1
|
Rahnama M, Ghasemzadeh N, Latifi Z, Kheradmand F, Koukia FA, Khan S, Golchin A. Menstrual blood and endometrial mesenchymal stem/stromal cells: A frontier in regenerative medicine and cancer therapy. Eur J Pharmacol 2025; 1000:177726. [PMID: 40350020 DOI: 10.1016/j.ejphar.2025.177726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
The acquisition of suitable stem cell sources is a significant issue in regenerative medicine. There has been considerable interest in utilizing mesenchymal stem cells (MSCs) derived from endometrial and menstrual blood as a promising resource of MSCs, owing to their unique biochemical properties and prospective use in clinical therapies. This population of stem cells has distinct characteristics in terms of immunophenotype, proliferation rate, and differentiation capacity. A notable characteristic of these stem cells is their capacity to develop into mesodermal lineages, highlighting their regenerative capability. Moreover, the presence of certain surface markers facilitates the augmentation of clonogenic endometrial MSCs. Their distinctive characteristics, along with their swift multiplication ability, underscore their significant promise for therapeutic applicability in regenerative medicine and cell-based treatments. Current investigations are examining possible usage of diverse stem cell resources in the treatment of inflammatory diseases and perhaps intractable illnesses like Parkinson's disease, utilizing their immunomodulatory properties. This review aims to analyze stem cell-related research that has utilized endometrial and menstrual blood-derived MSCs (enMSCs and MenSCs) with a special focus on their clinical application. We will explore the existing evidence about the therapeutic potential for these stem cells across many medical diseases and address the obstacles and prospective trajectories in this domain. Additionally, we will study the unique properties of enMSCs and MenSCs that make them promising candidates for regenerative medicine.
Collapse
Affiliation(s)
- Maryam Rahnama
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Navid Ghasemzadeh
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zeinab Latifi
- Department of Biochemistry, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Kheradmand
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Fariba Abbasi Koukia
- Department of Pathology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sharun Khan
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Ali Golchin
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Independent Researcher, Urmia, Iran.
| |
Collapse
|
2
|
Jingyue X, Zhiwei Z, Jirui W, Fei F, Jiang W, Yali M. Application and research progress in composite stem cell materials of pelvic floor reconstruction. Eur J Obstet Gynecol Reprod Biol 2025; 307:49-54. [PMID: 39883984 DOI: 10.1016/j.ejogrb.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 10/05/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025]
Abstract
As an important tool for the surgical treatment of pelvic floor dysfunction, the safety of mesh must be guaranteed. Although the short-term curative effect of most synthetic mesh is satisfactory, complications often occur due to its material. Planting stem cells on mesh through specific methods may resolve the problems of mesh with poor biocompatibility or an uncontrollable rate o degradation. Based on recent research, this paper summarizes the research progress of stem cells composited with common mesh materials, such as polypropylene, polylactic acid and acellular matrix.
Collapse
Affiliation(s)
- Xiao Jingyue
- Department of Obstetrics and Gynaecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China; West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhao Zhiwei
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, China
| | - Wen Jirui
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, China
| | - Fang Fei
- Deep Underground Space Medical Centre, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wu Jiang
- Deep Underground Space Medical Centre, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Miao Yali
- Department of Obstetrics and Gynaecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
3
|
Sadiasa A, Werkmeister JA, Gurung S, Gargett CE. Steps towards the clinical application of endometrial and menstrual fluid mesenchymal stem cells for the treatment of gynecological disorders. Expert Opin Biol Ther 2025; 25:285-307. [PMID: 39925343 DOI: 10.1080/14712598.2025.2465826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/28/2025] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
INTRODUCTION The human endometrium is a highly regenerative tissue that contains mesenchymal stem/stromal cells (MSCs). These MSCs are sourced via office-based biopsies and menstrual fluid, providing a less invasive and readily available option for cell-based therapies. This review provides an update on endometrial-derived MSCs as a treatment option for gynecological diseases. AREAS COVERED This narrative review covers the characterization and therapeutic mechanisms of endometrium biopsy-derived MSCs (eMSCs) and menstrual fluid-derived mesenchymal stromal cells (MenSCs), highlighting similarities and differences. It also covers studies of their application in preclinical animal models and in clinical trials as potential cell-based therapies for gynecological diseases. EXPERT OPINION eMSCs and MenSCs from a homologous tissue source have the potential to promote regenerative activity as a treatment for gynecological diseases. Both eMSCs and MenSCs demonstrate therapeutic benefits through their paracrine activity in tissue regeneration, immunomodulation, angiogenesis, and mitigating fibrosis. Further research is essential to establish standardized isolation and characterization protocols, particularly for heterogeneous MenSCs, and to fully understand their mechanisms of action. Implementing SUSD2 magnetic bead sorting for purifying eMSCs from endometrial tissues and menstrual fluid is crucial for their use in future cell-based therapies. Optimization of production, storage, and delivery methods will maximize their therapeutic effectiveness.
Collapse
Affiliation(s)
- Alexander Sadiasa
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Jerome A Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Shanti Gurung
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
4
|
Sanjeev K, Guruprasad M, Vikram R, Priyadarshini S, Mazumder A, Inderchand M. Uterine Biosynthesis through Tissue Engineering: An Overview of Current Methods and Status. Curr Pharm Biotechnol 2025; 26:208-221. [PMID: 39161137 DOI: 10.2174/0113892010316780240807104149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024]
Abstract
In the last few decades, the rates of infertility among women have been on the rise, usually due to complications with the uterus and related tissue. A wide variety of reasons can cause uterine factor infertility and can be congenital or a result of disease. Uterine transplantation is currently used as a means to enable women with fertility issues to have a natural birth. However, multiple risk factors are involved in uterine transplantation that threaten the lives of the growing fetus and the mother, as a result of which the procedure is not prominently practiced. Uterine tissue engineering provides a potential solution to infertility through the regeneration of replacement of damaged tissue, thus allowing healing and restoration of reproductive capacity. It involves the use of stem cells from the patient incorporated within biocompatible scaffolds to regenerate the entire tissue. This manuscript discusses the need for uterine tissue engineering, giving an overview of the biological and organic material involved in the process. There are numerous existing animal models in which this procedure has been actualized, and the observations from them have been compiled here. These models are used to develop a further understanding of the integration of engineered tissues and the scope of tissue engineering as a treatment for uterine disorders. Additionally, this paper examines the scope and limitations of the procedure.
Collapse
Affiliation(s)
- Krithika Sanjeev
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Megaswana Guruprasad
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Rachna Vikram
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Snigdha Priyadarshini
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Adhish Mazumder
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Manjubala Inderchand
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
5
|
Wei X, Xu A, Xia S, Wang J, Qiu Y, Wan G, Cao J, Wang Z, Gui T. Primary culture of endometrial mesenchymal stem cells derived from ectopic lesions of patients with adenomyosis. Arch Gynecol Obstet 2024; 310:3239-3253. [PMID: 39623118 DOI: 10.1007/s00404-024-07854-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024]
Abstract
PURPOSE This study aimed to establish a protocol for efficiently isolating and expanding adenomyotic lesion-derived endometrial mesenchymal stem cells (A-eMSCs) in vitro. METHODS Three different methods-namely, the enzymatic method, the explant method, and the enzymatic explant method-were employed to isolate A-eMSCs. The isolation and expansion efficiencies of these three methods were subsequently compared. The enzymatic explant method was then used, and the transforming growth factor beta type I receptor (TGF-βR1) inhibitor A83-01 was added to the culture medium to evaluate its impact on the isolation and expansion efficiencies of A-eMSCs. RESULTS The enzymatic explant method resulted in improved morphology, shorter cell confluence time, and greater SUSD2 enrichment in the isolation of primary endometrial cells compared to the other two methods. The proliferation and differentiation potential of A-eMSCs obtained by sorting primary endometrial cells via the enzymatic explant method were significantly higher than those obtained via the other two methods in vitro. Using the enzymatic explant method, culture medium containing A83-01 further reduced the confluence time of the cells and increased A-eMSCs enrichment during the primary endometrial cell isolation stage. Furthermore, A83-01 enhanced the proliferation and maintained the differentiation potential of A-eMSCs during the cell expansion stage. CONCLUSION Our study identified a robust, cost-effective, and efficient protocol for isolating and expanding A-eMSCs and providing an important foundation for further research on the pathogenesis and clinical treatment of AM.
Collapse
Affiliation(s)
- Xinjun Wei
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aiyun Xu
- Department of Endocrinology, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Shuyu Xia
- Department of Obstetrics and Gynecology, Suzhou Xiangcheng People's Hospital, Suzhou, China
| | - Jindan Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - YingYing Qiu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guiping Wan
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Cao
- Department of Gynecology, Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China.
| | - Zhihui Wang
- Department of Obstetrics and Gynecology, Suzhou Xiangcheng People's Hospital, Suzhou, China.
| | - Tao Gui
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
6
|
Liu YL, Chen JS, An JH, Cai ZG, Lan JC, Li Y, Kong XW, Zhang MY, Hou R, Wang DH. Characteristics of mesenchymal stem cells and their exosomes derived from giant panda (Ailuropoda melanoleuca) endometrium. In Vitro Cell Dev Biol Anim 2023; 59:550-563. [PMID: 37639049 DOI: 10.1007/s11626-023-00802-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023]
Abstract
Conservation of genetic resources is an important way to protect endangered species. At present, mesenchymal stem cells (MSCs) have been isolated from the bone marrow and umbilical cords of giant pandas. However, the types and quantities of preserved cell resources were rare and limited, and none of MSCs was derived from female reproductive organs. Here, we first isolated MSCs from the endometrium of giant panda. These cells showed fibroblast morphology and expressed Sox2, Klf4, Thy1, CD73, CD105, CD44, CD49f, and CD105. Endometrium mesenchymal stem cells (eMSCs) of giant panda could induce differentiation into three germ layers in vitro. RNA-seq analysis showed that 833 genes were upregulated and 716 genes were downregulated in eMSCs compared with skin fibroblast cells. The results of GO and the KEGG analysis of differentially expressed genes (DEGs) were mainly focused on transporter activity, signal transducer activity, pathways regulating pluripotency of stem cells, MAPK signaling pathway, and PI3K-Akt signaling pathway. The genes PLCG2, FRK, JAK3, LYN, PIK3CB, JAK2, CBLB, and MET were identified as hub genes by PPI network analysis. In addition, the exosomes of eMSCs were also isolated and identified. The average diameter of exosomes was 74.26 ± 13.75 nm and highly expressed TSG101 and CD9 but did not express CALNEXIN. A total of 277 miRNAs were detected in the exosomes; the highest expression of miRNA was the has-miR-21-5p. A total of 14461 target genes of the whole miRNAs were predicted and proceeded with functional analysis. In conclusion, we successfully isolated and characterized the giant panda eMSCs and their exosomes, and analyzed their functions through bioinformatics techniques. It not only enriched the conservation types of giant panda cell resources and promoted the protection of genetic diversity, but also laid a foundation for the application of eMSCs and exosomes in the disease treatment of giant pandas.
Collapse
Affiliation(s)
- Yu-Liang Liu
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu, 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu, 610081, China
- Sichuan Academy of Giant Panda, Sichuan Province, Chengdu, 610081, China
| | - Jia-Song Chen
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu, 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu, 610081, China
- Sichuan Academy of Giant Panda, Sichuan Province, Chengdu, 610081, China
| | - Jun-Hui An
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu, 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu, 610081, China
- Sichuan Academy of Giant Panda, Sichuan Province, Chengdu, 610081, China
| | - Zhi-Gang Cai
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu, 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu, 610081, China
- Sichuan Academy of Giant Panda, Sichuan Province, Chengdu, 610081, China
| | - Jing-Chao Lan
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu, 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu, 610081, China
- Sichuan Academy of Giant Panda, Sichuan Province, Chengdu, 610081, China
| | - Yuan Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu, 610081, China
| | - Xiang-Wei Kong
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu, 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu, 610081, China
- Sichuan Academy of Giant Panda, Sichuan Province, Chengdu, 610081, China
| | - Ming-Yue Zhang
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu, 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu, 610081, China
- Sichuan Academy of Giant Panda, Sichuan Province, Chengdu, 610081, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu, 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu, 610081, China
- Sichuan Academy of Giant Panda, Sichuan Province, Chengdu, 610081, China
| | - Dong-Hui Wang
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu, 610081, China.
