1
|
Liu S, Cai M, Liu Z, Gao W, Li J, Li Y, Abudouxukuer X, Zhang J. Comprehensive Insights into the Development of Antitoxoplasmosis Drugs: Current Advances, Obstacles, and Future Perspectives. J Med Chem 2024; 67:20740-20764. [PMID: 39589152 DOI: 10.1021/acs.jmedchem.4c01733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Current therapies for toxoplasmosis rely on a few drugs, most of which have severe side effects, and seeking ideal therapies for different types of toxoplasmosis is a long-term and challenging mission. Research and development (R&D) of novel drugs against Toxoplasma gondii (T. gondii) has focused on two main directions, the structural modification of lead compounds and natural products. Here we summarize the recent advances in the development of anti-T. gondii drugs from these two perspectives and provide comprehensive insights, reflecting on the advantages and selected molecules in each field. This review also focuses on the current obstacles to the development of novel anti-T. gondii agents, proposes comprehensive solutions, and facilitates future development.
Collapse
Affiliation(s)
- Siyang Liu
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Minghao Cai
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Zhendi Liu
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Weixin Gao
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Junjie Li
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Yuxueqing Li
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Xiayire Abudouxukuer
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Jili Zhang
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| |
Collapse
|
2
|
Tawfeek GM, Abou-El-Naga IF, Hassan EME, Sabry D, Meselhey RA, Younis SS. Protective efficacy of Toxoplasma gondii infected cells-derived exosomes against chronic murine toxoplasmosis. Acta Trop 2023; 248:107041. [PMID: 37858877 DOI: 10.1016/j.actatropica.2023.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Exosomes were isolated from T. gondii infected human hepatoblastoma cells using the exosome isolation kit and characterized by electron microscopy and Western blotting. Exosomes adsorbed to alum adjuvant were evaluated as a potential immunizing agent against murine chronic toxoplasmosis compared to excretory secretory antigens (ESA)-alum. Mice were immunized at days 1, 15 and 29. The levels of IgG, IFN-γ, IL-4 and IL-10, CD4+ and CD8+ T cells were determined using sandwich enzyme-linked immunosorbent assay (sandwich ELISA) at days 14, 28 and 56 of the experiment. Then mice were infected orally with 10 cysts of T. gondii. The protective efficacy of the antigens were evaluated by counting the brain cysts and measuring the aforementioned humoral and cellular parameters 60 days post infection. The results showed that alum increased the protective efficacy of the exosomes. Immunization with exosome-alum induced both humoral and mixed Th1/Th2 cellular immune responses. Exosome-alum gave higher levels of the humoral and cellular parameters, compared to ESA-alum. After challenge infection, exosome-alum significantly reduced the brain cyst burden by 75 % while ESA-alum gave 42 % reduction and evoked higher humoral and cellular immune responses. Therefore, the possibility of using T. gondii infected cells-derived exosome-alum as a vaccine is a new perspective in toxoplasmosis.
Collapse
Affiliation(s)
- Gihan M Tawfeek
- Medical Parasitology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Iman F Abou-El-Naga
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | | | - Dina Sabry
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Badr University in Cairo, Egypt; Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Egypt
| | | | - Salwa Sami Younis
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
El-kady AM, S. Hassan A, Mohamed K, Alfaifi MS, Elshazly H, Alamri ZZ, Wakid MH, Gattan HS, Altwaim SA, Al-Megrin WAI, Younis S. Zinc oxide nanoparticles produced by Zingiber officinale ameliorates acute toxoplasmosis-induced pathological and biochemical alterations and reduced parasite burden in mice model. PLoS Negl Trop Dis 2023; 17:e0011447. [PMID: 37410712 PMCID: PMC10325114 DOI: 10.1371/journal.pntd.0011447] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Although, approximately 30% of the world's population is estimated to be infected with Toxoplasma gondii (T. gondii) with serious manifestations in immunocompromised patients and pregnant females, the available treatment options for toxoplasmosis are limited with serious side effects. Therefore, it is of great importance to identify novel potent, well tolerated candidates for treatment of toxoplasmosis. The present study aimed to evaluate the effect of Zinc oxide nanoparticles (ZnO NPs) synthesized using Zingiber officinale against acute toxoplasmosis in experimentally infected mice. METHODS The ethanolic extract of ginger was used to prepare ZnO NPs. The produced ZnO NPs were characterized in terms of structure and morphology using Fourier Transformed Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), UV- spectroscopy and scanning electron microscopy (SEM). The prepared formula was used in treatment of T. gondii RH virulent strain. Forty animals were divided into four groups, with ten mice per group. The first group was the uninfected, control group. The second group was infected but untreated. The third and the fourth groups received ZnO NPs and Spiramycin orally in a dose of 10 mg/kg and 200 mg/kg/day respectively. The effect of the used formulas on the animals survival rate, parasite burden, liver enzymes -including Alanine transaminase (ALT) and aspartate transaminase (AST)-, nitric oxide (NO) and Catalase antioxidant enzyme (CAT) activity was measured. Moreover, the effect of treatment on histopathological alterations associated with toxoplasmosis was examined. RESULTS Mice treated with ZnO NPs showed the longest survival time with significant reduction in the parasite load in the livers and peritoneal fluids of the same group. Moreover, ZnO NPs treatment was associated with a significant reduction in the level of liver enzymes (ALT, AST) and NO and a significant increase in the antioxidant activity of CAT enzyme. SEM examination of tachyzoites from the peritoneal fluid showed marked distortion of T. gondii tachyzoites isolated from mice treated with ZnO NPs in comparison to untreated group. T. gondii induced histopathological alterations in the liver and brain were reversed by ZnO NPs treatment with restoration of normal tissue morphology. CONCLUSION The produced formula showed a good therapeutic potential in treatment of murine toxoplasmosis as demonstrated by prolonged survival rate, reduced parasite burden, improved T. gondii associated liver injury and histopathological alterations. Thus, we assume that the protective effect observed in the current research is attributed to the antioxidant capability of NPs. Based on the results obtained from the current work, we suggest greenly produced ZnO NPs as a chemotherapeutic agent with good therapeutic potential and high levels of safety in the treatment of toxoplasmosis.
