1
|
Freppel W, Silva LA, Stapleford KA, Herrero LJ. Pathogenicity and virulence of chikungunya virus. Virulence 2024; 15:2396484. [PMID: 39193780 PMCID: PMC11370967 DOI: 10.1080/21505594.2024.2396484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted, RNA virus that causes an often-severe musculoskeletal illness characterized by fever, joint pain, and a range of debilitating symptoms. The virus has re-emerged as a global health threat in recent decades, spreading from its origin in Africa across Asia and the Americas, leading to widespread outbreaks impacting millions of people. Despite more than 50 years of research into the pathogenesis of CHIKV, there is still no curative treatment available. Current management of CHIKV infections primarily involves providing supportive care to alleviate symptoms and improve the patient's quality of life. Given the ongoing threat of CHIKV, there is an urgent need to better understand its pathogenesis. This understanding is crucial for deciphering the mechanisms underlying the disease and for developing effective strategies for both prevention and management. This review aims to provide a comprehensive overview of CHIKV and its pathogenesis, shedding light on the complex interactions of viral genetics, host factors, immune responses, and vector-related factors. By exploring these intricate connections, the review seeks to contribute to the knowledge base surrounding CHIKV, offering insights that may ultimately lead to more effective prevention and management strategies for this re-emerging global health threat.
Collapse
Affiliation(s)
- Wesley Freppel
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| | - Laurie A. Silva
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lara J. Herrero
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| |
Collapse
|
2
|
Brito RMDM, de Melo MF, Fernandes JV, Valverde JG, Matta Guedes PM, de Araújo JMG, Nascimento MSL. Acute Chikungunya Virus Infection Triggers a Diverse Range of T Helper Lymphocyte Profiles. Viruses 2024; 16:1387. [PMID: 39339863 PMCID: PMC11437511 DOI: 10.3390/v16091387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Chikungunya virus (CHIKV) is an arbovirus causing acute febrile illness with severe joint pain, often leading to chronic arthralgia. This study investigated the adaptive immune responses during the early stages of symptomatic acute CHIKV infection, focusing on the transcription factors and cytokines linked to Th1, Th2, Th17, and Treg cells. Thirty-six individuals were enrolled: nine healthy controls and 27 CHIKV-positive patients confirmed by qRT-PCR. Blood samples were analyzed for the mRNA expression of transcription factors (Tbet, GATA3, FoxP3, STAT3, RORγt) and cytokines (IFN-γ, IL-4, IL-17, IL-22, TGF-β, IL-10). The results showed the significant upregulation of Tbet, GATA3, FoxP3, STAT3, and RORγt in CHIKV-positive patients, with RORγt displaying the highest increase. Correspondingly, cytokines IFN-γ, IL-4, IL-17, and IL-22 were upregulated, while TGF-β was downregulated. Principal component analysis (PCA) confirmed the distinct immune profiles between CHIKV-positive and healthy individuals. A correlation analysis indicated that higher Tbet expression correlated with a lower viral load, whereas FoxP3 and TGF-β were associated with higher viral loads. Our study sheds light on the intricate immune responses during acute CHIKV infection, characterized by a mixed Th1, Th2, Th17, and Treg response profile. These results emphasize the complex interplay between different adaptive immune responses and how they may contribute to the pathogenesis of Chikungunya fever.
