F-CDs) were synthesized in this study via a hydrothermal method. The aqueous N, F-CDs showed excellent stability, exhibited satisfactory selectivity and excellent anti-interference ability for Cu2+ detection. The N, F-CDs, based on the redox reactions for selective and quantitative detection of Cu2+, showed a wide linear range (0–200 μM) with a detection limit (215 nM). By forming the N, F-CDs@Cu2+ sensing platform and based on the high affinity of S2− to Cu2+, the N, F-CDs@Cu2+ can specifically detect S2− over a linear range of 0–200 μM with a detection limit of 347 nM. In addition, these fluorescent probes achieved good results when used for Cu2+ and S2− detection in environmental water samples, implying the good potential for applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yu Chen
- Correspondence: (Y.C.); (H.L.)
| | - Hao Li
- Correspondence: (Y.C.); (H.L.)
| |
Collapse
|
12
|
Naqvi SS, Anwar H, Siddiqui A, Shah MR. Sensitive and highly selective colorimetric biosensing of vitamin-C and vitamin-B1 by flavoring agent-based silver nanoparticles. J Biol Inorg Chem 2022; 27:471-483. [PMID: 35821138 DOI: 10.1007/s00775-022-01944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
A sensitive scheme was established for the detection of vitamin C (Ascorbic acid) and vitamin B1 (Thiamin HCl) using Maltol capped AgNPs (McAgNPs) as colorimetric sensor. The designed scheme showed an instant alteration in color from yellow to orange and green for vitamin-C and vitamin B1 sequentially. The probe was sensitive in a concentration range of (0-1 µM) with limit of detection 0.064 and 0.038 µM for vitamin C and vitamin B1 sequentially. The interaction mechanism between vitamin C and vitamin B1 and McAgNPs was evaluated by visible spectroscopy, FTIR, and AFM. Vitamin C attaches on the surface of nanoparticles by C=O group, while OH, C-S-C, and NH2 groups are involved in the binding of vitamin B1 with McAgNPs. The Vit-C/Vit-B1-McAgNPs complexes were stable over a wide range of pHs. The size of McAgNPs increased after the interaction of vitamin C/vitamin B1 from 30-40 nm to 500 and 400 nm sequentially. The scheme was successfully applied for the detection of vitamin C and vitamin B1 in urine, plasma, water, and commercial pharmaceutical tablets with good recoveries. The scheme was ascertained to be more sensitive than many other formerly described schemes.
Collapse
Affiliation(s)
- Syeda Sumra Naqvi
- Department of Chemistry, Federal Urdu University of Arts, Science and Technology, Gulshan-E-Iqbal Campus, Karachi, 75300, Pakistan.
| | - Humera Anwar
- Department of Chemistry, Federal Urdu University of Arts, Science and Technology, Gulshan-E-Iqbal Campus, Karachi, 75300, Pakistan
| | - Asma Siddiqui
- Department of Chemistry, Federal Urdu University of Arts, Science and Technology, Gulshan-E-Iqbal Campus, Karachi, 75300, Pakistan
| | - Muhammad Raza Shah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
13
|
RuO 2/rGO heterostructures as mimic peroxidases for colorimetric detection of glucose. Mikrochim Acta 2022; 189:261. [PMID: 35727400 DOI: 10.1007/s00604-022-05319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
The successful synthesis of ruthenium oxide/reduced graphene oxide (RuO2/rGO) heterostructures by one-pot hydrothermal method using graphene oxides and RuCl3 as precursors is reported. The heterostructures had high peroxidase-like (POD-like) activities, which catalyzes the oxidation of classical peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2 to create a blue colored reaction product. The catalytic activity was significantly enhanced by the synergistic effect between RuO2 nanoparticles and rGO. RuO2/rGO had a low Km of 0.068 mM and a high vmax of 1.228 × 10-7 M·s-1 towards TMB in the TMB-H2O2 catalytic oxidation system. In addition, the POD-like activity originating from the electron transfer mechanism was confirmed by cytochrome C (Cyt C) oxidation experiment. A colorimetric method based on RuO2/rGO heterostructures was developed with good sensitivity and selectivity for glucose detection with a limit of detection of 3.34 μM and a linear range of 0-1500 μM. The RuO2/rGO heterostructures have potential applications in the biomedical areas, such as biosensor and diagnostics.
Collapse
|
14
|
Jing Y, Li J, Zhang X, Sun M, Lei Q, Li B, Yang J, Li H, Li C, Yang X, Xie L. Catalase-integrated metal-organic framework with synergetic catalytic activity for colorimetric sensing. ENVIRONMENTAL RESEARCH 2022; 207:112147. [PMID: 34606841 DOI: 10.1016/j.envres.2021.112147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
As a platform for enzyme immobilization, metal-organic frameworks (MOFs) can protect enzyme activity from the interference of external adverse environment. Although these strategies have been proven to produce good results, little consideration has been given to the functional similarity of MOFs to the encapsulated enzyme. Here, catalase (CAT) was encapsulated in Fe-BTC with peroxidase-like activity to obtain a stable composite (CAT@Fe-BTC) with synergistic catalytic activity. Depending on the superior selectivity and high catalytic activity of CAT@Fe-BTC, colorimetric sensing for the detection of hydrogen peroxide and phenol was developed. This work demonstrates that the integration of functional MOFs with natural enzyme can be well applied to the construction of efficient catalysts.
Collapse
Affiliation(s)
- Yanqiu Jing
- College of Tobacco Science,Henan Agricultural University, Zhengzhou, Henan province, China.
| | - Jingxin Li
- College of Tobacco Science,Henan Agricultural University, Zhengzhou, Henan province, China
| | - Xuewei Zhang
- China Tobacco Guangdong Industrial Co.Ltd., Guangzhou, Guangdong province, China
| | - Mi Sun
- China Tobacco Henan Industrial Co.Ltd., Zhengzhou, Henan province, China
| | - Qiang Lei
- Sichuan of China National Tobacco Corporation, Chengdu, Sichuan province, China
| | - Bin Li
- Sichuan of China National Tobacco Corporation, Chengdu, Sichuan province, China
| | - Jian Yang
- Sichuan of China National Tobacco Corporation, Chengdu, Sichuan province, China
| | - Huaiqi Li
- China Tobacco Henan Industrial Co.Ltd., Zhengzhou, Henan province, China
| | - Chunguang Li
- China Tobacco Henan Industrial Co.Ltd., Zhengzhou, Henan province, China.
| | - Xingyou Yang
- Sichuan of China National Tobacco Corporation, Chengdu, Sichuan province, China.