Collapse
Affiliation(s)
- Asmaa M. El-kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Abeer S. Hassan
- Department of Pharmaceutics, Faculty of pharmacy, South Valley University, Qena, Egypt
| | - Khalil Mohamed
- Department of Epidemiology, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Mashael S. Alfaifi
- Department of Epidemiology, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Hayam Elshazly
- Department of Biology, Faculty of Sciences-Scientific Departments, Qassim University, Buraidah, Qassim, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Zaenah Zuhair Alamri
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Majed H. Wakid
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hattan S. Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sarah A. Altwaim
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wafa Abdullah I. Al-Megrin
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Salwa Younis
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Mefloquine loaded niosomes as a promising approach for the treatment of acute and chronic toxoplasmosis. Acta Trop 2023; 239:106810. [PMID: 36581225 DOI: 10.1016/j.actatropica.2022.106810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/09/2022] [Accepted: 12/25/2022] [Indexed: 12/27/2022]
Abstract
Toxoplasmosis is a disease with a worldwide distribution and significant morbidity and mortality. In search of effective treatment, mefloquine (MQ) was repurposed and loaded with niosomes to treat acute and chronic phases of toxoplasmosis in experimental mice. Mice were orally inoculated with 20 cysts of Toxoplasma gondii (ME 49 strain) for the acute model of infection and 10 cysts for the chronic model of infection. Infected mice were dosed with MQ solution or MQ-niosomes at 50 mg/kg/day, starting from the second day post-infection (PI) (acute model) or the fifth week PI (chronic model), and this was continued for six consecutive days. The effects of MQ solution and MQ-niosomes were compared with a pyrimethamine/sulfadiazine (PYR/SDZ) dosing combination as mortality rates, brain cyst number, inflammatory score, and immunohistochemical studies that included an estimation of apoptotic cells (TUNEL assays). In the acute infection model, MQ solution and MQ-niosomes significantly reduced the mortality rate from 45% to 25 and 10%, respectively, compared with infected untreated controls, and decreased the number of brain cysts by 51.5% and 66.9%, respectively. In the chronic infection model, cyst reduction reached 80.9% and 12.3% for MQ solution and MQ-niosomes treatments, respectively. MQ-niosomes significantly decreased inflammation induced by acute or chronic T. gondii infection. Additionally, immunohistochemical analysis revealed that MQ solution and MQ-niosomes significantly increased the number of TUNEL-positive cells in brain tissue, indicative of induction of apoptosis. Collectively, these results indicate that MQ-niosomes may provide a useful delivery strategy to treat both acute and chronic toxoplasmosis.
Collapse
|
5
|
Abdelhamid Elgendy WM, Haggag YA, El-Nouby KA, El-Kowrany SI, El Marhoumy SM. Evaluation of the effect of guanabenz-loaded nanoparticles on chronic toxoplasmosis in mice. Exp Parasitol 2023; 246:108460. [PMID: 36642299 DOI: 10.1016/j.exppara.2023.108460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 10/06/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
Chronic toxoplasmosis which is positively correlated with many neuropsychiatric problems has no curative treatment till now; due to the resistant tissue cysts especially in the brain. In search of an effective treatment, guanabenz-loaded polyethylene glycol poly lactic-co-glycolic acid (PEG-PLGA) nanoparticles was evaluated against chronic experimental toxoplasmosis. For this purpose, each mouse was infected with 10 cysts of Toxoplasma gondii (ME 49 strain). Treated mice received either guanabenz alone (5 mg/kg/day) in subgroup IIa or guanabenz-loaded nanoparticles by full dose in subgroup IIb or guanabenz-loaded nanoparticles by the half dose (2.5 mg/kg/day) in subgroup IIc. Subgroup Ie was treated by pyrimethamine and sulfadiazine. The treatment started on day 25 post-infection for 19 successive days. Then Parasitological, histopathological, immunohistochemical, immunological and ultrastructural morphological studies were performed. The results showed that: subgroup IIb showed the highest statistically significant reduction in the neuroinflammation and brain tissue cysts (77%) with a significant higher efficacy in comparison with pyrimethamine and sulfadiazine and showed the highest level of IFN-γ, while the lowest level was in subgroup IIa. All group II mice showed similar changes of depression and compression of the wall of the cyst. This is marked in subgroup IIb with release of crescent shaped bradyzoite outside the cyst. PEG-PLGA nanoparticles had no toxic effect on the liver or the kidney of the mice. It could be concluded that guanabenz-loaded PEG-PLGA nanoparticles could be promising and safe for treatment of chronic toxoplasmosis.
