1
|
He H, Zhong M, Ni P, Yuan T, Liang J, Fan Y, Zhang X. Meta-analysis of animal experiments on osteogenic effects of trace element doped calcium phosphate ceramic/PLGA composites. BIOMED ENG-BIOMED TE 2025:bmt-2024-0593. [PMID: 40243181 DOI: 10.1515/bmt-2024-0593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
OBJECTIVES Investigate the impact of the components in element-doped calcium phosphate ceramic/PLGA composites on bone repair outcomes in animal experiments. METHODS Computer search of CNKI, Wanfang, Pub Med, Web of science, and EMbase databases to collect related randomized controlled animal experimental studies. Using the SYRCLE Animal Experimental Bias Risk Assessment form to evaluate research quality. The outcome measures were statistically analyzed using the Rev Man 5.4 software. RESULTS Included 11 randomized controlled animal studies. Meta-analysis showed that: (1) Element doping can promote the proliferation of osteoblasts in vitro. (2) Element doping can increase the activity of ALP in cells. (3) Element doping can increase bone volume fraction. (4) Element doping can increase trabecular number. CONCLUSIONS Trace element doping has been found to enhance the osteogenic effect of the composite material. The type of calcium phosphate ceramics may be a significant source of heterogeneity that influences the effectiveness of bone repair in vivo.
Collapse
Affiliation(s)
- Hongwei He
- National Engineering Research Center for Biomaterials, 12530 Sichuan University , Chengdu, Sichuan, China
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Meng Zhong
- National Engineering Research Center for Biomaterials, 12530 Sichuan University , Chengdu, Sichuan, China
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Panxianzhi Ni
- National Engineering Research Center for Biomaterials, 12530 Sichuan University , Chengdu, Sichuan, China
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Tun Yuan
- National Engineering Research Center for Biomaterials, 12530 Sichuan University , Chengdu, Sichuan, China
- College of Biomedical Engineering, Sichuan University, Chengdu, China
- Sichuan Testing Centre for Biomaterials and Medical Devices, Chengdu, Sichuan, China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, 12530 Sichuan University , Chengdu, Sichuan, China
- College of Biomedical Engineering, Sichuan University, Chengdu, China
- Sichuan Testing Centre for Biomaterials and Medical Devices, Chengdu, Sichuan, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, 12530 Sichuan University , Chengdu, Sichuan, China
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, 12530 Sichuan University , Chengdu, Sichuan, China
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Zhang D, Kukkar D, Bhatt P, Kim KH, Kaur K, Wang J. Novel nanomaterials-based combating strategies against drug-resistant bacteria. Colloids Surf B Biointerfaces 2025; 248:114478. [PMID: 39778220 DOI: 10.1016/j.colsurfb.2024.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Numerous types of contemporary antibiotic treatment regimens have become ineffective with the increasing incidence of drug tolerance. As a result, it is pertinent to seek novel and innovative solutions such as antibacterial nanomaterials (NMs) for the prohibition and treatment of hazardous microbial infections. Unlike traditional antibiotics (e.g., penicillin and tetracycline), the unique physicochemical characteristics (e.g., size dependency) of NMs endow them with bacteriostatic and bactericidal potential. However, it is yet difficult to mechanistically predict or decipher the networks of molecular interaction (e.g., between NMs and the biological systems) and the subsequent immune responses. In light of such research gap, this review outlines various mechanisms accountable for the inception of drug tolerance in bacteria. It also delineates the primary factors governing the NMs-induced molecular mechanisms against microbes, specifically drug-resistant bacteria along with the various NM-based mechanisms of antibacterial activity. The review also explores future directions and prospects for NMs in combating drug-resistant bacteria, while addressing challenges to their commercial viability within the healthcare industry.
Collapse
Affiliation(s)
- Daohong Zhang
- Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, College of Food Engineering, Ludong University, Yantai, Shandong 264025, China
| | - Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, India; University Center for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India.
| | - Poornima Bhatt
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, India; University Center for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| | - Kamalpreet Kaur
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, Punjab 140406, India
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Rosa MEP, Rebouças LM, Marques SPD, Silva LMR, Cunha FET, Costa PMS, de Assis DA, Silveira KB, Muniz CR, Trevisan MTS, Pessoa C, Ricardo NMPS. Sodium hyaluronate microcapsules to promote antitumor selectivity of anacardic acid. Int J Biol Macromol 2025; 296:139616. [PMID: 39800027 DOI: 10.1016/j.ijbiomac.2025.139616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/13/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Anacardic acid (AA) is a phenolic lipid extracted from cashew nutshell liquid that has antitumor activity. Given the high hydrophobicity of this compound and aiming to create efficient vehicle for its administration in aqueous systems, the objective of the present work was to develop a microcapsule (MCAA) by spray dryer technique, based on the polysaccharide sodium hyaluronate (SH), containing AA as its core, encapsulated from nanoemulsion. The Encapsulation Efficiency of MCAA presented a value equal to 95.06 ± 1.22 %. In vitro release kinetic study showed a pH-responsive release, with greater release of AA from MCAA at pH 6.8 and 7.4 and almost none at pH 4.5, which prevents its delivery to the cellular lysosome. Tests on zebrafish did not show acute toxicity within 96 h or change in locomotor activity. The IC50 determined in the MTT assay for the formulation presented values of 30.1 and 29.8 μg mL-1 in HCT-116 and HL-60 cells, respectively, and did not present a detectable IC50 in the concentration range tested for non-tumoral L-929 cells. Thus, encapsulation with sodium hyaluronate polysaccharide allowed a reduced toxicity in these cells compared to non-encapsulated AA (IC50 = 0.70 μg mL-1, in L-929), maintaining the inhibition of cancer cell growth. These results suggest adverse effects reduction, making MCAA promising for future applications in antineoplastic therapies.
Collapse
Affiliation(s)
- Marlon E P Rosa
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Campus of Pici, 60440-900 Fortaleza, CE, Brazil.
| | - Louhana M Rebouças
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Campus of Pici, 60440-900 Fortaleza, CE, Brazil; Federal Institute of Education, Science and Technology of Ceará, 60410-426 Fortaleza, CE, Brazil
| | - Samuel P D Marques
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Campus of Pici, 60440-900 Fortaleza, CE, Brazil.
| | - Larissa M R Silva
- Department of Food Engineering, Federal University of Ceará, 60356-000 Fortaleza, CE, Brazil.
| | - Fernando E T Cunha
- Department of Food Engineering, Federal University of Ceará, 60356-000 Fortaleza, CE, Brazil.
| | - Pedro M S Costa
- Laboratory of Experimental Oncology, Center for Research and Drug Development, Federal University of Ceará, 60430-275 Fortaleza, CE, Brazil.
| | - David A de Assis
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Campus of Pici, 60440-900 Fortaleza, CE, Brazil.
| | - Kamilla B Silveira
- Federal Institute of Education, Science and Technology of Sertão Pernambucano, 56316-686 Petrolina, PE, Brazil
| | - Celli R Muniz
- Tropical Agroindustry Embrapa, 60511-110 Fortaleza, CE, Brazil.
| | - Maria T S Trevisan
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Campus of Pici, 60440-900 Fortaleza, CE, Brazil.
| | - Cláudia Pessoa
- Laboratory of Experimental Oncology, Center for Research and Drug Development, Federal University of Ceará, 60430-275 Fortaleza, CE, Brazil.
| | - Nágila M P S Ricardo
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Campus of Pici, 60440-900 Fortaleza, CE, Brazil.
| |
Collapse
|
4
|
Wetteland C, Xu C, Wang SM, Zhang C, Ang EJ, Azevedo CG, Liu HH. Engineering the Ratios of Nanoparticles Dispersed in Triphasic Nanocomposites for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3852-3865. [PMID: 39761195 PMCID: PMC11744498 DOI: 10.1021/acsami.4c14712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/18/2025]
Abstract
Polymer/ceramic nanocomposites integrated the advantages of both polymers and ceramics for a wide range of biomedical applications, such as bone tissue repair. Here, we reported triphasic poly(lactic-co-glycolic acid) (PLGA, LA/GA = 90:10) nanocomposites with improved dispersion of hydroxyapatite (HA) and magnesium oxide (MgO) nanoparticles using a process that integrated the benefits of ultrasonic energy and dual asymmetric centrifugal mixing. We characterized the microstructure and composition of the nanocomposites and evaluated the effects of the HA/MgO ratios on degradation behavior and cell-material interactions. The PLGA/HA/MgO nanocomposites were composed of 70 wt % PLGA and 30 wt % nanoparticles made of 20:10, 25:5, and 29:1% by weight of HA and MgO, respectively. The results showed that the nanocomposites had a homogeneous nanoparticle distribution and as-designed elemental composition. The cell study indicated that reducing the MgO content in the triphasic nanocomposite increased the BMSC adhesion density under both direct and indirect contact conditions. Specifically, after the 24 and 48 h of culture, the PLGA/HA/MgO group with a weight ratio of 70:29:1 (P70/H29/M1) exhibited the greatest average cell adhesion density under direct and indirect contact conditions among triphasic nanocomposites. During a 28-day degradation study, the mass loss of triphasic nanocomposites was 18 ± 2% for P70/H20/M10, 9 ± 2% for P70/H25/M5, and 7 ± 1% for P70/H29/M1, demonstrating that MgO nanoparticles accelerated the degradation of the nanocomposites. Postculture analysis showed that the pH values and Mg2+ ion concentrations in the media increased with increasing MgO content in the nanocomposites. Triphasic nanocomposites provided different degradation profiles that can be tuned for different biomedical applications, especially when a shorter or longer period of degradation would be desirable for optimal bone tissue regeneration. The concentration and ratio of nanoparticles should be adjusted and optimized when other polymers with different degradation modes and rates are used in the nanocomposites.
Collapse
Affiliation(s)
- Cheyann Wetteland
- Department
of Bioengineering, University of California,
Riverside, 900 University
Avenue, Riverside, California 92521, United States
| | - Changlu Xu
- Materials
Science and Engineering Program, University
of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Sebo Michelle Wang
- Department
of Bioengineering, University of California,
Riverside, 900 University
Avenue, Riverside, California 92521, United States
| | - Chaoxing Zhang
- Materials
Science and Engineering Program, University
of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Elizabeth Juntilla Ang
- Department
of Bioengineering, University of California,
Riverside, 900 University
Avenue, Riverside, California 92521, United States
| | - Cole Gabriel Azevedo
- Materials
Science and Engineering Program, University
of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Huinan Hannah Liu
- Department
of Bioengineering, University of California,
Riverside, 900 University
Avenue, Riverside, California 92521, United States
- Materials
Science and Engineering Program, University
of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
- Stem
Cell Center, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
5
|
Chen J, Cheng Z, Wang J, Ding H, Wang K, Deng P, Xu L, Huang J. Novel Foamed Magnesium Phosphate Antimicrobial Bone Cement for Bone Augmentation. J Biomed Mater Res B Appl Biomater 2025; 113:e35492. [PMID: 39804787 DOI: 10.1002/jbm.b.35492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 01/16/2025]
Abstract
In dental implant surgery, infection is identified as the primary factor contributing to the failure of bone grafts. There is an urgent need to develop bone graft materials possessing antibacterial characteristics to facilitate bone regeneration. Magnesium phosphate bone cement (MPC) is highly desirable for bone regeneration due to its favorable biocompatibility, plasticity, and osteogenic capabilities. However, the limited porosity of conventional MPC hinders the nutrient supply, gas diffusion, and cell infiltration, thereby compromising its osteogenic efficacy. This research focused on the fabrication of a highly porous MPC (CaCO3/CA-MPC) by incorporating citric acid (CA) and calcium carbonate (CaCO3) as foaming agents. The resulting material demonstrated enhanced physicochemical properties, bioactivity, and antimicrobial effects. When compared with conventional MPC, human periodontal ligament stem cells (hPDLSCs) showed improved osteogenic differentiation when cultured with CaCO3/CA-MPC. The inclusion of foaming agents significantly enhanced the antimicrobial efficacy of MPC against both Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli). The results of in vivo anti-infection experiments in rats revealed that 3%CaCO3/CA-MPC displayed superior bactericidal activity compared with Bio-Oss and control groups (p < 0.05), thereby enhancing the anti-infective outcomes post-bone grafting and stimulating osteogenesis in the infected bone defect region. The study demonstrated that MPC containing 3%CaCO3/CA exhibited excellent antimicrobial and osteogenic properties both in vitro and in vivo, suggesting its potential as a promising candidate as bone graft material for dental implant surgeries.
Collapse
Affiliation(s)
- Jie Chen
- College of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Ziqing Cheng
- College of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Jiawen Wang
- College of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Huifen Ding
- College of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Kai Wang
- College of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Ping Deng
- College of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Ling Xu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Jiao Huang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| |
Collapse
|
6
|
Chai X, Lin J, Xu C, Sun D, Liu HH. Engineering Triphasic Nanocomposite Coatings on Pretreated Mg Substrates for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54716-54730. [PMID: 39344064 PMCID: PMC11472260 DOI: 10.1021/acsami.4c13811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Biodegradable polymer-based nanocomposite coatings provide multiple advantages to modulate the corrosion resistance and cytocompatibility of magnesium (Mg) alloys for biomedical applications. Biodegradable poly(glycerol sebacate) (PGS) is a promising candidate used for medical implant applications. In this study, we synthesized a new PGS nanocomposite system consisting of hydroxyapatite (HA) and magnesium oxide (MgO) nanoparticles and developed a spray coating process to produce the PGS nanocomposite layer on pretreated Mg substrates, which improved the coating adhesion at the interface and their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). Prior to the spray coating process of polymer-based nanocomposites, the Mg substrates were pretreated in alkaline solutions to enhance the interfacial adhesion strength of the polymer-based nanocomposite coatings. The addition of HA and MgO nanoparticles (nHA and nMgO) to the PGS matrix, as well as the alkaline pretreatment of the Mg substrates, significantly enhanced the interfacial adhesion strength when compared with the PGS coating on the nontreated Mg control. The average BMSC adhesion densities were higher on the PGS/nHA/nMgO coated Mg than the noncoated Mg controls under direct contact conditions. Moreover, the addition of nHA and nMgO to the PGS matrix and coating the nanocomposite onto Mg substrates increased the average BMSC adhesion density when compared with the PGS/nHA/nMgO coated titanium (Ti) and PGS coated Mg controls under direct contact. Therefore, the spray coating process of PGS/nHA/nMgO nanocomposites on Mg substrates or other biodegradable metal substrates could provide a promising surface treatment strategy for biodegradable implant applications.