Collapse
Affiliation(s)
| | - Marília Farias de Melo
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - José Veríssimo Fernandes
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Joanna Gardel Valverde
- Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Paulo Marcos Matta Guedes
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Josélio Maria Galvão de Araújo
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Manuela Sales Lima Nascimento
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| |
Collapse
|
3
|
Valdés-López JF, Hernández-Sarmiento LJ, Tamayo-Molina YS, Velilla-Hernández PA, Rodenhuis-Zybert IA, Urcuqui-Inchima S. Interleukin 27, like interferons, activates JAK-STAT signaling and promotes pro-inflammatory and antiviral states that interfere with dengue and chikungunya viruses replication in human macrophages. Front Immunol 2024; 15:1385473. [PMID: 38720890 PMCID: PMC11076713 DOI: 10.3389/fimmu.2024.1385473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Interferons (IFNs) are a family of cytokines that activate the JAK-STAT signaling pathway to induce an antiviral state in cells. Interleukin 27 (IL-27) is a member of the IL-6 and/or IL-12 family that elicits both pro- and anti-inflammatory responses. Recent studies have reported that IL-27 also induces a robust antiviral response against diverse viruses, both in vitro and in vivo, suggesting that IFNs and IL-27 share many similarities at the functional level. However, it is still unknown how similar or different IFN- and IL-27-dependent signaling pathways are. To address this question, we conducted a comparative analysis of the transcriptomic profiles of human monocyte-derived macrophages (MDMs) exposed to IL-27 and those exposed to recombinant human IFN-α, IFN-γ, and IFN-λ. We utilized bioinformatics approaches to identify common differentially expressed genes between the different transcriptomes. To verify the accuracy of this approach, we used RT-qPCR, ELISA, flow cytometry, and microarrays data. We found that IFNs and IL-27 induce transcriptional changes in several genes, including those involved in JAK-STAT signaling, and induce shared pro-inflammatory and antiviral pathways in MDMs, leading to the common and unique expression of inflammatory factors and IFN-stimulated genes (ISGs)Importantly, the ability of IL-27 to induce those responses is independent of IFN induction and cellular lineage. Additionally, functional analysis demonstrated that like IFNs, IL-27-mediated response reduced chikungunya and dengue viruses replication in MDMs. In summary, IL-27 exhibits properties similar to those of all three types of human IFN, including the ability to stimulate a protective antiviral response. Given this similarity, we propose that IL-27 could be classified as a distinct type of IFN, possibly categorized as IFN-pi (IFN-π), the type V IFN (IFN-V).
Collapse
Affiliation(s)
- Juan Felipe Valdés-López
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | | | - Y. S. Tamayo-Molina
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | | | - Izabela A. Rodenhuis-Zybert
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
4
|
Song MS, Lee DK, Lee CY, Park SC, Yang J. Host Subcellular Organelles: Targets of Viral Manipulation. Int J Mol Sci 2024; 25:1638. [PMID: 38338917 PMCID: PMC10855258 DOI: 10.3390/ijms25031638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Viruses have evolved sophisticated mechanisms to manipulate host cell processes and utilize intracellular organelles to facilitate their replication. These complex interactions between viruses and cellular organelles allow them to hijack the cellular machinery and impair homeostasis. Moreover, viral infection alters the cell membrane's structure and composition and induces vesicle formation to facilitate intracellular trafficking of viral components. However, the research focus has predominantly been on the immune response elicited by viruses, often overlooking the significant alterations that viruses induce in cellular organelles. Gaining a deeper understanding of these virus-induced cellular changes is crucial for elucidating the full life cycle of viruses and developing potent antiviral therapies. Exploring virus-induced cellular changes could substantially improve our understanding of viral infection mechanisms.
Collapse
Affiliation(s)
- Min Seok Song
- Department of Physiology and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Dong-Kun Lee
- Department of Physiology and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Chung-Young Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sang-Cheol Park
- Artificial Intelligence and Robotics Laboratory, Myongji Hospital, Goyang 10475, Republic of Korea
| | - Jinsung Yang
- Department of Biochemistry and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| |
Collapse
|
5
|
Chen H, Phuektes P, Yeo LS, Wong YH, Lee RCH, Yi B, Hou X, Liu S, Cai Y, Chu JJH. Attenuation of neurovirulence of chikungunya virus by a single amino acid mutation in viral E2 envelope protein. J Biomed Sci 2024; 31:8. [PMID: 38229040 DOI: 10.1186/s12929-024-00995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) has reemerged as a major public health concern, causing chikungunya fever with increasing cases and neurological complications. METHODS In the present study, we investigated a low-passage human isolate of the East/ Central/South African (ECSA) lineage of CHIKV strain LK(EH)CH6708, which exhibited a mix of small and large viral plaques. The small and large plaque variants were isolated and designated as CHIKV-SP and CHIKV-BP, respectively. CHIKV-SP and CHIKV-BP were characterized in vitro and in vivo to compare their virus production and virulence. Additionally, whole viral genome analysis and reverse genetics were employed to identify genomic virulence factors. RESULTS CHIKV-SP demonstrated lower virus production in mammalian cells and attenuated virulence in a murine model. On the other hand, CHIKV-BP induced higher pro-inflammatory cytokine levels, compromised the integrity of the blood-brain barrier, and led to astrocyte infection in mouse brains. Furthermore, the CHIKV-SP variant had limited transmission potential in Aedes albopictus mosquitoes, likely due to restricted dissemination. Whole viral genome analysis revealed multiple genetic mutations in the CHIKV-SP variant, including a Glycine (G) to Arginine (R) mutation at position 55 in the viral E2 glycoprotein. Reverse genetics experiments confirmed that the E2-G55R mutation alone was sufficient to reduce virus production in vitro and virulence in mice. CONCLUSIONS These findings highlight the attenuating effects of the E2-G55R mutation on CHIKV pathogenicity and neurovirulence and emphasize the importance of monitoring this mutation in natural infections.