Collapse
Affiliation(s)
| | - Yusuf A Haggag
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Egypt
| | - Kholoud A El-Nouby
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Egypt
| | - Samy I El-Kowrany
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Egypt
| | | |
Collapse
|
6
|
da Silva M, Teixeira C, Gomes P, Borges M. Promising Drug Targets and Compounds with Anti- Toxoplasma gondii Activity. Microorganisms 2021; 9:1960. [PMID: 34576854 PMCID: PMC8471693 DOI: 10.3390/microorganisms9091960] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/25/2022] Open
Abstract
Toxoplasmosis is a parasitic disease caused by the globally distributed protozoan parasite Toxoplasma gondii, which infects around one-third of the world population. This disease may result in serious complications for fetuses, newborns, and immunocompromised individuals. Current treatment options are old, limited, and possess toxic side effects. Long treatment durations are required since the current therapeutic system lacks efficiency against T. gondii tissue cysts, promoting the establishment of latent infection. This review highlights the most promising drug targets involved in anti-T. gondii drug discovery, including the mitochondrial electron transport chain, microneme secretion pathway, type II fatty acid synthesis, DNA synthesis and replication and, DNA expression as well as others. A description of some of the most promising compounds demonstrating antiparasitic activity, developed over the last decade through drug discovery and drug repurposing, is provided as a means of giving new perspectives for future research in this field.
Collapse
Affiliation(s)
- Marco da Silva
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal;
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal; (C.T.); (P.G.)
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal; (C.T.); (P.G.)
| | - Margarida Borges
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
7
|
Repurposing auranofin for treatment of Experimental Cerebral Toxoplasmosis. Acta Parasitol 2021; 66:827-836. [PMID: 33555553 DOI: 10.1007/s11686-021-00337-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
PURPOSES Evaluate the effect of auranofin on the early and late stages of chronic infection with Toxoplasma gondii avirulent ME49 strain. METHODS Swiss albino mice were orally inoculated with 10 cysts of Toxoplasma gondii, and orally treated with auranofin or septazole in daily doses of 20 mg/kg or 100 mg /kg, respectively, for 30 days. Treatment began either on the same day of infection and mice were sacrificed at the 60th day postinfection or the treatment started after 60 days of infection and mice were sacrificed at the 90th day postinfection. RESULTS Auranofin significantly reduced the brain cyst burden and inflammatory reaction at both stages of infection compared to the infected non-treated control. More remarkably, auranofin significant reduced the brain cyst burden in the late stage, while septazole failed. Hydrogen peroxide level was significantly increased in the brain homogenate of mice treated with auranofin only at the early stage of infection. Ultrastructral studies revealed that the anti-Toxoplasma effect of auranofin is achieved by changing the membrane permeability and inducing apoptosis. CONCLUSIONS Thus, auranofin could be an alternative for the standard treatment regimen of toxoplasmosis and these results are considered another achievement for the drug against parasitic infection. Being a FDA-approved drug, it can be rapidly evaluated in clinical trials.
Collapse
|
8
|
Abou-El-Naga IF, Gomaa MM, ElAchy SN. Effect of HIV aspartyl protease inhibitors on experimental infection with a cystogenic Me49 strain of Toxoplasma gondii. Pathog Glob Health 2021; 116:107-118. [PMID: 34420500 DOI: 10.1080/20477724.2021.1967628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Toxoplasmosis is a zoonotic disease of major significant perspectives in public health and veterinary medicine. So far, the available drugs control only the active infection, once the parasite encysts in the tissues, they lose their efficacy. Cytokines; IFN-γ and IL-10, play a critical role in the modulation of toxoplasmic encephalitis and neuro-inflammation in chronic toxoplasmosis. Antiretroviral protease inhibitors applied in the treatment of acquired immunodeficiency syndrome, revealed activity against multiple parasites. Aluvia (lopinavir/ritonavir) (L/R); an aspartyl protease inhibitor, had efficiently treated T. gondii RH strain infection. We investigated the potential activity of L/R against experimental T. gondii infection with a cystogenic Me49 strain in mice, considering the role of IFN-γ and IL-10 in the neuropathology versus pyrimethamine-sulfadiazine combination therapy. Three aluvia regimens were applied; starting on the day of infection (acute phase), 2-week PI (early chronic phase) and eight weeks PI (late chronic phase). L/R reduced the brain-tissue cyst burden significantly in all treatment regimens. It impaired the parasite infectivity markedly in the late chronic phase. Ultrastructural changes were detected in Toxoplasma cyst membrane and wall, bradyzoite membrane and nuclear envelope. The signs of bradyzoite paraptosis and cytoplasmic lipid droplets were observed. L/R had significantly reduced the brain-homogenate levels of IFN-γ and IL-10 in its three regimens however, they could not reach the normal level in chronic phases. Cerebral hypercellularity, perivascular inflammatory response, lymphoplasmacytic infiltrates and glial cellular reaction were ameliorated by L/R treatment. Herein, L/R was proved to possess promising preventive and therapeutic perspectives in chronic cerebral toxoplasmosis.