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu, 610081, China.
- Sichuan Academy of Giant Panda, Sichuan Province, Chengdu, 610081, China.
| |
Collapse
|
7
|
van Velthoven MJJ, Gudde AN, Struijs F, Oosterwijk E, Roovers JP, Guler Z, Hooijmans CR, Kouwer PHJ. The Effect of Growth Factors on Vaginal Wound Healing: A Systematic Review and Meta-analysis. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:429-440. [PMID: 37051705 DOI: 10.1089/ten.teb.2022.0225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Surgical outcomes of pelvic organ prolapse (POP) surgery are poor, resulting in a 20% recurrence risk. Following the hypothesis that impaired wound healing is the main determinant of recurrent POP, growth factors have the potential to promote wound healing and may improve surgical outcomes. In this study, we systematically reviewed the effect of growth factors on vaginal wound healing in both in vitro and animal studies. For each independent comparison, the standardized mean difference and 95% CI were calculated using the Hedges' g correction. Of the 3858 retrieved studies, seven studies were included, of which six were included in meta-analysis (three in vitro studies and four in vivo studies). In vitro, basic fibroblast growth factor (bFGF) promotes proliferation, differentiation, and collagen types I and III production. Epidermal growth factor stimulates proliferation and connective tissue growth factor promotes Tenascin-C expression. These effects, however, are less pronounced in vivo; only bFGF slightly promotes collagen production. The review shows that growth factors, particularly bFGF, are able to promote vaginal wound healing in vitro. The uncertain in vivo findings suggest that preclinical models should be improved. The ultimate goal is to develop effective growth factor-supplemented therapies that improve surgical outcomes for POP.
Collapse
Affiliation(s)
- Melissa J J van Velthoven
- Institute of Molecules and Materials, Radboud University, Nijmegen, The Netherlands
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Aksel N Gudde
- Department of Obstetrics and Gynecology and Amsterdam University Medical Center, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Frederique Struijs
- Institute of Molecules and Materials, Radboud University, Nijmegen, The Netherlands
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Egbert Oosterwijk
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan-Paul Roovers
- Department of Obstetrics and Gynecology and Amsterdam University Medical Center, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Zeliha Guler
- Department of Obstetrics and Gynecology and Amsterdam University Medical Center, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Carlijn R Hooijmans
- Department of Anesthesiology, Pain and Palliative Care, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul H J Kouwer
- Institute of Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Poorgholam P, Yaghmaei P, Noureddini M, Hajebrahimi Z. Artemisin and human endometrial-derived stem cells improve cognitive function and synaptic plasticity in a rat model of Alzheimer disease and diabetes. Metab Brain Dis 2023; 38:1925-1936. [PMID: 37043150 DOI: 10.1007/s11011-023-01200-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/10/2023] [Indexed: 04/13/2023]
Abstract
Alzheimer disease (AD) is a common form of dementia associated with loss of memory and disruption of synaptic plasticity. There is a strong correlation between the pathophysiological features of AD and diabetes, including induction of oxidative stress, inflammation, and abnormality in blood vessels. Considering the brain's limited capacity to repair damage and the potential of stem cell-derived neural cells in the repair of neurodegenerative disease, we investigated the effects of artemisinin and TSP‑1‑human endometrial-derived-derived stem cells (TSP‑1‑hEDSCs) on the cognitive function and synaptic plasticity in AD-diabetes rats. The authors previously showed that artemisinin and TSP‑1‑hEDSCs suppressed oxidative stress and inflammation in AD-diabetes rats. Thrombospondins-1 (TSPs-1) is a glycoprotein that inhibits angiogenesis. AD and diabetes were induced using streptozotocin. Synaptic plasticity and learning and memory function were studied using the Morris water maze and electrophysiological test, respectively. Streptozotocin increased traveled swimming distance and escape latency in the morris water maze test, decreased the percent time spent in the target quadrant, inhibited the long-term potentiation (LTP), and increased the blood glucose levels. Simultaneous or separate administration of artemisinin and TSP‑1‑hEDSCs decreased the blood levels of glucose and improved cognitive tasks and synaptic plasticity by considerably reducing traveled swimming distance and escape latency, increasing the percent time spent in the target quadrant, and retrieval of the LTP; therefore, they could be utilized as an adjunct treatment for AD treatment. These results may be due to a decrease in oxidative stress and inflammation.
Collapse
Affiliation(s)
- Parvin Poorgholam
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mehdi Noureddini
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Hajebrahimi
- A&S Research Institute, Ministry of Science Research and Technology, Tehran, Iran
| |
Collapse
|
9
|
Liu X, Li J, Wang W, Ren X, Hu JF. Therapeutic restoration of female reproductive and endocrine dysfunction using stem cells. Life Sci 2023; 322:121658. [PMID: 37023951 DOI: 10.1016/j.lfs.2023.121658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Millions of women worldwide suffer from infertility associated with gynecologic disorders such as premature ovarian insufficiency, polycystic ovary syndrome, Asherman syndrome, endometriosis, preeclampsia, and fallopian tube obstruction. These disorders can lead to infertility and thereby affect the quality of life of the infertile couple because of their psychological impact and significant costs. In recent years, stem cell therapy has emerged as a therapeutic approach to repair or replace damaged tissues or organs. This review describes the recent development as well as the underlying mechanisms of stem cell therapy for a variety of female reproductive diseases, offering us new therapeutic options for the treatment of female reproductive and endocrine dysfunction.
Collapse
Affiliation(s)
- Xiaobo Liu
- The Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Jiajia Li
- The Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, Changchun, Jilin 130061, China; Department of Gynecologic Oncology, Gynecology and Obstetrics Centre, the First Hospital of Jilin University, Changchun, Jilin 130012, China
| | - Wenjun Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Xue Ren
- Department of Gynecologic Oncology, Gynecology and Obstetrics Centre, the First Hospital of Jilin University, Changchun, Jilin 130012, China
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
10
|
Research progress of stem cell therapy for endometrial injury. Mater Today Bio 2022; 16:100389. [PMID: 36033375 PMCID: PMC9403503 DOI: 10.1016/j.mtbio.2022.100389] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
Abstract
Endometrial damage is an important factor leading to infertility and traditional conventional treatments have limited efficacy. As an emerging technology in recent years, stem cell therapy has provided new hope for the treatment of this disease. By comparing the advantages of stem cells from different sources, it is believed that menstrual blood endometrial stem cells have a good application prospect as a new source of stem cells. However, the clinical utility of stem cells is still limited by issues such as colonization rates, long-term efficacy, tumor formation, and storage and transportation. This paper summarizes the mechanism by which stem cells repair endometrial damage and clarifies the material basis of their effects from four aspects: replacement of damaged sites, paracrine effects, interaction with growth factors, and other new targets. According to the pathological characteristics and treatment requirements of intrauterine adhesion (IUA), the research work to solve the above problems from the aspects of functional bioscaffold preparation and multi-functional platform construction is also summarized. From the perspective of scaffold materials and component functions, this review will provide a reference for comprehensively optimizing the clinical application of stem cells.
Collapse
|
11
|
Emerging in vitro platforms and omics technologies for studying the endometrium and early embryo-maternal interface in humans. Placenta 2022; 125:36-46. [DOI: 10.1016/j.placenta.2022.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/09/2021] [Accepted: 01/09/2022] [Indexed: 12/11/2022]
|
12
|
Francés-Herrero E, Lopez R, Hellström M, de Miguel-Gómez L, Herraiz S, Brännström M, Pellicer A, Cervelló I. OUP accepted manuscript. Hum Reprod Update 2022; 28:798-837. [PMID: 35652272 PMCID: PMC9629485 DOI: 10.1093/humupd/dmac025] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND To provide the optimal milieu for implantation and fetal development, the female reproductive system must orchestrate uterine dynamics with the appropriate hormones produced by the ovaries. Mature oocytes may be fertilized in the fallopian tubes, and the resulting zygote is transported toward the uterus, where it can implant and continue developing. The cervix acts as a physical barrier to protect the fetus throughout pregnancy, and the vagina acts as a birth canal (involving uterine and cervix mechanisms) and facilitates copulation. Fertility can be compromised by pathologies that affect any of these organs or processes, and therefore, being able to accurately model them or restore their function is of paramount importance in applied and translational research. However, innate differences in human and animal model reproductive tracts, and the static nature of 2D cell/tissue culture techniques, necessitate continued research and development of dynamic and more complex in vitro platforms, ex vivo approaches and in vivo therapies to study and support reproductive biology. To meet this need, bioengineering is propelling the research on female reproduction into a new dimension through a wide range of potential applications and preclinical models, and the burgeoning number and variety of studies makes for a rapidly changing state of the field. OBJECTIVE AND RATIONALE This review aims to summarize the mounting evidence on bioengineering strategies, platforms and therapies currently available and under development in the context of female reproductive medicine, in order to further understand female reproductive biology and provide new options for fertility restoration. Specifically, techniques used in, or for, the uterus (endometrium and myometrium), ovary, fallopian tubes, cervix and vagina will be discussed. SEARCH METHODS A systematic search of full-text articles available in PubMed and Embase databases was conducted to identify relevant studies published between January 2000 and September 2021. The search terms included: bioengineering, reproduction, artificial, biomaterial, microfluidic, bioprinting, organoid, hydrogel, scaffold, uterus, endometrium, ovary, fallopian tubes, oviduct, cervix, vagina, endometriosis, adenomyosis, uterine fibroids, chlamydia, Asherman’s syndrome, intrauterine adhesions, uterine polyps, polycystic ovary syndrome and primary ovarian insufficiency. Additional studies were identified by manually searching the references of the selected articles and of complementary reviews. Eligibility criteria included original, rigorous and accessible peer-reviewed work, published in English, on female reproductive bioengineering techniques in preclinical (in vitro/in vivo/ex vivo) and/or clinical testing phases. OUTCOMES Out of the 10 390 records identified, 312 studies were included for systematic review. Owing to inconsistencies in the study measurements and designs, the findings were assessed qualitatively rather than by meta-analysis. Hydrogels and scaffolds were commonly applied in various bioengineering-related studies of the female reproductive tract. Emerging technologies, such as organoids and bioprinting, offered personalized diagnoses and alternative treatment options, respectively. Promising microfluidic systems combining various bioengineering approaches have also shown translational value. WIDER IMPLICATIONS The complexity of the molecular, endocrine and tissue-level interactions regulating female reproduction present challenges for bioengineering approaches to replace female reproductive organs. However, interdisciplinary work is providing valuable insight into the physicochemical properties necessary for reproductive biological processes to occur. Defining the landscape of reproductive bioengineering technologies currently available and under development for women can provide alternative models for toxicology/drug testing, ex vivo fertility options, clinical therapies and a basis for future organ regeneration studies.
Collapse
Affiliation(s)
| | | | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lucía de Miguel-Gómez
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- Fundación IVI, IVI-RMA Global, Valencia, Spain
| | - Sonia Herraiz
- Fundación IVI, IVI-RMA Global, Valencia, Spain
- Reproductive Medicine Research Group, IIS La Fe, Valencia, Spain
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | - Antonio Pellicer
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- IVI Roma Parioli, IVI-RMA Global, Rome, Italy
| | | |
Collapse
|
13
|
Feng M, Hu S, Qin W, Tang Y, Guo R, Han L. Bioprinting of a Blue Light-Cross-Linked Biodegradable Hydrogel Encapsulating Amniotic Mesenchymal Stem Cells for Intrauterine Adhesion Prevention. ACS OMEGA 2021; 6:23067-23075. [PMID: 34549107 PMCID: PMC8444209 DOI: 10.1021/acsomega.1c02117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/29/2021] [Indexed: 05/31/2023]
Abstract
Intrauterine adhesion (IUA) is a common and prevailing complication after uterine surgery, which can lead to clinical symptoms such as a low menstrual volume, amenorrhea, periodic lower abdominal pain, infertility, and so on. Placing a three-dimensional printing hydrogel between the injured site and the adjacent tissue is considered to be a physical barrier to prevent adhesion, which can isolate the damaged area during the healing process. In this work, a tissue hydrogel with various proportions of a methacrylated gelatin (GelMA) and methacrylated collagen (ColMA) composite hydrogel loaded with amniotic mesenchymal stem cells (AMSCs) was constructed by using three-dimensional biological printing technology. Compared with the single GelMA hydrogel, the composite antiadhesion hydrogel (GelMA/ColMA) showed an appropriate swelling ratio, enhanced mechanical properties, and impressive stability. Meanwhile, the microstructure of the GelMA/ColMA composite hydrogel showed a denser and interconnected microporous structure. In addition, the cytotoxicity study indicated that the GelMA/ColMA hydrogel has a cytocompatibility nature toward AMSCs. Finally, the fabrication of stem cell encapsulation hydrogels was studied, and the cells could be released continuously for more than 7 days with the normal cell function. The results of in vivo experiments indicated that the GelMA/ColMA/hAMSC (human amnion mesenchymal stem cell) hydrogel can prevent cavity adhesion in a rat IUA model. Therefore, bioprinting a biodegradable hydrogel cross-linked by blue light has satisfactory anticavity adhesion effects with excellent physical properties and biocompatibility, which could be used as a preventive barrier for intrauterine adhesion.