Collapse
Affiliation(s)
- Huixin Chen
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patchara Phuektes
- Division of Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Li Sze Yeo
- School of Applied Science, Republic Polytechnic, Singapore, Singapore
| | - Yi Hao Wong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Regina Ching Hua Lee
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bowen Yi
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xinjun Hou
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Sen Liu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Yu Cai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
6
|
Henderson Sousa F, Ghaisani Komarudin A, Findlay-Greene F, Bowolaksono A, Sasmono RT, Stevens C, Barlow PG. Evolution and immunopathology of chikungunya virus informs therapeutic development. Dis Model Mech 2023; 16:dmm049804. [PMID: 37014125 PMCID: PMC10110403 DOI: 10.1242/dmm.049804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Chikungunya virus (CHIKV), a mosquito-borne alphavirus, is an emerging global threat identified in more than 60 countries across continents. The risk of CHIKV transmission is rising due to increased global interactions, year-round presence of mosquito vectors, and the ability of CHIKV to produce high host viral loads and undergo mutation. Although CHIKV disease is rarely fatal, it can progress to a chronic stage, during which patients experience severe debilitating arthritis that can last from several weeks to months or years. At present, there are no licensed vaccines or antiviral drugs for CHIKV disease, and treatment is primarily symptomatic. This Review provides an overview of CHIKV pathogenesis and explores the available therapeutic options and the most recent advances in novel therapeutic strategies against CHIKV infections.
Collapse
Affiliation(s)
- Filipa Henderson Sousa
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Amalina Ghaisani Komarudin
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong Science Center, Cibinong, Kabupaten Bogor 16911, Indonesia
| | - Fern Findlay-Greene
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
| | - Anom Bowolaksono
- Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - R. Tedjo Sasmono
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong Science Center, Cibinong, Kabupaten Bogor 16911, Indonesia
| | - Craig Stevens
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
| | - Peter G. Barlow
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
| |
Collapse
|
7
|
Valdés-López JF, Fernandez GJ, Urcuqui-Inchima S. Synergistic Effects of Toll-Like Receptor 1/2 and Toll-Like Receptor 3 Signaling Triggering Interleukin 27 Gene Expression in Chikungunya Virus-Infected Macrophages. Front Cell Dev Biol 2022; 10:812110. [PMID: 35223841 PMCID: PMC8863767 DOI: 10.3389/fcell.2022.812110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Chikungunya virus (CHIKV) is the etiological agent of chikungunya fever (CHIKF), a self-limiting disease characterized by myalgia and severe acute or chronic arthralgia. CHIKF is associated with immunopathology and high levels of pro-inflammatory factors. CHIKV is known to have a wide range of tropism in human cell types, including keratinocytes, fibroblasts, endothelial cells, monocytes, and macrophages. Previously, we reported that CHIKV-infected monocytes-derived macrophages (MDMs) express high levels of interleukin 27 (IL27), a heterodimeric cytokine consisting of IL27p28 and EBI3 subunits, that triggers JAK-STAT signaling and promotes pro-inflammatory and antiviral response, in interferon (IFN)-independent manner. Based on the transcriptomic analysis, we now report that induction of IL27-dependent pro-inflammatory and antiviral response in CHIKV-infected MDMs relies on two signaling pathways: an early signal dependent on recognition of CHIKV-PAMPs by TLR1/2-MyD88 to activate NF-κB-complex that induces the expression of EBI3 mRNA; and second signaling dependent on the recognition of intermediates of CHIKV replication (such as dsRNA) by TLR3-TRIF, to activate IRF1 and the induction of IL27p28 mRNA expression. Both signaling pathways were required to produce a functional IL27 protein involved in the induction of ISGs, including antiviral proteins, cytokines, CC- and CXC- chemokines in an IFN-independent manner in MDMs. Furthermore, we reported that activation of TLR4 by LPS, both in human MDMs and murine BMDM, results in the induction of both subunits of IL27 that trigger strong IL27-dependent pro-inflammatory and antiviral response independent of IFNs signaling. Our findings are a significant contribution to the understanding of molecular and cellular mechanisms of CHIKV infection.
