1
|
Amirshaghaghi A, Cheng Z, Josephson L, Tsourkas A. Magnetic Nanoparticles. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
2
|
Spira D, Bantleon R, Wolburg H, Schick F, Groezinger G, Wiskirchen J, Wiesinger B. Labeling Human Melanoma Cells With SPIO: In Vitro Observations. Mol Imaging 2016; 15:15/0/1536012115624915. [PMID: 27030399 PMCID: PMC5469517 DOI: 10.1177/1536012115624915] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 11/20/2015] [Indexed: 11/30/2022] Open
Abstract
Objectives: To use the superparamagnetic iron oxide (SPIO) contrast agent Resovist (±transfection agent) to label human melanoma cells and determine its effects on cellular viability, microstructure, iron quantity, and magnetic resonance imaging (MRI) detectability. Materials and Methods: Human SK-Mel28 melanoma cells were incubated with Resovist (±liposomal transfection agent DOSPER). The cellular iron content was measured, and labeled cells were examined at 1.5 T and 3.0 T. The intracellular and extracellular distributions of the contrast agent were assessed by light and electron microscopy. Results: The incubation of melanoma cells with SPIO does not interfere with cell viability or proliferation. The iron is located both intracellularly and extracellularly as iron clusters associated with the exterior of the cell membrane. Despite thorough washing, the extracellular SPIO remained associated with the cell membrane. The liposomal transfection agent does not change the maximum achievable cellular iron content but promotes a faster iron uptake. The MRI detectability persists for at least 7 days. Conclusion: The transfection agent DOSPER facilitates the efficient labeling of human metastatic melanoma cells with Resovist. Our findings raise the possibility that other Resovist-labeled cells may collect associated extracellular nanoparticles. The SPIO may be available to other iron-handling cells and not completely compartmentalized during the labeling procedure.
Collapse
Affiliation(s)
- Daniel Spira
- Department of Diagnostic and Interventional Radiology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg
| | - Rüdiger Bantleon
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Hartwig Wolburg
- Institute of Pathology and Neuropathology, Eberhard-Karls-University Tübingen, Liebermeisterstraße 8, 72076 Tübingen, Germany
| | - Fritz Schick
- Section on Experimental Radiology, Eberhard-Karls-University Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Gerd Groezinger
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Jakub Wiskirchen
- Department of Radiology and Nuclear Medicine, Franziskus Hospital Bielefeld, Kiskerstraße 26, 33615 Bielefeld, Germany
| | - Benjamin Wiesinger
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Guillet-Nicolas R, Laprise-Pelletier M, Nair MM, Chevallier P, Lagueux J, Gossuin Y, Laurent S, Kleitz F, Fortin MA. Manganese-impregnated mesoporous silica nanoparticles for signal enhancement in MRI cell labelling studies. NANOSCALE 2013; 5:11499-11511. [PMID: 24178890 DOI: 10.1039/c3nr02969g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) are used in drug delivery and cell tracking applications. As Mn(2+) is already implemented as a "positive" cell contrast agent in preclinical imaging procedures (in the form of MnCl2 for neurological studies), the introduction of Mn in the porous network of MSNs would allow labelling cells and tracking them using MRI. These particles are in general internalized in endosomes, an acidic environment with high saline concentration. In addition, the available MSN porosity could also serve as a carrier to deliver medical/therapeutic substances through the labelled cells. In the present study, manganese oxide was introduced in the porous network of MCM-48 silica nanoparticles (Mn-M48SNs). The particles exhibit a narrow size distribution (~140 nm diam.) and high porosity (~60% vol.), which was validated after insertion of Mn. The resulting Mn-M48SNs were characterized by TEM, N2 physisorption, and XRD. Evidence was found with H2-TPR, and XPS characterization, that Mn(II) is the main oxidation state of the paramagnetic species after suspension in water, most probably in the form of Mn-OOH. The colloidal stability as a function of time was confirmed by DLS in water, acetate buffer and cell culture medium. In NMR data, no significant evidence of Mn(2+) leaching was found in Mn-M48SNs in acidic water (pH 6), up to 96 hours after suspension. High longitudinal relaxivity values of r1 = 8.4 mM(-1) s(-1) were measured at 60 MHz and 37 °C, with the lowest relaxometric ratios (r2/r1 = 2) reported to date for a Mn-MSN system. Leukaemia cells (P388) were labelled with Mn-M48SNs and nanoparticle cell internalization was confirmed by TEM. Finally, MRI contrast enhancement provided by cell labelling with escalated incubation concentrations of Mn-M48SNs was quantified at 1 T. This study confirmed the possibility of efficiently confining Mn into M48SNs using incipient wetness, while maintaining an open porosity and relatively high pore volume. Because these Mn-labelled M48SNs express strong "positive" contrast media properties at low concentrations, they are potentially applicable for cell tracking and drug delivery methodologies.
Collapse
|
4
|
The therapeutic potential of umbilical cord mesenchymal stem cells in mice premature ovarian failure. BIOMED RESEARCH INTERNATIONAL 2013; 2013:690491. [PMID: 23998127 PMCID: PMC3753743 DOI: 10.1155/2013/690491] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/25/2013] [Accepted: 07/11/2013] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells, which are poorly immunogenic and have potent immunosuppressive activities, have emerged as promising cellular therapeutics for the treatment of several diseases. Mesenchymal-like cells derived from Wharton's Jelly, called umbilical cord matrix stem cells (UCMSCs), reportedly secrete a variety of cytokines and growth factors, acting as trophic suppliers. Here, we used UCMSCs to treat premature ovarian failure (POF). Ovarian function was evaluated by ovulation and the number of follicles. Apoptosis of the granulosa cells (GC) was analyzed by TUNEL staining. We found that after transplantation of the UCMSCs, apoptosis of cumulus cells in the ovarian damage model was reduced and the function of the ovary had been recovered. The sex hormone level was significantly elevated in mice treated with UCMSCs. The number of follicles in the treated group was higher than in the control group. Our results demonstrate that UCMSCs can effectively restore ovary functionality and reduce apoptosis of granulosa cells. We compared the RNA expression of the UCMSCs treated group with the POF model and wild-type control group and found that the UCMSC group is most similar to the wild-type group. Our experiments provide new information regarding the treatment of ovarian function failure.