Collapse
Affiliation(s)
- Iman Fathy Abou-El-Naga
- Department Of Medical Parasitology, Faculty Of Medicine, Alexandria University, Alexandria, Egypt
| | - Maha Mohamed Gomaa
- Department Of Medical Parasitology, Faculty Of Medicine, Alexandria University, Alexandria, Egypt
| | - Samar Nabil ElAchy
- Department Of Pathology, Faculty Of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Synthesis and Antiparasitic Activity of New Conjugates—Organic Drugs Tethered to Trithiolato-Bridged Dinuclear Ruthenium(II)–Arene Complexes. INORGANICS 2021. [DOI: 10.3390/inorganics9080059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tethering known drugs to a metalorganic moiety is an efficient approach for modulating the anticancer, antibacterial, and antiparasitic activity of organometallic complexes. This study focused on the synthesis and evaluation of new dinuclear ruthenium(II)–arene compounds linked to several antimicrobial compounds such as dapsone, sulfamethoxazole, sulfadiazine, sulfadoxine, triclosan, metronidazole, ciprofloxacin, as well as menadione (a 1,4-naphtoquinone derivative). In a primary screen, 30 compounds (17 hybrid molecules, diruthenium intermediates, and antimicrobials) were assessed for in vitro activity against transgenic T. gondii tachyzoites constitutively expressing β-galactosidase (T. gondii β-gal) at 0.1 and 1 µM. In parallel, the cytotoxicity in noninfected host cells (human foreskin fibroblasts, HFF) was determined by an alamarBlue assay. When assessed at 1 µM, five compounds strongly impaired parasite proliferation by >90%, and HFF viability was retained at 50% or more, and they were further subjected to T. gondii β-gal dose-response studies. Two compounds, notably 11 and 13, amide and ester conjugates with sulfadoxine and metronidazole, exhibited low IC50 (half-maximal inhibitory concentration) values 0.063 and 0.152 µM, and low or intermediate impairment of HFF viability at 2.5 µM (83 and 64%). The nature of the anchored drug as well as that of the linking unit impacted the biological activity.
Collapse
|
10
|
Rosuvastatin revert memory impairment and anxiogenic-like effect in mice infected with the chronic ME-49 strain of Toxoplasma gondii. PLoS One 2021; 16:e0250079. [PMID: 33857221 PMCID: PMC8049280 DOI: 10.1371/journal.pone.0250079] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/30/2021] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to investigate the effect of rosuvastatin treatment on memory impairment, and anxiogenic-like effects in mice chronically infected with Toxoplasma gondii. For this, Balb/c mice were infected orally with chronic ME-49 strain of Toxoplasma gondii. Oral treatment with rosuvastatin (40mg/kg/day) started on the 51st day post-infection and was performed daily for 21 days. After completion of treatment, anxiety-like effects and locomotion were investigated in the open field (OF) test, whereas novel object recognition (NOR) test was used for evaluation of short- and long-term memory. At the end of the experiments, the brain was collected for Toxoplasma gondii DNA quantification and histopathological analysis. Infection with ME-49 strain decreased the time spent in the center of OF, indicating an anxiogenic effect, without affecting total and peripheral locomotion. Rosuvastatin treatment inhibited the change in the center time. Besides, pharmacological treatment increased total and central locomotion in both non-infected and infected animals. Infection also impaired both short- and long-term memory in the NOR test, and these effects were reverted by rosuvastatin treatment. In addition to effects in behavioral changes, rosuvastatin also reduced parasite load in the brain and attenuated signs of brain inflammation such as perivascular cuffs, inflammatory cell infiltration and tissue damage. These findings indicate for the first time the efficacy of rosuvastatin in treatment of memory impairment and anxiogenic effect evoked by infection with Toxoplasma gondii. These effects might be mediated by reduced cyst load, which in turn decrease inflammation and damage in the brain.
Collapse
|
11
|
Smith NC, Goulart C, Hayward JA, Kupz A, Miller CM, van Dooren GG. Control of human toxoplasmosis. Int J Parasitol 2020; 51:95-121. [PMID: 33347832 DOI: 10.1016/j.ijpara.2020.11.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/21/2022]
Abstract
Toxoplasmosis is caused by Toxoplasma gondii, an apicomplexan parasite that is able to infect any nucleated cell in any warm-blooded animal. Toxoplasma gondii infects around 2 billion people and, whilst only a small percentage of infected people will suffer serious disease, the prevalence of the parasite makes it one of the most damaging zoonotic diseases in the world. Toxoplasmosis is a disease with multiple manifestations: it can cause a fatal encephalitis in immunosuppressed people; if first contracted during pregnancy, it can cause miscarriage or congenital defects in the neonate; and it can cause serious ocular disease, even in immunocompetent people. The disease has a complex epidemiology, being transmitted by ingestion of oocysts that are shed in the faeces of definitive feline hosts and contaminate water, soil and crops, or by consumption of intracellular cysts in undercooked meat from intermediate hosts. In this review we examine current and future approaches to control toxoplasmosis, which encompass a variety of measures that target different components of the life cycle of T. gondii. These include: education programs about the parasite and avoidance of contact with infectious stages; biosecurity and sanitation to ensure food and water safety; chemo- and immunotherapeutics to control active infections and disease; prophylactic options to prevent acquisition of infection by livestock and cyst formation in meat; and vaccines to prevent shedding of oocysts by definitive feline hosts.
