1
|
Cheng Y, Ru J, Feng C, Liu X, Zeng H, Tan S, Chen X, Chen F, Lu BQ. Inorganic Pyrophosphate at Serum Concentration May Not Be Able to Inhibit Mineralization: A Study in Aqueous Solutions and Serum. ACS OMEGA 2024; 9:17334-17343. [PMID: 38645335 PMCID: PMC11025097 DOI: 10.1021/acsomega.3c10427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/23/2024]
Abstract
The constituent ions of calcium phosphate in body fluids are in the supersaturated state and tend to form minerals physiologically or pathologically. Inorganic pyrophosphate (PPi) has been considered as one of the most important inhibitors against the formation of calcium phosphate minerals. However, serum PPi concentrations in humans are maintained at a level of several μmol/L, and its effectiveness and mechanism for mineralization inhibition remain ambiguous. Therefore, this work studied the mineralization process in an aqueous solution, explored the effective inhibitory concentration of PPi by titration, and characterized the species during the reactions. We find that PPi at a normal serum concentration does not inhibit mineralization significantly. Such a conclusion was further confirmed in the PPi-added serum. This work indicates that PPi may not be a major direct inhibitor of mineralization in serum and possibly functions via alternative mechanisms.
Collapse
Affiliation(s)
- Yuxuan Cheng
- Suzhou
First People’s Hospital, School of Medicine, Anhui University of Science and Technology, 168 Taifeng Street, Shannan New District, Huainan 232000, Anhui, P. R. China
| | - Jing Ru
- Suzhou
First People’s Hospital, School of Medicine, Anhui University of Science and Technology, 168 Taifeng Street, Shannan New District, Huainan 232000, Anhui, P. R. China
| | - Chaobo Feng
- Center
for Orthopaedic Science and Translational Medicine, Department of
Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Xiaohao Liu
- Center
for Orthopaedic Science and Translational Medicine, Department of
Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Hua Zeng
- Center
for Orthopaedic Science and Translational Medicine, Department of
Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Shuo Tan
- Center
for Orthopaedic Science and Translational Medicine, Department of
Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Xi Chen
- Department
of Preventive Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Feng Chen
- Suzhou
First People’s Hospital, School of Medicine, Anhui University of Science and Technology, 168 Taifeng Street, Shannan New District, Huainan 232000, Anhui, P. R. China
- Center
for Orthopaedic Science and Translational Medicine, Department of
Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Bing-Qiang Lu
- Center
for Orthopaedic Science and Translational Medicine, Department of
Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| |
Collapse
|
2
|
Guérin M, Lebrun A, Kuhn L, Azaïs T, Laurent G, Marsan O, Drouet C, Subra G. One-Pot Synthesis of Bioinspired Peptide-Decorated Apatite Nanoparticles for Nanomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306358. [PMID: 37822151 DOI: 10.1002/smll.202306358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Indexed: 10/13/2023]
Abstract
Hybrid organic-inorganic bio-inspired apatite nanoparticles (NPs) are attractive for biomedical applications and especially in nanomedicine. Unfortunately, their applications in nanomedicine are limited by their broad particle size distributions and uncontrolled drug loading due to their multistep synthesis process. Besides, very few attempts at exposing bioactive peptides on apatite NPs are made. In this work, an original one-pot synthesis of well-defined bioactive hybrid NPs composed of a mineral core of bioinspired apatite surrounded by an organic corona of bioactive peptides is reported. Dual stabilizing-bioactive agents, phosphonated polyethylene glycol-peptide conjugates, are prepared and directly used during apatite precipitation i) to form the organic corona during apatite precipitation, driving the size and shape of resulting hybrid NPs with colloidal stabilization and ii) to expose peptide moieties (RGD or YIGSR sequences) at the NPs periphery in view of conferring additional surface properties to enhance their interaction with cells. Here, the success of this approach is demonstrated, the functionalized NPs are fully characterized by Fourier-transform infrared, Raman, X-ray diffraction, solid and liquid state NMR, transmission electron microscopy, and dynamic light scattering, and their interaction with fibroblast cells is followed, unveiling a synergistic proliferative effect.