| | - Liangwen Xie
- Sichuan of China National Tobacco Corporation, Chengdu, Sichuan province, China.
| |
Collapse
|
15
|
Hu H, Li P, Wang Z, Du Y, Kuang G, Feng Y, Jia S, Cui J. Glutamate Oxidase-Integrated Biomimetic Metal-Organic Framework Hybrids as Cascade Nanozymes for Ultrasensitive Glutamate Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3785-3794. [PMID: 35302358 DOI: 10.1021/acs.jafc.2c01639] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The hybrid coupling of biocatalysts and chemical catalysts plays a vital role in the fields of catalysis, sensing, and medical treatment due to the integrated advantages in the high activity of natural enzymes and the excellent stability of nanozymes. Herein, a new nanozyme/natural enzyme hybrid biosensor was established for ultrasensitive glutamate detection. The MIL-88B(Fe)-NH2 material with remarkable peroxidase mimic activity and stability was used as a nanozyme and carrier for immobilizing glutamate oxidase (GLOX) through Schiff base reaction to construct a chem-enzyme cascade detector (MIL-88B(Fe)-NH2@GLOX). The resultant MIL-88B(Fe)-NH2@GLOX exhibited a wide linear range (1-100 μM), with a low detection limit of 2.5 μM for glutamate detection. Furthermore, the MIL-88B(Fe)-NH2@GLOX displayed excellent reusability and storage stability. After repeated seven cycles, MIL-88B(Fe)-NH2-GLOX (GLOX was adsorbed on MIL-88B(Fe)-NH2) lost most of its activity, whereas MIL-88B(Fe)-NH2@GLOX still retained 69% of its initial activity. Meanwhile, MIL-88B(Fe)-NH2@GLOX maintained 60% of its initial activity after storage for 90 days, while free GLOX only retained 30% of its initial activity. This strategy of integrating MOF mimics and natural enzymes for cascade catalysis makes it possible to design an efficient and stable chemo-enzyme composite catalysts, which are promising for applications in biosensing and biomimetic catalysis.
Collapse
Affiliation(s)
- Hongtong Hu
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, P R China
| | - Peikun Li
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, P R China
| | - Zichen Wang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, P R China
| | - Yingjie Du
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, P R China
| | - Geling Kuang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, P R China
| | - Yuxiao Feng
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, P R China
| | - Shiru Jia
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, P R China
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, P R China
| |
Collapse
|
16
|
Falahati M, Sharifi M, Hagen TLMT. Explaining chemical clues of metal organic framework-nanozyme nano-/micro-motors in targeted treatment of cancers: benchmarks and challenges. J Nanobiotechnology 2022; 20:153. [PMID: 35331244 PMCID: PMC8943504 DOI: 10.1186/s12951-022-01375-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/12/2022] [Indexed: 02/07/2023] Open
Abstract
Nowadays, nano-/micro-motors are considered as powerful tools in different areas ranging from cleaning all types of contaminants, to development of Targeted drug delivery systems and diagnostic activities. Therefore, the development and application of nano-/micro-motors based on metal-organic frameworks with nanozyme activity (abbreviated as: MOF-NZs) in biomedical activities have received much interest recently. Therefore, after investigating the catalytic properties and applications of MOF-NZs in the treatment of cancer, this study intends to point out their key role in the production of biocompatible nano-/micro-motors. Since reducing the toxicity of MOF-NZ nano-/micro-motors can pave the way for medical activities, this article examines the methods of making biocompatible nanomotors to address the benefits and drawbacks of the required propellants. In the following, an analysis of the amplified directional motion of MOF-NZ nano-/micro-motors under physiological conditions is presented, which can improve the motor behaviors in the propulsion function, conductivity, targeting, drug release, and possible elimination. Meanwhile, by explaining the use of MOF-NZ nano-/micro-motors in the treatment of cancer through the possible synergy of nanomotors with different therapies, it was revealed that MOF-NZ nano-/micro-motors can be effective in the treatment of cancer. Ultimately, by analyzing the potential challenges of MOF-NZ nano-/micro-motors in the treatment of cancers, we hope to encourage researchers to develop MOF-NZs-based nanomotors, in addition to opening up new ideas to address ongoing problems.
Collapse
Affiliation(s)
- Mojtaba Falahati
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD, Rotterdam, The Netherlands.
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Depatment of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Timo L M Ten Hagen
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD, Rotterdam, The Netherlands.
| |
Collapse
|
17
|
Application of Peroxidase-Mimic Mn2BPMP Boosted by ADP to Enzyme Cascade Assay for Glucose and Cholesterol. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Mn2BPMP complex has an intrinsic peroxidase-like activity in the pH range of 5 to 8, especially a maximum activity at pH 7, while most peroxidase mimics operate at an acidic pH (mainly pH 4). Its peroxidase-like activity is high among small-molecule-based peroxidase mimics with a high reproducibility. In addition, we recently revealed that adenosine mono/diphosphate (AMP and ADP) significantly boosted the peroxidase-like activity of Mn2BPMP. These advantages imply that Mn2BPMP is suitable for biosensing as a substitute for horseradish peroxidase (HRP). Herein, we established a colorimetric one-pot assay system using the enzyme cascade reaction between analyte oxidase and ADP-boosted Mn2BPMP. The simple addition of ADP to the Mn2BPMP-based assay system caused a greater increase in absorbance for the same concentration of H2O2, which resulted in a higher sensitivity. It was applied to one-pot detection of glucose and cholesterol at 25 °C and pH 7.0 for a few minutes.
Collapse
|
18
|
Huang W, Huang S, Chen G, Ouyang G. Biocatalytic Metal-Organic Framework: Promising Materials for Biosensing. Chembiochem 2022; 23:e202100567. [PMID: 35025113 DOI: 10.1002/cbic.202100567] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/11/2022] [Indexed: 11/10/2022]
Abstract
The high-efficient and specific catalysis of enzyme allow it to recognize a myriad of substrate that impels the biosensing. Nevertheless, the fragility of natural enzymes severely restricts their practical applications. Metal-organic frameworks (MOFs) with porous network and attractive functions have been intelligently employed as supports to encase enzymes for protecting them against hash environments. More importantly, the customizable construction and composition affords the intrinsic enzyme-like activity of some MOFs (known as nanozymes), which provides an alternative guideline to construct robust enzymes mimics. Herein, this review will introduce the concept of these biocatalytic MOFs, with the special emphasis on how the biocatalytic processes operated in these MOFs materials can reverse the plight of native enzymes-based biosensing. In addition, the present challenges and future outlooks in this research field are briefly put forward.
