1
|
Bethencourt-Estrella CJ, Delgado-Hernández S, López-Arencibia A, San Nicolás-Hernández D, Tejedor D, García-Tellado F, Lorenzo-Morales J, Piñero JE. In vitro activity and mechanism of cell death induction of cyanomethyl vinyl ethers derivatives against Trypanosoma cruzi. Int J Parasitol Drugs Drug Resist 2023; 22:72-80. [PMID: 37311268 PMCID: PMC10276036 DOI: 10.1016/j.ijpddr.2023.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/15/2023]
Abstract
Chagas disease causes a problematic pathology that can lead to megacolon and heart disease, and can even cause the death of the patient. Current therapies for this disease are the same as they were 50 years ago, are not fully effective and have strong side effects. The lack of a safe and effective therapy makes it necessary to search for new, less toxic and totally effective compounds against this parasite. In this work, the antichagasic activity of 46 novel cyanomethyl vinyl ether derivatives was studied. In addition, to elucidate the type of cell death that these compounds produce in parasites, several events related to programmed cell death were studied. The results highlight four more selective compounds, E63, E64, E74 and E83, which also appear to trigger programmed cell death, and are therefore postulated as good candidates to use in future therapeutics for Chagas disease.
Collapse
Affiliation(s)
- Carlos J Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias, Spain.
| | - Samuel Delgado-Hernández
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Fco. Sánchez 3, 38206, La Laguna, Tenerife, Islas Canarias, Spain; Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Tenerife, 38206, Spain.
| | - Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220, Madrid, Spain.
| | - Desirée San Nicolás-Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias, Spain.
| | - David Tejedor
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Fco. Sánchez 3, 38206, La Laguna, Tenerife, Islas Canarias, Spain.
| | - Fernando García-Tellado
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Fco. Sánchez 3, 38206, La Laguna, Tenerife, Islas Canarias, Spain.
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220, Madrid, Spain.
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220, Madrid, Spain.
| |
Collapse
|
2
|
Alejandra A, Sol GM, Fabián EG, Paula MN, Esteban GR, Victoria CM. Marginal risk of domestic vector-borne Trypanosoma cruzi transmission after improved vector control of Triatoma infestans across a rural-to-urban gradient in the Argentine Chaco. Acta Trop 2023; 243:106933. [PMID: 37119837 DOI: 10.1016/j.actatropica.2023.106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
The interruption of domestic vector-borne transmission of Trypanosoma cruzi in the Americas remains one of the main goals of the World Health Organization 2021-2030 road map for neglected tropical diseases. We implemented a longitudinal intervention program over 2015-2022 to suppress (peri)domestic Triatoma infestans in the municipality of Avia Terai, Chaco Province, Argentina and found that house infestation (3851 houses inspected) and triatomine abundance decreased over the first 2 years post-intervention (YPI), and remained stable thereafter associated to moderate pyrethroid resistant foci. Here we assessed selected components of transmission risk after interventions across the rural-to-urban gradient. We used multistage random sampling to select a municipality-wide sample of T. infestans. We examined 356 insects collected in 87 houses for T. cruzi infection using kDNA-PCR and identified their bloodmeal sources using an indirect ELISA. The overall prevalence of T. cruzi infection post-intervention was 1.7% (95% CI 0.7-3.6). Few houses (5.7%) (95% CI 2.5-12.8) harbored infected triatomines across the gradient. Infected triatomines were found in 5 peri-urban or rural dwellings over 1-4 years post-intervention. No infected insect was found in the urban area. The human blood index decreased from 66.2 at baseline to 42.8 at 1YPI and then increased to 92.9 at 4-5 YPI in the few infested domiciles detected. The percentage of houses with human-fed bugs displayed a similar temporal trend. Our results indicate marginal risks of domestic vector-borne transmission across the district after implementation of the intervention program. Ensuring sustainable vector surveillance coupled with human etiological diagnosis and treatment in hiperendemic areas like the Gran Chaco region, is urgently needed. 252 words.
Collapse
Affiliation(s)
- Alvedro Alejandra
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Gaspe María Sol
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Enriquez Gustavo Fabián
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Macchiaverna Natalia Paula
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Gürtler Ricardo Esteban
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Cardinal Marta Victoria
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
3
|
de Arias AR, Monroy C, Guhl F, Sosa-Estani S, Santos WS, Abad-Franch F. Chagas disease control-surveillance in the Americas: the multinational initiatives and the practical impossibility of interrupting vector-borne Trypanosoma cruzi transmission. Mem Inst Oswaldo Cruz 2022; 117:e210130. [PMID: 35830010 PMCID: PMC9261920 DOI: 10.1590/0074-02760210130] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/21/2022] Open
Abstract
Chagas disease (CD) still imposes a heavy burden on most Latin American countries. Vector-borne and mother-to-child transmission cause several thousand new infections per year, and at least 5 million people carry Trypanosoma cruzi. Access to diagnosis and medical care, however, is far from universal. Starting in the 1990s, CD-endemic countries and the Pan American Health Organization-World Health Organization (PAHO-WHO) launched a series of multinational initiatives for CD control-surveillance. An overview of the initiatives’ aims, achievements, and challenges reveals some key common themes that we discuss here in the context of the WHO 2030 goals for CD. Transmission of T. cruzi via blood transfusion and organ transplantation is effectively under control. T. cruzi, however, is a zoonotic pathogen with 100+ vector species widely spread across the Americas; interrupting vector-borne transmission seems therefore unfeasible. Stronger surveillance systems are, and will continue to be, needed to monitor and control CD. Prevention of vertical transmission demands boosting current efforts to screen pregnant and childbearing-aged women. Finally, integral patient care is a critical unmet need in most countries. The decades-long experience of the initiatives, in sum, hints at the practical impossibility of interrupting vector-borne T. cruzi transmission in the Americas. The concept of disease control seems to provide a more realistic description of what can in effect be achieved by 2030.
Collapse
Affiliation(s)
| | - Carlota Monroy
- Universidad de San Carlos, Laboratorio de Entomología y Parasitología Aplicadas, Ciudad de Guatemala, Guatemala
| | - Felipe Guhl
- Universidad de los Andes, Facultad de Ciencias, Centro de Investigaciones en Microbiología y Parasitología Tropical, Bogotá, Colombia
| | - Sergio Sosa-Estani
- Drugs for Neglected Diseases initiative Latin America, Rio de Janeiro, RJ, Brasil.,Centro de Investigaciones en Epidemiología y Salud Pública, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Walter Souza Santos
- Ministério da Saúde, Secretaria de Vigilância em Saúde, Instituto Evandro Chagas, Laboratório de Epidemiologia das Leishmanioses, Ananindeua, PA, Brasil
| | - Fernando Abad-Franch
- Universidade de Brasília, Faculdade de Medicina, Núcleo de Medicina Tropical, Brasília, DF, Brasil
| |
Collapse
|
4
|
Santos WS, Gurgel-Gonçalves R, Garcez LM, Abad-Franch F. Deforestation effects on Attalea palms and their resident Rhodnius, vectors of Chagas disease, in eastern Amazonia. PLoS One 2021; 16:e0252071. [PMID: 34015050 PMCID: PMC8136634 DOI: 10.1371/journal.pone.0252071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/07/2021] [Indexed: 01/05/2023] Open
Abstract
Attalea palms provide primary habitat to Rhodnius spp., vectors of Trypanosoma cruzi. Flying from palms, these blood-sucking bugs often invade houses and can infect people directly or via food contamination. Chagas disease (CD) risk may therefore increase when Attalea palms thrive near houses. For example, Attalea dominate many deforested landscapes of eastern Amazonia, where acute-CD outbreaks are disturbingly frequent. Despite this possible link between deforestation and CD risk, the population-level responses of Amazonian Attalea and their resident Rhodnius to anthropogenic landscape disturbance remain largely uncharted. We studied adult Attalea palms in old-growth forest (OGF), young secondary forest (YSF), and cattle pasture (CP) in two localities of eastern Amazonia. We recorded 1856 Attalea along 10 transects (153.6 ha), and detected infestation by Rhodnius spp. in 18 of 280 systematically-sampled palms (33 bugs caught). Distance-sampling models suggest that, relative to OGF, adult Attalea density declined by 70-80% in CP and then recovered in YSF. Site-occupancy models estimate a strong positive effect of deforestation on palm-infestation odds (βCP-infestation = 4.82±1.14 SE), with a moderate decline in recovering YSF (βYSF-infestation = 2.66±1.10 SE). Similarly, N-mixture models suggest that, relative to OGF, mean vector density sharply increased in CP palms (βCP-density = 3.20±0.62 SE) and then tapered in YSF (βYSF-density = 1.61±0.76 SE). Together, these results indicate that disturbed landscapes may support between ~2.5 (YSF) and ~5.1 (CP) times more Attalea-dwelling Rhodnius spp. per unit area than OGF. We provide evidence that deforestation may favor palm-dwelling CD vectors in eastern Amazonia. Importantly, our landscape-disturbance effect estimates explicitly take account of (i) imperfect palm and bug detection and (ii) the uncertainties about infestation and vector density arising from sparse bug data. These results suggest that incorporating landscape-disturbance metrics into the spatial stratification of transmission risk could help enhance CD surveillance and prevention in Amazonia.
