1
|
Schaub GA. Trypanosoma cruzi/Triatomine Interactions-A Review. Pathogens 2025; 14:392. [PMID: 40333244 PMCID: PMC12030229 DOI: 10.3390/pathogens14040392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
This review summarizes the interactions between Trypanosoma cruzi, the etiologic agent of Chagas disease, and its vectors, the triatomines, and highlights open questions. Four important facts should be emphasized at the outset: (1) The development of T. cruzi strains and their interactions with the mammalian host and the insect vector vary greatly. (2) Only about 10 of over 150 triatomine species have been studied for their interactions with the protozoan parasite. (3) The use of laboratory strains of triatomines makes generalizations difficult, as maintenance conditions influence the interactions. (4) The intestinal microbiota is involved in the interactions, but the mutualistic symbionts, Actinomycetales, have so far only been identified in four species of triatomines. The effects of the vector on T. cruzi are reflected in a different colonization ability of T. cruzi in different triatomine species. In addition, the conditions in the intestine lead to strong multiplication in the posterior midgut and rectum, with infectious metacyclic trypomastigotes developing almost exclusively in the latter. Starvation and feeding of the vector induce the development of certain stages of T. cruzi. The negative effects of T. cruzi on the triatomines depend on the T. cruzi strain and are particularly evident when the triatomines are stressed. The intestinal immunity of the triatomines responds to ingested blood-stage trypomastigotes of some T. cruzi strains and affects many intestinal bacteria, but not all and not the mutualistic symbionts. The specific interaction between T. cruzi and the bacteria is evident after the knockdown of antimicrobial peptides: the number of non-symbiotic bacteria increases and the number of T. cruzi decreases. In long-term infections, the suppression of intestinal immunity is indicated by the growth of specific microbiota.
Collapse
Affiliation(s)
- Günter A Schaub
- Zoology/Parasitology, Ruhr-University Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
2
|
Schaub GA. Interaction of Trypanosoma cruzi, Triatomines and the Microbiota of the Vectors-A Review. Microorganisms 2024; 12:855. [PMID: 38792688 PMCID: PMC11123833 DOI: 10.3390/microorganisms12050855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
This review summarizes the interactions between Trypanosoma cruzi, the etiologic agent of Chagas disease, its vectors, triatomines, and the diverse intestinal microbiota of triatomines, which includes mutualistic symbionts, and highlights open questions. T. cruzi strains show great biological heterogeneity in their development and their interactions. Triatomines differ from other important vectors of diseases in their ontogeny and the enzymes used to digest blood. Many different bacteria colonize the intestinal tract of triatomines, but only Actinomycetales have been identified as mutualistic symbionts. Effects of the vector on T. cruzi are indicated by differences in the ability of T. cruzi to establish in the triatomines and in colonization peculiarities, i.e., proliferation mainly in the posterior midgut and rectum and preferential transformation into infectious metacyclic trypomastigotes in the rectum. In addition, certain forms of T. cruzi develop after feeding and during starvation of triatomines. Negative effects of T. cruzi on the triatomine vectors appear to be particularly evident when the triatomines are stressed and depend on the T. cruzi strain. Effects on the intestinal immunity of the triatomines are induced by ingested blood-stage trypomastigotes of T. cruzi and affect the populations of many non-symbiotic intestinal bacteria, but not all and not the mutualistic symbionts. After the knockdown of antimicrobial peptides, the number of non-symbiotic bacteria increases and the number of T. cruzi decreases. Presumably, in long-term infections, intestinal immunity is suppressed, which supports the growth of specific bacteria, depending on the strain of T. cruzi. These interactions may provide an approach to disrupt T. cruzi transmission.
Collapse
Affiliation(s)
- Günter A Schaub
- Zoology/Parasitology, Ruhr-University Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
3
|
Genné D, Jiricka W, Sarr A, Voordouw MJ. Tick-to-host transmission differs between Borrelia afzelii strains. Microbiol Spectr 2023; 11:e0167523. [PMID: 37676027 PMCID: PMC10580945 DOI: 10.1128/spectrum.01675-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/03/2023] [Indexed: 09/08/2023] Open
Abstract
Many vector-borne pathogens establish multiple-strain infections in the vertebrate host and the arthropod vector. Multiple-strain infections in the host influence strain acquisition by naive vectors. Whether multiple-strain infections in the vector influence strain-specific transmission to naive hosts remains unknown. The spirochete, Borrelia afzelii, causes Lyme borreliosis and multiple-strain infections are common in both the tick vector and vertebrate host. Our study used two B. afzelii strains: Fin-Jyv-A3 and NE4049. Donor mice were infected with Fin-Jyv-A3 alone, NE4049 alone, or with both strains. Larval ticks fed on donor mice and molted into nymphal ticks infected with either strain or both strains. These nymphs were fed on test mice to determine whether multiple-strain infections in the nymph influence nymph-to-host transmission (NHT). Multiple-strain infection in the donor mice reduced the acquisition of both strains by ticks by 23%. Thus, a substantial fraction of infected nymphs from the multiple strain treatment were infected with the "wrong" competitor strain rather than the "right" focal strain. As a result, nymphs from the multiple strain treatment were 46% less likely to infect the test mice with the focal strain compared to nymphs from the single strain treatment. However, multiple-strain infection in the nymphal tick had no effect on the NHT of either strain. The nymphal spirochete load of Fin-Jyv-A3 was 1.9 times higher compared to NE4049. NHT of Fin-Jyv-A3 (79%) was 1.5 times higher compared to NE4049 (53%). Our study suggests that B. afzelii strains with higher nymphal spirochete loads have higher NHT. IMPORTANCE For many vector-borne pathogens, multiple-strain infections in the vertebrate host or arthropod vector are common. Multiple-strain infections in the host reduce strain acquisition by feeding vectors. Whether multiple-strain infections in the vector influence strain transmission to the host remains unknown. In our study, we used two strains of the tick-borne spirochete Borrelia afzelii, which causes Lyme borreliosis, to investigate whether multiple-strain infections in the nymphal tick influenced nymph-to-host transmission (NHT) of strains. Multiple-strain infections in mice reduced the acquisition of both B. afzelii strains by nymphal ticks. As a result, nymphs from the multiple strain treatment were less likely to infect naive test mice with the focal strain. Multiple-strain infection in the nymphal ticks did not influence the NHT of either strain. The strain with the higher bacterial abundance in the nymph had higher NHT. Our study suggests that pathogen abundance in the arthropod vector is important for vector-to-host transmission.
Collapse
Affiliation(s)
- Dolores Genné
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Whitney Jiricka
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anouk Sarr
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Maarten J. Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
4
|
Alves FM, Lisboa CV, Dario MA, Novaes RLM, Tiepolo LM, Moratelli R, Jansen AM. Old Methods, New Insights: Reviewing Concepts on the Ecology of Trypanosomatids and Bodo sp. by Improving Conventional Diagnostic Tools. Pathogens 2023; 12:71. [PMID: 36678419 PMCID: PMC9864408 DOI: 10.3390/pathogens12010071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
Mixed infections by different Trypanosoma species or genotypes are a common and puzzling phenomenon. Therefore, it is critical to refine the diagnostic techniques and to understand to what extent these methods detect trypanosomes. We aimed to develop an accessible strategy to enhance the sensitivity of the hemoculture, as well as to understand the limitations of the hemoculture and the blood clot as a source of parasitic DNA. We investigated trypanosomatid infections in 472 bats by molecular characterization (18S rDNA gene) of the DNA obtained from the blood clot and, innovatively, from three hemoculture sample types: the amplified flagellates ("isolate"), the pellet of the culture harvested in its very initial growth stage ("first aliquot"), and the pellet of non-grown cultures with failure of amplification ("sediment"). We compared (a) the characterization of the flagellates obtained by first aliquots and isolates; and (b) the performance of the hemoculture and blood clot for trypanosomatid detection. We observed: (i) a putative new species of Bodo in Artibeus lituratus; (ii) the potential of Trypanosoma cruzi selection in the hemoculture; (iii) that the first aliquots and sediments overcome the selective pressure of the hemoculture; and (iv) that the blood clot technique performs better than the hemoculture. However, combining these methods enhances the detection of single and mixed infections.