Collapse
Affiliation(s)
- Wei Huang
- Sun Yat-Sen University, School of Chemical Engineering and Technology, CHINA
| | - Siming Huang
- Guangzhou Medical University, School of pharmaceutical sciences, CHINA
| | - Guosheng Chen
- Sun Yat-Sen University, School of Chemistry, No. 135, Xingang Xi Road, Guangzhou, 510275, P. R. China, 510275, Guangzhou, CHINA
| | | |
Collapse
|
19
|
Zhai Y, Li Y, Hou Q, Zhang Y, Zhou E, Li H, Ai S. Highly sensitive colorimetric detection and effective adsorption of phosphate based on MOF-808(Zr/Ce). NEW J CHEM 2022. [DOI: 10.1039/d2nj00640e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MOF-808(Zr/Ce) has been successfully used for the sensitive and rapid detection of phosphate and phosphate removal by effective adsorption.
Collapse
Affiliation(s)
- Yuzhu Zhai
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong 271018, P. R. China
| | - Yijing Li
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong 271018, P. R. China
| | - Qin Hou
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong 271018, P. R. China
| | - Yuanhong Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong 271018, P. R. China
| | - Enlong Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong 271018, P. R. China
| | - Houshen Li
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong 271018, P. R. China
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong 271018, P. R. China
| |
Collapse
|
20
|
Udourioh GA, Solomon MM, Epelle EI. Metal Organic Frameworks as Biosensing Materials for COVID-19. Cell Mol Bioeng 2021; 14:535-553. [PMID: 34249167 PMCID: PMC8260022 DOI: 10.1007/s12195-021-00686-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
The novel coronavirus disease (COVID-19) pandemic outbreak is the most startling public health crises with attendant global socio-economic burden ever experienced in the twenty-first century. The level of devastation by this outbreak is such that highly impacted countries will take years to recover. Studies have shown that timely detection based on accelerated sample testing and accurate diagnosis are crucial steps to reducing or preventing the spread of any pandemic outbreak. In this opinionated review, the impacts of metal organic frameworks (MOFs) as a biosensor in a pandemic outbreak is investigated with reference to COVID-19. Biosensing technologies have been proven to be very effective in clinical analyses, especially in assessment of severe infectious diseases. Polymerase chain reactions (PCR, RT-PCR, CRISPR) - based test methods predominantly used for SARS-COV-2 diagnoses have serious limitations and the health scientists and researchers are urged to come up with a more robust and versatile system for solving diagnostic problem associated with the current and future pandemic outbreaks. MOFs, an emerging crystalline material with unique characteristics will serve as promising biosensing materials in a pandemic outbreak such as the one we are in. We hereby highlight the characteristics of MOFs and their sensing applications, potentials as biosensors in a pandemic outbreak and draw the attention of researchers to a new vista of research that needs immediate action.
Collapse
Affiliation(s)
- Godwin A. Udourioh
- Analytical/Material Chemistry Laboratory, Department of Pure and Applied Chemistry, Faculty of Natural and Applied Sciences, Veritas University, Abuja, P.O.Box 6523, Garki, Abuja Nigeria
| | - Moses M. Solomon
- Department of Chemistry, College of Science and Technology, Covenant University, Canaanland, Km10, Idiroko Road, Ota, Ogun State Nigeria
| | - Emmanuel I. Epelle
- Institute for Materials and Processes (IMP), School of Engineering, University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3FB UK
| |
Collapse
|
21
|
Huang X, Zhang S, Tang Y, Zhang X, Bai Y, Pang H. Advances in metal–organic framework-based nanozymes and their applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214216] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Liu J, Cao Y, Zhu X, Zou L, Li G, Ye B. Enhanced oxidase-mimicking activity of Ce 4+ by complexing with nucleotides and its tunable activity for colorimetric detection of Fe 2. Chem Commun (Camb) 2021; 57:8340-8343. [PMID: 34328150 DOI: 10.1039/d1cc02675e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complexing with adenosine-5'-monophosphate (AMP) was proven to be a facile way to enhance the oxidase-mimicking activity of Ce4+, and enabled nanoenzyme recovery and reuse. Additionally, the oxidase-mimicking activity of AMP-Ce4+ infinite coordination polymers (ICPs) could be specifically inhibited by Fe2+. Based on this finding, we developed a simple and highly selective colorimetric assay to detect Fe2+.
Collapse
Affiliation(s)
- Jiaojiao Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China.
| | | | | | | | | | | |
Collapse
|
23
|
Liu L, Wang J, Wang J, Wu J, Wu S, Xie L. Colorimetric Detection of Cholesterol Based on the Peroxidase‐Like Activity of Metal‐Organic Framework MIL‐101(Cr). ChemistrySelect 2021. [DOI: 10.1002/slct.202102053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Luying Liu
- Department of Chemistry Guangdong University of Education Guangzhou 510303 China
| | - Jingshan Wang
- Department of Chemistry Guangdong University of Education Guangzhou 510303 China
| | - Jing Wang
- Sun Yat-Sen Memorial Hospital Sun Yat-Sen University Guangzhou 510120 China
| | - Jiating Wu
- Department of Chemistry Guangdong University of Education Guangzhou 510303 China
| | - Shuping Wu
- Department of Chemistry Guangdong University of Education Guangzhou 510303 China
| | - Lijun Xie
- Department of Chemistry Guangdong University of Education Guangzhou 510303 China
| |
Collapse
|
24
|
Ni P, Liu S, Wang B, Chen C, Jiang Y, Zhang C, Chen J, Lu Y. Light-responsive Au nanoclusters with oxidase-like activity for fluorescent detection of total antioxidant capacity. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125106. [PMID: 33485225 DOI: 10.1016/j.jhazmat.2021.125106] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/03/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
A fluorescent assay for total antioxidant capacity (TAC) detection based on the light-responsive oxidase-like activity of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) has been developed. Thiamine (TH) as the peroxidase substrate usually works at alkaline conditions and thus limits its practical applications. Here, by utilization the light-responsive oxidase-like activity of BSA-AuNCs, TH is oxidized to fluorescent thiochrome under neutral condition in two minutes due to the single oxygen generated by BSA-AuNCs upon light irradiation. After the introduction of antioxidants into the BSA-AuNCs-TH system, the formation of thiochrome is inhibited resulting in the fluorescence decrease. On the basis of the above facts, BSA-AuNCs-TH-based assay has been fabricated and applied successfully to detect antioxidants and the TAC of vitamin C tablets as well as some commercial fruit juice with satisfied results. This work may provide novel insights into developing light-responsive nanozymes-based fluorescent assays.