Collapse
Affiliation(s)
- Miao Feng
- NHC
Key Laboratory of Male Reproduction and Genetics, Guangzhou 510600, P. R. China
- Department
of Gynecology, Family Planning Research
Institute of Guangdong Province, Guangzhou 510600, P. R.
China
| | - Shengxue Hu
- Beogene
Biotech (Guangzhou) Co., Ltd., Guangzhou 510663, P. R.
China
| | - Weibing Qin
- NHC
Key Laboratory of Male Reproduction and Genetics, Guangzhou 510600, P. R. China
- Department
of Center Laboratory, Family Planning Research
Institute of Guangdong Province, Guangzhou 510600, P. R.
China
| | - Yunge Tang
- NHC
Key Laboratory of Male Reproduction and Genetics, Guangzhou 510600, P. R. China
- Department
of Center Laboratory, Family Planning Research
Institute of Guangdong Province, Guangzhou 510600, P. R.
China
| | - Rui Guo
- Key
Laboratory of Biomaterials of Guangdong Higher Education Institutes,
Guangdong Provincial Engineering and Technological Research Center
for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, P. R. China
| | - Liwei Han
- Department
of Gynecology, Family Planning Research
Institute of Guangdong Province, Guangzhou 510600, P. R.
China
| |
Collapse
|
14
|
Hennes DMZB, Rosamilia A, Werkmeister JA, Gargett CE, Mukherjee S. Endometrial SUSD2 + Mesenchymal Stem/Stromal Cells in Tissue Engineering: Advances in Novel Cellular Constructs for Pelvic Organ Prolapse. J Pers Med 2021; 11:jpm11090840. [PMID: 34575617 PMCID: PMC8471527 DOI: 10.3390/jpm11090840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022] Open
Abstract
Cellular therapy is an emerging field in clinical and personalised medicine. Many adult mesenchymal stem/progenitor cells (MSC) or pluripotent derivatives are being assessed simultaneously in preclinical trials for their potential treatment applications in chronic and degenerative human diseases. Endometrial mesenchymal stem/progenitor cells (eMSC) have been identified as clonogenic cells that exist in unique perivascular niches within the uterine endometrium. Compared with MSC isolated from other tissue sources, such as bone marrow and adipose tissue, eMSC can be extracted through less invasive methods of tissue sampling, and they exhibit improvements in potency, proliferative capacity, and control of culture-induced differentiation. In this review, we summarize the potential cell therapy and tissue engineering applications of eMSC in pelvic organ prolapse (POP), emphasising their ability to exert angiogenic and strong immunomodulatory responses that improve tissue integration of novel surgical constructs for POP and promote vaginal tissue healing.
Collapse
Affiliation(s)
- David M. Z. B. Hennes
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (A.R.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
- Pelvic Floor Disorders Unit, Monash Health, Clayton, VIC 3168, Australia
- Correspondence: (D.M.Z.B.H.); (S.M.)
| | - Anna Rosamilia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (A.R.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
- Pelvic Floor Disorders Unit, Monash Health, Clayton, VIC 3168, Australia
| | - Jerome A. Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (A.R.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (A.R.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Shayanti Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (A.R.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
- Correspondence: (D.M.Z.B.H.); (S.M.)
| |
Collapse
|
15
|
Kong Y, Shao Y, Ren C, Yang G. Endometrial stem/progenitor cells and their roles in immunity, clinical application, and endometriosis. Stem Cell Res Ther 2021; 12:474. [PMID: 34425902 PMCID: PMC8383353 DOI: 10.1186/s13287-021-02526-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Endometrial stem/progenitor cells have been proved to exist in periodically regenerated female endometrium and can be divided into three categories: endometrial epithelial stem/progenitor cells, CD140b+CD146+ or SUSD2+ endometrial mesenchymal stem cells (eMSCs), and side population cells (SPs). Endometrial stem/progenitor cells in the menstruation blood are defined as menstrual stem cells (MenSCs). Due to their abundant sources, excellent proliferation, and autotransplantation capabilities, MenSCs are ideal candidates for cell-based therapy in regenerative medicine, inflammation, and immune-related diseases. Endometrial stem/progenitor cells also participate in the occurrence and development of endometriosis by entering the pelvic cavity from retrograde menstruation and becoming overreactive under certain conditions to form new glands and stroma through clonal expansion. Additionally, the limited bone marrow mesenchymal stem cells (BMDSCs) in blood circulation can be recruited and infiltrated into the lesion sites, leading to the establishment of deep invasive endometriosis. On the other hand, cell derived from endometriosis may also enter the blood circulation to form circulating endometrial cells (CECs) with stem cell-like properties, and to migrate and implant into distant tissues. In this manuscript, by reviewing the available literature, we outlined the characteristics of endometrial stem/progenitor cells and summarized their roles in immunoregulation, regenerative medicine, and endometriosis, through which to provide some novel therapeutic strategies for reproductive and cancerous diseases.
Collapse
Affiliation(s)
- Yue Kong
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yang Shao
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chunxia Ren
- Center for Reproductive Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China.
| | - Gong Yang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Central Laboratory, The Fifth People's Hospital of Shanghai Fudan University, Shanghai, 200240, China.
| |
Collapse
|
16
|
Yang D, Zhang M, Liu K. Tissue engineering to treat pelvic organ prolapse. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2118-2143. [PMID: 34313549 DOI: 10.1080/09205063.2021.1958184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Pelvic organ prolapse (POP) is a frequent chronic illness, which seriously affects women's living quality. In recent years, tissue engineering has made superior progress in POP treatment, and biological scaffolds have received considerable attention. Nevertheless, pelvic floor reconstruction still faces severe challenges, including the construction of ideal scaffolds, the selection of optimal seed cells, and growth factors. This paper summarizes the recent progress of pelvic floor reconstruction in tissue engineering, and discusses the problems that need to be further considered and solved to provide references for the further development of this field.
Collapse
Affiliation(s)
- Deyu Yang
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Min Zhang
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Kehai Liu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| |
Collapse
|
17
|
Identification and characterisation of maternal perivascular SUSD2 + placental mesenchymal stem/stromal cells. Cell Tissue Res 2021; 385:803-815. [PMID: 33961124 DOI: 10.1007/s00441-021-03453-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) that meet the International Society for Cellular Therapy (ISCT) criteria are obtained from placental tissue by plastic adherence. Historically, no known single marker was available for isolating placental MSCs (pMSCs) from the decidua basalis. As the decidua basalis is derived from the regenerative endometrium, we hypothesised that SUSD2, an endometrial perivascular MSC marker, would purify maternal perivascular pMSC. Perivascular pMSCs were isolated from the maternal placenta using SUSD2 magnetic bead sorting and assessed for the colony-forming unit-fibroblasts (CFU-F), surface markers, and in vitro differentiation into mesodermal lineages. Multi-colour immunofluorescence was used to colocalise SUSD2 and α-SMA, a perivascular marker in the decidua basalis. Placental stromal cell suspensions comprised 5.1%SUSD2+ cells. SUSD2 magnetic bead sorting of the placental stromal cells increased their purity approximately two-fold. SUSD2+ pMSCs displayed greater CFU-F activity than SUSD2- stromal fibroblasts (pSFs). However, both SUSD2+ pMSC and SUSD2- pSF underwent mesodermal differentiation in vitro, and both expressed the ISCT surface markers. Higher percentages of cultured SUSD2+ pMSCs expressed the perivascular markers CD146, CD140b, and SUSD2 than SUSD2- pSFs. These findings suggest that SUSD2 is a single marker that enriches maternal pMSCs, suggesting they may originate from eMSC. Placental decidua basalis can be used as an alternative source of MSC for clinical translation in situations where there is no access to endometrial tissue.
Collapse
|
18
|
Abstract
Impairment of uterine structure and function causes infertility, pregnancy loss, and perinatal complications in humans. Some types of uterine impairments such as Asherman’s syndrome, also known as uterine synechiae, can be treated medically and surgically in a standard clinical setting, but absolute defects of uterine function or structure cannot be cured by conventional approaches. To overcome such hurdles, partial or whole regeneration and reconstruction of the uterus have recently emerged as new therapeutic strategies. Transplantation of the whole uterus into patients with uterine agenesis results in the successful birth of children. However, it remains an experimental treatment with numerous difficulties such as the need for continuous and long-term use of immunosuppressive drugs until a live birth is achieved. Thus, the generation of the uterus by tissue engineering technologies has become an alternative but indispensable therapeutic strategy to treat patients without a functional or well-structured uterus. For the past 20 years, the bioengineering of the uterus has been studied intensively in animal models, providing the basis for clinical applications. A variety of templates and scaffolds made from natural biomaterials, synthetic materials, or decellularized matrices have been characterized to efficiently generate the uterus in a manner similar to the bioengineering of other organs and tissues. The goal of this review is to provide a comprehensive overview and perspectives of uterine bioengineering focusing on the type, preparation, and characteristics of the currently available scaffolds.
Collapse
|
19
|
Yoon JY, de Kock L, Stewart CJR, McCluggage WG, Foulkes WD, Clarke BA, Rouzbahman M. Endometrial Stem/Progenitor cell (ES/PC) Marker Expression Profile in Adenosarcoma and Endometrial Stromal Sarcoma. Cancer Treat Res Commun 2021; 27:100363. [PMID: 33838572 DOI: 10.1016/j.ctarc.2021.100363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/28/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The uterus is one of the most dynamic organs in the human body, and this dynamic homeostasis is supported by endometrial stem/progenitor cells (ES/PCs), which are heterogeneous in their phenotype and degree of differentiation. ES/PCs are generally localized in the endometrial stroma, the site of origin for adenosarcoma and endometrial stromal sarcoma (ESS). Subsets of ESSs and adenosarcomas harbor SUZ12 or DICER1 gene alterations, two genes with roles in embryonic stem cell biology. However, the possible contribution of ES/PCs to tumorigenesis is unexplored. METHOD We examined the expression of eleven ES/PC markers, along with three proteins expressed in the mature endometrial stroma (ER, PR and CD10) in 60 uterine tumors (24 low-, 11 high-grade ESS, 25 adenosarcomas). Protein expression profiles were assessed by unsupervised hierarchical clustering. miRNA expression profiles were examined in a subset of adenosarcoma with/without DICER1 mutations, using the NanoString platform. RESULTS ES/PC markers were variably expressed, and the tumors exhibited limited immunophenotypic resemblance to different ES/PCs. Within the ESSs, the ES/PC marker clustering pattern was prognostic for both overall and disease-free survival. Comparing adenosarcomas and ESSs, most high-grade ESSs clustered with one another, while low-grade ESSs and adenosarcomas tended to cluster with one another. Among the adenosarcomas, the miRNA expression profiles were varied with respect to the DICER1 mutation status, with pathway analysis pointing to dysregulated signal transduction and stem cell biology. CONCLUSIONS ESSs and adenosarcomas exhibit varying immunophenotypic resemblance to ES/PCs. These expression profiles have prognostic implications and may be genetically driven.