Collapse
Affiliation(s)
- Fernanda Moreira Alves
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Cristiane Varella Lisboa
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Maria Augusta Dario
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | | | - Liliani Marilia Tiepolo
- Laboratory for Analysis and Monitoring of the Atlantic Forest, Coastal Campus, Federal University of Paraná, Matinhos 83260-000, Brazil
| | - Ricardo Moratelli
- Oswaldo Cruz Foundation, Fiocruz Atlantic Forest, Rio de Janeiro 22713-375, Brazil
| | - Ana Maria Jansen
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
5
|
Valença-Barbosa C, Finamore-Araujo P, Moreira OC, Alvarez MVN, Borges-Veloso A, Barbosa SE, Diotaiuti L, de Souza RDCM. High Parasitic Loads Quantified in Sylvatic Triatoma melanica, a Chagas Disease Vector. Pathogens 2022; 11:1498. [PMID: 36558833 PMCID: PMC9785645 DOI: 10.3390/pathogens11121498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Triatoma melanica is a sylvatic vector species in Brazil. In We aimed to characterize the Trypanosoma cruzi discrete typing units (DTUs), the parasitic loads, and the blood meal sources of insects collected in rocky outcrops in rural areas in the state of Minas Gerais. An optical microscope (OM) and kDNA-PCR were used to examine natural infection by T. cruzi, and positive samples were genotyped by conventional multilocus PCR. Quantification of the T. cruzi load was performed using qPCR, and the blood meal sources were identified by Sanger sequencing the 12S rRNA gene. A total of 141 T. melanica were captured. Of these, ~55% (61/111) and ~91% (63/69) were positive by OM and KDNA-PCR, respectively. We genotyped ~89% (56/63) of the T. cruzi-positive triatomines, with TcI (~55%, 31/56) being the most prevalent DTU, followed by TcIII (~20%, 11/56) and TcII (~7%, 4/56). Only TcI+TcIII mixed infections were detected in 10 (~18%) specimens. A wide range of variation in the parasitic loads of T. melanica was observed, with an overall median value of 104 parasites/intestine, with females having higher T. cruzi loads than N2, N4, and N5. TcII showed lower parasitic loads compared to TcI and TcIII. The OM positive diagnosis odds ratio between T. cruzi infection when the parasite load is 107 compared to 103 was approximately 29.1. The most frequent blood meal source was Kerodon rupestris (~58%), followed by Thrichomys apereoides (~18%), Wiedomys cerradensis (~8%), Galactis cuja (~8%) and Gallus gallus (~8%). Our findings characterize biological and epidemiological aspects of the sylvatic population of T. melanica in the study area, highlighting the need to extend surveillance and control to this vector.
Collapse
Affiliation(s)
- Carolina Valença-Barbosa
- Grupo Triatomíneos, Instituto René Rachou-Fiocruz Minas Gerais, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Paula Finamore-Araujo
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Otacílio Cruz Moreira
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil
| | | | - André Borges-Veloso
- Grupo Triatomíneos, Instituto René Rachou-Fiocruz Minas Gerais, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Silvia Ermelinda Barbosa
- Grupo Triatomíneos, Instituto René Rachou-Fiocruz Minas Gerais, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Liléia Diotaiuti
- Grupo Triatomíneos, Instituto René Rachou-Fiocruz Minas Gerais, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | | |
Collapse
|
6
|
Zingales B, Bartholomeu DC. Trypanosoma cruzi genetic diversity: impact on transmission cycles and Chagas disease. Mem Inst Oswaldo Cruz 2022; 117:e210193. [PMID: 35544857 PMCID: PMC9088421 DOI: 10.1590/0074-02760210193] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Trypanosoma cruzi, the agent of Chagas disease (ChD), exhibits remarkable biological and genetic diversity, along with eco-epidemiological complexity. In order to facilitate communication among researchers aiming at the characterisation of biological and epidemiological aspects of T. cruzi, parasite isolates and strains were partitioned into seven discrete typing units (DTUs), TcI-TcVI and TcBat, identifiable by reproducible genotyping protocols. Here we present the potential origin of the genetic diversity of T. cruzi and summarise knowledge about eco-epidemiological associations of DTUs with mammalian reservoirs and vectors. Circumstantial evidence of a connection between T. cruzi genotype and ChD manifestations is also discussed emphasising the role of the host’s immune response in clinical ChD progression. We describe genomic aspects of DTUs focusing on polymorphisms in multigene families encoding surface antigens that play essential functions for parasite survival both in the insect vector and the mammalian host. Such antigens most probably contributed to the parasite success in establishing infections in different hosts and exploring several niches. Gaps in the current knowledge and challenges for future research are pointed out.
Collapse
|
7
|
Austen JM, Barbosa AD. Diversity and Epidemiology of Bat Trypanosomes: A One Health Perspective. Pathogens 2021; 10:pathogens10091148. [PMID: 34578180 PMCID: PMC8465530 DOI: 10.3390/pathogens10091148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Bats (order Chiroptera) have been increasingly recognised as important reservoir hosts for human and animal pathogens worldwide. In this context, molecular and microscopy-based investigations to date have revealed remarkably high diversity of Trypanosoma spp. harboured by bats, including species of recognised medical and veterinary importance such as Trypanosoma cruzi and Trypanosoma evansi (aetiological agents of Chagas disease and Surra, respectively). This review synthesises current knowledge on the diversity, taxonomy, evolution and epidemiology of bat trypanosomes based on both molecular studies and morphological records. In addition, we use a One Health approach to discuss the significance of bats as reservoirs (and putative vectors) of T. cruzi, with a focus on the complex associations between intra-specific genetic diversity and eco-epidemiology of T. cruzi in sylvatic and domestic ecosystems. This article also highlights current knowledge gaps on the biological implications of trypanosome co-infections in a single host, as well as the prevalence, vectors, life-cycle, host-range and clinical impact of most bat trypanosomes recorded to date. Continuous research efforts involving molecular surveillance of bat trypanosomes are required for improved disease prevention and control, mitigation of biosecurity risks and potential spill-over events, ultimately ensuring the health of humans, domestic animals and wildlife globally.
Collapse
Affiliation(s)
- Jill M. Austen
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence: (J.M.A.); (A.D.B.)
| | - Amanda D. Barbosa
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
- CAPES Foundation, Ministry of Education of Brazil, Brasilia 70040-020, DF, Brazil
- Correspondence: (J.M.A.); (A.D.B.)
| |
Collapse
|
8
|
Honorato NRM, da Silva ANB, de Negreiros CCA, Aguiar LMA, Marliére NP, de Souza RDCM, Souza E Guimarães RJDP, Galvão LMDC, da Câmara ACJ. Triatomine and Trypanosoma cruzi discrete typing units distribution in a semi-arid area of northeastern Brazil. Acta Trop 2021; 220:105950. [PMID: 33979639 DOI: 10.1016/j.actatropica.2021.105950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/09/2021] [Accepted: 05/03/2021] [Indexed: 01/16/2023]
Abstract
The occurrence of triatomine species, their bloodmeal sources and the discrete typing units (DTUs) of Trypanosoma cruzi isolated from them were determined in different municipalities of the state of Rio Grande do Norte, Brazil. Triatomine captures were carried out in the rural areas of 23 municipalities. The genotyping of T. cruzi isolates was performed using the mitochondrial cytochrome c oxidase subunit 2 (coii) gene, the D7 region of the 24Sα rDNA, and the spliced leader intergenic region (SL-IR). Five triatomine species were captured, and the most frequent was Triatoma brasiliensis (84.3%; 916/1086), which was found in 16 of the 23 municipalities surveyed, and infested all types of environment investigated. The TcI DTU was found in all mesoregions surveyed in 51.5% (17/33) of the culture-positive samples. In contrast, TcII (9.1%; 3/33) was detected in the Central mesoregion, while TcIII (27.3%; 9/33) was found in all mesoregions. The geographic distribution and spatial overlap of different DTUs was inferred using the superposition of the radius of occurrence of isolates and using ecological niche distribution modelling. Triatoma brasiliensis was found infected in all mesoregions and with all three T. cruzi DTUs, including mixed infections. With regard to bloodmeal sources, the DNA of rodents was found in triatomines infected with either TcI or TcIII, while that of domestic animals and humans was associated with both single and mixed infections. Our findings demonstrate that different DTUs of T. cruzi are widely dispersed among triatomines in our study area. The association of T. brasiliensis with several different mammalian hosts, as well as overlapping areas with different DTUs, suggests that this triatomine species may have an important role as a vector in both anthropic and sylvatic environments.