Collapse
|
5
|
Santos TC, Morton TJ, Moritz M, Pfeifer S, Reise K, Marques AP, Castro AG, Reis RL, van Griensven M. Vascular Endothelial Growth Factor and Fibroblast Growth Factor-2 Incorporation in Starch-Based Bone Tissue-Engineered Constructs Promote theIn VivoExpression of Neovascularization Mediators. Tissue Eng Part A 2013; 19:834-48. [DOI: 10.1089/ten.tea.2010.0741] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Tírcia C. Santos
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Taipas, Guimarães, Portugal
- ICVS-3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Tatjana J. Morton
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Martina Moritz
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sabine Pfeifer
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Kathrin Reise
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Alexandra P. Marques
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Taipas, Guimarães, Portugal
- ICVS-3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António G. Castro
- ICVS-3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
| | - Rui L. Reis
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Taipas, Guimarães, Portugal
- ICVS-3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Martijn van Griensven
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Trauma Surgery, Institute for Experimental Trauma Surgery, Technical University Munich, Munich, Germany
| |
Collapse
|
6
|
Hematopoietic stem cell (CD34+) uptake of superparamagnetic iron oxide is enhanced by but not dependent on a transfection agent. Cytotherapy 2013; 15:384-90. [DOI: 10.1016/j.jcyt.2012.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 10/10/2012] [Accepted: 10/23/2012] [Indexed: 02/01/2023]
|
7
|
Probing the Cytotoxicity of Nanoparticles: Experimental Pitfalls and Artifacts. MEASURING BIOLOGICAL IMPACTS OF NANOMATERIALS 2013. [DOI: 10.1007/11663_2013_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Létourneau M, Tremblay M, Faucher L, Rojas D, Chevallier P, Gossuin Y, Lagueux J, Fortin MA. MnO-labeled cells: positive contrast enhancement in MRI. J Phys Chem B 2012; 116:13228-38. [PMID: 23030472 DOI: 10.1021/jp3032918] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Manganese oxide (MnO) nanoparticles have been suggested as a promising "positive" MRI contrast agent for cellular and molecular studies. Mn-based contrast agents could enable T(1)-weighted quantitative cell tracking procedures in vivo based on signal enhancement. In this study, ultrasmall MnO particles were synthesized and coated with thiolated molecules (DMSA) and polyethylene glycol (PEG) to allow enhanced cell labeling properties and colloidal stability. This coating allowed the fabrication of individual ultrasmall nanoparticles of MnO (USPMnO) as well as of nanoaggregates of the same material (SPMnO). Particle size was measured by TEM and DLS. Physico-chemical properties were characterized by XPS and FTIR. The relaxometric properties of these aqueous suspensions were measured at various magnetic fields. The suspensions provided strong positive contrast enhancement in T(1)-weighted imaging due to high longitudinal relaxivities (r(1)) and low r(2)/r(1) ratios (USPMnO: r(1) = 3.4 ± 0.1 mM(-1)s(-1), r(2)/r(1) = 3.2; SPMnO: r(1) = 17.0 ± 0.5 mM(-1)s(-1), r(2)/r(1) = 4.0, at 1.41T). HT-1080 cancer cells incubated with the contrast agents were clearly visualized in MRI for Mn contents >1.1 pg Mn/cell. The viability of cells was not affected, contrarily to cells labeled with an equivalent concentration of Mn(2+) ions. A higher signal per cell was found for SPMnO-labeled compared with USPMnO-labeled cells, due to the higher relaxometric properties of the agglomerates. As a result, the "positive" signal enhancement effect is not significantly affected upon agglomeration of MnO particles in endosomes. This is a major requirement in the development of reliable cell tracking procedures using T(1)-weighted imaging sequences. This study confirms the potential of SPMnO and USPMnO to establish more quantitative cell tracking procedures with MRI.
Collapse
Affiliation(s)
- Mathieu Létourneau
- Axe métabolisme, santé vasculaire et rénale, Centre de recherche du Centre hospitalier universitaire de Québec (AMSVR-CRCHUQ), 10 rue de l'Espinay, Québec, QC G1L 3L5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Gul-Uludag H, Lu W, Xu P, Xing J, Chen J. Efficient and rapid uptake of magnetic carbon nanotubes into human monocytic cells: implications for cell-based cancer gene therapy. Biotechnol Lett 2012; 34:989-93. [PMID: 22286181 DOI: 10.1007/s10529-012-0858-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/18/2012] [Indexed: 11/29/2022]
Abstract
Monocyte-based gene therapies in cancer have been hampered by either the resistance of these cells to non-viral molecular delivery methods or their poor trafficking to the tumor site after their ex vivo manipulations. Magnetic nanoparticles (MNP)-loaded genetically engineered monocytes can efficiently delivered to tumor site by external magnetic field, but they are not ideal delivery tools due to their spherical shape. Hence, we have investigated the cellular uptake efficiency and cytotoxicity of fluorescein isothiocyanate (FITC)-labelled magnetic carbon nanotubes (FITC-mCNT) in human monocytic leukemia cell line THP-1 for application in cell-based gene therapy against cancer. Uptake of FITC-mCNT into THP-1 cells reached 100% only 1 h after the delivery. Confocal imaging confirmed that FITC-mCNT entered the cell cytoplasm and even into the nucleus. FITC-mCNT uptake did not compromise cell viability. This delivery system might therefore enhance cell-based cancer gene therapies.
Collapse
Affiliation(s)
- Hilal Gul-Uludag
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada
| | | | | | | | | |
Collapse
|
10
|
Henning TD, Gawande R, Khurana A, Tavri S, Mandrussow L, Golovko D, Horvai A, Sennino B, McDonald D, Meier R, Wendland M, Derugin N, Link TM, Daldrup-Link HE. Magnetic resonance imaging of ferumoxide-labeled mesenchymal stem cells in cartilage defects: in vitro and in vivo investigations. Mol Imaging 2012; 11:197-209. [PMID: 22554484 PMCID: PMC3727234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
The purpose of this study was to (1) compare three different techniques for ferumoxide labeling of mesenchymal stem cells (MSCs), (2) evaluate if ferumoxide labeling allows in vivo tracking of matrix-associated stem cell implants (MASIs) in an animal model, and (3) compare the magnetic resonance imaging (MRI) characteristics of ferumoxide-labeled viable and apoptotic MSCs. MSCs labeled with ferumoxide by simple incubation, protamine transfection, or Lipofectin transfection were evaluated with MRI and histopathology. Ferumoxide-labeled and unlabeled viable and apoptotic MSCs in osteochondral defects of rat knee joints were evaluated over 12 weeks with MRI. Signal to noise ratios (SNRs) of viable and apoptotic labeled MASIs were tested for significant differences using t-tests. A simple incubation labeling protocol demonstrated the best compromise between significant magnetic resonance signal effects and preserved cell viability and potential for immediate clinical translation. Labeled viable and apoptotic MASIs did not show significant differences in SNR. Labeled viable but not apoptotic MSCs demonstrated an increasing area of T2 signal loss over time, which correlated to stem cell proliferation at the transplantation site. Histopathology confirmed successful engraftment of viable MSCs. The engraftment of iron oxide-labeled MASIs by simple incubation can be monitored over several weeks with MRI. Viable and apoptotic MASIs can be distinguished via imaging signs of cell proliferation at the transplantation site.
