1
|
Hashemi-Afzal F, Fallahi H, Bagheri F, Collins MN, Eslaminejad MB, Seitz H. Advancements in hydrogel design for articular cartilage regeneration: A comprehensive review. Bioact Mater 2025; 43:1-31. [PMID: 39318636 PMCID: PMC11418067 DOI: 10.1016/j.bioactmat.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
This review paper explores the cutting-edge advancements in hydrogel design for articular cartilage regeneration (CR). Articular cartilage (AC) defects are a common occurrence worldwide that can lead to joint breakdown at a later stage of the disease, necessitating immediate intervention to prevent progressive degeneration of cartilage. Decades of research into the biomedical applications of hydrogels have revealed their tremendous potential, particularly in soft tissue engineering, including CR. Hydrogels are highly tunable and can be designed to meet the key criteria needed for a template in CR. This paper aims to identify those criteria, including the hydrogel components, mechanical properties, biodegradability, structural design, and integration capability with the adjacent native tissue and delves into the benefits that CR can obtain through appropriate design. Stratified-structural hydrogels that emulate the native cartilage structure, as well as the impact of environmental stimuli on the regeneration outcome, have also been discussed. By examining recent advances and emerging techniques, this paper offers valuable insights into developing effective hydrogel-based therapies for AC repair.
Collapse
Affiliation(s)
- Fariba Hashemi-Afzal
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Hooman Fallahi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104 USA
| | - Fatemeh Bagheri
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Maurice N. Collins
- School of Engineering, Bernal Institute and Health Research Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 16635-148, Iran
| | - Hermann Seitz
- Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
2
|
Lan X, Ma Z, Kunze M, Mulet-Sierra A, Osswald M, Ansari K, Seikaly H, Boluk Y, Adesida AB. The Effect of Crosslinking Density on Nasal Chondrocytes' Redifferentiation. Ann Biomed Eng 2024; 52:1848-1858. [PMID: 37005947 DOI: 10.1007/s10439-023-03184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/27/2023] [Indexed: 04/04/2023]
Abstract
Hydrogels appear to be an attractive class of biomaterial for cartilage tissue engineering due to their high water content, excellent biocompatibility, tunable stiffness, etc. The crosslinking density of the hydrogel can affect their viscoelastic property, and therefore potentially impact the chondrogenic phenotype of re-differentiated chondrocytes in a 3D microenvironment through physical cues. To understand the effect of crosslinking densities on chondrocytes phenotype and cellular interaction with the hydrogel, this study utilized a clinical grade thiolate hyaluronic acid and thiolate gelatin (HA-Gel) hydrogel, crosslinked with poly(ethylene glycol) diacrylate to create various crosslinking densities. The HA-Gel hydrogels were then mixed with human nasal chondrocytes to generate neocartilage in vitro. The influence of the hydrogel crosslinking density and the viscoelastic property on the cell behaviours on the gene and matrix levels were evaluated using biochemistry assays, histology, quantitative polymerase chain reaction (qPCR) and next-generation sequencing (RNA seq). In general, the differences in the storage modulus of the HA-Gel hydrogel are not enough to alter the cartilaginous gene expression of chondrocytes. However, a positively correlated trend of PPAR-γ gene expression to the crosslinking density was measured by qPCR. The RNA-seq results have shown that 178 genes are significantly negatively correlated and 225 genes are positively correlated to the crosslinking density, which is worth investigating in the future studies.
Collapse
Affiliation(s)
- Xiaoyi Lan
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
| | - Zhiyao Ma
- Department of Surgery, Divisions of Orthopedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, AB, Canada
| | - Melanie Kunze
- Department of Surgery, Divisions of Orthopedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, AB, Canada
| | - Aillette Mulet-Sierra
- Department of Surgery, Divisions of Orthopedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, AB, Canada
| | - Martin Osswald
- Institute for Reconstructive Sciences in Medicine, Misericordia Community Hospital, Edmonton, AB, Canada
- Department of Surgery, Division of Otolaryngology, Faculty of Medicine & Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, AB, Canada
| | - Khalid Ansari
- Department of Surgery, Division of Otolaryngology, Faculty of Medicine & Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, AB, Canada
| | - Hadi Seikaly
- Department of Surgery, Division of Otolaryngology, Faculty of Medicine & Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, AB, Canada
| | - Yaman Boluk
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada.
| | - Adetola B Adesida
- Department of Surgery, Divisions of Orthopedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, AB, Canada.
- Department of Surgery, Division of Otolaryngology, Faculty of Medicine & Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
3
|
Du G, Zhang J, Shuai Q, Li L, Zhang Q, Shi R. Development of alginate-collagen interpenetrating network for osteoarthritic cartilage by in situ softening. Int J Biol Macromol 2024; 266:131259. [PMID: 38574937 DOI: 10.1016/j.ijbiomac.2024.131259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
This study presents an alginate-collagen interpenetrating network (IPN) matrix of incorporating collagen fibrils into an alginate hydrogel by physical mixing and controlled gelation. The resulting matrix closely mimics the physiological and pathological stiffness range of the chondrocyte pericellular matrix (PCM). Chondrocytes were cultured within three-dimensional (3D) alginate-collagen IPN matrices with varying stiffness, namely Firm, Medium, and Soft. Alginate lyase was introduced to study the effects of the changes in stiffness of the Firm on chondrocyte response by in situ softening. The developed alginate-collagen IPN matrix displayed good cell-biocompatibility. Compared with stiffer tissue culture plastic (TCP), chondrocytes grown within Firm displayed a stabilized differentiated phenotype characterized by higher expression levels of aggrecan, collagen II, and SOX-9. Moreover, the developed alginate-collagen IPN matrix exhibited a gradually increased percentage of propidium iodide (PI)-positive dead cells with decreasing stiffness. Softer matrices directed cells towards higher proliferation rates and spherical morphologies while stimulating chondrocyte cluster formation. Furthermore, reducing Firm stiffness by in situ softening decreased aggrecan expression, contributing to matrix degradation similar to that seen in osteoarthritis (OA). Hence, the 3D alginate-collagen IPN constructs hold significant potential for in vitro replicating PCM stiffness changes observed in OA cartilage.
Collapse
Affiliation(s)
- Genlai Du
- Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Taiyuan 030001, China.
| | - Jiaqi Zhang
- Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Taiyuan 030001, China
| | - Qizhi Shuai
- Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Taiyuan 030001, China
| | - Li Li
- Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Taiyuan 030001, China
| | - Quanyou Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Department of Orthopaedics, the Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, China
| | - Ruyi Shi
- Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Taiyuan 030001, China.
| |
Collapse
|
4
|
Li S, Li X, Xu Y, Fan C, Li ZA, Zheng L, Luo B, Li ZP, Lin B, Zha ZG, Zhang HT, Wang X. Collagen fibril-like injectable hydrogels from self-assembled nanoparticles for promoting wound healing. Bioact Mater 2024; 32:149-163. [PMID: 37822915 PMCID: PMC10563012 DOI: 10.1016/j.bioactmat.2023.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/24/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
Soft hydrogels are excellent candidate materials for repairing various tissue defects, yet the mechanical strength, anti-swelling properties, and biocompatibility of many soft hydrogels need to be improved. Herein, inspired by the nanostructure of collagen fibrils, we developed a strategy toward achieving a soft but tough, anti-swelling nanofibrillar hydrogel by combining the self-assembly and chemical crosslinking of nanoparticles. Specifically, the collagen fibril-like injectable hydrogel was subtly designed and fabricated by self-assembling methylacrylyl hydroxypropyl chitosan (HM) with laponite (LAP) to form nanoparticles, followed by the inter-nanoparticle bonding through photo-crosslinking. The assembly mechanism of nanoparticles was elucidated by both experimental and simulation techniques. Due to the unique structure of the crosslinked nanoparticles, the nanocomposite hydrogels exhibited low stiffness (G'< 2 kPa), high compressive strength (709 kPa), and anti-swelling (swelling ratio of 1.07 in PBS) properties. Additionally, by harnessing the photo-crosslinking ability of the nanoparticles, the nanocomposite hydrogels were processed as microgels, which can be three-dimensionally (3D) printed into complex shapes. Furthermore, we demonstrated that these nanocomposite hydrogels are highly biocompatible, biodegradability, and can effectively promote fibroblast migration and accelerate blood vessel formation during wound healing. This work presents a promising approach to develop biomimetic, nanofibrillar soft hydrogels for regenerative medicine applications.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Xiaoyun Li
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Yidi Xu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Chaoran Fan
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lu Zheng
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Bichong Luo
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Zhi-Peng Li
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Baofeng Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Zhen-Gang Zha
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Huan-Tian Zhang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Xiaoying Wang
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| |
Collapse
|
5
|
Song J, Zeng X, Li C, Yin H, Mao S, Ren D. Alteration in cartilage matrix stiffness as an indicator and modulator of osteoarthritis. Biosci Rep 2024; 44:BSR20231730. [PMID: 38014522 PMCID: PMC10794814 DOI: 10.1042/bsr20231730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
Osteoarthritis (OA) is characterized by cartilage degeneration and destruction, leading to joint ankylosis and disability. The major challenge in diagnosing OA at early stage is not only lack of clinical symptoms but also the insufficient histological and immunohistochemical signs. Alteration in cartilage stiffness during OA progression, especially at OA initiation, has been confirmed by growing evidences. Moreover, the stiffness of cartilage extracellular matrix (ECM), pericellular matrix (PCM) and chondrocytes during OA development are dynamically changed in unique and distinct fashions, revealing possibly inconsistent conclusions when detecting cartilage matrix stiffness at different locations and scales. In addition, it will be discussed regarding the mechanisms through which OA-related cartilage degenerations exhibit stiffened or softened matrix, highlighting some critical events that generally incurred to cartilage stiffness alteration, as well as some typical molecules that participated in constituting the mechanical properties of cartilage. Finally, in vitro culturing chondrocytes in various stiffness-tunable scaffolds provided a reliable method to explore the matrix stiffness-dependent modulation of chondrocyte metabolism, which offers valuable information on optimizing implant scaffolds to maximally promote cartilage repair and regeneration during OA. Overall, this review systematically and comprehensively elucidated the current progresses in the relationship between cartilage stiffness alteration and OA progression. We hope that deeper attention and understanding in this researching field will not only develop more innovative methods in OA early detection and diagnose but also provide promising ideas in OA therapy and prognosis.