Collapse
Affiliation(s)
- Nathan Ravi Medeiros Honorato
- Graduate Program in Parasitic Biology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | | | | | - Newmar Pinto Marliére
- René Rachou Institute - FIOCRUZ Minas, Triatomine Research Group, Belo Horizonte, Brazil
| | | | | | - Lúcia Maria da Cunha Galvão
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil; Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Antônia Cláudia Jácome da Câmara
- Graduate Program in Parasitic Biology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil; Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.
| |
Collapse
|
9
|
Waniek PJ, Araújo CAC, Jansen AM, Costa J. First genotyping of Trypanosoma cruzi from naturally infected Triatoma juazeirensis, Triatoma melanica and Triatoma sherlocki from Bahia State, Brazil. MEDICAL AND VETERINARY ENTOMOLOGY 2021; 35:134-140. [PMID: 32648329 DOI: 10.1111/mve.12459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/04/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Many previous studies have shown a great phylogenetic and biological variability of Trypanosoma cruzi using different molecular and biochemical methods. Populations of T. cruzi were initially clustered into two main lineages called TcI and TcII by the size of the mini-exon PCR product. In the present study, 33 isolates derived from three triatomine taxa, which belong to the Triatoma brasiliensis species complex (Triatoma juazeirensis, Triatoma melanica and Triatoma sherlocki); collected in three distinct areas of Bahia state were characterized by PCR. The isolates were identified by the size of the mini-exon gene, 18S rRNA and 24Sα rRNA amplicons. T. cruzi isolates obtained in sylvatic and intradomiciliar ecotopes, derived from T. juazeirensis and T. melanica, were identified as TcI while the parasites originated from T. sherlocki were characterized as TcI and TcII genotypes, respectively. Those species are present in sylvatic ecotopes but are able to infest intradomiciliar areas. Therefore, it would be important to maintain studies in those localities of Bahia and further investigate the possibilities of Chagas disease transmission. Human disease may occur by any T. cruzi genotype and not only by TcII as it is the case in Amazonia.
Collapse
Affiliation(s)
- P J Waniek
- Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Rio de Janeiro, Brazil
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - C A C Araújo
- Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Rio de Janeiro, Brazil
- Laboratório de Biodiversidade Entomológica, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - A M Jansen
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - J Costa
- Laboratório de Biodiversidade Entomológica, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Sandoval-Rodríguez A, Rojo G, López A, Ortiz S, Saavedra M, Botto-Mahan C, Cattan PE, Solari A. Comparing vector competence of Mepraia gajardoi and Triatoma infestans by genotyping Trypanosoma cruzi discrete typing units present in naturally infected Octodon degus. Acta Trop 2019; 190:119-122. [PMID: 30439345 DOI: 10.1016/j.actatropica.2018.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/01/2018] [Accepted: 11/09/2018] [Indexed: 11/28/2022]
Abstract
Chagas disease is a vector-borne disease caused by the parasite Trypanosoma cruzi, and transmitted by triatomine insects to several mammal species. In Chile, the wild triatomine species are the endemic Mepraia species, and the only domestic vector of Chagas disease is Triatoma infestans. The aim of this study was to determine the competence of M. gajardoi compared to T. infestans as a T. cruzi vector using the naturally infected rodent Octodon degus. M. gajardoi amplified T. cruzi present in all O. degus studied while T. infestans only in half of the infected rodents. Both triatomine species excrete metacyclic trypomastigotes and amplified the same three T. cruzi DTUs, however, M. gajardoi showed differences in their ability to amplify TcI. TcV and TcVI had the same probability to be amplified by both triatomine species. Both species amplified mixed infections, with TcI-TcVI as the most represented. This study reports the higher vector competence of M. gajardoi in comparison to T. infestans.
Collapse
Affiliation(s)
| | - Gemma Rojo
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - Angélica López
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - Sylvia Ortiz
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - Miguel Saavedra
- Laboratorio de Parasitología, Básico-Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - Carezza Botto-Mahan
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | - Pedro E Cattan
- Laboratorio de Ecología, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.
| | - Aldo Solari
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
11
|
Genné D, Sarr A, Gomez-Chamorro A, Durand J, Cayol C, Rais O, Voordouw MJ. Competition between strains of Borrelia afzelii inside the rodent host and the tick vector. Proc Biol Sci 2018; 285:20181804. [PMID: 30381382 PMCID: PMC6235042 DOI: 10.1098/rspb.2018.1804] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/08/2018] [Indexed: 01/20/2023] Open
Abstract
Multiple-strain pathogens often establish mixed infections inside the host that result in competition between strains. In vector-borne pathogens, the competitive ability of strains must be measured in both the vertebrate host and the arthropod vector to understand the outcome of competition. Such studies could reveal the existence of trade-offs in competitive ability between different host types. We used the tick-borne bacterium Borrelia afzelii to test for competition between strains in the rodent host and the tick vector, and to test for a trade-off in competitive ability between these two host types. Mice were infected via tick bite with either one or two strains, and these mice were subsequently used to create ticks with single or mixed infections. Competition in the rodent host reduced strain-specific host-to-tick transmission and competition in the tick vector reduced the abundance of both strains. The strain that was competitively superior in host-to-tick transmission was competitively inferior with respect to bacterial abundance in the tick. This study suggests that in multiple-strain vector-borne pathogens there are trade-offs in competitive ability between the vertebrate host and the arthropod vector. Such trade-offs could play an important role in the coexistence of pathogen strains.
Collapse
Affiliation(s)
- Dolores Genné
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Anouk Sarr
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Andrea Gomez-Chamorro
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Jonas Durand
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Claire Cayol
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Olivier Rais
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Maarten J Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
12
|
Alessio GD, de Araújo FF, Sales Júnior PA, Gomes MDS, do Amaral LR, Pascoal Xavier MA, Teixeira-Carvalho A, de Lana M, Martins-Filho OA. Accomplishing the genotype-specific serodiagnosis of single and dual Trypanosoma cruzi infections by flow cytometry Chagas-Flow ATE-IgG2a. PLoS Negl Trop Dis 2018; 12:e0006140. [PMID: 29462135 PMCID: PMC5843347 DOI: 10.1371/journal.pntd.0006140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 03/08/2018] [Accepted: 11/28/2017] [Indexed: 01/04/2023] Open
Abstract
The methods currently available for genotype-specific diagnosis of T. cruzi infection still present relevant limitations, especially to identify mixed infection. In the present investigation, we have evaluated the performance of Chagas-Flow ATE-IgG2a test for early and late differential diagnosis of single and dual genotype-specific T. cruzi infections. Serum samples from Swiss mice at early and late stages of T. cruzi infection were assayed in parallel batches for genotype-specific diagnosis of single (TcI, TcVI or TcII) and dual (TcI+TcVI, TcVI+TcII or TcII+TcI) infections. The intrinsic reactivity to TcI, TcVI and TcII target antigens, including amastigote (AI/AVI/AII), trypomastigote-(TI/TVI/TII) and epimastigote (EI/EVI/EII), at specific reverse of serum dilutions (500 to 64,000), was employed to provide reliable decision-trees for "early" vs "late", "single vs "dual" and "genotype-specific" serology. The results demonstrated that selective set of attributes "EII 500/EI 2,000/AII 500" were able to provide high-quality accuracy (81%) to segregate early and late stages of T. cruzi infection. The sets "TI 2,000/AI 1,000/EII 1,000" and "TI 8,000/AII 32,000" presented expressive scores to discriminate single from dual T. cruzi infections at early (85%) and late stages (84%), respectively. Moreover, the attributes "TI 4,000/TVI 500/TII 1,000", "TI 16,000/EI 2,000/EII 2,000/AI 500/TVI 500" showed good performance for genotype-specific diagnosis at early stage of single (72%) and dual (80%) T. cruzi infections, respectively. In addition, the attributes "TI 4,000/AII 1,000/EVI 1,000", "TI 64,000/AVI 500/AI 2,000/AII 1,000/EII 4,000" showed moderate performance for genotype-specific diagnosis at late stage of single (69%) and dual (76%) T. cruzi infections, respectively. The sets of decision-trees were assembled to construct a sequential algorithm with expressive accuracy (81%) for serological diagnosis of T. cruzi infection. These findings engender new perspectives for the application of Chagas-Flow ATE-IgG2a method for genotype-specific diagnosis in humans, with relevant contributions for epidemiological surveys as well as clinical and post-therapeutic monitoring of Chagas disease.