Collapse
Affiliation(s)
- Xijuan Chai
- Department
of Bioengineering, University of California,
Riverside, Riverside, California 92521, United States
- Department
of Material Science and Technology, Southwest
Forestry University, 300 Bailong Road, Kunming 650224, P.R. China
| | - Jiajia Lin
- Materials
Science & Engineering Program, University
of California, Riverside, Riverside, California 92521, United States
| | - Changlu Xu
- Materials
Science & Engineering Program, University
of California, Riverside, Riverside, California 92521, United States
| | - Dongwei Sun
- Department
of Bioengineering, University of California,
Riverside, Riverside, California 92521, United States
- Materials
Science & Engineering Program, University
of California, Riverside, Riverside, California 92521, United States
| | - Huinan Hannah Liu
- Department
of Bioengineering, University of California,
Riverside, Riverside, California 92521, United States
- Materials
Science & Engineering Program, University
of California, Riverside, Riverside, California 92521, United States
- Stem
Cell Center, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
7
|
Naguib GH, Abd El-Aziz GS, Mira A, Kayal RA, Al-Turki L, Mously H, Alnowaiser A, Mazhar J, Hamed MT. Enhanced Antimicrobial Properties of Polymeric Denture Materials Modified with Zein-Coated Inorganic Nanoparticles. Int J Nanomedicine 2024; 19:9255-9271. [PMID: 39282577 PMCID: PMC11397330 DOI: 10.2147/ijn.s476261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024] Open
Abstract
Background Polymeric denture materials can be susceptible to colonization by oral microorganisms. Zein-coated magnesium oxide nanoparticles (zMgO NPs) demonstrate antimicrobial activity. The aim of this study was to investigate the antimicrobial effect and adherence of different oral microorganisms on hybrid polymeric denture materials incorporated with zMgO NPs. Methods Five types of polymeric denture materials were used. A total of 480 disc-shaped specimens were divided by material type (n=96/grp), then subdivided by zMgO NPs concentration: control with no nanoparticles and other groups with zMgO NPs concentrations of 0.3%, 0.5% and 1% by weight. Characterization of the polymeric denture materials incorporating zMgO NPs was done, and the antimicrobial activity of all groups was tested against four types of microorganisms: 1) Streptococcus mutans, 2) Staphylococcus aureus, 3) Enterococcus faecalis and 4) Candida albicans. The samples underwent an adherence test and an agar diffusion test. Experiments were done in triplicates. Results The characterization of the hybrid samples revealed variation in the molecular composition, as well as a uniform distribution of the zMgO NPs in the polymeric denture materials. All hybrid polymeric denture materials groups induced a statistically significant antimicrobial activity, while the control groups showed the least antimicrobial activity. The agar diffusion test revealed no release of the zMgO NPs from the hybrid samples, indicating the NPs did not seep out of the matrix. Conclusion The zMgO NPs were effective in reducing the adherence of the tested microorganisms and enhancing the antimicrobial activity of the polymeric denture materials. This antimicrobial effect with the polymeric dentures could aid in resisting microbial issues such as denture stomatitis.
Collapse
Affiliation(s)
- Ghada H Naguib
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Oral Biology, Cairo University School of Dentistry, Cairo, Egypt
| | - Gamal S Abd El-Aziz
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulghani Mira
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rayyan A Kayal
- Department of Periodontology, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lulwa Al-Turki
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hisham Mously
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abeer Alnowaiser
- Department of Pediatric Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Mohamed T Hamed
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Fixed Prosthodontics, Cairo University School of Dentistry, Cairo, Egypt
| |
Collapse
|
8
|
Proniewicz E, Vijayan AM, Surma O, Szkudlarek A, Molenda M. Plant-Assisted Green Synthesis of MgO Nanoparticles as a Sustainable Material for Bone Regeneration: Spectroscopic Properties. Int J Mol Sci 2024; 25:4242. [PMID: 38673825 PMCID: PMC11050608 DOI: 10.3390/ijms25084242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
This work is devoted to magnesium oxide (MgO) nanoparticles (NPs) for their use as additives for bone implants. Extracts from four different widely used plants, including Aloe vera, Echeveria elegans, Sansevieria trifasciata, and Sedum morganianum, were evaluated for their ability to facilitate the "green synthesis" of MgO nanoparticles. The thermal stability and decomposition behavior of the MgONPs were analyzed by thermogravimetric analysis (TGA). Structure characterization was performed by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible spectroscopy (UV-Vis), dynamic light scattering (DLS), and Raman scattering spectroscopy (RS). Morphology was studied by scanning electron microscopy (SEM). The photocatalytic activity of MgO nanoparticles was investigated based on the degradation of methyl orange (MeO) using UV-Vis spectroscopy. Surface-enhanced Raman scattering spectroscopy (SERS) was used to monitor the adsorption of L-phenylalanine (L-Phe) on the surface of MgONPs. The calculated enhancement factor (EF) is up to 102 orders of magnitude for MgO. This is the first work showing the SERS spectra of a chemical compound immobilized on the surface of MgO nanoparticles.
Collapse
Affiliation(s)
- Edyta Proniewicz
- Faculty of Foundry Engineering, AGH University of Krakow, 30-059 Krakow, Poland;
| | | | - Olga Surma
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (O.S.); (M.M.)
| | - Aleksandra Szkudlarek
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, 30-055 Krakow, Poland;
| | - Marcin Molenda
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (O.S.); (M.M.)
| |
Collapse
|
9
|
Karkehabadi H, Rahmati A, Abbaspourrokni H, Farmany A, Najafi R, Behroozi R, Rezaei-Soufi L, Abbasi R. Effect of magnesium oxide nanoparticles and LED irradiation on the viability and differentiation of human stem cells of the apical papilla. Biotechnol Lett 2024; 46:263-278. [PMID: 38326543 DOI: 10.1007/s10529-024-03471-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/15/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
PURPOSE Currently, regenerative endodontic treatments are gaining more and more attention, and stem cells play a significant role in these treatments. In order to enhance stem cell proliferation and differentiation, a variety of methods and materials have been used. The purpose of this study was to determine the effects of magnesium oxide nanoparticles and LED irradiation on the survival and differentiation of human stem cells from apical papilla. METHODS The MTT test was used to measure the cell survival of SCAPs that had been exposed to different concentrations of magnesium oxide nanoparticles after 24 and 48 h, and the concentration with the highest cell survival rate was picked for further studies. The cells were classified into four distinct groups based on their treatment: (1) control, which received no exposure, (2) exposure to magnesium oxide nanoparticles, (3) exposure to light emitting diode (LED) irradiation (635 nm, 200 mW/cm2) for 30 s, (4) exposure simultaneously with magnesium oxide nanoparticles and LED irradiation. A green approach was employed to synthesize magnesium oxide nanoparticles. Quantitative real time PCR was used to measure the gene expression of osteo/odontogenic markers such as BSP, DSPP, ALP and DMP1 in all four groups after treatment, and Alizarin red S staining (ARS) was used to determine the osteogenic differentiation of SCAPs by demonstrating the Matrix mineralization. RESULTS The highest viability of SCAPs was observed after 24 h in concentration 1 and 10 µg/mL and after 48 h in concentration 1 µg/mL, which were not significantly different from the control group. In both times, the survival of SCAPs decreased with increasing concentration of magnesium oxide nanoparticles (MgONPs). According to the results of Real-time PCR, after 24 and 48 h, the highest differentiation of BSP, DMP1, ALP and DSPP genes was observed in the LED + MgONPs group, followed by MgONPs and then LED, and in all 3 experimental groups, it was significantly higher than control group (P < 0.05). Also, after 24 and 48 h, the density of ARS increased in all groups compared to the control group, and the highest density was observed in the MgONPs + LED and MgONPs groups. CONCLUSION This research concluded that exposure to SCAPs, MgONPs, and LED irradiation has a significant effect on enhancing gene expression of odontogenic/osteogenic markers and increasing matrix mineralization.
Collapse
Affiliation(s)
- Hamed Karkehabadi
- Department of Endodontics, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Afsaneh Rahmati
- Department of Endodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hadiseh Abbaspourrokni
- Department of Endodontics, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbas Farmany
- Dental Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Department of Medical Molecular and Genetics, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Loghman Rezaei-Soufi
- Department of Operative Dentistry, Dental Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roshanak Abbasi
- Department of Endodontics, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Endodontics, School of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
10
|
Xiang S, Zhang C, Guan Z, Li X, Liu Y, Feng G, Luo X, Zhang B, Weng J, Xiao D. Preparation of a novel antibacterial magnesium carbonate coating on a titanium surface and its in vitro biocompatibility. RSC Adv 2024; 14:10516-10525. [PMID: 38567331 PMCID: PMC10985587 DOI: 10.1039/d4ra00399c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Magnesium-based coatings have attracted great attention in surface modification of titanium implants due to their superior angiogenic and osteogenic properties. However, their biological effects as a carbonate-based constituent remain unrevealed. In this study, magnesium carbonate coatings were prepared on titanium surfaces under hydrothermal conditions and subsequently treated with hydrogen peroxide. Also, their antibacterial activity and in vitro cell biocompatibility were evaluated. The obtained coatings consisted of nanoparticles without cracks and exhibited excellent adhesion to the substrate. X-ray diffraction (XRD) results indicated pure magnesium carbonate coatings formed on the Ti surface after hydrothermal treatment. After hydrogen peroxide treatment, the phase composition of the coatings had no obvious change. Compared to the untreated coatings, the hydrogen peroxide-treated coatings showed increased surface roughness and hydrophilicity. Co-culture with Staphylococcus aureus (S. aureus) demonstrated that the obtained coatings had good antibacterial activity. In vitro cell culture results showed that the hydrogen peroxide-treated coatings enhanced the viability, proliferation, and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). These findings suggest that this MgCO3-based coating exhibits excellent antibacterial performance and osteogenic potential. Based on the above, this study provides a simple method for preparing titanium implants with dual antibacterial and osteogenic capabilities, holding great promise in clinical applications.
Collapse
Affiliation(s)
- Shougang Xiang
- Department of Orthopaedics, Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital (Beijing Anzhen Hospital Nanchong Hospital), The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
| | - Chengdong Zhang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Zhenju Guan
- Department of Orthopaedics, Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital (Beijing Anzhen Hospital Nanchong Hospital), The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
| | - Xingping Li
- Department of Orthopaedics, Chengfei Hospital Chengdu Sichuan 610091 China
| | - Yumei Liu
- Collaboration Innovation Center for Tissue Repair Material Engineering Technology, China West Normal University Nanchong Sichuan 637002 China
| | - Gang Feng
- Department of Orthopaedics, Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital (Beijing Anzhen Hospital Nanchong Hospital), The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
| | - Xuwei Luo
- Department of Orthopaedics, Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital (Beijing Anzhen Hospital Nanchong Hospital), The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
| | - Bo Zhang
- Department of Orthopaedics, Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital (Beijing Anzhen Hospital Nanchong Hospital), The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Dongqin Xiao
- Department of Orthopaedics, Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital (Beijing Anzhen Hospital Nanchong Hospital), The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
| |
Collapse
|
11
|
Vega-Jiménez AL, González-Alva P, Rodríguez-Hernández AP, Vázquez-Olmos AR, Paz-Díaz B. Oxide nanoparticles based in magnesium as a potential dental tool to inhibit bacterial activity and promote osteoblast viability. Dent Mater J 2024; 43:11-19. [PMID: 38072414 DOI: 10.4012/dmj.2023-041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Functional nano-fillers are commonly used to reduce bacterial colonization in dentistry. This study aimed to synthesize, characterize, and evaluate the biological effects of magnesium oxide (MgO) nanoparticles (NP) obtained by mechanosynthesis. XRD, TEM, FT-IR, and UV-Vis were used to characterize MgO-NP which were subsequently tested for their activity against Staphylococcus aureus, Enterococcus faecalis and Escherichia coli (E. coli). The effects of MgO-NP on osteoblast cells were also analyzed. Three variables were studied: microbial inhibition by optical density (OD; 570-nm), viability estimated by colony-forming-units, and cell proliferation. The characterization of NP is consistent with nanostructures, minimum inhibitory concentration between 1.5-5 mg/mL, and microbial inhibition at 9.75 ug/mL concentration for E. coli were determined. There were different concentration-dependent effects on cell proliferation. Results were observed with 0.156 mg/mL MgO-NP, which increased cell proliferation at 24 and 48 h. The results suggest the antibacterial suitability of MgO-NP, with tolerable viability of mammalian cells for dental applications.