Collapse
Affiliation(s)
- Jing Song
- Qingdao University Affiliated Qingdao Women and Children’s Hospital, Department of Stomatology Medical Center, Qingdao University, Qingdao, Shandong, CN, China
| | - Xuemin Zeng
- The Affiliated Hospital of Qingdao University, Department of Stomatology Medical Center, Qingdao University, Qingdao, Shandong, CN, China
| | - Chenzhi Li
- The Affiliated Hospital of Qingdao University, Department of Stomatology Medical Center, Qingdao University, Qingdao, Shandong, CN, China
| | - Hongyan Yin
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, CN, China
| | - Sui Mao
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, CN, China
| | - Dapeng Ren
- The Affiliated Hospital of Qingdao University, Department of Stomatology Medical Center, Qingdao University, Qingdao, Shandong, CN, China
| |
Collapse
|
6
|
Cho H, Park SY, Youn D, Park KE, Joo JH, Lee MH, Shin DS. Fabrication of single cell microarrays on a double-layered hydrogel for mitochondrial activity monitoring. Talanta 2023. [DOI: 10.1016/j.talanta.2022.123976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Haq-Siddiqi NA, Britton D, Kim Montclare J. Protein-engineered biomaterials for cartilage therapeutics and repair. Adv Drug Deliv Rev 2023; 192:114647. [PMID: 36509172 DOI: 10.1016/j.addr.2022.114647] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Cartilage degeneration and injury are major causes of pain and disability that effect millions, and yet treatment options for conditions like osteoarthritis (OA) continue to be mainly palliative or involve complete replacement of injured joints. Several biomaterial strategies have been explored to address cartilage repair either by the delivery of therapeutics or as support for tissue repair, however the complex structure of cartilage tissue, its mechanical needs, and lack of regenerative capacity have hindered this goal. Recent advances in synthetic biology have opened new possibilities for engineered proteins to address these unique needs. Engineered protein and peptide-based materials benefit from inherent biocompatibility and nearly unlimited tunability as they utilize the body's natural building blocks to fabricate a variety of supramolecular structures. The pathophysiology and needs of OA cartilage are presented here, along with an overview of the current state of the art and next steps for protein-engineered repair strategies for cartilage.
Collapse
Affiliation(s)
- Nada A Haq-Siddiqi
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Dustin Britton
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States; Department of Chemistry, New York University, New York 10003, United States; Department of Radiology, New York University Grossman School of Medicine, New York 10016, United States; Department of Biomaterials, NYU College of Dentistry, New York, NY 10010, United States; Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States.
| |
Collapse
|
8
|
Gupta A, Lee J, Ghosh T, Nguyen VQ, Dey A, Yoon B, Um W, Park JH. Polymeric Hydrogels for Controlled Drug Delivery to Treat Arthritis. Pharmaceutics 2022; 14:540. [PMID: 35335915 PMCID: PMC8948938 DOI: 10.3390/pharmaceutics14030540] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 12/31/2022] Open
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) are disabling musculoskeletal disorders that affect joints and cartilage and may lead to bone degeneration. Conventional delivery of anti-arthritic agents is limited due to short intra-articular half-life and toxicities. Innovations in polymer chemistry have led to advancements in hydrogel technology, offering a versatile drug delivery platform exhibiting tissue-like properties with tunable drug loading and high residence time properties This review discusses the advantages and drawbacks of polymeric materials along with their modifications as well as their applications for fabricating hydrogels loaded with therapeutic agents (small molecule drugs, immunotherapeutic agents, and cells). Emphasis is given to the biological potentialities of hydrogel hybrid systems/micro-and nanotechnology-integrated hydrogels as promising tools. Applications for facile tuning of therapeutic drug loading, maintaining long-term release, and consequently improving therapeutic outcome and patient compliance in arthritis are detailed. This review also suggests the advantages, challenges, and future perspectives of hydrogels loaded with anti-arthritic agents with high therapeutic potential that may alter the landscape of currently available arthritis treatment modalities.
Collapse
Affiliation(s)
- Anuradha Gupta
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Jungmi Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Torsha Ghosh
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Van Quy Nguyen
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Anup Dey
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Been Yoon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Wooram Um
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
9
|
Koh RH, Kim J, Kim SHL, Hwang NS. RGD-incorporated biomimetic cryogels for hyaline cartilage regeneration. Biomed Mater 2022; 17:024106. [PMID: 35114659 DOI: 10.1088/1748-605x/ac51b7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/03/2022] [Indexed: 11/11/2022]
Abstract
Maintaining the integrity of articular cartilage is paramount to joint health and function. Under constant mechanical stress, articular cartilage is prone to injury that often extends to the underlying subchondral bone. In this study, we incorporated arginine-aspartate-glycine (RGD) peptide into chondroitin sulfate-based cryogel for hyaline cartilage regeneration. Known to promote cell adhesion and proliferation, RGD peptide is a double-edged sword for cartilage regeneration. Depending on the peptide availability in the microenvironment, RGD may aid in redifferentiation of dedifferentiated chondrocytes by mimicking physiological cell-matrix interaction or inhibit chondrogenic phenotype via excessive cell spreading. Here, we observed an increase in chondrogenic phenotype with RGD concentration. The group containing the highest RGD concentration (3 mM; RGD group) experienced a 24-fold increase inCOL2expression in the 1st week ofin vitroculture and formed native cartilage-resembling ectopic tissuein vivo. No sign of dedifferentiation (COL1) was observed in all groups. Within the concentration range tested (0-3 mM RGD), RGD promotes chondrocyte redifferentiation after monolayer expansion and thus, formation of hyaline cartilage tissue.
Collapse
Affiliation(s)
- Rachel H Koh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- BioMAX/N-BIO Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Jisoo Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hyun L Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- BioMAX/N-BIO Institute, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
10
|
Yang M, Zhang ZC, Liu Y, Chen YR, Deng RH, Zhang ZN, Yu JK, Yuan FZ. Function and Mechanism of RGD in Bone and Cartilage Tissue Engineering. Front Bioeng Biotechnol 2022; 9:773636. [PMID: 34976971 PMCID: PMC8714999 DOI: 10.3389/fbioe.2021.773636] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Bone and cartilage injury is common, tissue engineered scaffolds are potential means to repair. Because most of the scaffold materials used in bone and cartilage tissue engineering are bio-inert, it is necessary to increase the cellular adhesion ability of during tissue engineering reconstruction. The Arginine - Glycine - Aspartic acid (Arg-Gly-Asp, RGD) peptide family is considered as a specific recognition site for the integrin receptors. Integrin receptors are key regulators of cell-cell and cell-extracellular microenvironment communication. Therefore, the RGD polypeptide families are considered as suitable candidates for treatment of a variety of diseases and for the regeneration of various tissues and organs. Many scaffold material for tissue engineering and has been approved by US Food and Drug Administration (FDA) for human using. The application of RGD peptides in bone and cartilage tissue engineering was reported seldom. Only a few reviews have summarized the applications of RGD peptide with alloy, bone cements, and PCL in bone tissue engineering. Herein, we summarize the application progress of RGD in bone and cartilage tissue engineering, discuss the effects of structure, sequence, concentration, mechanical stimulation, physicochemical stimulation, and time stimulation of RGD peptide on cells differentiation, and introduce the mechanism of RGD peptide through integrin in the field of bone and cartilage tissue engineering.
Collapse
Affiliation(s)
- Meng Yang
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Zheng-Chu Zhang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yan Liu
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - You-Rong Chen
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Rong-Hui Deng
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Zi-Ning Zhang
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Jia-Kuo Yu
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Fu-Zhen Yuan
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| |
Collapse
|
11
|
Jiang N, Mao M, Li X, Zhang W, He J, Li D. Advanced biofabrication strategies for biomimetic composite scaffolds to regenerate ligament‐bone interface. BIOSURFACE AND BIOTRIBOLOGY 2021. [DOI: 10.1049/bsb2.12021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Nan Jiang
- State Key Laboratory for Manufacturing Systems Engineering Xi’an Jiaotong University Xi’an Shaanxi China
- Department of Surgical Oncology Shaanxi Provincial People’s Hospital (Third Hospital of Medical College of Xi’an Jiaotong University) Xi’an Shaanxi China
| | - Mao Mao
- State Key Laboratory for Manufacturing Systems Engineering Xi’an Jiaotong University Xi’an Shaanxi China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices Xi’an Jiaotong University Xi’an Shaanxi China
| | - Xiao Li
- State Key Laboratory for Manufacturing Systems Engineering Xi’an Jiaotong University Xi’an Shaanxi China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices Xi’an Jiaotong University Xi’an Shaanxi China
| | - Weijie Zhang
- Department of Knee Joint Surgery Hong Hui Hospital Health Science Center Xi’an Jiaotong University Xi’an Shaanxi China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering Xi’an Jiaotong University Xi’an Shaanxi China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices Xi’an Jiaotong University Xi’an Shaanxi China
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering Xi’an Jiaotong University Xi’an Shaanxi China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices Xi’an Jiaotong University Xi’an Shaanxi China
| |
Collapse
|
12
|
Soheilmoghaddam F, Rumble M, Cooper-White J. High-Throughput Routes to Biomaterials Discovery. Chem Rev 2021; 121:10792-10864. [PMID: 34213880 DOI: 10.1021/acs.chemrev.0c01026] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many existing clinical treatments are limited in their ability to completely restore decreased or lost tissue and organ function, an unenviable situation only further exacerbated by a globally aging population. As a result, the demand for new medical interventions has increased substantially over the past 20 years, with the burgeoning fields of gene therapy, tissue engineering, and regenerative medicine showing promise to offer solutions for full repair or replacement of damaged or aging tissues. Success in these fields, however, inherently relies on biomaterials that are engendered with the ability to provide the necessary biological cues mimicking native extracellular matrixes that support cell fate. Accelerating the development of such "directive" biomaterials requires a shift in current design practices toward those that enable rapid synthesis and characterization of polymeric materials and the coupling of these processes with techniques that enable similarly rapid quantification and optimization of the interactions between these new material systems and target cells and tissues. This manuscript reviews recent advances in combinatorial and high-throughput (HT) technologies applied to polymeric biomaterial synthesis, fabrication, and chemical, physical, and biological screening with targeted end-point applications in the fields of gene therapy, tissue engineering, and regenerative medicine. Limitations of, and future opportunities for, the further application of these research tools and methodologies are also discussed.
Collapse
Affiliation(s)
- Farhad Soheilmoghaddam
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Madeleine Rumble
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Justin Cooper-White
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| |
Collapse
|
13
|
Chang CY, Lin CC. Hydrogel Models with Stiffness Gradients for Interrogating Pancreatic Cancer Cell Fate. Bioengineering (Basel) 2021; 8:37. [PMID: 33805737 PMCID: PMC8002168 DOI: 10.3390/bioengineering8030037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer and has seen only modest improvements in patient survival rate over the past few decades. PDAC is highly aggressive and resistant to chemotherapy, owing to the presence of a dense and hypovascularized fibrotic tissue, which is composed of stromal cells and extracellular matrices. Increase deposition and crosslinking of matrices by stromal cells lead to a heterogeneous microenvironment that aids in PDAC development. In the past decade, various hydrogel-based, in vitro tumor models have been developed to mimic and recapitulate aspects of the tumor microenvironment in PDAC. Advances in hydrogel chemistry and engineering should provide a venue for discovering new insights regarding how matrix properties govern PDAC cell growth, migration, invasion, and drug resistance. These engineered hydrogels are ideal for understanding how variation in matrix properties contributes to the progressiveness of cancer cells, including durotaxis, the directional migration of cells in response to a stiffness gradient. This review surveys the various hydrogel-based, in vitro tumor models and the methods to generate gradient stiffness for studying migration and other cancer cell fate processes in PDAC.
