1
|
Lee S, Park J, Song J, Lee JJ, Kim J. The Effect of GO Flake Size on Field-Effect Transistor (FET)-Based Biosensor Performance for Detection of Ions and PACAP 38. BIOSENSORS 2025; 15:86. [PMID: 39996988 PMCID: PMC11853402 DOI: 10.3390/bios15020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/26/2025]
Abstract
The performance development of rGO-FET biosensors by analyzing the influence of GO flake size on biosensing efficacy. GO flakes of varying sizes, from 1 µm to 20 µm, were prepared under controlled conditions, followed by characterization through SEM and XPS to evaluate their size, surface area, and C/O ratio. The biosensing performance was systematically assessed by rGO-FET biosensors, examining the effects of GO flake size, C/O ratio, and film thickness. PACAP38 was employed as a biomarker for receptor-mediated detection, while chlorine ions served as model analytes for receptor-free small molecule detection. The results indicate that decreasing the GO flake size enhanced the performance for both target biomolecules. These findings highlight the crucial importance of selecting GO flake sizes specific to target analytes and detection strategies, thereby optimizing biosensor efficiency.
Collapse
Affiliation(s)
- Seungjun Lee
- Department of Medical Biotechnology, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea; (S.L.); (J.S.)
| | - Jongdeok Park
- Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea;
| | - Jaeyoon Song
- Department of Medical Biotechnology, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea; (S.L.); (J.S.)
| | - Jae-Joon Lee
- Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea;
| | - Jinsik Kim
- Department of Medical Biotechnology, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea; (S.L.); (J.S.)
| |
Collapse
|
2
|
Quezada D, Herrera B, Santibáñez R, Palma JL, Landaeta E, Álvarez CA, Valenzuela S, Cobos-Montes K, Ramírez D, Santana PA, Ahumada M. Impedimetric Sensor for SARS-CoV-2 Spike Protein Detection: Performance Assessment with an ACE2 Peptide-Mimic/Graphite Interface. BIOSENSORS 2024; 14:592. [PMID: 39727857 DOI: 10.3390/bios14120592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/30/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024]
Abstract
The COVID-19 pandemic has prompted the need for the development of new biosensors for SARS-CoV-2 detection. Particularly, systems with qualities such as sensitivity, fast detection, appropriate to large-scale analysis, and applicable in situ, avoiding using specific materials or personnel to undergo the test, are highly desirable. In this regard, developing an electrochemical biosensor based on peptides derived from the angiotensin-converting enzyme receptor 2 (ACE2) is a possible answer. To this end, an impedimetric detector was developed based on a graphite electrode surface modified with an ACE2 peptide-mimic. This sensor enables accurate quantification of recombinant 2019-nCoV spike RBD protein (used as a model analyte) within a linear detection range of 0.167-0.994 ng mL-1, providing a reliable method for detecting SARS-CoV-2. The observed sensitivity was further demonstrated by molecular dynamics that established the high affinity and specificity of the peptide to the protein. Unlike other impedimetric sensors, the herein presented system can detect impedance in a single frequency, allowing a measure as fast as 3 min to complete the analysis and achieving a detection limit of 45.08 pg mL-1. Thus, the proposed peptide-based electrochemical biosensor offers fast results with adequate sensitivity, opening a path to new developments concerning other viruses of interest.
Collapse
Affiliation(s)
- Diego Quezada
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, el Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile
| | - Beatriz Herrera
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, el Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile
| | - Rodrigo Santibáñez
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, el Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile
| | - Juan Luis Palma
- School of Engineering, Universidad Central de Chile, Santiago 8330601, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago 9170124, Chile
| | - Esteban Landaeta
- School of Engineering, Universidad Central de Chile, Santiago 8330601, Chile
| | - Claudio A Álvarez
- Laboratorio de Cultivo de Peces, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1781421, Chile
- Laboratorio de Fisiología y Genética Marina, Centro de Estudios Avanzados en Zonas Áridas, Larrondo 1281, Coquimbo 1781421, Chile
| | - Santiago Valenzuela
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, el Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile
| | - Kevin Cobos-Montes
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Sede Concepción, Talcahuano 4260000, Chile
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | - Paula A Santana
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, el Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile
| | - Manuel Ahumada
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile
| |
Collapse
|
3
|
Li H, Murugesan A, Shoaib M, Sheng W, Chen Q. Functionalized metal-organic frameworks with biomolecules for sensing and detection applications of food contaminants. Crit Rev Food Sci Nutr 2024:1-33. [PMID: 39323356 DOI: 10.1080/10408398.2024.2406482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The increasing demand for toxin-free food, driven by the rise in fast food consumption and changing dietary habits, necessitates advanced and efficient detection methods to address the potential risks associated with contaminated food. Nanomaterial-based detection methods have shown significant promise, particularly using metal-organic frameworks (MOFs) combined with biomolecules. This review article provides an overview of recent advancements in using functionalized metal-organic frameworks (FMOFs) with biomolecules to detect various food contaminants, including heavy metals, antibiotics, pesticides, bacteria, mycotoxins and other chemical contaminants. We discuss the fundamental principles of detecting food contaminants, evaluate existing analytical techniques, and explore the development of biomacromolecule-functionalized MOF-based sensors encompassing colorimetric, optical, electrochemical, and portable variants. The review also examines sensing mechanisms, uses FMOFs as signal probes and carriers for capture probes, and assesses sensitivity. Additionally, we explore the opportunities and challenges in producing FMOFs with biomacromolecules for food contaminant assessment. Future directions include improving sensor sensitivity and specificity, developing more cost-effective production methods, and integrating these technologies into real-world food safety monitoring systems. This work aims to pave the way for innovative and reliable solutions to ensure the safety of our food supply.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Arul Murugesan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Muhammad Shoaib
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Wei Sheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, PR China
| |
Collapse
|
4
|
Mansouri S. Recent developments of (bio)-sensors for detection of main microbiological and non-biological pollutants in plastic bottled water samples: A critical review. Talanta 2024; 274:125962. [PMID: 38537355 DOI: 10.1016/j.talanta.2024.125962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 05/04/2024]
Abstract
The importance of water in all biological processes is undeniable. Ensuring access to clean and safe drinking water is crucial for maintaining sustainable water resources. To elaborate, the consumption of water of inadequate quality can have a repercussion on human health. Furthermore, according to the instability of tap water quality, the consumption rate of bottled water is increasing every day at the global level. Although most people believe bottled water is safe, it can also be contaminated by microbiological or chemical pollution, which can increase the risk of disease. Over the last decades, several conventional analytical tools applied to analyze the contamination of bottled water. On the other hand, some limitations restrict their application in this field. Therefore, biosensors, as emerging analytical method, attract tremendous attention for detection both microbial and chemical contamination of bottled water. Biosensors enjoy several facilities including selectivity, affordability, and sensitivity. In this review, the developed biosensors for analyzing contamination of bottled water were highlighted, as along with working strategies, pros and cons of studies. Challenges and prospects were also examined.
Collapse
Affiliation(s)
- Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia; University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Laboratory of Biophysics and Medical Technologies, Tunis, Tunisia.
| |
Collapse
|
5
|
Khane Y, Albukhaty S, Sulaiman GM, Fennich F, Bensalah B, Hafsi Z, Aouf M, Amar ZH, Aouf D, Al-kuraishy HM, Saadoun H, Mohammed HA, Mohsin MH, Al-aqbi ZT. Fabrication, characterization and application of biocompatible nanocomposites: A review. Eur Polym J 2024; 214:113187. [DOI: 10.1016/j.eurpolymj.2024.113187] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Uçar A, Aydoğdu Tığ G, Er E. Recent advances in two dimensional nanomaterial-based electrochemical (bio)sensing platforms for trace-level detection of amino acids and pharmaceuticals. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Yurtsever A, Sun L, Hirata K, Fukuma T, Rath S, Zareie H, Watanabe S, Sarikaya M. Molecular Scale Structure and Kinetics of Layer-by-Layer Peptide Self-Organization at Atomically Flat Solid Surfaces. ACS NANO 2023; 17:7311-7325. [PMID: 36857412 DOI: 10.1021/acsnano.2c10673] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Understanding the mechanisms of self-organization of short peptides into two- and three-dimensional architectures are of great interest in the formation of crystalline biomolecular systems and their practical applications. Since the assembly is a dynamic process, the study of structural development is challenging at the submolecular dimensions continuously across an adequate time scale in the natural biological environment, in addition to the complexities stemming from the labile molecular structures of short peptides. Self-organization of solid binding peptides on surfaces offers prospects to overcome these challenges. Here we use a graphite binding dodecapeptide, GrBP5, and record its self-organization process of the first two layers on highly oriented pyrolytic graphite surface in an aqueous solution by using frequency modulation atomic force microscopy in situ. The observations suggest that the first layer forms homogeneously, generating self-organized crystals with a lattice structure in contact with the underlying graphite. The second layer formation is mostly heterogeneous, triggered by the crystalline defects on the first layer, growing row-by-row establishing nominally diverse biomolecular self-organized structures with transient crystalline phases. The assembly is highly dependent on the peptide concentration, with the nucleation being high in high molecular concentrations, e.g., >100 μM, while the domain size is small, with an increase in the growth rate that gradually slows down. Self-assembled peptide crystals are composed of either singlets or doublets establishing P1 and P2 oblique lattices, respectively, each commensurate with the underlying graphite lattice with chiral crystal relations. This work provides insights into the surface behavior of short peptides on solids and offers quantitative guidance toward elucidating molecular mechanisms of self-assembly helping in the scientific understanding and construction of coherent bio/nano hybrid interfaces.