Collapse
Affiliation(s)
- Tobias D Henning
- Department of Radiology, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Henning TD, Gawande R, Khurana A, Tavri S, Mandrussow L, Golovko D, Horvai A, Sennino B, McDonald D, Meier R, Wendland M, Derugin N, Link TM, Daldrup-Link HE. Magnetic Resonance Imaging of Ferumoxide-Labeled Mesenchymal Stem Cells in Cartilage Defects: In Vitro and in Vivo Investigations. Mol Imaging 2012. [DOI: 10.2310/7290.2011.00040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Tobias D. Henning
- From the Department of Radiology, University of Cologne, Cologne, Germany; Department of Radiology, Stanford University, Stanford, CA; Department of Radiology, University of California, San Diego, La Jolla, CA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and Departments of Pathology, Anatomy, and Radiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Rakhee Gawande
- From the Department of Radiology, University of Cologne, Cologne, Germany; Department of Radiology, Stanford University, Stanford, CA; Department of Radiology, University of California, San Diego, La Jolla, CA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and Departments of Pathology, Anatomy, and Radiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Aman Khurana
- From the Department of Radiology, University of Cologne, Cologne, Germany; Department of Radiology, Stanford University, Stanford, CA; Department of Radiology, University of California, San Diego, La Jolla, CA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and Departments of Pathology, Anatomy, and Radiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Sidhartha Tavri
- From the Department of Radiology, University of Cologne, Cologne, Germany; Department of Radiology, Stanford University, Stanford, CA; Department of Radiology, University of California, San Diego, La Jolla, CA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and Departments of Pathology, Anatomy, and Radiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Lydia Mandrussow
- From the Department of Radiology, University of Cologne, Cologne, Germany; Department of Radiology, Stanford University, Stanford, CA; Department of Radiology, University of California, San Diego, La Jolla, CA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and Departments of Pathology, Anatomy, and Radiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Daniel Golovko
- From the Department of Radiology, University of Cologne, Cologne, Germany; Department of Radiology, Stanford University, Stanford, CA; Department of Radiology, University of California, San Diego, La Jolla, CA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and Departments of Pathology, Anatomy, and Radiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Andrew Horvai
- From the Department of Radiology, University of Cologne, Cologne, Germany; Department of Radiology, Stanford University, Stanford, CA; Department of Radiology, University of California, San Diego, La Jolla, CA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and Departments of Pathology, Anatomy, and Radiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Barbara Sennino
- From the Department of Radiology, University of Cologne, Cologne, Germany; Department of Radiology, Stanford University, Stanford, CA; Department of Radiology, University of California, San Diego, La Jolla, CA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and Departments of Pathology, Anatomy, and Radiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Donald McDonald
- From the Department of Radiology, University of Cologne, Cologne, Germany; Department of Radiology, Stanford University, Stanford, CA; Department of Radiology, University of California, San Diego, La Jolla, CA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and Departments of Pathology, Anatomy, and Radiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Reinhard Meier
- From the Department of Radiology, University of Cologne, Cologne, Germany; Department of Radiology, Stanford University, Stanford, CA; Department of Radiology, University of California, San Diego, La Jolla, CA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and Departments of Pathology, Anatomy, and Radiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Michael Wendland
- From the Department of Radiology, University of Cologne, Cologne, Germany; Department of Radiology, Stanford University, Stanford, CA; Department of Radiology, University of California, San Diego, La Jolla, CA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and Departments of Pathology, Anatomy, and Radiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Nikita Derugin
- From the Department of Radiology, University of Cologne, Cologne, Germany; Department of Radiology, Stanford University, Stanford, CA; Department of Radiology, University of California, San Diego, La Jolla, CA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and Departments of Pathology, Anatomy, and Radiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Thomas M. Link
- From the Department of Radiology, University of Cologne, Cologne, Germany; Department of Radiology, Stanford University, Stanford, CA; Department of Radiology, University of California, San Diego, La Jolla, CA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and Departments of Pathology, Anatomy, and Radiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Heike E. Daldrup-Link
- From the Department of Radiology, University of Cologne, Cologne, Germany; Department of Radiology, Stanford University, Stanford, CA; Department of Radiology, University of California, San Diego, La Jolla, CA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and Departments of Pathology, Anatomy, and Radiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
12
|
Jia J, Yu JC, Zhu XM, Chan KM, Wang YXJ. Ultra-fast method to synthesize mesoporous magnetite nanoclusters as highly sensitive magnetic resonance probe. J Colloid Interface Sci 2012; 379:1-7. [PMID: 22608848 DOI: 10.1016/j.jcis.2012.04.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 03/22/2012] [Accepted: 04/14/2012] [Indexed: 11/26/2022]
Abstract
An ultra-fast method to synthesize mesoporous magnetite (Fe(3)O(4)) nanoclusters is reported. These mesoporous magnetite can be used as a highly sensitive magnetic resonance imaging (MRI) probe. The nanoclusters were synthesized by reducing iron (III) acetylacetonate with hydrazine in ethylene glycol under microwave irradiation and only 5 min was needed in the synthesis. The diameter of the nanoclusters could be controlled effectively between 75 nm and 115 nm by increasing the amount of iron (III) acetylacetonate. Brunauer-Emmett-Teller (BET) results reveal a mesoporous structure and a large surface area of 72.3 m(2) g(-1). Cytotoxicity test performed in HepG2 cell line indicated that the as-prepared nanoclusters were non-cytotoxic. The nanoclusters exhibited an enhanced T(2) relaxivity value of 417.4±29.9 s(-1) mM(-1). In vitro and in vivo MRI confirmed the high sensitivity of the magnetite nanoclusters as MRI probe. The biodistribution of the nanoclusters in rat liver and spleen after intravenous injection was also investigated.
Collapse
Affiliation(s)
- Juncai Jia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | |
Collapse
|
13
|
Umbilical cord blood mononuclear cell transplantation for neonatal hypoxic-ischemic encephalopathy. Pediatr Res 2012; 71:464-73. [PMID: 22430382 DOI: 10.1038/pr.2011.59] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite recent advances in the treatment of neonatal hypoxic-ischemic encephalopathy (HIE) using therapeutic hypothermia, at least 30% of the cooled infants will die or have moderate/severe neurological disability. Umbilical cord blood cells (UCBCs), which are readily available at birth, have been shown to reduce sensorimotor and/or cognitive impairments in several models of brain damage, representing a promising option for the treatment of neurological diseases. In this review, we discuss recent preclinical studies that assessed the effects of UCBC transplantation in the Rice-Vannucci animal model of HIE. We also review the possible cell types and mechanisms involved in the therapeutic effect of UCBC transplantation, including neuroprotection, immunomodulation, and stimulation of neural plasticity and regeneration. In addition, we discuss how neuroimaging methods, such as bioluminescence imaging, nuclear-medicine imaging, or magnetic resonance imaging, could be used to evaluate the biodistribution of UCBCs in both preclinical and clinical studies.
Collapse
|
14
|
Böhm I. Magnetic resonance cell-tracking studies: spectrophotometry-based method for the quantification of cellular iron content after loading with superparamagnetic iron oxide nanoparticles. Mol Imaging 2011; 10:270-7. [PMID: 21501568 DOI: 10.2310/7290.2010.00039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 04/26/2010] [Indexed: 11/18/2022] Open
Abstract
The purpose of this article is to present a user-friendly tool for quantifying the iron content of superparamagnetic labeled cells before cell tracking by magnetic resonance imaging (MRI). Iron quantification was evaluated by using Prussian blue staining and spectrophotometry. White blood cells were labeled with superparamagnetic iron oxide (SPIO) nanoparticles. Labeling was confirmed by light microscopy. Subsequently, the cells were embedded in a phantom and scanned on a 3 T magnetic resonance tomography (MRT) whole-body system. Mean peak wavelengths λ(peak) was determined at A(720 nm) (range 719-722 nm). Linearity was proven for the measuring range 0.5 to 10 μg Fe/mL (r = .9958; p = 2.2 × 10(-12)). The limit of detection was 0.01 μg Fe/mL (0.1785 mM), and the limit of quantification was 0.04 μg Fe/mL (0.714 mM). Accuracy was demonstrated by comparison with atomic absorption spectrometry. Precision and robustness were also proven. On T(2)-weighted images, signal intensity varied according to the iron concentration of SPIO-labeled cells. Absorption spectrophotometry is both a highly sensitive and user-friendly technique that is feasible for quantifying the iron content of magnetically labeled cells. The presented data suggest that spectrophotometry is a promising tool for promoting the implementation of magnetic resonance-based cell tracking in routine clinical applications (from bench to bedside).