Collapse
Affiliation(s)
- Walter Souza Santos
- Laboratório de Epidemiologia das Leishmanioses, Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde, Ananindeua, Pará, Brazil
- Programa de Pós-graduação em Biologia Parasitária na Amazônia, Universidade do Estado do Pará, Belém, Pará, Brazil
| | - Rodrigo Gurgel-Gonçalves
- Núcleo de Medicina Tropical, Faculdade de Medicina, Universidade de Brasília, Brasília, Distrito Federal, Brazil
- Laboratório de Parasitologia Médica e Biologia de Vetores, Faculdade de Medicina, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Lourdes Maria Garcez
- Laboratório de Epidemiologia das Leishmanioses, Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde, Ananindeua, Pará, Brazil
- Programa de Pós-graduação em Biologia Parasitária na Amazônia, Universidade do Estado do Pará, Belém, Pará, Brazil
- Departamento de Patologia, Universidade do Estado do Pará, Belém, Pará, Brazil
| | - Fernando Abad-Franch
- Programa de Pós-graduação em Biologia Parasitária na Amazônia, Universidade do Estado do Pará, Belém, Pará, Brazil
- Núcleo de Medicina Tropical, Faculdade de Medicina, Universidade de Brasília, Brasília, Distrito Federal, Brazil
- Grupo Triatomíneos, Instituto René Rachou–Fiocruz, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
5
|
Rethinking the old hypothesis that new housing construction has an impact on the vector control of Triatoma infestans: A metapopulation analysis. Acta Trop 2020; 212:105717. [PMID: 32966842 DOI: 10.1016/j.actatropica.2020.105717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/05/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
Triatoma infestans (Hemiptera: Reduviidae) is a hematophagous insect, vector of the parasite Trypanosoma cruzi, etiological agent of the Chagas disease. In the south of La Rioja, Argentina, the persistent infestation by triatomines encouraged a program of construction of brand new dwellings in rural areas since 2008, to reduce infestation. According to the metapopulation theory approach, each dwelling was considered to be a patch with different degrees of quality concerning the availability of shelters for T. infestans. Accordingly, brand new dwellings (BNDs) are considered of lower quality for triatomines, compared to traditional dwellings (TDs). The main objective of this study was to analyse the occupancy in patches of different quality and to evaluate the effect of BNDs in the control of T. infestans. 397 patches from three departments of the southern part of La Rioja province were analysed during the period from 2014 to 2017. Six samplings were carried out to estimate the occupancy by T. infestans in patches assigned with different qualities. During the studied period, changes in the occupancy status of the patches among samplings were recorded, and the metapopulation variables which affect the occupancy of T. infestans were analysed. The results showed that all patches, even those considered of lower quality and smaller size, were occupied by T. infestans in a range from 3.8% to 25.5%. In general, the probability of T. infestans occupancy among samplings showed no difference among all studied patches. The occupancy of patches by T. infestans was associated with "department", "number of patches" and "number of positive patches in the radius of 400 m" (analysis GEE models). However, "patch quality", "size", and "distance" showed no effect on T. infestans occupancy. 44.1% of patches with BND were occupied at least once during the study period. Some of these showed "persistent occupancy" by T. infestans. No differences in the T. infestans occupancy between BNDs and TDs were observed. These results allowed us to analyse the impact of the new housing construction as a vector control measure in the metapopulation context of La Rioja province.
Collapse
|
6
|
Enduring extreme climate: Effects of severe drought on Triatoma brasiliensis populations in wild and man-made habitats of the Caatinga. PLoS Negl Trop Dis 2019; 13:e0007766. [PMID: 31600199 PMCID: PMC6805010 DOI: 10.1371/journal.pntd.0007766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/22/2019] [Accepted: 09/09/2019] [Indexed: 11/26/2022] Open
Abstract
Background Triatoma brasiliensis, a triatomine-bug vector of Chagas disease, evolved in the semiarid Caatinga, where it occupies rocky outcrops, shrubby cacti, and human dwellings. Dwellings and rocks are considered high-quality microhabitats for this saxicolous species, whereas cacti probably represent secondary, lower-quality microhabitats. This ‘microhabitat-quality hierarchy’ hypothesis predicts that T. brasiliensis populations occupying dwellings or rocks should endure harsh environmental conditions better than their cactus-living relatives. Methods/Findings We tested this prediction by comparing T. brasiliensis infestation (proportion of microhabitats with bugs), density (bugs per microhabitat), and crowding (bugs per infested microhabitat) in dwellings, rocks, and cacti sampled before and during the extreme drought that ravaged the Caatinga in 2012–2016. We used random-intercepts generalized linear mixed models to account for microhabitat spatial clustering and for variations in bug-catch effort; we assessed model performance and computed model-averaged effect estimates using Akaike’s information criterion. Pre-drought infestation was similar across microhabitat types; during the drought, infestation remained stable in dwellings and rocks but dropped in cacti. Pre-drought bug density declined from dwellings to rocks to cacti; an additional decline associated with the drought was largely comparable across microhabitats, albeit perhaps somewhat larger in cacti. Finally, pre-drought bug crowding was higher in dwellings than in rocks or cacti and changed little during the drought–possibly with a downward trend in dwellings and an upward trend in cacti. Conclusions Triatoma brasiliensis populations fared better in dwellings and rocks than in cacti during extreme drought. Estimates of microhabitat and drought effects on infestation, density, and crowding suggest that only a few cacti (versus many rocks and dwellings) represent good-quality habitat under such extremely harsh conditions. Our findings provide empirical support to the microhabitat-quality hierarchy hypothesis, and imply that T. brasiliensis can endure extreme climate by exploiting high-quality microhabitats, whether wild or man-made, in the semiarid Caatinga. Triatomine bugs, the vectors of Chagas disease, feed on vertebrate blood and occupy diverse microhabitats in close association with their hosts. Each bug species is adapted to particular, ‘primary’ microhabitats. Many species, however, also use ‘secondary’ microhabitats, sometimes including man-made structures. Secondary wild microhabitats are probably of lower overall quality than primary microhabitats, whereas human dwellings can be of higher overall quality if they provide a stable and abundant blood supply. This suggests that there may be a ‘hierarchy’ of triatomine microhabitat quality–top-quality dwellings, high-quality primary microhabitats, and low-quality secondary wild microhabitats. To test this hypothesis, we measured the impact of a severe drought on Triatoma brasiliensis populations living in dwellings and wild habitats, both primary (rocks) and secondary (shrubby cacti). Dwelling and rock bug populations remained largely stable during the drought, whereas most cactus-living populations either became extinct or shrunk to an undetectable size. A few cacti, however, supported relatively large bug colonies even during the drought, suggesting that they were of higher-than-average quality. Our findings provide support to the microhabitat-quality hierarchy hypothesis, and show that T. brasiliensis (and perhaps other triatomines) can endure extreme climate by exploiting (natural or man-made) high-quality microhabitats.
Collapse
|
7
|
Bonilla MC, Castro-Vásquez RM, Herrero-Acosta MV, Urbina-Villalobos A, Dolz G. Canine trypanosomiasis in an endemic Costa Rican community: Demonstration of the active infection cycle. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2019; 17:100307. [PMID: 31303214 DOI: 10.1016/j.vprsr.2019.100307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 11/16/2022]
Abstract
A cross-sectional study was conducted to determine the prevalence of canine trypanosomiasis in an endemic community of Costa Rica. The indirect hemagglutination and indirect immunofluorescence assay yielded positive results in 6.4% (20/314) of canine samples analyzed; polymerase chain reaction (PCR) and light microscopy yielded positive results in one dog. Subsequently, a longitudinal study was carried out with 55 negative T. cruzi canines in the cross-sectional study. These dogs were divided into two groups: Group 1, which consisted of 25 individuals that lived in dwellings where triatomines were found in their homes; and Group 2, which consisted of 30 dogs that lived in dwellings where triatomines were not found during the previous study in their homes. Seroconversion occurred in six dogs (10.9%) in Group 1 in the first months of the year (dry season); these dogs remained seropositive until the end of the study. Only one of the six seropositive canines was also found positive once in T. cruzi PCR. The analysis of the amplified T. cruzi sequences of dogs and triatomines showed that all of them belonged to the TcI lineage. It is recommended that residents be made aware of the need to eliminate vectors in their homes and their surroundings.
Collapse
Affiliation(s)
- Marta C Bonilla
- Laboratorio de Docencia e Investigación en Medicina Poblacional, Programa MEDPOB, Escuela de Medicina Veterinaria, Universidad Nacional de Costa Rica. Heredia, Costa Rica.
| | - Ruth M Castro-Vásquez
- Laboratorio de Docencia e Investigación en Medicina Poblacional, Programa MEDPOB, Escuela de Medicina Veterinaria, Universidad Nacional de Costa Rica. Heredia, Costa Rica
| | - Marco Vinicio Herrero-Acosta
- Laboratorio de Docencia e Investigación en Medicina Poblacional, Programa MEDPOB, Escuela de Medicina Veterinaria, Universidad Nacional de Costa Rica. Heredia, Costa Rica
| | - Andrea Urbina-Villalobos
- Laboratorio de Zoonosis, Escuela de Medicina Veterinaria, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Gaby Dolz
- Laboratorio de Docencia e Investigación en Medicina Poblacional, Programa MEDPOB, Escuela de Medicina Veterinaria, Universidad Nacional de Costa Rica. Heredia, Costa Rica
| |
Collapse
|
8
|
Eduardo AA, Santos LABO, Rebouças MC, Martinez PA. Patterns of vector species richness and species composition as drivers of Chagas disease occurrence in Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2018; 28:590-598. [PMID: 30063379 DOI: 10.1080/09603123.2018.1497776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Chagas disease represents one of the major health issue in Latin America. Epidemiological control is focused on disease vectors, so studies on the ecology of triatomine vectors constitute a central strategy. Recently, research at large spatial scale has been produced, and authors commonly rely on the assumption that geographical regions presenting good environmental conditions for most vector species are also those with high risk of infection. In the present work, we provide an explicit evaluation for this assumption. Employing species distribution models and epidemiological data for Chagas disease in Brazilian territory, our results show that species richness is a poor predictor for the observed pattern of Chagas disease occurrence. Species composition proved to be a better predictor. We stress that research on macroecology of infectious diseases should go beyond the analysis of biodiversity patterns and consider human infections as a central part of the focal ecological systems.