Collapse
Affiliation(s)
- Ayhan Yurtsever
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Linhao Sun
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kaito Hirata
- Institute for Frontier Science and Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takeshi Fukuma
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Siddharth Rath
- GEMSEC, Genetically Engineered Materials Science and Engineering Center, University of Washington, Seattle, Washington 98195, United States
| | - Hadi Zareie
- GEMSEC, Genetically Engineered Materials Science and Engineering Center, University of Washington, Seattle, Washington 98195, United States
| | - Shinji Watanabe
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Mehmet Sarikaya
- GEMSEC, Genetically Engineered Materials Science and Engineering Center, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
8
|
Wang Y, Di S, Yu J, Wang L, Li Z. Recent advances of graphene-biomacromolecule nanocomposites in medical applications. J Mater Chem B 2023; 11:500-518. [PMID: 36541392 DOI: 10.1039/d2tb01962k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, graphene-based composites have received increasing attention due to their high biocompatibility, large specific surface area, high electrical conductivity and unique mechanical properties. The combination of biomacromolecules and graphene provides a promising route for the preparation of novel graphene-based nanocomposites. Novel graphene-based nanocomposites with unique functions could be applied to medicine, biology, biosensors, environmental science, energy storage and other fields. Graphene-biomacromolecule nanocomposites have excellent biocompatibility, outstanding biofunctionality and low cytotoxicity, and have more advantages and development prospects than other traditional graphene-based materials in biological and biomedical fields. In this work, we summarize the research on the covalent and non-covalent interactions between different biomacromolecules (peptides, DNA/RNA, proteins and enzymes) and graphene, as well as the synthesis methods of novel functionalized graphene-biomacromolecule composites in recent years. We mainly introduce the recent advances (last 5 years) of graphene-biomacromolecule nanocomposites in medical applications, such as medical detection and disease treatment. We hope that this review will help readers to understand the methods and mechanisms of biomolecules modifying the surface of graphene, as well as the synthesis and application of graphene-based nanocomposites, which will promote the future developments of graphene-biomolecule composites in biomedicine, tissue engineering, materials engineering, and so on.
Collapse
Affiliation(s)
- Yiting Wang
- College of Chemistry, Jilin Normal University, Siping, 136000, P. R. China.
| | - Shuhan Di
- College of Chemistry, Jilin Normal University, Siping, 136000, P. R. China.
| | - Jinhui Yu
- College of Chemistry, Jilin Normal University, Siping, 136000, P. R. China.
| | - Li Wang
- College of Chemistry, Jilin Normal University, Siping, 136000, P. R. China.
| | - Zhuang Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
9
|
Aydın EB, Aydın M, Sezgintürk MK. A Simple and Low-Cost Electrochemical Immunosensor for Ultrasensitive Determination of Calreticulin Biomarker in Human Serum. Macromol Biosci 2023; 23:e2200390. [PMID: 36419333 DOI: 10.1002/mabi.202200390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/13/2022] [Indexed: 11/27/2022]
Abstract
An early on time detection of breast cancer significantly affects the treatment process and outcome. Herein, a new label-free impedimetric biosensor is developed to determine the lowest change in the level of calreticulin (CALR), which is a new biomarker of breast carcinoma. The proposed immunosensor is fabricated by using reduced graphene oxide/amino substituted polypyrrole polymer (rGO-PPyNH2 ) nanocomposite modified disposable electrode. The anti-CALR antibodies are first attached on the rGO-PPyNH2 nanocomposite coated electrode through glutaraldehyde crosslinking; the CALR antigens are then immobilized with the addition of CALR antigens to form an immunocomplex on the sensing surface. This immunocomplex induces considerably larger interfacial electron transport resistance (Rct ). The variation in the Rct has a linear relationship with CALR level in the detection range of 0.025 to 75 pg mL-1 , with a detection limit of 10.4 fg mL-1 . The suggested biosensor shows high selectivity to CALR, good storage stability (at least 5 weeks) and suitable reproducibility results as shown in quality control chart. The designed immunosensor is utilized to analyze CALR levels in human sera with satisfying results. This immunosensor provides a novel way for the clinical determination of CALR and other cancer biological markers.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, 59000, Turkey
| | - Muhammet Aydın
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, 59000, Turkey
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, 17000, Turkey
| |
Collapse
|
10
|
Induchoodan G, Jansson H, Mohammadi AS, Swenson J. The Critical Role of Asphaltene Nanoaggregates in Stabilizing Functionalized Graphene in Crude Oil Derivatives. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Tincu B, Burinaru T, Enciu AM, Preda P, Chiriac E, Marculescu C, Avram M, Avram A. Vertical Graphene-Based Biosensor for Tumor Cell Dielectric Signature Evaluation. MICROMACHINES 2022; 13:mi13101671. [PMID: 36296024 PMCID: PMC9610743 DOI: 10.3390/mi13101671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/13/2022] [Accepted: 10/02/2022] [Indexed: 06/10/2023]
Abstract
The selective and rapid detection of tumor cells is of critical consequence for the theragnostic field of tumorigenesis; conventional methods, such as histopathological diagnostic methods, often require a long analysis time, excessive analytical costs, complex operations, qualified personnel and deliver many false-positive results. We are considering a new approach of an electrochemical biosensor based on graphene, which is evidenced to be a revolutionary nanomaterial enabling the specific and selective capture of tumor cells. In this paper, we report a biosensor fabricated by growing vertically aligned graphene nanosheets on the conductive surface of interdigitated electrodes which is functionalized with anti-EpCAM antibodies. The dielectric signature of the three types of tumor cells is determined by correlating the values from the Nyquist and Bode diagram: charge transfer resistance, electrical double layer capacity, Debye length, characteristic relaxation times of mobile charges, diffusion/adsorption coefficients, and variation in the electrical permittivity complex and of the phase shift with frequency. These characteristics are strongly dependent on the type of membrane molecules and the electromagnetic resonance frequency. We were able to use the fabricated sensor to differentiate between three types of tumor cell lines, HT-29, SW403 and MCF-7, by dielectric signature. The proposed evaluation method showed the permittivity at 1 MHz to be 3.63 nF for SW403 cells, 4.97 nF for HT 29 cells and 6.9 nF for MCF-7 cells.