Collapse
Affiliation(s)
- Glaucia Diniz Alessio
- Laboratório de Doença de Chagas, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
| | - Fernanda Fortes de Araújo
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
- Programa de Pós-graduação em Sanidade e Produção Animal nos Trópicos, Universidade de Uberaba, Uberaba, Brazil
| | - Policarpo Ademar Sales Júnior
- Grupo de Genômica Funcional e Proteômica de Leishmania spp e Trypanosoma cruzi, Instituto René Rachou (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
| | - Matheus de Souza Gomes
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, INGEB/FACOM, Campus Patos de Minas, Patos de Minas, MG, Brazil
| | - Laurence Rodrigues do Amaral
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, INGEB/FACOM, Campus Patos de Minas, Patos de Minas, MG, Brazil
| | - Marcelo Antônio Pascoal Xavier
- Grupo de Pesquisas Clínicas e Políticas Públicas em Doenças Infecciosas e Parasitárias, Instituto René Rachou (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
| | - Marta de Lana
- Laboratório de Doença de Chagas, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
- * E-mail:
| |
Collapse
|
13
|
Lopes CMT, Menna-Barreto RFS, Pavan MG, Pereira MCDS, Roque ALR. Trypanosoma janseni n. sp. (Trypanosomatida: Trypanosomatidae) isolated from Didelphis aurita (Mammalia: Didelphidae) in the Atlantic Rainforest of Rio de Janeiro, Brazil: integrative taxonomy and phylogeography within the Trypanosoma cruzi clade. Mem Inst Oswaldo Cruz 2018; 113:45-55. [PMID: 29211107 PMCID: PMC5719541 DOI: 10.1590/0074-02760170297] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/18/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Didelphis spp. are a South American marsupial species that
are among the most ancient hosts for the Trypanosoma
spp. OBJECTIVES We characterise a new species (Trypanosoma janseni n. sp.)
isolated from the spleen and liver tissues of Didelphis
aurita in the Atlantic Rainforest of Rio de Janeiro,
Brazil. METHODS The parasites were isolated and a growth curve was performed in NNN and
Schneider's media containing 10% foetal bovine serum. Parasite morphology
was evaluated via light microscopy on Giemsa-stained culture smears, as well
as scanning and transmission electron microscopy. Molecular taxonomy was
based on a partial region (737-bp) of the small subunit (18S) ribosomal RNA
gene and 708 bp of the nuclear marker, glycosomal glyceraldehyde-3-phosphate
dehydrogenase (gGAPDH) genes. Maximum likelihood and Bayesian inference
methods were used to perform a species coalescent analysis and to generate
individual and concatenated gene trees. Divergence times among species that
belong to the T. cruzi clade were also inferred. FINDINGS In vitro growth curves demonstrated a very short log phase,
achieving a maximum growth rate at day 3 followed by a sharp decline. Only
epimastigote forms were observed under light and scanning microscopy.
Transmission electron microscopy analysis showed structures typical to
Trypanosoma spp., except one structure that presented
as single-membraned, usually grouped in stacks of three or four.
Phylogeography analyses confirmed the distinct species status of T.
janseni n. sp. within the T. cruzi clade.
Trypanosoma janseni n. sp. clusters with T.
wauwau in a well-supported clade, which is exclusive and
monophyletic. The separation of the South American T.
wauwau + T. janseni coincides with the
separation of the Southern Super Continent. CONCLUSIONS This clade is a sister group of the trypanosomes found in Australian
marsupials and its discovery sheds light on the initial diversification
process based on what we currently know about the T. cruzi
clade.
Collapse
Affiliation(s)
- Camila Madeira Tavares Lopes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia de Tripanosomatídeos, Rio de Janeiro, RJ, Brasil
| | | | - Márcio Galvão Pavan
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Mosquitos Transmissores de Hematozoários, Rio de Janeiro, RJ, Brasil
| | | | - André Luiz R Roque
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia de Tripanosomatídeos, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
14
|
Durand J, Herrmann C, Genné D, Sarr A, Gern L, Voordouw MJ. Multistrain Infections with Lyme Borreliosis Pathogens in the Tick Vector. Appl Environ Microbiol 2017; 83:e02552-16. [PMID: 27836839 PMCID: PMC5244308 DOI: 10.1128/aem.02552-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/08/2016] [Indexed: 12/16/2022] Open
Abstract
Mixed or multiple-strain infections are common in vector-borne diseases and have important implications for the epidemiology of these pathogens. Previous studies have mainly focused on interactions between pathogen strains in the vertebrate host, but little is known about what happens in the arthropod vector. Borrelia afzelii and Borrelia garinii are two species of spirochete bacteria that cause Lyme borreliosis in Europe and that share a tick vector, Ixodes ricinus Each of these two tick-borne pathogens consists of multiple strains that are often differentiated using the highly polymorphic ospC gene. For each Borrelia species, we studied the frequencies and abundances of the ospC strains in a wild population of I. ricinus ticks that had been sampled from the same field site over a period of 3 years. We used quantitative PCR (qPCR) and 454 sequencing to estimate the spirochete load and the strain diversity within each tick. For B. afzelii, there was a negative relationship between the two most common ospC strains, suggesting the presence of competitive interactions in the vertebrate host and possibly the tick vector. The flat relationship between total spirochete abundance and strain richness in the nymphal tick indicates that the mean abundance per strain decreases as the number of strains in the tick increases. Strains with the highest spirochete load in the nymphal tick were the most common strains in the tick population. The spirochete abundance in the nymphal tick appears to be an important life history trait that explains why some strains are more common than others in nature. IMPORTANCE Lyme borreliosis is the most common vector-borne disease in the Northern Hemisphere and is caused by spirochete bacteria that belong to the Borrelia burgdorferi sensu lato species complex. These tick-borne pathogens are transmitted among vertebrate hosts by hard ticks of the genus Ixodes Each Borrelia species can be further subdivided into genetically distinct strains. Multiple-strain infections are common in both the vertebrate host and the tick vector and can result in competitive interactions. To date, few studies on multiple-strain vector-borne pathogens have investigated patterns of cooccurrence and abundance in the arthropod vector. We demonstrate that the abundance of a given strain in the tick vector is negatively affected by the presence of coinfecting strains. In addition, our study suggests that the spirochete abundance in the tick is an important life history trait that can explain why some strains are more common in nature than others.
