1
|
Peláez M, López-Sánchez A, Fernandes GW, Dirzo R, Rodríguez-Calcerrada J, Perea R. Responses of oak seedlings to increased herbivory and drought: a possible trade-off? ANNALS OF BOTANY 2025; 135:341-356. [PMID: 39383257 PMCID: PMC11805927 DOI: 10.1093/aob/mcae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/08/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND AND AIMS Anthropogenic disturbances are causing a co-occurring increase in biotic (ungulate herbivory) and abiotic (drought) stressors, threatening plant reproduction in oak-dominated ecosystems. However, could herbivory compensate for the adverse impact of drought by reducing evapotranspiration? Thus, we investigated the isolated and joint effects of herbivory and drought on oak seedlings of two contrasting Mediterranean species that differ in leaf habit and drought resistance. METHODS California oak seedlings from the evergreen, and more drought-resistant, Quercus agrifolia and the deciduous Q. lobata (n = 387) were assigned to a fully crossed factorial design with herbivory and drought as stress factors. Seedlings were assigned in a glasshouse to three to four clipping levels simulating herbivory and three to four watering levels, depending on the species. We measured survival, growth and leaf attributes (chlorophyll, secondary metabolites, leaf area and weight) once a month (May-September) and harvested above- and below-ground biomass at the end of the growing season. KEY RESULTS For both oak species, simulated herbivory enhanced seedling survival during severe drought or delayed its adverse effects, probably due to reduced transpiration resulting from herbivory-induced leaf area reduction and compensatory root growth. Seedlings from the deciduous, and less drought-resistant species benefited from herbivory at lower levels of water stress, suggesting different response across species. We also found complex interactions between herbivory and drought on their impact on leaf attributes. In contrast to chlorophyll content which was not affected by herbivory, anthocyanins increased with herbivory - although water stress reduced differences in anthocyanins due to herbivory. CONCLUSIONS Herbivory seems to allow Mediterranean oak seedlings to withstand summer drought, potentially alleviating a key bottleneck in the oak recruitment process. Our study highlights the need to consider ontogenetic stages and species-specific traits in understanding complex relationships between herbivory and drought stressors for the persistence and restoration of multi-species oak savannas.
Collapse
Affiliation(s)
- Marta Peláez
- Plant and Animal EcoLogy LAb (PAELLA), Centro para la Conservación de la Biodiversidad y el Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, C/ José Antonio Novais 10, Madrid, 28040, Spain
- Departments of Biology and Earth Systems Science, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
- Departmento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, C/ José Antonio Novais 10, Madrid, 28040, Spain
| | - Aida López-Sánchez
- Plant and Animal EcoLogy LAb (PAELLA), Centro para la Conservación de la Biodiversidad y el Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, C/ José Antonio Novais 10, Madrid, 28040, Spain
- Grupo TEMSUS, Universidad Católica de Ávila, Calle de los Canteros s/n, 05005, Ávila, Spain
| | - Geraldo Wilson Fernandes
- Departamento de Genética, Ecologia & Evolução, Universidade Federal de Minas Gerais, 31270-901, 0161 Belo Horizonte, MG, Brazil
| | - Rodolfo Dirzo
- Departments of Biology and Earth Systems Science, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Jesús Rodríguez-Calcerrada
- Departmento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, C/ José Antonio Novais 10, Madrid, 28040, Spain
| | - Ramón Perea
- Plant and Animal EcoLogy LAb (PAELLA), Centro para la Conservación de la Biodiversidad y el Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, C/ José Antonio Novais 10, Madrid, 28040, Spain
- Departmento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, C/ José Antonio Novais 10, Madrid, 28040, Spain
| |
Collapse
|
2
|
Mozzi G, Crivellaro A, Blasini DE, Vásquez-Cruz M, Hernández-Hernández T, Hultine KR. Divergent structural leaf trait spectra in succulent versus non-succulent plant taxa. ANNALS OF BOTANY 2024; 134:491-500. [PMID: 38833416 PMCID: PMC11341667 DOI: 10.1093/aob/mcae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/03/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND AND SCOPE Plant functional traits are the result of natural selection to optimize carbon gain, leading to a broad spectrum of traits across environmental gradients. Among plant traits, leaf water storage capacity is paramount for plant drought resistance. We explored whether leaf-succulent taxa follow trait correlations similar to those of non-leaf-succulent taxa to evaluate whether both are similarly constrained by relationships between leaf water storage and climate. METHODS We tested the relationships among three leaf traits related to water storage capacity and resource use strategies in 132 species comprising three primary leaf types: succulent, sclerophyllous, and leaves with rapid returns on water investment, referred to as fast return. Correlation coefficients among specific leaf area (SLA), water mass per unit of area (WMA), and saturated water content (SWC) were tested, along with relationships between leaf trait spectra and aridity determined from species occurrence records. RESULTS Both SWC and WMA at a given SLA were ~10-fold higher in succulent leaves than in non-succulent leaves. While SWC actually increased with SLA in non-succulent leaves, no relationship was detected between SWC and SLA in succulent leaves, although WMA decreased with SLA in all leaf types. A principal component analysis (PCA) revealed that succulent taxa occupied a widely different mean trait space than either fast-return (P < 0.0001) or sclerophyllous (P < 0.0001) taxa along the first PCA axis, which explained 63 % of mean trait expression among species. However, aridity only explained 12 % of the variation in PCA1 values. This study is among the first to establish a structural leaf trait spectrum in succulent leaf taxa and quantify contrasts in leaf water storage among leaf types relative to specific leaf area. CONCLUSIONS Trait coordination in succulent leaf taxa may not follow patterns similar to those of widely studied non-succulent taxa.
Collapse
Affiliation(s)
- Giacomo Mozzi
- Department of Land, Environment, Agriculture and Forestry, University of Padova, Legnaro (PD), Italy
| | - Alan Crivellaro
- Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, 10095 Grugliasco (TO), Italy
- Forest Biometrics Laboratory, Faculty of Forestry, ‘Stefan cel Mare’ University of Suceava, 720229 Suceava, Romania
| | - Davis E Blasini
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | | | - Tania Hernández-Hernández
- Department of Research, Conservation, and Collections, Desert Botanical Garden, Phoenix, AZ 85008, USA
| | - Kevin R Hultine
- Department of Research, Conservation, and Collections, Desert Botanical Garden, Phoenix, AZ 85008, USA
| |
Collapse
|
3
|
Atamian HS, Funk JL. Physiological and transcriptomic responses of two Artemisia californica populations to drought: implications for restoring drought-resilient native communities. Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2023.e02466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
|
4
|
Fletcher LR, Scoffoni C, Farrell C, Buckley TN, Pellegrini M, Sack L. Testing the association of relative growth rate and adaptation to climate across natural ecotypes of Arabidopsis. THE NEW PHYTOLOGIST 2022; 236:413-432. [PMID: 35811421 DOI: 10.1111/nph.18369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Ecophysiologists have reported a range of relationships, including intrinsic trade-offs across and within species between plant relative growth rate in high resource conditions (RGR) vs adaptation to tolerate cold or arid climates, arising from trait-based mechanisms. Few studies have considered ecotypes within a species, in which the lack of a trade-off would contribute to a wide species range and resilience to climate change. For 15 ecotypes of Arabidopsis thaliana in a common garden we tested for associations between RGR vs adaptation to cold or dry native climates and assessed hypotheses for its mediation by 15 functional traits. Ecotypes native to warmer, drier climates had higher leaf density, leaf mass per area, root mass fraction, nitrogen per leaf area and carbon isotope ratio, and lower osmotic potential at full turgor. Relative growth rate was statistically independent of the climate of the ecotype native range and of individual functional traits. The decoupling of RGR and cold or drought adaptation in Arabidopsis is consistent with multiple stress resistance and avoidance mechanisms for ecotypic climate adaptation and would contribute to the species' wide geographic range and resilience as the climate changes.
Collapse
Affiliation(s)
- Leila R Fletcher
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Christine Scoffoni
- Department of Biological Sciences, California State University, Los Angeles, CA, 90032, USA
| | - Colin Farrell
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Thomas N Buckley
- Department of Plant Sciences, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
5
|
Nardini A. Can trees harden up to survive global change-type droughts? TREE PHYSIOLOGY 2021; 41:2004-2007. [PMID: 34542153 DOI: 10.1093/treephys/tpab128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| |
Collapse
|
6
|
Wood Density and Ring Width in Quercus rotundifolia Trees in Southern Portugal. FORESTS 2021. [DOI: 10.3390/f12111499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Quercus rotundifolia Lam., known as holm oak or evergreen oak, occurs naturally in the western Mediterranean region, mainly as part of the agroforestry or agrosilvopastoral systems in Portugal (“montado”) and Spain (“dehesa”), and is economically important for acorn production. Less attention has been given to Q. rotundifolia wood, and its density variability is not known, namely related to tree growth. The wood density of 20 Q. rotundifolia trees was measured along the radial direction by X-ray densitometry and the factors responsible for ring width and wood density variation within and between trees were investigated at two sites located within the main species region in southern Portugal. Ring width was significantly different between sites, with an average of 1.81 mm and 1.55 mm. Wood density was very high and averaged between 888 kg/m3 and 914 kg/m3 but not significantly different between sites. Ring width and wood density showed a positive and significant correlation at both sites. Cambial age was the main source of variation for ring width and wood density, while between-tree effects accounted for a considerable proportion of wood density variation. The results are an important contribution for the species valorisation aiming at high-value wood products, also adding knowledge on the species growth of interest for tree selection and sustainable management.