Collapse
Affiliation(s)
- Bianca Tincu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
- Faculty of Applied Chemistry and Material Science, University “Politehnica” of Bucharest, 313 Splaiul Independenței, 060042 Bucharest, Romania
| | - Tiberiu Burinaru
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
- University of Agronomic Sciences and Veterinary Medicine, 59 Mărăști, 011464 Bucharest, Romania
| | - Ana-Maria Enciu
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, 99–101 Splaiul Independenţei, 050096 Bucharest, Romania
- Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, 050474 Bucharest, Romania
| | - Petruta Preda
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
| | - Eugen Chiriac
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
- Faculty of Applied Chemistry and Material Science, University “Politehnica” of Bucharest, 313 Splaiul Independenței, 060042 Bucharest, Romania
| | - Catalin Marculescu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
| | - Marioara Avram
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
| | - Andrei Avram
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
| |
Collapse
|
12
|
Gao L, Deng Y, Liu H, Solomon K, Zhang B, Cai H. Detection of Pb2+ in Tea Using Aptamer Labeled with AIEgen Nanospheres Based on MOFs Sensors. BIOSENSORS 2022; 12:bios12090745. [PMID: 36140130 PMCID: PMC9496512 DOI: 10.3390/bios12090745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022]
Abstract
Tea is an important economic crop and health beverage in China. The presence of heavy metal ions in tea poses a significant threat to public health. Here, we prepared an aptamer biosensor labelled with AIEgen nanospheres to detect Pb2+ in tea. The dsDNA modified by amino and phosphoric acid was combined with the carboxylated AIEgen NPs to form AIEgen-DNA with a fluorescence group, which was then fixed to the surface of Zr-MOFs to quench the fluorescence of AIEgen NPs. At the same time, PEG was added to remove nonspecific adsorption. Then Pb2+ was added to cut the DNA sequences containing the cutting sites, and AIEgen NPs and part of the DNA sequences were separated from the Zr-MOFs surface to recover the fluorescence. By comparing the fluorescence changes before and after adding Pb2+, the detection limit of Pb2+ can reach 1.70 nM. The fluorescence sensor was applied to detect Pb2+ in tea, and the detection results showed that the tea purchased on the market did not contain the concentration of Pb2+ within the detection range. This study provides new insights into monitoring food and agriculture-related pollutants based on fluorescent biosensors.
Collapse
Affiliation(s)
- Li Gao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yixi Deng
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Haolu Liu
- Nanjing Institute of Mechanization, Ministry of Agriculture, Nanjing 210014, China
| | - King Solomon
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Bianjiang Zhang
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
- Correspondence: (B.Z.); (H.C.)
| | - Huimei Cai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
- Correspondence: (B.Z.); (H.C.)
| |
Collapse
|
13
|
Mastouri M, Baachaoui S, Mosbah A, Raouafi N. In silico screening for oligopeptides useful as capture and reporting probes for interleukin-6 biosensing. RSC Adv 2022; 12:13003-13013. [PMID: 35497015 PMCID: PMC9049833 DOI: 10.1039/d2ra01496c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/24/2022] [Indexed: 11/21/2022] Open
Abstract
IL-6 is an important interleukin associated with inflammation and several diseases such as cancer. Evaluation of its levels in human blood sera is a critical step for an accurate diagnosis of the diseases. Our goal is to design peptides that can selectively bind in different poses with good affinities to IL-6. For this purpose, we started from the crystal structures of different IL-6/protein complexes available in the Protein Data Bank (PDB) to select short peptides in the interaction zones, in which we intentionally introduced point mutations to increase their stability and affinity. To examine their usefulness as capture and reporting probes for the IL-6 biosensing, the five peptides and their interaction with IL-6 were studied in saline aqueous solution. Molecular docking, MD, and MM-PBSA were used to investigate the affinity and stability of these complexes. The conformational changes, the distance between the mass centers, the gyration radii, and the numbers of hydrogen bonds were analyzed to select the most suitable candidates. Three peptides, namely CTE17, CAY15 and CSE25, have the highest affinities presenting significant numbers of residues that have contact frequencies greater than 50% of simulation run time and are the most promising candidates. CTE17 and CSE25 showed they can form a stable sandwich with the target protein. For sake of comparison, we examined the previously known peptides (FND20, INL19 and CEK17) having affinity to IL-6 and the affinity of the lead i.e. CSE25 to two other interleukin family members (IL-4 and to IL-10).
Collapse
Affiliation(s)
- Mohamed Mastouri
- Sensors and Biosensors Group, Laboratory of Analytical Chemistry & Electrochemistry (LR99ES15), Faculty of Science, University of Tunis El Manar 2092 Tunis El Manar Tunisia
| | - Sabrine Baachaoui
- Sensors and Biosensors Group, Laboratory of Analytical Chemistry & Electrochemistry (LR99ES15), Faculty of Science, University of Tunis El Manar 2092 Tunis El Manar Tunisia
| | - Amor Mosbah
- BVBGR Laboratory (LR11ES31), ISBST, Biotechnopole Sidi Thabet, University of Manouba Ariana 2020 Tunisia
| | - Noureddine Raouafi
- Sensors and Biosensors Group, Laboratory of Analytical Chemistry & Electrochemistry (LR99ES15), Faculty of Science, University of Tunis El Manar 2092 Tunis El Manar Tunisia
| |
Collapse
|
14
|
Highly Sensitive Detection of Carbaryl Pesticides Using Potentiometric Biosensor with Nanocomposite Ag/r-Graphene Oxide/Chitosan Immobilized Acetylcholinesterase Enzyme. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10040138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Novel, sensitive, selective, efficient and portable electrochemical biosensors are needed to detect residual contaminants of the pesticide 1-naphthyl methylcarbamate (carbaryl) in the environment, food, and essential biological fluids. In this work, a study of nanocomposite-based Ag reduced graphene oxide (rGO) and chitosan (CS) that optimise surface conditions for immobilisation of acetylcholinesterase (AChE) enzyme to improve the performance of catalytic biosensors is examined. The Ag/rGO/CS nanocomposite membrane was used to determine carbaryl pesticide using a potentiometer transducer. The AChE enzyme-based biosensor exhibits a good affinity for acetylthiocholine chloride (ATCl). It can catalyse the hydrolysis of ATCl with a potential value of 197.06 mV, which is then oxidised to produce a detectable and rapid response. Under optimal conditions, the biosensor detected carbaryl pesticide at concentrations in the linear range of 1.0 × 10−8 to 1.0 μg mL−1 with a limit of detection (LoD) of 1.0 × 10−9 μg mL−1. The developed biosensor exhibits a wide working concentration range, detection at low concentrations, high sensitivity, acceptable stability, reproducibility and simple fabrication, thus providing a promising tool for pesticide residue analysis.
Collapse
|
15
|
Yasri S, Wiwanitkit V. Sustainable materials and COVID-19 detection biosensor: A brief review. SENSORS INTERNATIONAL 2022; 3:100171. [PMID: 35284845 PMCID: PMC8904007 DOI: 10.1016/j.sintl.2022.100171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 12/23/2022] Open
Abstract
COVID-19 is the current global problem. Billions of infected cases due to the pandemic cause an emergency requirement to contain the pandemic. A basic concept to manage the outbreak is an early diagnosis and prompt treatment. To diagnose COVID-19, the new biosensors become new interventions that are hopeful to help effective diagnosis. In clinical material science, the issues on materials of COVID-19 detection biosensor is very interesting. In this brief review, the authors summarize and discuss on sustainable materials and COVID-19 detection biosensor. The paper, cellulose and graphene - based materials are specifically focused and biosensors for RNA sensing, antigenic determination and immune response detection are covered in this short article.