Collapse
Affiliation(s)
- Jonas Durand
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Coralie Herrmann
- Laboratory of Eco-Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Dolores Genné
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Anouk Sarr
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Lise Gern
- Laboratory of Eco-Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Maarten J Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
15
|
Guarneri AA, Lorenzo MG. Triatomine physiology in the context of trypanosome infection. JOURNAL OF INSECT PHYSIOLOGY 2017; 97:66-76. [PMID: 27401496 DOI: 10.1016/j.jinsphys.2016.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/24/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
Triatomines are hematophagous insects that feed on the blood of vertebrates from different taxa, but can occasionally also take fluids from invertebrate hosts, including other insects. During the blood ingestion process, these insects can acquire diverse parasites that can later be transmitted to susceptible vertebrates if they complete their development inside bugs. Trypanosoma cruzi, the etiological agent of Chagas disease, and Trypanosoma rangeli are protozoan parasites transmitted by triatomines, the latter only transmitted by Rhodnius spp. The present work makes an extensive revision of studies evaluating triatomine-trypanosome interaction, with special focus on Rhodnius prolixus interacting with the two parasites. The sequences of events encompassing the development of these trypanosomes inside bugs and the consequent responses of insects to this infection, as well as many pathological effects produced by the parasites are discussed.
Collapse
Affiliation(s)
- Alessandra Aparecida Guarneri
- Vector Behavior and Pathogen Interaction Group, Centro de Pesquisas René Rachou, Fiocruz, Av. Augusto de Lima, 1715 Belo Horizonte, Minas Gerais, Brazil.
| | - Marcelo Gustavo Lorenzo
- Vector Behavior and Pathogen Interaction Group, Centro de Pesquisas René Rachou, Fiocruz, Av. Augusto de Lima, 1715 Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
16
|
de Araújo CAC, Mayer C, Waniek PJ, Azambuja P, Jansen AM. Differentiation of Trypanosoma cruzi I (TcI) and T. cruzi II (TcII) genotypes using genes encoding serine carboxypeptidases. Parasitol Res 2016; 115:4211-4219. [DOI: 10.1007/s00436-016-5198-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 07/13/2016] [Indexed: 12/30/2022]
|
17
|
Trypanosoma cruzi-Trypanosoma rangeli co-infection ameliorates negative effects of single trypanosome infections in experimentally infected Rhodnius prolixus. Parasitology 2016; 143:1157-67. [PMID: 27174360 DOI: 10.1017/s0031182016000615] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Trypanosoma cruzi, causative agent of Chagas disease, co-infects its triatomine vector with its sister species Trypanosoma rangeli, which shares 60% of its antigens with T. cruzi. Additionally, T. rangeli has been observed to be pathogenic in some of its vector species. Although T. cruzi-T. rangeli co-infections are common, their effect on the vector has rarely been investigated. Therefore, we measured the fitness (survival and reproduction) of triatomine species Rhodnius prolixus infected with just T. cruzi, just T. rangeli, or both T. cruzi and T. rangeli. We found that survival (as estimated by survival probability and hazard ratios) was significantly different between treatments, with the T. cruzi treatment group having lower survival than the co-infected treatment. Reproduction and total fitness estimates in the T. cruzi and T. rangeli treatments were significantly lower than in the co-infected and control groups. The T. cruzi and T. rangeli treatment group fitness estimates were not significantly different from each other. Additionally, co-infected insects appeared to tolerate higher doses of parasites than insects with single-species infections. Our results suggest that T. cruzi-T. rangeli co-infection could ameliorate negative effects of single infections of either parasite on R. prolixus and potentially help it to tolerate higher parasite doses.
Collapse
|
18
|
Colonization of Rhodnius prolixus gut by Trypanosoma cruzi involves an extensive parasite killing. Parasitology 2016; 143:434-43. [PMID: 26818093 DOI: 10.1017/s0031182015001857] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, is ingested by triatomines during their bloodmeal on an infected mammal. Aiming to investigate the development and differentiation of T. cruzi inside the intestinal tract of Rhodnius prolixus at the beginning of infection we fed insects with cultured epimastigotes and blood trypomastigotes from infected mice to determine the amount of recovered parasites after ingestion. Approximately 20% of the ingested parasites was found in the insect anterior midgut (AM) 3 h after feeding. Interestingly, a significant reduction (80%) in the numbers of trypomastigotes was observed after 24 h of infection suggesting that parasites were killed in the AM. Moreover, few parasites were found in that intestinal portion after 96 h of infection. The evaluation of the numbers of parasites in the posterior midgut (PM) at the same periods showed a reduced parasite load, indicating that parasites were not moving from the AM. Additionally, incubation of blood trypomastigotes with extracts from R. prolixus AMs revealed that components of this tissue could induce significant death of T. cruzi. Finally, we observed that differentiation from trypomastigotes to epimastigotes is not completed in the AM; instead we suggest that trypomastigotes change to intermediary forms before their migration to the PM, where differentiation to epimastigotes takes place. The present work clarifies controversial points concerning T. cruzi development in insect vector, showing that parasite suffers a drastic decrease in population size before epimastigonesis accomplishment in PM.
Collapse
|
19
|
Campos-Soto R, Ortiz S, Cordova I, Bruneau N, Botto-Mahan C, Solari A. Interactions Between Trypanosoma cruzi the Chagas Disease Parasite and Naturally Infected Wild Mepraia Vectors of Chile. Vector Borne Zoonotic Dis 2016; 16:165-71. [PMID: 26771702 DOI: 10.1089/vbz.2015.1850] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chagas disease, which ranks among the world's most neglected diseases, is a chronic, systemic, parasitic infection caused by the protozoan Trypanosoma cruzi. Mepraia species are the wild vectors of this parasite in Chile. Host-parasite interactions can occur at several levels, such as co-speciation and ecological host fitting, among others. Thus, we are exploring the interactions between T. cruzi circulating in naturally infected Mepraia species in all areas endemic of Chile. We evaluated T. cruzi infection rates of 27 different haplotypes of the wild Mepraia species and identified their parasite genotypes using minicircle PCR amplification and hybridization tests with genotype-specific DNA probes. Infection rates were lower in northern Chile where Mepraia gajardoi circulates (10-35%); in central Chile, Mepraia spinolai is most abundant, and infection rates varied in space and time (0-55%). T. cruzi discrete typing units (DTUs) TcI, TcII, TcV, and Tc VI were detected. Mixed infections with two or more DTUs are frequently found in highly infected insects. T. cruzi DTUs have distinct, but not exclusive, ecological and epidemiological associations with their hosts. T. cruzi infection rates of M. spinolai were higher than in M. gajardoi, but the presence of mixed infection with more than one T. cruzi DTU was the same. The same T. cruzi DTUs (TcI, TcII, TcV, and TcVI) were found circulating in both vector species, even though TcI was not equally distributed. These results suggest that T. cruzi DTUs are not associated with any of the two genetically related vector species nor with the geographic area. The T. cruzi vectors interactions are discussed in terms of old and recent events. By exploring T. cruzi DTUs present in Mepraia haplotypes and species from northern to central Chile, we open the analysis on these invertebrate host-parasite interactions.