Collapse
|
7
|
Vargas G G, Brodribb TJ, Dupuy JM, González-M R, Hulshof CM, Medvigy D, Allerton TAP, Pizano C, Salgado-Negret B, Schwartz NB, Van Bloem SJ, Waring BG, Powers JS. Beyond leaf habit: generalities in plant function across 97 tropical dry forest tree species. THE NEW PHYTOLOGIST 2021; 232:148-161. [PMID: 34171131 DOI: 10.1111/nph.17584] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 06/15/2021] [Indexed: 05/12/2023]
Abstract
Leaf habit has been hypothesized to define a linkage between the slow-fast plant economic spectrum and the drought resistance-avoidance trade-off in tropical forests ('slow-safe vs fast-risky'). However, variation in hydraulic traits as a function of leaf habit has rarely been explored for a large number of species. We sampled leaf and branch functional traits of 97 tropical dry forest tree species from four sites to investigate whether patterns of trait variation varied consistently in relation to leaf habit along the 'slow-safe vs fast-risky' trade-off. Leaf habit explained from 0% to 43.69% of individual trait variation. We found that evergreen and semi-deciduous species differed in their location along the multivariate trait ordination when compared to deciduous species. While deciduous species showed consistent trait values, evergreen species trait values varied as a function of the site. Last, trait values varied in relation to the proportion of deciduous species in the plant community. We found that leaf habit describes the strategies that define drought avoidance and plant economics in tropical trees. However, leaf habit alone does not explain patterns of trait variation, which suggests quantifying site-specific or species-specific uncertainty in trait variation as the way forward.
Collapse
Affiliation(s)
- German Vargas G
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
| | - Tim J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Juan M Dupuy
- Centro de Investigación Científica de Yucatán, Unidad de Recursos Naturales, Calle 43 # 130 entre 32 y 34, Col. Chuburná de Hidalgo, Mérida, Yucatán, CP 97205, México
| | - Roy González-M
- Programa Ciencias de la Biodiversidad, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Carrera #1 16-20, Bogotá, 111311, Colombia
| | - Catherine M Hulshof
- Department of Biology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - David Medvigy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Tristan A P Allerton
- Baruch Institute of Coastal Ecology and Forest Science, Clemson University, PO Box 596, Georgetown, SC, 29442, USA
| | - Camila Pizano
- Departamento de Biología, Universidad ICESI, Calle 18 # 122-135, Cali, 760031, Colombia
| | - Beatriz Salgado-Negret
- Departamento de Biología, Universidad Nacional de Colombia, sede Bogotá, Carrera 30 Calle 45, Bogotá, 111321, Colombia
| | - Naomi B Schwartz
- Department of Geography, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | - Skip J Van Bloem
- Baruch Institute of Coastal Ecology and Forest Science, Clemson University, PO Box 596, Georgetown, SC, 29442, USA
| | - Bonnie G Waring
- Department of Biology, Utah State University, Logan, UT, 84322, USA
| | - Jennifer S Powers
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, 55108, USA
| |
Collapse
|
8
|
Abate E, Azzarà M, Trifilò P. When Water Availability Is Low, Two Mediterranean Salvia Species Rely on Root Hydraulics. PLANTS (BASEL, SWITZERLAND) 2021; 10:1888. [PMID: 34579421 PMCID: PMC8472023 DOI: 10.3390/plants10091888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022]
Abstract
Increase in severity and frequency of drought events is altering plant community composition, exposing biomes to a higher risk of biodiversity losses. This is exacerbated in the most fragile areas as Mediterranean biome. Thus, identifying plant traits for forecasting species with a high risk of drought-driven mortality is particularly urgent. In the present study, we investigated the drought resistance strategy of two Mediterranean native species: Salvia ceratophylloides Ard. (Sc) and Salvia officinalis L. (So) by considering the impact of drought-driven water content decline on plant hydraulics. Well-watered samples of Sc displayed higher leaf and stemsaturated water content and lower shoot biomass than So samples, but similar root biomass. In response to drought, Sc showed a conservative water use strategy, as the prompt stomatal closure and leaves shedding suggested. A drought-tolerant mechanism was confirmed in So samples. Nevertheless, Sc and So showed similar drought-driven plant hydraulic conductance (Kplant) recover ability. Root hydraulic traits played a key role to reach this goal. Relative water content as well as loss of cell rehydration capability and membrane damages, especially of stem and root, were good proxies of drought-driven Kplant decline.
Collapse
Affiliation(s)
| | | | - Patrizia Trifilò
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (E.A.); (M.A.)
| |
Collapse
|
9
|
Navarro T, Hidalgo-Triana N. Variations in Leaf Traits Modulate Plant Vegetative and Reproductive Phenological Sequencing Across Arid Mediterranean Shrublands. FRONTIERS IN PLANT SCIENCE 2021; 12:708367. [PMID: 34497623 PMCID: PMC8420881 DOI: 10.3389/fpls.2021.708367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Structural and nutrient traits of a leaf are important for understanding plant ecological strategies (e.g., drought avoidance). We studied the specific leaf area (SLA), leaf carbon content (LCC), leaf nitrogen content (LNC), leaf phosphorous content (LPC), and the phenophase sequence index (PSI) in 126 Mediterranean perennial species from predesert (SMS) and semiarid (SaMS) to subalpine (SAS), alpine cushion (AcS), and oro-Mediterranean (AjS) shrublands, which represent eight functional groups (evergreen and deciduous trees, evergreen large and half shrubs, deciduous large and half shrubs, succulents and perennial herbs). We analyzed the variation and relationships between leaf traits and PSI among shrublands, functional groups, and within species with drought-avoidance mechanisms. SLA variation of 20-60% could be ascribed to differences between functional groups and only 38-48% to different shrublands increasing from the predesert to the alpine. Alpine species display low PSI and N:P and high SLA, LNC, LPC, LCC, and C:N. On the contrary, predesert and semiarid showed high PSI and low SLA. SLA mediates the vegetative and reproductive phenological plant sequencing, high SLA is often associated with the overlapping in growth and reproductive phenophases with a seasonal reduction of vegetative growth, whereas low SLA is associated with vegetative and reproductive sequencing and a seasonal extension of vegetative growth. Species with drought-avoidance mechanisms (e.g., semideciduous species) contribute to an increase in the mean values of the SLA and LNC because these species show similar leaf and phenological patterns as the deciduous (high SLA and LNC and low PSI). The N:P indicates that only the alpine shrublands could present P limitations. The positive correlations between SLA and LPC and LNC and LPC (leaf economic spectrum) and the negative correlation between SLA and C:N were consistently maintained in the studied arid Mediterranean shrublands.
Collapse
|
10
|
Cardoni M, Mercado-Blanco J, Villar R. Functional Traits of Olive Varieties and Their Relationship with the Tolerance Level towards Verticillium Wilt. PLANTS 2021; 10:plants10061079. [PMID: 34072219 PMCID: PMC8230176 DOI: 10.3390/plants10061079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
Verticillium wilt of olive (VWO), caused by the soil-borne pathogen Verticillium dahliae, is considered one of the most important diseases affecting this tree crop. One of the best VWO management measures is the use of tolerant cultivars. Remarkably, no information is available about olive functional traits and their potential relationship with tolerance to V. dahliae. Twenty-five selected functional traits (for leaf, stem, root and whole plant) were evaluated in six olive varieties differing in their VWO tolerance level to identify possible links between this phenotype and functional traits’ variation. High intervarietal diversity was found among cultivars and several functional traits were related with VWO tolerance. Tolerant varieties showed higher leaf area, dry matter content (leaf, stem and plant) and mass fraction for stems, but lower for leaves. Significant differences were also detected for root functional traits, tolerant cultivars displaying larger fine root diameter and lignin content but smaller specific length and area of thick and fine roots. Correlations were found among functional traits both within varieties and between levels of tolerance/susceptibility to VWO. Associations were observed between biomass allocation, dry matter content and VWO tolerance. The most relevant difference between tolerant and susceptible cultivars was related to root system architecture.