Collapse
|
16
|
Mocanu CS, Petre BA, Ion LD, Drochioiu G, Niculaua M, Stoica I, Homocianu M, Nita LE, Gradinaru VR. Structural Characterization of a New Collagen Biomimetic Octapeptide with Nanoscale Self‐assembly Potential: Experimental and Theoretical Approaches. Chempluschem 2021; 87:e202100462. [DOI: 10.1002/cplu.202100462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/15/2021] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Gabi Drochioiu
- Alexandru Ioan Cuza University of Iasi Chemistry ROMANIA
| | - Marius Niculaua
- Romanian Academy Iasi Branch: Academia Romana Filiala Iasi Research Center for Oenology ROMANIA
| | - Iuliana Stoica
- Romanian Academy Iasi Branch: Academia Romana Filiala Iasi Petru Poni Institute of Macromolecular Chemistry ROMANIA
| | - Mihaela Homocianu
- Romanian Academy Iasi Branch: Academia Romana Filiala Iasi Petru Poni Institute of Macromolecular Chemistry ROMANIA
| | - Loredana Elena Nita
- Romanian Academy Iasi Branch: Academia Romana Filiala Iasi Petru Poni Institute of Macromolecular Chemistry ROMANIA
| | - Vasile Robert Gradinaru
- Alexandru Ioan Cuza University: Universitatea Alexandru Ioan Cuza Chemistry Carol av, No 11 700506 Iasi ROMANIA
| |
Collapse
|
17
|
Li W, Zhao Z, Yang W, Su Q, Na C, Zhang X, Zhao R, Song H. Immobilization of bovine hemoglobin on Au nanoparticles/MoS 2 nanosheets - Chitosan modified screen-printed electrode as chlorpyrifos biosensor. Enzyme Microb Technol 2021; 154:109959. [PMID: 34891104 DOI: 10.1016/j.enzmictec.2021.109959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 01/13/2023]
Abstract
In this paper a quick and disposable electrochemical biosensor based on bovine hemoglobin (BHb) is proposed for the determination of chlorpyrifos (CP). The bioelectrode (denoted as AuNPs/MoS2-CS/BHb/SPE) has been designed by immobilizing BHb on the screen printed electrode (SPE) surface modified by gold nanoparticles (AuNPs) and Molybdenum disulfide (MoS2) nanosheets - chitosan (CS) mixture (MoS2-CS). Field emission scanning electron microscopy (FESEM) and electrochemical characterization demonstrate the successful grafting of AuNPs/MoS2-CS/BHb/SPE. Detailed electrochemical impedance spectroscopy (EIS) analysis and cyclic voltammetry (CV) tests show that the proposed bioelectrode exhibits decent electrochemical properties, such as well conductivity and large specific surface area. In-depth electrochemical analysis reveals the redox reaction occurring on the surface of the bioelectrode and the mechanism that CP binds with BHb forming the thin film to inhibit the peak current. The proposed biosensor exhibits sensitive and stable responses for electrochemical assay of CP ranging from 0.004 μM to 28.52 μM, with a limit of detection (LOD) as 5.6 nM. The electrochemical biosensor passes the repeatability, reproducibility, stability and anti-interference ability test experiments with good performance. The biosensor also shows its credibility for detecting CP in real vegetable samples (Cabbage and Leek) with recovery (%) ranging from 87% to 109%. The proposed biosensor is of great potential application values for detecting CP and the study is of great reference value for the research and development of biosensors for quantitative detection of organophosphate pesticides (OPs).
Collapse
Affiliation(s)
- Wei Li
- College of Agricultural Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zuyi Zhao
- College of Agricultural Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Wei Yang
- College of Agricultural Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Qin Su
- College of Agricultural Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Chong Na
- Shanxi Wanjiazhai Water Resources Co., Ltd., Xinzhou, Shanxi 030012, China
| | - Xueli Zhang
- College of Agricultural Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Rui Zhao
- College of Agricultural Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Haiyan Song
- College of Agricultural Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
18
|
Qian Y, Di S, Wang L, Li Z. Recent advances in the synthesis and applications of graphene-polypeptide nanocomposites. J Mater Chem B 2021; 9:6521-6535. [PMID: 34318859 DOI: 10.1039/d1tb00779c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combination of peptides and graphene-derived materials provides a new way to prepare graphene-based nanocomposites with unique structures, properties, and functions. The modification of graphene with different polypeptides not only improves the biocompatibility and biological recognition ability of graphene-based materials, but also greatly expands their application fields. In this work, we summarize different interactions between graphene and polypeptides, and the synthesis methods of novel functional graphene-polypeptide nanocomposites based on the interactions in recent years (from 2016 to present). In addition, the potential applications of graphene-peptide hybrid nanocomposites in biomedicine, tissue engineering, biosensors, environmental science engineering, optoelectronic materials, and energy storage are introduced. We hope that this review will help readers to understand the methods and mechanisms of the modification of graphene surfaces with biomolecules, and promote readers to understand the synthesis and applications of graphene-based nanocomposites. This work may provide hints and references for the development of peptide sequence design, and biomedical and functional materials, and will help in designing and synthesizing novel graphene-based nanomaterials with unique properties and suitable for various applications in the future.
Collapse
Affiliation(s)
- Yuhong Qian
- College of Chemistry, Jilin Normal University, Siping 136000, P. R. China.
| | | | | | | |
Collapse
|
19
|
Yu H, Guo W, Lu X, Xu H, Yang Q, Tan J, Zhang W. Reduced graphene oxide nanocomposite based electrochemical biosensors for monitoring foodborne pathogenic bacteria: A review. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Bao M, Chen Q, Xu Z, Jensen EC, Liu C, Waitkus JT, Yuan X, He Q, Qin P, Du K. Challenges and Opportunities for Clustered Regularly Interspaced Short Palindromic Repeats Based Molecular Biosensing. ACS Sens 2021; 6:2497-2522. [PMID: 34143608 DOI: 10.1021/acssensors.1c00530] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Clustered regularly interspaced short palindromic repeats, CRISPR, has recently emerged as a powerful molecular biosensing tool for nucleic acids and other biomarkers due to its unique properties such as collateral cleavage nature, room temperature reaction conditions, and high target-recognition specificity. Numerous platforms have been developed to leverage the CRISPR assay for ultrasensitive biosensing applications. However, to be considered as a new gold standard, several key challenges for CRISPR molecular biosensing must be addressed. In this paper, we briefly review the history of biosensors, followed by the current status of nucleic acid-based detection methods. We then discuss the current challenges pertaining to CRISPR-based nucleic acid detection, followed by the recent breakthroughs addressing these challenges. We focus upon future advancements required to enable rapid, simple, sensitive, specific, multiplexed, amplification-free, and shelf-stable CRISPR-based molecular biosensors.
Collapse
Affiliation(s)
- Mengdi Bao
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Qun Chen
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Zhiheng Xu
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Erik C. Jensen
- HJ Science & Technology Inc., San Leandro, California 94710, United States
| | - Changyue Liu
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Jacob T. Waitkus
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Xi Yuan
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Qian He
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Peiwu Qin
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Ke Du
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| |
Collapse
|
21
|
Singh U, Morya V, Datta B, Ghoroi C, Bhatia D. Stimuli Responsive, Programmable DNA Nanodevices for Biomedical Applications. Front Chem 2021; 9:704234. [PMID: 34277571 PMCID: PMC8278982 DOI: 10.3389/fchem.2021.704234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Of the multiple areas of applications of DNA nanotechnology, stimuli-responsive nanodevices have emerged as an elite branch of research owing to the advantages of molecular programmability of DNA structures and stimuli-responsiveness of motifs and DNA itself. These classes of devices present multiples areas to explore for basic and applied science using dynamic DNA nanotechnology. Herein, we take the stake in the recent progress of this fast-growing sub-area of DNA nanotechnology. We discuss different stimuli, motifs, scaffolds, and mechanisms of stimuli-responsive behaviours of DNA nanodevices with appropriate examples. Similarly, we present a multitude of biological applications that have been explored using DNA nanodevices, such as biosensing, in vivo pH-mapping, drug delivery, and therapy. We conclude by discussing the challenges and opportunities as well as future prospects of this emerging research area within DNA nanotechnology.
Collapse
Affiliation(s)
- Udisha Singh
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, India
| | - Vinod Morya
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, India
| | - Bhaskar Datta
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, India
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, India
| | - Chinmay Ghoroi
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, India
- Chemical Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, India
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, India
| |
Collapse
|
22
|
Jin CR, Kim JY, Kim DH, Jeon MS, Choi YE. In Vivo Monitoring of Intracellular Metabolite in a Microalgal Cell Using an Aptamer/Graphene Oxide Nanosheet Complex. ACS APPLIED BIO MATERIALS 2021; 4:5080-5089. [PMID: 35007056 DOI: 10.1021/acsabm.1c00322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Real-time sensing and imaging of intracellular metabolites in living cells are crucial tools for the characterization of complex biological processes, including the dynamic fluctuation of metabolites. Therefore, additional efforts are required to develop in vivo detection strategies for the visualization and quantification of specific target metabolites, particularly in microalgae. In this study, we developed a strategy to monitor a specific microalgal metabolite in living cells using an aptamer/graphene oxide nanosheet (GOnS) complex. As a proof-of-concept, β-carotene, an antioxidant pigment that accumulates in most microalgal species, was chosen as a target metabolite. To achieve this, a β-carotene-specific aptamer was selected through graphene oxide-assisted systematic evolution of ligands by exponential enrichment (GO-SELEX) and characterized thereafter. The aptamer could sensitively sense the changes in the concentration of β-carotene (i.e., the target metabolite) and more specifically bind to β-carotene than to nontargets. The selected aptamer was labeled with a fluorophore (fluorescein; FAM) and allowed to form an aptamer/GOnS complex that protected the aptamer from nucleic cleavages. The aptamer/GOnS complex was delivered into the cells via electroporation, thus enabling the sensitive monitoring of β-carotene in the cell by quantifying the aptamer fluorescence intensity. The results suggest that our biocompatible strategy could be employed to visualize and semiquantify intracellular microalgae metabolites in vivo, which holds a great potential in diverse fields such as metabolite analysis and mutant screening.