Collapse
Affiliation(s)
- Nicholas C Smith
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.
| | - Cibelly Goulart
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Jenni A Hayward
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Catherine M Miller
- College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD 4878, Australia
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
12
|
Azadi Y, Ahmadpour E, Ahmadi A. Targeting Strategies in Therapeutic Applications of Toxoplasmosis: Recent Advances in Liposomal Vaccine Delivery Systems. Curr Drug Targets 2020; 21:541-558. [DOI: 10.2174/1389450120666191023151423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 11/22/2022]
Abstract
Toxoplasma gondii is a prevalent parasitic pathogen that infected over one-third of the global population. Toxoplasmosis is diagnosed by isolating the parasite and detecting host antibodies. In contrast, the main problem with diagnosis relates to the sensitivity and specificity of the tests. Currently, treatment with pyrimethamine and sulfadiazine is recommended, despite their side effects and toxicity to humans. Moreover, the absence of a vaccine to completely protect against this infection is the main obstacle to the effective treatment and prevention of toxoplasmosis. Recently, nanoparticles and nanomaterials have been studied as delivery systems for the immunization and treatment of T. gondii infections. One of the most important applications of liposomes is drug and vaccine delivery, due to their biodegradability, low inherent toxicity, and immunogenicity. Liposomes are flexible delivery systems and immunological adjuvants able not only to load diverse antigens, such as proteins, peptides, nucleic acids, and carbohydrates but also to combine them with immunostimulators. Liposomes have the incredible potential within the development of modern types of vaccines and numerous endeavors have been made to improve the effectiveness of vaccines in recent years. In this review, we concentrate on the viable targeting strategies of liposome-based vaccine delivery systems to prevent, control and treat toxoplasmosis.
Collapse
Affiliation(s)
- Yaghob Azadi
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
13
|
Pereira AV, Gois MB, Lera KRJL, Miranda-Sapla MM, Falkowski-Temporini GJ, Bezerril JE, Zanusso-Junior G, Ferraz FN, da Silva SS, Aleixo DL, Conchon-Costa I, Sant'Ana DDMG, da Costa IN, de Araújo SM, Pavanelli WR. Treatment with Lycopodium clavatum 200dH Intensifies Kidney and Liver Injury in Mice Infected with Toxoplasma gondii. Arch Immunol Ther Exp (Warsz) 2020; 68:3. [PMID: 31965304 DOI: 10.1007/s00005-020-00567-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/07/2020] [Indexed: 02/08/2023]
Abstract
The effects of infection with Toxoplasma gondii vary from asymptomatic to the development of alterations in various organs (including the liver and kidneys) which may be irreversible, and lead to the death of the host. Whereas homeopathy is an alternative and effective method for treating various diseases, including those caused by protozoa, we questioned the effect of using Lycopodium clavatum in mice infected with T. gondii. One hundred male Swiss mice, 60 days old, were divided into four groups (n = 25/group): NIC (uninfected and untreated control), IC (infected and treated with un-dynamized 7% alcohol solution [vehicle]), G48 (infected and treated 48 h before infection and treated three more times; at 2, 4, and 6 days post-infection (dpi) with L. clavatum 200dH), and G72 (infected and treated for 3 consecutive days before infection with L. clavatum 200dH). In this study, physiological, histopathological, and immunological parameters were evaluated. The L. clavatum 200dH intensified renal damage in mice infected with T. gondii from 7 dpi, causing severe and progressive alterations during this period, such as various degrees of inflammation, edema, atrophy, and tubular cystic dilation, degenerated tubules with intra-cytoplasmic vacuoles and coalescing spots, severe vascular lesions, glomerulonephritis, and peri-glomerular congestion. In the G72 animals, which received L. clavatum 200dH, more severe cortex damage was observed (91.66-96.66%) as compared to the IC group (55-80%) and more renal corpuscle, and renal tubule injury was observed (80 ± 5 to 96.7% ± 2.89 of the total area) during all periods, as compared to the IC group (p < 0.05). Both groups presented high liver enzyme levels, and the highest values for AST were observable at 60 dpi. We observed significant increases of type I and III collagen, as well as high levels of TGF-β1 in both organs of the treated animals, the main factor involved in fibrosis in areas damaged by the process. L. clavatum 200dH intensifies kidney and liver alterations in mice infected with T. gondii. Our results reinforce caution when indicating administration schemes and dosages for ultra-diluted drugs.