Collapse
Affiliation(s)
- Ricardo Campos-Soto
- 1 Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso , Valparaíso, Chile
| | - Sylvia Ortiz
- 2 Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile , Santiago, Chile
| | - Ivan Cordova
- 2 Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile , Santiago, Chile
| | - Nicole Bruneau
- 2 Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile , Santiago, Chile
| | - Carezza Botto-Mahan
- 3 Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile , Santiago, Chile
| | - Aldo Solari
- 2 Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile , Santiago, Chile
| |
Collapse
|
20
|
Jansen AM, Xavier SC, Roque ALR. The multiple and complex and changeable scenarios of the Trypanosoma cruzi transmission cycle in the sylvatic environment. Acta Trop 2015. [PMID: 26200785 DOI: 10.1016/j.actatropica.2015.07.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this study, we report and discuss the results generated from over 20 years of studies of the Trypanosoma cruzi sylvatic transmission cycle. Our results have uncovered new aspects and reviewed old concepts on issues including reservoirs, true generalist species, association of mammalian species with distinct discrete typing units - DTUs, distribution of T. cruzi genotypes in the wild, mixed infections, and T. cruzi transmission ecology. Using parasitological and serological tests, we examined T. cruzi infection in 7,285 mammalian specimens from nine mammalian orders dispersed all over the Brazilian biomes. The obtained T. cruzi isolates were characterized by mini-exon gene sequence polymorphism and PCR RFLP to identify DTUs. Infection by T. cruzi was detected by serological methods in 20% of the examined animals and isolated from 41% of those infected, corresponding to 8% of all the examined mammals. Each mammal taxon responded uniquely to T. cruzi infection. Didelphis spp. are able to maintain high and long-lasting parasitemias (positive hemocultures) caused by TcI but maintain and rapidly control parasitemias caused by TcII to almost undetectable levels. In contrast, the tamarin species Leontopithecus rosalia and L. chrysomelas maintain long-lasting and high parasitemias caused by TcII similarly to Philander sp. The coati Nasua nasua maintains high parasitemias by both parental T. cruzi DTUs TcI or TcII and by TcII/TcIV (formerly Z3) at detectable levels. Wild and domestic canidae seem to display only a short period of reservoir competence. T. cruzi infection was demonstrated in the wild canid species Cerdocyon thous and Chrysocyon brachyurus, and positive hemoculture was obtained in one hyper carnivore species (Leopardus pardalis), demonstrating that T. cruzi transmission is deeply immersed in the trophic net. T. cruzi DTU distribution in nature did not exhibit any association with a particular biome or habitat. TcI predominates throughout (58% of the T. cruzi isolates); however, in spite of being significantly less frequent (17%), TcII is also widely distributed. Concomitant DTU infection occurred in 16% of infected mammals of all biomes and included arboreal and terrestrial species, as well as bats. TcI/TcII concomitant infection was the most common and widely dispersed, with mixed TcI/TcII infections especially common in coatis and in Didelphimorphia. The second most common pattern of concomitant infection was TcI/TcIV, observed in Chiroptera, Didelphimorphia and Primates. Taken together, our results demonstrate the complexity of T. cruzi reservoir system and its transmission strategies, indicating that there is considerably more to be learned regarding ecology of T. cruzi.
Collapse
|
21
|
Genes encoding defensins of important Chagas disease vectors used for phylogenetic studies. Parasitol Res 2015; 114:4503-11. [DOI: 10.1007/s00436-015-4694-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
|
22
|
Peterson JK, Graham AL, Dobson AP, Chávez OT. Rhodnius prolixus Life History Outcomes Differ when Infected with Different Trypanosoma cruzi I Strains. Am J Trop Med Hyg 2015; 93:564-72. [PMID: 26078316 DOI: 10.4269/ajtmh.15-0218] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/02/2015] [Indexed: 12/20/2022] Open
Abstract
The effect of a parasite on the life history of its vector is important for understanding and predicting disease transmission. Chagas disease agent Trypanosoma cruzi is a generalist parasite that is diverse across scales from its genetic diversity to the 100s of mammal and vector species it infects. Its vertebrate hosts show quite variable responses to infection, however, to date there are no studies looking at how T. cruzi variability might result in variable outcomes in its invertebrate host. Therefore, we investigated the effect of different T. cruzi I strains on Rhodnius prolixus survival and development. We found significant variation between insects infected with different strains, with some strains having no effect, as compared with uninfected insects, and others with significantly lower survival and development. We also found that different variables had varying importance between strains, with the effect of time postinfection and the blood:weight ratio of the infective meal significantly affecting the survival of insects infected with some strains, but not others. Our results suggest that T. cruzi can be pathogenic not only to its vertebrate hosts but also to its invertebrate hosts.
Collapse
Affiliation(s)
- Jennifer K Peterson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey; Grupo BCEI, Universidad de Antioquia, Medellín, Colombia
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey; Grupo BCEI, Universidad de Antioquia, Medellín, Colombia
| | - Andrew P Dobson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey; Grupo BCEI, Universidad de Antioquia, Medellín, Colombia
| | - Omar Triana Chávez
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey; Grupo BCEI, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
23
|
Costa J, Araújo CAC, Freitas CAV, Borges-Pereira J. Are Members of the Triatoma brasiliensis (Hemiptera, Reduviidae) Species Complex Able to Alter the Biology and Virulence of a Trypanosoma cruzi Strain? NEOTROPICAL ENTOMOLOGY 2015; 44:186-193. [PMID: 26013138 DOI: 10.1007/s13744-015-0271-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 12/29/2014] [Indexed: 06/04/2023]
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, transmitted to humans and mammals by blood-sucking hemipteran insects belonging to the Triatominae subfamily. The two main genotypes of T. cruzi (TcI and TcII) differ in many characteristics concerning their genetic profile. Despite the extensive literature on vectors and the etiologic agent, several interactive aspects between these two elements of Chagas disease are still waiting to be further clarified. Here, biological and histological features resulting from the interaction between Albino Swiss mice and T. cruzi isolate PB913 after passages through vectors of the Triatoma brasiliensis species complex were evaluated. Comparing the four members of the T. brasiliensis species complex-Triatoma brasiliensis brasiliensis Neiva, Triatoma brasiliensis macromelasoma Galvão, Triatoma melanica Neiva & Lent, and Triatoma juazeirensis Costa & Felix-no significant differences in parasitemia of the infected mice were observed. At 20 days post-infection, the highest number of parasites was observed in the group of mice that were infected with parasites obtained from T. b. macromelasoma. Tropism of the parasites to different organs such as heart, bladder, and skeletal muscles followed by inflammatory cell infiltrates was observed with quantitative and qualitative differences. Even though the four members of the T. brasiliensis species complex differ in their geographical distribution, morphology, biology, ecology, and genetics, no significant influence on the parasitemia of the T. cruzi PB913 isolate was detected. After evaluation of the tissue samples, a higher pathogenicity of parasites obtained from T. b. brasiliensis was noticeable.
Collapse
Affiliation(s)
- J Costa
- Lab de Biodiversidade Entomológica, Instituto Oswaldo Cruz-IOC/FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, Brasil
| | | | | | | |
Collapse
|
24
|
Perez CJ, Lymbery AJ, Thompson RA. Chagas disease: the challenge of polyparasitism? Trends Parasitol 2014; 30:176-82. [DOI: 10.1016/j.pt.2014.01.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/31/2014] [Accepted: 01/31/2014] [Indexed: 01/19/2023]
|
25
|
Araújo CAC, Waniek PJ, Jansen AM. TcI/TcII co-infection can enhance Trypanosoma cruzi growth in Rhodnius prolixus. Parasit Vectors 2014; 7:94. [PMID: 24593987 PMCID: PMC4015778 DOI: 10.1186/1756-3305-7-94] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 02/22/2014] [Indexed: 11/13/2022] Open
Abstract
Background Rhodnius prolixus is an obligate haematophagous insect and one of the most important vectors of Trypanosoma cruzi, the causative agent of Chagas disease in the Americas. T. cruzi is a highly variable parasite which is not transmitted in the same efficiency by the different triatomine vectors. Because different T. cruzi genotypes are aetiopathologically divergent, further elucidation of the transmission abilities of different Chagas disease vectors is extremely important. Findings In the present study, the growth behaviour of two T. cruzi isolates, MDID/BR/1993/C45 (TcI) and TBRA/BR/1999/JCA3 (TcII), sharing the same microhabitat (intestinal tract) in single and mixed infections, was examined. The distribution patterns and parasite population densities were evaluated at 7, 14 and 21 days after feeding (daf) by quantification of parasites using Neubauer haemocytometric measurements and mini-exon PCR to identify TcI and TcII subpopulations. Parasitic colonization in the small intestine was more successful in the mixed infection model than the single infection models at 21 daf. In the rectal lumen and wall, the growth behaviour of the mixed infection was similar to that of the TcI group, although the total parasite number was lower. In the TcII group, no metacyclic trypomastigote forms were found. PCR analysis of the contents of each dissected region showed different genotype fractions in the mixed infection model, in which TcI seemed to be the predominant isolate. Conclusion The different growth behaviour of the TcI and TcII isolates in single and mixed infection models demonstrated that possibly an intraspecific factor modulates parasitic development in the intestine of R. prolixus.