Collapse
Affiliation(s)
- Martina Cardoni
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, CSIC, Campus ‘Alameda del Obispo’ s/n, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain;
| | - Jesús Mercado-Blanco
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, CSIC, Campus ‘Alameda del Obispo’ s/n, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain;
- Correspondence:
| | - Rafael Villar
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de Córdoba, Campus Universitario de Rabanales, 14014 Córdoba, Spain;
| |
Collapse
|
11
|
Cebrián-Piqueras MA, Trinogga J, Trenkamp A, Minden V, Maier M, Mantilla-Contreras J. Digging into the roots: understanding direct and indirect drivers of ecosystem service trade-offs in coastal grasslands via plant functional traits. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:271. [PMID: 33988759 PMCID: PMC8121717 DOI: 10.1007/s10661-020-08817-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Recent empirical and theoretical approaches have called for an understanding of the processes underpinning ecosystem service provision. Environmental gradients have shown effects on key plant functional traits that subsequently explain ecosystem properties of several systems. However, little is known concerning how associations between plant functional traits, including both below- and aboveground plant components, predict ecosystem properties and independently measured final ecosystem services. Here, we modeled (1) the responses of the leaf and plant economics spectrum, Plant size axis, and root growth to environmental gradients and (2) how associations between plant functional traits explain trade-offs and synergies between multiple ecosystem properties and final services. Forty-four plots were studied in a coastal marsh landscape of the German North Sea Coast. We used a partial least square structural equation model approach to test the hypothesized model. We found (1) a negative covariation between plant traits pertaining to a size axis and traits explaining both plant growth (roots and stems) and the leaf economics spectrum; (2) this trade-off responded significantly to the land use gradient and nutrient availability, which were both strongly driven by the groundwater gradient; (3) this trade-off explained an initial major trade-off between carbon stocks, at one extreme of the axis, and both the habitat value to conserve endangered plants and forage production for meat and dairy products at the other extreme. However, a secondary trade-off between nature conservation value and forage production, explained by a trade-off between leaf economics spectrum and plant growth in response to the land use intensity gradient, was also found.
Collapse
Affiliation(s)
- Miguel A Cebrián-Piqueras
- Department of Agricultural Economics and Rural Development, University of Göttingen, Platz der Göttinger Sieben 5, 37073, Göttingen, Germany.
- Institute of Biology and Environmental Sciences, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany.
| | - Juliane Trinogga
- Institute of Biology and Environmental Sciences, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany
| | - Anastasia Trenkamp
- Ecology and Environmental Education Group, Institute of Biology and Chemistry, University of Hildesheim, Universitätsplatz 1, 31141, Hildesheim, Germany
| | - Vanessa Minden
- Institute of Biology and Environmental Sciences, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany
- Department of Biology, Ecology and Biodiversity, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Martin Maier
- Institute of Biology and Environmental Sciences, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany
| | - Jasmin Mantilla-Contreras
- Ecology and Environmental Education Group, Institute of Biology and Chemistry, University of Hildesheim, Universitätsplatz 1, 31141, Hildesheim, Germany
| |
Collapse
|
12
|
McCary MA, Schmitz OJ. Invertebrate functional traits and terrestrial nutrient cycling: Insights from a global meta-analysis. J Anim Ecol 2021; 90:1714-1726. [PMID: 33782983 DOI: 10.1111/1365-2656.13489] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/12/2021] [Indexed: 11/30/2022]
Abstract
Functional traits are useful for characterizing variation in community and ecosystem dynamics. Most advances in trait-based ecology to date centre on plant functional traits, although there is an increasing recognition that animal traits are also key contributors to processes operating at the community or ecosystem scale. Terrestrial invertebrates are incredibly diverse and ubiquitous animals with important roles in nutrient cycling. Despite their widespread influence on ecosystem processes, we currently lack a synthetic understanding of how invertebrate functional traits affect terrestrial nutrient cycling. We present a meta-analysis of 511 paired observations from 122 papers that examined how invertebrate functional traits affected litter decomposition rates, nitrogen pools and litter C:N ratios. Based on the available data, we specifically assessed the effects of feeding mode (bioturbation, detritus shredding, detritus grazing, leaf chewing, leaf piercing, ambush predators, active hunting predators) and body size (macro- and micro-invertebrates) on nutrient cycling. The effects of invertebrates on terrestrial nutrient cycling varied according to functional trait. The inclusion of both macro- (≥2 mm) and micro-invertebrates (<2 mm) increased litter decomposition by 20% and 19%, respectively. All detritivorous feeding modes enhanced litter decomposition rates, with bioturbators, detritus shredders and detritus grazers increasing decomposition by 28%, 22% and 15%, respectively. Neither herbivore feeding mode (e.g. leaf chewers and leaf piercers) nor predator hunting mode (ambush and active hunting) affected decomposition. We also revealed that bioturbators and detritus grazers increased soil nitrogen availability by 99% and 70%, respectively, and that leaf-chewing herbivores had a weak effect on litterfall stoichiometry via reducing C:N ratios by 11%. Although functional traits might be useful predictors of ecosystem processes, our findings suggest context-dependent effects of invertebrate traits on terrestrial nutrient cycling. Detritivore functional traits (i.e. bioturbators, detritus shredders and detritus grazers) are more consistent with increased rates of nutrient cycling, whereas our currently characterized predator and herbivore traits are less predictive. Future research is needed to identify, standardize and deliberately study the impacts of invertebrate functional traits on nutrient cycling in hopes of revealing the key functional traits governing ecosystem functioning worldwide.
Collapse
|
13
|
Garbowski M, Avera B, Bertram JH, Courkamp JS, Gray J, Hein KM, Lawrence R, McIntosh M, McClelland S, Post AK, Slette IJ, Winkler DE, Brown CS. Getting to the root of restoration: considering root traits for improved restoration outcomes under drought and competition. Restor Ecol 2020. [DOI: 10.1111/rec.13291] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Magda Garbowski
- Graduate Degree Program in Ecology Colorado State University Fort Collins CO U.S.A
- Department of Agricultural Biology Colorado State University Fort Collins CO U.S.A
| | - Bethany Avera
- Graduate Degree Program in Ecology Colorado State University Fort Collins CO U.S.A
- Department of Soil and Crop Sciences Colorado State University Fort Collins CO U.S.A
| | - Jonathan H Bertram
- Graduate Degree Program in Ecology Colorado State University Fort Collins CO U.S.A
- Department of Agricultural Biology Colorado State University Fort Collins CO U.S.A
| | - Jacob S Courkamp
- Graduate Degree Program in Ecology Colorado State University Fort Collins CO U.S.A
- Department of Forest and Rangeland Stewardship Colorado State University Fort Collins CO U.S.A
| | - Jesse Gray
- Graduate Degree Program in Ecology Colorado State University Fort Collins CO U.S.A
- Department of Biology Colorado State University Fort Collins CO U.S.A
| | - Kirsten M Hein
- Graduate Degree Program in Ecology Colorado State University Fort Collins CO U.S.A
- Department of Agricultural Biology Colorado State University Fort Collins CO U.S.A
| | - Ryan Lawrence
- Graduate Degree Program in Ecology Colorado State University Fort Collins CO U.S.A
- Department of Forest and Rangeland Stewardship Colorado State University Fort Collins CO U.S.A
| | - Mariah McIntosh
- Department of Ecosystem and Conservation Sciences University of Montana Missoula MT U.S.A
| | - Shelby McClelland
- Graduate Degree Program in Ecology Colorado State University Fort Collins CO U.S.A
- Department of Soil and Crop Sciences Colorado State University Fort Collins CO U.S.A
| | - Alison K Post
- Graduate Degree Program in Ecology Colorado State University Fort Collins CO U.S.A
- Department of Biology Colorado State University Fort Collins CO U.S.A
| | - Ingrid J Slette
- Graduate Degree Program in Ecology Colorado State University Fort Collins CO U.S.A
- Department of Biology Colorado State University Fort Collins CO U.S.A
| | - Daniel E Winkler
- U.S. Geological Survey Southwest Biological Science Center Moab UT U.S.A
| | - Cynthia S Brown
- Graduate Degree Program in Ecology Colorado State University Fort Collins CO U.S.A
- Department of Agricultural Biology Colorado State University Fort Collins CO U.S.A
| |
Collapse
|
14
|
Sigala JA, Uscola M, Oliet JA, Jacobs DF. Drought tolerance and acclimation in Pinus ponderosa seedlings: the influence of nitrogen form. TREE PHYSIOLOGY 2020; 40:1165-1177. [PMID: 32333785 DOI: 10.1093/treephys/tpaa052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/18/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Drought is a limiting factor to forest regeneration and restoration, which is likely to increase in intensity and duration under future climates. Nitrogen (N) nutrition is related to drought-resistance mechanisms in trees. However, the influence of chemical N form (inorganic and organic N) on physiological traits related to drought resistance has been sparsely studied in conifer seedlings. We investigated the effect of N forms on morpho-physiological traits of Pinus ponderosa Dougl. ex Laws. seedlings and subsequent influences in drought tolerance and acclimation. One-year-old seedlings were fertilized during 10 weeks at 9 mM N with different N forms [either NH4+, NO3- or organic N (amino acids mixture)] in their second year of growth. After fertilization, we measured traits associated with intrinsic drought tolerance (shoot water relations, osmotic regulation, photosynthesis and cell membrane stability). Seedlings were then subjected to an 8-week drought period at varying drought intensities to evaluate plant acclimation mechanisms. We demonstrated that P. ponderosa seedlings could efficiently use amino acids as a primary N source, showing similar performance to those grown with inorganic N forms. Nitrogen form influenced mainly drought-acclimation mechanisms rather than intrinsic drought tolerance. Osmotic potential at saturation (Ψπsat) was marginally affected by N form, and a significant relationship between proline concentration in needles and Ψπsat was found. During acclimation, seedlings fertilized with organic N minimized needle senescence, retained more nutrients in the oldest needles, had maximum increments in proline concentration and hastened the development of water-use efficiency mechanisms compared with those fertilized with inorganic N sources. Our results suggest an improved physiological drought acclimation of organic N-fertilized seedlings.