Collapse
Affiliation(s)
- Mathilde Guérin
- IBMM, CNRS, Université de Montpellier, 1919 Route de Mende, Montpellier, 34090, France
- CIRIMAT, CNRS, Université de Toulouse, Ensiacet, 4 allee Emile Monso, Toulouse cedex 4, 31030, France
| | - Aurélien Lebrun
- IBMM, CNRS, Université de Montpellier, 1919 Route de Mende, Montpellier, 34090, France
| | - Liisa Kuhn
- Biomedical Engineering, UConn School of Dental Medicine, 263 Farmington Avenue, MC1721, Farmington, CT, 06030-1721, USA
| | - Thierry Azaïs
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université and CNRS, 4 place Jussieu, Paris, 75005, France
| | - Guillaume Laurent
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université and CNRS, 4 place Jussieu, Paris, 75005, France
| | - Olivier Marsan
- CIRIMAT, CNRS, Université de Toulouse, Ensiacet, 4 allee Emile Monso, Toulouse cedex 4, 31030, France
| | - Christophe Drouet
- CIRIMAT, CNRS, Université de Toulouse, Ensiacet, 4 allee Emile Monso, Toulouse cedex 4, 31030, France
| | - Gilles Subra
- IBMM, CNRS, Université de Montpellier, 1919 Route de Mende, Montpellier, 34090, France
| |
Collapse
|
3
|
Tzagiollari A, Redmond J, McCarthy HO, Levingstone TJ, Dunne NJ. Multi-objective property optimisation of a phosphoserine-modified calcium phosphate cement for orthopaedic and dental applications using design of experiments methodology. Acta Biomater 2024; 174:447-462. [PMID: 38000527 DOI: 10.1016/j.actbio.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Phosphoserine is a ubiquitous molecule found in numerous proteins and, when combined with alpha-tricalcium phosphate (α-TCP) powder, demonstrates the ability to generate an adhesive biomaterial capable of stabilising and repairing bone fractures. Design of Experiments (DoE) approach was able to optimise the composition of phosphoserine-modified calcium phosphate cement (PM-CPC) demonstrating that the liquid:powder ratio (LPR) and quantity of phosphoserine (wt%) significantly influenced the handling, mechanical, and adhesion properties. Subsequently, the DoE optimisation process identified the optimal PM-CPC formulation, exhibiting a compressive strength of 29.2 ± 4.9 MPa and bond/shear strength of 3.6 ± 0.9 MPa after a 24 h setting reaction. Moreover, the optimal PM-CPC composition necessitated a mixing time of 20 s and displayed an initial setting time between 3 and 4 min, thus enabling homogenous mixing and precise delivery within a surgical environment. Notably, the PM-CPC demonstrated a bone-to-bone bond strength of 1.05 ± 0.3 MPa under wet conditions, coupled with a slow degradation rate during the first five days. These findings highlight the ability of PM-CPC to effectively support and stabilise bone fragments during the initial stages of natural bone healing. The developed PM-CPC formulations fulfil the clinical requirements for working and setting times, static mechanical, degradation properties, and injectability, enabling surgeons to stabilise complex bone fractures. This innovative bioinspired adhesive represents a significant advancement in the treatment of challenging bone injuries, offering precise delivery within a surgical environment and the potential to enhance patient outcomes. STATEMENT OF SIGNIFICANCE: This manuscript presents a noteworthy contribution to the field of bone fracture healing and fixation by introducing a novel phosphoserine-modified calcium phosphate cement (PM-CPC) adhesive by incorporating phosphoserine and alpha-TCP. This study demonstrates the fabrication and extensive characterisation of this adhesive biomaterial that holds great promise for stabilising and repairing complex bone fractures. Design of Experiment (DoE) software was used to investigate the correlations between process, property, and structure of the adhesive, resulting in a cost-effective formulation with desirable physical and handling properties. The PM-CPC adhesive exhibited excellent adhesion and cohesion properties in wet-field conditions. This research offers significant potential for clinical translation and contributes to the ongoing advancements in bone tissue engineering.