Collapse
Affiliation(s)
- Andréia Vieira Pereira
- Programa de Pós-graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Marcelo Biondaro Gois
- Universidade Federal do Recôncavo da Bahia, Av. Carlos Amaral, Cajueiro, Santo Antônio de Jesus, BA, CEP 44.430-622, Brazil. .,Universidade Federal da Bahia, Instituto de Ciências da Saúde, Av. Reitor Miguel Calmon, Salvador, BA, Brazil. .,Programa de Pós-graduação em Desenvolvimento Regional e Meio Ambiente, Faculdade Maria Milza (FAMAM), Governador Mangabeira, CEP 44.350-000, BA, Brazil.
| | | | | | | | | | | | - Fabiana Nabarro Ferraz
- Programa de Pós-graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Suelen Santos da Silva
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Denise Lessa Aleixo
- Programa de Pós-graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Ivete Conchon-Costa
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | - Idessania Nazareth da Costa
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Silvana Marques de Araújo
- Programa de Pós-graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Wander Rogério Pavanelli
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| |
Collapse
|
14
|
Rosuvastatin reduced brain parasite burden in a chronic toxoplasmosis in vivo model and influenced the neuropathological pattern of ME-49 strain. Parasitology 2019; 147:303-309. [PMID: 31727196 DOI: 10.1017/s0031182019001604] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study evaluated the effects of rosuvastatin in vivo on toxoplasmosis chronic infection. Thirty-five Swiss mice were orally infected (ME-49 strain). After 50 days, the mice were separated into five groups: GI - non-infected, GII - infected, GIII - infected and treated with pyrimethamine and sulfadiazine (12.5 + 50 mg kg-1 body weight day-1), GIV and GV - infected and treated with rosuvastatin 10 and 40 mg kg-1 body weight day-1, respectively. After 21 days, we collected blood, liver, lungs, femoral biceps and brain were removed for Toxoplasma gondii DNA quantification by qPCR and histopathological analysis. GIV and GV did not present premature death or clinical changes, and the hepatic enzyme levels were lower compared to GI. Toxoplasma gondii DNA was detected mainly in brain and muscle, but the parasite load was significantly lower in GV compared to GII brains (P < 0.05). Histopathological changes were observed in brains, with T. gondii cysts as well as an inflammatory condition, including necrosis areas in GII and GIII. These data confirm active infection with tissue injury. This inflammatory condition was attenuated in the groups treated with rosuvastatin, especially R40 (GV). Our findings demonstrated the in vivo action of rosuvastatin in reducing cerebral parasitic load and indicate that this drug may interfere in chronic toxoplasmosis.
Collapse
|
15
|
El-Kowrany SI, El Ghaffar AESA, Shoheib ZS, Mady RF, Gamea GAM. Evaluation of nitazoxanide as a novel drug for the treatment of acute and chronic toxoplasmosis. Acta Trop 2019; 195:145-154. [PMID: 30986380 DOI: 10.1016/j.actatropica.2019.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 01/03/2023]
Abstract
Toxoplasmosis is a widespread, neglected disease with significant morbidity and mortality. In search of an effective treatment, nitazoxanide (NTZ) was evaluated in the treatment of acute and chronic toxoplasmosis in experimental mice. For this purpose, mice were infected with 20 cysts (acute infection model) or 10 cysts (chronic infection model) of Toxoplasma gondii (ME 49 strain). Treated mice received NTZ (at doses of 100 and 150 mg/kg), starting from the third day (acute model) or the fifth week (chronic model) post-infection, which continued for 14 consecutive days. The effects of NTZ were evaluated in comparison to the pyrimethamine/sulfadiazine combination. Evaluation included mortality rates, brain cyst count, inflammatory scoring and immunological studies. The latter included estimation of interferon-gamma (IFN-γ) and induced nitric oxide synthase (iNOS). In the acute infection model, NTZ at 100 and 150 mg/kg significantly reduced the number of brain cysts by 78 and 87% compared to the infected untreated controls and reduced the mortality rate to 24 and 20%, respectively, compared with 44% in the infected untreated control. In the chronic infection model, cyst reduction reached 32 and 38% for 100 and 150 mg/kg NTZ treatments, respectively. NTZ was significantly able to reduce inflammation caused by acute and chronic T. gondii infection with slight necrosis and few infiltrating mononuclear cells. Additionally, the immunological analysis revealed that NTZ significantly increased the production of serum IFN-γ and enhanced iNOS production in brain tissue, suggesting an immunomodulatory role for the drug. Based on the findings of the present study, it can be concluded that NTZ is a potential drug for the treatment of acute and chronic toxoplasmosis.
Collapse
|
16
|
Konstantinovic N, Guegan H, Stäjner T, Belaz S, Robert-Gangneux F. Treatment of toxoplasmosis: Current options and future perspectives. Food Waterborne Parasitol 2019; 15:e00036. [PMID: 32095610 PMCID: PMC7033996 DOI: 10.1016/j.fawpar.2019.e00036] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 02/08/2023] Open
Abstract
Toxoplasmosis is a worldwide parasitic disease infecting about one third of humans, with possible severe outcomes in neonates and immunocompromised patients. Despite continuous and successful efforts to improve diagnosis, therapeutic schemes have barely evolved since many years. This article aims at reviewing the main clinical trials and current treatment practices, and at addressing future perspectives in the light of ongoing researches.