Collapse
Affiliation(s)
- Alejandro L Vega-Jiménez
- Laboratorio de Bioingeniería de Tejidos. Facultad de Odontología, Universidad Nacional Autónoma de México
| | - Patricia González-Alva
- Laboratorio de Bioingeniería de Tejidos. Facultad de Odontología, Universidad Nacional Autónoma de México
| | | | | | - Blanca Paz-Díaz
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México
| |
Collapse
|
12
|
Chen X, Zhou J, Qian Y, Zhao L. Antibacterial coatings on orthopedic implants. Mater Today Bio 2023; 19:100586. [PMID: 36896412 PMCID: PMC9988588 DOI: 10.1016/j.mtbio.2023.100586] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
With the aging of population and the rapid improvement of public health and medical level in recent years, people have had an increasing demand for orthopedic implants. However, premature implant failure and postoperative complications frequently occur due to implant-related infections, which not only increase the social and economic burden, but also greatly affect the patient's quality of life, finally restraining the clinical use of orthopedic implants. Antibacterial coatings, as an effective strategy to solve the above problems, have been extensively studied and motivated the development of novel strategies to optimize the implant. In this paper, a variety of antibacterial coatings recently developed for orthopedic implants were briefly reviewed, with the focus on the synergistic multi-mechanism antibacterial coatings, multi-functional antibacterial coatings, and smart antibacterial coatings that are more potential for clinical use, thereby providing theoretical references for further fabrication of novel and high-performance coatings satisfying the complex clinical needs.
Collapse
Affiliation(s)
- Xionggang Chen
- Institute of Physics & Optoelectronics Technology, Baoji Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji, 721016, PR China
| | - Jianhong Zhou
- Institute of Physics & Optoelectronics Technology, Baoji Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji, 721016, PR China
| | - Yu Qian
- Institute of Physics & Optoelectronics Technology, Baoji Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji, 721016, PR China
| | - LingZhou Zhao
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, 100142, PR China
| |
Collapse
|
13
|
Dong Y, Yao L, Cai L, Jin M, Forouzanfar T, Wu L, Liu J, Wu G. Antimicrobial and Pro-Osteogenic Coaxially Electrospun Magnesium Oxide Nanoparticles-Polycaprolactone /Parathyroid Hormone-Polycaprolactone Composite Barrier Membrane for Guided Bone Regeneration. Int J Nanomedicine 2023; 18:369-383. [PMID: 36700148 PMCID: PMC9869899 DOI: 10.2147/ijn.s395026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/24/2022] [Indexed: 01/21/2023] Open
Abstract
Introduction An antibacterial and pro-osteogenic coaxially electrospun nanofiber guided bone regeneration (GBR) membrane was fabricated to satisfy the complicated and phased requirements of GBR process. Methods In this study, we synthesize dual-functional coaxially electrospun nanofiber GBR membranes by encapsulating parathyroid hormone (PTH) in the core layer and magnesium oxide nanoparticles (MgONPs) in the shell layer (MgONPs-PCL/PTH-PCL). Herein, the physicochemical characterization of MgONPs-PCL/PTH-PCL, the release rates of MgONPs and PTH, and antibacterial efficiency of the new membrane were evaluated. Furthermore, the pro-osteogenicity of the membranes was assessed both in-vitro and in-vivo. Results We successfully fabricated a coaxially electrospun nanofiber MgONPs-PCL/PTH-PCL membrane with the majority of nanofibers (>65%) ranged from 0.40~0.60μm in diameter. MgONPs-PCL/PTH-PCL showed outstanding antibacterial potential against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) through the release of MgONPs. We also discovered that the incorporation of MgONPs significantly prolonged the release of PTH. Furthermore, both the in-vivo and in-vitro studies demonstrated that high dosage of PTH promoted pro-osteogenicity of the membrane to improve bone regeneration efficacy with the presence of MgONPs. Conclusion The new composite membrane is a promising approach to enhance bone regeneration in periodontitis or peri-implantitis patients with large-volume bone defects.
Collapse
Affiliation(s)
- Yiwen Dong
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China,Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, Amsterdam, the Netherlands,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands
| | - Litao Yao
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, Amsterdam, the Netherlands,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands,Department of Dentistry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China,Correspondence: Litao Yao, Department of Dentistry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China, Zhejiang, Email
| | - Lei Cai
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Mi Jin
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, Amsterdam, the Netherlands,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands
| | - Lianjun Wu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China,Jinsong Liu, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China, Email
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, Amsterdam, the Netherlands,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands
| |
Collapse
|
14
|
García-Rodríguez A, Stillwell A, Tochilovsky B, Tanzman JV, Limage R, Kolba N, Tako E, Marques CNH, Mahler GJ. The mechanistic effects of human digestion on magnesium oxide nanoparticles: implications for probiotics Lacticaseibacillus rhamnosus GG and Bifidobacterium bifidum VPI 1124. ENVIRONMENTAL SCIENCE. NANO 2022; 9:4540-4557. [PMID: 36874593 PMCID: PMC9983821 DOI: 10.1039/d2en00150k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The effects of nanoparticles (NPs) on the human gut microbiota are of high interest due to the link between the gut homeostasis and overall human health. The human intake of metal oxide NPs has increased due to its use in the food industry as food additives. Specifically, magnesium oxide nanoparticles (MgO-NPs) have been described as antimicrobial and antibiofilm. Therefore, in this work we investigated the effects of the food additive MgO-NPs, on the probiotic and commensal Gram-positive Lactobacillus rhamnosus GG and Bifidobacterium bifidum VPI 1124. The physicochemical characterization showed that food additive MgO is formed by nanoparticles (MgO-NPs) and after a simulated digestion, MgO-NPs partially dissociate into Mg2+. Moreover, nanoparticulate structures containing magnesium were found embedded in organic material. Exposures to MgO-NPs for 4 and 24 hours increased the bacterial viability of both L. rhamnosus and B. bifidum when in biofilms but not when as planktonic cells. High doses of MgO-NPs significantly stimulated the biofilm development of L. rhamnosus, but not B. bifidum. It is likely that the effects are primarily due to the presence of ionic Mg2+. Evidence from the NPs characterization indicate that interactions bacteria/NPs are unfavorable as both structures are negatively charged, which would create repulsive forces.
Collapse
Affiliation(s)
- Alba García-Rodríguez
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
- Department of Biological Science, Binghamton University, Binghamton, NY, 1302, USA
| | - Allayah Stillwell
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Blake Tochilovsky
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Jacob V Tanzman
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
- Department of Biological Science, Binghamton University, Binghamton, NY, 1302, USA
| | - Rhodesherdeline Limage
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
| | - Nikolai Kolba
- Cornell University, Food Science Department, Ithaca, NY 14853, USA
| | - Elad Tako
- Cornell University, Food Science Department, Ithaca, NY 14853, USA
| | - Cláudia N H Marques
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
- Department of Biological Science, Binghamton University, Binghamton, NY, 1302, USA
| | - Gretchen J Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
| |
Collapse
|
15
|
Jaisankar E, Azarudeen RS, Thirumarimurugan M. A Study on the Effect of Nanoscale MgO and Hydrogen Bonding in Nanofiber Mats for the Controlled Drug Release along with In Vitro Breast Cancer Cell Line and Antimicrobial Studies. ACS APPLIED BIO MATERIALS 2022; 5:4327-4341. [PMID: 36062471 DOI: 10.1021/acsabm.2c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanosized metal oxide-incorporated drug carriers have received significant attention due to their biocompatibility, mechanical strength, controlled drug release, and biodegradability. Herein, an attempt was made to fabricate polycaprolactone-based electrospun nanofiber mats involving the 5-fluorouracil (5Fu) drug, MgO nanoparticle, methyl cellulose, and polyethylene glycol. The chemical interactions, surface wettability, mechanical properties, structural and morphological changes, and thermal stability were studied by the respective analyses. The ionic interaction between 5Fu, MgO, and polymers were found to be responsible for the controlled drug release. Zero-order kinetic and model data also revealed that a controlled drug release pattern was observed in a period of 16 days. Furthermore, the nanofiber mats were subjected to cytotoxicity studies against MDA-MB-231 cancer cell line and the results showed higher cytotoxicity in a short time of 24 h and less toxicity to normal L929 fibroblast cell line. The apoptosis in cancer cell lines was also tested by AO/PI staining assay and confirmed by fluorescence microscopy. In addition, the growth inhibition of several bacterial and fungal strains was tested for the mats and the results exhibited good inhibition activity. Hence, the reported nanofiber drug carrier was found to be an efficient implant for the controlled release of anticancer drug along with other significant properties.
Collapse
Affiliation(s)
- Edumpan Jaisankar
- Department of Chemical Engineering, Coimbatore Institute of Technology, Coimbatore 641 014, Tamil Nadu, India
| | - Raja Sulaiman Azarudeen
- Department of Chemical Engineering, Coimbatore Institute of Technology, Coimbatore 641 014, Tamil Nadu, India
- Department of Chemistry, Coimbatore Institute of Technology, Coimbatore 641 014, Tamil Nadu, India
| | - Marimuthu Thirumarimurugan
- Department of Chemical Engineering, Coimbatore Institute of Technology, Coimbatore 641 014, Tamil Nadu, India
| |
Collapse
|
16
|
Yuan Z, Wan Z, Gao C, Wang Y, Huang J, Cai Q. Controlled magnesium ion delivery system for in situ bone tissue engineering. J Control Release 2022; 350:360-376. [PMID: 36002052 DOI: 10.1016/j.jconrel.2022.08.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Magnesium cation (Mg2+) has been an emerging therapeutic agent for inducing vascularized bone regeneration. However, the therapeutic effects of current magnesium (Mg) -containing biomaterials are controversial due to the concentration- and stage-dependent behavior of Mg2+. Here, we first provide an overview of biochemical mechanism of Mg2+ in various concentrations and suggest that 2-10 mM Mg2+in vitro may be optimized. This review systematically summarizes and discusses several types of controlled Mg2+ delivery systems based on polymer-Mg composite scaffolds and Mg-containing hydrogels, as well as their design philosophy and several parameters that regulate Mg2+ release. Given that the continuous supply of Mg2+ may prevent biomineral deposition in the later stage of bone regeneration and maturation, we highlight the controlled delivery of Mg2+ based dual- or multi-ions system, especially for the hierarchical therapeutic ion release system, which shows enhanced biomineralization. Finally, the remaining challenges and perspectives of Mg-containing biomaterials for future in situ bone tissue engineering are discussed as well.
Collapse
Affiliation(s)
- Zuoying Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Zhuo Wan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Chenyuan Gao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China.
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China..
| |
Collapse
|
17
|
Abstract
Nanomaterials are promising in the development of innovative therapeutic options that include tissue and organ replacement, as well as bone repair and regeneration. The expansion of new nanoscaled biomaterials is based on progress in the field of nanotechnologies, material sciences, and biomedicine. In recent decades, nanomaterial systems have bridged the line between the synthetic and natural worlds, leading to the emergence of a new science called nanomaterial design for biological applications. Nanomaterials replicating bone properties and providing unique functions help in bone tissue engineering. This review article is focused on nanomaterials utilized in or being explored for the purpose of bone repair and regeneration. After a brief overview of bone biology, including a description of bone cells, matrix, and development, nanostructured materials and different types of nanoparticles are discussed in detail.
Collapse
|
18
|
Alves MM, Batista C, Mil-Homens D, Grenho L, Fernandes MH, Santos CF. Enhanced antibacterial activity of Rosehip extract-functionalized Mg(OH) 2 nanoparticles: An in vitro and in vivo study. Colloids Surf B Biointerfaces 2022; 217:112643. [PMID: 35759895 DOI: 10.1016/j.colsurfb.2022.112643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 10/18/2022]
Abstract
The development of nanoparticles as antimicrobial agents against pathogenic bacteria has emerged as one of the leading global healthcare challenges. In this study, Mg(OH)2 NPs with controlled morphology and nanometric size, using two distinct counterions, chloride or nitrate, have been synthesized using Rosehip (RH) extract that has privileges beyond conventional chemical and physical methods. Various physicochemical techniques were used to characterize the RH-functionalized Mg-based NPs. They exhibited a spherical shape with a diameter of ~10 nm, low crystallinity compared to non-functionalized NPs, high polyphenol content, and negative zeta potential in three different media (H2O, TSB, and cell medium). The resulting RH-functionalized Mg-based NPs also exhibited an increased antibacterial activity against Gram-positive (S. Epidermis and S. aureus) and Gram-negative (E. Coli) bacteria compared to those prepared in pure water (0 % RH), an effect that was well evident with low NPs contents (250 μg/mL). A preliminary attempt to elucidate their mechanism of action revealed that RH-functionalized Mg-based NPs could disrupt cellular structures (bacterial cell wall and cytoplasmic membrane) and damage the bacterial cell, as confirmed by TEM imaging. Noteworthy is that Mg-based NPs exhibited higher toxicity to bacteria than to eukaryotic cells. More significantly, was their enhanced in vivo efficacy in a Galleria mellonella invertebrate animal model, when infected with S. aureus bacteria. Overall, our findings indicate that well-engineered Rosehip magnesium-based nanoparticles can be used as a green non-cytotoxic polyphenolic source in different antibacterial applications for the biomedical industry.