Collapse
Affiliation(s)
- Antzela Tzagiollari
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland
| | - John Redmond
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Tanya J Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland; Biodesign Europe, Dublin City University, Dublin 9, Ireland; Tissue, Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland
| | - Nicholas J Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom; Biodesign Europe, Dublin City University, Dublin 9, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
4
|
Shah FA. The many facets of micropetrosis - Magnesium whitlockite deposition in bisphosphonate-exposed human alveolar bone with osteolytic metastasis. Micron 2023; 168:103441. [PMID: 36924676 DOI: 10.1016/j.micron.2023.103441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
The lacuno-canalicular space of apoptotic osteocytes eventually becomes mineralised in vivo. This condition is known as micropetrosis and is a fundamental characteristic of ageing bone. Increased prevalence of such hypermineralised osteocyte lacunae is viewed as a structural marker of impaired bone function - both mechanical and biological. Within the lacuno-canalicular space, mineralised apoptotic debris typically occurs as micrometre-sized, spherical nodules of magnesium-rich, carbonated apatite. Moreover, characteristically facetted, rhomboidal nodules of magnesium whitlockite [Mg-whitlockite; Ca18Mg2(HPO4)2(PO4)12] have been reported in human alveolar bone exposed to the bisphosphonate alendronate. This work provides supporting evidence for Mg-whitlockite formation in the alveolar bone of a 70-year-old male exposed to the bisphosphonate zoledronic acid to suppress osteolytic changes in skeletal metastasis. Backscattered electron scanning electron microscopy (BSE-SEM) revealed spherical and rhomboidal nodules within the lacuno-canalicular space. A variant of spherical nodules exhibited a fuzzy surface layer comprising radially extending acicular crystallites. The rhomboidal nodules ranged between ∼200 nm to ∼2.4 µm across the widest dimension (652 ± 331 nm). Micro-Raman spectroscopy and energy dispersive X-ray spectroscopy confirmed that rhomboidal nodules are compositionally distinct from spherical nodules, exhibiting higher Mg content and lower Ca/P ratio. Formation of Mg-whitlockite within osteocyte lacunae is multifactorial in nature and suggests altered bone biomineralisation. Nevertheless, the underlying mechanism(s) and sequence of events remain poorly understood and warrant further investigation. The possibility to discriminate between carbonated apatite and Mg-whitlockite nodules within osteocyte lacunae, based on particle morphology, attests to the diagnostic potential of BSE-SEM with or without additional analyses of material composition.
Collapse
Affiliation(s)
- Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
5
|
Nanocrystalline Apatites: Post-Immersion Acidification and How to Avoid It-Application to Antibacterial Bone Substitutes. Bioengineering (Basel) 2023; 10:bioengineering10020220. [PMID: 36829714 PMCID: PMC9952497 DOI: 10.3390/bioengineering10020220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Biomimetic nanocrystalline apatites analogous to bone mineral can be prepared using soft chemistry. Due to their high similarity to bone apatite, as opposed to stoichiometric hydroxyapatite for example, they now represent an appealing class of compounds to produce bioactive ceramics for which drug delivery and ion exchange abilities have been described extensively. However, immersion in aqueous media of dried non-carbonated biomimetic apatite crystals may generate an acidification event, which is often disregarded and not been clarified to-date. Yet, this acidification process could limit their further development if it is not understood and overcome if necessary. This may, for example, alter biological test outcomes, during their evaluation as bone repair materials, due to potentially deleterious effects of the acidic environment on cells, especially in in vitro static conditions. In this study, we explore the origins of this acidification phenomenon based on complementary experimental data and we point out the central role of the hydrated ionic layer present on apatite nanocrystals. We then propose a practical strategy to circumvent this acidification effect using an adequate post-precipitation equilibration step that was optimized. Using this enutralization protocol, we then showed the possibility of performing (micro)biological assessments on such compounds and provide an illustration with the examples of post-equilibrated Cu2+- and Ag+-doped nanocrystalline apatites. We demonstrate their non-cytotoxicity to osteoblast cells and their antibacterial features as tested versus five major pathogens involved in bone infections, therefore pointing to their relevance in the field of antibacterial bone substitutes. The preliminary in vivo implantation of a relevant sample in a rat's calvarial defect confirmed its biocompatibility and the absence of adverse reaction. Understanding and eliminating this technical barrier should help promoting biomimetic apatites as a genuine new class of biomaterial-producing compounds for bone regeneration applications, e.g., with antibacterial features, far from being solely considered as "laboratory curiosities".