Collapse
Affiliation(s)
- José A Sigala
- Departamento de Sistemas y Recursos Naturales, ETS Ingenieros de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, José Antonio Novais 10, 28040 Madrid, Spain
- Forest Plantations and Agroforestry Program, Campo Experimental Valle del Guadiana, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), km 4.5 Carretera Durango-El Mezquital, 34170 Durango, Mexico
| | - Mercedes Uscola
- Forest Ecology and Restoration Group, Departamento de Ciencias de la Vida, Universidad de Alcalá Apdo. 20 Campus Universitario, 28805 Alcalá de Henares, Madrid, Spain
| | - Juan A Oliet
- Departamento de Sistemas y Recursos Naturales, ETS Ingenieros de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, José Antonio Novais 10, 28040 Madrid, Spain
| | - Douglass F Jacobs
- Department of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, 47907 Indiana, USA
| |
Collapse
|
15
|
Functional Diversity Changes after Selective Thinning in a Tropical Mountain Forest in Southern Ecuador. DIVERSITY 2020. [DOI: 10.3390/d12060256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The impact of selective thinning on forest diversity has been extensively studied in temperate and boreal regions. However, in the tropics, knowledge is still poor regarding the impacts of this silvicultural treatment on functional diversity, especially in tropical mountain forests, which are considered to be highly biodiverse ecosystems and also endangered by human activities. By evaluating the changes on functional diversity by using different indicators, hypothesizing that selective thinning significantly affects (directly or indirectly) tropical mountain forests, this work promotes sustainable ecosystem use. Methods: A total of 52 permanent plots of 2500 m2 each were installed in a primary mountain forest in the San Francisco Biological Reserve to assess the impact of this silvicultural treatment. Selective thinning can be defined as a controlled process, in which trees that compete with ecologically and/or valuable timber species are progressively removed to stimulate the development of profitable ones, called potential crop trees (PCT). In doing so, the best specimens remain in the forest stand until their final harvest. After PCT selection, 30 plots were chosen for the intervention, while 22 plots served as control plots. The thinning intensity fluctuated between 4 and 56 trees ha−1 (average 18.8 ± 12.1 stems ha−1). Functional Diversity (FD) indices, including the community weighted mean (CWM), were determined based on six traits using the FD package implemented in R software. The difference between initial and final conditions of functional richness (FRic), functional divergence (FDiv), functional evenness (FEve), functional dispersion (FDis), and Rao quadratic entropy (RaoQ) was modeled using linear mixed models (LMM). As fixed factors, we used all the predictors inherent to structural and ecological forest conditions before and after the selective thinning and as a random variable, we used the membership to nested sampling units. Results: Functional Richness (FRic) showed significant changes after selective thinning, the other indexes (FEve, FDis, FDiv, RaoQ) were only influenced by predictors related to ecological conditions and characteristics of the community.
Collapse
|
16
|
Reducing Vulnerability to Desertification by Using the Spatial Measures in a Degraded Area in Thailand. LAND 2020. [DOI: 10.3390/land9020049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The process of desertification is complex, involving interaction between many factors, both environmental and anthropogenic. However, human activities, especially from land-use change and inappropriate land use, are the most influential factors associated with the desertification risk. This study was conducted in Huay Sai, a degraded land in Thailand. The Environmentally Sensitive Area Index (ESAI) model incorporating Geogracphic Information System (GIS) was applied to investigate and map the desertification sensitivity area. The study aimed to analyze and assess measures to reduce the desertification risk. This study emphasized three group factors with nine subcriteria influencing desertification risk: soil (texture, fertility, drainage, slope gradient, and depth), climatic (precipitation and aridity index), and vegetation factors (land use and soil erosion). In terms of the required spatial measures to reduce the desertification vulnerability, policy and defensive measures that were closely related to drought and desertification of the area were considered. Three main measures covering soil and water conservation, soil improvement, and reforestation were implemented. The area development and restoration plans have been implemented continuously. The study found that 47.29% of the Huay Sai area was at a high risk, with a further 41.16% at a moderate risk. Implementation of three measures indicated that desertification risk was significantly decreased. Addressing the causes of the highest risk areas could help reduce the overall desertification risk at Huay Sai, where most areas would then be at either a moderate (61.04%) or low (32.43%) desertification risk with no severe- or high-risk areas. The success of the area restoration is from the formulation of a restoration and development plan that understands the local conditions. Moreover, the plan integrated the restoration of the soil, forests, and water together in order to restore the ecosystem so that the implementation was able to solve problems directly.
Collapse
|
17
|
Michelaki C, Fyllas NM, Galanidis A, Aloupi M, Evangelou E, Arianoutsou M, Dimitrakopoulos PG. An integrated phenotypic trait-network in thermo-Mediterranean vegetation describing alternative, coexisting resource-use strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:583-592. [PMID: 30965269 DOI: 10.1016/j.scitotenv.2019.04.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/26/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Vascular plants have been found to align along globally-recognised resource-allocation trade-offs among specific functional traits. Genetic constrains and environmental pressures limit the spectrum of viable resource-use strategies employed by plant species. While conspecific plants have often been described as identical, intraspecific variation facilitates species coexistence and evolutionary potential. This study attempts to link an individual's phenotype to its environmental tolerance and ecosystem function. We hypothesised that: (1) seasonal variation in water availability has selected for tight phenotypic integration patterns that shape Mediterranean vegetation; however, (2) coexisting species employ alternative resource-use strategies to avoid competitive exclusion; specifically (3) species with smaller climatic niches (i.e. potential distributions) display higher functional diversity. We examined the interdependence among and the sources of variation within 11 functional traits, reflecting whole-plant economics (e.g. construction costs, hydraulics, defences, water storage capacity), from nine dominant, thermo-Mediterranean species measured across a wide environmental and geographic gradient. Furthermore, we delineated the phenotypic and climatic hypervolumes of each studied species to test for climatic niche overlap and functional distinctiveness. By adopting this multidimensional trait-based approach we detected fundamental phenotypic integration patterns that define thermo-Mediterranean species regardless of life history strategy. The studied traits emerged intercorrelated shaping a resource-allocation spectrum. Significant intraspecific variability in most measured traits allowed for functional distinctiveness among the measured species. Higher functional diversity was observed in species restricted within narrower climatic niches. Our results support our initial hypotheses. The studied functional traits collectively formed an integrated space of viable phenotypic expressions; however, phenotypic plasticity enables functionally distinctive species to succeed complementary in a given set of environmental conditions. Functional variability among coexisting individuals defined species' climatic niches within the trait-spectrum permitted by Mediterranean conditions. Ultimately, a species establishment in a locality depends on the extent that it can shift its trait values.
Collapse
Affiliation(s)
- Chrysanthi Michelaki
- Biodiversity Conservation Laboratory, Department of Environment, University of the Aegean, 81100 Mytilene, Lesbos, Greece.
| | - Nikolaos M Fyllas
- Biodiversity Conservation Laboratory, Department of Environment, University of the Aegean, 81100 Mytilene, Lesbos, Greece
| | - Alexandros Galanidis
- Biodiversity Conservation Laboratory, Department of Environment, University of the Aegean, 81100 Mytilene, Lesbos, Greece
| | - Maria Aloupi
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, 81100 Mytilene, Lesbos, Greece
| | | | - Margarita Arianoutsou
- Department of Ecology and Systematics, Faculty of Biology, National and Kapodistrian University of Athens, 15784, Greece
| | - Panayiotis G Dimitrakopoulos
- Biodiversity Conservation Laboratory, Department of Environment, University of the Aegean, 81100 Mytilene, Lesbos, Greece
| |
Collapse
|
18
|
Pivovaroff AL, Cook VMW, Santiago LS. Stomatal behaviour and stem xylem traits are coordinated for woody plant species under exceptional drought conditions. PLANT, CELL & ENVIRONMENT 2018; 41:2617-2626. [PMID: 29904932 DOI: 10.1111/pce.13367] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Isohydry (maintenance of plant water potential at the cost of carbon gain) and anisohydry (gas exchange maintenance at the cost of declining plant water status) make up two ends of a stomatal drought response strategy continuum. However, few studies have merged measures of stomatal regulation with xylem hydraulic safety strategies based on in situ field measurements. The goal of this study was to characterize the stomatal and xylem hydraulic safety strategies of woody species in the biodiverse Mediterranean-type ecosystem region of California. Measurements were conducted in situ when California was experiencing the most severe drought conditions in the past 1,200 years. We found coordination among stomatal, hydraulic, and standard leaf functional traits. For example, stem xylem vulnerability to cavitation (P50 ) was correlated with the water potential at stomatal closure (Pclose ); more resistant species had a more negative water potential at stomatal closure. The degree of isohydry-anisohydry, defined at Pclose -P50 , was correlated with the hydraulic safety margin across species; more isohydric species had a larger hydraulic safety margin. In addition, we report for the first time Pclose values below -10 MPa. Measuring these traits in a biodiverse region under exceptional drought conditions contributes to our understanding of plant drought responses.