Collapse
Affiliation(s)
- Marta M Alves
- Centro Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Catarina Batista
- EST Setúbal, CDP2T, Instituto Politécnico de Setúbal, Campus IPS, Setúbal 2910, Portugal
| | - Dalila Mil-Homens
- iBB - Institute for Bioengineering and Biosciences and i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Liliana Grenho
- Faculdade de Medicina Dentária, Laboratory for Bone Metabolism and Regeneration, Universidade do Porto, Porto 4200-393, Portugal; LAQV/REQUIMTE, U. Porto, Porto 4160-007, Portugal
| | - Maria H Fernandes
- Faculdade de Medicina Dentária, Laboratory for Bone Metabolism and Regeneration, Universidade do Porto, Porto 4200-393, Portugal; LAQV/REQUIMTE, U. Porto, Porto 4160-007, Portugal.
| | - Catarina F Santos
- Centro Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal; EST Setúbal, CDP2T, Instituto Politécnico de Setúbal, Campus IPS, Setúbal 2910, Portugal.
| |
Collapse
|
19
|
Xu C, Uahengo G, Rudnicki C, Hung C, Huang A, Xu Q, Chen Y, Halaney DL, Garay JE, Mangolini L, Aguilar G, Liu HH. Nanocrystalline Yttria-Stabilized Zirconia Ceramics for Cranial Window Applications. ACS APPLIED BIO MATERIALS 2022; 5:2664-2675. [PMID: 35671525 DOI: 10.1021/acsabm.2c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transparent yttria-stabilized zirconia (YSZ) ceramics are promising for cranial window applications because of their good mechanical and optical properties as well as biocompatibility. YSZ discs with different yttria concentrations were either processed via current-activated pressure-assisted densification (CAPAD) using commercial nanoparticles or densified via spark plasma sintering (SPS) using pyrolysis-synthesized nanoparticles in-house. This study provided critical results to screen composition, processing, microstructure, and cytocompatibility of transparent YSZ discs for cranial window applications. CAPAD-processed YSZ discs with 6 or 8 mol % yttria (6YSZ and 8YSZ) and SPS-densified YSZ discs with 4 mol % yttria (4YSZ_P) showed 200-350 nm polycrystalline grains containing 20-30 nm crystallite domains. SPS-densified YSZ discs with 8 mol % yttria (8YSZ_P) showed larger polycrystalline grains of 819 ± 155 nm with 29 ± 5 nm crystallite domains. CAPAD-processed YSZ discs with 3 mol % yttria (3YSZ) showed 39 ± 9 nm grains. Bone-marrow-derived stem cells (BMSCs) on the polished YSZ discs showed statistically higher spreading areas than those on the unpolished YSZ discs of the same compositions. Generally, polished 8YSZ, 4YSZ_P, and 8YSZ_P discs and unpolished 8YSZ_R, 4YSZ_PR, and 8YSZ_PR discs had lower average cell adhesion densities than other YSZ discs under direct contact conditions. Under indirect contact conditions, all the YSZ disc groups showed similar average cell adhesion densities to the Cell-only control. The groups of polished 4YSZ_P and 8YSZ_P discs, unpolished 4YSZ_PR and 8YSZ_PR discs, and particle control of 8YSZ_Pnp showed higher Y3+ ion concentrations than other groups. No mineral deposition was detected on the polished YSZ discs after cell culture. Considering multiple factors such as cytocompatibility, cell adhesion density, Y3+ ion release, mineral deposition, and optical transparency collectively, 8YSZ may be the best candidate for the cranial window applications. Further studies are needed to evaluate the long-term transparency and biocompatibility of YSZ discs.
Collapse
Affiliation(s)
- Changlu Xu
- Materials Science and Engineering Program, University of California, Riverside, Riverside, California 92521, United States
| | - Gottlieb Uahengo
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093, United States
| | - Christopher Rudnicki
- Department of Mechanical Engineering, University of California, Riverside, Riverside, California 92521, United States
| | - Chengi Hung
- Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States
| | - Aaron Huang
- Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States
| | - Queenie Xu
- Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States
| | - Yiqing Chen
- Materials Science and Engineering Program, University of California, Riverside, Riverside, California 92521, United States
| | - David L Halaney
- Department of Mechanical Engineering, University of California, Riverside, Riverside, California 92521, United States
| | - Javier E Garay
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093, United States
| | - Lorenzo Mangolini
- Materials Science and Engineering Program, University of California, Riverside, Riverside, California 92521, United States.,Department of Mechanical Engineering, University of California, Riverside, Riverside, California 92521, United States
| | - Guillermo Aguilar
- Department of Mechanical Engineering, University of California, Riverside, Riverside, California 92521, United States
| | - Huinan Hannah Liu
- Materials Science and Engineering Program, University of California, Riverside, Riverside, California 92521, United States.,Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States.,Stem Cell Center, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
20
|
Wan Z, Yuan Z, Li Y, Zhang Y, Wang Y, Yu Y, Mao J, Cai Q, Yang X. Hierarchical Therapeutic Ion‐Based Microspheres with Precise Ratio‐Controlled Delivery as Microscaffolds for In Situ Vascularized Bone Regeneration. ADVANCED FUNCTIONAL MATERIALS 2022; 32. [DOI: 10.1002/adfm.202113280] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 01/06/2025]
Abstract
AbstractTherapeutic ions, such as Si and Mg, play vital roles in regulating metabolism and promoting tissue repair, hence providing an efficient strategy in tissue engineering. The regenerative outcome is strongly dependent on the targeted delivery and controlled release of therapeutic ions. Nevertheless, it remains challenging to deliver multiple ions at controlled manners and ratios. Herein, hierarchical therapeutic ion‐based microspheres are fabricated. The coordinated release of Mg and Si ions at pre‐set ratios is achieved, based on which, Mg favors osteogenesis by inducing highly efficient cell recruitment and angiogenesis, and Si promotes massive collagen secretion and biomineralization to accelerate the bone maturation process. These therapeutic ion‐based microspheres (namely PNM2) can steadily release Mg and Si ions at an optimized ratio of 2:1, which shows the most significant synergistic effect on angiogenesis and osteogenesis. Furthermore, in a rat calvarial defects model, the volume and maturity of the vascularized neo‐bone tissue regenerated with PNM2 microspheres are comparable with or even surpassing those defects regenerated with growth factors and/or cell‐laden scaffolds. Overall, this platform provides a controllable strategy for the coordinated delivery of Mg/Si ions, opening a new avenue for developing therapeutic ion‐based microscaffold for tissue engineering.
Collapse
Affiliation(s)
- Zhuo Wan
- State Key Laboratory of Organic‐Inorganic Composites Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 China
- Department of Mechanics and Engineering Science College of Engineering Peking University Beijing 100871 P. R. China
| | - Zuoying Yuan
- Department of Mechanics and Engineering Science College of Engineering Peking University Beijing 100871 P. R. China
| | - Yechen Li
- State Key Laboratory of Organic‐Inorganic Composites Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 China
| | - Yanling Zhang
- State Key Laboratory of Organic‐Inorganic Composites Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 China
| | - Yue Wang
- State Key Laboratory of Organic‐Inorganic Composites Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 China
| | - Yingjie Yu
- State Key Laboratory of Organic‐Inorganic Composites Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 China
| | - Jianping Mao
- Department of Spine Surgery Beijing Jishuitan Hospital Beijing 100035 China
| | - Qing Cai
- State Key Laboratory of Organic‐Inorganic Composites Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 China
| | - Xiaoping Yang
- State Key Laboratory of Organic‐Inorganic Composites Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 China
- Foshan (Southern China) Institute for New Materials Foshan Guangdong 528200 China
| |
Collapse
|
21
|
Clavier B, Zhadan A, Baptiste T, Boucher F, Guiet A, Porcher F, Brezová V, Roques C, Corbel G. Revisiting Mg solubility in CuO nanorods: limit probed by neutron diffraction and effect on the particle toxicity towards bacteria in water. Dalton Trans 2022; 51:8411-8424. [PMID: 35593297 DOI: 10.1039/d2dt00352j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Both nanometer-sized CuO and MgO particles exhibit bactericidal activities against Staphylococcus aureus and Escherichia coli, two bacteria causing healthcare-associated infections. The solid solution Cu1-xMgxO is potentially interesting for biomedical applications as one of the compositions could have a much higher bactericidal activity than the parent CuO and MgO oxides considered separately. But, to date, no Vegard's law proves the real existence of such a solid solution. This study was aimed at shedding light on the solubility of Mg2+ ions in CuO nanoparticles and its impact on the free oxygen radicals they produce, the quantity of which determines their bactericidal performance. The solid solution Cu1-xMgxO does exist and particles were synthesized as nanorods of 50-60 nm length by thermally decomposing at 400 °C the single source precursors Cu1-xMgx(OH)2. Vegard's laws exist only in the compositional range 0 ≤ x ≤ 0.1, due to the low capacity of the distorted NaCl-type structure to accommodate regular coordination [MgO6] octahedra. Only neutron diffraction allowed the detection of the small amount of MgO nanoparticles present as impurity in a 10 g sample beyond the solubility limit of x = 0.1. In this series, CuO nanorods remain the most active against E. coli and S. aureus with reduction in viability of 99.998% and 98.7% after 180 min in water, respectively. Our synthesis route has significantly increased the activity of pure CuO nanoparticles beyond the values reported so far, especially against E. coli. The bactericidal performances of CuO and the magnesium-substituted counterparts (i.e. Cu1-xMgxO) are not linked to cupric ions they release in water since their mass concentrations after 180 min are much lower than minimal concentrations inhibiting the growth of E. coli and S. aureus. These CuO nanorods kill bacteria in water because they produce a large quantity of free oxygen radicals in the presence of H2O2 only, the majority of which are highly toxic HO˙ radicals. Mg2+ ions have a detrimental effect on this production, thus explaining the lowest bactericidal performance of Cu1-xMgxO nanorods. Definitive knowledge of the toxicity of Cu1-xMgxO nanoparticles towards bacteria in water is now available.
Collapse
Affiliation(s)
- Batiste Clavier
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
| | - Antonii Zhadan
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
| | - Téo Baptiste
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
| | - Fabien Boucher
- Institut Universitaire de Technologie du Mans, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Amandine Guiet
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
| | - Florence Porcher
- Laboratoire Léon Brillouin, CEA-CNRS, 91191 Gif-sur-Yvette Cedex, France
| | - Vlasta Brezová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Christine Roques
- Laboratoire de Génie Chimique, UMR-5503 CNRS, Faculté de Pharmacie, Université Paul Sabatier - Toulouse III, 35, chemin des maraîchers, 31 062 Toulouse Cedex 4, France.,Centre Hospitalier Universitaire (CHU) de Toulouse, Institut Fédératif de Biologie (IFB), Laboratoire de Bactériologie et Hygiène, 330 Avenue de Grande Bretagne, 31059 Toulouse Cedex 9, France
| | - Gwenaël Corbel
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
| |
Collapse
|
22
|
Echeverry-Rendón M, Stančič B, Muizer K, Duque V, Calderon DJ, Echeverria F, Harmsen MC. Cytotoxicity Assessment of Surface-Modified Magnesium Hydroxide Nanoparticles. ACS OMEGA 2022; 7:17528-17537. [PMID: 35664586 PMCID: PMC9161253 DOI: 10.1021/acsomega.1c06515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/23/2022] [Indexed: 05/27/2023]
Abstract
Magnesium-based nanoparticles have shown promise in regenerative therapies in orthopedics and the cardiovascular system. Here, we set out to assess the influence of differently functionalized Mg nanoparticles on the cellular players of wound healing, the first step in the process of tissue regeneration. First, we thoroughly addressed the physicochemical characteristics of magnesium hydroxide nanoparticles, which exhibited low colloidal stability and strong aggregation in cell culture media. To address this matter, magnesium hydroxide nanoparticles underwent surface functionalization by 3-aminopropyltriethoxysilane (APTES), resulting in excellent dispersible properties in ethanol and improved colloidal stability in physiological media. The latter was determined as a concentration- and time-dependent phenomenon. There were no significant effects on THP-1 macrophage viability up to 1.500 μg/mL APTES-coated magnesium hydroxide nanoparticles. Accordingly, increased media pH and Mg2+ concentration, the nanoparticles dissociation products, had no adverse effects on their viability and morphology. HDF, ASCs, and PK84 exhibited the highest, and HUVECs, HPMECs, and THP-1 cells the lowest resistance toward nanoparticle toxic effects. In conclusion, the indicated high magnesium hydroxide nanoparticles biocompatibility suggests them a potential drug delivery vehicle for treating diseases like fibrosis or cancer. If delivered in a targeted manner, cytotoxic nanoparticles could be considered a potential localized and specific prevention strategy for treating highly prevalent diseases like fibrosis or cancer. Looking toward the possible clinical applications, accurate interpretation of in vitro cellular responses is the keystone for the relevant prediction of subsequent in vivo biological effects.
Collapse
Affiliation(s)
- Mónica Echeverry-Rendón
- IMDEA
Materials Institute, C/Eric Kandel 2, Getafe, Madrid 28906, Spain
- University
of Groningenn, University Medical
Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1, EA11, NL-9713 GZ Groningen, The Netherlands
- Centro
de Investigación, Innovación y Desarrollo de Materiales
(CIDEMAT), Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Brina Stančič
- University
of Groningenn, University Medical
Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1, EA11, NL-9713 GZ Groningen, The Netherlands
- Department
of Molecular Biology, Universidad Autónoma de Madrid, and Department
of Molecular Neuropathology, Center of Molecular
Biology Severo Ochoa (UAM-CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Kirsten Muizer
- University
of Groningenn, University Medical
Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1, EA11, NL-9713 GZ Groningen, The Netherlands
| | - Valentina Duque
- Centro
de Investigación, Innovación y Desarrollo de Materiales
(CIDEMAT), Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Deanne Jennei Calderon
- Centro
de Investigación, Innovación y Desarrollo de Materiales
(CIDEMAT), Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Felix Echeverria
- Centro
de Investigación, Innovación y Desarrollo de Materiales
(CIDEMAT), Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Martin C. Harmsen
- University
of Groningenn, University Medical
Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1, EA11, NL-9713 GZ Groningen, The Netherlands
| |
Collapse
|
23
|
Hu B, Cheng Z, Liang S. Advantages and prospects of stem cells in nanotoxicology. CHEMOSPHERE 2022; 291:132861. [PMID: 34774913 DOI: 10.1016/j.chemosphere.2021.132861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Nanomaterials have been widely used in many fields, especially in biomedical and stem cell therapy. However, the potential risks associated with nanomaterials applications are also gradually increasing. Therefore, effective and robust toxicology models are critical to evaluate the developmental toxicity of nanomaterials. The development of stem cell research provides a new idea of developmental toxicology. Recently, many researchers actively investigated the effects of nanomaterials with different sizes and surface modifications on various stem cells (such as embryonic stem cells (ESCs), adult stem cells, etc.) to study the toxic effects and toxic mechanisms. In this review, we summarized the effects of nanomaterials on the proliferation and differentiation of ESCs, mesenchymal stem cells and neural stem cells. Moreover, we discussed the advantages of stem cells in nanotoxicology compared with other cell lines. Finally, combined with the latest research methods and new molecular mechanisms, we analyzed the application of stem cells in nanotoxicology.