Collapse
Affiliation(s)
- Ingrid Böhm
- ZARF-Project Molecular Radiology, Department of Radiology, Philipps-University of Marburg, Marburg, Germany.
| |
Collapse
|
15
|
Shen J, Cheng LN, Zhong XM, Duan XH, Guo RM, Hong GB. Efficient in vitro labeling rabbit neural stem cell with paramagnetic Gd-DTPA and fluorescent substance. Eur J Radiol 2010; 75:397-405. [PMID: 19427151 DOI: 10.1016/j.ejrad.2009.04.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 02/07/2009] [Accepted: 04/15/2009] [Indexed: 01/19/2023]
Abstract
OBJECTIVES The aim of this study is to label rabbit neural stem cells (NSCs) by using standard contrast agents (Gd-DTPA) in combination with PKH26 and in vitro track them with MR imaging. MATERIALS AND METHODS NSCs from prenatal brains of rabbits were cultured and propagated. Intracellular uptake of Gd-DTPA was achieved by using a non-liposomal lipid transfection reagent (Effectene) as the transfection agent. After labeling with Gd-DTPA, cells were incubated with cellular membrane fluorescent dye PKH26. The labeling effectiveness and the longevity of Gd-DTPA maintenance were measured on a 1.5T MR scanner. The influence of labeling on the cellular biological behaviors was assessed by cellular viability, proliferation and differentiation assessment. RESULTS The labeling efficiency of Gd-DTPA was up to 90%. The signal intensity on T1-weighted imaging and T1 values of labeled cells were significantly higher than those of unlabeled cells (P<0.05). The minimal number of detectable cells for T1-weighted imaging was 5×10(3). Cellular uptake of Gd-DTPA was maintained until 15 days after initially labeling. There was no significant difference in the cellular viability and proliferation between the labeled and unlabeled NSCs (P>0.05). Normal glial and neuronal differentiation remained in labeled NSCs like unlabeled NSCs. CONCLUSION Highly efficient labeling NSCs with Gd-DTPA could be achieved by using Effectene. This method of labeling NSCs allows for tracking cells with MR imaging, and without alterations of cellular biological behaviors.
Collapse
Affiliation(s)
- Jun Shen
- Department of Radiology, The Second Affiliated Hospital, Sun Yat-sen University, 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China.
| | | | | | | | | | | |
Collapse
|
16
|
Bengtsson NE, Brown G, Scott EW, Walter GA. lacZ as a genetic reporter for real-time MRI. Magn Reson Med 2010; 63:745-53. [PMID: 20146234 DOI: 10.1002/mrm.22235] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Molecular imaging based on MRI is currently hampered by the lack of genetic reporters for in vivo imaging. We determined that the commercially available substrate S-Gal can be used to detect genetically engineered beta-galactosidase expressing cells by MRI. The effect and specificity of the reaction between beta-galactosidase and S-Gal on MRI contrast were determined both in vitro and in vivo. beta-galactosidase activity in the presence of S-Gal resulted in enhanced T(2) and T*(2) MR-contrast, which was amplified with increasing magnetic field strengths (4.7-17.6 T) in phantom studies. Using both lacZ(+) transgenic animals and lacZ(+) tissue transplants, we were able to detect labeled cells in live animals in real time. Similar to phantom studies, detection of the labeled cells/tissues in vivo was enhanced at high magnetic fields. These results demonstrate that the genetic reporter, lacZ, can be used as an in vivo marker gene using high-field-strength MRI.
Collapse
Affiliation(s)
- Niclas E Bengtsson
- Program in Stem Cell Biology and Regenerative Medicine, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | |
Collapse
|
17
|
Gul H, Lu W, Xu P, Xing J, Chen J. Magnetic carbon nanotube labelling for haematopoietic stem/progenitor cell tracking. NANOTECHNOLOGY 2010; 21:155101. [PMID: 20299726 DOI: 10.1088/0957-4484/21/15/155101] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Haematopoietic stem and progenitor cell (HSPC) research has significantly contributed to the understanding and harnessing of haematopoiesis for regenerative medicine. However, the methodology for real-time tracking HSPC in vivo is still lacking, which seriously restricts the progress of research. Recently, magnetic carbon nanotubes (mCNT) have generated great excitement because they have been successfully used as vehicles to deliver a lot of biomolecules into various cells. There is, however, no report about mCNT being used for tracking HSPC. In this paper, we investigated the uptake efficiency of fluorescein-isothiocyanate-labelled mCNT (FITC-mCNT) into HSPC and their effect on the cytotoxicity and differentiation of HSPC. We found that cellular uptake of FITC-mCNT was concentration-and time-dependent. The uptake of FITC-mCNT into HSPC reached up to 100% with the highest mean fluorescence (MF). More importantly, efficient FITC-mCNT uptake has no adverse effect on the cell viability, cytotoxicity and differentiation of HSPC as confirmed by colony-forming unit assay (CFU). In conclusion, the results reported here suggest the further tailoring of mCNT for their use in HSPC labelling/tracking in vivo or gene delivery into HSPC.
Collapse
Affiliation(s)
- Hilal Gul
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, T6G 2V2, Canada
| | | | | | | | | |
Collapse
|
18
|
Accelerated stem cell labeling with ferucarbotran and protamine. Eur Radiol 2009; 20:640-8. [PMID: 19756632 PMCID: PMC2822227 DOI: 10.1007/s00330-009-1585-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 07/09/2009] [Accepted: 08/06/2009] [Indexed: 11/01/2022]
Abstract
OBJECTIVE To develop and characterize a clinically applicable, fast and efficient method for stem cell labeling with ferucarbotran and protamine for depiction with clinical MRI. METHODS The hydrodynamic diameter, zeta potential and relaxivities of ferucarbotran and varying concentrations of protamine were measured. Once the optimized ratio was found, human mesenchymal stem cells (MSCs) were labeled at varying incubation times (1-24 h). Viability was assessed via Trypan blue exclusion testing. 150,000 labeled cells in Ficoll solution were imaged with T1-, T2- and T2*-weighted sequences at 3 T, and relaxation rates were calculated. RESULTS Varying the concentrations of protamine allows for easy modification of the physicochemical properties. Simple incubation with ferucarbotran alone resulted in efficient labeling after 24 h of incubation while assisted labeling with protamine resulted in similar results after only 1 h. Cell viability remained unaffected. R2 and R2* relaxation rates were drastically increased. Electron microscopy confirmed intracellular iron oxide uptake in lysosomes. Relaxation times correlated with results from ICP-AES. CONCLUSION Our results show internalization of ferucarbotran can be accelerated in MSCs with protamine, an approved heparin antagonist and potentially clinically applicable uptake-enhancing agent.