Collapse
Affiliation(s)
- Pengjuan Ni
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Siyuan Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Bo Wang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Chuanxia Chen
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Yuanyuan Jiang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Chenghui Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
25
|
Tailoring metal-organic frameworks-based nanozymes for bacterial theranostics. Biomaterials 2021; 275:120951. [PMID: 34119883 DOI: 10.1016/j.biomaterials.2021.120951] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023]
Abstract
Nanozymes are next-generation artificial enzymes having distinguished features such as cost-effective, enhanced surface area, and high stability. However, limited selectivity and moderate activity of nanozymes in the biochemical environment hindered their usage and encouraged researchers to seek alternative catalytic materials. Recently, metal-organic frameworks (MOFs) characterized by distinct crystalline porous structures with large surface area, tunable pores, and uniformly dispersed active sites emerged, that filled the gap between natural enzymes and nanozymes. Moreover, by selecting suitable metal ions and organic linkers, MOFs can be designed for effective bacterial theranostics. In this review, we briefly presented the design and fabrication of MOFs. Then, we demonstrated the applications of MOFs in bacterial theranostics and their safety considerations. Finally, we proposed the major obstacles and opportunities for further development in research on the interface of nanozymes and MOFs. We expect that MOFs based nanozymes with unique physicochemical and intrinsic enzyme-mimicking properties will gain broad interest in both fundamental research and biomedical applications.
Collapse
|
26
|
Liu B, Wang Y, Chen Y, Guo L, Wei G. Biomimetic two-dimensional nanozymes: synthesis, hybridization, functional tailoring, and biosensor applications. J Mater Chem B 2021; 8:10065-10086. [PMID: 33078176 DOI: 10.1039/d0tb02051f] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biological enzymes play important roles in mediating the biological reactions in vitro and in vivo due to their high catalytic activity, strong bioactivity, and high specificity; however, they have also some disadvantages such as high cost, low environmental stability, weak reusability, and difficult production. To overcome these shortcomings, functional nanomaterials including metallic nanoparticles, single atoms, metal oxides, alloys, and others have been utilized as nanozymes to mimic the properties and functions of natural enzymes. Due to the development of the synthesis and applications of two-dimensional (2D) materials, 2D nanomaterials have shown high potential to be used as novel nanozymes in biosensing, bioimaging, therapy, logic gates, and environmental remediation due to their unique physical, chemical, biological, and electronic properties. In this work, we summarize recent advances in the preparation and functionalization, as well as biosensor and immunoassay applications of various 2D material-based nanozymes. To achieve this aim, first we demonstrate the preparation strategies of 2D nanozymes such as chemical reduction, templated synthesis, chemical exfoliation, calcination, electrochemical deposition, hydrothermal synthesis, and many others. Meanwhile, the structure and properties of the 2D nanozymes prepared by conjugating 2D materials with nanoparticles, metal oxides, biomolecules, polymers, ions, and 2D heteromaterials are introduced and discussed in detail. Then, the applications of the prepared 2D nanozymes in colorimetric, electrochemical, fluorescent, and electrochemiluminescent sensors are demonstrated.
Collapse
Affiliation(s)
- Bin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
| | | | | | | | | |
Collapse
|
27
|
Luo D, Huang X, Liu B, Zou W, Wu Y. Facile Colorimetric Nanozyme Sheet for the Rapid Detection of Glyphosate in Agricultural Products Based on Inhibiting Peroxidase-Like Catalytic Activity of Porous Co 3O 4 Nanoplates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3537-3547. [PMID: 33721998 DOI: 10.1021/acs.jafc.0c08208] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The rapid and onsite detection of glyphosate herbicides in agricultural products is still a challenge. Herein, a novel colorimetric nanozyme sheet for the rapid detection of glyphosate has been successfully prepared through the physical adsorption of porous Co3O4 nanoplates on a polyester fiber membrane. Glyphosate can specifically inhibit the peroxidase-mimicking catalytic activity of porous Co3O4 nanoplates, thereby the visual detection of glyphosate can be realized by distinguishing the change in the color intensity of the established nanozyme sheet. The prepared nanozyme sheet has good sensitivity and selectivity, with a detection limit of 0.175 mg·kg-1 for glyphosate detection just by the naked eyes. It can effectively detect glyphosate within 10 min, and the color spots can maintain more than 20 min. The nanozyme sheet is not easily affected by the external environment in detection and storage. The merits of the nanozyme sheet facilitate its practical application in the large-scale preliminary screening of glyphosate residues in agricultural products.
Collapse
Affiliation(s)
- Danqiu Luo
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xiaohuan Huang
- Comprehensive Technology Center of Guiyang Customs District, Qianlingshan Road 268, Guanshanhu District, Guiyang 550081, China
| | - Bangyan Liu
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Wenying Zou
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yuangen Wu
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
28
|
Qu Z, Yu T, Liu Y, Bi L. Determination of butyrylcholinesterase activity based on thiamine luminescence modulated by MnO 2 nanosheets. Talanta 2021; 224:121831. [PMID: 33379049 DOI: 10.1016/j.talanta.2020.121831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
In this paper, a novel strategy for biosensing butyrylcholinesterase (BChE) activity is developed based on manganese dioxide (MnO2) nanosheets to modulate the photoluminescence of thiamine (TH). The oxidase-like activity of MnO2 nanosheets enables them to catalyze the oxidation of non-fluorescent substrate TH to generate strong fluorescent thiochrome (TC). When the target BChE is introduced to form thiocholine in the presence of S-butyrylthiocholine iodide (BTCh), MnO2 nanosheets are reduced by thiocholine to Mn2+, resulting in the loss of their oxidase-like activity and the reduction of TC fluorescence. Based on this, a BChE activity fluorescence biosensor is constructed utilizing the luminescence behavior variation of TH and the oxidase-like activity of MnO2 nanosheets. The fluorescence biosensor shows a sensitive response to BChE, and the detection limit reaches 0.036 U L-1. In addition, the feasibility of the biosensor in real samples analysis is studied with satisfactory results.