Collapse
Affiliation(s)
- Ju-Yoon Yoon
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Pathology, St. Michael's Hospital, Toronto, ON, Canada.
| | - Leanne de Kock
- Department of Human Genetics, McGill University, Montréal, Québec, Canada; Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, Montréal, Québec, Canada; Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Colin J R Stewart
- School for Women's and Infants' Health, University of Western Australia, Perth, WA, Australia
| | - W Glenn McCluggage
- Department of Pathology, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montréal, Québec, Canada; Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, Montréal, Québec, Canada; Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Blaise A Clarke
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Pathology, Toronto General Hospital, Toronto, ON, Canada
| | - Marjan Rouzbahman
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Pathology, Toronto General Hospital, Toronto, ON, Canada
| |
Collapse
|
20
|
Gurung S, Ulrich D, Sturm M, Rosamilia A, Werkmeister JA, Gargett CE. Comparing the Effect of TGF-β Receptor Inhibition on Human Perivascular Mesenchymal Stromal Cells Derived from Endometrium, Bone Marrow and Adipose Tissues. J Pers Med 2020; 10:jpm10040261. [PMID: 33271899 PMCID: PMC7712261 DOI: 10.3390/jpm10040261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Rare perivascular mesenchymal stromal cells (MSCs) with therapeutic properties have been identified in many tissues. Their rarity necessitates extensive in vitro expansion, resulting in spontaneous differentiation, cellular senescence and apoptosis, producing therapeutic products with variable quality and decreased potency. We previously demonstrated that A83-01, a transforming growth factor beta (TGF-β) receptor inhibitor, maintained clonogenicity and promoted the potency of culture-expanded premenopausal endometrial MSCs using functional assays and whole-transcriptome sequencing. Here, we compared the effects of A83-01 on MSCs derived from postmenopausal endometrium, menstrual blood, placenta decidua-basalis, bone marrow and adipose tissue. Sushi-domain-containing-2 (SUSD2+) and CD34+CD31−CD45− MSCs were isolated. Expanded MSCs were cultured with or without A83-01 for 7 days and assessed for MSC properties. SUSD2 identified perivascular cells in the placental decidua-basalis, and their maternal origin was validated. A83-01 promoted MSC proliferation from all sources except bone marrow and only increased SUSD2 expression and prevented apoptosis in MSCs from endometrial-derived tissues. A83-01 only improved the cloning efficiency of postmenopausal endometrial MSCs (eMSCs), and expanded adipose tissue MSCs (adMSCs) underwent significant senescence, which was mitigated by A83-01. MSCs derived from bone marrow (bmMSCs) were highly apoptotic, but A83-01 was without effect. A83-01 maintained the function and phenotype in MSCs cultured from endometrial, but not other, tissues. Our results also demonstrated that cellular SUSD2 expression directly correlates with the functional phenotype.
Collapse
Affiliation(s)
- Shanti Gurung
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (D.U.); (J.A.W.); (C.E.G.)
- Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia;
- Correspondence: ; Tel.: +61-03-8572-2813
| | - Daniela Ulrich
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (D.U.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz, 8036 Graz, Austria
| | - Marian Sturm
- Cell & Tissue Therapies WA, Royal Perth Hospital, Perth, WA 6000, Australia;
- Centre for Cell Therapy and Regenerative Medicine, University of Western Australia, Perth, WA 6009, Australia
| | - Anna Rosamilia
- Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia;
- Monash Health, Clayton, VIC 3168, Australia
| | - Jerome A. Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (D.U.); (J.A.W.); (C.E.G.)
- Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia;
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (D.U.); (J.A.W.); (C.E.G.)
- Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia;
| |
Collapse
|
21
|
Aghaei-Ghareh-Bolagh B, Mukherjee S, Lockley KM, Mithieux SM, Wang Z, Emmerson S, Darzi S, Gargett CE, Weiss AS. A novel tropoelastin-based resorbable surgical mesh for pelvic organ prolapse repair. Mater Today Bio 2020; 8:100081. [PMID: 33210083 PMCID: PMC7658716 DOI: 10.1016/j.mtbio.2020.100081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 11/03/2022] Open
Abstract
Pelvic organ prolapse is a common condition that affects 1 in 4 women across all age groups. It is mainly caused by vaginal birth injury and can be exacerbated by obesity and increased age. Until recently, treatment strategies often used non-degradable synthetic meshes for reconstructive surgery. However, owing to their frequent, unacceptable rate of adverse events such as mesh erosion, transvaginal meshes have been banned in many countries. Recent reports have highlighted the urgent need for biocompatible design of meshes for a safe and effective treatment in the long term. This study reports the design and evaluation of a novel, elastin based degradable mesh using an ovine model of POP as a potential surgical treatment. Elastin is a protein component of the ECM and provides elasticity to tissues throughout the body. Tropoelastin, the monomer subunit of elastin, has been used with success in electrospun constructs as it is a naturally cell interactive polymer. Biomaterials that incorporate tropoelastin support cell attachment and proliferation, and have been proven to encourage elastogenesis and angiogenesis in vitro and in vivo. The biological properties of tropoelastin were combined with the physical properties of PCL, a degradable synthetic polymer, with the aim of producing, characterizing and assessing the performance of continuous tropoelastin:PCL electrospun yarns. Using a modified spinneret electrospinning system and adjusting settings based on relative humidity, four blends of tropoelastin:PCL yarns were fabricated with concentration ratios of 75:25, 50:50, 25:75 and 0:100. Yarns were assessed for ease of manufacture, fibrous architecture, protein/polymer content, yarn stability - including initial tropoelastin release, mechanical strength, and ability to support cell growth. Based on overall favorable properties, a mesh woven from the 50:50 tropoelastin:PCL yarn was implanted into the vagina of a parous ewe with vaginal wall weakness as a model of pelvic organ prolapse. This mesh showed excellent integration with new collagen deposition by SEM and a predominant M2 macrophage response with few pro-inflammatory M1 macrophages after 30 days. The woven tropoelastin:PCL electrospun mesh shows potential as an alternative to non-degradable, synthetic pelvic organ prolapse mesh products.
Collapse
Affiliation(s)
- B Aghaei-Ghareh-Bolagh
- Charles Perkins Centre, University of Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia
| | - S Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Victoria, 3168, Australia
| | - K M Lockley
- Charles Perkins Centre, University of Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia
| | - S M Mithieux
- Charles Perkins Centre, University of Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia
| | - Z Wang
- Charles Perkins Centre, University of Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia
| | - S Emmerson
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Victoria, 3168, Australia
| | - S Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, 3168, Australia
| | - C E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Victoria, 3168, Australia
| | - A S Weiss
- Charles Perkins Centre, University of Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia.,The University of Sydney Nano Institute, University of Sydney, NSW, 2006, Australia
| |
Collapse
|
22
|
Marinaro F, Casado JG, Blázquez R, Brun MV, Marcos R, Santos M, Duque FJ, López E, Álvarez V, Usón A, Sánchez-Margallo FM. Laparoscopy for the Treatment of Congenital Hernia: Use of Surgical Meshes and Mesenchymal Stem Cells in a Clinically Relevant Animal Model. Front Pharmacol 2020; 11:01332. [PMID: 33101010 PMCID: PMC7546355 DOI: 10.3389/fphar.2020.01332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
More than a century has passed since the first surgical mesh for hernia repair was developed, and, to date, this is still the most widely used method despite the great number of complications it poses. The purpose of this study was to combine stem cell therapy and laparoscopy for the treatment of congenital hernia in a swine animal model. Porcine bone marrow-derived mesenchymal stem cells (MSCs) were seeded on polypropylene surgical meshes using a fibrin sealant solution as a vehicle. Meshes with (cell group) or without (control group) MSCs were implanted through laparoscopy in Large White pigs with congenital abdominal hernia after the approximation of hernia borders (implantation day). A successive laparoscopic biopsy of the mesh and its surrounding tissues was performed a week after implantation, and surgical meshes were excised a month after implantation. Ultrasonography was used to measure hernia sizes. Flow cytometry, histological, and gene expression analyses of the biopsy and necropsy samples were performed. The fibrin sealant solution was easy to prepare and preserved the viability of MSCs in the surgical meshes. Ultrasonography demonstrated a significant reduction in hernia size 1 week after implantation in the cell group relative to that on the day of implantation (p < 0.05). Flow cytometry of the mesh-infiltrated cells showed a non-significant increase of M2 macrophages when the cell group was compared with the control group 1 week after implantation. A significant decrease in the gene expression of VEGF and a significant increase in TNF expression were determined in the cell group 1 month after implantation compared with gene expressions in the control group (p < 0.05). Here, we propose an easy and feasible method to combine stem cell therapy and minimally invasive surgical techniques for hernia repair. In this study, stem cell therapy did not show a great immunomodulatory or regenerative effect in overcoming hernia-related complications. However, our clinically relevant animal model with congenital hernia closely resembles the clinical human condition. Further studies should be focused on this valuable animal model to evaluate stem cell therapies in hernia surgery.
Collapse
Affiliation(s)
- Federica Marinaro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Javier G Casado
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Rebeca Blázquez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Mauricio Veloso Brun
- Department of Small Animal Clinics, Center of Rural Science, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Ricardo Marcos
- Laboratory of Histology and Embryology, Department of Microscopy, Abel Salazar Institute of Biomedical Sciences, University of Porto, Porto, Portugal
| | - Marta Santos
- Laboratory of Histology and Embryology, Department of Microscopy, Abel Salazar Institute of Biomedical Sciences, University of Porto, Porto, Portugal
| | - Francisco Javier Duque
- Animal Medicine Department, Faculty of Veterinary Medicine, University of Extremadura, Cáceres, Spain
| | - Esther López
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Verónica Álvarez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Alejandra Usón
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Francisco Miguel Sánchez-Margallo
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Scientific Direction, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| |
Collapse
|
23
|
Lucciola R, Vrljicak P, Gurung S, Filby C, Darzi S, Muter J, Ott S, Brosens JJ, Gargett CE. Impact of Sustained Transforming Growth Factor-β Receptor Inhibition on Chromatin Accessibility and Gene Expression in Cultured Human Endometrial MSC. Front Cell Dev Biol 2020; 8:567610. [PMID: 32984350 PMCID: PMC7490520 DOI: 10.3389/fcell.2020.567610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
Endometrial mesenchymal stem cells (eMSC) drive the extraordinary regenerative capacity of the human endometrium. Clinical application of eMSC for therapeutic purposes is hampered by spontaneous differentiation and cellular senescence upon large-scale expansion in vitro. A83-01, a selective transforming growth factor-β receptor (TGFβ-R) inhibitor, promotes expansion of eMSC in culture by blocking differentiation and senescence, but the underlying mechanisms are incompletely understood. In this study, we combined RNA-seq and ATAC-seq to study the impact of sustained TGFβ-R inhibition on gene expression and chromatin architecture of eMSC. Treatment of primary eMSC with A83-01 for 5 weeks resulted in differential expression of 1,463 genes. Gene ontology analysis showed enrichment of genes implicated in cell growth whereas extracellular matrix genes and genes involved in cell fate commitment were downregulated. ATAC-seq analysis demonstrated that sustained TGFβ-R inhibition results in opening and closure of 3,555 and 2,412 chromatin loci, respectively. Motif analysis revealed marked enrichment of retinoic acid receptor (RAR) binding sites, which was paralleled by the induction of RARB, encoding retinoic acid receptor beta (RARβ). Selective RARβ inhibition attenuated proliferation and clonogenicity of A83-01 treated eMSC. Taken together, our study provides new insights into the gene networks and genome-wide chromatin changes that underpin maintenance of an undifferentiated phenotype of eMSC in prolonged culture.