Collapse
|
19
|
Bernsen MR, Moelker AD, Wielopolski PA, van Tiel ST, Krestin GP. Labelling of mammalian cells for visualisation by MRI. Eur Radiol 2009; 20:255-74. [DOI: 10.1007/s00330-009-1540-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 06/11/2009] [Accepted: 06/23/2009] [Indexed: 12/21/2022]
|
20
|
Abstract
Abstract
The use of nanometer-sized iron oxide nanoparticles and micron-sized iron oxide particles as magnetic resonance (MR) contrast agents has garnered a high degree of interest in diverse areas of biology and medicine. Applications such as cell tracking, molecular imaging, gene detection, and lymphography are being explored to provide insight into disease mechanisms, monitor therapeutic efficacy, and facilitate diagnostic imaging. What makes iron oxide so appealing is a number of favorable properties including high detectability by MR, biodegradability and low toxicity. Here we describe the recent progress on the use of magnetic nanoparticles in imaging circulating cells and lymphoid tissues. The study of the lymph system and the biodistribution of various circulating immune cells is important in the diagnosis, prognosis, and treatment of a wide range of diseases and is expected to have a profound effect on patient outcome.
Collapse
|
21
|
Kraitchman DL, Gilson WD, Lorenz CH. Stem cell therapy: MRI guidance and monitoring. J Magn Reson Imaging 2008; 27:299-310. [PMID: 18219684 DOI: 10.1002/jmri.21263] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
With the recent advances in magnetic resonance (MR) labeling of cellular therapeutics, it is natural that interventional MRI techniques for targeting would be developed. This review provides an overview of the current methods of stem cell labeling and the challenges that are created with respect to interventional MRI administration. In particular, stem cell therapies will require specialized, MR-compatible devices as well as integration of graphical user interfaces with pulse sequences designed for interactive, real-time delivery in many organs. Specific applications that are being developed will be reviewed as well as strategies for future translation to the clinical realm.
Collapse
Affiliation(s)
- Dara L Kraitchman
- Johns Hopkins University, School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD 21287, USA.
| | | | | |
Collapse
|
22
|
Luciani A, Parouchev A, Smirnov P, Braga G, Wilhelm C, Gazeau F, Boudechiche L, L'Hermine-Coulomb A, Dagher I, Franco D, Rahmouni A, Hadchouel M, Weber A, Clement O. In vivo imaging of transplanted hepatocytes with a 1.5-T clinical MRI system--initial experience in mice. Eur Radiol 2008; 18:59-69. [PMID: 17917732 PMCID: PMC5336554 DOI: 10.1007/s00330-007-0750-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 08/01/2007] [Accepted: 08/20/2007] [Indexed: 12/13/2022]
Abstract
The feasibility of in vitro mature mouse hepatocyte labeling with a novel iron oxide particle was assessed and the ability of 1.5-T magnetic resonance imaging (MRI) to track labeled mouse hepatocytes in syngenic recipient livers following intraportal cell transplantation was tested. Mouse hepatocytes were incubated with anionic iron oxide nanoparticles at various iron concentrations. Cell viability was assessed and iron oxide particle uptake quantified. Labeled hepatocytes were intraportally injected into 20 mice, while unlabeled hepatocytes were injected into two mice. Liver T2 values, spleen-to-muscle relative signal intensity (RI( spleen/muscle )), and liver-to-muscle relative signal intensity (RI( liver/muscle )) on gradient-echo T2-weighted imaging after injection of either labeled or unlabeled hepatocytes were compared with an ANOVA test followed by Fisher's a posteriori PLSD test. Livers, spleens and lungs were collected for histological analysis. Iron oxide particle uptake was saturable with a maximum iron content of 20 pg per cell and without viability alteration after 3 days of culture. Following labeled-cell transplantation, recipient livers showed well-defined nodular foci of low signal intensity on MRI--consistent with clusters of labeled hepatocytes on pathological analysis--combined with a significant decrease in both liver T2 values and liver-to-muscle RI( liver/muscle ) (P = 0.01) with minimal T2 values demonstrated 8 days after transplantation. Conventional MRI can demonstrate the presence of transplanted iron-labeled mature hepatocytes in mouse liver.
Collapse
Affiliation(s)
- Alain Luciani
- Service d'imagerie médicale
Assistance publique - Hôpitaux de Paris (AP-HP)Université Paris-Est Créteil Val-de-Marne - Paris 12CHU Henri Mondor51 avenue du Maréchel de Tassigny 94010 Créteil Cedex
- LRI, Méthodes d'Imagerie des Echanges Transcapillaires
IFR94Université Paris Descartes - Paris 5
| | - Alexandre Parouchev
- Transfert des Gènes dans le Foie : Applications thérapeutiques
INSERMClamart
| | - Pierre Smirnov
- LRI, Méthodes d'Imagerie des Echanges Transcapillaires
IFR94Université Paris Descartes - Paris 5
- MSC, Matière et Systèmes Complexes
Université Paris Diderot - Paris 7Centre National de la Recherche ScientifiqueUniversité Paris Diderot, Bât. Condorcet, case postale 7056, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13
| | - Gustavo Braga
- Transfert des Gènes dans le Foie : Applications thérapeutiques
INSERMClamart
| | - Claire Wilhelm
- MSC, Matière et Systèmes Complexes
Université Paris Diderot - Paris 7Centre National de la Recherche ScientifiqueUniversité Paris Diderot, Bât. Condorcet, case postale 7056, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13
| | - Florence Gazeau
- MSC, Matière et Systèmes Complexes
Université Paris Diderot - Paris 7Centre National de la Recherche ScientifiqueUniversité Paris Diderot, Bât. Condorcet, case postale 7056, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13
| | - Lyes Boudechiche
- Transfert des Gènes dans le Foie : Applications thérapeutiques
INSERMClamart
| | | | - Ibrahim Dagher
- Transfert des Gènes dans le Foie : Applications thérapeutiques
INSERMClamart
- Service de Chirurgie Digestive et Viscérale [Béclère]
Assistance publique - Hôpitaux de Paris (AP-HP)Hôpital Antoine BéclèreUniversité Paris-Sud - Paris 11157 rue de la Porte de Trivaux 92140 Clamart
| | - Dominique Franco
- Transfert des Gènes dans le Foie : Applications thérapeutiques
INSERMClamart
- Service de Chirurgie Digestive et Viscérale [Béclère]
Assistance publique - Hôpitaux de Paris (AP-HP)Hôpital Antoine BéclèreUniversité Paris-Sud - Paris 11157 rue de la Porte de Trivaux 92140 Clamart
| | - Alain Rahmouni
- Service d'imagerie médicale
Assistance publique - Hôpitaux de Paris (AP-HP)Université Paris-Est Créteil Val-de-Marne - Paris 12CHU Henri Mondor51 avenue du Maréchel de Tassigny 94010 Créteil Cedex
| | - Michèle Hadchouel
- Transfert des Gènes dans le Foie : Applications thérapeutiques
INSERMClamart
| | - Anne Weber
- Transfert des Gènes dans le Foie : Applications thérapeutiques
INSERMClamart
| | - Olivier Clement
- LRI, Méthodes d'Imagerie des Echanges Transcapillaires
IFR94Université Paris Descartes - Paris 5
| |
Collapse
|
23
|
Baum S. Happy anniversary. Acad Radiol 2007; 14:1435-7. [PMID: 18035272 DOI: 10.1016/j.acra.2007.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 10/04/2007] [Accepted: 10/05/2007] [Indexed: 11/18/2022]
|
24
|
Maxwell DJ, Bonde J, Hess DA, Hohm SA, Lahey R, Zhou P, Creer MH, Piwnica-Worms D, Nolta JA. Fluorophore-conjugated iron oxide nanoparticle labeling and analysis of engrafting human hematopoietic stem cells. Stem Cells 2007; 26:517-24. [PMID: 18055451 DOI: 10.1634/stemcells.2007-0016] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The use of nanometer-sized iron oxide particles combined with molecular imaging techniques enables dynamic studies of homing and trafficking of human hematopoietic stem cells (HSC). Identifying clinically applicable strategies for loading nanoparticles into primitive HSC requires strictly defined culture conditions to maintain viability without inducing terminal differentiation. In the current study, fluorescent molecules were covalently linked to dextran-coated iron oxide nanoparticles (Feridex) to characterize human HSC labeling to monitor the engraftment process. Conjugating fluorophores to the dextran coat for fluorescence-activated cell sorting purification eliminated spurious signals from nonsequestered nanoparticle contaminants. A short-term defined incubation strategy was developed that allowed efficient labeling of both quiescent and cycling HSC, with no discernable toxicity in vitro or in vivo. Transplantation of purified primary human cord blood lineage-depleted and CD34(+) cells into immunodeficient mice allowed detection of labeled human HSC in the recipient bones. Flow cytometry was used to precisely quantitate the cell populations that had sequestered the nanoparticles and to follow their fate post-transplantation. Flow cytometry endpoint analysis confirmed the presence of nanoparticle-labeled human stem cells in the marrow. The use of fluorophore-labeled iron oxide nanoparticles for fluorescence imaging in combination with flow cytometry allows evaluation of labeling efficiencies and homing capabilities of defined human HSC subsets.