Collapse
Affiliation(s)
- Bowen Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, 830017, China.
| | - Zhanwen Cheng
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shengxian Liang
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding, 071000, China
| |
Collapse
|
24
|
Wu H, Yang S, Xiao J, Ouyang Z, Yang M, Zhang M, Zhao D, Huang Q. Facile synthesis of multi-functional nano-composites by precise loading of Cu 2+ onto MgO nano-particles for enhanced osteoblast differentiation, inhibited osteoclast formation and effective bacterial killing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112442. [PMID: 34702527 DOI: 10.1016/j.msec.2021.112442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Biomaterials with multi-functions including enhancing osteogenesis, inhibiting osteoclastogenesis and effectively removing bacteria are urgently needed in the treatment of osteoporotic bone defects. In this study, MgO nano-particles were employed as a platform for precise Cu2+ loading. By immersing MgO into CuSO4 solution with a pre-defined concentration (0.1, 1 or 10 mM), 1 mg MgO adsorbed 3.25, 32.5 or 325 μg Cu2+ from the solution. As-synthesized nano-composites were referred as MgO-0.1Cu, MgO-1Cu or MgO-10Cu depending on the concentration of employed CuSO4 solution. The results revealed that MgO-xCu (x = 0.1, 1 and 10) nano-composites were lamella-shaped and composed of amorphous Cu(OH)2, crystalline Mg(OH)2 and minor MgO. The extracellular release of Cu2+ was rather limited due the capture of Cu2+ by Mg(OH)2. In vitro results revealed that MgO-xCu (x = 0.1, 1 and 10) nano-composites modulated osteoblast, osteoclast and bacterium response in a Cu2+ loading amount-dependent manner. MgO-0.1Cu nano-composite exhibited stimulatory function on osteoblast proliferation without influencing osteoblast maturation, osteoclast formation and bacterial survival. MgO-1Cu nano-composite enhanced osteoblast proliferation and differentiation, inhibited osteoclast formation and effectively killed bacteria. When larger amount of Cu2+ was loaded, MgO-10Cu nano-composite exhibited stronger stimulatory effect on osteoblast maturation, enhanced inhibitory function on osteoclast formation and promoted bactericidal performance, although it showed a certain degree of initial cyto-toxicity. Together, the results suggest that MgO nano-particles could be employed as potential platform for precise Cu2+ loading and intracellular Cu2+ delivery. MgO-xCu (x = 1 and 10) nano-composites are promising to be employed as multi-functional fillers in bone tissue engineering scaffolds for osteoporotic bone regeneration.
Collapse
Affiliation(s)
- Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Si Yang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhengxiao Ouyang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Minghua Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Mingming Zhang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University. Changsha 410013, China
| | - Dapeng Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Qianli Huang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China; Foshan (Southern China) Institute for New Materials, Foshan 528200, China.
| |
Collapse
|
25
|
Antimicrobial Polymeric Composites with Embedded Nanotextured Magnesium Oxide. Polymers (Basel) 2021; 13:polym13132183. [PMID: 34209326 PMCID: PMC8271688 DOI: 10.3390/polym13132183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Nanotextured magnesium oxide (MgO) can exhibit both antibacterial and tissue regeneration activity, which makes it very useful for implant protection. To successfully combine these two properties, MgO needs to be processed within an appropriate carrier system that can keep MgO surface available for interactions with cells, slow down the conversion of MgO to the less active hydroxide and control MgO solubility. Here we present new composites with nanotextured MgO microrods embedded in different biodegradable polymer matrixes: poly-lactide-co-glycolide (PLGA), poly-lactide (PLA) and polycaprolactone (PCL). Relative to their hydrophilicity, polarity and degradability, the matrices were able to affect and control the structural and functional properties of the resulting composites in different manners. We found PLGA matrix the most effective in performing this task. The application of the nanotextured 1D morphology and the appropriate balancing of MgO/PLGA interphase interactions with optimal polymer degradation kinetics resulted in superior bactericidal activity of the composites against either planktonic E. coli or sessile S. epidermidis, S. aureus (multidrug resistant-MRSA) and three clinical strains isolated from implant-associated infections (S. aureus, E. coli and P. aeruginosa), while ensuring controllable release of magnesium ions and showing no harmful effects on red blood cells.
Collapse
|
26
|
Li M, Hu K, Lin D, Wang Z, Xu M, Huang J, Chen Z, Zhang Y, Yin L, You R, Li CH, Guan YQ. Synthesis of Double Interfering Biodegradable Nano-MgO Micelle Composites and Their Effect on Parkinson's Disease. ACS Biomater Sci Eng 2021; 7:1216-1229. [PMID: 33560819 DOI: 10.1021/acsbiomaterials.0c01474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although gene therapy targeting the α-synuclein gene (SNCA) has achieved outstanding results in the treatment of Parkinson's disease (PD), the lack of a suitable gene delivery system and inadequate therapeutic effects remains a tremendous obstacle for RNAi therapy. Here, a degradable nano-MgO micelle composite (MgO(pDNA)-INS-Plu-mRNA-NGF) with double interference (mediated by RNAi and α-synuclein (α-syn)-targeted mRNA) was constructed. Binding mRNA treatment significantly increased the inhibitory effect compared to the reduction of α-syn expression by RNAi alone. Moreover, the cell experiments demonstrated that the viability of the PD cell model can be significantly improved by nano-MgO micelle composite treatment. More importantly, the composite has the ability to penetrate the blood brain barrier and deliver genes and mRNA to neurons through endocytosis mediated by the nerve growth factor and its receptors, thus significantly downregulating the expression of α-syn in the PD mice model without causing damage to other major organs. Overall, this work provides a novel insight into the design of biomaterials for gene therapy for PD.
Collapse
Affiliation(s)
- Mingchao Li
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Kaikai Hu
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Danmin Lin
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhen Wang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Mingze Xu
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jinpeng Huang
- School of Life Science, South China Normal University, Guangzhou 510631, China.,South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China
| | - Zhan Chen
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yi Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Liang Yin
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Rong You
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chu-Hua Li
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou 510631, China.,South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
27
|
Clavier B, Baptiste T, Barbieriková Z, Hajdu T, Guiet A, Boucher F, Brezová V, Roques C, Corbel G. Hydration and bactericidal activity of nanometer- and micrometer-sized particles of rock salt-type Mg 1-xCu xO oxides. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111997. [PMID: 33812617 DOI: 10.1016/j.msec.2021.111997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/30/2021] [Accepted: 02/19/2021] [Indexed: 01/20/2023]
Abstract
Copper substitution together with nano-structuring are applied with the aim to increase the bactericidal performances of the rocksalt-type MgO oxide. The partial substitution of magnesium ions with Cu2+ has been successfully achieved in both micrometer- and nanometer-sized particles of MgO up to 20 mol% in increments of 5 mol%. Microstructural analyses using the Integral Breadth method revealed that the thermal decomposition of the single source precursor Mg1-xCux(OH)2-2y(CO3)y.zH2O at 400 °C creates numerous defects in 10-20 nm-sized particles of Mg1-xCuxO thus obtained. These defects make the surface of nanoparticles highly reactive towards the sorption of water molecules, to the extent that the cubic cell a parameter in as-prepared Mg1-xCuxO expands by +0.24% as soon as the nanoparticles are exposed to ambient air (60% RH). The hydration of Mg1-xCuxO particles in liquid water is based on a conventional dissolution-precipitation mechanism. Particles of a few microns in size dissolve all the more slowly the higher the copper content and only Mg(OH)2 starts precipitating after 3 h. In contrast, the dissolution of all 10-20 nm-sized Mg1-xCuxO particles is complete over a 3 h period and water suspension only contains 4-12 nm-sized Mg1-xCux(OH)2 particles after 3 h. Thereby, the bactericidal activity reported for water suspension of Mg1-xCuxO nanoparticles depends on the speed at which these nanoparticles dissolve and Mg1-xCux(OH)2 nanoparticles precipitate in the first 3 h. Only 10 mol% of cupric ions in MgO nanoparticles are sufficient to kill both E. coli and S. aureus with a bactericidal kinetics faster and reductions in viability at 3 h (6.5 Log10 and 2.7 Log10, respectively) higher than the conventional antibacterial agent CuO (4.7 Log10 and 2 Log10 under the same conditions). EPR spin trapping study reveals that "hydroxylated" Mg0.9Cu0.1O as well as Mg0.9Cu0.1(OH)2 nanoparticles produce more spin-adducts with highly toxic hydroxyl radicals than their copper-free counterparts. The rapid mass adsorption of Mg0.9Cu0.1(OH)2 nanoparticles onto the cell envelopes following their precipitation together with their ability to produce Reactive Oxygen Species are responsible for the exceptionally high bactericidal activity measured in the course of the hydroxylation of Mg0.9Cu0.1O nanoparticles.
Collapse
Affiliation(s)
- Batiste Clavier
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Téo Baptiste
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Zuzana Barbieriková
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Tomáš Hajdu
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Amandine Guiet
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Fabien Boucher
- Institut Universitaire de Technologie du Mans, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Vlasta Brezová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Christine Roques
- Laboratoire de Génie Chimique, UMR-5503 CNRS, Faculté de Pharmacie, Université Paul Sabatier - Toulouse III, 35, chemin des maraîchers, 31062 Toulouse Cedex 4, France; Centre Hospitalier Universitaire (CHU) de Toulouse, Institut Fédératif de Biologie (IFB), Laboratoire de Bactériologie et Hygiène, 330 Avenue de Grande Bretagne, 31059 Toulouse Cedex 9, France
| | - Gwenaël Corbel
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
| |
Collapse
|
28
|
Peng Z, Wang C, Liu C, Xu H, Wang Y, Liu Y, Hu Y, Li J, Jin Y, Jiang C, Liu L, Guo J, Zhu L. 3D printed polycaprolactone/beta-tricalcium phosphate/magnesium peroxide oxygen releasing scaffold enhances osteogenesis and implanted BMSCs survival in repairing the large bone defect. J Mater Chem B 2021; 9:5698-5710. [PMID: 34223587 DOI: 10.1039/d1tb00178g] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ischemia and hypoxia in the bone defect area remain an intractable problem when treating large bone defects. Thus, oxygen-releasing biomaterials have been widely researched in recent years. Magnesium peroxide (MgO2) can release oxygen (O2), and magnesium ions (Mg2+), simultaneously, which is seen to have significant potential in bone substitutes. In this study, we used 3D printing technology to fabricate a MgO2-contained composite scaffold, which was composed of polycaprolactone (PCL), beta-tricalcium phosphate (β-TCP) and magnesium peroxide (MgO2). Physical properties and O2/Mg2+ releasing behavior of the scaffold were studied. Then, we evaluated the effects of the scaffold on cell survival, proliferation, migration, adhesion and osteogenic differentiation by the co-culture of bone marrow mesenchymal stem cells (BMSCs) and scaffold under normoxia and hypoxia in vitro. Finally, the osteogenic properties of the scaffold in vivo were evaluated via the rat femoral condylar bone defect model. The PCL/β-TCP/MgO2 scaffold showed good mechanical properties and sustained O2 and Mg2+ release for about three weeks. Meanwhile, the scaffold showed appreciable promotion on the survival, proliferation, migration and osteogenic differentiation of BMSCs under hypoxia compared with control groups. The results of imaging studies and histological analysis showed that implantation of PCL/β-TCP/MgO2 scaffold could promote seed cell survival and significantly increased new bone formation. In sum, the PCL/β-TCP/MgO2 scaffold is promising with great potential for treating large bone defects.