Collapse
Affiliation(s)
- Anderson A Eduardo
- a Laboratory of Integrative Research on Biodiversity (PIBi-Lab), Centro de Ciências Biológicas e da Saúde, Departamento de Biologia , Universidade Federal de Sergipe (UFS) , Aracaju , SE , Brazil
| | - Lucas A B O Santos
- b Laboratory of Molecular Biology , Hospital Universitário da Universidade Federal de Sergipe (HU-UFS) , Aracaju , SE , Brazil
| | - Mônica C Rebouças
- a Laboratory of Integrative Research on Biodiversity (PIBi-Lab), Centro de Ciências Biológicas e da Saúde, Departamento de Biologia , Universidade Federal de Sergipe (UFS) , Aracaju , SE , Brazil
| | - Pablo A Martinez
- a Laboratory of Integrative Research on Biodiversity (PIBi-Lab), Centro de Ciências Biológicas e da Saúde, Departamento de Biologia , Universidade Federal de Sergipe (UFS) , Aracaju , SE , Brazil
| |
Collapse
|
9
|
Rodríguez-Planes LI, Gaspe MS, Enriquez GF, Gürtler RE. Habitat-Specific Occupancy and a Metapopulation Model of Triatoma sordida (Hemiptera: Reduviidae), a Secondary Vector of Chagas Disease, in Northeastern Argentina. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:370-381. [PMID: 29272421 DOI: 10.1093/jme/tjx227] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Indexed: 06/07/2023]
Abstract
Triatoma sordida Stål (Hemiptera: Reduviidae), a secondary vector of Trypanosoma cruzi Chagas (Kinetoplastida: Trypanosomatidae), occasionally colonizes human sleeping quarters in Paraguay, Bolivia, and Brazil, whereas only sylvatic and peridomestic populations are found in Argentina. We carried out a cross-sectional survey of house infestation in a well-defined rural area of northeastern Argentina to identify the key habitats of T. sordida; describe its spatial distribution in an apparently undisturbed setting under no recent insecticide treatment and use metapopulation theory to investigate these spatially structured populations. Timed-manual searches in 2,177 georeferenced sites from 368 houses yielded T. sordida in 78 sites (house infestation prevalence, 19.9%). Most triatomines occurred in chicken nests, chicken coops, and trees where chickens roosted (prime habitats). Goat or sheep corrals and pig corrals had a lower fraction of occupied sites (occupancies) and abundance. Both occupancy and catch increased with increasing refuge availability according to multimodel inference with model averaging. The majority of suitable habitats were unoccupied despite their proximity to occupied sites. The site-specific occurrence of T. sordida and Triatoma infestans Klug (Hemiptera: Reduviidae) was positively and homogeneously associated over ecotopes, showing no evidence of interspecific interference. An incidence function metapopulation model (including intersite distances and vector carrying capacity) predicted a fivefold greater occupancy relative to the observed pattern, suggesting the latter represented a transient state. T. sordida failed to colonize human sleeping quarters, thrived in peridomestic habitats occupied by chickens, and had a limited occupancy likely related to a poor colonizing ability and the relative instability of its prime habitats.
Collapse
Affiliation(s)
- Lucía I Rodríguez-Planes
- Universidad de Buenos Aires, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, Argentina
| | - M Sol Gaspe
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, Argentina
| | - Gustavo F Enriquez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, Argentina
| | - Ricardo E Gürtler
- Universidad de Buenos Aires, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, Argentina
| |
Collapse
|
10
|
Abriata JP, Eloy JO, Riul TB, Campos PM, Baruffi MD, Marchetti JM. Poly-epsilon-caprolactone nanoparticles enhance ursolic acid in vivo efficacy against Trypanosoma cruzi infection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1196-1203. [PMID: 28531996 DOI: 10.1016/j.msec.2017.03.266] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/31/2016] [Accepted: 03/28/2017] [Indexed: 01/18/2023]
Abstract
Despite affecting millions of people worldwide, Chagas disease is still neglected by the academia and industry and the therapeutic option available, benznidazole, presents limited efficacy and side effects. Within this context, ursolic acid may serve as an option for treatment, however has low bioavailability, which can be enhanced through the encapsulation in polymeric nanoparticles. Therefore, herein we developed ursolic acid-loaded nanoparticles with poly-ε-caprolactone by the nanoprecipitation method and characterized them for particle size, zeta potential, polydispersity, encapsulation efficiency, morphology by scanning electron microscopy and thermal behavior by differential scanning calorimetry. Results indicated that an appropriate ratio of organic phase/aqueous phase and polymer/drug is necessary to produce smaller particles, with low polydispersity, negative zeta potential and high drug encapsulation efficiency. In vitro studies indicated the safety of the formulation against fibroblast culture and its efficacy in killing T. cruzi. Very importantly, the in vivo study revealed that the ursolic acid-loaded nanoparticle is as potent as the benznidazole group to control parasitemia, which could be attributed to improved bioavailability of the encapsulated drug. Finally, the toxicity evaluation showed that while benznidazole group caused liver toxicity, the nanoparticles were safe, indicating that this formulation is promising for future evaluation.
Collapse
Affiliation(s)
- Juliana Palma Abriata
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Josimar O Eloy
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Thalita Bachelli Riul
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | | | - Marcelo Dias Baruffi
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | | |
Collapse
|
11
|
Dias JCP, Ramos Jr. AN, Gontijo ED, Luquetti A, Shikanai-Yasuda MA, Coura JR, Torres RM, Melo JRDC, Almeida EAD, Oliveira Jr. WD, Silveira AC, Rezende JMD, Pinto FS, Ferreira AW, Rassi A, Fragata Filho AA, Sousa ASD, Correia D, Jansen AM, Andrade GMQ, Britto CFDPDC, Pinto AYDN, Rassi Jr. A, Campos DE, Abad-Franch F, Santos SE, Chiari E, Hasslocher-Moreno AM, Moreira EF, Marques DSDO, Silva EL, Marin-Neto JA, Galvão LMDC, Xavier SS, Valente SADS, Carvalho NB, Cardoso AV, Silva RAE, Costa VMD, Vivaldini SM, Oliveira SM, Valente VDC, Lima MM, Alves RV. 2 nd Brazilian Consensus on Chagas Disease, 2015. Rev Soc Bras Med Trop 2016; 49Suppl 1:3-60. [DOI: 10.1590/0037-8682-0505-2016] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 11/22/2022] Open
|
12
|
Pavan MG, Corrêa-Antônio J, Peixoto AA, Monteiro FA, Rivas GBS. Rhodnius prolixus and R. robustus (Hemiptera: Reduviidae) nymphs show different locomotor patterns on an automated recording system. Parasit Vectors 2016; 9:239. [PMID: 27121502 PMCID: PMC4848847 DOI: 10.1186/s13071-016-1482-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/30/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Circadian rhythms of triatomines, vectors of the etiological agent Trypanosoma cruzi responsible for Chagas disease, have been extensively studied in adults of the two most epidemiologically relevant vector species, Rhodnius prolixus and Triatoma infestans. However, little attention has been dedicated to the activity patterns in earlier developmental stages, even though triatomine nymphs are equally capable of transmitting T. cruzi to humans. Because circadian rhythms may differ even between closely related species, studies that focus on this behavioral trait can also be used to shed light on the taxonomy of controversial taxa, which becomes especially relevant regarding vector species. METHODS We compared the daily locomotor activity patterns of second- and third-instar nymphs of Rhodnius prolixus and Rhodnius robustus in order to unveil possible behavioral differences between these cryptic species. Mitochondrial and nuclear markers were sequenced to confirm species identification. RESULTS Nymphs of both species had a bimodal pattern of locomotion and similar daily activity patterns, but R. prolixus is more active under light/dark cycles and depicts a more pronounced activity rhythm under constant darkness conditions. CONCLUSIONS We describe the implementation of an often-used automated method for the recording of individual locomotor activity to differentiate sibling species of Rhodnius with distinct epidemiological relevance. The higher levels of activity observed in the nymphs of R. prolixus could potentially contribute to increased vector capacity.
Collapse
Affiliation(s)
- Márcio G. Pavan
- />Laboratório de Epidemiologia e Sistemática Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- />Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Jessica Corrêa-Antônio
- />Laboratório de Epidemiologia e Sistemática Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Alexandre A. Peixoto
- />Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- />Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM)/CNPq, Rio de Janeiro, Brazil
| | - Fernando A. Monteiro
- />Laboratório de Epidemiologia e Sistemática Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- />Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM)/CNPq, Rio de Janeiro, Brazil
| | - Gustavo B. S. Rivas
- />Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- />Present address: Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Rodríguez-Planes LI, Vazquez-Prokopec GM, Cecere MC, Canale DM, Gürtler RE. Selective Insecticide Applications Directed Against Triatoma infestans (Hemiptera: Reduviidae) Affected a Nontarget Secondary Vector of Chagas Disease, Triatoma garciabesi. JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:144-151. [PMID: 26490000 DOI: 10.1093/jme/tjv167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
The control of nondomiciliated triatomine species adapted to peridomestic habitats represents a challenge because they are connected to sylvatic colonies, and pyrethroid insecticides have limited effects outdoors. The effects of residual insecticide spraying have rarely been assessed on secondary triatomines. Triatoma garciabesi (Carcavallo, Martinez, Cichero, Prosen & Ronderos, 1967) is a nontarget vector that inhabits the dry western Chaco region, and a member of the Triatoma sordida Stål 1859 complex. Little is known on the capacity of T. garciabesi to invade and establish viable domestic or peridomestic colonies, and on its response to residual insecticide sprays directed against Triatoma infestans Klug 1834. The presence and abundance of triatomines were assessed by timed manual collections annually or biannually (spring and fall) during 10 yr after a community-wide insecticide spraying campaign and selective insecticide sprays directed against T. infestans in a rural village of northwestern Argentina. T. garciabesi mainly occupied peridomestic habitats associated with chickens, and was unable to colonize human sleeping quarters. Trees with chickens occurred in nearly all houses and were infested in >25% of the occasions. The abundance of bugs at house-compound level was best explained by a generalized estimating equation model that included selective insecticide sprays during the previous semester (negative effects), chicken abundance (positive effects), seasonality, and their interactions. Our results suggest that insecticide applications targeting T. infestans affected the abundance of T. garciabesi, and reduced the likelihood of future infestation.