Collapse
Affiliation(s)
- Alexandria L Pivovaroff
- Departments of Biology and Environmental Science, Whittier College, Whittier, California
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, California
| | - Victoria M W Cook
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, California
| | - Louis S Santiago
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, California
| |
Collapse
|
19
|
Differences in the Response to Acute Drought and Phytophthora cinnamomi Rands Infection in Quercus ilex L. Seedlings. FORESTS 2018. [DOI: 10.3390/f9100634] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The sustainability of “dehesas” is threatened by the Holm oak decline. It is thought that the effects of root rot on plant physiology vary depending on external stress factors. Plant growth and biomass allocation are useful tools to characterize differences in the response to drought and infection. The study of physiological responses together with growth patterns will clarify how and to what extent root rot is able to damage the plant. A fully factorial experiment, including drought and Phytophtora cinnamomi Rands infection as factors, was carried out with Quercus ilex L. seedlings. Photosynthesis, biomass allocation and root traits were assessed. Photosynthetic variables responded differently to drought and infection over time. The root mass fraction showed a significant reduction due to infection. P. cinnamomi root rot altered the growth patterns. Plants could not recover from the physiological effects of infection only when the root rot coincided with water stress. Without additional stressors, the strategy of our seedlings in the face of root rot was to reduce the biomass increment and reallocate resources. Underlying mechanisms involved in plant-pathogen interactions should be considered in the study of holm oak decline, beyond the consideration of water stress as the primary cause of tree mortality.
Collapse
|
20
|
Recovery of Functional Diversity Following Shifting Cultivation in Tropical Monsoon Forests. FORESTS 2018. [DOI: 10.3390/f9090506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The relationship between biodiversity and ecosystem functioning is an important issue in ecology. Plant functional traits and their diversity are key determinants of ecosystem function in changing environments. Understanding the successional dynamics of functional features in forest ecosystems is a first step to their sustainable management. In this study, we tested the changes in functional community composition with succession in tropical monsoon forests in Xishuangbanna, China. We sampled 33 plots at three successional stages—~40-year-old secondary forests, ~60-year-old secondary forests, and old growth forests—following the abandonment of the shifting cultivation land. Community-level functional traits were calculated based on measurements of nine functional traits for 135 woody plant species. The results show that the community structures and species composition of the old-growth forests were significantly different to those of the secondary stands. The species diversity, including species richness (S), the Shannon–Weaver index (H), and Pielou’s evenness (J), significantly increased during the recovery process after shifting cultivation. The seven studied leaf functional traits (deciduousness, specific leaf area, leaf dry matter content, leaf nitrogen content, leaf phosphorus content, leaf potassium content and leaf carbon content) changed from conservative to acquisitive syndromes during the recovery process, whereas wood density showed the opposite pattern, and seed mass showed no significant change, suggesting that leaf traits are more sensitive to environmental changes than wood or seed traits. The functional richness increased during the recovery process, whereas the functional evenness and divergence had the highest values in the 60-year-old secondary communities. Soil nutrients significantly influenced functional traits, but their effects on functional diversity were less obvious during the secondary succession after shifting cultivation. Our study indicates that the recovery of tropical monsoon forests is rather slow; secondary stands recover far less than the old growth stands in terms of community structure and species and functional diversity, even after about half a century of recovery, highlighting the importance of the conservation of old growth tropical monsoon forest ecosystems.
Collapse
|
21
|
Ferris KG, Willis JH. Differential adaptation to a harsh granite outcrop habitat between sympatric
Mimulus
species. Evolution 2018; 72:1225-1241. [DOI: 10.1111/evo.13476] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 02/20/2018] [Accepted: 02/28/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Kathleen G. Ferris
- Department of Biology Duke University 125 Science Drive Durham North Carolina 27705
- Current Address: Center for Population Biology, 2320 Storer Hall University of California Davis One Shields Avenue Davis California 95616
| | - John H. Willis
- Department of Biology Duke University 125 Science Drive Durham North Carolina 27705
| |
Collapse
|
22
|
Ait Mouheb H, Kadik L, Albert CH, Berrached R, Prinzing A. How do steppe plants follow their optimal environmental conditions or persist under suboptimal conditions? The differing strategies of annuals and perennials. Ecol Evol 2018; 8:135-149. [PMID: 29321858 PMCID: PMC5756872 DOI: 10.1002/ece3.3664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/31/2017] [Accepted: 11/03/2017] [Indexed: 11/30/2022] Open
Abstract
For a species to be able to respond to environmental change, it must either succeed in following its optimal environmental conditions or in persisting under suboptimal conditions, but we know very little about what controls these capacities. We parameterized species distribution models (SDMs) for 135 plant species from the Algerian steppes. We interpreted low false-positive rates as reflecting a high capacity to follow optimal environmental conditions and high false-negative rates as a high capacity to persist under suboptimal environmental conditions. We also measured functional traits in the field and built a unique plant trait database for the North-African steppe. For both perennial and annual species, we explored how these two capacities can be explained by species traits and whether relevant trait values reflect species strategies or biases in SDMs. We found low false-positive rates in species with small seeds, flowers attracting specialist pollinators, and specialized distributions (among annuals and perennials), low root:shoot ratios, wide root-systems, and large leaves (perennials only) (R2 = .52-58). We found high false-negative rates in species with marginal environmental distribution (among annuals and perennials), small seeds, relatively deep roots, and specialized distributions (annuals) or large leaves, wide root-systems, and monocarpic life cycle (perennials) (R2 = .38 for annuals and 0.65 for perennials). Overall, relevant traits are rarely indicative of the possible biases of SDMs, but rather reflect the species' reproductive strategy, dispersal ability, stress tolerance, and pollination strategies. Our results suggest that wide undirected dispersal in annual species and efficient resource acquisition in perennial species favor both capacities, whereas short life spans in perennial species favor persistence in suboptimal environmental conditions and flowers attracting specialist pollinators in perennial and annual species favor following optimal environmental conditions. Species that neither follow nor persist will be at risk under future environmental change.
Collapse
Affiliation(s)
- Hocine Ait Mouheb
- Laboratory of Ecology and EnvironmentFaculty of Biological SciencesUniversity of Sciences and Technology Houari BoumedieneBab EzzouarAlgiersAlgeria
| | - Leila Kadik
- Laboratory of Ecology and EnvironmentFaculty of Biological SciencesUniversity of Sciences and Technology Houari BoumedieneBab EzzouarAlgiersAlgeria
| | - Cécile Hélène Albert
- CNRSIRDIMBEEuropôle Méditerranéen de l'ArboisAix Marseille UnivUniv AvignonAix‐en‐Provence Cedex 04France
| | - Rachda Berrached
- Laboratory of Ecology and EnvironmentFaculty of Biological SciencesUniversity of Sciences and Technology Houari BoumedieneBab EzzouarAlgiersAlgeria
| | - Andreas Prinzing
- Research Unit “Ecosystèmes Biodiversité, Evolution”Centre National de la Recherche ScientifiqueUniversity Rennes 1RennesFrance
| |
Collapse
|
23
|
CANELO T, GAYTÁN Á, GONZÁLEZ-BORNAY G, BONAL R. Seed loss before seed predation: experimental evidence of the negative effects of leaf feeding insects on acorn production. Integr Zool 2017; 13:238-250. [DOI: 10.1111/1749-4877.12292] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Tara CANELO
- Forest Research Group, INDEHESA; University of Extremadura; Plasencia Spain
| | - Álvaro GAYTÁN
- Forest Research Group, INDEHESA; University of Extremadura; Plasencia Spain
| | | | - Raul BONAL
- Forest Research Group, INDEHESA; University of Extremadura; Plasencia Spain
- DITEG Research Group; University of Castilla-La Mancha; Toledo Spain
- CREAF, Cerdanyola del Vallès; Catalonia Spain
| |
Collapse
|
24
|
Ochoa-Hueso R, Munzi S, Alonso R, Arróniz-Crespo M, Avila A, Bermejo V, Bobbink R, Branquinho C, Concostrina-Zubiri L, Cruz C, Cruz de Carvalho R, De Marco A, Dias T, Elustondo D, Elvira S, Estébanez B, Fusaro L, Gerosa G, Izquieta-Rojano S, Lo Cascio M, Marzuoli R, Matos P, Mereu S, Merino J, Morillas L, Nunes A, Paoletti E, Paoli L, Pinho P, Rogers IB, Santos A, Sicard P, Stevens CJ, Theobald MR. Ecological impacts of atmospheric pollution and interactions with climate change in terrestrial ecosystems of the Mediterranean Basin: Current research and future directions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 227:194-206. [PMID: 28460237 DOI: 10.1016/j.envpol.2017.04.062] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 04/09/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
Mediterranean Basin ecosystems, their unique biodiversity, and the key services they provide are currently at risk due to air pollution and climate change, yet only a limited number of isolated and geographically-restricted studies have addressed this topic, often with contrasting results. Particularities of air pollution in this region include high O3 levels due to high air temperatures and solar radiation, the stability of air masses, and dominance of dry over wet nitrogen deposition. Moreover, the unique abiotic and biotic factors (e.g., climate, vegetation type, relevance of Saharan dust inputs) modulating the response of Mediterranean ecosystems at various spatiotemporal scales make it difficult to understand, and thus predict, the consequences of human activities that cause air pollution in the Mediterranean Basin. Therefore, there is an urgent need to implement coordinated research and experimental platforms along with wider environmental monitoring networks in the region. In particular, a robust deposition monitoring network in conjunction with modelling estimates is crucial, possibly including a set of common biomonitors (ideally cryptogams, an important component of the Mediterranean vegetation), to help refine pollutant deposition maps. Additionally, increased attention must be paid to functional diversity measures in future air pollution and climate change studies to establish the necessary link between biodiversity and the provision of ecosystem services in Mediterranean ecosystems. Through a coordinated effort, the Mediterranean scientific community can fill the above-mentioned gaps and reach a greater understanding of the mechanisms underlying the combined effects of air pollution and climate change in the Mediterranean Basin.