Collapse
Affiliation(s)
- Chun-Yi Chang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Chien-Chi Lin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA;
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
14
|
Liu E, Zhu D, Gonzalez Diaz E, Tong X, Yang F. Gradient Hydrogels for Optimizing Niche Cues to Enhance Cell-Based Cartilage Regeneration. Tissue Eng Part A 2020; 27:929-939. [PMID: 32940136 DOI: 10.1089/ten.tea.2020.0158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hydrogels have been widely used for cell delivery to enhance cell-based therapies for cartilage tissue regeneration. To better support cartilage deposition, it is imperative to determine hydrogel formulation with physical and biochemical cues that are optimized for different cell populations. Previous attempts to identify optimized hydrogels rely mostly on testing hydrogel formulations with discrete properties, which are time-consuming and require large amounts of cells and materials. Gradient hydrogels encompass a range of continuous changes in niche properties, therefore offering a promising solution for screening a wide range of cell-niche interactions using less materials and time. However, harnessing gradient hydrogels to assess how matrix stiffness modulates cartilage formation by different cell types in vivo have never been investigated before. The goal of this study is to fabricate gradient hydrogels for screening the effects of varying hydrogel stiffness on cartilage formation by mesenchymal stem cells (MSCs) and chondrocytes, respectively, the two most commonly used cell populations for cartilage regeneration. We fabricated stiffness gradient hydrogels with tunable dimensions that support homogeneous cell encapsulation. Using gradient hydrogels with tunable stiffness range, we found MSCs and chondrocytes exhibit opposite trend in cartilage deposition in response to stiffness changes in vitro. Specifically, MSCs require soft hydrogels with Young's modulus less than 5 kPa to support faster cartilage deposition, as shown by type II collagen and sulfated glycosaminoglycan staining. In contrast, chondrocytes produce cartilage more effectively in stiffer matrix (>20 kPa). We chose optimal ranges of stiffness for each cell population for further testing in vivo using a mouse subcutaneous model. Our results further validated that soft matrix (Young's modulus <5 kPa) is better in supporting MSC-based cartilage deposition in three-dimensional, whereas stiffer matrix (Young's modulus >20 kPa) is more desirable for supporting chondrocyte-based cartilage deposition. Our results show the importance of optimizing niche cues in a cell-type-specific manner and validate the potential of using gradient hydrogels for optimizing niche cues to support cartilage regeneration in vitro and in vivo. Impact statement The present study validates the utility of gradient hydrogels for determining optimal hydrogel stiffness for supporting cartilage regeneration using both chondrocytes and stem cells. We demonstrate that such gradient hydrogels can be used for fast optimizing matrix stiffness for specific cell type to support optimal cartilage regeneration. To our knowledge, this is the first demonstration of applying gradient hydrogels for assessing optimal niche cues that support tissue regeneration in vivo and may be used for assessing optimal niche cues for different cell types to regeneration of different tissues.
Collapse
Affiliation(s)
- Elisa Liu
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Danqing Zhu
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Eva Gonzalez Diaz
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Xinming Tong
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Fan Yang
- Department of Bioengineering, Stanford University, Stanford, California, USA.,Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| |
Collapse
|
15
|
Wei W, Ma Y, Yao X, Zhou W, Wang X, Li C, Lin J, He Q, Leptihn S, Ouyang H. Advanced hydrogels for the repair of cartilage defects and regeneration. Bioact Mater 2020; 6:998-1011. [PMID: 33102942 PMCID: PMC7557878 DOI: 10.1016/j.bioactmat.2020.09.030] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 02/08/2023] Open
Abstract
Cartilage defects are one of the most common symptoms of osteoarthritis (OA), a degenerative disease that affects millions of people world-wide and places a significant socio-economic burden on society. Hydrogels, which are a class of biomaterials that are elastic, and display smooth surfaces while exhibiting high water content, are promising candidates for cartilage regeneration. In recent years, various kinds of hydrogels have been developed and applied for the repair of cartilage defects in vitro or in vivo, some of which are hopeful to enter clinical trials. In this review, recent research findings and developments of hydrogels for cartilage defects repair are summarized. We discuss the principle of cartilage regeneration, and outline the requirements that have to be fulfilled for the deployment of hydrogels for medical applications. We also highlight the development of advanced hydrogels with tailored properties for different kinds of cartilage defects to meet the requirements of cartilage tissue engineering and precision medicine. The biotechnology of developing hydrogels for cartilage defects repair is promising. The principle for cartilage regeneration using hydrogels and requirements for clinical transformation are summarized. Advanced hydrogels with tailored properties for different kinds of cartilage defects are discussed.
Collapse
Affiliation(s)
- Wei Wei
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanzhu Ma
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xudong Yao
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenyan Zhou
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaozhao Wang
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenglin Li
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Junxin Lin
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiulin He
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Sebastian Leptihn
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongwei Ouyang
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.,Department of Sports Medicine, Zhejiang University School of Medicine, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
16
|
The effects of chemical crosslinking manners on the physical properties and biocompatibility of collagen type I/hyaluronic acid composite hydrogels. Int J Biol Macromol 2020; 160:1201-1211. [DOI: 10.1016/j.ijbiomac.2020.05.208] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/26/2020] [Accepted: 05/23/2020] [Indexed: 02/04/2023]
|
17
|
Self-healing, sensitive and antifreezing biomass nanocomposite hydrogels based on hydroxypropyl guar gum and application in flexible sensors. Int J Biol Macromol 2020; 155:1569-1577. [DOI: 10.1016/j.ijbiomac.2019.11.134] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 01/08/2023]
|
18
|
Lavrentieva A, Fleischhammer T, Enders A, Pirmahboub H, Bahnemann J, Pepelanova I. Fabrication of Stiffness Gradients of GelMA Hydrogels Using a 3D Printed Micromixer. Macromol Biosci 2020; 20:e2000107. [PMID: 32537875 DOI: 10.1002/mabi.202000107] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/20/2020] [Indexed: 11/09/2022]
Abstract
Many properties in both healthy and pathological tissues are highly influenced by the mechanical properties of the extracellular matrix. Stiffness gradient hydrogels are frequently used for exploring these complex relationships in mechanobiology. In this study, the fabrication of a simple, cost-efficient, and versatile system is reported for creation of stiffness gradients from photoactive hydrogels like gelatin-methacryloyl (GelMA). The setup includes syringe pumps for gradient generation and a 3D printed microfluidic device for homogenous mixing of GelMA precursors with different crosslinker concentration. The stiffness gradient is investigated by using rheology. A co-culture consisting of human adipose tissue-derived mesenchymal stem cells (hAD-MSCs) and human umbilical cord vein endothelial cells (HUVECs) is encapsulated in the gradient construct. It is possible to locate the stiffness ranges at which the studied cells displayed specific spreading morphology and migration rates. With the help of the described system, variable mechanical gradient constructs can be created and optimal 3D cell culture conditions can be experientially identified.
Collapse
Affiliation(s)
- Antonina Lavrentieva
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstrasse 5, Hannover, 30167, Germany
| | - Tabea Fleischhammer
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstrasse 5, Hannover, 30167, Germany
| | - Anton Enders
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstrasse 5, Hannover, 30167, Germany
| | - Hamidreza Pirmahboub
- Institute of Cell Biology and Biophysics, Leibniz University of Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Janina Bahnemann
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstrasse 5, Hannover, 30167, Germany
| | - Iliyana Pepelanova
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstrasse 5, Hannover, 30167, Germany
| |
Collapse
|
19
|
Zhang W, Xia Y, Ling Y, Yang W, Dong ZX, Wang DA, Fan C. A Transcriptome Sequencing Study on Genome-Wide Gene Expression Differences of 3D Cultured Chondrocytes in Hydrogel Scaffolds with Different Gel Density. Macromol Biosci 2020; 20:e2000028. [PMID: 32187455 DOI: 10.1002/mabi.202000028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/18/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Hydrogel is considered as a promising cell delivery vehicle in cartilage tissue engineering, whose tunable microenvironments may influence the function and fate of encapsulated chondrocytes. Here, the transcriptomes of chondrocytes that are encapsulated and cultured in hydrogel constructs respectively made of 0.8% and 4% alginate solution are investigated. Differences in chondrocyte transcriptome are detected via RNA-sequencing from these two cultural conditions. The differentially expressed genes (DEGs) are reflected in extracellular matrix (ECM) secretion, cell cycle, proliferation, cartilage development, and so on. Significantly, the expression of DEGs associated with cartilage ECM and cell proliferation are upregulated in 0.8% constructs; whilst the expressions of DEGs involved in cell cycle and matrix degradation are upregulated in 4% constructs. Moreover, interestingly, the expressions of chondrocyte hypertrophy markers are upregulated in 0.8% constructs; while 4% constructs seemingly favor the long-term maintenance of chondrocyte phenotype. Taken together, this study confirms on transcriptomic level that gel density affects gene expression and phenotype of the encapsulated chondrocytes; therefore, it may provide guidance for future design and fabrication of cartilage tissue engineering scaffolds.
Collapse
Affiliation(s)
- Weiyuan Zhang
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yujun Xia
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yang Ling
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Wei Yang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, P. R. China
| | - Zuo-Xiang Dong
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao, 266021, P. R. China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR
| | - Changjiang Fan
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Qingdao University, Qingdao, 266021, China.,Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, P. R. China
| |
Collapse
|
20
|
Perera TH, Lu X, Smith Callahan LA. Effect of Laminin Derived Peptides IKVAV and LRE Tethered to Hyaluronic Acid on hiPSC Derived Neural Stem Cell Morphology, Attachment and Neurite Extension. J Funct Biomater 2020; 11:E15. [PMID: 32155839 PMCID: PMC7151619 DOI: 10.3390/jfb11010015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/23/2022] Open
Abstract
Low neural tissue extracellular matrix (ECM) content has led to the understudy of its effects on neural cells and tissue. Hyaluronic acid (HA) and laminin are major neural ECM components, but direct comparisons of their cellular effects could not be located in the literature. The current study uses human-induced pluripotent stem-cell-derived neural stem cells to assess the effects of HA, laminin, and HA with laminin-derived peptides IKVAV and LRE on cellular morphology, attachment, neurite extension and ECM remodeling. Increased attachment was observed on HA with and without IKVAV and LRE compared to laminin. Cellular morphology and neurite extension were similar on all surfaces. Using a direct binding inhibitor of Cav2.2 voltage gated calcium channel activity, a known binding partner of LRE, reduced attachment on HA with and without IKVAV and LRE and altered cellular morphology on surfaces with laminin or IKVAV and LRE. HA with IKVAV and LRE reduced the fluorescent intensity of fibronectin staining, but did not alter the localization of ECM remodeling enzymes matrix metalloprotease 2 and 9 staining compared to HA. Overall, the data indicate HA, IKVAV and LRE have complementary effects on human-induced pluripotent stem-cell-derived neural stem cell behavior.