Collapse
Affiliation(s)
- L I Rodríguez-Planes
- Laboratory of Eco-Epidemiology, Department of Ecology, Genetics and Evolution, Universidad de Buenos Aires-IEGEBA (CONICET-UBA), C1428 Buenos Aires, Argentina (; ; ),
| | | | - M C Cecere
- Laboratory of Eco-Epidemiology, Department of Ecology, Genetics and Evolution, Universidad de Buenos Aires-IEGEBA (CONICET-UBA), C1428 Buenos Aires, Argentina (; ; )
| | - D M Canale
- Coordinación Nacional de Control de Vectores, Córdoba, X5000 Argentina , and
| | - R E Gürtler
- Laboratory of Eco-Epidemiology, Department of Ecology, Genetics and Evolution, Universidad de Buenos Aires-IEGEBA (CONICET-UBA), C1428 Buenos Aires, Argentina (; ; ),
| |
Collapse
|
14
|
Abad-Franch F, Lima MM, Sarquis O, Gurgel-Gonçalves R, Sánchez-Martín M, Calzada J, Saldaña A, Monteiro FA, Palomeque FS, Santos WS, Angulo VM, Esteban L, Dias FBS, Diotaiuti L, Bar ME, Gottdenker NL. On palms, bugs, and Chagas disease in the Americas. Acta Trop 2015. [PMID: 26196330 DOI: 10.1016/j.actatropica.2015.07.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Palms are ubiquitous across Neotropical landscapes, from pristine forests or savannahs to large cities. Although palms provide useful ecosystem services, they also offer suitable habitat for triatomines and for Trypanosoma cruzi mammalian hosts. Wild triatomines often invade houses by flying from nearby palms, potentially leading to new cases of human Chagas disease. Understanding and predicting triatomine-palm associations and palm infestation probabilities is important for enhancing Chagas disease prevention in areas where palm-associated vectors transmit T. cruzi. We present a comprehensive overview of palm infestation by triatomines in the Americas, combining a thorough reanalysis of our published and unpublished records with an in-depth review of the literature. We use site-occupancy modeling (SOM) to examine infestation in 3590 palms sampled with non-destructive methods, and standard statistics to describe and compare infestation in 2940 palms sampled by felling-and-dissection. Thirty-eight palm species (18 genera) have been reported to be infested by ∼39 triatomine species (10 genera) from the USA to Argentina. Overall infestation varied from 49.1-55.3% (SOM) to 62.6-66.1% (dissection), with important heterogeneities among sub-regions and particularly among palm species. Large palms with complex crowns (e.g., Attalea butyracea, Acrocomia aculeata) and some medium-crowned palms (e.g., Copernicia, Butia) are often infested; in slender, small-crowned palms (e.g., Euterpe) triatomines associate with vertebrate nests. Palm infestation tends to be higher in rural settings, but urban palms can also be infested. Most Rhodnius species are probably true palm specialists, whereas Psammolestes, Eratyrus, Cavernicola, Panstrongylus, Triatoma, Alberprosenia, and some Bolboderini seem to use palms opportunistically. Palms provide extensive habitat for enzootic T. cruzi cycles and a critical link between wild cycles and transmission to humans. Unless effective means to reduce contact between people and palm-living triatomines are devised, palms will contribute to maintaining long-term and widespread, albeit possibly low-intensity, transmission of human Chagas disease.
Collapse
Affiliation(s)
- Fernando Abad-Franch
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane - Fiocruz, Rua Teresina 476, Manaus 69057-070, Amazonas, Brazil; Laboratório de Triatomíneos e Epidemiologia da Doença de Chagas, Centro de Pesquisa René Rachou - Fiocruz, Av. Augusto de Lima 1715, Belo Horizonte 30190-002, Minas Gerais, Brazil.
| | - Marli M Lima
- Laboratório de Ecoepidemiologia da Doença de Chagas, Instituto Oswaldo Cruz - Fiocruz, Av. Brasil 4365, Rio de Janeiro 21045-900, Rio de Janeiro, Brazil
| | - Otília Sarquis
- Laboratório de Ecoepidemiologia da Doença de Chagas, Instituto Oswaldo Cruz - Fiocruz, Av. Brasil 4365, Rio de Janeiro 21045-900, Rio de Janeiro, Brazil
| | - Rodrigo Gurgel-Gonçalves
- Laboratório de Parasitologia Médica e Biologia de Vetores, Faculdade de Medicina, Universidade de Brasília, Asa Norte, Brasília 70904-970, Distrito Federal, Brazil
| | - María Sánchez-Martín
- Instituto de Salud Global de Barcelona - ISGlobal, c/ Rosselló 132, 5° 2ª, 08036 Barcelona, Catalunya, Spain
| | - José Calzada
- Insituto Conmemorativo Gorgas de Estudios de la Salud, Av. Justo Arosemena y Calle 32, Panamá 0816-02593, Panama
| | - Azael Saldaña
- Insituto Conmemorativo Gorgas de Estudios de la Salud, Av. Justo Arosemena y Calle 32, Panamá 0816-02593, Panama
| | - Fernando A Monteiro
- Laboratório de Epidemiologia e Sistemática Molecular, Instituto Oswaldo Cruz - Fiocruz, Av. Brasil 4365, Rio de Janeiro 21045-900, Rio de Janeiro, Brazil
| | - Francisco S Palomeque
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329-4027, USA
| | - Walter S Santos
- Laboratório de Doença de Chagas, Seção de Parasitologia, Instituto Evandro Chagas - SVS/MS, Rodovia BR 316 km 7 s/n, 67030-000 Ananindeua, Pará, Brazil
| | - Victor M Angulo
- Centro de Investigaciones en Enfermedades Tropicales - CINTROP, Universidad Industrial de Santander, Calle 9 no. 27, Piedecuesta 680002, Santander, Colombia
| | - Lyda Esteban
- Centro de Investigaciones en Enfermedades Tropicales - CINTROP, Universidad Industrial de Santander, Calle 9 no. 27, Piedecuesta 680002, Santander, Colombia
| | - Fernando B S Dias
- Laboratório de Triatomíneos e Epidemiologia da Doença de Chagas, Centro de Pesquisa René Rachou - Fiocruz, Av. Augusto de Lima 1715, Belo Horizonte 30190-002, Minas Gerais, Brazil
| | - Liléia Diotaiuti
- Laboratório de Triatomíneos e Epidemiologia da Doença de Chagas, Centro de Pesquisa René Rachou - Fiocruz, Av. Augusto de Lima 1715, Belo Horizonte 30190-002, Minas Gerais, Brazil
| | - María Esther Bar
- Laboratorio de Artrópodos, Facultad de Ciencia Exactas y Naturales, Universidad Nacional del Nordeste, Av. Libertad 5470, CP 3400 Corrientes, Argentina
| | - Nicole L Gottdenker
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
15
|
Salvatella R, Irabedra P, Castellanos LG. Interruption of vector transmission by native vectors and "the art of the possible". Mem Inst Oswaldo Cruz 2015; 109:122-5. [PMID: 24626310 PMCID: PMC4005527 DOI: 10.1590/0074-0276140338] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/26/2013] [Indexed: 11/22/2022] Open
Abstract
In a recent article in the Reader’s Opinion, advantages and disadvantages of the
certification processes of interrupted Chagas disease transmission (American
trypanosomiasis) by native vector were discussed. Such concept, accepted by those
authors for the case of endemic situations with introduced vectors, has been built on
a long and laborious process by endemic countries and Subregional Initiatives for
Prevention, Control and Treatment of Chagas, with Technical Secretariat of the Pan
American Health Organization/World Health Organization, to create a horizon target
and goal to concentrate priorities and resource allocation and actions. With varying
degrees of sucess, which are not replaceable for a certificate of good practice, has
allowed during 23 years to safeguard the effective control of transmission of
Trypanosoma cruzi not to hundreds of thousands, but millions of people at risk
conditions, truly “the art of the possible.”