Collapse
Affiliation(s)
- Raffaella Lucciola
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Pavle Vrljicak
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy’s National Centre for Miscarriage Research, Warwick Medical School, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, United Kingdom
| | - Shanti Gurung
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Caitlin Filby
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Saeedeh Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Joanne Muter
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy’s National Centre for Miscarriage Research, Warwick Medical School, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, United Kingdom
| | - Sascha Ott
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy’s National Centre for Miscarriage Research, Warwick Medical School, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, United Kingdom
| | - Jan J. Brosens
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy’s National Centre for Miscarriage Research, Warwick Medical School, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, United Kingdom
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Bozorgmehr M, Gurung S, Darzi S, Nikoo S, Kazemnejad S, Zarnani AH, Gargett CE. Endometrial and Menstrual Blood Mesenchymal Stem/Stromal Cells: Biological Properties and Clinical Application. Front Cell Dev Biol 2020; 8:497. [PMID: 32742977 PMCID: PMC7364758 DOI: 10.3389/fcell.2020.00497] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
A highly proliferative mesenchymal stem/stromal cell (MSC) population was recently discovered in the dynamic, cyclically regenerating human endometrium as clonogenic stromal cells that fulfilled the International Society for Cellular Therapy (ISCT) criteria. Specific surface markers enriching for clonogenic endometrial MSC (eMSC), CD140b and CD146 co-expression, and the single marker SUSD2, showed their perivascular identity in the endometrium, including the layer which sheds during menstruation. Indeed, cells with MSC properties have been identified in menstrual fluid and commonly termed menstrual blood stem/stromal cells (MenSC). MenSC are generally retrieved from menstrual fluid as plastic adherent cells, similar to bone marrow MSC (bmMSC). While eMSC and MenSC share several biological features with bmMSC, they also show some differences in immunophenotype, proliferation and differentiation capacities. Here we review the phenotype and functions of eMSC and MenSC, with a focus on recent studies. Similar to other MSC, eMSC and MenSC exert immunomodulatory and anti-inflammatory impacts on key cells of the innate and adaptive immune system. These include macrophages, T cells and NK cells, both in vitro and in small and large animal models. These properties suggest eMSC and MenSC as additional sources of MSC for cell therapies in regenerative medicine as well as immune-mediated disorders and inflammatory diseases. Their easy acquisition via an office-based biopsy or collected from menstrual effluent makes eMSC and MenSC attractive sources of MSC for clinical applications. In preparation for clinical translation, a serum-free culture protocol was established for eMSC which includes a small molecule TGFβ receptor inhibitor that prevents spontaneous differentiation, apoptosis, senescence, maintains the clonogenic SUSD2+ population and enhances their potency, suggesting potential for cell-therapies and regenerative medicine. However, standardization of MenSC isolation protocols and culture conditions are major issues requiring further research to maximize their potential for clinical application. Future research will also address crucial safety aspects of eMSC and MenSC to ensure these protocols produce cell products free from tumorigenicity and toxicity. Although a wealth of data on the biological properties of eMSC and MenSC has recently been published, it will be important to address their mechanism of action in preclinical models of human disease.
Collapse
Affiliation(s)
- Mahmood Bozorgmehr
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shanti Gurung
- Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Saeedeh Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Shohreh Nikoo
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Somaieh Kazemnejad
- Nanobitechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Li L, Sima Y, Wang Y, Zhou J, Wang L, Chen Y. The cytotoxicity of advanced glycation end products was attenuated by UCMSCs in human vaginal wall fibroblasts by inhibition of an inflammatory response and activation of PI3K/AKT/PTEN. Biosci Trends 2020; 14:263-270. [PMID: 32493859 DOI: 10.5582/bst.2020.03125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pelvic organ prolapse (POP) occurs when the pelvic organs (bladder, bowel or uterus) herniate into the vagina, causing incontinence, voiding, and bowel and sexual dysfunction, negatively impacting upon a woman's quality of life. Intermediate intermolecular cross-links and advanced glycation cross-links increase in prolapsed tissue. Stem cells are able to participate in tissue repair due to their ability to differentiate into multiple lineages, and thus into various types of connective tissue cells, so they therefore hold great promise for treating pelvic floor dysfunction. The current study found that advanced glycation end products (AGEs) inhibited the viability and proliferation of human vaginal wall fibroblasts (VWFs), were cytotoxic to VWFs, and also induced the apoptosis of VWFs. In contrast, umbilical cord-derived mesenchymal stem cells (UCMSCs) secreted anti-inflammation cytokines to protect against the cytotoxic effects of fibroblasts induced by AGEs and attenuated the cytotoxic effect of AGE on fibroblasts by activation of the PI3K/Akt-PTEN pathway. This study demonstrated that UCMSCs inhibited the cytotoxic effect of AGE in cells from patients with POP by inducing an anti-inflammatory reaction and activating the PI3K/AKT/PTEN signaling pathway. The current results provide important insights into use of stem cells to treat POP.
Collapse
Affiliation(s)
- Lisha Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Yizhen Sima
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yan Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jing Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Yisong Chen
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
26
|
Cheng J, Zhao ZW, Wen JR, Wang L, Huang LW, Yang YL, Zhao FN, Xiao JY, Fang F, Wu J, Miao YL. Status, challenges, and future prospects of stem cell therapy in pelvic floor disorders. World J Clin Cases 2020; 8:1400-1413. [PMID: 32368533 PMCID: PMC7190946 DOI: 10.12998/wjcc.v8.i8.1400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 02/05/2023] Open
Abstract
Pelvic floor disorders (PFDs) represent a group of common and frequently-occurring diseases that seriously affect the life quality of women, generally including stress urinary incontinence and pelvic organ prolapse. Surgery has been used as a treatment for PFD, but almost 30% of patients require subsequent surgery due to a high incidence of postoperative complications and high recurrence rates. Therefore, investigations of new therapeutic strategies are urgently needed. Stem cells possess strong multi-differentiation, self-renewal, immunomodulation, and angiogenesis abilities and they are able to differentiate into various cell types of pelvic floor tissues and thus provide a potential therapeutic approach for PFD. Recently, various studies using different autologous stem cells have achieved promising results by improving the pelvic ligament and muscle regeneration and conferring the tissue elasticity and strength to the damaged tissue in PFD, as well as reduced inflammatory reactions, collagen deposition, and foreign body reaction. However, with relatively high rates of complications such as bladder stone formation and wound infections, further studies are necessary to investigate the role of stem cells as maintainers of tissue homeostasis and modulators in early interventions including therapies using new stem cell sources, exosomes, and tissue-engineering combined with stem cell-based implants, among others. This review describes the types of stem cells and the possible interaction mechanisms in PFD treatment, with the hope of providing more promising stem cell treatment strategies for PFD in the future.
Collapse
Affiliation(s)
- Juan Cheng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, West China Campus, Sichuan University, Chengdu 610041, Sichuan Province, China
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Zhi-Wei Zhao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ji-Rui Wen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ling Wang
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li-Wei Huang
- West China School of Stomatology Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yan-Lin Yang
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Feng-Nian Zhao
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jing-Yue Xiao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Fei Fang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jiang Wu
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ya-Li Miao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, West China Campus, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
27
|
Paul K, Darzi S, McPhee G, Del Borgo MP, Werkmeister JA, Gargett CE, Mukherjee S. 3D bioprinted endometrial stem cells on melt electrospun poly ε-caprolactone mesh for pelvic floor application promote anti-inflammatory responses in mice. Acta Biomater 2019; 97:162-176. [PMID: 31386931 DOI: 10.1016/j.actbio.2019.08.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022]
Abstract
Endometrial mesenchymal stem/stromal cells (eMSCs) exhibit excellent regenerative capacity in the endometrial lining of the uterus following menstruation and high proliferative capacity in vitro. Bioprinting eMSCs onto a mesh could be a potential therapy for Pelvic Organ Prolapse (POP). This study reports an alternative treatment strategy targeting vaginal wall repair using bioprinting of eMSCs encapsulated in a hydrogel and 3D melt electrospun mesh to generate a tissue engineering construct. Following a CAD, 3D printed poly ε-caprolactone (PCL) meshes were fabricated using melt electrospinning (MES) at different temperatures using a GMP clinical grade GESIM Bioscaffolder. Electron and atomic force microscopies revealed that MES meshes fabricated at 100 °C and with a speed 20 mm/s had the largest open pore diameter (47.2 ± 11.4 μm) and the lowest strand thickness (121.4 ± 46 μm) that promoted optimal eMSC attachment. An Aloe Vera-Sodium Alginate (AV-ALG) composite based hydrogel was optimised to a 1:1 mixture (1%AV-1%ALG) and eMSCs, purified from human endometrial biopsies, were then bioprinted in this hydrogel onto the MES printed meshes. Acute in vivo foreign body response assessment in NSG mice revealed that eMSC printed on MES constructs promoted tissue integration, eMSC retention and an anti-inflammatory M2 macrophage phenotype characterised by F4/80+CD206+ colocalization. Our results address an unmet medical need highlighting the potential of 3D bioprinted eMSC-MES meshes as an alternative approach to overcome the current challenges with non-degradable knitted meshes in POP treatment. STATEMENT OF SIGNIFICANCE: This study presents the first report of bioprinting mesenchymal stem cells derived from woman endometrium (eMSCs) to boost Pelvic Organ Prolapse (POP) treatment. It impacts over 50% of elderly women with no optimal treatment at present. The overall study is conducted in three stages as fabricating a melt electrospun (MES) mesh, bioprinting eMSCs into a Ca2+ free Aloe Vera-Alginate (AV-Alg) based hydrogel and in vivo study. Our data showed that AV-ALG hydrogel potentially suppresses the foreign body response and further addition of eMSCs triggered a high influx of anti-inflammatory CD206+ M2 macrophages. Our final construct demonstrates a favourable foreign body response to predict expected tissue integration, therefore, provides a potential for developing an alternative treatment for POP.
Collapse
Affiliation(s)
- Kallyanashis Paul
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Saeedeh Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
| | - Gordon McPhee
- Monash Health Translation Precinct, Cell Therapies and Regenerative Medicine Platform, Australia
| | - Mark P Del Borgo
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Australia
| | - Jerome A Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Shayanti Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia.
| |
Collapse
|
28
|
Emmerson S, Mukherjee S, Melendez-Munoz J, Cousins F, Edwards SL, Karjalainen P, Ng M, Tan KS, Darzi S, Bhakoo K, Rosamilia A, Werkmeister JA, Gargett CE. Composite mesh design for delivery of autologous mesenchymal stem cells influences mesh integration, exposure and biocompatibility in an ovine model of pelvic organ prolapse. Biomaterials 2019; 225:119495. [PMID: 31606680 DOI: 10.1016/j.biomaterials.2019.119495] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/20/2019] [Accepted: 09/11/2019] [Indexed: 12/21/2022]
Abstract
The widespread use of synthetic transvaginal polypropylene mesh for treating Pelvic Organ Prolapse (POP) has been curtailed due to serious adverse effects highlighted in 2008 and 2011 FDA warnings and subsequent legal action. We are developing new synthetic mesh to deliver endometrial mesenchymal stem cells (eMSC) to improve mesh biocompatibility and restore strength to prolapsed vaginal tissue. Here we evaluated knitted polyamide (PA) mesh in an ovine multiparous model using transvaginal implantation and matched for the degree of POP. Polyamide mesh dip-coated in gelatin and stabilised with 0.5% glutaraldehyde (PA/G) were used either alone or seeded with autologous ovine eMSC (eMSC/PA/G), which resulted in substantial mesh folding, poor tissue integration and 42% mesh exposure in the ovine model. In contrast, a two-step insertion protocol, whereby the uncoated PA mesh was inserted transvaginally followed by application of autologous eMSC in a gelatin hydrogel onto the mesh and crosslinked with blue light (PA + eMSC/G), integrated well with little folding and no mesh exposure. The autologous ovine eMSC survived 30 days in vivo but had no effect on mesh integration. The stiff PA/G constructs provoked greater myofibroblast and inflammatory responses in the vaginal wall, disrupted the muscularis layer and reduced elastin fibres compared to PA + eMSC/G constructs. This study identified the superiority of a two-step protocol for implanting synthetic mesh in cellular compatible composite constructs and simpler surgical application, providing additional translational value.
Collapse
Affiliation(s)
- S Emmerson
- Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Wellington Road, Clayton, Melbourne, Australia
| | - S Mukherjee
- Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Wellington Road, Clayton, Melbourne, Australia
| | | | - F Cousins
- Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, Australia
| | - S L Edwards
- CSIRO Manufacturing, Research Way, Clayton, Melbourne, Australia
| | - P Karjalainen
- Monash Health, Centre Road, Moorabbin, Melbourne, Australia
| | - M Ng
- Singapore Bioimaging Consortium, 1 Agency for Science, Technology and Research (A*STAR), 1 Biopolis Way, Singapore
| | - K S Tan
- Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, Australia
| | - S Darzi
- Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Wellington Road, Clayton, Melbourne, Australia
| | - K Bhakoo
- Singapore Bioimaging Consortium, 1 Agency for Science, Technology and Research (A*STAR), 1 Biopolis Way, Singapore
| | - A Rosamilia
- Department of Obstetrics and Gynaecology, Monash University, Wellington Road, Clayton, Melbourne, Australia; Monash Health, Centre Road, Moorabbin, Melbourne, Australia
| | - J A Werkmeister
- Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Wellington Road, Clayton, Melbourne, Australia
| | - C E Gargett
- Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Wellington Road, Clayton, Melbourne, Australia.
| |
Collapse
|
29
|
Abstract
Stress urinary incontinence (SUI) and pelvic organ prolapse (POP) are conditions which result in significant physical, mental and social consequences for women worldwide. The high rates of recurrence reported with primary repair for POP led to the use of synthetic mesh to augment repairs in both primary and secondary cases following failed previous POP repair. The widely reported, unacceptably high rates of complications associated with the use of synthetic, transvaginal mesh in pelvic floor repair have severely limited the treatment options that surgeons can offer. This article summarises the recent advances in pelvic floor repair, such as improved quantification and modelling of the biomechanics of the pelvic floor and the developing technology within the field of tissue engineering for treatment of SUI/POP, including biomaterials and cell-based therapies. Finally, we will discuss the issues surrounding the commercial introduction of synthetic mesh for use within the pelvic floor and what lessons can be learned for the future as well as the current guidance surrounding treatment for SUI/POP.