Collapse
Affiliation(s)
- T. Hiran Perera
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA; (T.H.P.); (X.L.)
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xi Lu
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA; (T.H.P.); (X.L.)
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Laura A Smith Callahan
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA; (T.H.P.); (X.L.)
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Graduate School of Biomedical Sciences, MD Anderson Cancer Center UTHealth, Houston, TX 77030, USA
| |
Collapse
|
21
|
In Vitro Evaluation of the Influence of Substrate Mechanics on Matrix-Assisted Human Chondrocyte Transplantation. J Funct Biomater 2020; 11:jfb11010005. [PMID: 31963629 PMCID: PMC7151603 DOI: 10.3390/jfb11010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 11/25/2022] Open
Abstract
Matrix-assisted chondrocyte transplantation (MACT) is of great interest for the treatment of patients with cartilage lesions. However, the roles of the matrix properties in modulating cartilage tissue integration during MACT recovery have not been fully understood. The objective of this study was to uncover the effects of substrate mechanics on the integration of implanted chondrocyte-laden hydrogels with native cartilage tissues. To this end, agarose hydrogels with Young’s moduli ranging from 0.49 kPa (0.5%, w/v) to 23.08 kPa (10%) were prepared and incorporated into an in vitro human cartilage explant model. The hydrogel-cartilage composites were cultivated for up to 12 weeks and harvested for evaluation via scanning electron microscopy, histology, and a push-through test. Our results demonstrated that integration strength at the hydrogel-cartilage interface in the 1.0% (0.93 kPa) and 2.5% (3.30 kPa) agarose groups significantly increased over time, whereas hydrogels with higher stiffness (>8.78 kPa) led to poor integration with articular cartilage. Extensive sprouting of extracellular matrix in the interfacial regions was only observed in the 0.5% to 2.5% agarose groups. Collectively, our findings suggest that while neocartilage development and its integration with native cartilage are modulated by substrate elasticity, an optimal Young’s modulus (3.30 kPa) possessed by agarose hydrogels is identified such that superior quality of tissue integration is achieved without compromising tissue properties of implanted constructs.
Collapse
|
22
|
Zhong J, Yang Y, Liao L, Zhang C. Matrix stiffness-regulated cellular functions under different dimensionalities. Biomater Sci 2020; 8:2734-2755. [DOI: 10.1039/c9bm01809c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The microenvironments that cells encounter with in vitro.
Collapse
Affiliation(s)
- Jiajun Zhong
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments (Sun Yat-sen University)
- School of Biomedical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Yuexiong Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments (Sun Yat-sen University)
- School of Biomedical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Liqiong Liao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering
- Biomaterials Research Center
- School of Biomedical Engineering
- Southern Medical University
- Guangzhou
| | - Chao Zhang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments (Sun Yat-sen University)
- School of Biomedical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| |
Collapse
|
23
|
Žigon-Branc S, Markovic M, Van Hoorick J, Van Vlierberghe S, Dubruel P, Zerobin E, Baudis S, Ovsianikov A. Impact of Hydrogel Stiffness on Differentiation of Human Adipose-Derived Stem Cell Microspheroids. Tissue Eng Part A 2019; 25:1369-1380. [PMID: 30632465 PMCID: PMC6784494 DOI: 10.1089/ten.tea.2018.0237] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/07/2019] [Indexed: 12/27/2022] Open
Abstract
Hydrogels represent an attractive material platform for realization of three-dimensional (3D) tissue-engineered constructs, as they have tunable mechanical properties, are compatible with different types of cells, and resemble elements found in natural extracellular matrices. So far, numerous hydrogel-cartilage/bone tissue engineering (TE)-related studies were performed by utilizing a single cell encapsulation approach. Although multicellular spheroid cultures exhibit advantageous properties for cartilage or bone TE, the chondrogenic or osteogenic differentiation potential of stem cell microspheroids within hydrogels has not been investigated much. This study explores, for the first time, how stiffness of gelatin-based hydrogels (having a storage modulus of 538, 3584, or 7263 Pa) affects proliferation and differentiation of microspheroids formed from telomerase-immortalized human adipose-derived stem cells (hASC/hTERT). Confocal microscopy indicates that all tested hydrogels supported cell viability during their 3- to 5-week culture period in the control, chondrogenic, or osteogenic medium. Although in the softer hydrogels cells from neighboring microspheroids started outgrowing and interconnecting within a few days, their protrusion was slower or limited in stiffer hydrogels or those cultured in chondrogenic medium, respectively. High expressions of chondrogenic markers (SOX9, ACAN, COL2A1), detected in all tested hydrogels, proved that the chondrogenic differentiation of hASC/hTERT microspheroids was very successful, especially in the two softer hydrogels, where superior cartilage-specific properties were confirmed by Alcian blue staining. These chondrogenically induced samples also expressed COL10A1, a marker of chondrocyte hypertrophy. Interestingly, the hydrogel itself (with no differentiation medium) showed a slight chondrogenic induction. Regardless of the hydrogel stiffness, in the samples stimulated with osteogenic medium, the expression of selected markers RUNX2, BGLAP, ALPL, and COL1A1 was not conclusive. Nevertheless, the von Kossa staining confirmed the presence of calcium deposits in osteogenically stimulated samples in the two softer hydrogels, suggesting that these also favor osteogenesis. This observation was also confirmed by Alizarin red quantification assay, with which higher amounts of calcium were detected in the osteogenically induced hydrogels than in their controls. The presented data indicate that the encapsulation of adipose-derived stem cell microspheroids in gelatin-based hydrogels show promising potential for future applications in cartilage or bone TE. Impact Statement Osteochondral defects represent one of the leading causes of disability in the world. Although numerous tissue engineering (TE) approaches have shown success in cartilage and bone tissue regeneration, achieving native-like characteristics of these tissues remains challenging. This study demonstrates that in the presence of a corresponding differentiation medium, gelatin-based hydrogels support moderate osteogenic and excellent chondrogenic differentiation of photo-encapsulated human adipose-derived stem cell microspheroids, the extent of which depends on hydrogel stiffness. Because photosensitive hydrogels are a convenient material platform for creating stiffness gradients in three dimensions, the presented microspheroid-hydrogel encapsulation strategy holds promise for future strategies of cartilage or bone TE.
Collapse
Affiliation(s)
- Sara Žigon-Branc
- Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Austria
| | - Marica Markovic
- Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Austria
| | - Jasper Van Hoorick
- Department of Organic and Macromolecular Chemistry, Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
- Brussels Photonics, Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Elsene, Belgium
| | - Sandra Van Vlierberghe
- Department of Organic and Macromolecular Chemistry, Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
- Brussels Photonics, Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Elsene, Belgium
| | - Peter Dubruel
- Department of Organic and Macromolecular Chemistry, Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Elise Zerobin
- Austrian Cluster for Tissue Regeneration, Austria
- Division of Macromolecular Chemistry, Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Vienna, Austria
| | - Stefan Baudis
- Austrian Cluster for Tissue Regeneration, Austria
- Division of Macromolecular Chemistry, Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Vienna, Austria
| | - Aleksandr Ovsianikov
- Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Austria
| |
Collapse
|
24
|
Bengue M, Ferraris P, Baronti C, Diagne CT, Talignani L, Wichit S, Liegeois F, Bisbal C, Nougairède A, Missé D. Mayaro Virus Infects Human Chondrocytes and Induces the Expression of Arthritis-Related Genes Associated with Joint Degradation. Viruses 2019; 11:v11090797. [PMID: 31470617 PMCID: PMC6783875 DOI: 10.3390/v11090797] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022] Open
Abstract
Mayaro virus (MAYV) is an emerging arthritogenic alphavirus belonging to the Togaviridae family. Infection leads to a dengue-like illness accompanied by severe polyarthralgia. However, the molecular and cellular mechanisms of arthritis as a result of MAYV infection remain poorly understood. In the present study, we assess the susceptibility of human chondrocytes (HC), fibroblast-like synoviocytes and osteoblasts that are the major cell types involved in osteoarthritis, to infection with MAYV. We show that these cells are highly permissive to MAYV infection and that viral RNA copy number and viral titers increase over time in infected cells. Knowing that HC are the primary cells in articular cartilage and are essential for maintaining the cartilaginous matrix, gene expression studies were conducted in MAYV-infected primary HC using polymerase chain reaction (PCR) arrays. The infection of the latter cells resulted in an induction in the expression of several matrix metalloproteinases (MMP) including MMP1, MMP7, MMP8, MMP10, MMP13, MMP14 and MMP15 which could be involved in the destruction of articular cartilage. Infected HC were also found to express significantly increased levels of various IFN-stimulated genes and arthritogenic mediators such as TNF-α and IL-6. In conclusion, MAYV-infected primary HC overexpress arthritis-related genes, which may contribute to joint degradation and pathogenesis.
Collapse
Affiliation(s)
- Michèle Bengue
- MIVEGEC, IRD, Univ. Montpellier, CNRS, 34394 Montpellier, France
| | - Pauline Ferraris
- MIVEGEC, IRD, Univ. Montpellier, CNRS, 34394 Montpellier, France
| | - Cécile Baronti
- Unité des virus émergents, Aix Marseille Univ-IRD 190, Inserm 1207-IHU Méditerranée Infection, 13385 Marseille, France
| | | | - Loïc Talignani
- MIVEGEC, IRD, Univ. Montpellier, CNRS, 34394 Montpellier, France
| | - Sineewanlaya Wichit
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Florian Liegeois
- MIVEGEC, IRD, Univ. Montpellier, CNRS, 34394 Montpellier, France
| | - Catherine Bisbal
- PhyMedExp, CNRS UMR 9214, INSERM U1046, University of Montpellier, 34295 Montpellier, France
| | - Antoine Nougairède
- Unité des virus émergents, Aix Marseille Univ-IRD 190, Inserm 1207-IHU Méditerranée Infection, 13385 Marseille, France
| | - Dorothée Missé
- MIVEGEC, IRD, Univ. Montpellier, CNRS, 34394 Montpellier, France.
| |
Collapse
|
25
|
Transcriptome-Wide Analysis of Human Chondrocyte Expansion on Synoviocyte Matrix. Cells 2019; 8:cells8020085. [PMID: 30678371 PMCID: PMC6406362 DOI: 10.3390/cells8020085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 02/07/2023] Open
Abstract
Human chondrocytes are expanded and used in autologous chondrocyte implantation techniques and are known to rapidly de-differentiate in culture. These chondrocytes, when cultured on tissue culture plastic (TCP), undergo both phenotypical and morphological changes and quickly lose the ability to re-differentiate to produce hyaline-like matrix. Growth on synoviocyte-derived extracellular matrix (SDECM) reduces this de-differentiation, allowing for more than twice the number of population doublings (PD) whilst retaining chondrogenic capacity. The goal of this study was to apply RNA sequencing (RNA-Seq) analysis to examine the differences between TCP-expanded and SDECM-expanded human chondrocytes. Human chondrocytes from three donors were thawed from primary stocks and cultured on TCP flasks or on SDECM-coated flasks at physiological oxygen tension (5%) for 4 passages. During log expansion, RNA was extracted from the cell layer (70–90% confluence) at passages 1 and 4. Total RNA was column-purified and DNAse-treated before quality control analysis and next-generation RNA sequencing. Significant effects on gene expression were observed due to both culture surface and passage number. These results offer insight into the mechanism of how SDECM provides a more chondrogenesis-preserving environment for cell expansion, the transcriptome-wide changes that occur with culture, and potential mechanisms for further enhancement of chondrogenesis-preserving growth.