Collapse
Affiliation(s)
- Zhengyi Qu
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Tian Yu
- College of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, 130012, PR China
| | - Yuzhong Liu
- Jilin University First Hospital, Changchun, 130021, PR China
| | - Lihua Bi
- College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
29
|
Sensitive Fluorescence Assay for the Detection of Alkaline Phosphatase Based on a Cu 2+-Thiamine System. SENSORS 2021; 21:s21030674. [PMID: 33498154 PMCID: PMC7863742 DOI: 10.3390/s21030674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/07/2023]
Abstract
The authors describe a novel, facile, and sensitive fluorometric strategy based on a Cu2+-thiamine (Cu2+-TH) system for the detection of alkaline phosphatase (ALP) activity and inhibition. The principle of the method is as follows. Under a basic conditions, TH, which does not exhibit a fluorescence signal, is oxidized into fluorescent thiochrome (TC) by Cu2+. Ascorbic acid 2-phosphate (AAP), which is the enzyme substrate, is hydrolyzed to produce ascorbic acid (AA) by ALP. The newly formed AA then reduces Cu2+ to Cu+, which prevents the oxidation of TH by Cu2+; as a result, the fluorescent signal becomes weaker. On the contrary, in the absence of ALP, AAP cannot reduce Cu2+; additions of Cu2+ and TH result in a dramatic increase of the fluorescent signal. The sensing strategy displays brilliant sensitivity with a detection limit of 0.08 U/L, and the detection is linear in the concentration range of 0.1 to 100 U/L. This approach was successfully applied to ALP activity in human serum samples, indicating that it is reliable and may be applied to the clinical diagnosis of ALP-related diseases.
Collapse
|
30
|
|
31
|
Ma L, Jiang F, Fan X, Wang L, He C, Zhou M, Li S, Luo H, Cheng C, Qiu L. Metal-Organic-Framework-Engineered Enzyme-Mimetic Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003065. [PMID: 33124725 DOI: 10.1002/adma.202003065] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/26/2020] [Indexed: 02/05/2023]
Abstract
Nanomaterial-based enzyme-mimetic catalysts (Enz-Cats) have received considerable attention because of their optimized and enhanced catalytic performances and selectivities in diverse physiological environments compared with natural enzymes. Recently, owing to their molecular/atomic-level catalytic centers, high porosity, large surface area, high loading capacity, and homogeneous structure, metal-organic frameworks (MOFs) have emerged as one of the most promising materials in engineering Enz-Cats. Here, the recent advances in the design of MOF-engineered Enz-Cats, including their preparation methods, composite constructions, structural characterizations, and biomedical applications, are highlighted and commented upon. In particular, the performance, selectivities, essential mechanisms, and potential structure-property relations of these MOF-engineered Enz-Cats in accelerating catalytic reactions are discussed. Some potential biomedical applications of these MOF-engineered Enz-Cats are also breifly proposed. These applications include, for example, tumor therapies, bacterial disinfection, tissue regeneration, and biosensors. Finally, the future opportunities and challenges in emerging research frontiers are thoroughly discussed. Thereby, potential pathways and perspectives for designing future state-of-the-art Enz-Cats in biomedical sciences are offered.
Collapse
Affiliation(s)
- Lang Ma
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Fuben Jiang
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xin Fan
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, Berlin, 14195, Germany
| | - Liyun Wang
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao He
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mi Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Shuang Li
- Functional Materials, Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, Berlin, 10623, Germany
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Chong Cheng
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, Berlin, 14195, Germany
| | - Li Qiu
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
32
|
Zou H, Zhang Y, Zhang C, Sheng R, Zhang X, Qi Y. Fluorometric Detection of Thiamine Based on Hemoglobin-Cu 3(PO 4) 2 Nanoflowers (NFs) with Peroxidase Mimetic Activity. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6359. [PMID: 33171820 PMCID: PMC7664642 DOI: 10.3390/s20216359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022]
Abstract
Component analysis plays an important role in food production, pharmaceutics and agriculture. Nanozymes have attracted wide attention in analytical applications for their enzyme-like properties. In this work, a fluorometric method is described for the determination of thiamine (TH) (vitamin B1) based on hemoglobin-Cu3(PO4)2 nanoflowers (Hb-Cu3(PO4)2 NFs) with peroxidase-like properties. The Hb-Cu3(PO4)2 NFs catalyzed the decomposition of H2O2 into ·OH radicals in an alkaline solution that could efficiently react with nonfluorescent thiamine to fluoresce thiochrome. The fluorescence of thiochrome was further enhanced with a nonionic surfactant, Tween 80. Under optimal reaction conditions, the linear range for thiamine was from 5 × 10-8 to 5 × 10-5 mol/L. The correlation coefficient for the calibration curve and the limit of detection (LOD) were 0.9972 and 4.8 × 10-8 mol/L, respectively. The other vitamins did not bring about any obvious changes in fluorescence. The developed method based on hybrid nanoflowers is specific, pragmatically simple and sensitive, and has potential for application in thiamine detection.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanfei Qi
- School of Public Health, Jilin University, Changchun 130021, Jilin, China; (H.Z.); (Y.Z.); (C.Z.); (R.S.); (X.Z.)
| |
Collapse
|
33
|
Liu J, Zhang W, Peng M, Ren G, Guan L, Li K, Lin Y. ZIF-67 as a Template Generating and Tuning "Raisin Pudding"-Type Nanozymes with Multiple Enzyme-like Activities: Toward Online Electrochemical Detection of 3,4-Dihydroxyphenylacetic Acid in Living Brains. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29631-29640. [PMID: 32476405 DOI: 10.1021/acsami.0c05667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Due to its unique structure and high porosity, metal-organic frameworks (MOFs) can act not only as nanozyme materials but also as carriers to encapsulate natural enzymes and thus have received extensive attention in recent years. However, a few research studies have been conducted to investigate MOF as a template to generate and tune nanozymes in the structure and performance. In this work, the "raisin pudding"-type ZIF-67/Cu0.76Co2.24O4 nanospheres (ZIF-67/Cu0.76Co2.24O4 NSs) were obtained by rationally regulating the weight ratio of ZIF-67 and Cu(NO3)2 in the synthesis process. Here, ZIF-67 not only acts as a template but also provides a cobalt source for the synthesis of cobalt copper oxide on the surface of ZIF-67/Cu0.76Co2.24O4 NSs with multiple enzyme-like activities. The ZIF-67/Cu0.76Co2.24O4 NSs can mimic four kinds of enzymes with peroxidase-like, glutathione peroxidase-like, superoxide dismutase-like, and laccase-like activities. Based on its laccase-like activity, an online electrochemical system for continuous monitoring of 3,4-dihydroxyphenylacetic acid with good linearity in the range of 0.5-20 μM and a detection limit of 0.15 μM was established. Furthermore, the alteration of DOPAC in the brain microdialysate before and after ischemia of the rats' brain was also successfully recorded. This work not only raises a new idea for the synthesis of nanozyme materials with multiple enzyme activities but also provides a new solution for the detection of neurotransmitters in living brains.