Collapse
Affiliation(s)
- Cho Rok Jin
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Korea
| | - Jee Young Kim
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Korea
| | - Da Hee Kim
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Korea
| | - Min Seo Jeon
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Korea
| | - Yoon-E Choi
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Korea
| |
Collapse
|
23
|
Abstract
Understanding peptide-surface interactions is crucial for programming self-assembly of peptides at surfaces and in realizing their applications, such as biosensors and biomimetic materials. In this study, we developed insights into the dependence of a residue's interaction with a surface on its neighboring residue in a tripeptide using molecular dynamics simulations. This knowledge is integral for designing rational mutations to control peptide-surface complexes. Using graphene as our model surface, we estimated the free energy of adsorption (ΔAads) and extracted predominant conformations of 26 tripeptides with the motif LNR-CR-Gly, where LNR and CR are variable left-neighboring and central residues, respectively. We considered a combination of strongly adsorbing (Phe, Trp, and Arg) and weakly adsorbing (Ala, Val, Leu, Ser, and Thr) amino acids on graphene identified in a prior study to form the tripeptides. Our results indicate that ΔAads of a tripeptide cannot be estimated as the sum of ΔAads of each residue indicating that the residues in a tripeptide do not behave as independent entities. We observed that the contributions from the strongly adsorbing amino acids were dominant, which suggests that such residues could be used for strengthening peptide-graphene interactions irrespective of their neighboring residues. In contrast, the adsorption of weakly adsorbing central residues is dependent on their neighboring residues. Our structural analysis revealed that the dihedral angles of LNR are more correlated with that of CR in the adsorbed state than in bulk state. Together with ΔAads trends, this implies that different backbone structures of a given CR can be accessed for a similar ΔAads by varying the LNR. Therefore, incorporation of context effects in designing mutations can lead to desired peptide structure at surfaces. Our results also emphasize that these cooperative effects in ΔAads and structure are not easily predicted a priori. The collective results have applications in guiding rational mutagenesis techniques to control orientation of peptides at surfaces and in developing peptide structure prediction algorithms in adsorbed state from its sequence.
Collapse
Affiliation(s)
- Siva Dasetty
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Sapna Sarupria
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
24
|
Preparation of electroconductive film based on self-assembled aminothiophene/poly(γ-glutamate) nanoparticles and its application in biosensor. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04816-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Wang Y, Xia K, Wang L, Wu M, Sang X, Wan K, Zhang X, Liu X, Wei G. Peptide-Engineered Fluorescent Nanomaterials: Structure Design, Function Tailoring, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005578. [PMID: 33448113 DOI: 10.1002/smll.202005578] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/19/2020] [Indexed: 06/12/2023]
Abstract
Fluorescent nanomaterials have exhibited promising applications in biomedical and tissue engineering fields. To improve the properties and expand bioapplications of fluorescent nanomaterials, various functionalization and biomodification strategies have been utilized to engineer the structure and function of fluorescent nanomaterials. Due to their high biocompatibility, satisfied bioactivity, unique biomimetic function, easy structural tailoring, and controlled self-assembly ability, supramolecular peptides are widely used as versatile modification agents and nanoscale building blocks for engineering fluorescent nanomaterials. In this work, recent advance in the synthesis, structure, function, and biomedical applications of peptide-engineered fluorescent nanomaterials is presented. Firstly, the types of different fluorescent nanomaterials are introduced. Then, potential strategies for the preparation of peptide-engineered fluorescent nanomaterials via templated synthesis, bioinspired conjugation, and peptide assembly-assisted synthesis are discussed. After that, the unique structure and functions through the peptide conjugation with fluorescent nanomaterials are demonstrated. Finally, the biomedical applications of peptide-engineered fluorescent nanomaterials in bioimaging, disease diagnostics and therapy, drug delivery, tissue engineering, antimicrobial test, and biosensing are presented and discussed in detail. It is helpful for readers to understand the peptide-based conjugation and bioinspired synthesis of fluorescent nanomaterials, and to design and synthesize novel hybrid bionanomaterials with special structures and improved functions for advanced applications.
Collapse
Affiliation(s)
- Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Kai Xia
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Luchen Wang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Mingxue Wu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiujie Sang
- Department of Food and Medicine, Weifang Vocational College, Weifang, 262737, P. R. China
| | - Keming Wan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiaodong Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiaomin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
- Faculty of Production Engineering, University of Bremen, Bremen, 28359, Germany
| |
Collapse
|
26
|
Barrett R, White AD. Investigating Active Learning and Meta-Learning for Iterative Peptide Design. J Chem Inf Model 2021; 61:95-105. [PMID: 33350829 PMCID: PMC7842147 DOI: 10.1021/acs.jcim.0c00946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Indexed: 01/14/2023]
Abstract
Often the development of novel functional peptides is not amenable to high throughput or purely computational screening methods. Peptides must be synthesized one at a time in a process that does not generate large amounts of data. One way this method can be improved is by ensuring that each experiment provides the best improvement in both peptide properties and predictive modeling accuracy. Here, we study the effectiveness of active learning, optimizing experiment order, and meta-learning, transferring knowledge between contexts, to reduce the number of experiments necessary to build a predictive model. We present a multitask benchmark database of peptides designed to advance these methods for experimental design. Each task is a binary classification of peptides represented as a sequence string. We find neither active learning method tested to be better than random choice. The meta-learning method Reptile was found to improve the average accuracy across data sets. Combining meta-learning with active learning offers inconsistent benefits.
Collapse
Affiliation(s)
- Rainier Barrett
- Department of Chemical Engineering,
University of Rochester, Rochester, New York 14627,
United States
| | - Andrew D. White
- Department of Chemical Engineering,
University of Rochester, Rochester, New York 14627,
United States
| |
Collapse
|
27
|
Chen GC, Liu CH, Wu WC. Electrochemical immunosensor for serum parathyroid hormone using voltammetric techniques and a portable simulator. Anal Chim Acta 2021; 1143:84-92. [DOI: 10.1016/j.aca.2020.11.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 01/10/2023]
|
28
|
Disposable and Low-Cost Colorimetric Sensors for Environmental Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17228331. [PMID: 33187161 PMCID: PMC7697538 DOI: 10.3390/ijerph17228331] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
Environmental contamination affects human health and reduces the quality of life. Therefore, the monitoring of water and air quality is important, ensuring that all areas are acquiescent with the current legislation. Colorimetric sensors deliver quick, naked-eye detection, low-cost, and adequate determination of environmental analytes. In particular, disposable sensors are cheap and easy-to-use devices for single-shot measurements. Due to increasing requests for in situ analysis or resource-limited zones, disposable sensors’ development has increased. This review provides a brief insight into low-cost and disposable colorimetric sensors currently used for environmental analysis. The advantages and disadvantages of different colorimetric devices for environmental analysis are discussed.
Collapse
|
29
|
Li J, Tong Z, Zhang W, Liu J. Research on multi-parameter characteristics of a PCF sensor modified by GO composite films. APPLIED OPTICS 2020; 59:9216-9224. [PMID: 33104633 DOI: 10.1364/ao.403064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
We propose a photonic crystal fiber (PCF) sensor based on graphene oxide (GO) composite film modification to simultaneously measure the multi-parameter sensing characteristics of humidity, temperature, and glucose concentration. The GO-polyvinyl alcohol (PVA) composite film is used to measure the humidity-sensing characteristics of the sensor, and the glucose oxidase composite film is used to measure the sensing characteristics of the glucose concentration, respectively. Experiment results show that the sensitivities of the temperature of the GO-PVA coating structure are 0.037 nm/°C, 0.047 nm/°C, and 0.031 nm/°C; the sensitivities of humidity are 0.059 nm/%RH, 0.121 nm/%RH, and 0.047 nm/%RH; and the sensitivities of the glucose concentration of the GO-GOD coating structure are 0.028 nm/(g/L), 0.049 nm/(g/L), and 0.010 nm/(g/L) for three interference dips, respectively. The structure is simple to manufacture and can be used as a sensor for detecting multiple parameters. It can be widely used in biomedicine, environmental monitoring, and other fields.