Collapse
Affiliation(s)
- Emma Mironska
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Red Hill, Sheffield, S37HQ, UK
| | - Christopher Chapple
- Urology Department, Royal Hallamshire Hospital, Glossop Road, Sheffield, S10 2JF, UK
| | - Sheila MacNeil
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Red Hill, Sheffield, S37HQ, UK
| |
Collapse
|
30
|
Marinaro F, Sánchez-Margallo FM, Álvarez V, López E, Tarazona R, Brun MV, Blázquez R, Casado JG. Meshes in a mess: Mesenchymal stem cell-based therapies for soft tissue reinforcement. Acta Biomater 2019; 85:60-74. [PMID: 30500445 DOI: 10.1016/j.actbio.2018.11.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
Abstract
Surgical meshes are frequently used for the treatment of abdominal hernias, pelvic organ prolapse, and stress urinary incontinence. Though these meshes are designed for tissue reinforcement, many complications have been reported. Both differentiated cell- and mesenchymal stem cell-based therapies have become attractive tools to improve their biocompatibility and tissue integration, minimizing adverse inflammatory reactions. However, current studies are highly heterogeneous, making it difficult to establish comparisons between cell types or cell coating methodologies. Moreover, only a few studies have been performed in clinically relevant animal models, leading to contradictory results. Finally, a thorough understanding of the biological mechanisms of mesenchymal stem cells in the context of foreign body reaction is lacking. This review aims to summarize in vitro and in vivo studies involving the use of differentiated and mesenchymal stem cells in combination with surgical meshes. According to preclinical and clinical studies and considering the therapeutic potential of mesenchymal stem cells, it is expected that these cells will become valuable tools in the treatment of pathologies requiring tissue reinforcement. STATEMENT OF SIGNIFICANCE: The implantation of surgical meshes is the standard procedure to reinforce tissue defects such as hernias. However, an adverse inflammatory response secondary to this implantation is frequently observed, leading to a strong discomfort and chronic pain in the patients. In many cases, an additional surgical intervention is needed to remove the mesh. Both differentiated cell- and stem cell-based therapies have become attractive tools to improve biocompatibility and tissue integration, minimizing adverse inflammatory reactions. However, current studies are incredibly heterogeneous and it is difficult to establish a comparison between cell types or cell coating methodologies. This review aims to summarize in vitro and in vivo studies where differentiated and stem cells have been combined with surgical meshes.
Collapse
Affiliation(s)
- F Marinaro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Ctra. N-521, km 41.8, 10071 Cáceres, Spain
| | - F M Sánchez-Margallo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Ctra. N-521, km 41.8, 10071 Cáceres, Spain; CIBER de Enfermedades Cardiovasculares, Avenida Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - V Álvarez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Ctra. N-521, km 41.8, 10071 Cáceres, Spain
| | - E López
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Ctra. N-521, km 41.8, 10071 Cáceres, Spain
| | - R Tarazona
- Immunology Unit, Department of Physiology, University of Extremadura, 10071 Caceres, Spain
| | - M V Brun
- Department of Small Animal Medicine, Federal University of Santa Maria (UFSM), Av. Roraima, 1000 - 7 - Camobi, Santa Maria, 97105-900 Rio Grande do Sul, Brazil
| | - R Blázquez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Ctra. N-521, km 41.8, 10071 Cáceres, Spain; CIBER de Enfermedades Cardiovasculares, Avenida Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain.
| | - J G Casado
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Ctra. N-521, km 41.8, 10071 Cáceres, Spain; CIBER de Enfermedades Cardiovasculares, Avenida Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| |
Collapse
|
31
|
Mukherjee S, Darzi S, Rosamilia A, Kadam V, Truong Y, Werkmeister JA, Gargett CE. Blended Nanostructured Degradable Mesh with Endometrial Mesenchymal Stem Cells Promotes Tissue Integration and Anti-Inflammatory Response in Vivo for Pelvic Floor Application. Biomacromolecules 2018; 20:454-468. [DOI: 10.1021/acs.biomac.8b01661] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shayanti Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
- CSIRO Manufacturing, Clayton 3168, Australia
| | - Saeedeh Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia
| | - Anna Rosamilia
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
- Pelvic Floor Disorders Unit, Monash Health, Clayton 3168, Australia
| | - Vinod Kadam
- CSIRO Manufacturing, Clayton 3168, Australia
| | - Yen Truong
- CSIRO Manufacturing, Clayton 3168, Australia
| | - Jerome A. Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
- CSIRO Manufacturing, Clayton 3168, Australia
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| |
Collapse
|
32
|
Lv H, Hu Y, Cui Z, Jia H. Human menstrual blood: a renewable and sustainable source of stem cells for regenerative medicine. Stem Cell Res Ther 2018; 9:325. [PMID: 30463587 PMCID: PMC6249727 DOI: 10.1186/s13287-018-1067-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Stem cells (SCs) play an important role in autologous and even allogenic applications. Menstrual blood discharge has been identified as a valuable source of SCs which are referred to as menstrual blood-derived stem cells (MenSCs). Compared to SCs from bone marrow and adipose tissues, MenSCs come from body discharge and obtaining them is non-invasive to the body, they are easy to collect, and there are no ethical concerns. There is, hence, a growing interest in the functions of MenSCs and their potential applications in regenerative medicine. This review presents recent progress in research into MenSCs and their potential application. Clinical indications of using MenSCs for various regenerative medicine applications are emphasized, and future research is recommended to accelerate clinical applications of MenSCs.
Collapse
Affiliation(s)
- Haining Lv
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Graduate School of Peking Union Medical College, 321 Zhongshan Road, Nanjing, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Graduate School of Peking Union Medical College, 321 Zhongshan Road, Nanjing, China.
| | - Zhanfeng Cui
- Tissue Engineering Group, Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, ORCRB, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK
| | - Huidong Jia
- Tissue Engineering Group, Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, ORCRB, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK.
| |
Collapse
|
33
|
Darzi S, Deane JA, Nold CA, Edwards SE, Gough DJ, Mukherjee S, Gurung S, Tan KS, Vashi AV, Werkmeister JA, Gargett CE. Endometrial Mesenchymal Stem/Stromal Cells Modulate the Macrophage Response to Implanted Polyamide/Gelatin Composite Mesh in Immunocompromised and Immunocompetent Mice. Sci Rep 2018; 8:6554. [PMID: 29700360 PMCID: PMC5919927 DOI: 10.1038/s41598-018-24919-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/28/2018] [Indexed: 01/09/2023] Open
Abstract
The immunomodulatory properties of human endometrial mesenchymal stem cells (eMSC) have not been well characterised. Initial studies showed that eMSC modulated the chronic inflammatory response to a non-degradable polyamide/gelatin mesh in a xenogeneic rat skin wound repair model, but the mechanism remains unclear. In this study, we investigated the immunomodulatory effect of eMSC on the macrophage response to polyamide/gelatin composite mesh in an abdominal subcutaneous wound repair model in C57BL6 immunocompetent and NSG (NOD-Scid-IL2Rgammanull) immunocompromised mice to determine whether responses differed in the absence of an adaptive immune system and NK cells. mCherry lentivirus-labelled eMSC persisted longer in NSG mice, inducing longer term paracrine effects. Inclusion of eMSC in the mesh reduced inflammatory cytokine (Il-1β, Tnfα) secretion, and in C57BL6 mice reduced CCR7+ M1 macrophages surrounding the mesh on day 3 and increased M2 macrophage marker mRNA (Arg1, Mrc1, Il10) expression at days 3 and 7. In NSG mice, these effects were delayed and only observed at days 7 and 30 in comparison with controls implanted with mesh alone. These results show that the differences in the immune status in the two animals directly affect the survival of xenogeneic eMSC which leads to differences in the short-term and long-term macrophage responses to implanted meshes.
Collapse
Affiliation(s)
- S Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, 3168, Australia
| | - J A Deane
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, 3168, Australia
| | - C A Nold
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria, 3168, Australia
| | - S E Edwards
- CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria, 3169, Australia
| | - D J Gough
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria, 3168, Australia
| | - S Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria, 3168, Australia
| | - S Gurung
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, 3168, Australia
| | - K S Tan
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria, 3168, Australia
| | - A V Vashi
- CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria, 3169, Australia
| | - J A Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, 3168, Australia.,CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria, 3169, Australia
| | - C E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria, 3168, Australia. .,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
34
|
Zuo W, Xie B, Li C, Yan Y, Zhang Y, Liu W, Huang J, Chen D. The Clinical Applications of Endometrial Mesenchymal Stem Cells. Biopreserv Biobank 2018; 16:158-164. [PMID: 29265881 PMCID: PMC5906727 DOI: 10.1089/bio.2017.0057] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Endometrial mesenchymal stem cells (enMSCs) are a class of novel adult stem cells with self-renewal capacity, differentiation potential, low immunogenicity, low tumorigenicity, and other biological characteristics. Since the discovery of enMSCs, they have become a hot research topic. In recent years, research on enMSC isolation and application have made great progress. In this review, we focus on the clinical applications of this cell type. The latest research on the applications of enMSCs in the immune, gynecological, cardiovascular, digestive, nervous systems and metabolic diseases, as well as biobanking of enMSCs will be reviewed.
Collapse
Affiliation(s)
- Wanyun Zuo
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Bingyu Xie
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Chenglong Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuhan Yan
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yangyi Zhang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Liu
- Institute of Human Reproductive and Stem Cell Engineering, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
35
|
Liu Y, Tal R, Pluchino N, Mamillapalli R, Taylor HS. Systemic administration of bone marrow-derived cells leads to better uterine engraftment than use of uterine-derived cells or local injection. J Cell Mol Med 2018; 22:67-76. [PMID: 28782281 PMCID: PMC5742714 DOI: 10.1111/jcmm.13294] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/31/2017] [Indexed: 12/17/2022] Open
Abstract
Stem cells are recruited to the uterus where they differentiate into endometrial cells and have been suggested as potential therapy for uterine injury such as Asherman's syndrome. However, it is unknown whether local intrauterine injection may result in better stem cell engraftment of the uterus compared with systemic administration, and whether uterine-derived cells (UDCs) may confer an advantage over BM-derived cells (BMDCs). Mice underwent local injury to a single uterine horn. Green fluorescent protein (GFP)-expressing BMDCs, UDCs or saline (control) were injected either intravenously or locally (uterine lumen) into wild-type recipients. Two or 3 weeks post-transplant, uterine tissues were collected for fluorescence-activated cell sorting (FACS) and immunohistochemistry/immunofluorescence studies. Mice injected intravenously with BMDCs or UDCs had increased GFP+ cells recruitment to the non-injured or injured uterus compared to those injected locally. No significant differences were noted in GFP+ cell recruitment to the injured versus non-injured horn. In addition, systemic injection of BMDCs led to greater recruitment of GFP+ cells at 2 weeks and 3 weeks compared with UDCs. Immunohistochemical staining demonstrated that GFP+ cells were found in stroma but not in epithelium or blood vessels. Immunofluorescence analysis revealed that GFP+ cells were mostly CD45-negative, and negative for CD31 and cytokeratin, confirming their stromal identity. In conclusion, the systemic route of administration results in better recruitment of BMDCs or UDCs to the injured uterus than local injection. In addition, BMDCs recruitment to the uterus is greater than UDCs. These findings inform the development of stem cell-based therapies targeting the uterus.