Collapse
Affiliation(s)
- Raúl Ochoa-Hueso
- Autonomous University of Madrid, Department of Ecology, 2 Darwin Street, Madrid 28049, Spain.
| | - Silvana Munzi
- cE3c Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016 Lisbon, Portugal
| | - Rocío Alonso
- Air Pollution Division, CIEMAT, Avda. Complutense 22 (edif. 70), Madrid 28040, Spain
| | - María Arróniz-Crespo
- Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - Anna Avila
- Center for Ecological Research and Forestry Applications (CREAF), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Victoria Bermejo
- Air Pollution Division, CIEMAT, Avda. Complutense 22 (edif. 70), Madrid 28040, Spain
| | - Roland Bobbink
- B-WARE Research Centre, Radboud University, PO Box 9010, 6525 ED Nijmegen, The Netherlands
| | - Cristina Branquinho
- cE3c Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016 Lisbon, Portugal
| | - Laura Concostrina-Zubiri
- cE3c Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016 Lisbon, Portugal
| | - Cristina Cruz
- cE3c Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016 Lisbon, Portugal
| | - Ricardo Cruz de Carvalho
- cE3c Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016 Lisbon, Portugal
| | | | - Teresa Dias
- cE3c Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016 Lisbon, Portugal
| | - David Elustondo
- LICA, Department of Chemistry and Soil Science, University of Navarre, Irunlarrea, 1-31008 Pamplona, Spain
| | - Susana Elvira
- Air Pollution Division, CIEMAT, Avda. Complutense 22 (edif. 70), Madrid 28040, Spain
| | - Belén Estébanez
- Departamento de Biología, Unidad de Botánica, Universidad Autónoma de Madrid, C/ Darwin 2, 28049, Madrid, Spain
| | - Lina Fusaro
- Dept. of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, Italy
| | - Giacomo Gerosa
- Dept. of Mathematics and Physics, Catholic University of Brescia, Via dei Musei 41, Brescia, Italy
| | - Sheila Izquieta-Rojano
- LICA, Department of Chemistry and Soil Science, University of Navarre, Irunlarrea, 1-31008 Pamplona, Spain
| | - Mauro Lo Cascio
- Department of Science for Nature and Natural Resources, University of Sassari, Via Enrico De Nicola 1, 07100 Sassari, Italy
| | - Riccardo Marzuoli
- Dept. of Mathematics and Physics, Catholic University of Brescia, Via dei Musei 41, Brescia, Italy
| | - Paula Matos
- cE3c Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016 Lisbon, Portugal
| | - Simone Mereu
- Department of Science for Nature and Natural Resources, University of Sassari, Via Enrico De Nicola 1, 07100 Sassari, Italy
| | - José Merino
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Ctra. de Utrera km. 1, 41013 Sevilla, Spain
| | - Lourdes Morillas
- Department of Science for Nature and Natural Resources, University of Sassari, Via Enrico De Nicola 1, 07100 Sassari, Italy
| | - Alice Nunes
- cE3c Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016 Lisbon, Portugal
| | - Elena Paoletti
- IPSP-CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Luca Paoli
- Department of Life Sciences, University of Siena, Via Mattioli 4, I-53100 Siena, Italy
| | - Pedro Pinho
- cE3c Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016 Lisbon, Portugal; CERENA-IST-UL, Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Isabel B Rogers
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK
| | - Arthur Santos
- cE3c Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016 Lisbon, Portugal
| | - Pierre Sicard
- ACRI-ST, 260 route du Pin Montard, BP 234, 06904 Sophia Antipolis Cedex, France
| | - Carly J Stevens
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK
| | - Mark R Theobald
- Air Pollution Division, CIEMAT, Avda. Complutense 22 (edif. 70), Madrid 28040, Spain
| |
Collapse
|
25
|
Pratt RB, Jacobsen AL. Conflicting demands on angiosperm xylem: Tradeoffs among storage, transport and biomechanics. PLANT, CELL & ENVIRONMENT 2017; 40:897-913. [PMID: 27861981 DOI: 10.1111/pce.12862] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/31/2016] [Indexed: 05/26/2023]
Abstract
The secondary xylem of woody plants transports water mechanically supports the plant body and stores resources. These three functions are interdependent giving rise to tradeoffs in function. Understanding the relationships among these functions and their structural basis forms the context in which to interpret xylem evolution. The tradeoff between xylem transport efficiency and safety from cavitation has been carefully examined with less focus on other functions, particularly storage. Here, we synthesize data on all three xylem functions in angiosperm branch xylem in the context of tradeoffs. Species that have low safety and efficiency, examined from a resource economics perspective, are predicted to be adapted for slow resource acquisition and turnover as characterizes some environments. Tradeoffs with water storage primarily arise because of differences in fibre traits, while tradeoffs in carbohydrate storage are driven by parenchyma content of tissue. We find support for a tradeoff between safety from cavitation and storage of both water and starch in branch xylem tissue and between water storage capacity and mechanical strength. Living fibres may facilitate carbohydrate storage without compromising mechanical strength. The division of labour between different xylem cell types allows for considerable functional and structural diversity at multiple scales.
Collapse
Affiliation(s)
- R Brandon Pratt
- California State University, Bakersfield, Department of Biology, Bakersfield, CA, 93311, USA
| | - Anna L Jacobsen
- California State University, Bakersfield, Department of Biology, Bakersfield, CA, 93311, USA
| |
Collapse
|
26
|
Di Paola A, Paquette A, Trabucco A, Mereu S, Valentini R, Paparella F. Coexistence trend contingent to Mediterranean oaks with different leaf habits. Ecol Evol 2017; 7:3006-3015. [PMID: 28480000 PMCID: PMC5415544 DOI: 10.1002/ece3.2840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/12/2017] [Accepted: 01/28/2017] [Indexed: 12/01/2022] Open
Abstract
In a previous work we developed a mathematical model to explain the co-occurrence of evergreen and deciduous oak groups in the Mediterranean region, regarded as one of the distinctive features of Mediterranean biodiversity. The mathematical analysis showed that a stabilizing mechanism resulting from niche difference (i.e. different water use and water stress tolerance) between groups allows their coexistence at intermediate values of suitable soil water content. A simple formal derivation of the model expresses this hypothesis in a testable form linked uniquely to the actual evapotranspiration of forests community. In the present work we ascertain whether this simplified conclusion possesses some degree of explanatory power by comparing available data on oaks distributions and remotely sensed evapotranspiration (MODIS product) in a large-scale survey embracing the western Mediterranean area. Our findings confirmed the basic assumptions of model addressed on large scale, but also revealed asymmetric responses to water use and water stress tolerance between evergreen and deciduous oaks that should be taken into account to increase the understating of species interactions and, ultimately, improve the modeling capacity to explain co-occurrence.