Collapse
Affiliation(s)
- Catarina A C Araújo
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz - IOC/FIOCRUZ, Av, Brasil 4365, 21045-900 Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
26
|
Bacigalupo A, Segovia V, García A, Botto-Mahan C, Ortiz S, Solari A, Acuna-Retamar M, Torres-Pérez F, Cattan PE. Differential pattern of infection of sylvatic nymphs and domiciliary adults of Triatoma infestans with Trypanosoma cruzi genotypes in Chile. Am J Trop Med Hyg 2012; 87:473-80. [PMID: 22802439 PMCID: PMC3435350 DOI: 10.4269/ajtmh.2012.11-0237] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 05/03/2012] [Indexed: 11/07/2022] Open
Abstract
In Chile, the main vector of Chagas disease, Triatoma infestans, is under control after insecticide spraying. However, it has been found colonizing wild habitats. This study evaluated Trypanosoma cruzi infection of sylvatic and domiciliary T. infestans and identified their parasite genotypes. The sample studied was composed mainly of T. infestans sylvatic nymphs and domiciliary adults from a semi-urban area with human dwellings under vector control surveillance. Results showed prevalences of 57.7% in nymphs and 68.6% in adults. Hybridization tests showed a major T. cruzi lineage (TcI) circulating in sylvatic (93.3%) and domiciliary (100%) T. infestans. TcII, TcV, and TcVI were also detected, mainly in nymphs, suggesting differential adaptation of T. cruzi lineages among instars. We also discuss the origin of domiciliary individuals of T. infestans and the risk of human infection by triatomines of sylvatic foci that invade houses despite vector control programs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pedro E. Cattan
- Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Unidad de Parasitología, Facultad de Medicina Occidente, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina Norte, Departamento de Patología Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile; Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
27
|
Pelosse P, Kribs-Zaleta CM. The role of the ratio of vector and host densities in the evolution of transmission modes in vector-borne diseases. The example of sylvatic Trypanosoma cruzi. J Theor Biol 2012; 312:133-42. [PMID: 22892441 DOI: 10.1016/j.jtbi.2012.07.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 06/26/2012] [Accepted: 07/27/2012] [Indexed: 11/18/2022]
Abstract
Pathogens may use different routes of transmission to maximize their spread among host populations. Theoretical and empirical work conducted on directly transmitted diseases suggest that horizontal (i.e., through host contacts) and vertical (i.e., from mother to offspring) transmission modes trade off, on the ground that highly virulent pathogens, which produce larger parasite loads, are more efficiently transmitted horizontally, and that less virulent pathogens, which impair host fitness less significantly, are better transmitted vertically. Other factors than virulence such as host density could also select for different transmission modes, but they have barely been studied. In vector-borne diseases, pathogen transmission rate is strongly affected by host-vector relative densities and by processes of saturation in contacts between hosts and vectors. The parasite Trypanosoma cruzi which is transmitted by triatomine bugs to several vertebrate hosts is responsible for Chagas' disease in Latin America. It is also widespread in sylvatic cycles in the southeastern U.S. in which it typically induces no mortality costs to its customary hosts. Besides classical transmission via vector bites, alternative ways to generate infections in hosts such as vertical and oral transmission (via the consumption of vectors by hosts) have been reported in these cycles. The two major T. cruzi strains occurring in the U.S. seem to exhibit differential efficiencies at vertical and classical horizontal transmissions. We investigated whether the vector-host ratio affects the outcome of the competition between the two parasite strains using an epidemiological two-strain model considering all possible transmission routes for sylvatic T. cruzi. We were able to show that the vector-host ratio influences the evolution of transmission modes providing that oral transmission is included in the model as a possible transmission mode, that oral and classical transmissions saturate at different vector-host ratios and that the vector-host ratio is between the two saturation thresholds. Even if data on parasite strategies and demography of hosts and vectors in the field are crucially lacking to test to what extent the conditions needed for the vector-host ratio to influence evolution of transmission modes are plausible, our results open new perspectives for understanding the specialization of the two major T. cruzi strains occurring in the U.S. Our work also provides an original theoretical framework to investigate the evolution of alternative transmission modes in vector-borne diseases.
Collapse
Affiliation(s)
- Perrine Pelosse
- Mathematics Department, University of Texas at Arlington, Box 19408, Arlington, TX 76019-0408, USA
| | | |
Collapse
|
28
|
Waniek PJ, Pacheco Costa JE, Jansen AM, Costa J, Araújo CAC. Cathepsin L of Triatoma brasiliensis (Reduviidae, Triatominae): sequence characterization, expression pattern and zymography. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:178-187. [PMID: 22100382 DOI: 10.1016/j.jinsphys.2011.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 11/06/2011] [Accepted: 11/08/2011] [Indexed: 05/31/2023]
Abstract
Triatoma brasiliensis is considered one of the main vectors of Chagas disease commonly found in semi-arid areas of northeastern Brazil. These insects use proteases, such as carboxypeptidase B, aminopeptidases and different cathepsins for blood digestion. In the present study, two genes encoding cathepsin L from the midgut of T. brasiliensis were identified and characterized. Mature T. brasiliensis cathepsin L-like proteinases (TBCATL-1, TBCATL-2) showed a high level of identity to the cathepsin L-like proteinases of other insects, with highest similarity to Rhodnius prolixus. Both cathepsin L transcripts were highly abundant in the posterior midgut region, the main region of the blood digestion. Determination of the pH in the whole intestine of unfed T. brasiliensis revealed alkaline conditions in the anterior midgut region (stomach) and acidic conditions in the posterior midgut region (small intestine). Gelatine in-gel zymography showed the activity of at least four distinct proteinases in the small intestine and the cysteine proteinase inhibitors transepoxysuccinyl-l-leucylamido-(4-guanidino)butane (E-64) and cathepsin B inhibitor and N-(l-3-trans-propylcarbamoyl-oxirane-2-carbonyl)-l-isoleucyl-l-proline (CA-074) were employed to characterize enzymatic activity. E-64 fully inhibited cysteine proteinase activity, whereas in the samples treated with CA-074 residual proteinase activity was detectable. Thus, proteolytic activity could at least partially be ascribed to cathepsin L. Western blot analysis using specific anti cathepsin L antibodies confirmed the presence of cathepsin L in the lumen of the small intestine of the insects.
Collapse
Affiliation(s)
- Peter J Waniek
- Laboratório de Biologia de Tripanosomatídeos, FIOCRUZ, Avenida Brasil, 4365 Manguinhos, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
29
|
Genotype variation of Trypanosoma cruzi isolates from different Brazilian biomes. Exp Parasitol 2011; 127:308-12. [DOI: 10.1016/j.exppara.2010.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 07/11/2010] [Accepted: 07/20/2010] [Indexed: 11/24/2022]
|
30
|
Waniek PJ, Jansen AM, Araújo CAC. Trypanosoma cruzi infection modulates the expression of Triatoma brasiliensis def1 in the midgut. Vector Borne Zoonotic Dis 2010; 11:845-7. [PMID: 20925526 DOI: 10.1089/vbz.2010.0020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antimicrobial peptides are an essential component of the insect immune system. One of the most ubiquitous is defensin, which has been identified in all examined insect orders. Triatoma brasiliensis (Heteroptera, Triatominae), the main Trypanosoma cruzi vector in semi-arid regions of north-eastern Brazil, expresses def1, a defensin encoding gene, predominantly in the anterior region (cardia and stomach) of the midgut. In the present study, we compared the transcript abundance of T. brasiliensis def1 in the anterior (stomach) and posterior midgut (small intestine) regions of naïve bugs with those infected with a familiar T. cruzi isolate. In the stomach, only slight differences between the two insect groups were visible, whereas in the small intestine wide differences (up to 9.6-fold) between infected and noninfected bugs become apparent. The highly increased def1 transcript abundance at 20 days after the infective blood meal might be a response to the T. cruzi infection, suggesting a potential function of intestinal defensin in the parasite population control.