Collapse
|
8
|
Rocha DCP, Souza TMA, Nunes PCG, Mohana-Borges R, Paes MV, Guimarães GMC, Arcila JCS, Paiva IA, Azeredo ELD, Damasco PV, de Souza LJ, Dos Santos FB, Allonso D. Increased circulating levels of High Mobility Group Box 1 (HMGB1) in acute-phase Chikungunya virus infection: Potential disease biomarker. J Clin Virol 2021; 146:105054. [PMID: 34920373 DOI: 10.1016/j.jcv.2021.105054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/01/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Chikungunya virus (CHIKV) causes a febrile syndrome with intense and debilitating arthralgia that can persist for several months or years after complete virus clearance. As there is no specific antiviral treatment or vaccine against CHIKV, identification of serological markers that help clinical management of CHIKV patients is urgent. The High Mobility Group Box 1 (HMGB1) protein is secreted to extracellular milieu and triggers an intense inflammatory process by inducing the overexpression of pro-inflammatory cytokines. HMGB1 plays an important role in several virus diseases as well as in rheumatoid arthritis. OBJECTIVES This study focus on the investigation of HMGB1 serum levels in a sera panel from CHIKV-infected patients in an attempt to assess its potential as a biomarker for chikungunya clinical management. STUDY DESIGN Eighty CHIKV-positive samples and 32 samples from healthy donors were subjected to a quantitative HMGB1 ELISA assay to assess the HMGB1 circulating levels. RESULTS HMGB1 levels were significantly higher in CHIKV-positive samples (516.12 ng/mL, SEM ± 48.83 ng/mL) compared to negative control (31.20 ng/mL, SEM ± 3.24 ng/mL, p < 0.0001). Circulating levels of HMGB1 persisted elevated during the whole acute-phase of disease and correlated with virus titer (p < 0.05). CONCLUSIONS The present study is the first to describe increased serum levels of HMGB1 in CHIKV infection and its positive correlation with virus titer, suggesting its potential use as a biomarker for diagnosis and treatment of chikungunya fever.