Collapse
Affiliation(s)
- Arianna Di Paola
- IAFES DivisionEuro‐Mediterranean Center on Climate Change (CMCC)ViterboItaly
| | - Alain Paquette
- Centre for Forest Research (CFR)Université du Québec à MontréalMontréalQCCanada
| | - Antonio Trabucco
- IAFES DivisionEuro‐Mediterranean Center on Climate Change (CMCC)SassariItaly
| | - Simone Mereu
- IAFES DivisionEuro‐Mediterranean Center on Climate Change (CMCC)SassariItaly
- Department of Science for Nature and Environment Resources (DipNET)University of SassariSassariItaly
| | - Riccardo Valentini
- Department for Innovation in BiologicalAgro‐Food and Forest SystemsUniversity of TusciaViterboItaly
- Strategic Council MemberEuro‐Mediterranean Center for Climate Change (CMMC)ViterboItaly
| | - Francesco Paparella
- Division of SciencesNew York University Abu DhabiAbu DhabiUnited Arab Emirates
- Department of Mathematics, University of SalentoLecceItaly
| |
Collapse
|
27
|
Gazol A, Camarero JJ, Anderegg WRL, Vicente-Serrano SM. Impacts of droughts on the growth resilience of Northern Hemisphere forests. GLOBAL ECOLOGY AND BIOGEOGRAPHY 2017; 26:166-176. [PMID: 0 DOI: 10.1111/geb.12526] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- A. Gazol
- Instituto Pirenaico de Ecología; Consejo Superior de Investigaciones Científicas (IPE-CSIC); Zaragoza Spain
| | - J. J. Camarero
- Instituto Pirenaico de Ecología; Consejo Superior de Investigaciones Científicas (IPE-CSIC); Zaragoza Spain
| | - W. R. L. Anderegg
- Department of Biology; University of Utah; Salt Lake City UT USA
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton NJ USA
| | - S. M. Vicente-Serrano
- Instituto Pirenaico de Ecología; Consejo Superior de Investigaciones Científicas (IPE-CSIC); Zaragoza Spain
| |
Collapse
|
28
|
Christina M, Nouvellon Y, Laclau J, Stape JL, Bouillet J, Lambais GR, Maire G. Importance of deep water uptake in tropical eucalypt forest. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12727] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Yann Nouvellon
- CIRAD UMR ECO&SOLS F‐34398 Montpellier France
- Forest Science Department Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Av. Pádua Dias, no. 11, CP 9 CEP 13418‐900 Piracicaba SP Brazil
| | - Jean‐Paul Laclau
- CIRAD UMR ECO&SOLS F‐34398 Montpellier France
- Forest Science Department Universidade Estadual Paulista Julio de Mesquita Filho Av. Prof. Montenegro, Distrito de Rubião Junior CEP 18618‐970 Botucatu SP Brazil
| | - Jose L. Stape
- Department of Forestry and Environmental Resources North Carolina State University Raleigh North Carolina27695 USA
| | - Jean‐Pierre Bouillet
- CIRAD UMR ECO&SOLS F‐34398 Montpellier France
- Forest Science Department Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Av. Pádua Dias, no. 11, CP 9 CEP 13418‐900 Piracicaba SP Brazil
| | - George R. Lambais
- Centro de Energia Nuclear na Agricultura Universidade de São Paulo Av. Centenário, no. 303, CP 96 CEP 13400‐970 Piracicaba SP Brazil
| | - Guerric Maire
- CIRAD UMR ECO&SOLS F‐34398 Montpellier France
- Embrapa Meio Ambiente CEP 13820‐000 Jaguariuna SP Brazil
| |
Collapse
|
29
|
Gavinet J, Prévosto B, Fernandez C. Introducing resprouters to enhance Mediterranean forest resilience: importance of functional traits to select species according to a gradient of pine density. J Appl Ecol 2016. [DOI: 10.1111/1365-2664.12716] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Jordane Gavinet
- Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (Irstea); UR RECOVER; 3275 route de Cézanne 13100 Aix-en-Provence France
- Aix Marseille Univ; Avignon Univ; CNRS; IRD; IMBE (Institut Méditerranéen de Biodiversité et d’Écologie marine et continentale); 3 place Victor-Hugo 13003 Marseille France
| | - Bernard Prévosto
- Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (Irstea); UR RECOVER; 3275 route de Cézanne 13100 Aix-en-Provence France
| | - Catherine Fernandez
- Aix Marseille Univ; Avignon Univ; CNRS; IRD; IMBE (Institut Méditerranéen de Biodiversité et d’Écologie marine et continentale); 3 place Victor-Hugo 13003 Marseille France
| |
Collapse
|
30
|
Zhang W, Hu H, Zhang SB. Divergent Adaptive Strategies by Two Co-occurring Epiphytic Orchids to Water Stress: Escape or Avoidance? FRONTIERS IN PLANT SCIENCE 2016; 7:588. [PMID: 27200059 PMCID: PMC4853394 DOI: 10.3389/fpls.2016.00588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/18/2016] [Indexed: 05/21/2023]
Abstract
Due to the fluctuating water availability in the arboreal habitat, epiphytic plants are considered vulnerable to climate change and anthropogenic disturbances. Although co-occurring taxa have been observed divergent adaptive performances in response to drought, the underlying physiological and morphological mechanisms by which epiphyte species cope with water stress remain poorly understood. In the present study, two co-occurring epiphytic orchids with different phenologies were selected to investigate their drought-resistance performances. We compared their functional traits, and monitored their physiological performances in a 25-days of drought treatment. In contrast to the deciduous species Pleione albiflora, the evergreen species Coelogyne corymbosa had different root anatomical structures and higher values for saturated water content of pseudobulbs. Moreover, plants of C. corymbosa had thicker leaves and epidermis, denser veins and stomata, and higher values for leaf mass per unit area and the time required to dry saturated leaves to 70% relative water content. However, samples from that species had lower values for net photosynthetic rate (A n), stomatal length and chlorophyll content per unit dry mass. Nevertheless, due to greater capacity for water storage and conservation, C. corymbosa maintained higher A n, stomatal conductance (g s), and instantaneous water-use efficiency during severe drought period, and their values for leaf water potential were higher after the water stress treatment. By Day 10 after irrigation was restarted, only C. corymbosa plants recovered their values for A n and g s to levels close to those calculated prior to the imposition of water stress. Our results suggest that the different performance responding to drought and re-watering in two co-occurring epiphytic orchids is related to water-related traits and these two species have divergent adaptive mechanisms. Overall, C. corymbosa demonstrates drought avoidance by enhancing water uptake and storage, and by reducing water losses while P. albiflora employs a drought escape strategy by fixing more carbon during growing season and shedding leaves and roots at dry season, leaving a dormant pseudobulb to minimize transpiration. These findings may improve our understanding of the potential effects that climate change can have on the population dynamics of different epiphytic taxa.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Yunnan Key Laboratory for Wild Plant ResourcesKunming, China
- University of Chinese Academy of SciencesBeijing, China
| | - Hong Hu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Yunnan Key Laboratory for Wild Plant ResourcesKunming, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Yunnan Key Laboratory for Wild Plant ResourcesKunming, China
| |
Collapse
|
31
|
Larson JE, Funk JL. Seedling root responses to soil moisture and the identification of a belowground trait spectrum across three growth forms. THE NEW PHYTOLOGIST 2016; 210:827-38. [PMID: 26765506 DOI: 10.1111/nph.13829] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/25/2015] [Indexed: 05/03/2023]
Abstract
Root trait variation and plasticity could be key factors differentiating plant performance under drought. However, water manipulation and root measurements are rarely coupled empirically across growth forms to identify whether belowground strategies are generalizable across species. We measured seedling root traits across three moisture levels in 18 Mediterranean forbs, grasses, and woody species. Drought increased the root mass fraction (RMF) and decreased the relative proportion of thin roots (indicated by increased root diameters and decreased specific root length (SRL)), rates of root elongation and growth, plant nitrogen uptake, and plant growth. Although responses varied across species, plasticity was not associated with growth form. Woody species differed from forbs and grasses in many traits, but herbaceous groups were similar. Across water treatments, trait correlations suggested a single spectrum of belowground trade-offs related to resource acquisition and plant growth. While effects of SRL and RMF on plant growth shifted with drought, root elongation rate consistently represented this spectrum. We demonstrate that general patterns of root morphology and plasticity are identifiable across diverse species. Root trait measurements should enhance our understanding of belowground strategy and performance across growth forms, but it will be critical to incorporate plasticity and additional aspects of root function into these efforts.