Collapse
Affiliation(s)
- Ziyue Peng
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Chengqiang Wang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Chun Liu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Haixia Xu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Yihan Wang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Yang Liu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China. and Xiang Yang Central Hospital, Affiliated Hospital of Hubei University of Art and Science, Xiang Yang 441400, China
| | - Yunteng Hu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Jianjun Li
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Yanglei Jin
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Cong Jiang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Jiasong Guo
- Department of Histology and Embryology, Southern Medical University, Guangzhou 510515, China. and Key Laboratory of Tissue Construction and Detection of Guangdong Province, Guangzhou 510515, China and Institute of Bone Biology, Academy of Orthopaedics, Guangdong Province, Guangzhou 510665, China
| | - Lixin Zhu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
29
|
Coelho CC, Padrão T, Costa L, Pinto MT, Costa PC, Domingues VF, Quadros PA, Monteiro FJ, Sousa SR. The antibacterial and angiogenic effect of magnesium oxide in a hydroxyapatite bone substitute. Sci Rep 2020; 10:19098. [PMID: 33154428 PMCID: PMC7645747 DOI: 10.1038/s41598-020-76063-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/06/2020] [Indexed: 11/25/2022] Open
Abstract
Bone graft infections are serious complications in orthopaedics and the growing resistance to antibiotics is increasing the need for antibacterial strategies. The use of magnesium oxide (MgO) is an interesting alternative since it possesses broad-spectrum antibacterial activity. Additionally, magnesium ions also play a role in bone regeneration, which makes MgO more appealing than other metal oxides. Therefore, a bone substitute composed of hydroxyapatite and MgO (HAp/MgO) spherical granules was developed using different sintering heat-treatment cycles to optimize its features. Depending on the sintering temperature, HAp/MgO spherical granules exhibited distinct surface topographies, mechanical strength and degradation profiles, that influenced the in vitro antibacterial activity and cytocompatibility. A proper balance between antibacterial activity and cytocompatibility was achieved with HAp/MgO spherical granules sintered at 1100 ºC. The presence of MgO in these granules was able to significantly reduce bacterial proliferation and simultaneously provide a suitable environment for osteoblasts growth. The angiogenic and inflammation potentials were also assessed using the in vivo chicken embryo chorioallantoic membrane (CAM) model and the spherical granules containing MgO stimulated angiogenesis without increasing inflammation. The outcomes of this study evidence a dual effect of MgO for bone regenerative applications making this material a promising antibacterial bone substitute.
Collapse
Affiliation(s)
- Catarina C Coelho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,FEUP - Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal. .,FLUIDINOVA, S.A., Rua Engenheiro Frederico Ulrich, 2650, 4470-605, Maia, Portugal.
| | - Tatiana Padrão
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,ISEP - Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| | - Laura Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,FEUP - Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| | - Marta T Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, 4200-135, Porto, Portugal
| | - Paulo C Costa
- UCIBIO/REQUIMTE, MEDTECH, Laboratório de Tecnologia Farmacêutica, Departamento de Ciências do Medicamento, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Valentina F Domingues
- REQUIMTE/LAQV/GRAQ, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| | - Paulo A Quadros
- FLUIDINOVA, S.A., Rua Engenheiro Frederico Ulrich, 2650, 4470-605, Maia, Portugal
| | - Fernando J Monteiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,FEUP - Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| | - Susana R Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,ISEP - Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| |
Collapse
|
30
|
Bai R, Peng L, Sun Q, Zhang Y, Zhang L, Wei Y, Han B. Metallic Antibacterial Surface Treatments of Dental and Orthopedic Materials. MATERIALS (BASEL, SWITZERLAND) 2020; 13:4594. [PMID: 33076495 PMCID: PMC7658793 DOI: 10.3390/ma13204594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
The oral cavity harbors complex microbial communities, which leads to biomaterial-associated infections (BAI) during dental and orthopedic treatments. Conventional antibiotic treatments have met great challenges recently due to the increasing emergency of drug-resistant bacteria. To tackle this clinical issue, antibacterial surface treatments, containing surface modification and coatings, of dental and orthopedic materials have become an area of intensive interest now. Among various antibacterial agents used in surface treatments, metallic agents possess unique properties, mainly including broad-spectrum antibacterial properties, low potential to develop bacterial resistance, relative biocompatibility, and chemical stability. Therefore, this review mainly focuses on underlying antibacterial applications and the mechanisms of metallic agents in dentistry and orthopedics. An overview of the present review indicates that much work remains to be done to deepen the understanding of antibacterial mechanisms and potential side-effects of metallic agents.
Collapse
Affiliation(s)
- Rushui Bai
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Liying Peng
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Qiannan Sun
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Yunfan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Lingyun Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| |
Collapse
|
31
|
Lin J, Nguyen NYT, Zhang C, Ha A, Liu HH. Antimicrobial Properties of MgO Nanostructures on Magnesium Substrates. ACS OMEGA 2020; 5:24613-24627. [PMID: 33015479 PMCID: PMC7528336 DOI: 10.1021/acsomega.0c03151] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/25/2020] [Indexed: 05/19/2023]
Abstract
Magnesium (Mg) and its alloys have attracted increasing attention in recent years as medical implants for repairing musculoskeletal injuries because of their promising mechanical and biological properties. However, rapid degradation of Mg and its alloys in physiological fluids limited their clinical translation because the accumulation of hydrogen (H2) gas and fast release of OH- ions could adversely affect the healing process. Moreover, infection is a major concern for internally implanted devices because it could lead to biofilm formation, prevent host cell attachment on the implants, and interfere osseointegration, resulting in implant failure or other complications. Fabricating nanostructured magnesium oxide (MgO) on magnesium (Mg) substrates is promising in addressing both problems because it could slow down the degradation process and improve the antimicrobial activity. In this study, nanostructured MgO layers were created on Mg substrates using two different surface treatment techniques, i.e., anodization and electrophoretic deposition (EPD), and cultured with Staphylococcus aureus in vitro to determine their antimicrobial properties. At the end of the 24-h bacterial culture, the nanostructured MgO layers on Mg prepared by anodization or EPD both showed significant bactericidal effect against S. aureus. Thus, nanostructured MgO layers on Mg are promising for reducing implant-related infections and complications and should be further explored for clinical translation toward antimicrobial biodegradable implants.
Collapse
Affiliation(s)
- Jiajia Lin
- Material
Science & Engineering Program, University
of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Nhu-Y Thi Nguyen
- Microbiology
Program, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Chaoxing Zhang
- Material
Science & Engineering Program, University
of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Alexandra Ha
- Department
of Bioengineering, University of California,
Riverside, 900 University
Avenue, Riverside, California 92521, United States
| | - Huinan Hannah Liu
- Material
Science & Engineering Program, University
of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
- Microbiology
Program, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
- Department
of Bioengineering, University of California,
Riverside, 900 University
Avenue, Riverside, California 92521, United States
| |
Collapse
|
32
|
Sidhu A, Bala A, Singh H, Ahuja R, Kumar A. Development of MgO-sepoilite Nanocomposites against Phytopathogenic Fungi of Rice ( Oryzae sativa): A Green Approach. ACS OMEGA 2020; 5:13557-13565. [PMID: 32566820 PMCID: PMC7301367 DOI: 10.1021/acsomega.0c00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Innovation in agriculture is a vital organ of research for sustainable food supply to the increasing global population. Organic compounds used as fungicidal agents against seed-borne pathogens are bracketed due to their toxic nature and residual effects, which are either already banned or may get banned in the near future. In this study, the surface and electric properties of nontoxic sepiolite have been blended with the antimicrobial properties of metabolizable MgO nanoforms (nMgO) as a greener alternative to prepare their nanocomposites. We compared a sepiolite-MgO (SE-MgO) nanocomposite with MgO nanoparticles in an aqua dispersed form (aqMgO-NPs) for their antifungal evaluation against various phytopathogenic fungi of rice. The SE-MgO nanocomposite was more potent in comparison to aqMgO-NPs with ED90 > 230 and 249 μg/mL, respectively, against the test fungi better than standard fungicides. Ultramicroscopic studies revealed hyphal distortion and spore collapse as the cause of antimycotic activity. The in vitro seed treatment revealed 100% hyphal reduction with SE-MgO at 250 μg/mL of MgO as an active ingredient (a.i.). MgO and sepiolite both have been regarded as safe materials by international agencies; therefore, using their nanocomposites can be an effective, sustainable, nontoxic, eco-friendly, and residue-free strategy for combating fungal menace against phytopathogens.
Collapse
Affiliation(s)
- Anjali Sidhu
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Anju Bala
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141004, India
| | - Harmandeep Singh
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Radha Ahuja
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Amit Kumar
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| |
Collapse
|
33
|
High performance of talented copper/magneso-zinc titanate nanostructures as biocidal agents for inactivation of pathogens during wastewater disinfection. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01454-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Jiang W, Zhang C, Tran L, Wang SG, Hakim AD, Liu H. Engineering Nano-to-Micron-Patterned Polymer Coatings on Bioresorbable Magnesium for Controlling Human Endothelial Cell Adhesion and Morphology. ACS Biomater Sci Eng 2020; 6:3878-3898. [DOI: 10.1021/acsbiomaterials.0c00642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wensen Jiang
- Materials Science and Engineering Program, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Chaoxing Zhang
- Materials Science and Engineering Program, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Larry Tran
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
- Department of Chemical Engineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Sebo Gene Wang
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
- Department of Chemistry, College of Natural and Agricultural Sciences, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Ammar Dilshad Hakim
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Huinan Liu
- Materials Science and Engineering Program, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
35
|
Effects of Magnesium Oxide (MgO) Shapes on In Vitro and In Vivo Degradation Behaviors of PLA/MgO Composites in Long Term. Polymers (Basel) 2020; 12:polym12051074. [PMID: 32397097 PMCID: PMC7284841 DOI: 10.3390/polym12051074] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 11/17/2022] Open
Abstract
Biodegradable devices for medical applications should be with an appropriate degradation rate for satisfying the various requirements of bone healing. In this study, composite materials of polylactic acid (PLA)/stearic acid-modified magnesium oxide (MgO) with a 1 wt% were prepared through blending extrusion, and the effects of the MgO shapes on the composites’ properties in in vitro and in vivo degradation were investigated. The results showed that the long-term degradation behaviors of the composite samples depended significantly on the filler shape. The degradation of the composites is accelerated by the increase in the water uptake rate of the PLA matrix and the composite containing the MgO nanoparticles was influenced more severely by the enhanced hydrophilicity. Furthermore, the pH value of the phosphate buffer solution (PBS) was obviously regulated by the dissolution of MgO through the neutralization of the acidic product of the PLA degradation. In addition, the improvement of the in vivo degrading process of the composite illustrated that the PLA/MgO materials can effectively regulate the degradation of the PLA matrix as well as raise its bioactivity, indicating the composites for utilization as a biomedical material matching the different requirements for bone-related repair.
Collapse
|
36
|
Liu X, He X, Jin D, Wu S, Wang H, Yin M, Aldalbahi A, El-Newehy M, Mo X, Wu J. A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration. Acta Biomater 2020; 108:207-222. [PMID: 32251784 DOI: 10.1016/j.actbio.2020.03.044] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 01/14/2023]
Abstract
Biomaterial-based membranes represent a promising therapeutic option for periodontal diseases. Although conventional periodontal membranes function greatly in preventing the ingrowth of both fibroblasts and epithelial cells as well as connective tissues, they are not capable of promoting periodontal tissue regeneration. Here, we report a multifunctional periodontal membrane prepared by electrospinning biodegradable polymers with magnesium oxide nanoparticles (nMgO). nMgO is a light metal-based nanoparticle with high antibacterial capacity and can be fully resorbed in the body. Our results showed that incorporating nMgO into poly(L-lactic acid) (PLA)/gelatin significantly improved the overall properties of membranes, including elevated tensile strength to maintain structural stability and adjusted degradation rate to fit the time window of periodontal regeneration. Acidic degradation products of PLA were neutralized by alkaline ions from nMgO hydrolysis, ameliorating pH microenvironment beneficial for cell proliferation. In vitro studies demonstrated considerable antibacterial and osteogenic properties of nMgO-incorporated membranes that are highly valuable for periodontal regeneration. Further investigations in a rat periodontal defect model revealed that nMgO-incorporated membranes effectively guided periodontal tissue regeneration. Taken together, our data indicate that nMgO-incorporated membranes might be a promising therapeutic option for periodontal regeneration. STATEMENT OF SIGNIFICANCE: Traditional clinical treatments of periodontal diseases largely focus on the management of the pathologic processes, which cannot effectively regenerate the lost periodontal tissue. GTR, a classic method for periodontal regeneration, has shown promise in clinical practice. However, the current membranes might not fully fulfill the criteria of ideal membranes. Here, we report bioabsorbable nMgO-incorporated nanofibrous membranes prepared by electrospinning to provide an alternative for the clinical practice of GTR. The membranes not only function greatly as physical barriers but also exhibit high antibacterial and osteoinductive properties. We therefore believe that this study will inspire more practice work on the development of effective GTR membranes for periodontal regeneration.
Collapse
Affiliation(s)
- Xuezhe Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Xi He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Dawei Jin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, PR China
| | - Shuting Wu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, PR China
| | - Hongsheng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, PR China
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| | - Jinglei Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China; Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, PR China.
| |
Collapse
|
37
|
Li C, Sun J, Shi K, Long J, Li L, Lai Y, Qin L. Preparation and evaluation of osteogenic nano-MgO/PMMA bone cement for bone healing in a rat critical size calvarial defect. J Mater Chem B 2020; 8:4575-4586. [PMID: 32242606 DOI: 10.1039/d0tb00074d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The clinical outcomes of polymethylmethacrylate (PMMA) bone cement used to fill gaps or marrow cavities of bones and bone defects are limited due to poor handling properties, mismatched mechanical properties with natural bone and lack of osteogenesis for bone healing. In this study, a series of PMMA bone cements containing active nano-MgO particles (nano-MgO/PMMA) were prepared. The handling and mechanical properties were systemically evaluated according to an International Standardization Organization standard (ISO 5833:2002). The biocompatibility and osteogenic activity of nano-MgO/PMMA were also analysed in vitro. The osteogenic effects of nano-MgO/PMMA were assessed in a rat calvarial critical bone defect model. The addition of less than 15 wt% nano-MgO to PMMA improved the handling properties of PMMA. Compared with PMMA, the compression modulus and strength of 20MP (20 wt% nano-MgO to PMMA) decreased to 0.725 ± 0.023 GPa and 25.38 ± 2.82 MPa, respectively. In vitro studies with MC3T3-E1 showed that nano-MgO/PMMA had better biocompatibility than the PMMA group after 7 days of culture. The nano-MgO/PMMA groups showed more calcium nodules and higher osteogenic gene expression levels than PMMA after 12 days of osteogenic induction of the rat BMSCs. The in vivo studies analysed by micro-CT and histomorphology results proved that nano-MgO/PMMA could significantly enhance new bone formation. The mean new bone mineral density in the nano-MgO/PMMA group was 50% greater than that in the PMMA group. In addition, biomechanical tests showed that nano-MgO/PMMA was superior to PMMA in bone-bonding strength after 12 weeks implantation. Therefore, the nano-MgO/PMMA bone cement has good potential in joint fixation and bone defect filling applications.