Collapse
|
30
|
Lu X, Ye Y, Zhang Y, Sun X. Current research progress of mammalian cell-based biosensors on the detection of foodborne pathogens and toxins. Crit Rev Food Sci Nutr 2020; 61:3819-3835. [PMID: 32885986 DOI: 10.1080/10408398.2020.1809341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Foodborne diseases caused by pathogens and toxins are a serious threat to food safety and human health; thus, they are major concern to society. Existing conventional foodborne pathogen or toxin detection methods, including microbiological assay, nucleic acid-based assays, immunological assays, and instrumental analytical method, are time-consuming, labor-intensive and expensive. Because of the fast response and high sensitivity, cell-based biosensors are promising novel tools for food safety risk assessment and monitoring. This review focuses on the properties of mammalian cell-based biosensors and applications in the detection of foodborne pathogens (bacteria and viruses) and toxins (bacterial toxins, mycotoxins and marine toxins). We discuss mammalian cell adhesion and how it is involved in the establishment of 3D cell culture models for mammalian cell-based biosensors, as well as evaluate their limitations for commercialization and further development prospects.
Collapse
Affiliation(s)
- Xin Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| |
Collapse
|
31
|
Thermodynamic and kinetic study of synthesised graphene oxide-CuO nanocomposites: A way forward to fuel additive and photocatalytic potentials. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113494] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Kaur R, Rana S, Lalit K, Singh P, Kaur K. Electrochemical detection of methyl parathion via a novel biosensor tailored on highly biocompatible electrochemically reduced graphene oxide-chitosan-hemoglobin coatings. Biosens Bioelectron 2020; 167:112486. [PMID: 32841783 DOI: 10.1016/j.bios.2020.112486] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 01/08/2023]
Abstract
A quick electrochemical sensing tool by utilizing novel bioelectrode based on redox active protein hemoglobin (Hb) has been offered here for the determination of methylparathion (MP). The bioelectrode has been designed by immobilizing Hb on electrochemically reduced graphene oxide-chitosan (ERGO-CS/Hb/FTO) based biocompatible coatings. Fourier transform-infrared analyses (FTIR), field emission scanning electron microscopy (FESEM), UV-visible and electrochemical characterization reveal the successful grafting of ERGO-CS/Hb/FTO. A detailed impedimetric analysis shows low charge transfer resistance (RCT) and solution resistance (Rs) for the fabricated biosensor, thus pointing towards improved electrochemical performance and sensitivity. In-depth elucidation of redox analysis has been presented in terms of surface concentration of redox moiety (2.92 × 10-9 mol cm-2) and heterogeneous electron transfer rate constant (0.0032 s-1) which indicate enhanced surface coverage and better charge transfer properties of the proposed electrochemical biosensor. The sensor is equipped with a low limit of detection of 79.77 nM and a high sensitivity of 45.77 Acm-2 μM-1 with excellent reproducibility. The modified biosensor also offered its credibility towards detection of MP in vegetable samples with recovery (%) ranging from 94% to 101%. The designed biosensor hereby, evolves as a promising approach for the recognition of MP.
Collapse
Affiliation(s)
- Ranjeet Kaur
- Department of Chemistry, Panjab University, Chandigarh, 160014, India
| | - Shweta Rana
- Department of Chemistry, Panjab University, Chandigarh, 160014, India.
| | - Kanika Lalit
- Department of Chemistry, Panjab University, Chandigarh, 160014, India
| | - Parkash Singh
- Department of Mechanical Engineering, Malout Institute of Management and Informational Technology, Malout, 152107, India
| | - Khushwinder Kaur
- Department of Chemistry, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
33
|
Mohammadi A, Heydari-Bafrooei E, Foroughi MM, Mohammadi M. Electrochemical aptasensor for ultrasensitive detection of PCB77 using thionine-functionalized MoS2-rGO nanohybrid. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104747] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Kang TH, Lee SW, Hwang K, Shim W, Lee KY, Lim JA, Yu WR, Choi IS, Yi H. All-Inkjet-Printed Flexible Nanobio-Devices with Efficient Electrochemical Coupling Using Amphiphilic Biomaterials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24231-24241. [PMID: 32353230 DOI: 10.1021/acsami.0c02596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nanostructured flexible electrodes with biological compatibility and intimate electrochemical coupling provide attractive solutions for various emerging bioelectronics and biosensor applications. Here, we develop all-inkjet-printed flexible nanobio-devices with excellent electrochemical coupling by employing amphiphilic biomaterial, an M13 phage, numerical simulation of single-drop formulation, and rational formulations of nanobio-ink. Inkjet-printed nanonetwork-structured electrodes of single-walled carbon nanotubes and M13 phage show efficient electrochemical coupling and hydrostability. Additive printing of the nanobio-inks also allows for systematic control of the physical and chemical properties of patterned electrodes and devices. All-inkjet-printed electrochemical field-effect transistors successfully exhibit pH-sensitive electrical current modulation. Moreover, all-inkjet-printed electrochemical biosensors fabricated via sequential inkjet-printing of the nanobio-ink, electrolytes, and enzyme solutions enable direct electrical coupling within the printed electrodes and detect glucose concentrations at as low as 20 μM. Glucose levels in sweat are successfully measured, and the change in sweat glucose levels is shown to be highly correlated with blood glucose levels. Synergistic combination of additive fabrication by inkjet-printing with directed assembly of nanostructured electrodes by functional biomaterials could provide an efficient means of developing bioelectronic devices for personalized medicine, digital healthcare, and emerging biomimetic devices.
Collapse
Affiliation(s)
- Tae-Hyung Kang
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung-Woo Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Kyowook Hwang
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Wonbo Shim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki-Young Lee
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jung-Ah Lim
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Woong-Ryeol Yu
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - In-Suk Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunjung Yi
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
35
|
Silva-Alves DA, Camara MVS, Chaves-Neto AMJ, Gester R, Andrade-Filho T. Theoretical study of the adsorption of diphenylalanine on pristine graphene. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02594-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
Zhang J, Wang A, Yin H. Preparation of graphite nanosheets in different solvents by sand milling and their enhancement on tribological properties of lithium-based grease. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Yoon J, Shin M, Lim J, Kim DY, Lee T, Choi J. Nanobiohybrid Material‐Based Bioelectronic Devices. Biotechnol J 2020; 15:e1900347. [DOI: 10.1002/biot.201900347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/19/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Jinho Yoon
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| | - Minkyu Shin
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| | - Joungpyo Lim
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| | - Dong Yeon Kim
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| | - Taek Lee
- Department of Chemical EngineeringKwangwoon University Wolgye‐dong Nowon‐gu Seoul 01899 Republic of Korea
| | - Jeong‐Woo Choi
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| |
Collapse
|
38
|
Mohammadpour Z, Majidzadeh-A K. Applications of Two-Dimensional Nanomaterials in Breast Cancer Theranostics. ACS Biomater Sci Eng 2020; 6:1852-1873. [PMID: 33455353 DOI: 10.1021/acsbiomaterials.9b01894] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Breast cancer is the leading cause of cancer-related mortality among women. Early stage diagnosis and treatment of this cancer are crucial to patients' survival. In addition, it is important to avoid severe side effects during the process of conventional treatments (surgery, chemotherapy, hormonal therapy, and targeted therapy) and increase the patients' quality of life. Over the past decade, nanomaterials of all kinds have shown excellent prospects in different aspects of oncology. Among them, two-dimensional (2D) nanomaterials are unique due to their physical and chemical properties. The functional variability of 2D nanomaterials stems from their large specific surface area as well as the diversity of composition, electronic configurations, interlayer forces, surface functionalities, and charges. In this review, the current status of 2D nanomaterials in breast cancer diagnosis and therapy is reviewed. In this respect, sensing of the tumor biomarkers, imaging, therapy, and theranostics are discussed. The ever-growing 2D nanomaterials are building blocks for the development of a myriad of nanotheranostics. Accordingly, there is the possibility to explore yet novel properties, biological effects, and oncological applications.