Collapse
Affiliation(s)
- Julie E Larson
- Schmid College of Science and Technology, Chapman University, 1 University Dr., Orange, CA, 92866, USA
| | - Jennifer L Funk
- Schmid College of Science and Technology, Chapman University, 1 University Dr., Orange, CA, 92866, USA
| |
Collapse
|
32
|
Pescador DS, Sierra-Almeida Á, Torres PJ, Escudero A. Summer Freezing Resistance: A Critical Filter for Plant Community Assemblies in Mediterranean High Mountains. FRONTIERS IN PLANT SCIENCE 2016; 7:194. [PMID: 26941761 PMCID: PMC4761790 DOI: 10.3389/fpls.2016.00194] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/04/2016] [Indexed: 05/27/2023]
Abstract
Assessing freezing community response and whether freezing resistance is related to other functional traits is essential for understanding alpine community assemblages, particularly in Mediterranean environments where plants are exposed to freezing temperatures and summer droughts. Thus, we characterized the leaf freezing resistance of 42 plant species in 38 plots at Sierra de Guadarrama (Spain) by measuring their ice nucleation temperature, freezing point (FP), and low-temperature damage (LT50), as well as determining their freezing resistance mechanisms (i.e., tolerance or avoidance). The community response to freezing was estimated for each plot as community weighted means (CWMs) and functional diversity (FD), and we assessed their relative importance with altitude. We established the relationships between freezing resistance, growth forms, and four key plant functional traits (i.e., plant height, specific leaf area, leaf dry matter content (LDMC), and seed mass). There was a wide range of freezing resistance responses and more than in other alpine habitats. At the community level, the CWMs of FP and LT50 responded negatively to altitude, whereas the FD of both traits increased with altitude. The proportion of freezing-tolerant species also increased with altitude. The ranges of FP and LT50 varied among growth forms, and only leaf dry matter content was negatively correlated with freezing-resistance traits. Summer freezing events represent important abiotic filters for assemblies of Mediterranean high mountain communities, as suggested by the CWMs. However, a concomitant summer drought constraint may also explain the high freezing resistance of species that thrive in these areas and the lower FD of freezing resistance traits at lower altitudes. Leaves with high dry matter contents may maintain turgor at lower water potential and enhance drought tolerance in parallel to freezing resistance. This adaptation to drought seems to be a general prerequisite for plants found in xeric mountains.
Collapse
Affiliation(s)
- David S. Pescador
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan CarlosMóstoles, Spain
| | - Ángela Sierra-Almeida
- ECOBIOSIS, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de ConcepciónConcepción, Chile
- Instituto de Ecología y BiodiversidadSantiago, Chile
| | - Pablo J. Torres
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan CarlosMóstoles, Spain
| | - Adrián Escudero
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan CarlosMóstoles, Spain
| |
Collapse
|
33
|
de la Riva EG, Olmo M, Poorter H, Ubera JL, Villar R. Leaf Mass per Area (LMA) and Its Relationship with Leaf Structure and Anatomy in 34 Mediterranean Woody Species along a Water Availability Gradient. PLoS One 2016; 11:e0148788. [PMID: 26867213 PMCID: PMC4750855 DOI: 10.1371/journal.pone.0148788] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/22/2016] [Indexed: 11/25/2022] Open
Abstract
Leaf mass per area (LMA) is a morphological trait widely used as a good indicator of plant functioning (i.e. photosynthetic and respiratory rates, chemical composition, resistance to herbivory, etc.). The LMA can be broken down into the leaf density (LD) and leaf volume to area ratio (LVA or thickness), which in turn are determined by anatomical tissues and chemical composition. The aim of this study is to understand the anatomical and chemical characteristics related to LMA variation in species growing in the field along a water availability gradient. We determined LMA and its components (LD, LVA and anatomical tissues) for 34 Mediterranean (20 evergreen and 14 deciduous) woody species. Variation in LMA was due to variation in both LD and LVA. For both deciduous and evergreen species LVA variation was strongly and positively related with mesophyll volume per area (VA or thickness), but for evergreen species positive relationships of LVA with the VA of epidermis, vascular plus sclerenchyma tissues and air spaces were found as well. The leaf carbon concentration was positively related with mesophyll VA in deciduous species, and with VA of vascular plus sclerenchymatic tissues in evergreens. Species occurring at the sites with lower water availability were generally characterised by a high LMA and LD.
Collapse
Affiliation(s)
- Enrique G. de la Riva
- Area de Ecología, Facultad de Ciencias, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Manuel Olmo
- Area de Ecología, Facultad de Ciencias, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - José Luis Ubera
- Area de Botánica, Facultad de Ciencias, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Rafael Villar
- Area de Ecología, Facultad de Ciencias, Universidad de Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
34
|
Leverkus AB, Castro J, Delgado-Capel MJ, Molinas-González C, Pulgar M, Marañón-Jiménez S, Delgado-Huertas A, Querejeta JI. Restoring for the present or restoring for the future: enhanced performance of two sympatric oaks (Quercus ilex
and Quercus pyrenaica
) above the current forest limit. Restor Ecol 2015. [DOI: 10.1111/rec.12259] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexandro B. Leverkus
- Departamento de Ecología, Facultad de Ciencias; Universidad de Granada; E-18071, Granada Spain
| | - Jorge Castro
- Departamento de Ecología, Facultad de Ciencias; Universidad de Granada; E-18071, Granada Spain
| | - Manuel J. Delgado-Capel
- Instituto Andaluz de Ciencias de la Tierra, CSIC-UGR; Unidad de Investigación de Biogeoquímica de Isótopos Estables; E-18100 Granada Spain
| | - Carlos Molinas-González
- Departamento de Ecología, Facultad de Ciencias; Universidad de Granada; E-18071, Granada Spain
| | - Manuel Pulgar
- Departamento de Biología Animal, Vegetal y Ecología, Área de Ecología, Facultad de Ciencias Experimentales; Universidad de Jaén; E-23071 Jaén Spain
| | - Sara Marañón-Jiménez
- Department Hydrosystemmodellierung; Helmholtz-Zentrum für Umweltforschung GmbH-UFZ; Permoserstraße 15 D-04318 Leipzig Germany
| | - Antonio Delgado-Huertas
- Instituto Andaluz de Ciencias de la Tierra, CSIC-UGR; Unidad de Investigación de Biogeoquímica de Isótopos Estables; E-18100 Granada Spain
| | - José I. Querejeta
- Departamento de Conservación de Suelo y Agua, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC); Campus Universitario de Espinardo; PO Box 164 E-30100 Murcia Spain
| |
Collapse
|
35
|
Birlanga V, Villanova J, Cano A, Cano EA, Acosta M, Pérez-Pérez JM. Quantitative Analysis of Adventitious Root Growth Phenotypes in Carnation Stem Cuttings. PLoS One 2015; 10:e0133123. [PMID: 26230608 PMCID: PMC4521831 DOI: 10.1371/journal.pone.0133123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 06/26/2015] [Indexed: 12/21/2022] Open
Abstract
Carnation is one of the most important species on the worldwide market of cut flowers. Commercial carnation cultivars are vegetatively propagated from terminal stem cuttings that undergo a rooting and acclimation process. For some of the new cultivars that are being developed by ornamental breeders, poor adventitious root (AR) formation limits its commercial scaling-up, due to a significant increase in the production costs. We have initiated a genetical-genomics approach to determine the molecular basis of the differences found between carnation cultivars during adventitious rooting. The detailed characterization of AR formation in several carnation cultivars differing in their rooting losses has been performed (i) during commercial production at a breeders’ rooting station and (ii) on a defined media in a controlled environment. Our study reveals the phenotypic signatures that distinguishes the bad-rooting cultivars and provides the appropriate set-up for the molecular identification of the genes involved in AR development in this species.
Collapse
Affiliation(s)
- Virginia Birlanga
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - Joan Villanova
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - Antonio Cano
- Departamento de Biología Vegetal (Fisiología Vegetal), Universidad de Murcia, Murcia, Spain
| | - Emilio A. Cano
- Research and Development Department, Barberet & Blanc S.A., Puerto Lumbreras, Spain
| | - Manuel Acosta
- Departamento de Biología Vegetal (Fisiología Vegetal), Universidad de Murcia, Murcia, Spain
| | | |
Collapse
|
36
|
de la Riva EG, Pérez-Ramos IM, Tosto A, Navarro-Fernández CM, Olmo M, Marañón T, Villar R. Disentangling the relative importance of species occurrence, abundance and intraspecific variability in community assembly: a trait-based approach at the whole-plant level in Mediterranean forests. OIKOS 2015. [DOI: 10.1111/oik.01875] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Ignacio M. Pérez-Ramos
- Inst. de Recursos Naturales y Agrobiología de Sevilla, IRNAS, CSIC; ES-41012 Seville Spain
| | - Ambra Tosto
- Área de Ecología, Facultad de Ciencias, Univ. de Córdoba; ES-14071 Córdoba Spain
| | | | - Manuel Olmo
- Área de Ecología, Facultad de Ciencias, Univ. de Córdoba; ES-14071 Córdoba Spain
| | - Teodoro Marañón
- Inst. de Recursos Naturales y Agrobiología de Sevilla, IRNAS, CSIC; ES-41012 Seville Spain
| | - Rafael Villar
- Área de Ecología, Facultad de Ciencias, Univ. de Córdoba; ES-14071 Córdoba Spain
| |
Collapse
|
37
|
The response of three Fagus sylvatica L. provenances to water availability at different soil depths. Ecol Res 2015. [DOI: 10.1007/s11284-015-1287-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|