Collapse
|
6
|
Aubry C, Drouet C, Azaïs T, Kim HJ, Oh JM, Karacan I, Chou J, Ben-Nissan B, Camy S, Cazalbou S. Bio-Activation of HA/β-TCP Porous Scaffolds by High-Pressure CO 2 Surface Remodeling: A Novel "Coating-from" Approach. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7306. [PMID: 36295371 PMCID: PMC9610974 DOI: 10.3390/ma15207306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Biphasic macroporous Hydroxyapatite/β-Tricalcium Phosphate (HA/β-TCP) scaffolds (BCPs) are widely used for bone repair. However, the high-temperature HA and β-TCP phases exhibit limited bioactivity (low solubility of HA, restricted surface area, low ion release). Strategies were developed to coat such BCPs with biomimetic apatite to enhance bioactivity. However, this can be associated with poor adhesion, and metastable solutions may prove difficult to handle at the industrial scale. Alternative strategies are thus desirable to generate a highly bioactive surface on commercial BCPs. In this work, we developed an innovative "coating from" approach for BCP surface remodeling via hydrothermal treatment under supercritical CO2, used as a reversible pH modifier and with industrial scalability. Based on a set of complementary tools including FEG-SEM, solid state NMR and ion exchange tests, we demonstrate the remodeling of macroporous BCP surface with the occurrence of dissolution-reprecipitation phenomena involving biomimetic CaP phases. The newly precipitated compounds are identified as bone-like nanocrystalline apatite and octacalcium phosphate (OCP), both known for their high bioactivity character, favoring bone healing. We also explored the effects of key process parameters, and showed the possibility to dope the remodeled BCPs with antibacterial Cu2+ ions to convey additional functionality to the scaffolds, which was confirmed by in vitro tests. This new process could enhance the bioactivity of commercial BCP scaffolds via a simple and biocompatible approach.
Collapse
Affiliation(s)
- Clémentine Aubry
- Centre Inter-Universitaire de Recherche et d’Ingénierie des Matériaux, CNRS/UT3/INP, Université de Toulouse, 31030 Toulouse, France
- Laboratoire de Génie Chimique, CNRS/UT3/INP, Université de Toulouse, 31030 Toulouse, France
- ARN: Régulation Naturelle et Artificielle, INSERM U1212, CNRS, Université de Bordeaux, 33076 Bordeaux, France
| | - Christophe Drouet
- Centre Inter-Universitaire de Recherche et d’Ingénierie des Matériaux, CNRS/UT3/INP, Université de Toulouse, 31030 Toulouse, France
| | - Thierry Azaïs
- Laboratoire de Chimie de la Matière Condensée de Paris-UMR 7574, CNRS, Sorbonne Université, 75005 Paris, France
| | - Hyoung-Jun Kim
- Department Energy and Materials Engineering, Dongguk University, Seoul 04620, Korea
- Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Jae-Min Oh
- Department Energy and Materials Engineering, Dongguk University, Seoul 04620, Korea
| | - Ipek Karacan
- University of Technology Sydney, Ultimo 2007, Australia
| | - Joshua Chou
- University of Technology Sydney, Ultimo 2007, Australia
| | | | - Séverine Camy
- Laboratoire de Génie Chimique, CNRS/UT3/INP, Université de Toulouse, 31030 Toulouse, France
| | - Sophie Cazalbou
- Centre Inter-Universitaire de Recherche et d’Ingénierie des Matériaux, CNRS/UT3/INP, Université de Toulouse, 31030 Toulouse, France
| |
Collapse
|
7
|
Gauffenic A, Bazin D, Combes C, Daudon M, Ea HK. Pathological calcifications in the human joint. CR CHIM 2022. [DOI: 10.5802/crchim.193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Dwivedi N, Dubey R, Srivastava S, Sinha N. Unraveling Water-Mediated 31P Relaxation in Bone Mineral. ACS OMEGA 2022; 7:16678-16688. [PMID: 35601291 PMCID: PMC9118412 DOI: 10.1021/acsomega.2c01133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/15/2022] [Indexed: 06/09/2023]
Abstract
Bone is a dynamic tissue composed of organic proteins (mainly type I collagen), inorganic components (hydroxyapatite), lipids, and water that undergoes a continuous rebuilding process over the lifespan of human beings. Bone mineral is mainly composed of a crystalline apatitic core surrounded by an amorphous surface layer. The supramolecular arrangement of different constituents gives rise to its unique mechanical properties, which become altered in various bone-related disease conditions. Many of the interactions among the different components are poorly understood. Recently, solid-state nuclear magnetic resonance (ssNMR) has become a popular spectroscopic tool for studying bone. In this article, we present a study probing the interaction of water molecules with amorphous and crystalline parts of the bone mineral through 31P ssNMR relaxation parameters (T 1 and T 2) and dynamics (correlation time). The method was developed to selectively measure the 31P NMR relaxation parameters and dynamics of the crystalline apatitic core and the amorphous surface layer of the bone mineral. The measured 31P correlation times (in the range of 10-6-10-7 s) indicated the different dynamic behaviors of both the mineral components. Additionally, we observed that dehydration affected the apatitic core region more significantly, while H-D exchange showed changes in the amorphous surface layer to a greater extent. Overall, the present work provides a significant understanding of the relaxation and dynamics of bone mineral components inside the bone matrix.