Collapse
Affiliation(s)
- Ying Liu
- Department of Obstetrics, Gynecology & Reproductive SciencesYale University School of MedicineNew HavenCTUSA
- Present address:
Department of Reproductive MedicineBeijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijingChina
| | - Reshef Tal
- Department of Obstetrics, Gynecology & Reproductive SciencesYale University School of MedicineNew HavenCTUSA
| | - Nicola Pluchino
- Department of Obstetrics, Gynecology & Reproductive SciencesYale University School of MedicineNew HavenCTUSA
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology & Reproductive SciencesYale University School of MedicineNew HavenCTUSA
| | - Hugh S. Taylor
- Department of Obstetrics, Gynecology & Reproductive SciencesYale University School of MedicineNew HavenCTUSA
| |
Collapse
|
36
|
Downregulation of endometrial mesenchymal marker SUSD2 causes cell senescence and cell death in endometrial carcinoma cells. PLoS One 2017; 12:e0183681. [PMID: 28841682 PMCID: PMC5571916 DOI: 10.1371/journal.pone.0183681] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022] Open
Abstract
The cause of death among the majority of endometrial cancer patients involves migration of cancer cells within the peritoneal cavity and subsequent implantation of cancer spheroids into neighbouring organs. It is, thereby, important to identify factors that mediate metastasis. Cell adhesion and migration are modified by the mesenchymal stem cell (MSC) marker Sushi domain containing 2 (SUSD2), a type I transmembrane protein that participates in the orchestration of cell adhesion and migration through interaction with its partner Galactosidase-binding soluble-1 (LGALS1). MSCs have emerged as attractive targets in cancer therapy. Human endometrial adenocarcinoma (Ishikawa) cells were treated with TGFβ (10 ng/ml) for 72h. SUSD2, LGALS1 and MKI67 transcript levels were quantified using qRT-PCR. The proportion of SUSD2 positive (SUSD2+) cells and SMAD2/3 abundance were quantified by FACS and Western blotting, respectively. Senescent cells were identified with β-galactosidase staining; cell cycle and cell death were quantified using Propidium Iodide staining. Treatment of endometrial cancer cells (Ishikawa cells) with TGFβ (10 ng/ml) significantly decreased SUSD2 transcript levels and the proportion of SUSD2 positive cells. Silencing of SUSD2 using siRNA resulted in senescence and cell death of Ishikawa cells via activation of SMAD2/3. These findings suggest that SUSD2 counteracts senescence and cell death and is thus a potential chemotherapeutic target in human endometrial cancer.
Collapse
|
37
|
Vashaghian M, Zaat SJ, Smit TH, Roovers JP. Biomimetic implants for pelvic floor repair. Neurourol Urodyn 2017; 37:566-580. [PMID: 28799675 DOI: 10.1002/nau.23367] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/15/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Polypropylene implants are used for the reconstructive surgery of urogynaecological disorders like pelvic organ prolapse, but severe complications associated with their use have been reported. There is evidence that surface properties and a difference in mechanical stiffness between the implant and the host tissue contribute to these adverse events. Electrospinning is an innovative engineering alternative that provides a biomimetic microstructure for implants, resulting in a different mechano-biological performance. AIM The main objective of this review is to inform about the potential of electrospun matrices as an alternative modality for pelvic floor repair. METHODS Publications with the following studies of electrospun matrices were reviewed: (i) the technique; (ii) in vitro use for soft tissue engineering; (iii) in vivo use for reconstruction of soft tissues in animals; and (iv) clinical use in humans. RESULTS Electrospun matrices provide a synthetic mimic of natural extracellular matrix (ECM), favoring cellular attachment, proliferation and matrix deposition, through which a proper, low-inflammatory tissue-implant interaction can be established. Electrospun sheets can also be created with sufficient mechanical strength and stiffness for usage in prolapse surgery. CONCLUSION Electrospun matrices mimic the structural topography of the extracellular matrix and can be functionalized for better biological performance. As such, they have great potential for the next generation of urogynecological implants. However, their long-term safety and efficacy must still be established in vivo.
Collapse
Affiliation(s)
- Mahshid Vashaghian
- Department of Obstetrics & Gynaecology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sebastianus J Zaat
- Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Theodoor H Smit
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan-Paul Roovers
- Department of Obstetrics & Gynaecology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Characteristics of Human Endometrium-Derived Mesenchymal Stem Cells and Their Tropism to Endometriosis. Stem Cells Int 2017; 2017:4794827. [PMID: 28761446 PMCID: PMC5518492 DOI: 10.1155/2017/4794827] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/28/2017] [Accepted: 05/21/2017] [Indexed: 01/21/2023] Open
Abstract
Human endometrial tissue has become an attractive source of mesenchymal stem cells (MSCs) for cell-based therapies because these MSCs can be easily harvested and have tumour tropism as well as reduced immunogenic and inflammatory properties. Our study aimed to obtain and characterise human endometrial mesenchymal stem cells (EMSCs) and assess their endometriosis tropism. EMSCs were successfully isolated from the endometrium of women undergoing laparoscopy for idiopathic infertility. The EMSCs presented a fibroblast-like morphology during culture. Flow cytometry analyses showed that the cells were positive for the specific stem cell markers CD73, CD90, CD105, CD166, and HLA-ABC (major histocompatibility complex class I (MHC I)) but negative for CD14, CD34, CD45, and HLA-DR (MHC II). Reverse transcription polymerase chain reaction results showed that the EMSCs expressed the stem cell marker OCT4. The EMSCs could differentiate into osteocytes, adipocytes, and chondrocytes under certain conditions. The EMSCs had a high tropism to endometriosis without tumourigenicity. This study enhances the possibility of using EMSCs as drug carriers in human cell-based therapies. Meanwhile, future research could also focus on developing targeted therapies for endometriosis.
Collapse
|
39
|
Transplanted adipose-derived stem cells can be short-lived yet accelerate healing of acid-burn skin wounds: a multimodal imaging study. Sci Rep 2017; 7:4644. [PMID: 28680144 PMCID: PMC5498606 DOI: 10.1038/s41598-017-04484-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 05/16/2017] [Indexed: 01/27/2023] Open
Abstract
The incidence of accidental and intentional acid skin burns is rising. Current treatment strategies are mostly inadequate, leaving victims disfigured and without treatment options. Here, we have shown that transplantation of adipose-derived stem cells (ASCs) accelerates the process of acid burn wound-healing. Pre-conditioning of ASCs using ascorbic acid (AA) or hypoxic conditions provided additional benefit. While the wounds were ultimately healed in all mice, histological analysis revealed that, in non-transplanted animals, the number of hair follicles was reduced. Bioluminescent imaging (BLI) of transplanted ASCs revealed a gradual loss of transplanted cells, with a similar rate of cell death for each treatment group. The signal of fluorinated cells detected by a clinically applicable 19F MRI method correlated with the BLI findings, which points to 19F MRI as a reliable method with which to track ASCs after transplantation to skin wounds. No difference in therapeutic effect or cell survival was observed between labeled and non-labeled cells. We conclude that, despite being short-lived, transplanted ASCs can accelerate wound-healing and reduce hair loss in acid-burn skin injury. The fluorine nanoemulsion is a clinically applicable cell label capable of reporting on the survival of transplanted cells.
Collapse
|
40
|
Adult Stem Cells in the Pathogenesis and Treatment of Endometriosis. JOURNAL OF ENDOMETRIOSIS AND PELVIC PAIN DISORDERS 2017. [DOI: 10.5301/jeppd.5000310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The human endometrium is a dynamic tissue that undergoes approximately 400 cyclical episodes of proliferation, differentiation, shedding, and regeneration in a woman's reproductive lifespan. The regenerative capacity of human endometrium is likely mediated by adult stem cells. At the cellular level, endometrial mesenchymal stem/stromal cells, located in both the functionalis and basalis layers, support regeneration of the stromal vascular compartment and epithelial progenitor cells, postulated to reside in the basalis epithelium, likely regenerate the glands. Bone marrow adult stem cells, including endothelial progenitor cells, may also participate. Endometriosis can be considered an endometrial proliferative disorder due to dysregulation of the cellular and molecular regenerative processes. Endometriosis is primarily thought to occur via retrograde menstruation of endometrial debris. It is postulated that endometrial stem/progenitor cells, which have been identified in menstrual blood, are shed into the peritoneal cavity where they adhere to pelvic organs and initiate endometriotic lesions. The homing of bone-marrow-derived adult stem cells to endometriotic lesions is thought to drive progression of the disease. New drug therapies are urgently required for the treatment of endometriosis due to frequent disease recurrence with current surgical or medical treatments. Medications directly targeting endometrial stem/progenitor cells during menstruation, or following surgery, or targeting bone marrow cell trafficking, are potential targets for future therapies to manage disease initiation and progression. In this review, we will summarize the current literature on adult stem cell contributions to the development of endometriosis and will then examine the current potential therapies that may target endometrial stem/progenitor cells.
Collapse
|
41
|
Abstract
Adult stem cells have a major role in endometrial physiology, remodeling, and repair, but they also have a critical role in the development and progression of endometriosis. Bone marrow-derived stem cells (BMDSCs) engraft eutopic endometrium and endometriotic lesions, showing stromal and epithelial fate. Nevertheless, circulating BMDSCs are in limited supply, and the presence of endometriosis depletes stem cells from the blood circulation, preventing their homing in the uterus. Furthermore, stem cells migrate from endometriotic lesion into the uterus, leading to a dysfunctional endometrium. Stem cell trafficking is a central feature of endometriosis. Understanding molecular mechanisms regulating cell mobility and engraftment in endometriosis may reveal new targets for treatment.
Collapse
Affiliation(s)
- Nicola Pluchino
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
42
|
Darzi S, Werkmeister JA, Deane JA, Gargett CE. Identification and Characterization of Human Endometrial Mesenchymal Stem/Stromal Cells and Their Potential for Cellular Therapy. Stem Cells Transl Med 2016; 5:1127-32. [PMID: 27245365 DOI: 10.5966/sctm.2015-0190] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 03/23/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED SummaryHuman endometrium is a highly regenerative tissue, undergoing more than 400 cycles of proliferation, differentiation, and shedding during a woman's reproductive life. Adult stem cells, including mesenchymal stem/stromal cells (MSCs), are likely responsible for the immense cellular turnover in human endometrium. The unique properties of MSCs, including high proliferative ability, self-renewal, differentiation to mesodermal lineages, secretion of angiogenic factors, and many other growth-promoting factors make them useful candidates for cellular therapy and tissue engineering. In this review, we summarize the identification and characterization of newly discovered MSCs from the human endometrium: their properties, the surface markers used for their prospective isolation, their perivascular location in the endometrium, and their potential application in cellular therapies. SIGNIFICANCE The endometrium, or the lining of uterus, has recently been identified as a new and accessible source of mesenchymal stem cells, which can be obtained without anesthesia. Endometrial mesenchymal stem cells have comparable properties to bone marrow and adipose tissue mesenchymal stem cells. Endometrial mesenchymal stem cells are purified with known and novel perivascular surface markers and are currently under investigation for their potential use in cellular therapy for several clinical conditions with significant burden of disease.
Collapse
Affiliation(s)
- Saeedeh Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Jerome A Werkmeister
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria, Australia
| | - James A Deane
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
43
|
Emmerson SJ, Gargett CE. Endometrial mesenchymal stem cells as a cell based therapy for pelvic organ prolapse. World J Stem Cells 2016; 8:202-215. [PMID: 27247705 PMCID: PMC4877564 DOI: 10.4252/wjsc.v8.i5.202] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/23/2015] [Accepted: 02/16/2016] [Indexed: 02/07/2023] Open
Abstract
Pelvic organ prolapse (POP) occurs when the pelvic organs (bladder, bowel or uterus) herniate into the vagina, causing incontinence, voiding, bowel and sexual dysfunction, negatively impacting upon a woman’s quality of life. POP affects 25% of all women and results from childbirth injury. For 19% of all women, surgical reconstructive surgery is required for treatment, often augmented with surgical mesh. The surgical treatment fails in up to 30% of cases or results in adverse effects, such as pain and mesh erosion into the bladder, bowel or vagina. Due to these complications the Food and Drug Administration cautioned against the use of vaginal mesh and several major brands have been recently been withdrawn from market. In this review we will discuss new cell-based approaches being developed for the treatment of POP. Several cell types have been investigated in animal models, including a new source of mesenchymal stem/stromal cells (MSC) derived from human endometrium. The unique characteristics of endometrial MSC, methods for their isolation and purification and steps towards their development for good manufacturing practice production will be described. Animal models that could be used to examine the potential for this approach will also be discussed as will a rodent model showing promise in developing an endometrial MSC-based therapy for POP. The development of a preclinical large animal model for assessing tissue engineering constructs for treating POP will also be mentioned.