Collapse
|
26
|
Lee K, Chen Y, Li X, Wang Y, Kawazoe N, Yang Y, Chen G. Solution viscosity regulates chondrocyte proliferation and phenotype during 3D culture. J Mater Chem B 2019; 7:7713-7722. [DOI: 10.1039/c9tb02204j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chondrocytes are cultured in a 3D biphasic gelatin solution/hydrogel system. Solution viscosity affects chondrocyte functions. High viscosity is more beneficial for cell phenotype maintenance, while low viscosity is more beneficial for proliferation.
Collapse
Affiliation(s)
- Kyubae Lee
- Research Center for Functional Materials
- National Institute for Materials Science
- Ibaraki
- Japan
- Department of Materials Science and Engineering
| | - Yazhou Chen
- Research Center for Functional Materials
- National Institute for Materials Science
- Ibaraki
- Japan
- Department of Materials Science and Engineering
| | - Xiaomeng Li
- Research Center for Functional Materials
- National Institute for Materials Science
- Ibaraki
- Japan
- School of Mechanics and Engineering Science
| | - Yongtao Wang
- Research Center for Functional Materials
- National Institute for Materials Science
- Ibaraki
- Japan
- Department of Materials Science and Engineering
| | - Naoki Kawazoe
- Research Center for Functional Materials
- National Institute for Materials Science
- Ibaraki
- Japan
| | - Yingnan Yang
- Graduate School of Life and Environmental Science
- University of Tsukuba
- Ibaraki 305-8571
- Japan
| | - Guoping Chen
- Research Center for Functional Materials
- National Institute for Materials Science
- Ibaraki
- Japan
- Department of Materials Science and Engineering
| |
Collapse
|
27
|
Rodríguez-Arco L, Poma A, Ruiz-Pérez L, Scarpa E, Ngamkham K, Battaglia G. Molecular bionics - engineering biomaterials at the molecular level using biological principles. Biomaterials 2018; 192:26-50. [PMID: 30419394 DOI: 10.1016/j.biomaterials.2018.10.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/06/2018] [Accepted: 10/28/2018] [Indexed: 12/18/2022]
Abstract
Life and biological units are the result of the supramolecular arrangement of many different types of molecules, all of them combined with exquisite precision to achieve specific functions. Taking inspiration from the design principles of nature allows engineering more efficient and compatible biomaterials. Indeed, bionic (from bion-, unit of life and -ic, like) materials have gained increasing attention in the last decades due to their ability to mimic some of the characteristics of nature systems, such as dynamism, selectivity, or signalling. However, there are still many challenges when it comes to their interaction with the human body, which hinder their further clinical development. Here we review some of the recent progress in the field of molecular bionics with the final aim of providing with design rules to ensure their stability in biological media as well as to engineer novel functionalities which enable navigating the human body.
Collapse
Affiliation(s)
- Laura Rodríguez-Arco
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK.
| | - Alessandro Poma
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK
| | - Lorena Ruiz-Pérez
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK; The EPRSC/Jeol Centre of Liquid Electron Microscopy, University College London, London, WC1H 0AJ, UK
| | - Edoardo Scarpa
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK
| | - Kamolchanok Ngamkham
- Faculty of Engineering, King Mongkut's University of Technology Thonbury, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok, 10140, Thailand
| | - Giuseppe Battaglia
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK; The EPRSC/Jeol Centre of Liquid Electron Microscopy, University College London, London, WC1H 0AJ, UK.
| |
Collapse
|
28
|
Chen K, Dreger NZ, Peng F, Vogt BD, Becker ML, Cakmak M. Nonlinear Mechano-Optical Behavior and Strain-Induced Structural Changes of l-Valine-Based Poly(ester urea)s. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Tan Y, Huang H, Ayers DC, Song J. Modulating Viscoelasticity, Stiffness, and Degradation of Synthetic Cellular Niches via Stoichiometric Tuning of Covalent versus Dynamic Noncovalent Cross-Linking. ACS CENTRAL SCIENCE 2018; 4:971-981. [PMID: 30159394 PMCID: PMC6107872 DOI: 10.1021/acscentsci.8b00170] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Indexed: 05/26/2023]
Abstract
Viscoelasticity, stiffness, and degradation of tissue matrices regulate cell behavior, yet predictive synergistic tuning of these properties in synthetic cellular niches remains elusive. We hypothesize that reversible physical cross-linking can be quantitatively introduced to synthetic hydrogels to accelerate stress relaxation and enhance network stiffness, while strategic placement of isolated labile linkages near cross-linking sites can predict hydrogel degradation, both of which are essential for creating adaptive cellular niches. To test these hypotheses, chondrocytes were encapsulated in hydrogels formed by biorthogonal covalent and noncovalent physical cross-linking of a pair of hydrophilic building blocks. The stiffer and more viscoelastic hydrogels with DBCO-DBCO physical cross-links facilitated proliferation and chondrogenic ECM deposition of encapsulated cells by dissipating stress imposed by expanding cell mass/ECM via dynamic disruption/reformation of physical cross-links. Degradation of labile linkages near covalent cross-linkers further facilitated cell proliferation and timed cell release while maintaining chondrogenic phenotype. This work presents new chemical tools for engineering permissive synthetic niches for cell encapsulation, 3D expansion, and release.
Collapse
|
30
|
Lim HJ, Khan Z, Lu X, Perera TH, Wilems TS, Ravivarapu KT, Smith Callahan LA. Mechanical stabilization of proteolytically degradable polyethylene glycol dimethacrylate hydrogels through peptide interaction. Acta Biomater 2018. [PMID: 29526829 DOI: 10.1016/j.actbio.2018.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Balancing enhancement of neurite extension against loss of matrix support in synthetic hydrogels containing proteolytically degradable and bioactive signaling peptides to optimize tissue formation is difficult. Using a systematic approach, polyethylene glycol hydrogels containing concurrent continuous concentration gradients of the laminin derived bioactive signaling peptide, Ile-Lys-Val-Ala-Val (IKVAV), and collagen derived matrix metalloprotease degradable peptide, GPQGIWGQ, were fabricated and characterized. During proteolytic degradation of the concentration gradient hydrogels, the IKVAV and IWGQ cleavage fragment from GPQGIWGQ were found to interact and stabilize the bulk Young's Modulus of the hydrogel. Further testing of discrete samples containing GPQGIWGQ or its cleavage fragments, GPQG and IWGQ, indicates hydrophobic interactions between the peptides are not necessary for mechanical stabilization of the hydrogel, but changes in the concentration ratio between the peptides tethered in the hydrogel and salts and ions in the swelling solution can affect the stabilization. Encapsulation of human induced pluripotent stem cell derived neural stem cells did not reduce the mechanical properties of the hydrogel over a 14 day neural differentiation culture period, and IKVAV was found to maintain concentration dependent effects on neurite extension and mRNA gene expression of neural cytoskeletal markers, similar to previous studies. As a result, this work has significant implications for the analysis of biological studies in matrices, as the material and mechanical properties of the hydrogel may be unexpectedly temporally changing during culture due to interactions between peptide signaling elements, underscoring the need for greater matrix characterization during the degradation and cell culture. STATEMENT OF SIGNIFICANCE Greater emulation of the native extracellular matrix is necessary for tissue formation. To achieve this, matrices are becoming more complex, often including multiple bioactive signaling elements. However, peptide signaling in polyethylene glycol matrices and amino acids interactions between peptides can affect hydrogel material and mechanical properties, but are rarely studied. The current study identifies such an interaction between laminin derived peptide, IKVAV, and collagen derived matrix metalloprotease degradable peptide, GPQGIWGQ. Previous studies using these peptides did not identify their interactions' ability to mechanically stabilize the hydrogel during degradation. This work underscores the need for greater matrix characterization and consideration of bioactive signaling element effects temporally on the matrix's material and mechanical properties, as they can contribute to cellular response.
Collapse
Affiliation(s)
- Hyun Ju Lim
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School at the University of Texas Health Science Center at Houston, United States
| | - Zara Khan
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School at the University of Texas Health Science Center at Houston, United States
| | - Xi Lu
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School at the University of Texas Health Science Center at Houston, United States
| | - T Hiran Perera
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School at the University of Texas Health Science Center at Houston, United States
| | - Thomas S Wilems
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School at the University of Texas Health Science Center at Houston, United States
| | - Krishna T Ravivarapu
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School at the University of Texas Health Science Center at Houston, United States
| | - Laura A Smith Callahan
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; The Department of Nanomedicine and Biomedical Engineering, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; The MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, United States.
| |
Collapse
|
31
|
Smith Callahan LA. Gradient Material Strategies for Hydrogel Optimization in Tissue Engineering Applications. High Throughput 2018; 7:E1. [PMID: 29485612 PMCID: PMC5876527 DOI: 10.3390/ht7010001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/30/2017] [Accepted: 01/02/2018] [Indexed: 12/15/2022] Open
Abstract
Although a number of combinatorial/high-throughput approaches have been developed for biomaterial hydrogel optimization, a gradient sample approach is particularly well suited to identify hydrogel property thresholds that alter cellular behavior in response to interacting with the hydrogel due to reduced variation in material preparation and the ability to screen biological response over a range instead of discrete samples each containing only one condition. This review highlights recent work on cell-hydrogel interactions using a gradient material sample approach. Fabrication strategies for composition, material and mechanical property, and bioactive signaling gradient hydrogels that can be used to examine cell-hydrogel interactions will be discussed. The effects of gradients in hydrogel samples on cellular adhesion, migration, proliferation, and differentiation will then be examined, providing an assessment of the current state of the field and the potential of wider use of the gradient sample approach to accelerate our understanding of matrices on cellular behavior.