Collapse
Affiliation(s)
- Neda Konstantinovic
- National Reference Laboratory for Toxoplasmosis, Institute for Medical Research, University of Belgrade, 11129 Belgrade, Serbia
| | - Hélène Guegan
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset - UMR_S 1085, F-35000 Rennes, France
| | - Tijana Stäjner
- National Reference Laboratory for Toxoplasmosis, Institute for Medical Research, University of Belgrade, 11129 Belgrade, Serbia
| | - Sorya Belaz
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset - UMR_S 1085, F-35000 Rennes, France
| | | |
Collapse
|
17
|
Watson GF, Davis PH. Systematic review and meta-analysis of variation in Toxoplasma gondii cyst burden in the murine model. Exp Parasitol 2019; 196:55-62. [PMID: 30562481 PMCID: PMC6447088 DOI: 10.1016/j.exppara.2018.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 11/20/2022]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite that infects approximately 30% of the population of the United States, with worldwide distribution. The chronic (latent) infection, mediated by the bradyzoite parasite life stage, has attracted attention due to possible links to host behavioral alteration and psychomotor effects. Mice are a common model organism for studying the chronic stage, as they are natural hosts of infection. Notably, published studies demonstrate vast ranges of measured cyst burden within the murine brain tissue. The inconsistency of measured cyst burden within and between experiments makes interpretation of statistical significance difficult, potentially confounding studies of experimental anti-parasitic approaches. This review analyzes variation in measured cyst burden in a wide array of experimental mouse infections across published literature. Factors such as parasite infection strain, mouse strain, mode of infection, and infectious dose were all examined. The lowest variation in measured cyst burden occurred with the commonly available Balb/c and CBA mice undergoing infection by the ME49 strain of T. gondii. A summary of cyst variation and average cyst counts in T. gondii mouse models is presented, which may be useful for designing future experiments.
Collapse
Affiliation(s)
| | - Paul H Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA.
| |
Collapse
|
18
|
Montazeri M, Mehrzadi S, Sharif M, Sarvi S, Shahdin S, Daryani A. Activities of anti-Toxoplasma drugs and compounds against tissue cysts in the last three decades (1987 to 2017), a systematic review. Parasitol Res 2018; 117:3045-3057. [PMID: 30088074 DOI: 10.1007/s00436-018-6027-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/24/2018] [Indexed: 01/10/2023]
Abstract
Currently, there is no approved therapy that can eradicate Toxoplasma gondii tissue cysts, which are responsible for chronic infection. This systematic review was performed to assess drugs or compounds that can be used as anti-T. gondii tissue cysts in vitro and in vivo. English electronic databases (i.e., PubMed, Science Direct, Scopus, Google Scholar, and Web of Science) were systematically searched for articles published up to 2017. A total of 55 papers published from 1987 to 2017 were eligible for inclusion in this systematic review. Among the drugs, atovaquone and azithromycin were found effective after long-term inoculation into mice; however, clinical cases of resistance to these drugs have been reported. Also, FR235222, QUI-11, tanshinone IIA, and hydroxyzine were shown to be effective against Toxoplasma cysts, but their effectiveness in vivo remains unknown. Additionally, compound 32, endochin-like quinolones, miltefosine, and guanabenz can be used as effective antiparasitic with the unique ability to reduce brain tissue cysts in chronically infected mice. Importantly, these antimicrobial agents are significant criteria for drug candidates. Future studies should focus on the biology and drug susceptibility of the cyst form of T. gondii in chronic toxoplasmosis patients to find more effective strategies that have sterilizing activity for eliminating T. gondii tissue cysts from the host, preventing disease relapse and potentially shortening the required duration of drug administration. Graphical abstract.
Collapse
Affiliation(s)
- Mahbobeh Montazeri
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Sharif
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Sari Branch, Islamic AZAD University, Sari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, PC 48168-95475, Iran
| | - Shayesteh Shahdin
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, PC 48168-95475, Iran.
| |
Collapse
|
19
|
Assolini JP, Concato VM, Gonçalves MD, Carloto ACM, Conchon-Costa I, Pavanelli WR, Melanda FN, Costa IN. Nanomedicine advances in toxoplasmosis: diagnostic, treatment, and vaccine applications. Parasitol Res 2017; 116:1603-1615. [PMID: 28477099 DOI: 10.1007/s00436-017-5458-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/24/2017] [Indexed: 12/16/2022]
Abstract
Toxoplasmosis is an infectious disease caused by the intracellular parasite Toxoplasma gondii that affects about one third of the world's population. The diagnosis of this disease is carried out by parasite isolation and host antibodies detection. However, the diagnosis presents problems in regard to test sensitivity and specificity. Currently, the most effective T. gondii treatment is a combination of pyrimethamine and sulfadiazine, although both drugs are toxic to the host. In addition to the problems that compromise the effective diagnosis and treatment of toxoplasmosis, there are no reports or indications of any vaccine capable of fully protecting against this infection. Nanomaterials, smaller than 1000 nm, are currently being investigated as an alternative tool in the management of T. gondii infection. This article reviews how recent nanotechnology advances indicate the utility of nanomaterials in toxoplasmosis diagnosis, treatment, and vaccine development.