Collapse
Affiliation(s)
- Zahra Mohammadpour
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1315685981, Iran
| | - Keivan Majidzadeh-A
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1315685981, Iran
| |
Collapse
|
39
|
Roy N, Yasmin S, Jeon S. Effective electrochemical detection of dopamine with highly active molybdenum oxide nanoparticles decorated on 2, 6 diaminopyridine/reduced graphene oxide. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104501] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
40
|
Dong Y, Zhang T, Lin X, Feng J, Luo F, Gao H, Wu Y, Deng R, He Q. Graphene/aptamer probes for small molecule detection: from in vitro test to in situ imaging. Mikrochim Acta 2020; 187:179. [PMID: 32076868 DOI: 10.1007/s00604-020-4128-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 01/19/2020] [Indexed: 02/08/2023]
Abstract
Small molecules are key targets in molecular biology, environmental issues, medicine and food industry. However, small molecules are challenging to be detected due to the difficulty of their recognition, especially in complex samples, such as in situ in cells or animals. The emergence of graphene/aptamer probes offers an excellent opportunity for small molecule quantification owing to their appealing attributes such as high selectivity, sensitivity, and low cost, as well as the potential for probing small molecules in living cells or animals. This paper (with 130 refs.) will review the application of graphene/aptamer probes for small molecule detection. We present the recent progress in the design and development of graphene/aptamer probes enabling highly specific, sensitive and rapid detection of small molecules. Emphasis is placed on the success in their development and application for monitoring small molecules in living cells and in vivo systems. By discussing the key advances in this field, we wish to inspire more research work of the development of graphene/aptamer probes for both on-site or in situ detection of small molecules and its applications for investigating the functions of small molecules in cells in a dynamic way. Graphical abstract Graphene/aptamer probes can be used to construct different platforms for detecting small molecules with high specificity and sensitivity, both in vitro and in situ in living cells and animals.
Collapse
Affiliation(s)
- Yi Dong
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Ting Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Xiaoya Lin
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Jiangtao Feng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Fang Luo
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610065, China.
| | - Hong Gao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Yangping Wu
- Department of Respiratory and Critical Care Medicine, West China Medical, Sichuan University, Chengdu, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China.
| | - Qiang He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
41
|
Balu S, Palanisamy S, Velusamy V, Yang TCK, El-Shafey ESI. Tin disulfide nanorod-graphene-β-cyclodextrin nanocomposites for sensing dopamine in rat brains and human blood serum. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110367. [PMID: 31923993 DOI: 10.1016/j.msec.2019.110367] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/26/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022]
Abstract
In the present work describes a facile synthesis of tin disulfide (SnS2) nanorods decorated graphene-β-cyclodextrin (SnS2/GR-β-CD) nanocomposite for robust and novel dopamine (DA) electrochemical biosensor applications. The DA biosensor was fabricated using the glassy carbon electrode (GCE) modified with SnS2/GR-β-CD nanocomposite. The sonochemical and hydrothermal methods have been used for the synthesis of SnS2/GR-β-CD. Different physicochemical methods were used to confirm the formation of the GR-β-CD, SnS2, and SnS2/GR-β-CD nanocomposite. The cyclicvoltammetric cathodic current response of DA was 5 folds higher than those observed at bare, β-CD, SnS2-β-CD, and GR-β-CD modified GCEs. Under optimised conditions, the biosensor's DPV response current is linear to DA from the concentration of 0.01-150.76 μM. The detection limit of the biosensor was 4 nM. The SnS2/GR-β-CD biosensor shows an excellent selectivity towards DA in the presence of common interfering species, including ascorbic acid and uric acid. Also, the as-prepared nanocomposite-modified electrode exhibited satisfactory long-term stability, sensitivity (2.49 μAμM-1 cm-2) along with reusability for detection of DA. The fabricated SnS2/GR-β-CD biosensor was successfully used for the detection of DA in the rat brain and human blood serum samples.
Collapse
Affiliation(s)
- Sridharan Balu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei City, Taiwan
| | - Selvakumar Palanisamy
- Precision and Materials Research Centre, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei City, Taiwan; Division of Electrical and Electronic Engineering, School of Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, United Kingdom.
| | - Vijaylakshmi Velusamy
- Division of Electrical and Electronic Engineering, School of Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, United Kingdom.
| | - Thomas C K Yang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei City, Taiwan; Precision and Materials Research Centre, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei City, Taiwan.
| | - El-Said I El-Shafey
- Chemistry Department, College of Science, Sultan Qaboos University, P.O. Box 36, Postal Code Al-Khoudh, 123, Muscat, Oman
| |
Collapse
|
42
|
Abstract
Chymotrypsin is one of the most extensively known proteases participating in the pathogenesis of various diseases, which can be used in drug discovery and clinical diagnosis.
Collapse
Affiliation(s)
- Haixia Shi
- P. E. Department
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Cheng Liu
- School of Life Sciences
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Jingjie Cui
- School of Automation
- Hangzhou Dianzi University
- Hangzhou
- P. R. China
| | - Jia Cheng
- School of Life Sciences
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Yuanwei Lin
- School of Life Sciences
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Li Gao
- School of Life Sciences
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Rong Luo
- Institute of Geriatric Cardiovascular Disease
- Chengdu Medical College
- Chengdu
- China
| |
Collapse
|
43
|
Joshi S, Sharma P, Siddiqui R, Kaushal K, Sharma S, Verma G, Saini A. A review on peptide functionalized graphene derivatives as nanotools for biosensing. Mikrochim Acta 2019; 187:27. [PMID: 31811393 DOI: 10.1007/s00604-019-3989-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022]
Abstract
Peptides exhibit unique binding behavior with graphene and its derivatives by forming bonds on its edges and planes. This makes them useful for sensing and imaging applications. This review with (155 refs.) summarizes the advances made in the last decade in the field of peptide-GO bioconjugation, and the use of these conjugates in analytical sciences and imaging. The introduction emphasizes the need for understanding the biotic-abiotic interactions in order to construct controllable peptide-functionalized graphitic material-based nanotools. The next section covers covalent and non-covalent interactions between peptide and oxidized graphene derivatives along with a discussion of the adsorption events during interfacing. We then describe applications of peptide-graphene conjugates in bioassays, with subsections on (a) detection of cancer cells, (b) monitoring protease activity, (c) determination of environmental pollutants and (d) determination of pathogenic microorganisms. The concluding section describes the current status of peptide functionalized graphitic bioconjugates and addresses future perspectives. Graphical abstractSchematic representation depicting biosensing applications of peptide functionalized graphene oxide.
Collapse
Affiliation(s)
- Shubhi Joshi
- Energy Research Centre, Panjab University, Sector 14, Chandigarh, 160014, India
| | - Pratibha Sharma
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Ruby Siddiqui
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Kanica Kaushal
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Shweta Sharma
- Institute of Forensic Science & Criminology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014, India
| | - Gaurav Verma
- Dr. S.S. Bhatnagar University Institute of Chemical Engineering & Technology (Dr.SSBUICET), Panjab University, Sector 14, Chandigarh, 160014, India
- Centre for Nanoscience and Nanotechnology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014, India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, 160014, India.
| |
Collapse
|
44
|
Wei G, Gong C, Hu K, Wang Y, Zhang Y. Biomimetic Hydroxyapatite on Graphene Supports for Biomedical Applications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1435. [PMID: 31658682 PMCID: PMC6836063 DOI: 10.3390/nano9101435] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 12/18/2022]
Abstract
Hydroxyapatite (HA) has been widely used in fields of materials science, tissue engineering, biomedicine, energy and environmental science, and analytical science due to its simple preparation, low-cost, and high biocompatibility. To overcome the weak mechanical properties of pure HA, various reinforcing materials were incorporated with HA to form high-performance composite materials. Due to the unique structural, biological, electrical, mechanical, thermal, and optical properties, graphene has exhibited great potentials for supporting the biomimetic synthesis of HA. In this review, we present recent advance in the biomimetic synthesis of HA on graphene supports for biomedical applications. More focuses on the biomimetic synthesis methods of HA and HA on graphene supports, as well as the biomedical applications of biomimetic graphene-HA nanohybrids in drug delivery, cell growth, bone regeneration, biosensors, and antibacterial test are performed. We believe that this review is state-of-the-art, and it will be valuable for readers to understand the biomimetic synthesis mechanisms of HA and other bioactive minerals, at the same time it can inspire the design and synthesis of graphene-based novel nanomaterials for advanced applications.
Collapse
Affiliation(s)
- Gang Wei
- College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, China.