Collapse
Affiliation(s)
- Laura A Smith Callahan
- The Vivian L. Smith Department of Neurosurgery, Center for Stem Cell & Regenerative Medicine, and Department of Nanomedicine and Biomedical Engineering, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
32
|
Kudva AK, Luyten FP, Patterson J. Initiating human articular chondrocyte re-differentiation in a 3D system after 2D expansion. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:156. [PMID: 28875425 PMCID: PMC5585276 DOI: 10.1007/s10856-017-5968-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
Cartilage damage affects a large population via acute and chronic injury and disease. Since native cartilage does not self-renew, cartilage tissue engineering has gained traction as a potential treatment. However, a limiting factor is that the primary cell type in cartilage, the articular chondrocyte, tends to de-differentiate when grown on 2D surfaces for in vitro expansion. Thus, 3D systems are being developed and used to counter this loss of chondrogenic capabilities. We hypothesize that a 3D matrix that can be remodeled may be more supportive of the chondrogenic phenotype of encapsulated articular chondrocytes than a 2D surface and may allow for the re-differentiation of chondrocytes after 2D expansion. Hence, in this study, enzymatically degradable polyethylene glycol (PEG) hydrogels containing two different protease degradable peptide segments, with different degradation rates, were tested in combination with chondrogenic medium as a 3D in vitro culture system to better recapitulate the native environment of human articular chondrocytes (hACs). In addition, the effect of incorporation of the integrin binding ligand Arg-Gly-Asp (RGD) in the hydrogels was explored. Hydrogels crosslinked with a slower degrading crosslinker and not functionalized with RGD maintained hAC viability and led to increased GAG production and chondrogenic gene expression over time, suggesting that this system can initiate hAC re-differentiation after 2D expansion.
Collapse
Affiliation(s)
- Abhijith K Kudva
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, P.O. box 2450, Leuven, 3001, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, P.O. box 813, Leuven, 3000, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, P.O. box 813, Leuven, 3000, Belgium
| | - Frank P Luyten
- Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, P.O. box 813, Leuven, 3000, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, P.O. box 813, Leuven, 3000, Belgium
| | - Jennifer Patterson
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, P.O. box 2450, Leuven, 3001, Belgium.
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, P.O. box 813, Leuven, 3000, Belgium.
| |
Collapse
|
33
|
Zhu D, Tong X, Trinh P, Yang F. Mimicking Cartilage Tissue Zonal Organization by Engineering Tissue-Scale Gradient Hydrogels as 3D Cell Niche. Tissue Eng Part A 2017; 24:1-10. [PMID: 28385124 DOI: 10.1089/ten.tea.2016.0453] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Zonal organization plays an important role in cartilage structure and function, whereas most tissue-engineering strategies developed to date have only allowed the regeneration of cartilage with homogeneous biochemical and mechanical cues. To better restore tissue structure and function, there is a strong need to engineer materials with biomimetic gradient niche cues that recapitulate native tissue organization. To address this critical unmet need, in this study, we report a method for rapid formation of tissue-scale gradient hydrogels as a three-dimensional (3D) cell niche with tunable biochemical and physical properties. When encapsulated in stiffness gradient hydrogels, both chondrocytes and mesenchymal stem cells demonstrated zone-specific response and extracellular deposition that mimics zonal organization of articular cartilage. Blocking cell mechanosensing using blebbistatin abolished the zonal response of chondrocytes in 3D hydrogels with a stiffness gradient. Such tissue-scale gradient hydrogels can provide a 3D artificial cell niche to enable tissue engineering of various tissue types with zonal organizations or tissue interfaces.
Collapse
Affiliation(s)
- Danqing Zhu
- 1 Department of Bioengineering, Stanford University , Stanford, California
| | - Xinming Tong
- 2 Department of Orthopaedic Surgery, Stanford University , Stanford, California
| | - Pavin Trinh
- 3 Department of Biology, Stanford University , Stanford, California
| | - Fan Yang
- 1 Department of Bioengineering, Stanford University , Stanford, California.,2 Department of Orthopaedic Surgery, Stanford University , Stanford, California
| |
Collapse
|
34
|
Li X, Chen Y, Kawazoe N, Chen G. Influence of microporous gelatin hydrogels on chondrocyte functions. J Mater Chem B 2017; 5:5753-5762. [PMID: 32264209 DOI: 10.1039/c7tb01350g] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hydrogels can provide biomimetic three-dimensional microenvironments for transplanted cells and are attractive scaffolds for cartilage tissue engineering. In this study, gelatin hydrogels with microporous structures were prepared and their effects on chondrocyte functions were compared with gelatin hydrogels without microporous structures. Gelatin bulk hydrogels were prepared by photo-initiated crosslinking of gelatin methacrylate macromers. Micropores were formed in the bulk hydrogels by dissolution of gelatin microgels prepared by a cutting method. Chondrocytes cultured in gelatin hydrogels without microporous structures showed high expression and production of cartilaginous matrices and low cell proliferation. Chondrocytes cultured in gelatin hydrogels with microporous structures tended to migrate from bulk hydrogel matrices to the micropores. Chondrocytes in the microporous hydrogels showed higher proliferation and lower expression and production of cartilaginous matrices than did the chondrocytes cultured in hydrogels without microporous structures. Gelatin hydrogels without microporous structures facilitated maintenance of the cartilaginous phenotype of the chondrocytes while microporous gelatin hydrogels were beneficial for cell proliferation.
Collapse
Affiliation(s)
- Xiaomeng Li
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | | | | | | |
Collapse
|
35
|
Lim HJ, Mosley MC, Kurosu Y, Smith Callahan LA. Concentration dependent survival and neural differentiation of murine embryonic stem cells cultured on polyethylene glycol dimethacrylate hydrogels possessing a continuous concentration gradient of n-cadherin derived peptide His-Ala-Val-Asp-Lle. Acta Biomater 2017; 56:153-160. [PMID: 27915022 DOI: 10.1016/j.actbio.2016.11.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/10/2016] [Accepted: 11/29/2016] [Indexed: 12/31/2022]
Abstract
N-cadherin cell-cell signaling plays a key role in the structure and function of the nervous system. However, few studies have incorporated bioactive signaling from n-cadherin into tissue engineering matrices. The present study uses a continuous gradient approach in polyethylene glycol dimethacrylate hydrogels to identify concentration dependent effects of n-cadherin peptide, His-Ala-Val-Asp-Lle (HAVDI), on murine embryonic stem cell survival and neural differentiation. The n-cadherin peptide was found to affect the expression of pluripotency marker, alkaline phosphatase, in murine embryonic stem cells cultured on n-cadherin peptide containing hydrogels in a concentration dependent manner. Increasing n-cadherin peptide concentrations in the hydrogels elicited a biphasic response in neurite extension length and mRNA expression of neural differentiation marker, neuron-specific class III β-tubulin, in murine embryonic stem cells cultured on the hydrogels. High concentrations of n-cadherin peptide in the hydrogels were found to increase the expression of apoptotic marker, caspase 3/7, in murine embryonic stem cells compared to that of murine embryonic stem cell cultures on hydrogels containing lower concentrations of n-cadherin peptide. Increasing the n-cadherin peptide concentration in the hydrogels facilitated greater survival of murine embryonic stem cells exposed to increasing oxidative stress caused by hydrogen peroxide exposure. The combinatorial approach presented in this work demonstrates concentration dependent effects of n-cadherin signaling on mouse embryonic stem cell behavior, underscoring the need for the greater use of systematic approaches in tissue engineering matrix design in order to understand and optimize bioactive signaling in the matrix for tissue formation. STATEMENT OF SIGNIFICANCE Single cell encapsulation is common in tissue engineering matrices. This eliminates cellular access to cell-cell signaling. N-cadherin, a cell-cell signaling molecule, plays a vital role in the development of neural tissues, but has not been well studied as a bioactive signaling element in neural tissue engineering matrices. The present study uses a systematic continuous gradient approach to identify concentration dependent effects of n-cadherin derived peptide, HAVDI, on the survival and neural differentiation of murine embryonic stem cells. This work underscores the need for greater use to combinatorial strategies to understand the effect complex bioactive signaling, such as n-cadherin, and the need to optimize the concentration of such bioactive signaling within tissue engineering matrices for maximal cellular response.
Collapse
Affiliation(s)
- Hyun Ju Lim
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School at The University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, United States
| | - Matthew C Mosley
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School at The University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, United States
| | - Yuki Kurosu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School at The University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, United States
| | - Laura A Smith Callahan
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School at The University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, United States; The Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, United States; The Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, United States.
| |
Collapse
|
36
|
Kim JJ, Bennett NK, Devita MS, Chahar S, Viswanath S, Lee EA, Jung G, Shao PP, Childers EP, Liu S, Kulesa A, Garcia BA, Becker ML, Hwang NS, Madabhushi A, Verzi MP, Moghe PV. Optical High Content Nanoscopy of Epigenetic Marks Decodes Phenotypic Divergence in Stem Cells. Sci Rep 2017; 7:39406. [PMID: 28051095 PMCID: PMC5209743 DOI: 10.1038/srep39406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/23/2016] [Indexed: 12/22/2022] Open
Abstract
While distinct stem cell phenotypes follow global changes in chromatin marks, single-cell chromatin technologies are unable to resolve or predict stem cell fates. We propose the first such use of optical high content nanoscopy of histone epigenetic marks (epi-marks) in stem cells to classify emergent cell states. By combining nanoscopy with epi-mark textural image informatics, we developed a novel approach, termed EDICTS (Epi-mark Descriptor Imaging of Cell Transitional States), to discern chromatin organizational changes, demarcate lineage gradations across a range of stem cell types and robustly track lineage restriction kinetics. We demonstrate the utility of EDICTS by predicting the lineage progression of stem cells cultured on biomaterial substrates with graded nanotopographies and mechanical stiffness, thus parsing the role of specific biophysical cues as sensitive epigenetic drivers. We also demonstrate the unique power of EDICTS to resolve cellular states based on epi-marks that cannot be detected via mass spectrometry based methods for quantifying the abundance of histone post-translational modifications. Overall, EDICTS represents a powerful new methodology to predict single cell lineage decisions by integrating high content super-resolution nanoscopy and imaging informatics of the nuclear organization of epi-marks.