Collapse
Affiliation(s)
- Jia Liu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Wang Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Meihong Peng
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Guoyuan Ren
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Lihao Guan
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Kai Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
34
|
Xing Y, Si H, Sun D, Hou X. Magnetic Fe3O4@NH2-MIL-101(Fe) nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104929] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Zhang J, Liu J. Nanozyme‐based luminescence detection. LUMINESCENCE 2020; 35:1185-1194. [DOI: 10.1002/bio.3893] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Jinyi Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario Canada
| |
Collapse
|
36
|
Mi L, Sun Y, Shi L, Li T. Hemin-Bridged MOF Interface with Double Amplification of G-Quadruplex Payload and DNAzyme Catalysis: Ultrasensitive Lasting Chemiluminescence MicroRNA Imaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7879-7887. [PMID: 31983198 DOI: 10.1021/acsami.9b18053] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Here, we report a double-amplified sensing platform for ultrasensitive chemiluminescence (CL) miRNA detection in real patients' blood in which a hemin-bridged metal-organic framework (MOF) is employed as a functional interface to boost the payload and catalysis of G-quadruplex (G4) DNAzymes. Hemin is here used as the organic ligand for the MOF synthesis, which endows the MOF with an intrinsic peroxidase-like catalytic activity. Most importantly, the MOF surface provides a large amount of binding sites for polymeric G4 DNAzymes that are produced by miRNA-triggered rolling circle amplification reactions, and meanwhile, the interfaced G4 DNAzymes on MOFs (G4/MOFzymes) display an about 100-fold higher catalytic activity than those in solution. By using the G4/MOFzyme catalysts in the luminol/H2O2 CL system, the amplification detection of two acute myocardial infarction (AMI)-related miRNAs (low to 1 fM seen with naked eyes) is achieved in human serum with a smartphone as a portable imaging detector, which provides a facile methodology for point-of-care (POC) diagnosis of AMI. Compared with previous smartphone-based counterparts not requiring sophisticated equipment, this new facile methodology shows both 6 orders of magnitude higher sensitivity and an ∼50-fold longer duration for CL miRNA imaging. These unique features allow our developed G4/MOFzymes to be further employed as a novel luminescent ink for printing commonly used patterns.
Collapse
Affiliation(s)
- Lan Mi
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Yudie Sun
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Lin Shi
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Tao Li
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
37
|
Electrochemiluminescence immunosensor of “signal-off” for β-amyloid detection based on dual metal-organic frameworks. Talanta 2020; 208:120376. [DOI: 10.1016/j.talanta.2019.120376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 01/05/2023]
|
38
|
Adeniyi O, Sicwetsha S, Mashazi P. Nanomagnet-Silica Nanoparticles Decorated with Au@Pd for Enhanced Peroxidase-Like Activity and Colorimetric Glucose Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1973-1987. [PMID: 31846292 DOI: 10.1021/acsami.9b15123] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanomagnet-silica shell (Fe3O4@SiO2) decorated with Au@Pd nanoparticles (NPs) were synthesized successfully. The characterization of Fe3O4@SiO2-NH2-Au@PdNPs was achieved using several spectroscopic and microscopic techniques. The quantitative surface analysis was confirmed using X-ray photoelectron spectroscopy. The Fe3O4@SiO2-NH2-Au@Pd0.30NPs exhibited excellent peroxidase-like activity by effectively catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2. The absorption peaks at 370 and 652 nm confirmed the peroxidase-like activity of the Fe3O4@SiO2-NH2-Au@Pd0.30NPs. The Michaelis-Menten constant (Km) of 0.350 and 0.090 mM showed strong affinity toward H2O2 and TMB at Fe3O4@SiO2-NH2-Au@Pd0.30NPs. The mechanism of the peroxidase-like activity was found to proceed via an electron transfer process. A simple colorimetric sensor based on glucose oxidase and Fe3O4@SiO2-NH2-Au@Pd0.30NPs showed excellent selectivity and sensitivity towards the detection of glucose. The fabricated glucose biosensor exhibited a wide linear response toward glucose from 0.010 to 60.0 μM with an limit of detection of 60.0 nM and limit of quantification of 200 nM. The colorimetric biosensor based on Fe3O4@SiO2-NH2-Au@Pd0.30NPs as a peroxidase mimic was also successfully applied for the determination of glucose concentrations in serum samples. The synthesized Fe3O4@SiO2-NH2-Au@Pd0.30NPs nanozymes exhibited excellent potential as an alternative to horseradish peroxidase for low-cost glucose monitoring.
Collapse
|
39
|
Niu X, Li X, Lyu Z, Pan J, Ding S, Ruan X, Zhu W, Du D, Lin Y. Metal–organic framework based nanozymes: promising materials for biochemical analysis. Chem Commun (Camb) 2020; 56:11338-11353. [DOI: 10.1039/d0cc04890a] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metal–organic frameworks with enzyme-like catalytic features (MOF nanozymes) exhibit great promise in detecting various analytes with amplified signal outputs.
Collapse
Affiliation(s)
- Xiangheng Niu
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
- Institute of Green Chemistry and Chemical Technology
| | - Xin Li
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
- Institute of Green Chemistry and Chemical Technology
| | - Zhaoyuan Lyu
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| | - Jianming Pan
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Shichao Ding
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| | - Xiaofan Ruan
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| | - Wenlei Zhu
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| | - Dan Du
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering
- Washington State University
- Pullman
- USA
| |
Collapse
|
40
|
Liu J, Gan L, Yang X. Glutenin-directed gold nanoclusters employed for assaying vitamin B1. NEW J CHEM 2020. [DOI: 10.1039/c9nj04570h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, glutenin-directed gold nanoclusters (AuNCs@Glu) with the red-fluorescence have been originally synthesized. Moreover, AuNCs@Glu could be employed to assay vitamin B1.
Collapse
Affiliation(s)
- Jie Liu
- College of Pharmaceutical Sciences
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education)
- Southwest University
- Chongqing 400715
- China
| | - Lanlan Gan
- College of Pharmaceutical Sciences
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education)
- Southwest University
- Chongqing 400715
- China
| | - Xiaoming Yang
- College of Pharmaceutical Sciences
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education)
- Southwest University
- Chongqing 400715
- China
| |
Collapse
|
41
|
Abstract
Natural enzymes, such as biocatalysts, are widely used in biosensors, medicine and health, the environmental field, and other fields. However, it is easy for natural enzymes to lose catalytic activity due to their intrinsic shortcomings including a high purification cost, insufficient stability, and difficulties of recycling, which limit their practical applications. The unexpected discovery of the Fe3O4 nanozyme in 2007 has given rise to tremendous efforts for developing natural enzyme substitutes. Nanozymes, which are nanomaterials with enzyme-mimetic catalytic activity, can serve as ideal candidates for artificial mimic enzymes. Nanozymes possess superiorities due to their low cost, high stability, and easy preparation. Although great progress has been made in the development of nanozymes, the catalytic efficiency of existing nanozymes is relatively low compared with natural enzymes. It is still a challenging task to develop nanozymes with a precise regulation of catalytic activity. This review summarizes the classification and various strategies for modulating the activity as well as research progress in the different application fields of nanozymes. Typical examples of the recent research process of nanozymes will be presented and critically discussed.