Collapse
Affiliation(s)
- Navneet Dwivedi
- Centre
of Biomedical Research, Sanjay Gandhi Postgraduate
Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
- Department
of Physics, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Richa Dubey
- Centre
of Biomedical Research, Sanjay Gandhi Postgraduate
Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| | - Seema Srivastava
- Department
of Physics, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Neeraj Sinha
- Centre
of Biomedical Research, Sanjay Gandhi Postgraduate
Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| |
Collapse
|
9
|
Dorozhkin SV. Synthetic amorphous calcium phosphates (ACPs): preparation, structure, properties, and biomedical applications. Biomater Sci 2021; 9:7748-7798. [PMID: 34755730 DOI: 10.1039/d1bm01239h] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amorphous calcium phosphates (ACPs) represent a metastable amorphous state of other calcium orthophosphates (abbreviated as CaPO4) possessing variable compositional but rather identical glass-like physical properties, in which there are neither translational nor orientational long-range orders of the atomic positions. In nature, ACPs of a biological origin are found in the calcified tissues of mammals, some parts of primitive organisms, as well as in the mammalian milk. Manmade ACPs can be synthesized in a laboratory by various methods including wet-chemical precipitation, in which they are the first solid phases, precipitated after a rapid mixing of aqueous solutions containing dissolved ions of Ca2+ and PO43- in sufficient amounts. Due to the amorphous nature, all types of synthetic ACPs appear to be thermodynamically unstable and, unless stored in dry conditions or doped by stabilizers, they tend to transform spontaneously to crystalline CaPO4, mainly to ones with an apatitic structure. This intrinsic metastability of the ACPs is of a great biological relevance. In particular, the initiating role that metastable ACPs play in matrix vesicle biomineralization raises their importance from a mere laboratory curiosity to that of a reasonable key intermediate in skeletal calcifications. In addition, synthetic ACPs appear to be very promising biomaterials both for manufacturing artificial bone grafts and for dental applications. In this review, the current knowledge on the occurrence, structural design, chemical composition, preparation, properties, and biomedical applications of the synthetic ACPs have been summarized.
Collapse
|
10
|
Activated Carbon Fiber Cloth/Biomimetic Apatite: A Dual Drug Delivery System. Int J Mol Sci 2021; 22:ijms222212247. [PMID: 34830128 PMCID: PMC8624510 DOI: 10.3390/ijms222212247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023] Open
Abstract
A biomaterial that is both bioactive and capable of controlled drug release is highly attractive for bone regeneration. In previous works, we demonstrated the possibility of combining activated carbon fiber cloth (ACC) and biomimetic apatite (such as calcium-deficient hydroxyapatite (CDA)) to develop an efficient material for bone regeneration. The aim to use the adsorption properties of an activated carbon/biomimetic apatite composite to synthetize a biomaterial to be used as a controlled drug release system after implantation. The adsorption and desorption of tetracycline and aspirin were first investigated in the ACC and CDA components and then on ACC/CDA composite. The results showed that drug adsorption and release are dependent on the adsorbent material and the drug polarity/hydrophilicity, leading to two distinct modes of drug adsorption and release. Consequently, a double adsorption approach was successfully performed, leading to a multifunctional and innovative ACC-aspirin/CDA-tetracycline implantable biomaterial. In a second step, in vitro tests emphasized a better affinity of the drug (tetracycline or aspirin)-loaded ACC/CDA materials towards human primary osteoblast viability and proliferation. Then, in vivo experiments on a large cortical bone defect in rats was carried out to test biocompatibility and bone regeneration ability. Data clearly highlighted a significant acceleration of bone reconstruction in the presence of the ACC/CDA patch. The ability of the aspirin-loaded ACC/CDA material to release the drug in situ for improving bone healing was also underlined, as a proof of concept. This work highlights the possibility of bone patches with controlled (multi)drug release features being used for bone tissue repair.