Collapse
Affiliation(s)
- Roberto Salvatella
- Communicable Diseases and Health Analysis Department, Neglected, Tropical and Vector Borne Diseases Unit, WashingtonDC, USA, Communicable Diseases and Health Analysis Department , Neglected, Tropical and Vector Borne Diseases Unit , Washington DC , USA
| | - Pilar Irabedra
- Communicable Diseases and Health Analysis Department, Neglected, Tropical and Vector Borne Diseases Unit, WashingtonDC, USA, Communicable Diseases and Health Analysis Department , Neglected, Tropical and Vector Borne Diseases Unit , Washington DC , USA
| | - Luis G Castellanos
- Communicable Diseases and Health Analysis Department, Neglected, Tropical and Vector Borne Diseases Unit, WashingtonDC, USA, Communicable Diseases and Health Analysis Department , Neglected, Tropical and Vector Borne Diseases Unit , Washington DC , USA
| |
Collapse
|
16
|
Abad-Franch F, Valença-Barbosa C, Sarquis O, Lima MM. All that glisters is not gold: sampling-process uncertainty in disease-vector surveys with false-negative and false-positive detections. PLoS Negl Trop Dis 2014; 8:e3187. [PMID: 25233352 PMCID: PMC4169387 DOI: 10.1371/journal.pntd.0003187] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/14/2014] [Indexed: 11/06/2022] Open
Abstract
Background Vector-borne diseases are major public health concerns worldwide. For many of them, vector control is still key to primary prevention, with control actions planned and evaluated using vector occurrence records. Yet vectors can be difficult to detect, and vector occurrence indices will be biased whenever spurious detection/non-detection records arise during surveys. Here, we investigate the process of Chagas disease vector detection, assessing the performance of the surveillance method used in most control programs – active triatomine-bug searches by trained health agents. Methodology/Principal Findings Control agents conducted triplicate vector searches in 414 man-made ecotopes of two rural localities. Ecotope-specific ‘detection histories’ (vectors or their traces detected or not in each individual search) were analyzed using ordinary methods that disregard detection failures and multiple detection-state site-occupancy models that accommodate false-negative and false-positive detections. Mean (±SE) vector-search sensitivity was ∼0.283±0.057. Vector-detection odds increased as bug colonies grew denser, and were lower in houses than in most peridomestic structures, particularly woodpiles. False-positive detections (non-vector fecal streaks misidentified as signs of vector presence) occurred with probability ∼0.011±0.008. The model-averaged estimate of infestation (44.5±6.4%) was ∼2.4–3.9 times higher than naïve indices computed assuming perfect detection after single vector searches (11.4–18.8%); about 106–137 infestation foci went undetected during such standard searches. Conclusions/Significance We illustrate a relatively straightforward approach to addressing vector detection uncertainty under realistic field survey conditions. Standard vector searches had low sensitivity except in certain singular circumstances. Our findings suggest that many infestation foci may go undetected during routine surveys, especially when vector density is low. Undetected foci can cause control failures and induce bias in entomological indices; this may confound disease risk assessment and mislead program managers into flawed decision making. By helping correct bias in naïve indices, the approach we illustrate has potential to critically strengthen vector-borne disease control-surveillance systems. Vector-borne disease prevention often relies on health agents inspecting dwellings and eliminating the vector infestation foci they detect. The effectiveness of prevention programs thus depends on vector-detection performance. Unfortunately, detection failures can be common, particularly when infestation is rare and vector foci small. Although this can threaten vector control, the actual performance of vector searches has seldom been investigated in detail. Here, we assess Chagas disease vector detection by trained control-surveillance agents. We used models that explicitly account for detection errors to analyze triplicate vector detection/non-detection records from 414 man-made ‘ecotopes’ (houses, henhouses, woodpiles, etc.) in two rural localities. On average, a single round of vector searches correctly identified about 28% of the infested ecotopes; detection was more challenging in lightly-infested ecotopes and in some ecotope types, particularly houses and brick piles. After correcting detection errors, we estimated that ∼45% of the ecotopes were most likely infested, while observed rates were ∼11–19%; standard, single-round vector searches therefore missed many infestation foci. Our findings underscore the importance of taking detection failures into account when assessing infestation by disease vectors, and illustrate a straightforward approach to tackle the major but still underappreciated problem of imperfect vector detection.
Collapse
Affiliation(s)
- Fernando Abad-Franch
- Infectious Disease Ecology Laboratory, Instituto Leônidas e Maria Deane – Fiocruz Amazônia, Manaus, Brazil
- * E-mail: ;
| | - Carolina Valença-Barbosa
- Chagas Disease Eco-epidemiology Laboratory, Instituto Oswaldo Cruz – Fiocruz, Rio de Janeiro, Brazil
| | - Otília Sarquis
- Chagas Disease Eco-epidemiology Laboratory, Instituto Oswaldo Cruz – Fiocruz, Rio de Janeiro, Brazil
| | - Marli M. Lima
- Chagas Disease Eco-epidemiology Laboratory, Instituto Oswaldo Cruz – Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Vinhaes MC, de Oliveira SV, Reis PO, de Lacerda Sousa AC, Silva RAE, Obara MT, Bezerra CM, da Costa VM, Alves RV, Gurgel-Gonçalves R. Assessing the vulnerability of Brazilian municipalities to the vectorial transmission of Trypanosoma cruzi using multi-criteria decision analysis. Acta Trop 2014; 137:105-10. [PMID: 24857942 DOI: 10.1016/j.actatropica.2014.05.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 05/11/2014] [Accepted: 05/14/2014] [Indexed: 11/24/2022]
Abstract
Despite the dramatic reduction in Trypanosoma cruzi vectorial transmission in Brazil, acute cases of Chagas disease (CD) continue to be recorded. The identification of areas with greater vulnerability to the occurrence of vector-borne CD is essential to prevention, control, and surveillance activities. In the current study, data on the occurrence of domiciliated triatomines in Brazil (non-Amazonian regions) between 2007 and 2011 were analyzed. Municipalities' vulnerability was assessed based on socioeconomic, demographic, entomological, and environmental indicators using multi-criteria decision analysis (MCDA). Overall, 2275 municipalities were positive for at least one of the six triatomine species analyzed (Panstrongylus megistus, Triatoma infestans, Triatoma brasiliensis, Triatoma pseudomaculata, Triatoma rubrovaria, and Triatoma sordida). The municipalities that were most vulnerable to vector-borne CD were mainly in the northeast region and exhibited a higher occurrence of domiciliated triatomines, lower socioeconomic levels, and more extensive anthropized areas. Most of the 39 new vector-borne CD cases confirmed between 2001 and 2012 in non-Amazonian regions occurred within the more vulnerable municipalities. Thus, MCDA can help to identify the states and municipalities that are most vulnerable to the transmission of T. cruzi by domiciliated triatomines, which is critical for directing adequate surveillance, prevention, and control activities. The methodological approach and results presented here can be used to enhance CD surveillance in Brazil.
Collapse
|
18
|
Valença-Barbosa C, Lima MM, Sarquis O, Bezerra CM, Abad-Franch F. Modeling disease vector occurrence when detection is imperfect II: Drivers of site-occupancy by synanthropic Triatoma brasiliensis in the Brazilian northeast. PLoS Negl Trop Dis 2014; 8:e2861. [PMID: 24811125 PMCID: PMC4014420 DOI: 10.1371/journal.pntd.0002861] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/28/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Understanding the drivers of habitat selection by insect disease vectors is instrumental to the design and operation of rational control-surveillance systems. One pervasive yet often overlooked drawback of vector studies is that detection failures result in some sites being misclassified as uninfested; naïve infestation indices are therefore biased, and this can confound our view of vector habitat preferences. Here, we present an initial attempt at applying methods that explicitly account for imperfect detection to investigate the ecology of Chagas disease vectors in man-made environments. METHODOLOGY We combined triplicate-sampling of individual ecotopes (n = 203) and site-occupancy models (SOMs) to test a suite of pre-specified hypotheses about habitat selection by Triatoma brasiliensis. SOM results were compared with those of standard generalized linear models (GLMs) that assume perfect detection even with single bug-searches. PRINCIPAL FINDINGS Triatoma brasiliensis was strongly associated with key hosts (native rodents, goats/sheep and, to a lesser extent, fowl) in peridomestic environments; ecotope structure had, in comparison, small to negligible effects, although wooden ecotopes were slightly preferred. We found evidence of dwelling-level aggregation of infestation foci; when there was one such focus, same-dwelling ecotopes, whether houses or peridomestic structures, were more likely to become infested too. GLMs yielded negatively-biased covariate effect estimates and standard errors; both were, on average, about four times smaller than those derived from SOMs. CONCLUSIONS/SIGNIFICANCE Our results confirm substantial population-level ecological heterogeneity in T. brasiliensis. They also suggest that, at least in some sites, control of this species may benefit from peridomestic rodent control and changes in goat/sheep husbandry practices. Finally, our comparative analyses highlight the importance of accounting for the various sources of uncertainty inherent to vector studies, including imperfect detection. We anticipate that future research on infectious disease ecology will increasingly rely on approaches akin to those described here.
Collapse
Affiliation(s)
- Carolina Valença-Barbosa
- Chagas Disease Eco-epidemiology Laboratory, Instituto Oswaldo Cruz – Fiocruz, Rio de Janeiro, Brazil
| | - Marli M. Lima
- Chagas Disease Eco-epidemiology Laboratory, Instituto Oswaldo Cruz – Fiocruz, Rio de Janeiro, Brazil
| | - Otília Sarquis
- Chagas Disease Eco-epidemiology Laboratory, Instituto Oswaldo Cruz – Fiocruz, Rio de Janeiro, Brazil
| | | | - Fernando Abad-Franch
- Infectious Disease Ecology Laboratory, Instituto Leônidas e Maria Deane – Fiocruz, Manaus, Brazil
- * E-mail:
| |
Collapse
|
19
|
Ramsey JM, Elizondo-Cano M, Sanchez-González G, Peña-Nieves A, Figueroa-Lara A. Opportunity cost for early treatment of Chagas disease in Mexico. PLoS Negl Trop Dis 2014; 8:e2776. [PMID: 24743112 PMCID: PMC3990484 DOI: 10.1371/journal.pntd.0002776] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 02/22/2014] [Indexed: 11/18/2022] Open
Abstract
Background Given current neglect for Chagas disease in public health programs in Mexico, future healthcare and economic development policies will need a more robust model to analyze costs and impacts of timely clinical attention of infected populations. Methodology/Principal Findings A Markov decision model was constructed to simulate the natural history of a Chagas disease cohort in Mexico and to project the associated short and long-term clinical outcomes and corresponding costs. The lifetime cost for a timely diagnosed and treated Chagas disease patient is US$ 10,160, while the cost for an undiagnosed individual is US$ 11,877. The cost of a diagnosed and treated case increases 24-fold from early acute to indeterminate stage. The major cost component for lifetime cost was working days lost, between 44% and 75%, depending on the program scenario for timely diagnosis and treatment. Conclusions/Significance In the long term, it is cheaper to diagnose and treat chagasic patients early, instead of doing nothing. This finding by itself argues for the need to shift current policy, in order to prioritize and attend this neglected disease for the benefit of social and economic development, which implies including treatment drugs in the national formularies. Present results are even more relevant, if one considers that timely diagnosis and treatment can arrest clinical progression and enhance a chronic patient's quality of life. Chagas disease is caused by the flagellated protozoan parasite Trypanosoma cruzi, vectored in Mexico in both rural and urban areas via one of 18 triatomine bug species. Despite ample morbidity and mortality evidence, however, health policy managers in Mexico have continued to neglect prevention, control and clinical attention for the disease. A computer simulation Markov model was programmed and fed with information from published evidence and an expert panel. The lifetime cost for a timely diagnosed and treated Chagas disease patient is US$ 10,160, while the cost for an undiagnosed individual is US$ 11,877. The cost of a diagnosed and treated case increases 24-fold from early acute to indeterminate stage. The major cost component for lifetime cost was working days lost, between 44% and 75%, depending on the program scenario for timely diagnosis and treatment. Timely medical attention for infected individuals is cheaper than doing nothing, especially if life and labor costs are included. The evidence provided, essential for decision-making, should be used to develop disease-specific prevention, control and patient clinical diagnosis and treatment policies for Chagas disease in Mexico.