Collapse
Affiliation(s)
- Cairong Li
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | | | | | | | | | | | | |
Collapse
|
38
|
Luque-Agudo V, Fernández-Calderón MC, Pacha-Olivenza MA, Pérez-Giraldo C, Gallardo-Moreno AM, González-Martín ML. The role of magnesium in biomaterials related infections. Colloids Surf B Biointerfaces 2020; 191:110996. [PMID: 32272388 DOI: 10.1016/j.colsurfb.2020.110996] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 01/09/2023]
Abstract
Magnesium is currently increasing interest in the field of biomaterials. An extensive bibliography on this material in the last two decades arises from its potential for the development of biodegradable implants. In addition, many researches, motivated by this progress, have analyzed the performance of magnesium in both in vitro and in vivo assays with gram-positive and gram-negative bacteria in a very broad range of conditions. This review explores the extensive literature in recent years on magnesium in biomaterials-related infections, and discusses the mechanisms of the Mg action on bacteria, as well as the competition of Mg2+ and/or synergy with other divalent cations in this subject.
Collapse
Affiliation(s)
- Verónica Luque-Agudo
- University of Extremadura, Department of Applied Physics, Badajoz, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain; University Institute of Extremadura Sanity Research (iNube), Badajoz, Spain
| | - M Coronada Fernández-Calderón
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain; University Institute of Extremadura Sanity Research (iNube), Badajoz, Spain; University of Extremadura, Department of Biomedical Science, Badajoz, Spain
| | - Miguel A Pacha-Olivenza
- University of Extremadura, Department of Biomedical Science, Badajoz, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain; University Institute of Extremadura Sanity Research (iNube), Badajoz, Spain
| | - Ciro Pérez-Giraldo
- University of Extremadura, Department of Biomedical Science, Badajoz, Spain; University Institute of Extremadura Sanity Research (iNube), Badajoz, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain
| | - Amparo M Gallardo-Moreno
- University of Extremadura, Department of Applied Physics, Badajoz, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain; University Institute of Extremadura Sanity Research (iNube), Badajoz, Spain.
| | - M Luisa González-Martín
- University of Extremadura, Department of Applied Physics, Badajoz, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain; University Institute of Extremadura Sanity Research (iNube), Badajoz, Spain
| |
Collapse
|
39
|
Photo-assisted green synthesis of silver doped silk fibroin/carboxymethyl cellulose nanocomposite hydrogels for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110219. [DOI: 10.1016/j.msec.2019.110219] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 07/25/2019] [Accepted: 09/16/2019] [Indexed: 12/22/2022]
|
40
|
Zhang C, Lin J, Nguyen NYT, Guo Y, Xu C, Seo C, Villafana E, Jimenez H, Chai Y, Guan R, Liu H. Antimicrobial Bioresorbable Mg-Zn-Ca Alloy for Bone Repair in a Comparison Study with Mg-Zn-Sr Alloy and Pure Mg. ACS Biomater Sci Eng 2019; 6:517-538. [PMID: 33463195 DOI: 10.1021/acsbiomaterials.9b00903] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Magnesium-zinc-calcium (Mg-Zn-Ca) alloys have attracted increasing attention for biomedical implant applications, especially for bone repair, because of their biocompatibility, biodegradability, and similar mechanical properties to human bone. The objectives of this study were to characterize Mg-2 wt % Zn-0.5 wt % Ca (named ZC21) alloy pins microstructurally and mechanically, and determine their degradation and interactions with host cells and pathogenic bacteria in vitro and in vivo in comparison with the previously studied Mg-4 wt % Zn-1 wt % strontium (named ZSr41) alloy and Mg control. Specifically, the in vitro degradation and cytocompatibility of ZC21 pins with bone marrow derived mesenchymal stem cells (BMSCs) were investigated using both direct culture and direct exposure culture methods. The adhesion density of BMSCs on ZC21 pins (i.e., direct contact) was significantly higher than on pure Mg pins in both in vitro culture methods; the cell adhesion density around ZC21 pins (i.e., indirect contact) was similar to the cell-only positive control in both in vitro culture methods. Interestingly, ZC21 showed a higher daily degradation rate, crack width and crack area ratio in the direct exposure culture than in the direct culture, suggesting different culture methods did affect its in vitro degradation behaviors. When cultured with Gram-positive bacteria methicillin-resistant Staphylococcus aureus (MRSA), ZC21 reduced bacterial adhesion on the surface more significantly than that of ZSr41 and Mg. The in vivo degradation and biocompatibility of the ZC21 pins for bone regeneration were studied in a mouse femoral defect model. The in vivo degradation rate of ZC21 pins was much slower than that of ZSr41 alloy and Mg control pins. After 12 weeks of implantation in vivo, the ZC21 group showed the shortest gap at the femoral defect, indicating that ZC21 pins promoted osteogenesis and bone healing more than ZSr41 and Mg control pins. Overall, the ZC21 alloy is promising for bone repair, while providing antibacterial activities, and should be further studied toward clinical translation.
Collapse
Affiliation(s)
- Chaoxing Zhang
- Materials Science and Engineering Program, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States.,Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Jiajia Lin
- Materials Science and Engineering Program, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States.,Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Nhu-Y Thi Nguyen
- Microbiology Graduate Program, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Yuxing Guo
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California 90007, United States
| | - Changlu Xu
- Materials Science and Engineering Program, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States.,Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Catherine Seo
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Edgar Villafana
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Hector Jimenez
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California 90007, United States
| | - Renguo Guan
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Huinan Liu
- Materials Science and Engineering Program, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States.,Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States.,Microbiology Graduate Program, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States.,Biomedical Sciences Program, School of Medicine, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States.,Stem Cell Center, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
41
|
Cortez Alcaraz MC, Cipriano AF, Lin J, Soria P, Tian Q, Liu H. Electrophoretic Deposition of Magnesium Oxide Nanoparticles on Magnesium: Processing Parameters, Microstructures, Degradation, and Cytocompatibility. ACS APPLIED BIO MATERIALS 2019; 2:5634-5652. [PMID: 35021558 DOI: 10.1021/acsabm.9b00714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Magnesium (Mg) and its alloys are a class of promising materials for biodegradable orthopedic and craniomaxillofacial implants; however, rapid release of hydrogen gas remains a key challenge for clinical translation. This study reported the optimal parameters of electrophoretic deposition (EPD), at which magnesium oxide nanoparticles (nMgO) could be deposited onto Mg substrates with homogeneous surface morphology and elemental distribution. The results showed that the distribution and uniformity of the nMgO coatings on Mg improved when the nMgO concentration in ethanol increased and the time of applied voltage decreased. The nMgO-coated Mg showed a homogeneous surface and distinct degradation mode during the 9-day immersion studies in revised simulated body fluid (r-SBF) and Dulbecco's modified Eagle's medium (DMEM), when compared with the noncoated Mg controls. The nMgO coating initially mitigated hydrogen gas formation. The degradation layer on nMgO-coated Mg was thicker than the noncoated Mg and enriched with Ca and P that are favorable for skeletal implant applications. In the direct culture study with bone marrow derived mesenchymal stem cells (BMSCs) in vitro, the cell adhesion density and morphology were not affected by the solubilized degradation products released by the nMgO-coated Mg under indirect contact. However, at the cell-biomaterial interface, the cell spreading decreased under direct contact, possibly because of the continuous dynamic degradation of the samples. The electrophoretically deposited nMgO coatings on Mg-based medical implants should be further studied to improve the coating-substrate and cell-material interfaces for clinical applications.
Collapse
Affiliation(s)
| | | | | | - Pedro Soria
- Department of Biology, California State University, San Bernardino, California 92407, United States
| | | | | |
Collapse
|
42
|
Wetteland CL, Liu H. Optical and biological properties of polymer-based nanocomposites with improved dispersion of ceramic nanoparticles. J Biomed Mater Res A 2019; 106:2692-2707. [PMID: 29901266 DOI: 10.1002/jbm.a.36466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/09/2018] [Accepted: 05/22/2018] [Indexed: 11/08/2022]
Abstract
This article reports a new process for creating polymer-based nanocomposites with enhanced dispersion of ceramic nanoparticles without using any surfactants, and the resulted changes in their optical and biological properties. Specifically, dispersion of two different ceramic nanoparticles, that is, hydroxyapatite (nHA) and magnesium oxide (nMgO) nanoparticles, in a model biodegradable polymer, namely poly(lactic-co-glycolic acid) (PLGA), was studied. High-power sonication was integrated with dual asymmetric centrifugal (DAC) mixing to improve dispersion of nanoparticles during solvent casting. The polymer/solvent ratio was optimized to improve nanoparticle dispersion in the multistep processing, including enhancing the efficacy of sonication and DAC mixing and reducing nanoparticle sedimentation during solvent-casting. Microstructural characterization confirmed that this new process improved nanoparticle dispersion in nMgO/PLGA and nHA/PLGA nanocomposites. Improved nanoparticle dispersion increased the optical transparency visually and optical transmission quantitatively for both nHA/PLGA and nMgO/PLGA nanocomposites. Improved dispersion of nanoparticles improved the adhesion of bone marrow derived mesenchymal stem cells (BMSCs) on nHA/PLGA but decreased BMSC viability on nMgO/PLGA. This difference is likely because the chemistry of nHA and nMgO had different effects on BMSCs. This study provided a new process for enhancing dispersion of ceramic nanoparticles in a polymer matrix and revealed the effects of dispersion on optical properties and cell responses, which are valuable for engineering optimal ceramic/polymer nanocomposites for different biomedical applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2692-2707, 2018.
Collapse
Affiliation(s)
| | - Huinan Liu
- Department of Bioengineering, University of California, Riverside, California 92521.,Materials Science and Engineering Program, University of California, Riverside, California 92521.,Stem Cell Center, University of California, Riverside, California 92521
| |
Collapse
|
43
|
Rutherford D, Exarhos S, Xu C, Niacaris M, Mariano C, Dayap B, Mangolini L, Liu H. Synthesis, characterization, and cytocompatibility of yttria stabilized zirconia nanopowders for creating a window to the brain. J Biomed Mater Res B Appl Biomater 2019; 108:925-938. [PMID: 31339630 DOI: 10.1002/jbm.b.34445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023]
Abstract
Transparent cranial window to the brain is highly desirable for brain therapies because such cranial implant would allow for continuous monitoring of brain disorders and long-term delivery of photodynamic therapy into the brain without repeated surgeries for opening skull. Nanostructured yttria-stabilized zirconia (YSZ) is a potential candidate for the window to the brain application because of its promising mechanical and optical properties. In this study, a new process using aerosol spray pyrolysis was established for synthesizing 6-7 nm YSZ nanopowders with precisely controlled compositions. YSZ nanopowders with 3 M ratios of yttria to zirconia, specifically 3, 6, and 8% yttria in zirconia (referred to as 3YSZ, 6YSZ, and 8YSZ, respectively) were synthesized and characterized. The size, structure, and composition of the produced YSZ nanoparticles are highly controllable and scalable. The in vitro cytocompatibility of the YSZ nanoparticles with bone marrow mesenchymal stem cells (BMSCs) was investigated using a direct exposure culture method for cranial implant applications. Nondoped ZrO2 and commercially available 8YSZ (named as C_8YSZ) served as controls for the in vitro cell studies. BMSCs exhibited normal morphology when cultured with the YSZs of 3 M ratios in the concentrations of 10 mM, 30 mM, and 60 mM, as well as ZrO2 and C_8YSZ controls. The BMSCs cultured with 3YSZ and 6YSZ showed no statistical differences in cell adhesion density when compared with the ZrO2 and C_8YSZ controls at respective concentrations of 10-60 mM. The possible release of YSZ nanoparticles from cranial window implants should be carefully considered and further studied.
Collapse
Affiliation(s)
- Dana Rutherford
- Department of Bioengineering, University of California, Riverside, Riverside, California
| | - Stephen Exarhos
- Department of Mechanical Engineering, University of California, Riverside, Riverside, California
| | - Changlu Xu
- Materials Science and Engineering Program, University of California, Riverside, Riverside, California
| | - Matt Niacaris
- Department of Bioengineering, University of California, Riverside, Riverside, California
| | - Crystal Mariano
- Department of Bioengineering, University of California, Riverside, Riverside, California
| | - Bryce Dayap
- Department of Bioengineering, University of California, Riverside, Riverside, California.,Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, California
| | - Lorenzo Mangolini
- Department of Mechanical Engineering, University of California, Riverside, Riverside, California.,Materials Science and Engineering Program, University of California, Riverside, Riverside, California
| | - Huinan Liu
- Department of Bioengineering, University of California, Riverside, Riverside, California.,Materials Science and Engineering Program, University of California, Riverside, Riverside, California.,Stem Cell Center, University of California, Riverside, Riverside, California
| |
Collapse
|
44
|
Yang L, Guo P, Niu Z, Li F, Song Z, Xu C, Liu H, Sun W, Ren T. Influence of Mg on the mechanical properties and degradation performance of as-extruded Zn Mg Ca alloys: In vitro and in vivo behavior. J Mech Behav Biomed Mater 2019; 95:220-231. [DOI: 10.1016/j.jmbbm.2019.04.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 10/27/2022]
|
45
|
Mittag A, Schneider T, Westermann M, Glei M. Toxicological assessment of magnesium oxide nanoparticles in HT29 intestinal cells. Arch Toxicol 2019; 93:1491-1500. [PMID: 30989313 DOI: 10.1007/s00204-019-02451-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/09/2019] [Indexed: 01/05/2023]
Abstract
Nanoparticles (NPs) are increasingly used in different consumer-related areas, for instance in food packaging or as additives, because of their enormous potential. Magnesium oxide (MgO) is an EU-approved food additive (E number 530). It is commonly used as a drying agent for powdered foods, for colour retention or as a food supplement. There are no consistent results regarding the effects of oral MgO NP uptake. Consequently, the aim of this study was to examine the effects of MgO NPs in the HT29 intestinal cell line. MgO NP concentrations ranged from 0.001 to 100 μg/ml and incubation times were up to 24 h. The cytotoxic and genotoxic potential were investigated. Apoptotic processes and cell cycle changes were analysed by flow cytometry. Finally, oxidative stress was examined. Transmission electron microscopy indicated that there was no cellular uptake. MgO NPs had no cytotoxic or genotoxic effects in HT29 cells and they did not induce apoptotic processes, cell cycle changes or oxidative stress.