Collapse
|
42
|
Wang J, Hu Y, Zhou Q, Hu L, Fu W, Wang Y. Peroxidase-like Activity of Metal-Organic Framework [Cu(PDA)(DMF)] and Its Application for Colorimetric Detection of Dopamine. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44466-44473. [PMID: 31691561 DOI: 10.1021/acsami.9b17488] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A metal-organic framework (MOF) [Cu(PDA)(DMF)] was synthesized under mild mixed solvothermal conditions. It is constructed by 1,10-phenanthroline-2,9-dicarboxylic acid (H2PDA) and Cu2+ ions. The complex exhibits high peroxidase-like activity and can catalytically oxidize the colorless substrate 3,3',5,5'-tetramethylbenzidine to a blue product in the presence of H2O2. However, the peroxidase-like activity of [Cu(PDA)(DMF)] can be potently inhibited in the presence of dopamine. Based on this phenomenon, the colorimetric detection of dopamine was demonstrated with good selectivity and high sensitivity. [Cu(PDA)(DMF)] showed good stability and robust catalytic activity, which has been employed in the detection of dopamine in human urine and pharmaceutical samples.
Collapse
Affiliation(s)
- Jun Wang
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry , Chongqing Normal University , Chongqing 401331 , China
| | - Yuyan Hu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry , Chongqing Normal University , Chongqing 401331 , China
| | - Qi Zhou
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry , Chongqing Normal University , Chongqing 401331 , China
| | - Lianzhe Hu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry , Chongqing Normal University , Chongqing 401331 , China
| | - Wensheng Fu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry , Chongqing Normal University , Chongqing 401331 , China
| | - Yi Wang
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry , Chongqing Normal University , Chongqing 401331 , China
| |
Collapse
|
43
|
Copper-based two-dimensional metal-organic framework nanosheets as horseradish peroxidase mimics for glucose fluorescence sensing. Anal Chim Acta 2019; 1079:164-170. [DOI: 10.1016/j.aca.2019.06.042] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 01/08/2023]
|
44
|
Wei J, Zhang D, Zhang L, Ouyang H, Fu Z. Alkaline Hydrolysis Behavior of Metal-Organic Frameworks NH 2-MIL-53(Al) Employed for Sensitive Immunoassay via Releasing Fluorescent Molecules. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35597-35603. [PMID: 31502440 DOI: 10.1021/acsami.9b13907] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanosized metal-organic frameworks (MOFs) NH2-MIL-53(Al) were synthesized from 2-aminoterephthalic acid (NH2·H2BDC) and AlCl3 by a facile hydrothermal method. The synthesized MOFs displayed good stability and a uniform particle size in a netural medium and were hydrolyzed in alkaline medium to release a large amount of fluorescent ligand NH2·H2BDC. Therefore, they can act as large-capability nanovehicles to load signal molecules for investigating various biorecognition events. In this work, based on the alkaline hydrolysis behavior of MOFs NH2-MIL-53(Al), a sensitive immunoassay method was developed for the detection of aflatoxin B1 (AFB1) by employing them as fluorescent signal probes. With a competitive immunoassay mode on microplate, AFB1 can be detected within a linear range of 0.05-25 ng mL-1. The method was successfully employed to detect AFB1 spiked in Job tears, Polygala tenuifolia and with acceptable recovery values of 83.00-114.00%. The detection results for moldy Fructus xanthii displayed an acceptable agreement with those from the high-performance liquid chromatography method, with relative errors of -14.21 to 3.49%. With the merits of high sensitivity, facile manipulation, and ideal reliability, the approach can also be extended to other areas such as aptasensor and receptor-binding assay.
Collapse
Affiliation(s)
- Junyi Wei
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Ministry of Education), College of Pharmaceutical Sciences , Southwest University , Chongqing 400716 , China
| | - Dan Zhang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Ministry of Education), College of Pharmaceutical Sciences , Southwest University , Chongqing 400716 , China
| | - Lvxia Zhang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Ministry of Education), College of Pharmaceutical Sciences , Southwest University , Chongqing 400716 , China
| | - Hui Ouyang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Ministry of Education), College of Pharmaceutical Sciences , Southwest University , Chongqing 400716 , China
| | - Zhifeng Fu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Ministry of Education), College of Pharmaceutical Sciences , Southwest University , Chongqing 400716 , China
| |
Collapse
|
45
|
Mathew EM, Sakore P, Lewis L, Manokaran K, Rao P, Moorkoth S. Development and validation of a dried blood spot test for thiamine deficiency among infants by HPLC-fluorimetry. Biomed Chromatogr 2019; 33:e4668. [PMID: 31353499 DOI: 10.1002/bmc.4668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 07/20/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
Thiamine deficiency, if detected early in infancy, can be treated with thiamine supplementation and can prevent seizures, other disabilities and death. The dried blood spot (DBS) sampling technique is an attractive sample collection technique for infants. The present study reports the development and validation of a highly sensitive and precise method for quantification of thiamine diphosphate from DBS. The method utilizes full-spot analysis of a volumetrically deposited 40 μl DBS. The analyte was extracted from the DBS using 50% methanol and then derivatized using potassium ferricyanide to thiochrome. Separation was achieved with the help of an Inertsil ODS C18 column (5.0 μm, 250 × 4.6 mm) using 150 mm phosphate buffer pH 7-acetonitrile (90:10, % v/v) as the mobile phase. The use of a fluorimetric detector gave a good response to the thiochrome derivative offering good sensitivity for the method. The excitation and emission wavelengths were 367 and 435 nm, respectively. The limit of detection and lower limit of quantification were 5 and 10 ng/ml, respectively. Linearity was demonstrated from 10 to 1000 ng/ml, and precision (CV) was <12.08%, at all tested quality control levels. The method accuracy was 89.34-118.89% with recoveries >80%. Bland-Altman analysis of DBS sampling vs. whole blood demonstrated a mean bias of only 1.16 ng/ml, with a majority of the 60 investigated patient samples lying within 7.2% of the corresponding concentration measured in blood, thereby meeting the clinical desirable biological specification criterion and showing that the two methods are comparable.