Collapse
Affiliation(s)
- Joseph J. Kim
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Neal K. Bennett
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Mitchel S. Devita
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Sanjay Chahar
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
| | - Satish Viswanath
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Eunjee A. Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Giyoung Jung
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
- Division of Heath Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paul P. Shao
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Erin P. Childers
- Department of Polymer Science, University of Akron, Akron, Ohio, USA
| | - Shichong Liu
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anthony Kulesa
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Benjamin A. Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew L. Becker
- Department of Polymer Science, University of Akron, Akron, Ohio, USA
| | - Nathaniel S. Hwang
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michael P. Verzi
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
| | - Prabhas V. Moghe
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
37
|
Fabrication of injectable high strength hydrogel based on 4-arm star PEG for cartilage tissue engineering. Biomaterials 2016; 120:11-21. [PMID: 28024231 DOI: 10.1016/j.biomaterials.2016.12.015] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/29/2016] [Accepted: 12/19/2016] [Indexed: 12/22/2022]
Abstract
Hydrogels prepared from poly(ethylene glycol) (PEG) are widely applied in tissue engineering, especially those derived from a combination of functional multi-arm star PEG and linear crosslinker, with an expectation to form a structurally ideal network. However, the poor mechanical strength still renders their further applications. Here we examined the relationship between the dynamics of the pre-gel solution and the mechanical property of the resultant hydrogel in a system consisting of 4-arm star PEG functionalized with vinyl sulfone and short dithiol crosslinker. A method to prepare mechanically strong hydrogel for cartilage tissue engineering is proposed. It is found that when gelation takes place at the overlap concentration, at which a slow relaxation mode just appears in dynamic light scattering (DLS), the resultant hydrogel has a local maximum compressive strength ∼20 MPa, while still keeps ultralow mass concentration and Young's modulus. Chondrocyte-laden hydrogel constructed under this condition was transplanted into the subcutaneous pocket and an osteochondral defect model in SCID mice. The in vivo results show that chondrocytes can proliferate and maintain their phenotypes in the hydrogel, with the production of abundant extracellular matrix (ECM) components, formation of typical chondrocyte lacunae structure and increase in Young's modulus over 12 weeks, as indicated by histological, immunohistochemistry, gene expression analyses and mechanical test. Moreover, newly formed hyaline cartilage was observed to be integrated with the host articular cartilage tissue in the defects injected with chondrocytes/hydrogel constructs. The results suggest that this hydrogel is a promising candidate scaffold for cartilage tissue engineering.
Collapse
|
38
|
Mosley MC, Lim HJ, Chen J, Yang YH, Li S, Liu Y, Smith Callahan LA. Neurite extension and neuronal differentiation of human induced pluripotent stem cell derived neural stem cells on polyethylene glycol hydrogels containing a continuous Young's Modulus gradient. J Biomed Mater Res A 2016; 105:824-833. [DOI: 10.1002/jbm.a.35955] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Matthew C. Mosley
- The Vivian L Smith Department of Neurosurgery; McGovern Medical School at University of Texas Health Science Center at Houston; Houston Texas 77030
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston; Houston Texas 77030
| | - Hyun Ju Lim
- The Vivian L Smith Department of Neurosurgery; McGovern Medical School at University of Texas Health Science Center at Houston; Houston Texas 77030
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston; Houston Texas 77030
| | - Jing Chen
- The Vivian L Smith Department of Neurosurgery; McGovern Medical School at University of Texas Health Science Center at Houston; Houston Texas 77030
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston; Houston Texas 77030
| | - Yueh-Hsun Yang
- The Vivian L Smith Department of Neurosurgery; McGovern Medical School at University of Texas Health Science Center at Houston; Houston Texas 77030
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston; Houston Texas 77030
| | - Shenglan Li
- The Vivian L Smith Department of Neurosurgery; McGovern Medical School at University of Texas Health Science Center at Houston; Houston Texas 77030
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston; Houston Texas 77030
| | - Ying Liu
- The Vivian L Smith Department of Neurosurgery; McGovern Medical School at University of Texas Health Science Center at Houston; Houston Texas 77030
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston; Houston Texas 77030
| | - Laura A. Smith Callahan
- The Vivian L Smith Department of Neurosurgery; McGovern Medical School at University of Texas Health Science Center at Houston; Houston Texas 77030
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston; Houston Texas 77030
- The Department of Nanomedicine and Biomedical Engineering; McGovern Medical School at University of Texas Health Science Center at Houston; Houston Texas 77030
- The Graduate School of Biomedical Sciences; University of Texas Health Science Center at Houston; Houston Texas 77030
| |
Collapse
|
39
|
Chen CH, Kuo CY, Wang YJ, Chen JP. Dual Function of Glucosamine in Gelatin/Hyaluronic Acid Cryogel to Modulate Scaffold Mechanical Properties and to Maintain Chondrogenic Phenotype for Cartilage Tissue Engineering. Int J Mol Sci 2016; 17:1957. [PMID: 27886065 PMCID: PMC5133951 DOI: 10.3390/ijms17111957] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/26/2016] [Accepted: 11/08/2016] [Indexed: 12/14/2022] Open
Abstract
Glucosamine (GlcN) fulfills many of the requirements as an ideal component in scaffolds used in cartilage tissue engineering. The incorporation of GlcN in a gelatin/hyaluronic acid (GH) cryogel scaffold could provide biological cues in maintaining the phenotype of chondrocytes. Nonetheless, substituting gelatin with GlcN may also decrease the crosslinking density and modulate the mechanical properties of the cryogel scaffold, which may be beneficial as physical cues for chondrocytes in the scaffold. Thus, we prepared cryogel scaffolds containing 9% GlcN (GH-GlcN9) and 16% GlcN (GH-GlcN16) by carbodiimide-mediated crosslinking reactions at -16 °C. The crosslinking density and the mechanical properties of the cryogel matrix could be tuned by adjusting the content of GlcN used during cryogel preparation. In general, incorporation of GlcN did not influence scaffold pore size and ultimate compressive strain but increased porosity. The GH-GlcN16 cryogel showed the highest swelling ratio and degradation rate in hyaluronidase and collagenase solutions. On the contrary, the Young's modulus, storage modulus, ultimate compressive stress, energy dissipation level, and rate of stress relaxation decreased by increasing the GlcN content in the cryogel. The release of GlcN from the scaffolds in the culture medium of chondrocytes could be sustained for 21 days for GH-GlcN16 in contrast to only 7 days for GH-GlcN9. In vitro cell culture experiments using rabbit articular chondrocytes revealed that GlcN incorporation affected cell proliferation, morphology, and maintenance of chondrogenic phenotype. Overall, GH-GlcN16 showed the best performance in maintaining chondrogenic phenotype with reduced cell proliferation rate but enhanced glycosaminoglycans (GAGs) and type II collagen (COL II) secretion. Quantitative real-time polymerase chain reaction also showed time-dependent up-regulation of cartilage-specific marker genes (COL II, aggrecan and Sox9) for GH-GlcN16. Implantation of chondrocytes/GH-GlcN16 constructs into full-thickness articular cartilage defects of rabbits could regenerate neocartilage with positive staining for GAGs and COL II. The GH-GlcN16 cryogel will be suitable as a scaffold for the treatment of articular cartilage defects.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Kwei-San, Taoyuan 33305, Taiwan.
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
| | - Yan-Jie Wang
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Kwei-San, Taoyuan 33305, Taiwan.
- Graduate Institute of Health Industry and Technology, Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Taoyuan 33302, Taiwan.
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|
40
|
Ren K, Cui H, Xu Q, He C, Li G, Chen X. Injectable Polypeptide Hydrogels with Tunable Microenvironment for 3D Spreading and Chondrogenic Differentiation of Bone-Marrow-Derived Mesenchymal Stem Cells. Biomacromolecules 2016; 17:3862-3871. [PMID: 27775890 DOI: 10.1021/acs.biomac.6b00884] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kaixuan Ren
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Haitao Cui
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Qinghua Xu
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Chaoliang He
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Gao Li
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
41
|
Mahapatra C, Jin GZ, Kim HW. Alginate-hyaluronic acid-collagen composite hydrogel favorable for the culture of chondrocytes and their phenotype maintenance. Tissue Eng Regen Med 2016; 13:538-546. [PMID: 30603434 PMCID: PMC6170835 DOI: 10.1007/s13770-016-0059-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/15/2016] [Accepted: 06/01/2016] [Indexed: 12/21/2022] Open
Abstract
Articular cartilage has limited regeneration capacity, thus significant challenge has been made to restore the functions. The development of hydrogels that can encapsulate and multiply cells, and then effectively maintain the chondrocyte phenotype is a meaningful strategy to this cartilage repair. In this study, we prepared alginate-hyaluronic acid based hydrogel with type I collagen being incorporated, namely Alg-HA-Col composite hydrogel. The incorporation of Col enhanced the chemical interaction of molecules, and the thermal stability and dynamic mechanical properties of the resultant hydrogels. The primary chondrocytes isolated from rat cartilage were cultured within the composite hydrogel and the cell viability recorded revealed active proliferation over a period of 21 days. The mRNA levels of chondrocyte phenotypes, including SOX9, collagen type II, and aggrecan, were significantly up-regulated when the cells were cultured within the Alg-HA-Col gel than those cultured within the Alg-HA. Furthermore, the secretion of sulphated glycosaminoglycan, a cartilage-specific matrix molecule, was recorded higher in the collagen-added composite hydrogel. Although more in-depth studies are required such as the in vivo functions, the currently-prepared Alg-HA-Col composite hydrogel is considered to provide favorable 3-dimensional matrix conditions for the cultivation of chondrocytes. Moreover, the cell-cultured constructs may be useful for the cartilage repair and tissue engineering.
Collapse
Affiliation(s)
- Chinmaya Mahapatra
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116 Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
| | - Guang-Zhen Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116 Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116 Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, Korea
| |
Collapse
|
42
|
Li X, Chen S, Li J, Wang X, Zhang J, Kawazoe N, Chen G. 3D Culture of Chondrocytes in Gelatin Hydrogels with Different Stiffness. Polymers (Basel) 2016; 8:E269. [PMID: 30974547 PMCID: PMC6431829 DOI: 10.3390/polym8080269] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 01/19/2023] Open
Abstract
Gelatin hydrogels can mimic the microenvironments of natural tissues and encapsulate cells homogeneously, which makes them attractive for cartilage tissue engineering. Both the mechanical and biochemical properties of hydrogels can affect the phenotype of chondrocytes. However, the influence of each property on chondrocyte phenotype is unclear due to the difficulty in separating the roles of these properties. In this study, we aimed to study the influence of hydrogel stiffness on chondrocyte phenotype while excluding the role of biochemical factors, such as adhesion site density in the hydrogels. By altering the degree of methacryloyl functionalization, gelatin hydrogels with different stiffnesses of 3.8, 17.1, and 29.9 kPa Young's modulus were prepared from the same concentration of gelatin methacryloyl (GelMA) macromers. Bovine articular chondrocytes were encapsulated in the hydrogels and cultured for 14 days. The influence of hydrogel stiffness on the cell behaviors including cell viability, cell morphology, and maintenance of chondrogenic phenotype was evaluated. GelMA hydrogels with high stiffness (29.9 kPa) showed the best results on maintaining chondrogenic phenotype. These results will be useful for the design and preparation of scaffolds for cartilage tissue engineering.