Collapse
Affiliation(s)
- Dustin J Maxwell
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gao F, Kar S, Zhang J, Qiu B, Walczak P, Larabi M, Xue R, Frost E, Qian Z, Bulte JWM, Yang X. MRI of intravenously injected bone marrow cells homing to the site of injured arteries. NMR IN BIOMEDICINE 2007; 20:673-81. [PMID: 17285682 DOI: 10.1002/nbm.1128] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The aim of this study was to test the feasibility of using MRI to detect magnetically labeled, intravenously injected bone marrow (BM) cells homing to injured arteries. In the first phase, BM cells from LacZ-transgenic or green fluorescent protein (GFP)-transgenic mice were transplanted into eight recipient mice. The left femoral arteries of recipient mice were injured using a cuff-constriction or endothelium-damage approach, and the right femoral arteries were uninjured to serve as controls. The location and distribution of migrated LacZ-BM or GFP-BM cells were confirmed with histology. In the second phase, BM-derived cells from LacZ-transgenic mice were labeled with superparamagnetic iron oxide (Feridex) and then transplanted into eight recipient mice with cuff-induced injuries in the left femoral arteries. Migrated Feridex/LacZ-BM cells were monitored in vivo using a 4.7 T MR scanner. Subsequently, high-resolution ex vivo MRI was performed on 9.4 T and 11.7 T. LacZ-positive or GFP-positive cells in the thickened adventitia of the injured arteries were evident on histology. Both in vivo and ex vivo MRI showed larger regions of hypointensity with Feridex-labeled cells at the sites of the injured arteries compared with control arteries (P < 0.01). This study provides initial evidence that may support the potential use of MRI to detect homing of intravenously injected BM cells to injured arteries.
Collapse
Affiliation(s)
- Fabao Gao
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Inderbitzin D, Stoupis C, Sidler D, Gass M, Candinas D. Abdominal magnetic resonance imaging in small rodents using a clinical 1.5 T MR scanner. Methods 2007; 43:46-53. [PMID: 17720563 DOI: 10.1016/j.ymeth.2007.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 03/28/2007] [Accepted: 03/29/2007] [Indexed: 01/18/2023] Open
Abstract
Because of superior soft-tissue contrast compared to other imaging techniques, non-invasive abdominal magnetic resonance imaging (MRI) is ideal for monitoring organ regeneration, tissue repair, cancer stage, and treatment effects in a wide variety of experimental animal models. Currently, sophisticated MR protocols, including technically demanding procedures for motion artefact compensation, achieve an MRI resolution limit of < 100 microm under ideal conditions. However, such a high spatial resolution is not required for most experimental rodent studies. This article describes both a detailed imaging protocol for MR data acquisition in a ubiquitously and commercially available 1.5 T MR unit and 3-dimensional volumetry of organs, tissue components, or tumors. Future developments in MR technology will allow in vivo investigation of physiological and pathological processes at the cellular and even the molecular levels. Experimental MRI is crucial for non-invasive monitoring of a broad range of biological processes and will further our general understanding of physiology and disease.
Collapse
Affiliation(s)
- Daniel Inderbitzin
- Department of Visceral and Transplantation Surgery, University Hospital Bern, CH-3010 Bern, Switzerland.
| | | | | | | | | |
Collapse
|
27
|
Qiu B, Gao F, Walczak P, Zhang J, Kar S, Bulte JWM, Yang X. In vivo MR imaging of bone marrow cells trafficking to atherosclerotic plaques. J Magn Reson Imaging 2007; 26:339-43. [PMID: 17623878 DOI: 10.1002/jmri.21016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To develop a magnetic resonance imaging (MRI)-based method to monitor in vivo trafficking of bone marrow (BM) cells to atherosclerotic lesions. MATERIALS AND METHODS BM cells from LacZ-transgenic mice were labeled with a superparamagnetic iron oxide (Feridex) and then transplanted into ApoE(-/-) recipient mice that were fed an atherogenic diet. Twenty-four ApoE(-/-) mice were divided into three study groups: 1) group I with Feridex-labeled BM transplantation (BMT) cells (N = 9), 2) group II with unlabeled BMT cells (N = 10), and 3) group III with no BMT cells (N = 5). Migrated Feridex/LacZ-BM cells to atherosclerotic aortic walls were monitored in vivo using a 4.7T MR scanner and correlated with histopathological findings. RESULTS In group I with Feridex-BMT cells, histology examination displayed plaques in five of nine animals. In four of these five animals, in vivo MRI showed large MR signal voids of the aorta walls (due to the "blooming" effect of migrated Feridex-BM cells in plaques), which were correlated with Feridex- and/or LacZ-positive cells detected in the atherosclerotic lesions. No signal voids could be visualized in the two control animal groups (groups II and III). CONCLUSION This study demonstrates the potential use of in vivo MRI to monitor the trafficking of magnetically labeled BM cells to atherosclerotic lesions.