Collapse
Affiliation(s)
- Elizabeth Mary Mathew
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Pradnya Sakore
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Leslie Lewis
- Department of Paediatrics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Kalaivani Manokaran
- Department of Medical Laboratory Technology, Manipal Academy of Higher Education, Manipal, India
| | - Pragna Rao
- Department of Biochemistry, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Sudheer Moorkoth
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
46
|
Zhang X, Li G, Wu D, Li X, Hu N, Chen J, Chen G, Wu Y. Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy. Biosens Bioelectron 2019; 137:178-198. [DOI: 10.1016/j.bios.2019.04.061] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
|
47
|
Yao J, Wu T, Sun Y, Ma Z, Liu M, Zhang Y, Yao S. A novel biomimetic nanoenzyme based on ferrocene derivative polymer NPs coated with polydopamine. Talanta 2019; 195:265-271. [DOI: 10.1016/j.talanta.2018.11.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/05/2018] [Accepted: 11/21/2018] [Indexed: 12/23/2022]
|
48
|
Zhang H, Chen J, Yang Y, Wang L, Li Z, Qiu H. Discriminative Detection of Glutathione in Cell Lysates Based on Oxidase-Like Activity of Magnetic Nanoporous Graphene. Anal Chem 2019; 91:5004-5010. [PMID: 30889954 DOI: 10.1021/acs.analchem.8b04779] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As the most abundant intracellular biothiol, glutathione (GSH) plays a central role in many cellular functions and has been proved to be associated with numerous clinical diseases. Nevertheless, it is still a challenge to detect GSH over other mercaptoamino acids owing to their similar structures and activities. In this paper, magnetic nanoporous graphene (MNPG) nanocomposites were prepared for the first time through partial combustion of graphene oxide (GO) and ferric chloride. Due to the combination of porous graphene and magnetic nanoparticles, the MNPG nanocomposites exhibited large specific surface area, fast mass, and electron transport kinetics, resulting in remarkable oxidase mimic activity and easy separation. On the basis of the inhibition effect of GSH on the MNPG-catalyzed oxidation of thiamine, a novel and simple method for fluorescence determination of GSH was established. The sensor displayed a good linear response in the range of 0.2-20 μM toward GSH with a limit of detection of 0.05 μM. High sensitivity and selectivity facilitated its practical application for discriminative detection of GSH levels in PC12 cell lysates. The presented assay will be a simple and powerful tool to monitor intracellular GSH levels for biomedical diagnosis. Furthermore, the MNPG nanocomposites will provide insights to construct nanoporous graphene-based hybrids and push forward the advancement of porous graphene for wide applications.
Collapse
Affiliation(s)
- Haijuan Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000 , China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000 , China
| | - Yali Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000 , China
| | - Li Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000 , China
| | - Zhan Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000 , China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000 , China
| |
Collapse
|
49
|
Huang Y, Ren J, Qu X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chem Rev 2019; 119:4357-4412. [PMID: 30801188 DOI: 10.1021/acs.chemrev.8b00672] [Citation(s) in RCA: 1744] [Impact Index Per Article: 290.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Because of the high catalytic activities and substrate specificity, natural enzymes have been widely used in industrial, medical, and biological fields, etc. Although promising, they often suffer from intrinsic shortcomings such as high cost, low operational stability, and difficulties of recycling. To overcome these shortcomings, researchers have been devoted to the exploration of artificial enzyme mimics for a long time. Since the discovery of ferromagnetic nanoparticles with intrinsic horseradish peroxidase-like activity in 2007, a large amount of studies on nanozymes have been constantly emerging in the next decade. Nanozymes are one kind of nanomaterials with enzymatic catalytic properties. Compared with natural enzymes, nanozymes have the advantages such as low cost, high stability and durability, which have been widely used in industrial, medical, and biological fields. A thorough understanding of the possible catalytic mechanisms will contribute to the development of novel and high-efficient nanozymes, and the rational regulations of the activities of nanozymes are of great significance. In this review, we systematically introduce the classification, catalytic mechanism, activity regulation as well as recent research progress of nanozymes in the field of biosensing, environmental protection, and disease treatments, etc. in the past years. We also propose the current challenges of nanozymes as well as their future research focus. We anticipate this review may be of significance for the field to understand the properties of nanozymes and the development of novel nanomaterials with enzyme mimicking activities.
Collapse
Affiliation(s)
- Yanyan Huang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China.,College of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| |
Collapse
|
50
|
Hu S, Zhu L, Lam CW, Guo L, Lin Z, Qiu B, Wong KY, Chen G, Liu Z. Fluorometric determination of the activity of inorganic pyrophosphatase and its inhibitors by exploiting the peroxidase mimicking properties of a two-dimensional metal organic framework. Mikrochim Acta 2019; 186:190. [PMID: 30771090 DOI: 10.1007/s00604-019-3250-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 11/28/2022]
Abstract
A copper(II)-based two-dimensional metal-organic framework with nanosheet structure (CuBDC NS) that possesses peroxidase (POx) mimicking activity was prepared. In the presence of hydrogen peroxide, the system catalyses the oxidation of terephthalic acid to a blue-fluorescent product (excitation = 315 nm; emission = 425 nm). Pyrophosphate has a very strong affinity for Cu2+ ion and blocks the POx-mimicking activity of the CuBDC NS. If, however, inorganic pyrophosphatase is present, the POx mimicking activity is gradually restored because pyrophosphate is hydrolyzed. The findings were used to design a method for the determination of the activity of inorganic pyrophosphatase by fluorometry. Fluorescence increases linearly in the 1-50 mU·mL-1 inorganic pyrophosphatase activity range. The limit of detection is 0.6 mU·mL-1 (S/N = 3). Graphical abstract A copper(II)-based two-dimensional metal-organic framework (CuBDC NS) is described that possesses POx-mimicking activity. Inorganic pyrophosphate (PPi) was hydrolyzed to phosphate in the presence of inorganic pyrophosphatase (PPase). Hence, it cannot coordinate with Cu2+ in CuBDC NS, its structure was well-conserved to catalyses the oxidation of terephthalic acid (H2BDC) to produce a blue fluorescent product (oxBDC) in the presence of hydrogen peroxide (H2O2).
Collapse
Affiliation(s)
- Shuisheng Hu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China.,Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, People's Republic of China
| | - Lin Zhu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China
| | - Cheong Wing Lam
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, People's Republic of China
| | - Longhua Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China.
| | - Kwok Yin Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, People's Republic of China
| | - Guonan Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China
| | - Zhenhua Liu
- Department of Medical Oncology, Fujian Provincial Clinical College Affiliated with Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China.
| |
Collapse
|