Collapse
|
44
|
Chen X, Kong X, Liu D, Gao P, Zhang Y, Li P, Liu M. In vitro differentiation of endometrial regenerative cells into smooth muscle cells: Α potential approach for the management of pelvic organ prolapse. Int J Mol Med 2016; 38:95-104. [PMID: 27221348 PMCID: PMC4899030 DOI: 10.3892/ijmm.2016.2593] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 05/05/2016] [Indexed: 12/21/2022] Open
Abstract
Pelvic organ prolapse (POP), is a common condition in parous women. Synthetic mesh was once considered to be the standard of care; however, the use of synthetic mesh is limited by severe complications, thus creating a need for novel approaches. The application of cell-based therapy with stem cells may be an ideal alternative, and specifically for vaginal prolapse. Abnormalities in vaginal smooth muscle (SM) play a role in the pathogenesis of POP, indicating that smooth muscle cells (SMCs) may be a potential therapeutic target. Endometrial regenerative cells (ERCs) are an easily accessible, readily available source of adult stem cells. In the present study, ERCs were obtained from human menstrual blood, and phase contrast microscopy and flow cytometry were performed to characterize the morphology and phenotype of the ERCs. SMC differentiation was induced by a transforming growth factor β1-based medium, and the induction conditions were optimized. We defined the SMC characteristics of the induced cells with regard to morphology and marker expression using transmission electron microscopy, western blot analysis, immunocytofluorescence and RT-PCR. Examining the expression of the components of the Smad pathway and phosphorylated Smad2 and Smad3 by western blot analysis, RT-PCR and quantitative PCR demonstrated that the 'TGFBR2/ALK5/Smad2 and Smad3' pathway is involved, and both Smad2 and Smad3 participated in SMC differentiation. Taken together, these findings indicate that ERCs may be a promising cell source for cellular therapy aimed at modulating SM function in the vagina wall and pelvic floor in order to treat POP.
Collapse
Affiliation(s)
- Xiuhui Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xianchao Kong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Dongzhe Liu
- Department of Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Peng Gao
- Department of Surgery, Harbin Children's Hospital, Harbin, Heilongjiang 150001, P.R. China
| | - Yanhua Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Peiling Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Meimei Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
45
|
Gargett CE, Schwab KE, Deane JA. Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update 2015; 22:137-63. [PMID: 26552890 PMCID: PMC4755439 DOI: 10.1093/humupd/dmv051] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The existence of stem/progenitor cells in the endometrium was postulated many years ago, but the first functional evidence was only published in 2004. The identification of rare epithelial and stromal populations of clonogenic cells in human endometrium has opened an active area of research on endometrial stem/progenitor cells in the subsequent 10 years. METHODS The published literature was searched using the PubMed database with the search terms ‘endometrial stem cells and menstrual blood stem cells' until December 2014. RESULTS Endometrial epithelial stem/progenitor cells have been identified as clonogenic cells in human and as label-retaining or CD44+ cells in mouse endometrium, but their characterization has been modest. In contrast, endometrial mesenchymal stem/stromal cells (MSCs) have been well characterized and show similar properties to bone marrow MSCs. Specific markers for their enrichment have been identified, CD146+PDGFRβ+ (platelet-derived growth factor receptor beta) and SUSD2+ (sushi domain containing-2), which detected their perivascular location and likely pericyte identity in endometrial basalis and functionalis vessels. Transcriptomics and secretomics of SUSD2+ cells confirm their perivascular phenotype. Stromal fibroblasts cultured from endometrial tissue or menstrual blood also have some MSC characteristics and demonstrate broad multilineage differentiation potential for mesodermal, endodermal and ectodermal lineages, indicating their plasticity. Side population (SP) cells are a mixed population, although predominantly vascular cells, which exhibit adult stem cell properties, including tissue reconstitution. There is some evidence that bone marrow cells contribute a small population of endometrial epithelial and stromal cells. The discovery of specific markers for endometrial stem/progenitor cells has enabled the examination of their role in endometrial proliferative disorders, including endometriosis, adenomyosis and Asherman's syndrome. Endometrial MSCs (eMSCs) and menstrual blood stromal fibroblasts are an attractive source of MSCs for regenerative medicine because of their relative ease of acquisition with minimal morbidity. Their homologous and non-homologous use as autologous and allogeneic cells for therapeutic purposes is currently being assessed in preclinical animal models of pelvic organ prolapse and phase I/II clinical trials for cardiac failure. eMSCs and stromal fibroblasts also exhibit non-stem cell-associated immunomodulatory and anti-inflammatory properties, further emphasizing their desirable properties for cell-based therapies. CONCLUSIONS Much has been learnt about endometrial stem/progenitor cells in the 10 years since their discovery, although several unresolved issues remain. These include rationalizing the terminology and diagnostic characteristics used for distinguishing perivascular stem/progenitor cells from stromal fibroblasts, which also have considerable differentiation potential. The hierarchical relationship between clonogenic epithelial progenitor cells, endometrial and decidual SP cells, CD146+PDGFR-β+ and SUSD2+ cells and menstrual blood stromal fibroblasts still needs to be resolved. Developing more genetic animal models for investigating the role of endometrial stem/progenitor cells in endometrial disorders is required, as well as elucidating which bone marrow cells contribute to endometrial tissue. Deep sequencing and epigenetic profiling of enriched populations of endometrial stem/progenitor cells and their differentiated progeny at the population and single-cell level will shed new light on the regulation and function of endometrial stem/progenitor cells.
Collapse
Affiliation(s)
- Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Victoria, Australia Department of Obstetrics and Gynaecology, Monash University, Monash Medical Centre, 246 Clayton Road, Clayton 3168, Victoria, Australia
| | - Kjiana E Schwab
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Victoria, Australia
| | - James A Deane
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Victoria, Australia Department of Obstetrics and Gynaecology, Monash University, Monash Medical Centre, 246 Clayton Road, Clayton 3168, Victoria, Australia
| |
Collapse
|
46
|
Inhibition of Transforming Growth Factor-β Receptor signaling promotes culture expansion of undifferentiated human Endometrial Mesenchymal Stem/stromal Cells. Sci Rep 2015; 5:15042. [PMID: 26461813 PMCID: PMC4602195 DOI: 10.1038/srep15042] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/14/2015] [Indexed: 02/06/2023] Open
Abstract
Human endometrial MSC (eMSC) are a novel source of MSC easily harvested from the highly regenerative uterine lining. We have developed protocols for eMSC isolation from single cell suspensions using magnetic bead-sorting using a perivascular marker antibody to SUSD2 and culture expansion in serum free medium (SFM). Similar to other MSC, eMSC spontaneously differentiate into fibroblasts during culture expansion decreasing their purity and efficacy. The aim of this study was to determine if A83-01, a TGF-β receptor inhibitor prevents eMSC differentiation in culture. SUSD2+ eMSC were cultured in SFM with bFGF/EGF in 5% O2/5% CO2. At passage 6, eMSC were incubated with or without A83-01 for 7 days, then analysed for MSC properties. A83-01 dose dependently promoted SUSD2+ eMSC proliferation and blocked apoptosis via the SMAD 2/3 pathway. Fewer A83-01 treated cells were autofluorescent or stained with β-galactosidase, indicating reduced senescence. A83-01-treated cells had higher cloning efficiency, differentiated into mesodermal lineages and expressed MSC phenotypic markers. These data suggest that A83-01 maintains SUSD2+ eMSC stemness, promoting proliferation by blocking senescence and apoptosis in late passage cultures through binding to TGF-β receptors. Small molecules such as A83-01 may enable the expansion of undifferentiated MSC for use in tissue engineering and cell-based therapies.
Collapse
|
47
|
Mutlu L, Hufnagel D, Taylor HS. The endometrium as a source of mesenchymal stem cells for regenerative medicine. Biol Reprod 2015; 92:138. [PMID: 25904012 PMCID: PMC4652610 DOI: 10.1095/biolreprod.114.126771] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/11/2014] [Accepted: 04/09/2015] [Indexed: 12/21/2022] Open
Abstract
Stem cell therapies have opened new frontiers in medicine with the possibility of regenerating lost or damaged cells. Embryonic stem cells, induced pluripotent stem cells, hematopoietic stem cells, and mesenchymal stem cells have been used to derive mature cell types for tissue regeneration and repair. However, the endometrium has emerged as an attractive, novel source of adult stem cells that are easily accessed and demonstrate remarkable differentiation capacity. In this review, we summarize our current understanding of endometrial stem cells and their therapeutic potential in regenerative medicine.
Collapse
Affiliation(s)
- Levent Mutlu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Demetra Hufnagel
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
48
|
Marfia G, Navone SE, Di Vito C, Ughi N, Tabano S, Miozzo M, Tremolada C, Bolla G, Crotti C, Ingegnoli F, Rampini P, Riboni L, Gualtierotti R, Campanella R. Mesenchymal stem cells: potential for therapy and treatment of chronic non-healing skin wounds. Organogenesis 2015; 11:183-206. [PMID: 26652928 PMCID: PMC4879897 DOI: 10.1080/15476278.2015.1126018] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 12/16/2022] Open
Abstract
Wound healing is a complex physiological process including overlapping phases (hemostatic/inflammatory, proliferating and remodeling phases). Every alteration in this mechanism might lead to pathological conditions of different medical relevance. Treatments for chronic non-healing wounds are expensive because reiterative treatments are needed. Regenerative medicine and in particular mesenchymal stem cells approach is emerging as new potential clinical application in wound healing. In the past decades, advance in the understanding of molecular mechanisms underlying wound healing process has led to extensive topical administration of growth factors as part of wound care. Currently, no definitive treatment is available and the research on optimal wound care depends upon the efficacy and cost-benefit of emerging therapies. Here we provide an overview on the novel approaches through stem cell therapy to improve cutaneous wound healing, with a focus on diabetic wounds and Systemic Sclerosis-associated ulcers, which are particularly challenging. Current and future treatment approaches are discussed with an emphasis on recent advances.
Collapse
Affiliation(s)
- Giovanni Marfia
- Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico; University of Milan; Neurosurgery Unit; Laboratory of Experimental Neurosurgery and Cell Therapy; Milan, Italy
| | - Stefania Elena Navone
- Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico; University of Milan; Neurosurgery Unit; Laboratory of Experimental Neurosurgery and Cell Therapy; Milan, Italy
| | - Clara Di Vito
- University of Milan; Department of Medical Biotechnology and Translational Medicine; LITA-Segrate; Milan, Italy
| | - Nicola Ughi
- Division of Rheumatology; Istituto Gaetano Pini; Milan Italy; Department of Clinical Science & Community Health; University of Milan; Milan, Italy
| | - Silvia Tabano
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico; University of Milan; Division of Pathology; Milan, Italy
| | - Monica Miozzo
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico; University of Milan; Division of Pathology; Milan, Italy
| | | | - Gianni Bolla
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico; University of Milan; Milan, Italy
| | - Chiara Crotti
- Division of Rheumatology; Istituto Gaetano Pini; Milan Italy; Department of Clinical Science & Community Health; University of Milan; Milan, Italy
| | - Francesca Ingegnoli
- Division of Rheumatology; Istituto Gaetano Pini; Milan Italy; Department of Clinical Science & Community Health; University of Milan; Milan, Italy
| | - Paolo Rampini
- Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico; University of Milan; Neurosurgery Unit; Laboratory of Experimental Neurosurgery and Cell Therapy; Milan, Italy
| | - Laura Riboni
- University of Milan; Department of Medical Biotechnology and Translational Medicine; LITA-Segrate; Milan, Italy
| | - Roberta Gualtierotti
- Division of Rheumatology; Istituto Gaetano Pini; Milan Italy; Department of Clinical Science & Community Health; University of Milan; Milan, Italy
| | - Rolando Campanella
- Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico; University of Milan; Neurosurgery Unit; Laboratory of Experimental Neurosurgery and Cell Therapy; Milan, Italy
| |
Collapse
|