Collapse
Affiliation(s)
- Anna Mittag
- Department of Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany.
| | - Thomas Schneider
- Department of Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Martin Westermann
- Electron Microscopy Centre, Friedrich Schiller University Jena, Jena, Germany
| | - Michael Glei
- Department of Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
46
|
Antibacterial bone substitute of hydroxyapatite and magnesium oxide to prevent dental and orthopaedic infections. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:529-538. [DOI: 10.1016/j.msec.2018.12.059] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/11/2018] [Accepted: 12/18/2018] [Indexed: 01/16/2023]
|
47
|
Yuan Z, Wei P, Huang Y, Zhang W, Chen F, Zhang X, Mao J, Chen D, Cai Q, Yang X. Injectable PLGA microspheres with tunable magnesium ion release for promoting bone regeneration. Acta Biomater 2019; 85:294-309. [PMID: 30553873 DOI: 10.1016/j.actbio.2018.12.017] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022]
Abstract
Magnesium ions (Mg2+) are bioactive and proven to promote bone tissue regeneration, in which the enhancement efficiency is closely related to Mg2+ concentrations. Currently, there are no well-established bone tissue engineering scaffolds that can precisely control Mg2+ release, although this capability could have a marked impact in bone regeneration. Leveraging the power of biodegradable microspheres to control the release of bioactive factors, we developed lactone-based biodegradable microspheres that served as both injectable scaffolds and Mg2+ release system for bone regeneration. The biodegradable microsphere (PMg) was prepared from poly(lactide-co-glycolide) (PLGA) microspheres co-embedded with MgO and MgCO3 at a fixed total loading amount (20 wt%) with different weight ratios (1:0; 3:1; 1:1; 1:3; 0:1). The PMg microspheres demonstrated controlled release of Mg2+ by tuning the MgO/MgCO3 ratios. Specifically, faster release with higher initial concentrations of Mg2+ were detected at higher MgO fractions, while long-term sustained release with lower concentrations of Mg2+ was obtained at higher MgCO3 fractions. All prepared PMg microspheres were non-cytotoxic. Furthermore, they promoted attachment, proliferation, osteogenic differentiation, especially, cell migration of bone marrow mesenchymal stromal cells (BMSCs). Among these microspheres, PMg-III microspheres (MgO/MgCO3 in 1:1) exhibited the strongest promotion of mineral depositions and osteogenic differentiation of BMSCs. PMg-III microspheres were injected into the critical-sized calvarial defect of a rat model, resulting in significant bone regeneration when compared to the control group filled with PLGA microspheres. In the PMg-III group, the new bone volume fraction (BV/TV) and bone mineral density (BMD) reached 32.9 ± 5.6% and 325.7 ± 20.2 mg/cm3, respectively, which were much higher than the values 8.1 ± 2.5% (BV/TV) and 124 ± 35.8 mg/cm3 (BMD) in the PLGA group. These findings indicated that bioresorbable microspheres possessing controlled Mg2+ release features were efficient in treating bone defects and promising for future in vivo applications. STATEMENT OF SIGNIFICANCE: Magnesium plays pivotal roles in regulating osteogenesis, which exhibits concentration-dependent behaviors. However, no generally accepted controlled-release system is reported to correlate Mg2+ concentration with efficient bone regeneration. Biodegradable microspheres with injectability are excellent cell carriers for tissue engineering, moreover, good delivery systems for bioactive factors. By co-embedding magnesium compounds (MgO, MgCO3) with different dissolution rates in various ratios, tunable release of Mg2+ from the microspheres was readily achieved. Accordingly, significant promotion in bone defect regeneration is achieved with microspheres displaying proper sustained release of Mg2+. The developed strategy may serve as valuable guidelines for bone tissue engineering scaffold design, which allows precise control on the release of bioactive metal ions like Mg2+ toward potential clinical translation.
Collapse
Affiliation(s)
- Zuoying Yuan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Pengfei Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yiqian Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Wenxin Zhang
- Department of Endodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, PR China
| | - Fuyu Chen
- Department of Endodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, PR China
| | - Xu Zhang
- Department of Endodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, PR China
| | - Jianping Mao
- Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing 100035, PR China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, PR China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
48
|
Tian Q, Lin J, Rivera-Castaneda L, Tsanhani A, Dunn ZS, Rodriguez A, Aslani A, Liu H. Nano-to-Submicron Hydroxyapatite Coatings for Magnesium-based Bioresorbable Implants - Deposition, Characterization, Degradation, Mechanical Properties, and Cytocompatibility. Sci Rep 2019; 9:810. [PMID: 30692582 PMCID: PMC6349930 DOI: 10.1038/s41598-018-37123-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/30/2018] [Indexed: 01/24/2023] Open
Abstract
Magnesium (Mg) and its alloys have shown attractive biocompatibility and mechanical strength for medical applications, but low corrosion resistance of Mg in physiological environment limits its broad clinical translation. Hydroxyapatite (HA) nanoparticles (nHA) are promising coating materials for decreasing degradation rates and prolonging mechanical strength of Mg-based implants while enhancing bone healing due to their osteoconductivity and osteoinductivity. Conformal HA coatings with nano-to-submicron structures, namely nHA and mHA coatings, were deposited successfully on Mg plates and rods using a transonic particle acceleration (TPA) process under two different conditions, characterized, and investigated for their effects on Mg degradation in vitro. The nHA and mHA coatings enhanced corrosion resistance of Mg and retained 86-90% of ultimate compressive strength after in vitro immersion in rSBF for 6 weeks, much greater than non-coated Mg that only retained 66% of strength. Mg-based rods with or without coatings showed slower degradation than the respective Mg-based plates in rSBF after 6 weeks, likely because of the greater surface-to-volume ratio of Mg plates than Mg rods. This indicates that Mg-based plate and screw devices may undergo different degradation even when they have the same coatings and are implanted at the same or similar anatomical locations. Therefore, in addition to locations of implantation, the geometry, dimension, surface area, volume, and mass of Mg-based implants and devices should be carefully considered in their design and processing to ensure that they not only provide adequate structural and mechanical stability for bone fixation, but also support the functions of bone cells, as clinically required for craniomaxillofacial (CMF) and orthopedic implants. When the nHA and mHA coated Mg and non-coated Mg plates were cultured with bone marrow derived mesenchymal stem cells (BMSCs) using the in vitro direct culture method, greater cell adhesion densities were observed under indirect contact conditions than that under direct contact conditions for the nHA and mHA coated Mg. In comparison with non-coated Mg, the nHA and mHA coated Mg reduced BMSC adhesion densities directly on the surface, but increased the average BMSC adhesion densities under indirect contact. Further long-term studies in vitro and in vivo are necessary to elucidate the effects of nHA and mHA coatings on cell functions and tissue healing.
Collapse
Affiliation(s)
- Qiaomu Tian
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Jiajia Lin
- Material Science & Engineering Program, University of California, Riverside, CA, 92521, USA
| | | | - Amit Tsanhani
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
- Microbiology Program, University of California, Riverside, CA, 92521, USA
| | - Zachary S Dunn
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Alexis Rodriguez
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
- Neuroscience Program, University of California, Riverside, CA, 92521, USA
| | - Arash Aslani
- N2 Biomedical LLC, One Patriots Park, Bedford, MA, 01730, USA
| | - Huinan Liu
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA.
- Material Science & Engineering Program, University of California, Riverside, CA, 92521, USA.
- Microbiology Program, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
49
|
Tian Q, Zhang C, Deo M, Rivera-Castaneda L, Masoudipour N, Guan R, Liu H. Responses of human urothelial cells to magnesium-zinc-strontium alloys and associated insoluble degradation products for urological stent applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 96:248-262. [PMID: 30606530 DOI: 10.1016/j.msec.2018.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 10/05/2018] [Accepted: 11/13/2018] [Indexed: 01/15/2023]
Abstract
Current urological devices such as ureteral stents and catheters still face serious problems, such as encrustation and biofilm formation. Magnesium (Mg) and its alloys showed great potentials as an alternative material for urological devices, due to their excellent biodegradability and antibacterial property. In this study, a serial of four promising Mg alloys which contain zinc (Zn) and strontium (Sr), i.e., Mg-4Zn-xSr (ZSr41) alloys, were investigated in vitro for potential ureteral stent application. Specifically, these four alloys have 4 wt% Zn in all and 0.15 wt% Sr in ZSr41_A, 0.5 wt% Sr in ZSr41_B, 1.0 wt% Sr in ZSr41_C and 1.5 wt% Sr in ZSr41_D. The cytocompatibility and degradation behaviors of Mg-4Zn-xSr alloys were studied by culturing with human urothelial cells (HUCs) for 24 h and 48 h using exposure culture method. ZSr41_B showed a better cytocompatibility with HUCs among all the Mg-4Zn-xSr alloys in both 24-hour and 48-hour cultures. Moreover, the cytocompatibility of insoluble degradation products of Mg, i.e., MgO and Mg(OH)2, was also investigated by culturing different concentrations of MgO and Mg(OH)2 nanoparticles with HUCs for 24 h and 48 h. The concentration of MgO and Mg(OH)2 particles at 0.5 mg/mL and above, showed a significant decrease of cell density and cell size after 24-hour and 48-hour cultures. The concentration of MgO and Mg(OH)2 at 1.0 mg/mL and above, showed no viable cells after 24-hour culture. Collectively, it is recommended to further reduce the degradation rates of Mg alloys in order to control possible side effects of the soluble and insoluble degradation products and to take the benefits of Mg-based biodegradable ureteral stents toward the future clinical translation.
Collapse
Affiliation(s)
- Qiaomu Tian
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Chaoxing Zhang
- Material Science & Engineering Program, University of California, Riverside, CA 92521, USA
| | - Michael Deo
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | | | - Neema Masoudipour
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Renguo Guan
- School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China
| | - Huinan Liu
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; Material Science & Engineering Program, University of California, Riverside, CA 92521, USA; Cell, Molecular, and Developmental Biology (CMDB) Program, University of California, Riverside, CA 92521, USA; Biomedical Sciences Program, School of Medicine, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
50
|
Antimicrobial Activities and Mechanisms of Magnesium Oxide Nanoparticles (nMgO) against Pathogenic Bacteria, Yeasts, and Biofilms. Sci Rep 2018; 8:16260. [PMID: 30389984 PMCID: PMC6214931 DOI: 10.1038/s41598-018-34567-5] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 10/19/2018] [Indexed: 01/17/2023] Open
Abstract
Magnesium oxide nanoparticle (nMgO) is a light metal based antimicrobial nanoparticle that can be metabolized and fully resorbed in the body. To take advantage of the antimicrobial properties of nMgO for medical use, it is necessary to determine the minimal inhibitory, bactericidal and fungicidal concentrations (MIC, MBC and MFC) of nMgO against prevalent infectious bacteria and yeasts. The objective of this study was to use consistent methods and conditions to reveal and directly compare the efficacy of nMgO against nine prevalent pathogenic microorganisms, including two gram-negative bacteria, three gram-positive bacteria with drug-resistant strains, and four yeasts with drug-resistant strains. The MIC of nMgO varied from 0.5 mg/mL to 1.2 mg/mL and the minimal lethal concentration (MLC) of nMgO at 90% killing varied from 0.7 mg/mL to 1.4 mg/mL against different pathogenic bacteria and yeasts. The most potent concentrations (MPC) of nMgO were 1.4 and/or 1.6 mg/mL, depending on the type of bacteria and yeasts tested. As the concentration of nMgO increased, the adhesion of bacteria and yeasts decreased. Moreover, S. epidermidis biofilm was disrupted at 1.6 mg/mL of nMgO. E. coli and some yeasts showed membrane damage after cultured with ≥0.5 mg/mL nMgO. Overall, nMgO killed both planktonic bacteria and disrupted nascent biofilms, suggesting new antimicrobial mechanisms of nMgO. Production of reactive oxygen species (ROS), Ca2+ ion concentrations, and quorum sensing likely contribute to the action mechanisms of nMgO against planktonic bacteria, but transient alkaline pH of 7 to 10 or increased Mg2+ ion concentrations from 1 to 50 mM showed no inhibitory or killing effects on bacteria such as S. epidermidis. Further studies are needed to determine if specific concentrations of nMgO at MIC, MLC or MPC level can be integrated into medical devices to evoke desired antimicrobial responses without harming host cells.
Collapse
|