Collapse
Affiliation(s)
- Bensheng Qiu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Rad AM, Arbab AS, Iskander ASM, Jiang Q, Soltanian-Zadeh H. Quantification of superparamagnetic iron oxide (SPIO)-labeled cells using MRI. J Magn Reson Imaging 2007; 26:366-74. [PMID: 17623892 PMCID: PMC4509786 DOI: 10.1002/jmri.20978] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE To show the feasibility of using magnetic resonance imaging (MRI) to quantify superparamagnetic iron oxide (SPIO)-labeled cells. MATERIALS AND METHODS Lymphocytes and 9L rat gliosarcoma cells were labeled with ferumoxides-protamine sulfate complex (FE-PRO). The cells were labeled efficiently (more than 95%) and the iron concentration inside each cell was measured by spectrophotometry (4.77-30.21 pg). Phantom tubes containing different numbers of labeled or unlabeled cells, as well as different concentrations of FE-PRO, were made. In addition, labeled and unlabeled cells were injected into fresh and fixed rat brains. RESULTS Cellular viability and proliferation of labeled and unlabeled cells were shown to be similar. T2-weighted images were acquired using 7T and 3T MRI systems, and R2 maps of the tubes containing cells, free FE-PRO, and brains were made. There was a strong linear correlation between R2 values and labeled cell numbers, but the regression lines were different for the lymphocytes and gliosarcoma cells. Similarly, there was strong correlation between R2 values and free iron. However, free iron had higher R2 values than the labeled cells for the same concentration of iron. CONCLUSION Our data indicate that in vivo quantification of labeled cells can be done by careful consideration of different factors and specific control groups.
Collapse
Affiliation(s)
- Ali M Rad
- Department of Radiology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Ali S Arbab
- Department of Radiology, Henry Ford Health System, Detroit, MI 48202, USA
| | - ASM Iskander
- Department of Radiology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Hamid Soltanian-Zadeh
- Department of Radiology, Henry Ford Health System, Detroit, MI 48202, USA
- Control and Intelligent Processing Center of Excellence, Department of the Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Corresponding Author: Hamid Soltanian-Zadeh, PhD, Radiology Image Analysis Lab., Henry Ford Health System, One Ford Place, 2F, Detroit, MI 48202, Phone: (313) 874-4482, Fax: (313) 874-4494,
| |
Collapse
|
29
|
Kuhlpeter R, Dahnke H, Matuszewski L, Persigehl T, von Wallbrunn A, Allkemper T, Heindel WL, Schaeffter T, Bremer C. R2 and R2* mapping for sensing cell-bound superparamagnetic nanoparticles: in vitro and murine in vivo testing. Radiology 2007; 245:449-57. [PMID: 17848680 DOI: 10.1148/radiol.2451061345] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To prospectively determine the cellular iron uptake by using R2 and R2* mapping with multiecho readout gradient-echo and spin-echo sequences. MATERIALS AND METHODS All experiments were approved by the institutional animal care committee. Lung carcinoma cells were lipofected with superparamagnetic iron oxides (SPIOs). Agarose gel phantoms containing (a) 1 x 10(5) CCL-185 cells per milliliter of agarose gel with increasing SPIO load (0.01-5.00 mg of iron per milliliter in the medium), (b) different amounts (5.0 x 10(3) to 2.5 x 10(5) cells per milliliter of agarose gel) of identically loaded cells, and (c) free (non-cell-bound) SPIOs at the iron concentrations described for (b) were analyzed with 3.0-T R2 and R2* relaxometry. Iron uptake was analyzed with light microscopy, quantified with atomic emission spectroscopy (AES), and compared with MR data. For in vivo relaxometry, agarose gel pellets containing SPIO-labeled cells, free SPIO, unlabeled control cells, and pure agarose gel were injected into three nude mice each. Linear and nonlinear regression analyses were performed. RESULTS Light microscopy and AES revealed efficient SPIO particle uptake (mean uptake: 0.22 pg of iron per cell +/- 0.1 [standard deviation] for unlabeled cells, 31.17 pg of iron per cell +/- 4.63 for cells incubated with 0.5 mg/mL iron). R2 and R2* values were linearly correlated with cellular iron load, number of iron-loaded cells, and content of freely dissolved iron (r(2) range, 0.92-0.99; P < .001). For cell-bound SPIO, R2* effects were significantly greater than R2 effects (P < .01); for free SPIO, R2 and R2* effects were similar. In vivo relaxometry enabled accurate prediction of the number of labeled cells. R2' (R2* - R2) mapping enabled differentiation between cell-bound and free iron in vitro and in vivo. CONCLUSION Quantitative R2 and R2* mapping enables noninvasive estimations of cellular iron load and number of iron-labeled cells. Cell-bound SPIOs can be differentiated from free SPIOs with R2' imaging.
Collapse
Affiliation(s)
- Rebecca Kuhlpeter
- Department of Clinical Radiology, University Hospital of Muenster, Albert-Schweitzer-Str 33, D-48129, Muenster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Brockmann MA, Kemmling A, Groden C. Current issues and perspectives in small rodent magnetic resonance imaging using clinical MRI scanners. Methods 2007; 43:79-87. [PMID: 17720566 DOI: 10.1016/j.ymeth.2007.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 07/10/2007] [Indexed: 12/16/2022] Open
Abstract
Small rodents such as mice and rats are frequently used in animal experiments for several reasons. In the past, animal experiments were frequently associated with invasive methods and groups of animals had to be killed to perform longitudinal studies. Today's modern imaging techniques such as magnetic resonance imaging (MRI) allow non-invasive longitudinal monitoring of multiple parameters. Although only a few institutions have access to dedicated small animal MR scanners, most institutions carrying out animal experiments have access to clinical MR scanners. Technological advances and the increasing field strength of clinical scanners make MRI a broadly available and viable technique in preclinical in vivo research. This review provides an overview of current concepts, limitations, and recent studies dealing with small animal imaging using clinical MR scanners.
Collapse
Affiliation(s)
- Marc A Brockmann
- Department of Neuroradiology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 61867 Mannheim, Germany.
| | | | | |
Collapse
|
31
|
Abstract
The efficacy of therapies based on neural stem cells (NSC) has been demonstrated in preclinical models of several central nervous system (CNS) diseases. Before any potential human application of such promising therapies can be envisaged, there are some important issues that need to be solved. The most relevant one is the requirement for a noninvasive technique capable of monitoring NSC delivery, homing to target sites and trafficking. Knowledge of the location and temporospatial migration of either transplanted or genetically modified NSC is of the utmost importance in analyzing mechanisms of correction and cell distribution. Further, such a technique may represent a crucial step toward clinical application of NSC-based approaches in humans, for both designing successful protocols and monitoring their outcome. Among the diverse imaging approaches available for noninvasive cell tracking, such as nuclear medicine techniques, fluorescence and bioluminescence, magnetic resonance imaging (MRI) has unique advantages. Its high temporospatial resolution, high sensitivity and specificity render MRI one of the most promising imaging modalities available, since it allows dynamic visualization of migration of transplanted cells in animal models and patients during clinically useful time periods. Different cellular and molecular labeling approaches for MRI depiction of NSC are described and discussed in this review, as well as the most relevant issues to be considered in optimizing molecular imaging techniques for clinical application.