Collapse
Affiliation(s)
- Daniele C P Rocha
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Thiara Manuelle Alves Souza
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil
| | - Priscila Conrado Guerra Nunes
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, RJ 20231-092, Brazil; Superintendência de Informações Estratégicas de Vigilância em Saúde (SIEVS/RJ), Secretaria de Saúde, Governo do Estado do Rio de Janeiro, Rio de Janeiro, RJ 20031-142, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Marciano V Paes
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, RJ 21040-900, Brazil
| | - Gabriel M C Guimarães
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil
| | - Juan C S Arcila
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil
| | - Iury Amâncio Paiva
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil
| | - Elzinandes Leal de Azeredo
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil
| | - Paulo Vieira Damasco
- Hospital Universitário Gaffrée Guinle, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ 20270-004, Brazil; Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ 20551-030, Brazil
| | - Luiz José de Souza
- Hospital dos Plantadores de Cana, Campos dos Goytacazes, RJ 28025-496, Brazil
| | - Flavia B Dos Santos
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil
| | - Diego Allonso
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
9
|
Valdés-López JF, Fernandez GJ, Urcuqui-Inchima S. Interleukin 27 as an inducer of antiviral response against chikungunya virus infection in human macrophages. Cell Immunol 2021; 367:104411. [PMID: 34325085 DOI: 10.1016/j.cellimm.2021.104411] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 07/17/2021] [Indexed: 01/31/2023]
Abstract
Chikungunya virus (CHIKV) is known to have a wide range of tropism in human cell types throughout infection, including keratinocytes, fibroblasts, endothelial cells, monocytes, and macrophages. We reported that human monocytes-derived macrophages (MDMs) are permissive to CHIKV infection in vitro. We found that the peak of CHIKV replication was at 24 hpi; however, at 48 hpi, a significant reduction in viral titer was observed that correlated with high expression levels of genes encoding antiviral proteins (AVPs) in an IFN-independent manner. To explore the molecular mechanisms involved in the induction of antiviral response in CHIKV-infected MDMs, we performed transcriptomic analysis by RNA-sequencing. Differential expression of genes at 24 hpi showed that CHIKV infection abrogated the expression of all types of IFNs in MDMs. However, we observed that CHIKV-infected MDMs activated the JAK-STAT signaling and induced a robust antiviral response associated with control of CHIKV replication. We identified that the IL27 pathway is activated in CHIKV-infected MDMs and that kinetics of IL27p28 mRNA expression and IL27 protein production correlated with the expression of AVPs in CHIKV-infected MDMs. Furthermore, we showed that stimulation of THP-1-derived macrophages with recombinant-human IL27 induced the activation of the JAK-STAT signaling and induced a robust pro-inflammatory and antiviral response, comparable to CHIKV-infected MDMs. Furthermore, pre-treatment of MDMs with recombinant-human IL27 inhibits CHIKV replication in a dose-dependently manner (IC50 = 1.83 ng/mL). Altogether, results show that IL27 is highly expressed in CHIKV-infected MDMs, leading to activation of JAK-STAT signaling and stimulation of pro-inflammatory and antiviral response to control CHIKV replication in an IFN-independent manner.
Collapse
Affiliation(s)
- Juan Felipe Valdés-López
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Geysson J Fernandez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
10
|
Ferreira AS, Baldoni NR, Cardoso CS, Oliveira CDL. Biomarkers of severity and chronification in chikungunya fever: a systematic review and meta-analysis. Rev Inst Med Trop Sao Paulo 2021; 63:e16. [PMID: 33656139 PMCID: PMC7924982 DOI: 10.1590/s1678-9946202163016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/19/2021] [Indexed: 12/28/2022] Open
Abstract
Currently, there are no biomarkers for Chikungunya fever (CHIK) in clinical practice that can accurately predict the severity or chronification of the disease. The aim of this study is to evaluate the existing literature on biomarkers related to the severity and chronification of CHIK. In this sense, a systematic review was conducted based on the PRISMA Statement guideline. Articles that described the association of biomarkers with the evolution of the disease (severity or chronification), published until August 20th 2019 were considered eligible. The search was carried out in the PubMed, Scopus, Virtual Health Library (VHL) and Science Direct databases. After searching the databases, 17 articles were added to the review, and after analyzing the articles, several biomarkers were associated with severity, such as increased levels of IL-6, IP-10, IL-1b, MIG, MCP-1, and reduced levels of RANTES and IL-8 or chronification, such as increased levels of IL-6, TNF-α, MCP-1, IL-12, INF-α, IL-13, INF-γ, GM-CSF, CRP, IL-1a, IL-15, Factor VII, IP-10, IL-10, IL-4, IL-1RA, IL-8, MIP-1α, MIP-1β, ferritin, MIG, ESR, NO, malondialdehyde, and reduced levels of RANTES, ferritin, eotaxin, HGF, IL-27, IL-17A, IL-29, TGF-β, IL-10, and thiols. IL-6, CRP and TNF-α were included in the meta-analysis to assess the relationship with chronification, although they did not reach statistical significance. It was concluded that several biomarkers showed a relationship with severity and chronification of CHIK; the search for these biomarkers can reveal prognostic factors and important therapeutic targets for the treatment of the disease.