Collapse
Affiliation(s)
- Peter J Waniek
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, Brasil.
| | | | | |
Collapse
|
31
|
Abstract
Microbial infections typically do not occur in isolation but co-occur within diverse communities of bacteria, fungi, protozoans, and viruses. Co-infections can lead to increased disease severity, lead to selection for increased virulence, and complicate disease diagnosis and treatment. Co-infections also occur in disease vectors, and represent one source of co-infections in hosts. We examined patterns of co-infections in ticks (Order Acari), which vector diverse human and wildlife pathogens, and asked whether the frequency of microbial co-infections deviated significantly from independent associations. Most published data were from Ixodes species and reported infection and co-infection frequencies ofBorrelia burgdorferiandAnaplasma phagocytophilum. A total of 18 datasets representing 4978 adult ticks met our criteria for inclusion in the meta-analysis. Significant deviations from independent co-infection were detected in eight of the 18 populations. Five populations exhibited a significant excess ofA. phagocytophilum/B. burgdorferico-infections, including all populations ofI. ricinusthat deviated from independence. In contrast, both populations ofI. persulcatusand one of two populations ofI. scapularisexhibited a significant deficit of co-infection. The single population ofI. pacificusexamined had a significant excess of co-infection. Our meta-analyses indicate that tick-borne microbes are often distributed non-randomly, but the direction of deviation was not consistent, indicating that multiple mechanisms contribute to these patterns. Unfortunately, most published studies were not designed to describe patterns of co-infection, and provided insufficient data for our meta-analysis. Future studies should more explicitly measure and report co-infections in ticks, including co-infections by endosymbionts.
Collapse
Affiliation(s)
| | | | - Keith Clay
- Department of Biology, Indiana University
| |
Collapse
|
32
|
Paredes-Esquivel C, Lecaros E, Aguliar-Rosales M, Acosta HS, Castellanos P. Entomological factors affecting the low endemicity of Chagas disease in Nazca, Southwestern Peru. Vector Borne Zoonotic Dis 2009; 10:341-6. [PMID: 19874184 DOI: 10.1089/vbz.2009.0015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chagas disease is prevalent in Peru. The province of Nazca, in the southwestern region of the country, shows a high intradomiciliary infestation rate of Triatoma infestans bugs. Although the vector is present, the number of Chagas disease cases appears to be much lower than those reported in the neighboring region of Arequipa. We examined 624 T. infestans from Nazca to determine the current Trypanosoma cruzi infection rates, and found that no bugs were infected with this parasite. These results contrast with those found in Arequipa, where 19-30% triatomines have been reported infected. To compare their vectorial capacity, we infected 30 T. infestans specimens, selected both from Nazca and Arequipa, by feeding bugs on T. cruzi-infected mice. The parasites developed all stages expected in the vector; furthermore, the infective stage, metacyclic trypomastigote, was found in both insect populations from the second week after infection. In addition, those insects that accepted to be fed with mice blood defecated immediately after finishing blood meal, indicating that they might be efficient vectors. We maintain that differences observed in infection rates between vectors from Nazca and Arequipa may be explained by differences in host availability. In Arequipa hosts are mainly small animals, whereas in Nazca the main blood source comes from birds, which are refractory to the infection.
Collapse
|
33
|
Waniek PJ, Castro HC, Sathler PC, Miceli L, Jansen AM, Araújo CAC. Two novel defensin-encoding genes of the Chagas disease vector Triatoma brasiliensis (Reduviidae, Triatominae): gene expression and peptide-structure modeling. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:840-8. [PMID: 19505471 DOI: 10.1016/j.jinsphys.2009.05.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 05/25/2009] [Accepted: 05/26/2009] [Indexed: 05/24/2023]
Abstract
Defensins are cysteine-rich peptides involved in the innate immunity of insects and many other organisms. In the present study, two novel defensin-encoding cDNAs and the respective genomic DNAs (def3 and def4) of Triatoma brasiliensis were identified and their tissue-specific and temporal expression was characterized. Both of the deduced mature peptides consisted of 43 amino acid residues and were highly similar to previously identified triatomine defensins (81.4-100%). Semi-quantitative RT-PCR data showed that def3 was constitutively expressed in the fat body and was induced in salivary glands and the small intestine at 5 and 3 days after feeding (daf), respectively. The def4 mRNA level was highly up-regulated in the stomach and fat-body tissues at 5 and 3 daf, respectively. The three-dimensional structures of these defensins were predicted using a homology modeling approach with Def-AAA, the defensin from Anopheles gambiae, as template (62-74% identity). A map of the electrostatic potential of these models revealed that, despite their similar folding patterns, mature Def2 and Def4 have a more cationic structure than is the case for Def1 and Def3. Such differences may orient the antimicrobial profile of these defensins against distinct targets in different organs of the insect.
Collapse
Affiliation(s)
- Peter J Waniek
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz-IOC/FIOCRUZ, Av. Brasil 4365, Zip Code: 21045-900, Rio de Janeiro, Brazil.
| | | | | | | | | | | |
Collapse
|
34
|
Araújo CA, Waniek PJ, Jansen AM. An Overview of Chagas Disease and the Role of Triatomines on Its Distribution in Brazil. Vector Borne Zoonotic Dis 2009; 9:227-34. [DOI: 10.1089/vbz.2008.0185] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Catarina A.C. Araújo
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Peter J. Waniek
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Ana M. Jansen
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Mejía-Jaramillo AM, Peña VH, Triana-Chávez O. Trypanosoma cruzi: Biological characterization of lineages I and II supports the predominance of lineage I in Colombia. Exp Parasitol 2009; 121:83-91. [DOI: 10.1016/j.exppara.2008.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 09/10/2008] [Accepted: 10/01/2008] [Indexed: 11/29/2022]
|
36
|
Araújo CAC, Waniek PJ, Jansen AM. Development of a Trypanosoma cruzi (TcI) isolate in the digestive tract of an unfamiliar vector, Triatoma brasiliensis (Hemiptera, Reduviidae). Acta Trop 2008; 107:195-9. [PMID: 18579102 DOI: 10.1016/j.actatropica.2008.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 05/07/2008] [Accepted: 05/29/2008] [Indexed: 11/18/2022]
Abstract
Triatoma brasiliensis is an important vector of Trypanosoma cruzi, commonly found in semi-arid areas of north-eastern Brazil. T. cruzi (TcI) is a widely distributed genotype in all biomes of Brazil. To evaluate selective pressures exerted by a vector species on the development of TcI derived from a different biome (Atlantic Rainforest), T. brasiliensis larvae were infected with the MDID/BR/1994/C48 isolate. Parasite densities of T. cruzi were determined in three regions of the gut at 3, 5 and 10 days after feeding. Percentages of the different stages of the flagellate were identified in Giemsa stained smears. The TcI isolate possessed always significantly higher densities in the rectum than in the small intestine. Epimastigotes reached their highest percentage at 3 days after feeding in the small intestine and trypomastigotes at 10 days after feeding in the rectal wall. Additionally, high metacyclogenesis rates in the T. brasiliensis gut showed competence of this TcI strain to complete its life cycle in this unfamiliar vector species.
Collapse
Affiliation(s)
- Catarina A C Araújo
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz-IOC/FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
37
|
Evidence of Trypanosoma cruzi II infection in Colombian chagasic patients. Parasitol Res 2008; 103:731-4. [DOI: 10.1007/s00436-008-1034-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 05/07/2008] [Indexed: 10/22/2022]
|