Collapse
Affiliation(s)
- Letterio S Politi
- Neuroradiology Department, San Raffaele Scientific Institute, Via Olgettina 60, Milano, Italy.
| |
Collapse
|
32
|
Henning TD, Saborowski O, Golovko D, Boddington S, Bauer JS, Fu Y, Meier R, Pietsch H, Sennino B, McDonald DM, Daldrup-Link HE. Cell labeling with the positive MR contrast agent Gadofluorine M. Eur Radiol 2007; 17:1226-34. [PMID: 17206428 DOI: 10.1007/s00330-006-0522-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 10/04/2006] [Accepted: 11/03/2006] [Indexed: 12/19/2022]
Abstract
The purpose of this study was to label human monocytes with Gadofluorine M by simple incubation for subsequent cell depiction at 1.5 and 3 T. Gadofluorine M displays a high r(1) relaxivity and is spontaneously phagocytosed by macrophages. Human monocytes were incubated with Gadofluorine M-Cy at varying concentrations and incubation times and underwent MR imaging at 1.5 and 3 T at increasing time intervals after the labeling procedure. R1-relaxation rates and r1 relaxivities of the labeled cells and non-labeled controls were determined. Cellular contrast agent uptake was examined by fluorescence microscopy and quantified by ICP-AES. Efficient cell labeling was achieved after incubation of the cells with 25 mM Gd Gadofluorine M for 12 h, resulting in a maximal uptake of 0.3 fmol Gd/cell without impairment of cell viability. Fluorescence microscopy confirmed internalization of the fluorescent contrast agent by monocytes. The r1 relaxivity of the labeled cells was 137 mM(-1)s(-1) at 1.5 T and 80.46 mM(-1)s(-1) at 3 T. Imaging studies showed stable labeling for at least 7 days. Human monocytes can be effectively labeled for MR imaging with Gadofluorine M. Potential in vivo cell-tracking applications include targeting of inflammatory processes with Gadofluorine-labeled leukocytes or monitoring of stem cell therapies for the treatment of arthritis.
Collapse
Affiliation(s)
- Tobias D Henning
- Department of Radiology, University of California in San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Verdijk P, Scheenen TWJ, Lesterhuis WJ, Gambarota G, Veltien AA, Walczak P, Scharenborg NM, Bulte JWM, Punt CJA, Heerschap A, Figdor CG, de Vries IJM. Sensitivity of magnetic resonance imaging of dendritic cells for in vivo tracking of cellular cancer vaccines. Int J Cancer 2006; 120:978-84. [PMID: 17163419 DOI: 10.1002/ijc.22385] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Success of immunotherapy with dendritic cells (DC) to treat cancer is highly dependent on their interaction with and activation of antigen specific T cells. To maximize DC-T cell contact accurate delivery of the therapeutic cells into the lymph node, or efficient trafficking of DC to the lymph nodes of the patient is essential. Since responses are seen in some patients but not in others, monitoring of the injected cells may be of major importance. Tracking of cells with magnetic resonance (MR) imaging is a non-invasive method that provides detailed anatomical information and is therefore more informative for the evaluation of the localization of therapeutic cells after injection than e.g. scintigraphic imaging. To challenge the sensitivity of this novel technique, we investigated the minimum amount of label and the number of cells required for MR imaging and the effect of labeling on DC function. DC were labeled with different concentrations of a clinically approved MR contrast agent consisting of superparamagnetic iron oxide particles and were imaged at both 3 and 7 T. Our results demonstrate the following: (i) When loaded with 30 (+/-4) pg Fe/cell, cell numbers as low as 1,000 cells/mm3 at 3 T and 500 cells/mm3 at 7 T could be readily imaged; (ii) Labeling does not affect cell viability and function; (iii) Because of its high spatial resolution and sensitivity, MRI is ideally suited to track therapeutic cells in vivo.
Collapse
Affiliation(s)
- Pauline Verdijk
- Department of Tumorimmunology, Nijmegen Centre for Molecular Life Science, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pawelczyk E, Arbab AS, Pandit S, Hu E, Frank JA. Expression of transferrin receptor and ferritin following ferumoxides-protamine sulfate labeling of cells: implications for cellular magnetic resonance imaging. NMR IN BIOMEDICINE 2006; 19:581-92. [PMID: 16673357 DOI: 10.1002/nbm.1038] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ferumoxides-protamine sulfate (FE-Pro) complexes are used for intracellular magnetic labeling of cells to non-invasively monitor cell trafficking by in vivo MRI. FE-Pro labeling is non-toxic to cells; however, the effects of FE-Pro labeling on cellular expression of transferrin receptor (TfR-1) and ferritin, proteins involved in iron transport and storage, has not been reported. FE-Pro-labeled human mesenchymal stem cells (MSCs), HeLa cells and primary macrophages were cultured from 1 week to 2 months and evaluated for TfR-1 and ferritin gene expression by RT-PCR and protein levels were determined using Western blots. MTT (proliferation assay) and reactive oxygen species (ROS) analysis were performed. FE-Pro labeling of HeLa and MSCs resulted in a transient decrease in TfR-1 mRNA and protein levels. In contrast, Fe-Pro labeling of primary macrophages resulted in an increase in TfR-1 mRNA but not in TfR-1 protein levels. Ferritin mRNA and protein levels increased transiently in labeled HeLa and macrophages but were sustained in MSCs. No changes in MTT and ROS analysis were noted. In conclusion, FE-Pro labeling elicited physiological changes of iron metabolism or storage, validating the safety of this procedure for cellular tracking by MRI.
Collapse
Affiliation(s)
- Edyta Pawelczyk
- Laboratory of Diagnostic Radiology Research, Experimental Neuroimaging Section, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
35
|
Simon GH, Bauer J, Saborovski O, Fu Y, Corot C, Wendland MF, Daldrup-Link HE. T1 and T2 relaxivity of intracellular and extracellular USPIO at 1.5T and 3T clinical MR scanning. Eur Radiol 2005; 16:738-45. [PMID: 16308692 DOI: 10.1007/s00330-005-0031-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 08/18/2005] [Accepted: 09/13/2005] [Indexed: 10/25/2022]
Abstract
In this study we evaluated the effects of intracellular compartmentalization of the ultrasmall superparamagnetic iron oxide (USPIO) ferumoxtran-10 on its proton T1 and T2 relaxivities at 1.5 and 3T. Monocytes were labeled with ferumoxtran-10 by simple incubation. Decreasing quantities of ferumoxtran-10-labeled cells (2.5x10(7)-0.3x10(7) cells/ml) and decreasing concentrations of free ferumoxtran-10 (without cells) in Ficoll solution were evaluated with 1.5 and 3T clinical magnetic resonance (MR) scanners. Pulse sequences comprised axial spin echo (SE) sequences with multiple TRs and fixed TE and SE sequences with fixed TR and increasing TEs. Signal intensity measurements were used to calculate T1 and T2 relaxation times of all samples, assuming a monoexponential signal decay. The iron content in all samples was determined by inductively coupled plasma atomic emission spectrometry and used for calculating relaxivities. Measurements at 1.5T and 3T showed higher T1 and T2 relaxivity values of free extracellular ferumoxtran-10 as opposed to intracellularly compartmentalized ferumoxtran-10, under the evaluated conditions of homogeneously dispersed contrast agents/cells in Ficoll solution and a cell density of up to 2.5x10(7) cells/ml. At 3T, differences in T1-relaxivities between intra- and extracellular USPIO were smaller, while differences in USPIO T2-relaxivities were similar compared with 1.5T. In conclusion, cellular compartmentalization of ferumoxtran-10 changes proton relaxivity.
Collapse
Affiliation(s)
- Gerhard H Simon
- Department of Radiology, UCSF Medical Center, University of California San Francisco, San Francisco, California 94143, USA.
| | | | | | | | | | | | | |
Collapse
|