Collapse
Affiliation(s)
- Andreia Silva Ferreira
- Universidade Federal de São João Del-Rei, Campus Centro-Oeste Dona
Lindu, Divinópolis, Minas Gerais, Brazil
| | - Nayara Ragi Baldoni
- Universidade Federal de São João Del-Rei, Campus Centro-Oeste Dona
Lindu, Divinópolis, Minas Gerais, Brazil
- Universidade de Itaúna, Itaúna, Minas Gerais, Brazil
| | - Clareci Silva Cardoso
- Universidade Federal de São João Del-Rei, Campus Centro-Oeste Dona
Lindu, Divinópolis, Minas Gerais, Brazil
| | | |
Collapse
|
11
|
Chirathaworn C, Chansaenroj J, Pongsuchart P, Poovorawan Y. IL-18: a suggested target for immunomodulation in chikungunya virus infection. Arch Virol 2021; 166:219-223. [PMID: 33073324 DOI: 10.1007/s00705-020-04849-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
Chronic joint pain is the most common pathology found in chikungunya virus (CHIKV)-infected patients. Eight cytokines were compared in CHIKV patients with and without joint pain. IL-4 and IL-13 levels were significantly lower in patients with joint pain (p = 0.006 and p < 0.0001, respectively). IL-18 levels were higher in the group of patients with joint pain (p < 0.0001) and were significantly higher on days 3 and 4 after onset (p = 0.0012 and p = 0.003, respectively). Moreover, TNF-α levels were significantly higher in patients with joint pain on day 3 (p = 0.028). This study demonstrated that cytokines, particularly IL-18, may be candidates for immunomodulation.
Collapse
Affiliation(s)
- Chintana Chirathaworn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jira Chansaenroj
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pornsuri Pongsuchart
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
12
|
Neupane B, Acharya D, Nazneen F, Gonzalez-Fernandez G, Flynt AS, Bai F. Interleukin-17A Facilitates Chikungunya Virus Infection by Inhibiting IFN-α2 Expression. Front Immunol 2020; 11:588382. [PMID: 33304351 PMCID: PMC7701120 DOI: 10.3389/fimmu.2020.588382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/19/2020] [Indexed: 12/27/2022] Open
Abstract
Interferons (IFNs) are the key components of innate immunity and are crucial for host defense against viral infections. Here, we report a novel role of interleukin-17A (IL-17A) in inhibiting IFN-α2 expression thus promoting chikungunya virus (CHIKV) infection. CHIKV infected IL-17A deficient (Il17a-/- ) mice expressed a higher level of IFN-α2 and developed diminished viremia and milder footpad swelling in comparison to wild-type (WT) control mice, which was also recapitulated in IL-17A receptor-deficient (Il17ra-/- ) mice. Interestingly, IL-17A selectively blocked IFN-α2 production during CHIKV, but not West Nile virus (WNV) or Zika virus (ZIKV), infections. Recombinant IL-17A treatment inhibited CHIKV-induced IFN-α2 expression and enhanced CHIKV replication in both human and mouse cells. We further found that IL-17A inhibited IFN-α2 production by modulating the expression of Interferon Regulatory Factor-5 (IRF-5), IRF-7, IFN-stimulated gene 49 (ISG-49), and Mx1 expression during CHIKV infection. Neutralization of IL-17A in vitro leads to the increase of the expression of these antiviral molecules and decrease of CHIKV replication. Collectively, these results suggest a novel function of IL-17A in inhibiting IFN-α2-mediated antiviral responses during CHIKV infection, which may have broad implications in viral infections and other inflammatory diseases.