Collapse
Affiliation(s)
- Janine M. Ramsey
- Regional Center for Public Health Research, National Institute for Public Health Research, Tapachula, Chiapas, Mexico
| | - Miguel Elizondo-Cano
- Center for Research in Health Systems, National Institute for Public Health Research, Cuernavaca, Mexico
| | - Gilberto Sanchez-González
- Center for Research in Health Systems, National Institute for Public Health Research, Cuernavaca, Mexico
| | | | - Alejandro Figueroa-Lara
- Epidemiological Research Unit and Health Services, National Medical Center XXI Century, Mexican Social Security Institute, Mexico City, Mexico
- * E-mail:
| |
Collapse
|
20
|
Dorňáková V, Salazar-Sanchez R, Borrini-Mayori K, Carrion-Navarro O, Levy MZ, Schaub GA, Schwarz A. Characterization of guinea pig antibody responses to salivary proteins of Triatoma infestans for the development of a triatomine exposure marker. PLoS Negl Trop Dis 2014; 8:e2783. [PMID: 24699441 PMCID: PMC3974673 DOI: 10.1371/journal.pntd.0002783] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 02/24/2014] [Indexed: 11/22/2022] Open
Abstract
Background Salivary proteins of Triatoma infestans elicit humoral immune responses in their vertebrate hosts. These immune responses indicate exposure to triatomines and thus can be a useful epidemiological tool to estimate triatomine infestation. In the present study, we analyzed antibody responses of guinea pigs to salivary antigens of different developmental stages of four T. infestans strains originating from domestic and/or peridomestic habitats in Argentina, Bolivia, Chile and Peru. We aimed to identify developmental stage- and strain-specific salivary antigens as potential markers of T. infestans exposure. Methodology and Principal Findings In SDS-PAGE analysis of salivary proteins of T. infestans the banding pattern differed between developmental stages and strains of triatomines. Phenograms constructed from the salivary profiles separated nymphal instars, especially the 5th instar, from adults. To analyze the influence of stage- and strain-specific differences in T. infestans saliva on the antibody response of guinea pigs, twenty-one guinea pigs were exposed to 5th instar nymphs and/or adults of different T. infestans strains. Western blot analyses using sera of exposed guinea pigs revealed stage- and strain-specific variations in the humoral response of animals. In total, 27 and 17 different salivary proteins reacted with guinea pig sera using IgG and IgM antibodies, respectively. Despite all variations of recognized salivary antigens, an antigen of 35 kDa reacted with sera of almost all challenged guinea pigs. Conclusion Salivary antigens are increasingly considered as an epidemiological tool to measure exposure to hematophagous arthropods, but developmental stage- and strain-specific variations in the saliva composition and the respective differences of immunogenicity are often neglected. Thus, the development of a triatomine exposure marker for surveillance studies after triatomine control campaigns requires detailed investigations. Our study resulted in the identification of a potential antigen as useful marker of T. infestans exposure. Chagas disease is caused by the protozoan parasite Trypanosoma cruzi, and currently affects approximately 8 million people in Latin American countries. Although vector control campaigns against the most effective Chagas disease vector, Triatoma infestans, have been highly successful, T. infestans is re-establishing in once-endemic regions. To monitor re-establishing triatomines, new epidemiological tools are needed. Antibody responses of hosts to triatomine salivary proteins represent a promising tool to detect biting bugs, and highly immunogenic salivary antigens may be used as markers of triatomine exposure. Therefore, we analyzed the antibody response of guinea pigs, common peridomestic hosts of T. infestans, to salivary proteins of nymphs and adults of four different T. infestans strains from Argentina, Bolivia, Chile and Peru. Developmental stage- and strain-specific proteins in the saliva of T. infestans influenced the antibody response of guinea pigs, and different salivary antigens were recognized by guinea pig sera. Despite the variations of immunogenic salivary antigens, a 35 kDa antigen was recognized by almost all guinea pig sera and this antigen may be a useful marker of T. infestans exposure.
Collapse
Affiliation(s)
- Veronika Dorňáková
- Institute of Parasitology, Biology Centre of the Academy of Sciences of Czech Republic, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | | | | | | | - Michael Z. Levy
- Universidad Peruana Cayetano Heredia, Sede de Arequipa, Arequipa, Peru
- Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Günter A. Schaub
- Zoology/Parasitology Group, Ruhr-University Bochum, Bochum, Germany
| | - Alexandra Schwarz
- Institute of Parasitology, Biology Centre of the Academy of Sciences of Czech Republic, Ceske Budejovice, Czech Republic
- * E-mail:
| |
Collapse
|
21
|
Espinoza N, Borrás R, Abad-Franch F. Chagas disease vector control in a hyperendemic setting: the first 11 years of intervention in Cochabamba, Bolivia. PLoS Negl Trop Dis 2014; 8:e2782. [PMID: 24699407 PMCID: PMC3974664 DOI: 10.1371/journal.pntd.0002782] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 02/24/2014] [Indexed: 11/25/2022] Open
Abstract
Background Chagas disease has historically been hyperendemic in the Bolivian Department of Cochabamba. In the early 2000s, an extensive vector control program was implemented; 1.34 million dwelling inspections were conducted to ascertain infestation (2000–2001/2003–2011), with blanket insecticide spraying in 2003–2005 and subsequent survey-spraying cycles targeting residual infestation foci. Here, we assess the effects of this program on dwelling infestation rates (DIRs). Methodology/Principal Findings Program records were used to calculate annual, municipality-level aggregate DIRs (39 municipalities); very high values in 2000–2001 (median: 0.77–0.69) dropped to ∼0.03 from 2004 on. A linear mixed model (with municipality as a random factor) suggested that infestation odds decreased, on average, by ∼28% (95% confidence interval [CI95] 6–44%) with each 10-fold increase in control effort. A second, better-fitting mixed model including year as an ordinal predictor disclosed large DIR reductions in 2001–2003 (odds ratio [OR] 0.11, CI95 0.06–0.19) and 2003–2004 (OR 0.22, CI95 0.14–0.34). Except for a moderate decrease in 2005–2006, no significant changes were detected afterwards. In both models, municipality-level DIRs correlated positively with previous-year DIRs and with the extent of municipal territory originally covered by montane dry forests. Conclusions/Significance Insecticide-spraying campaigns had very strong, long-lasting effects on DIRs in Cochabamba. However, post-intervention surveys consistently detected infestation in ∼3% of dwellings, underscoring the need for continuous surveillance; higher DIRs were recorded in the capital city and, more generally, in municipalities dominated by montane dry forest – an eco-region where wild Triatoma infestans are widespread. Traditional strategies combining insecticide spraying and longitudinal surveillance are thus confirmed as very effective means for area-wide Chagas disease vector control; they will be particularly beneficial in highly-endemic settings, but should also be implemented or maintained in other parts of Latin America where domestic infestation by triatomines is still commonplace. Chagas disease is among the most serious public health problems in Latin America; the highest prevalence of infection by its causative agent, the parasite Trypanosoma cruzi, has historically been recorded in some parts of Bolivia. In the early 2000s, a massive insecticide-spraying program was set up to control dwelling infestation by the blood-sucking bugs that transmit the disease. Here we provide a detailed assessment of the effects of this program in the Department of Cochabamba, one of the most highly-endemic settings worldwide. Our analyses show that municipality-level dwelling infestation rates plummeted from over 70–80% in 2001–2003 to about 2–3% in 2004–2011. This residual infestation was higher in the capital city and, more generally, in municipalities where montane dry forests dominate – probably because wild populations of the main vector, Triatoma infestans, are common in that eco-region. Despite the impressive early achievements of the program, with about 0.5 million people protected from contagion, sustained disease control will require fully operational long-term surveillance systems.
Collapse
Affiliation(s)
- Natalisisy Espinoza
- Departamento de Microbiología y Ecología, Facultad de Medicina y Odontología, Universitat de València, Valencia, Spain
| | - Rafael Borrás
- Departamento de Microbiología y Ecología, Facultad de Medicina y Odontología, Universitat de València, Valencia, Spain
| | | |
Collapse
|
22
|
Gascon J, Vilasanjuan R, Lucas A. The need for global collaboration to tackle hidden public health crisis of Chagas disease. Expert Rev Anti Infect Ther 2014; 12:393-5. [PMID: 24579882 DOI: 10.1586/14787210.2014.896194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chagas disease has a unique history where the confluence of rural and marginalized populations affected, the deeply rooted attitudes, clinical practices and an underfunded research area has resulted in one of the most current neglected health issues. Globalization has changed the epidemiology of the disease, which is now found throughout the Americas but also in Europe and Japan. Thus, Chagas disease is a global public health problem. In this new paradigm, a strong partnership aimed to coordinate actions to scale up diagnostics and treatments, to engage communities and health practitioners in implementation and advocating for sustained funding for the development of improved tools, can play a critical role to leave behind this story of neglect. Even with the imperfect tools currently available, still much can be done.
Collapse
Affiliation(s)
- Joaquim Gascon
- Barcelona Centre for International Health Research (CRESIB), Barcelona, Spain
| | | | | |
Collapse
|
23
|
Menna-Barreto RFS, Perales J. The expected outcome of the Trypanosoma cruzi proteomic map: a review of its potential biological applications for drug target discovery. Subcell Biochem 2014; 74:305-322. [PMID: 24264251 DOI: 10.1007/978-94-007-7305-9_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Chagas disease is a neglected tropical illness endemic to Latin America, and its treatment remains unsatisfactory. This disease is caused by the hemoflagellate protozoan Trypanosoma cruzi, which has a complex life cycle involving three evolutive forms in both vertebrate and invertebrate hosts. Targeting metabolic pathways in the parasite for rational drug design represents a promising research field. This research area requires high performance techniques and proteomics become a powerful tool in this context. Here, we review advances in the construction of proteomic maps of the different forms of T. cruzi, emphasizing their biological applications towards the identification of alternative candidates for drug intervention.