Collapse
Affiliation(s)
- João Paulo Assolini
- Departamento de Ciências Patológicas, Laboratório de Parasitologia, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Virginia Márcia Concato
- Departamento de Ciências Patológicas, Laboratório de Parasitologia, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Manoela Daiele Gonçalves
- Departamento de Ciências Patológicas, Laboratório de Parasitologia, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | - Ivete Conchon-Costa
- Departamento de Ciências Patológicas, Laboratório de Parasitologia, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Wander Rogério Pavanelli
- Departamento de Ciências Patológicas, Laboratório de Parasitologia, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Francine Nesello Melanda
- Departamento de Ciências Patológicas, Laboratório de Parasitologia, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Idessania Nazareth Costa
- Departamento de Ciências Patológicas, Laboratório de Parasitologia, Universidade Estadual de Londrina, Londrina, PR, Brazil.
- Departamento de Ciências Patológicas - Laboratório de Parasitologia, Universidade Estadual de Londrina-UEL, Rodovia Celso Garcia Cid, Campus Universitário, Cx. Postal 6001, Londrina, PR, 86051-990, Brazil.
| |
Collapse
|
20
|
Montazeri M, Sharif M, Sarvi S, Mehrzadi S, Ahmadpour E, Daryani A. A Systematic Review of In vitro and In vivo Activities of Anti -Toxoplasma Drugs and Compounds (2006-2016). Front Microbiol 2017; 8:25. [PMID: 28163699 PMCID: PMC5247447 DOI: 10.3389/fmicb.2017.00025] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/05/2017] [Indexed: 11/23/2022] Open
Abstract
The currently available anti-Toxoplasma agents have serious limitations. This systematic review was performed to evaluate drugs and new compounds used for the treatment of toxoplasmosis. Data was systematically collected from published papers on the efficacy of drugs/compounds used against Toxoplasma gondii (T. gondii) globally during 2006-2016. The searched databases were PubMed, Google Scholar, Science Direct, ISI Web of Science, EBSCO, and Scopus. One hundred and eighteen papers were eligible for inclusion in this systematic review, which were both in vitro and in vivo studies. Within this review, 80 clinically available drugs and a large number of new compounds with more than 39 mechanisms of action were evaluated. Interestingly, many of the drugs/compounds evaluated against T. gondii act on the apicoplast. Therefore, the apicoplast represents as a potential drug target for new chemotherapy. Based on the current findings, 49 drugs/compounds demonstrated in vitro half-maximal inhibitory concentration (IC50) values of below 1 μM, but most of them were not evaluated further for in vivo effectiveness. However, the derivatives of the ciprofloxacin, endochin-like quinolones and 1-[4-(4-nitrophenoxy) phenyl] propane-1-one (NPPP) were significantly active against T. gondii tachyzoites both in vitro and in vivo. Thus, these compounds are promising candidates for future studies. Also, compound 32 (T. gondii calcium-dependent protein kinase 1 inhibitor), endochin-like quinolones, miltefosine, rolipram abolish, and guanabenz can be repurposed into an effective anti-parasitic with a unique ability to reduce brain tissue cysts (88.7, 88, 78, 74, and 69%, respectively). Additionally, no promising drugs are available for congenital toxoplasmosis. In conclusion, as current chemotherapy against toxoplasmosis is still not satisfactory, development of well-tolerated and safe specific immunoprophylaxis in relaxing the need of dependence on chemotherapeutics is a highly valuable goal for global disease control. However, with the increasing number of high-risk individuals, and absence of a proper vaccine, continued efforts are necessary for the development of novel treatment options against T. gondii. Some of the novel compounds reviewed here may represent good starting points for the discovery of effective new drugs. In further, bioinformatic and in silico studies are needed in order to identify new potential toxoplasmicidal drugs.
Collapse
Affiliation(s)
- Mahbobeh Montazeri
- Toxoplasmosis Research Center, Mazandaran University of Medical SciencesSari, Iran
- Student Research Committee, Mazandaran University of Medical SciencesSari, Iran
| | - Mehdi Sharif
- Toxoplasmosis Research Center, Mazandaran University of Medical SciencesSari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical SciencesSari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical SciencesSari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical SciencesSari, Iran
| | - Saeed Mehrzadi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences TehranIran
| | - Ehsan Ahmadpour
- Drug Applied Research Center, Tabriz University of Medical SciencesTabriz, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical SciencesSari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical SciencesSari, Iran
| |
Collapse
|
21
|
Clinically Available Medicines Demonstrating Anti-Toxoplasma Activity. Antimicrob Agents Chemother 2015; 59:7161-9. [PMID: 26392504 DOI: 10.1128/aac.02009-15] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is an apicomplexan parasite of humans and other mammals, including livestock and companion animals. While chemotherapeutic regimens, including pyrimethamine and sulfadiazine regimens, ameliorate acute or recrudescent disease such as toxoplasmic encephalitis or ocular toxoplasmosis, these drugs are often toxic to the host. Moreover, no approved options are available to treat infected women who are pregnant. Lastly, no drug regimen has shown the ability to eradicate the chronic stage of infection, which is characterized by chemoresistant intracellular cysts that persist for the life of the host. In an effort to promote additional chemotherapeutic options, we now evaluate clinically available drugs that have shown efficacy in disease models but which lack clinical case reports. Ideally, less-toxic treatments for the acute disease can be identified and developed, with an additional goal of cyst clearance from human and animal hosts.
Collapse
|