Collapse
Affiliation(s)
- Biswas Neupane
- Department of Cell and Molecular Biology, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Dhiraj Acharya
- Department of Cell and Molecular Biology, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Farzana Nazneen
- Department of Cell and Molecular Biology, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Gabriel Gonzalez-Fernandez
- Department of Cell and Molecular Biology, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Alex Sutton Flynt
- Department of Cell and Molecular Biology, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Fengwei Bai
- Department of Cell and Molecular Biology, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
13
|
Sánchez-Arcila JC, Badolato-Correa J, de Souza TMA, Paiva IA, Barbosa LS, Nunes PCG, Lima MDRQ, Dos Santos FB, Damasco PV, da Cunha RV, Azeredo ELD, de Oliveira-Pinto LM. Clinical, Virological, and Immunological Profiles of DENV, ZIKV, and/or CHIKV-Infected Brazilian Patients. Intervirology 2020; 63:33-45. [PMID: 32966990 DOI: 10.1159/000510223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 06/25/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Arboviruses co-circulating within a population that are transmitted by the same vector have the potential to cause coinfections. Coinfections with dengue virus (DENV), Zika virus (ZIKV), and chikungunya virus (CHIKV) have been occurring in Brazil, but it is not well-understood how human responses vary during mono- or coinfections and whether they play different roles in pathogenesis. METHODS We investigated the clinical, virological, and immunological status during patients' acute infections, focusing on the CCL/CXC chemokines, proinflammatory, as well as anti-inflammatory cytokines levels quantified by ELISAs. Viral load was determined by qRT-PCR in serum samples from 116 acute DENV, ZIKV, CHIKV, DENV/ZIKV, and CHIKV/ZIKV-infected adult patients from Brazil. RESULTS Most of the acute patients displayed fever, headache, prostration, and myalgia, regardless of the type of arbovirus infection. Zika viral load was higher in CHIKV/ZIKV coinfected patients compared with ZIKV or DENV/ZIKV infections. All infected individuals presented increased concentrations of C-X-C motif chemokine ligand 10/interferon protein-10 (CXCL10/IP-10), C-C motif chemokine ligand 2/monocyte chemoattractant protein-1 (CCL2/MCP-1), and tumor necrosis factor alpha (TNF-α) compared to healthy donors. Interestingly, the ZIKV group separated from CHIKV/ZIKV due to higher levels of interleukin-10 (IL-10) and lower levels of TNF-α. While DENV/ZIKV differentiated from CHIKV due to their higher levels of CCL2/MCP-1, in CHIKV- and CHIKV/ZIKV-infected patients, levels of CXC10/IP-10, CCL2/MCP-1, and migration inhibitory factor (MIF) were associated with CHIKV viral load. By contrast, in DENV/ZIKV- and CHIKV/ZIKV-infected patients, levels of CXCL10/IP-10, CCL2/MCP-1, and TNF-α showed a significant inverse correlation with ZIKV viral load. CONCLUSIONS From all the circulating mediators measured, we detected differences of IL-10, TNF-α, and CCL2/MCP-1 between arbovirus groups. We hypothesize that CXC10/IP-10, CCL2/MCP-1, and MIF in the CHIKV-infected group could regulate the CHIKV viral load, while CXC10/IP-10, CCL2/MCP-1, and TNF-α in DENV/ZIKV, and CHIKV/ZIKV groups, could regulate ZIKV viral load.
Collapse
Affiliation(s)
- Juan Camilo Sánchez-Arcila
- Viral Immunology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Jessica Badolato-Correa
- Viral Immunology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Iury Amâncio Paiva
- Viral Immunology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Luciana Santos Barbosa
- Viral Immunology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.,Laboratory of Genetics, Institute of Paediatrics and Puericulture Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | | | - Flavia Barrento Dos Santos
- Viral Immunology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Paulo Vieira Damasco
- Universitary Hospital Gaffrée Guinle, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Rivaldo Venancio da Cunha
- Medical Clinic Department, Federal University of Mato Grosso do Sul, Campo Grande (UFMG), Campo Grande, Brazil
| | - Elzinandes Leal de Azeredo
- Viral Immunology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil,
| | | |
Collapse
|
14
|
|
15
|
Abstract
Alphaviruses, members of the enveloped, positive-sense, single-stranded RNA Togaviridae family, represent a reemerging public health threat as mosquito vectors expand into new geographic territories. The Old World alphaviruses, which include chikungunya virus, Ross River virus, and Sindbis virus, tend to cause a clinical syndrome characterized by fever, rash, and arthritis, whereas the New World alphaviruses, which consist of Venezuelan equine encephalitis virus, eastern equine encephalitis virus, and western equine encephalitis virus, induce encephalomyelitis. Following recovery from the acute phase of infection, many patients are left with debilitating persistent joint and neurological complications that can last for years. Clues from human cases and studies using animal models strongly suggest that much of the disease and pathology induced by alphavirus infection, particularly atypical and chronic manifestations, is mediated by the immune system rather than directly by the virus. This review discusses the current understanding of the immunopathogenesis of the arthritogenic and neurotropic alphaviruses accumulated through both natural infection of humans and experimental infection of animals, particularly mice. As treatment following alphavirus infection is currently limited to supportive care, understanding the contribution of the immune system to the disease process is critical to developing safe and effective therapies.