Collapse
Affiliation(s)
- Rubem F S Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-360, Brazil
| | | |
Collapse
|
24
|
Carbajal-de-la-Fuente AL, Yadón ZE. A scientometric evaluation of the Chagas disease implementation research programme of the PAHO and TDR. PLoS Negl Trop Dis 2013; 7:e2445. [PMID: 24244761 PMCID: PMC3820726 DOI: 10.1371/journal.pntd.0002445] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Special Programme for Research and Training in Tropical Diseases (TDR) is an independent global programme of scientific collaboration cosponsored by the United Nations Children's Fund, the United Nations Development Program, the World Bank, and the World Health Organization. TDR's strategy is based on stewardship for research on infectious diseases of poverty, empowerment of endemic countries, research on neglected priority needs, and the promotion of scientific collaboration influencing global efforts to combat major tropical diseases. In 2001, in view of the achievements obtained in the reduction of transmission of Chagas disease through the Southern Cone Initiative and the improvement in Chagas disease control activities in some countries of the Andean and the Central American Initiatives, TDR transferred the Chagas Disease Implementation Research Programme (CIRP) to the Communicable Diseases Unit of the Pan American Health Organization (CD/PAHO). This paper presents a scientometric evaluation of the 73 projects from 18 Latin American and European countries that were granted by CIRP/PAHO/TDR between 1997 and 2007. We analyzed all final reports of the funded projects and scientific publications, technical reports, and human resource training activities derived from them. Results about the number of projects funded, countries and institutions involved, gender analysis, number of published papers in indexed scientific journals, main topics funded, patents inscribed, and triatomine species studied are presented and discussed. The results indicate that CIRP/PAHO/TDR initiative has contributed significantly, over the 1997–2007 period, to Chagas disease knowledge as well as to the individual and institutional-building capacity.
Collapse
Affiliation(s)
- Ana Laura Carbajal-de-la-Fuente
- Leishmaniasis Transmitters Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratory of Eco-Epidemiology, Department of Ecology, Genetics and Evolution, (IEGEBA-CONICET) University of Buenos Aires, Buenos Aires, Argentina
| | - Zaida E. Yadón
- Communicable Diseases Unit, Health Surveillance, Disease Prevention and Control, Pan American Health Organization, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
25
|
Diogo EBT, Dias GG, Rodrigues BL, Guimarães TT, Valença WO, Camara CA, de Oliveira RN, da Silva MG, Ferreira VF, de Paiva YG, Goulart MOF, Menna-Barreto RFS, de Castro SL, da Silva Júnior EN. Synthesis and anti-Trypanosoma cruzi activity of naphthoquinone-containing triazoles: electrochemical studies on the effects of the quinoidal moiety. Bioorg Med Chem 2013; 21:6337-48. [PMID: 24074878 DOI: 10.1016/j.bmc.2013.08.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/18/2013] [Accepted: 08/26/2013] [Indexed: 01/16/2023]
Abstract
In our continued search for novel trypanocidal compounds, twenty-six derivatives of para- and ortho-naphthoquinones coupled to 1,2,3-triazoles were synthesized. These compounds were evaluated against the infective bloodstream form of Trypanosoma cruzi, the etiological agent of Chagas disease. Compounds 17-24, 28-30 and 36-38 are described herein for the first time. Three of these novel compounds (28-30) were found to be more potent than the standard drug benznidazole, with IC50/24h values between 6.8 and 80.8μM. Analysis of the toxicity to heart muscle cells led to LC50/24h of <125, 63.1 and 281.6μM for 28, 29 and 30, respectively. Displaying a selectivity index of 34.3, compound 30 will be further evaluated in vivo. The electrochemical properties of selected compounds were evaluated in an attempt to find correlations with trypanocidal activity, and it was observed that more electrophilic quinones were generally more potent.
Collapse
Affiliation(s)
- Emilay B T Diogo
- Instituto de Ciências Exatas, Departamento de Química, UFMG, 31270-901 Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Post-control surveillance of Triatoma infestans and Triatoma sordida with chemically-baited sticky traps. PLoS Negl Trop Dis 2012; 6:e1822. [PMID: 23029583 PMCID: PMC3441417 DOI: 10.1371/journal.pntd.0001822] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 08/05/2012] [Indexed: 11/20/2022] Open
Abstract
Background Chagas disease prevention critically depends on keeping houses free of triatomine vectors. Insecticide spraying is very effective, but re-infestation of treated dwellings is commonplace. Early detection-elimination of re-infestation foci is key to long-term control; however, all available vector-detection methods have low sensitivity. Chemically-baited traps are widely used in vector and pest control-surveillance systems; here, we test this approach for Triatoma spp. detection under field conditions in the Gran Chaco. Methodology/Principal Findings Using a repeated-sampling approach and logistic models that explicitly take detection failures into account, we simultaneously estimate vector occurrence and detection probabilities. We then model detection probabilities (conditioned on vector occurrence) as a function of trapping system to measure the effect of chemical baits. We find a positive effect of baits after three (odds ratio [OR] 5.10; 95% confidence interval [CI95] 2.59–10.04) and six months (OR 2.20, CI95 1.04–4.65). Detection probabilities are estimated at p≈0.40–0.50 for baited and at just p≈0.15 for control traps. Bait effect is very strong on T. infestans (three-month assessment: OR 12.30, CI95 4.44–34.10; p≈0.64), whereas T. sordida is captured with similar frequency in baited and unbaited traps. Conclusions/Significance Chemically-baited traps hold promise for T. infestans surveillance; the sensitivity of the system at detecting small re-infestation foci rises from 12.5% to 63.6% when traps are baited with semiochemicals. Accounting for imperfect detection, infestation is estimated at 26% (CI95 16–40) after three and 20% (CI95 11–34) after six months. In the same assessments, traps detected infestation in 14% and 8.5% of dwellings, whereas timed manual searches (the standard approach) did so in just 1.4% of dwellings only in the first survey. Since infestation rates are the main indicator used for decision-making in control programs, the approach we present may help improve T. infestans surveillance and control program management. Triatoma infestans is the main vector of Chagas disease in southern South America. Dwelling-infesting populations are controlled through insecticide-spraying campaigns; however, dwellings are often re-infested when insecticide effects wane, and this leads to the re-establishment of disease transmission. Detecting and eliminating re-infestation foci is therefore crucial to prevent new cases. Unfortunately, available vector detection methods all have low sensitivity. Here, we show that simple sticky traps baited with widely available chemicals are significantly more sensitive than either unbaited traps or active manual searches by trained staff — the standard method used in control programs. Increased trap sensitivity (about 500% higher), together with an analytical approach that takes detection failures into account, allows us to estimate dwelling infestation rates at about 20–26%; in contrast, just 0–1.4% of dwellings were identified as infested by manual searches. This large difference highlights the importance of enhancing surveillance systems, and reveals how crude infestation indices may mislead decision-makers. We conclude that chemically baited sticky traps can help improve T. infestans surveillance systems and thus strengthen vector control program management.
Collapse
|
27
|
da Silva EN, de Melo IM, Diogo EB, Costa VA, de Souza Filho JD, Valença WO, Camara CA, de Oliveira RN, de Araujo AS, Emery FS, dos Santos MR, de Simone CA, Menna-Barreto RF, de Castro SL. On the search for potential anti-Trypanosoma cruzi drugs: Synthesis and biological evaluation of 2-hydroxy-3-methylamino and 1,2,3-triazolic naphthoquinoidal compounds obtained by click chemistry reactions. Eur J Med Chem 2012; 52:304-12. [DOI: 10.1016/j.ejmech.2012.03.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/16/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022]
|
28
|
Hunter GC, Borrini-Mayorí K, Ancca Juárez J, Castillo Neyra R, Verastegui MR, Malaga Chavez FS, Cornejo del Carpio JG, Córdova Benzaquen E, Náquira C, Gilman RH, Bern C, Levy MZ. A field trial of alternative targeted screening strategies for Chagas disease in Arequipa, Peru. PLoS Negl Trop Dis 2012; 6:e1468. [PMID: 22253939 PMCID: PMC3254655 DOI: 10.1371/journal.pntd.0001468] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 11/23/2011] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Chagas disease is endemic in the rural areas of southern Peru and a growing urban problem in the regional capital of Arequipa, population ∼860,000. It is unclear how to implement cost-effective screening programs across a large urban and periurban environment. METHODS We compared four alternative screening strategies in 18 periurban communities, testing individuals in houses with 1) infected vectors; 2) high vector densities; 3) low vector densities; and 4) no vectors. Vector data were obtained from routine Ministry of Health insecticide application campaigns. We performed ring case detection (radius of 15 m) around seropositive individuals, and collected data on costs of implementation for each strategy. RESULTS Infection was detected in 21 of 923 (2.28%) participants. Cases had lived more time on average in rural places than non-cases (7.20 years versus 3.31 years, respectively). Significant risk factors on univariate logistic regression for infection were age (OR 1.02; p = 0.041), time lived in a rural location (OR 1.04; p = 0.022), and time lived in an infested area (OR 1.04; p = 0.008). No multivariate model with these variables fit the data better than a simple model including only the time lived in an area with triatomine bugs. There was no significant difference in prevalence across the screening strategies; however a self-assessment of disease risk may have biased participation, inflating prevalence among residents of houses where no infestation was detected. Testing houses with infected-vectors was least expensive. Ring case detection yielded four secondary cases in only one community, possibly due to vector-borne transmission in this community, apparently absent in the others. CONCLUSIONS Targeted screening for urban Chagas disease is promising in areas with ongoing vector-borne transmission; however, these pockets of epidemic transmission remain difficult to detect a priori. The flexibility to adapt to the epidemiology that emerges during screening is key to an efficient case detection intervention. In heterogeneous urban environments, self-assessments of risk and simple residence history questionnaires may be useful to identify those at highest risk for Chagas disease to guide diagnostic efforts.