Collapse
Affiliation(s)
- Xiaomeng Li
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| | - Shangwu Chen
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| | - Jingchao Li
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| | - Xinlong Wang
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| | - Jing Zhang
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| | - Naoki Kawazoe
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Guoping Chen
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
43
|
Smith Callahan LA. Combinatorial Method/High Throughput Strategies for Hydrogel Optimization in Tissue Engineering Applications. Gels 2016; 2:E18. [PMID: 30674150 PMCID: PMC6318679 DOI: 10.3390/gels2020018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 12/22/2022] Open
Abstract
Combinatorial method/high throughput strategies, which have long been used in the pharmaceutical industry, have recently been applied to hydrogel optimization for tissue engineering applications. Although many combinatorial methods have been developed, few are suitable for use in tissue engineering hydrogel optimization. Currently, only three approaches (design of experiment, arrays and continuous gradients) have been utilized. This review highlights recent work with each approach. The benefits and disadvantages of design of experiment, array and continuous gradient approaches depending on study objectives and the general advantages of using combinatorial methods for hydrogel optimization over traditional optimization strategies will be discussed. Fabrication considerations for combinatorial method/high throughput samples will additionally be addressed to provide an assessment of the current state of the field, and potential future contributions to expedited material optimization and design.
Collapse
Affiliation(s)
- Laura A Smith Callahan
- Vivian L. Smith Department of Neurosurgery & Center for Stem Cells and Regenerative Medicine McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
- Department of Nanomedicine and Biomedical Engineering, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
44
|
Carrion B, Souzanchi MF, Wang VT, Tiruchinapally G, Shikanov A, Putnam AJ, Coleman RM. The Synergistic Effects of Matrix Stiffness and Composition on the Response of Chondroprogenitor Cells in a 3D Precondensation Microenvironment. Adv Healthc Mater 2016; 5:1192-202. [PMID: 26959641 DOI: 10.1002/adhm.201501017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/24/2016] [Indexed: 01/10/2023]
Abstract
Improve functional quality of cartilage tissue engineered from stem cells requires a better understanding of the functional evolution of native cartilage tissue. Therefore, a biosynthetic hydrogel was developed containing RGD, hyaluronic acid and/or type-I collagen conjugated to poly(ethylene glycol) acrylate to recapitulate the precondensation microenvironment of the developing limb. Conjugation of any combination of the three ligands did not alter the shear moduli or diffusion properties of the PEG hydrogels; thus, the influence of ligand composition on chondrogenesis could be investigated in the context of varying matrix stiffness. Gene expression of ligand receptors (CD44 and the b1-integrin) as well as markers of condensation (cell clustering and N-cadherin gene expression) and chondrogenesis (Col2a1 gene expression and sGAG production) by chondroprogenitor cells in this system were modulated by both matrix stiffness and ligand composition, with the highest gene expression occurring in softer hydrogels containing all three ligands. Cell proliferation in these 3D matrices for 7 d prior to chondrogenic induction increased the rate of sGAG production in a stiffness-dependent manner. This biosynthetic hydrogel supports the features of early limb-bud condensation and chondrogenesis and is a novel platform in which the influence of the matrix physicochemical properties on these processes can be elucidated.
Collapse
Affiliation(s)
- Bita Carrion
- Biomedical Engineering; University of Michigan; Ann Arbor 48109 USA
| | | | | | | | - Ariella Shikanov
- Biomedical Engineering; University of Michigan; Ann Arbor 48109 USA
| | - Andrew J. Putnam
- Biomedical Engineering; University of Michigan; Ann Arbor 48109 USA
| | - Rhima M. Coleman
- Biomedical Engineering; University of Michigan; Ann Arbor 48109 USA
- Mechanical Engineering; University of Michigan; Ann Arbor 48109 USA
| |
Collapse
|
45
|
Lim HJ, Perera TH, Wilems TS, Ghosh S, Zheng YY, Azhdarinia A, Cao Q, Smith Callahan LA. Response to di-functionalized hyaluronic acid with orthogonal chemistry grafting at independent modification sites in rodent models of neural differentiation and spinal cord injury. J Mater Chem B 2016; 4:6865-6875. [DOI: 10.1039/c6tb01906d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hyaluronic acid functionalized with two orthogonal chemistries at different targets expedites neural maturation in vitro, while reducing inflammation in vivo.
Collapse
Affiliation(s)
- Hyun Ju Lim
- Vivian L. Smith Department of Neurosurgery
- McGovern Medical School at University of Texas Health Science Center at Houston
- Houston
- USA
- Center for Stem Cell and Regenerative Medicine
| | - T. Hiran Perera
- Vivian L. Smith Department of Neurosurgery
- McGovern Medical School at University of Texas Health Science Center at Houston
- Houston
- USA
- Center for Stem Cell and Regenerative Medicine
| | - Thomas S. Wilems
- Vivian L. Smith Department of Neurosurgery
- McGovern Medical School at University of Texas Health Science Center at Houston
- Houston
- USA
- Center for Stem Cell and Regenerative Medicine
| | - Sukhen Ghosh
- Center for Molecular Imaging
- Brown Foundation Institute of Molecular Medicine
- University of Texas Health Science Center at Houston
- Houston
- USA
| | - Yi-Yan Zheng
- Vivian L. Smith Department of Neurosurgery
- McGovern Medical School at University of Texas Health Science Center at Houston
- Houston
- USA
- Center for Stem Cell and Regenerative Medicine
| | - Ali Azhdarinia
- Center for Molecular Imaging
- Brown Foundation Institute of Molecular Medicine
- University of Texas Health Science Center at Houston
- Houston
- USA
| | - Qilin Cao
- Vivian L. Smith Department of Neurosurgery
- McGovern Medical School at University of Texas Health Science Center at Houston
- Houston
- USA
- Center for Stem Cell and Regenerative Medicine
| | - Laura A. Smith Callahan
- Vivian L. Smith Department of Neurosurgery
- McGovern Medical School at University of Texas Health Science Center at Houston
- Houston
- USA
- Center for Stem Cell and Regenerative Medicine
| |
Collapse
|
46
|
Benetti EM, Gunnewiek MK, van Blitterswijk CA, Julius Vancso G, Moroni L. Mimicking natural cell environments: design, fabrication and application of bio-chemical gradients on polymeric biomaterial substrates. J Mater Chem B 2016; 4:4244-4257. [DOI: 10.1039/c6tb00947f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gradients of biomolecules on synthetic, solid substrates can efficiently mimic the natural, graded variation of properties of the extracellular matrix (ECM).
Collapse
Affiliation(s)
- Edmondo M. Benetti
- Department of Materials Science and Technology of Polymers
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| | - Michel Klein Gunnewiek
- Department of Materials Science and Technology of Polymers
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| | - Clemens A. van Blitterswijk
- Department of Complex Tissue Regeneration
- MERLN Institute for Technology Inspired Regenerative Medicine
- Maastricht University
- 6200 MD Maastricht
- The Netherlands
| | - G. Julius Vancso
- Department of Materials Science and Technology of Polymers
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration
- MERLN Institute for Technology Inspired Regenerative Medicine
- Maastricht University
- 6200 MD Maastricht
- The Netherlands
| |
Collapse
|
47
|
Li Y, Kilian KA. Bridging the Gap: From 2D Cell Culture to 3D Microengineered Extracellular Matrices. Adv Healthc Mater 2015; 4:2780-96. [PMID: 26592366 PMCID: PMC4780579 DOI: 10.1002/adhm.201500427] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/05/2015] [Indexed: 12/20/2022]
Abstract
Historically the culture of mammalian cells in the laboratory has been performed on planar substrates with media cocktails that are optimized to maintain phenotype. However, it is becoming increasingly clear that much of biology discerned from 2D studies does not translate well to the 3D microenvironment. Over the last several decades, 2D and 3D microengineering approaches have been developed that better recapitulate the complex architecture and properties of in vivo tissue. Inspired by the infrastructure of the microelectronics industry, lithographic patterning approaches have taken center stage because of the ease in which cell-sized features can be engineered on surfaces and within a broad range of biocompatible materials. Patterning and templating techniques enable precise control over extracellular matrix properties including: composition, mechanics, geometry, cell-cell contact, and diffusion. In this review article we explore how the field of engineered extracellular matrices has evolved with the development of new hydrogel chemistry and the maturation of micro- and nano- fabrication. Guided by the spatiotemporal regulation of cell state in developing tissues, techniques for micropatterning in 2D, pseudo-3D systems, and patterning within 3D hydrogels will be discussed in the context of translating the information gained from 2D systems to synthetic engineered 3D tissues.
Collapse
Affiliation(s)
- Yanfen Li
- Department of Materials Science and Engineering, Department of Bioengineering, Institute for Genomic Biology, Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana IL, 61801
| | - Kristopher A. Kilian
- Department of Materials Science and Engineering, Department of Bioengineering, Institute for Genomic Biology, Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana IL, 61801
| |
Collapse
|
48
|
Yang YH, Khan Z, Ma C, Lim HJ, Smith Callahan LA. Optimization of adhesive conditions for neural differentiation of murine embryonic stem cells using hydrogels functionalized with continuous Ile-Lys-Val-Ala-Val concentration gradients. Acta Biomater 2015; 21:55-62. [PMID: 25931018 DOI: 10.1016/j.actbio.2015.04.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/31/2015] [Accepted: 04/21/2015] [Indexed: 01/12/2023]
Abstract
Stem cell therapies, which aim to restore neurological function after central nervous system injury, have shown increased efficacy when a tissue engineering matrix is implanted with cells compared to implantation of the cells alone. However, much work still needs to be done to characterize materials that can be used to facilitate and direct the differentiation of implanted cells. In the current study, polyethylene glycol hydrogels functionalized with continuous Ile-Lys-Val-Ala-Val (IKVAV) concentration gradients were fabricated and utilized to systematically study and optimize the adhesive conditions for neural differentiation of mouse embryonic stem cells in two- and three-dimensional environments. The results suggest that 570 μM and 60 μM are the optimal IKVAV concentrations for 2D and 3D neural differentiation, respectively, to maximize mRNA expression of neuron-specific markers and neurite extension while minimizing apoptotic activities in cultured cells compared to those exposed to higher IKVAV concentrations. The combinatorial approach presented in this work demonstrates that hydrogels functionalized with bioactive peptides provide a defined and tunable platform that can be employed to characterize and improve culture conditions for superior survival, maturation and integration of implanted cells, leading to enhanced restoration of neurological function for those receiving stem cell therapies after traumatic brain and spinal cord injuries.
Collapse
|
49
|
Lin H, Liu J, Zhang K, Fan Y, Zhang X. Dynamic mechanical and swelling properties of maleated hyaluronic acid hydrogels. Carbohydr Polym 2015; 123:381-9. [DOI: 10.1016/j.carbpol.2015.01.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 12/10/2014] [Accepted: 01/15/2015] [Indexed: 01/05/2023]
|
50
|
Liu J, Lin H, Li X, Fan Y, Zhang X. Chondrocytes behaviors within type I collagen microspheres and bulk hydrogels: an in vitro study. RSC Adv 2015. [DOI: 10.1039/c5ra04496k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cell niche, which is considered to be critical to the proliferation and differentiation of cells, is one of the most important aspects for the design and development of ideal scaffolds in tissue engineering.
Collapse
Affiliation(s)
- Jun Liu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Hai Lin
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Xiupeng Li
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| |
Collapse
|