Collapse
Affiliation(s)
- Victoria K Baxter
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Mark T Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
16
|
Chirathaworn C, Chansaenroj J, Poovorawan Y. Cytokines and Chemokines in Chikungunya Virus Infection: Protection or Induction of Pathology. Pathogens 2020; 9:415. [PMID: 32471152 PMCID: PMC7350363 DOI: 10.3390/pathogens9060415] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 01/08/2023] Open
Abstract
Chikungunya virus (CHIKV) infection has been commonly detected in tropical countries. The clinical manifestations of CHIKV infection are similar to those of rheumatoid arthritis. Outbreaks of CHIKV infection in Thailand have been reported, and the inductions of various cytokines and chemokines in CHIKV patients during those outbreaks have been shown. Although immune responses in CHIKV infection have been increasingly reported, the mechanisms associated with pathology induction are still not clearly understood. This review focuses on cytokine and chemokine production in CHIKV infection, in association with the severity of joint inflammation. Several cytokines and chemokines involved in the induction or regulation of inflammatory responses were shown to associate with the severe and persistent symptoms in CHIKV infection. Further studies on the difference in immune responses observed in an autoimmune disease, rheumatoid arthritis, infectious disease, and CHIKV infection, would provide additional insights useful for proper CHIKV therapy, especially in patients with severe joint pains.
Collapse
Affiliation(s)
- Chintana Chirathaworn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Jira Chansaenroj
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
17
|
Srivastava P, Kumar A, Hasan A, Mehta D, Kumar R, Sharma C, Sunil S. Disease Resolution in Chikungunya-What Decides the Outcome? Front Immunol 2020; 11:695. [PMID: 32411133 PMCID: PMC7198842 DOI: 10.3389/fimmu.2020.00695] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Chikungunya disease (CHIKD) is a viral infection caused by an alphavirus, chikungunya virus (CHIKV), and triggers large outbreaks leading to epidemics. Despite the low mortality rate, it is a major public health concern owing to high morbidity in affected individuals. The complete spectrum of this disease can be divided into four phases based on its clinical presentation and immunopathology. When a susceptible individual is bitten by an infected mosquito, the bite triggers inflammatory responses attracting neutrophils and initiating a cascade of events, resulting in the entry of the virus into permissive cells. This phase is termed the pre-acute or the intrinsic incubation phase. The virus utilizes the cellular components of the innate immune system to enter into circulation and reach primary sites of infection such as the lymph nodes, spleen, and liver. Also, at this point, antigen-presenting cells (APCs) present the viral antigens to the T cells thereby activating and initiating adaptive immune responses. This phase is marked by the exhibition of clinical symptoms such as fever, rashes, arthralgia, and myalgia and is termed the acute phase of the disease. Viremia reaches its peak during this phase, thereby enhancing the antigen-specific host immune response. Simultaneously, T cell-mediated activation of B cells leads to the formation of CHIKV specific antibodies. Increase in titres of neutralizing IgG/IgM antibodies results in the clearance of virus from the bloodstream and marks the initiation of the post-acute phase. Immune responses mounted during this phase of the infection determine the degree of disease progression or its resolution. Some patients may progress to a chronic arthritic phase of the disease that may last from a few months to several years, owing to a compromised disease resolution. The present review discusses the immunopathology of CHIKD and the factors that dictate disease progression and its resolution.
Collapse
Affiliation(s)
- Priyanshu Srivastava
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Ankit Kumar
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Abdul Hasan
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Divya Mehta
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Ramesh Kumar
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Chetan Sharma
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sujatha Sunil
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|