Collapse
Affiliation(s)
- Gabrielle C. Hunter
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Katty Borrini-Mayorí
- Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jenny Ancca Juárez
- Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Ricardo Castillo Neyra
- Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | | | | | | | - Eleazar Córdova Benzaquen
- Departamento de Microbiología y Patología, Facultad de Medicina, Universidad Nacional de San Agustín, Arequipa, Peru
| | - César Náquira
- Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Robert H. Gilman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Caryn Bern
- Division of Parasitic Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Michael Z. Levy
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
29
|
Stevens L, Dorn PL, Schmidt JO, Klotz JH, Lucero D, Klotz SA. Kissing bugs. The vectors of Chagas. ADVANCES IN PARASITOLOGY 2011; 75:169-92. [PMID: 21820556 DOI: 10.1016/b978-0-12-385863-4.00008-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A complete picture of Chagas disease requires an appreciation of the many species of kissing bugs and their role in transmitting this disease to humans and other mammals. This chapter provides an overview of the taxonomy of the major species of kissing bugs and their evolution. Knowledge of systematics and biological kinship of these insects may contribute to novel and useful measures to control the bugs. The biology of kissing bugs, their life cycle, method of feeding and other behaviours contributing to the transmission of Trypanosoma cruzi are explained. We close with a discussion of vector control measures and the allergic complications of kissing bug bites, a feature of particular importance in the United States.
Collapse
Affiliation(s)
- Lori Stevens
- Department of Biology, University of Vermont, Burlington, VT, USA
| | | | | | | | | | | |
Collapse
|
30
|
Zulantay I, Corral G, Guzman MC, Aldunate F, Guerra W, Cruz I, Araya A, Tapia V, Marquez F, Muñoz C, Apt W. The investigation of congenital infection by Trypanosoma cruzi in an endemic area of Chile: three protocols explored in a pilot project. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2011; 105:123-8. [PMID: 21396248 DOI: 10.1179/136485911x12899838413583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Given the increasing travel of pregnant women from areas were Trypanosoma cruzi is endemic, the congenital transmission of the parasite has become a global public-health problem. In a recent pilot study, which ran in Chile from 2006 to 2010, three strategies for exploring and managing T. cruzi-infected mothers and their infected or uninfected neonates were investigated. Any protocols applied to the investigation of such mother-and-child pairs need to include the detection of infection in pregnant women, the detection of infection, if any, in the children born to the women, the appropriate treatment of the infected neonates, and the serological-parasitological follow-up of all of the neonates until their medical discharge.
Collapse
Affiliation(s)
- I Zulantay
- Laboratorio de Parasitologia Básico-Clínico, Programa de Biologia Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kirmizibekmez H, Atay I, Kaiser M, Yesilada E, Tasdemir D. In vitro Antiprotozoal Activity of Extracts of five Turkish Lamiaceae Species. Nat Prod Commun 2011. [DOI: 10.1177/1934578x1100601132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The in vitro antiprotozoal activities of crude methanolic extracts from the aerial parts of five Lamiaceae plants ( Salvia tomentosa, S. sclarea, S. dichroantha, Nepeta nuda subsp. nuda and Marrubium astracanicum subsp. macrodon) were evaluated against four parasitic protozoa, i.e. Trypanosoma brucei rhodesiense, T. cruzi, Leishmania donovani and Plasmodium falciparum. The cytotoxic potentials of the extracts on L6 cells were also evaluated. Melarsoprol, benznidazole, miltefosine, chloroquine and podophyllotoxin were used as reference drugs. All crude MeOH extracts showed antiprotozoal potential against at least three parasites, so they were dispersed in water and partitioned against n-hexane and chloroform to yield three subextracts that were screened in the same test systems. The n-hexane extract of N. nuda was the most active against T. brucei rhodesiense while the CHCl3 extracts of S. tomentosa and S. dichroantha showed significant activity against L. donovani. All organic extracts displayed in vitro antimalarial and moderate trypanocidal activities against T. cruzi with the n-hexane extract of S. sclarea being the most active against the latter. The extracts displayed low or no cytotoxicity towards mammalian L6 cells.
Collapse
Affiliation(s)
- Hasan Kirmizibekmez
- Department of Pharmacognosy, Faculty of Pharmacy, University of Yeditepe, 34755 Kayisdagi, Istanbul, Turkey
| | - Irem Atay
- Department of Pharmacognosy, Faculty of Pharmacy, University of Yeditepe, 34755 Kayisdagi, Istanbul, Turkey
| | - Marcel Kaiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstr. 57, CH-4002, Basel, Switzerland
| | - Erdem Yesilada
- Department of Pharmacognosy, Faculty of Pharmacy, University of Yeditepe, 34755 Kayisdagi, Istanbul, Turkey
| | - Deniz Tasdemir
- Centre for Pharmacognosy and Phytotherapy, School of Pharmacy, University of London, London WC1N 1AX, United Kingdom
| |
Collapse
|
32
|
de Castro SL, Batista DGJ, Batista MM, Batista W, Daliry A, de Souza EM, Menna-Barreto RFS, Oliveira GM, Salomão K, Silva CF, Silva PB, Soeiro MDNC. Experimental Chemotherapy for Chagas Disease: A Morphological, Biochemical, and Proteomic Overview of Potential Trypanosoma cruzi Targets of Amidines Derivatives and Naphthoquinones. Mol Biol Int 2011; 2011:306928. [PMID: 22091400 PMCID: PMC3195292 DOI: 10.4061/2011/306928] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/25/2011] [Accepted: 03/21/2011] [Indexed: 01/31/2023] Open
Abstract
Chagas disease (CD), caused by Trypanosoma cruzi, affects approximately eight million individuals in Latin America and is emerging in nonendemic areas due to the globalisation of immigration and nonvectorial transmission routes. Although CD represents an important public health problem, resulting in high morbidity and considerable mortality rates, few investments have been allocated towards developing novel anti-T. cruzi agents. The available therapy for CD is based on two nitro derivatives (benznidazole (Bz) and nifurtimox (Nf)) developed more than four decades ago. Both are far from ideal due to substantial secondary side effects, limited efficacy against different parasite isolates, long-term therapy, and their well-known poor activity in the late chronic phase. These drawbacks justify the urgent need to identify better drugs to treat chagasic patients. Although several classes of natural and synthetic compounds have been reported to act in vitro and in vivo on T. cruzi, since the introduction of Bz and Nf, only a few drugs, such as allopurinol and a few sterol inhibitors, have moved to clinical trials. This reflects, at least in part, the absence of well-established universal protocols to screen and compare drug activity. In addition, a large number of in vitro studies have been conducted using only epimastigotes and trypomastigotes instead of evaluating compounds' activities against intracellular amastigotes, which are the reproductive forms in the vertebrate host and are thus an important determinant in the selection and identification of effective compounds for further in vivo analysis. In addition, due to pharmacokinetics and absorption, distribution, metabolism, and excretion characteristics, several compounds that were promising in vitro have not been as effective as Nf or Bz in animal models of T. cruzi infection. In the last two decades, our team has collaborated with different medicinal chemistry groups to develop preclinical studies for CD and investigate the in vitro and in vivo efficacy, toxicity, selectivity, and parasite targets of different classes of natural and synthetic compounds. Some of these results will be briefly presented, focusing primarily on diamidines and related compounds and naphthoquinone derivatives that showed the most promising efficacy against T. cruzi.
Collapse
Affiliation(s)
- Solange L. de Castro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Denise G. J. Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Marcos M. Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Wanderson Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Anissa Daliry
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Elen M. de Souza
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Rubem F. S. Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Gabriel M. Oliveira
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Kelly Salomão
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Cristiane F. Silva
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Patricia B. Silva
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Maria de Nazaré C. Soeiro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
33
|
Abad-Franch F, Vega MC, Rolón MS, Santos WS, Rojas de Arias A. Community participation in Chagas disease vector surveillance: systematic review. PLoS Negl Trop Dis 2011; 5:e1207. [PMID: 21713022 PMCID: PMC3119642 DOI: 10.1371/journal.pntd.0001207] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 05/01/2011] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Vector control has substantially reduced Chagas disease (ChD) incidence. However, transmission by household-reinfesting triatomines persists, suggesting that entomological surveillance should play a crucial role in the long-term interruption of transmission. Yet, infestation foci become smaller and harder to detect as vector control proceeds, and highly sensitive surveillance methods are needed. Community participation (CP) and vector-detection devices (VDDs) are both thought to enhance surveillance, but this remains to be thoroughly assessed. METHODOLOGY/PRINCIPAL FINDINGS We searched Medline, Web of Knowledge, Scopus, LILACS, SciELO, the bibliographies of retrieved studies, and our own records. Data from studies describing vector control and/or surveillance interventions were extracted by two reviewers. Outcomes of primary interest included changes in infestation rates and the detection of infestation/reinfestation foci. Most results likely depended on study- and site-specific conditions, precluding meta-analysis, but we re-analysed data from studies comparing vector control and detection methods whenever possible. Results confirm that professional, insecticide-based vector control is highly effective, but also show that reinfestation by native triatomines is common and widespread across Latin America. Bug notification by householders (the simplest CP-based strategy) significantly boosts vector detection probabilities; in comparison, both active searches and VDDs perform poorly, although they might in some cases complement each other. CONCLUSIONS/SIGNIFICANCE CP should become a strategic component of ChD surveillance, but only professional insecticide spraying seems consistently effective at eliminating infestation foci. Involvement of stakeholders at all process stages, from planning to evaluation, would probably enhance such CP-based strategies.
Collapse
|