- Faculty of Production Engineering, University of Bremen, D-28359 Bremen, Germany.
| | - Coucong Gong
- Faculty of Production Engineering, University of Bremen, D-28359 Bremen, Germany.
| | - Keke Hu
- College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, China.
| | - Yabin Wang
- College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, China.
| | - Yantu Zhang
- College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, China.
| |
Collapse
|
45
|
Ma G, Xu H, Wu M, Wang L, Wu J, Xu F. A hybrid composed of MoS2, reduced graphene oxide and gold nanoparticles for voltammetric determination of hydroquinone, catechol, and resorcinol. Mikrochim Acta 2019; 186:689. [DOI: 10.1007/s00604-019-3771-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
46
|
Du X, Zheng X, Zhang Z, Wu X, Sun L, Zhou J, Liu M. A Label-Free Electrochemical Immunosensor for Detection of the Tumor Marker CA242 Based on Reduced Graphene Oxide-Gold-Palladium Nanocomposite. NANOMATERIALS 2019; 9:nano9091335. [PMID: 31540374 PMCID: PMC6781068 DOI: 10.3390/nano9091335] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
As a tumor marker, carbohydrate antigen 24-2 (CA242) is a highly accurate and specific diagnostic indicator for monitoring pancreatic and colorectal cancers. The goal of this study was to create a novel label-free electrochemical immunosensor using a nanocomposite glassy carbon electrode for the detection of CA242. Graphene oxide (GO) and polyvinyl pyrrolidone were chosen as the dopants for the preparation of a high-performance reduced-GO-gold-palladium (rGO-Au-Pd) nanocomposite. RGO-Au-Pd was characterized using X-ray diffraction and transmission electron microscopy, revealing that the material exhibited superior electrochemical redox activity and electron transfer ability. The effects of the synthesis method, material concentration, reduction cycle, and pH were investigated to optimize the performance of the immunosensor. As a result of the catalytic activity and biocompatibility of rGO-Au-Pd, the prepared CA242 immunosensor displayed a wide linear range of detection from 0.001 U/mL to 10,000 U/mL with a detection limit of 1.54 × 10−3 U/mL and a sensitivity of 4.24 μA (log10CCA242)−1. More importantly, the immunosensor exhibited satisfactory reproducibility and selectivity when detected CA242 in PBS or human serum. The results of our study provide a platform for the development of novel bioassays for use in early cancer diagnosis and promote the application of biosensing technology in the medical field.
Collapse
Affiliation(s)
- Xin Du
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China
| | - Xiaodi Zheng
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China
| | - Zhenhua Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China
| | - Xiaofan Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lei Sun
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China.
| |
Collapse
|
47
|
Xu L, Wen Y, Pandit S, Mokkapati VRSS, Mijakovic I, Li Y, Ding M, Ren S, Li W, Liu G. Graphene-based biosensors for the detection of prostate cancer protein biomarkers: a review. BMC Chem 2019; 13:112. [PMID: 31508598 PMCID: PMC6720397 DOI: 10.1186/s13065-019-0611-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 07/15/2019] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PC) is the sixth most common cancer type in the world, which causes approximately 10% of total cancer fatalities. The detection of protein biomarkers in body fluids is the key topic for the diagnosis and prognosis of PC. Highly sensitive screening of PC is the most effective approach for reducing mortality. Thus, there are a growing number of literature that recognizes the importance of new technologies for early diagnosis of PC. Graphene is playing an important role in the biosensor field with remarkable physical, optical, electrochemical and magnetic properties. Many recent studies demonstrated the potential of graphene materials for sensitive detection of protein biomarkers. In this review, the graphene-based biosensors toward PC analysis are mainly discussed in two groups: Firstly, novel biosensor interfaces were constructed through the modification of graphene materials onto sensor surfaces. Secondly, ingenious signal amplification strategies were developed using graphene materials as catalysts or carriers. Graphene-based biosensors have exhibited remarkable performance with high sensitivities, wide detection ranges, and long-term stabilities.
Collapse
Affiliation(s)
- Li Xu
- 1Laboratory of Biometrory, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203 People's Republic of China.,2Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41126 Gothenburg, Sweden
| | - Yanli Wen
- 1Laboratory of Biometrory, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203 People's Republic of China
| | - Santosh Pandit
- 2Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41126 Gothenburg, Sweden
| | - Venkata R S S Mokkapati
- 2Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41126 Gothenburg, Sweden
| | - Ivan Mijakovic
- 2Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41126 Gothenburg, Sweden.,3The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Yan Li
- 1Laboratory of Biometrory, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203 People's Republic of China
| | - Min Ding
- 1Laboratory of Biometrory, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203 People's Republic of China
| | - Shuzhen Ren
- 1Laboratory of Biometrory, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203 People's Republic of China
| | - Wen Li
- 1Laboratory of Biometrory, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203 People's Republic of China
| | - Gang Liu
- 1Laboratory of Biometrory, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203 People's Republic of China
| |
Collapse
|
48
|
Shetti NP, Malode SJ, Nayak DS, Bagihalli GB, Reddy KR, Ravindranadh K, Reddy CV. A novel biosensor based on graphene oxide-nanoclay hybrid electrode for the detection of Theophylline for healthcare applications. Microchem J 2019. [DOI: 10.1016/j.microc.2019.103985] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
49
|
Wang Y, Guo L, Qi P, Liu X, Wei G. Synthesis of Three-Dimensional Graphene-Based Hybrid Materials for Water Purification: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1123. [PMID: 31382648 PMCID: PMC6722807 DOI: 10.3390/nano9081123] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/26/2022]
Abstract
Graphene-based nanostructures and nanomaterials have been widely used for the applications in materials science, biomedicine, tissue engineering, sensors, energy, catalysis, and environmental science due to their unique physical, chemical, and electronic properties. Compared to two-dimensional (2D) graphene materials, three-dimensional (3D) graphene-based hybrid materials (GBHMs) exhibited higher surface area and special porous structure, making them excellent candidates for practical applications in water purification. In this work, we present recent advances in the synthesis and water remediation applications of 3D GBHMs. More details on the synthesis strategies of GBHMs, the water treatment techniques, and the adsorption/removal of various pollutants from water systems with GBHMs are demonstrated and discussed. It is expected that this work will attract wide interests on the structural design and facile synthesis of novel 3D GBHMs, and promote the advanced applications of 3D GBHMs in energy and environmental fields.
Collapse
Affiliation(s)
- Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Lei Guo
- College of Life Science, Qingdao University, Qingdao 266071, China
| | - Pengfei Qi
- College of Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiaomin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
- Faculty of Production Engineering, University of Bremen, D-28359 Bremen, Germany.
| |
Collapse
|
50
|
Wang Z, Wu S, Wang J, Yu A, Wei G. Carbon Nanofiber-Based Functional Nanomaterials for Sensor Applications. NANOMATERIALS 2019; 9:nano9071045. [PMID: 31336563 PMCID: PMC6669495 DOI: 10.3390/nano9071045] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
Abstract
Carbon nanofibers (CNFs) exhibit great potentials in the fields of materials science, biomedicine, tissue engineering, catalysis, energy, environmental science, and analytical science due to their unique physical and chemical properties. Usually, CNFs with flat, mesoporous, and porous surfaces can be synthesized by chemical vapor deposition and electrospinning techniques with subsequent chemical treatment. Meanwhile, the surfaces of CNFs are easy to modify with various materials to extend the applications of CNF-based hybrid nanomaterials in multiple fields. In this review, we focus on the design, synthesis, and sensor applications of CNF-based functional nanomaterials. The fabrication strategies of CNF-based functional nanomaterials by adding metallic nanoparticles (NPs), metal oxide NPs, alloy, silica, polymers, and others into CNFs are introduced and discussed. In addition, the sensor applications of CNF-based nanomaterials for detecting gas, strain, pressure, small molecule, and biomacromolecules are demonstrated in detail. This work will be beneficial for the readers to understand the strategies for fabricating various CNF-based nanomaterials, and explore new applications in energy, catalysis, and environmental science.
Collapse
Affiliation(s)
- Zhuqing Wang
- AnHui Provice Key Laboratory of Optoelectronic and Magnetism Functional Materials, Anqing Normal University, Anqing 246011, China
| | - Shasha Wu
- AnHui Provice Key Laboratory of Optoelectronic and Magnetism Functional Materials, Anqing Normal University, Anqing 246011, China
| | - Jian Wang
- AnHui Provice Key Laboratory of Optoelectronic and Magnetism Functional Materials, Anqing Normal University, Anqing 246011, China
| | - Along Yu
- AnHui Provice Key Laboratory of Optoelectronic and Magnetism Functional Materials, Anqing Normal University, Anqing 246011, China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266077, China.
- Hybrid Materials Interfaces Group, Faculty of Production Engineering and Center for Environmental Research and Sustainable technology (UFT), University of Bremen, D-28359 Bremen, Germany.
| |
Collapse
|