Collapse
|
11
|
Molecular conformations and dynamics in the extracellular matrix of mammalian structural tissues: Solid-state NMR spectroscopy approaches. Matrix Biol Plus 2021; 12:100086. [PMID: 34746737 PMCID: PMC8551230 DOI: 10.1016/j.mbplus.2021.100086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Solid-state NMR spectroscopy probes molecular conformation and dynamics in intact ECM. Collagen conformational dynamics has roles in mechanical properties of fibrils and cell adhesion. Solid-state NMR spectroscopy has shed new light on the chemical structure of bone mineral.
Solid-state NMR spectroscopy has played an important role in multidisciplinary studies of the extracellular matrix. Here we review how solid-state NMR has been used to probe collagen molecular conformations, dynamics, post-translational modifications and non-enzymatic chemical changes, and in calcified tissues, the molecular structure of bone mineral and its interface with collagen. We conclude that NMR spectroscopy can deliver vital information that in combination with data from structural imaging techniques, can result in significant new insight into how the extracellular matrix plays its multiple roles.
Collapse
|
12
|
Ma Z, Li B, Tang R. Biomineralization: Biomimetic Synthesis of Materials and Biomimetic Regulation of Organisms. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zaiqiang Ma
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Benke Li
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
- Qiushi Academy for Advanced Studies, Zhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
13
|
Magnesium whitlockite - omnipresent in pathological mineralisation of soft tissues but not a significant inorganic constituent of bone. Acta Biomater 2021; 125:72-82. [PMID: 33610767 DOI: 10.1016/j.actbio.2021.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/26/2021] [Accepted: 02/12/2021] [Indexed: 01/03/2023]
Abstract
Whitlockite is a calcium phosphate that was first identified in minerals collected from the Palermo Quarry, New Hampshire. The terms magnesium whitlockite [Mg-whitlockite; Ca18Mg2(HPO4)2(PO4)12] and beta-tricalcium phosphate [β-TCP; β-Ca3(PO4)2] are often used interchangeably since Mg-whitlockite is not easily distinguished from β-Ca3(PO4)2 by powder X-ray diffraction although their crystalline structures differ significantly. Being both osteoconductive and bioresorbable, Mg-whitlockite is pursued as a synthetic bone graft substitute. In recent years, advances in development of synthetic Mg-whitlockite have been accompanied by claims that Mg-whitlockite is the second most abundant inorganic constituent of bone, occupying as much as 20-35 wt% of the inorganic fraction. To find evidence in support of this notion, this review presents an exhaustive summary of Mg-whitlockite identification in biological tissues. Mg-whitlockite is mainly found in association with pathological mineralisation of various soft tissues and dental calculus, and occasionally with enamel and dentine. With the exception of high-temperature treated tumoural calcified deposits around interphalangeal and metacarpal joints and rhomboidal Mg-whitlockite crystals in post-apoptotic osteocyte lacunae in human alveolar bone, this unusual mineral has never been detected in the extracellular matrix of mammalian bone. Characterisation techniques capable of unequivocally distinguishing between different calcium phosphate phases, such as high-resolution imaging, crystallography, and/or spectroscopy have exclusively identified bone mineral as poorly crystalline, ion-substituted, carbonated apatite. The idea that Mg-whitlockite is a significant constituent of bone mineral remains unsubstantiated. Contrary to claims that such biomaterials represent a bioinspired/biomimetic approach to bone repair, Mg-whitlockite remains, exclusively, a pathological biomineral. STATEMENT OF SIGNIFICANCE: Magnesium whitlockite (Mg-whitlockite) is a unique calcium phosphate that typically features in pathological calcification of soft tissues; however, an alarming trend emerging in the synthetic bioceramics community claims that Mg-whitlockite occupies 20-35 wt% of bone mineral and therefore synthetic Mg-whitlockite represents a biomimetic approach towards bone regeneration. By providing an overview of Mg-whitlockite detection in biological tissues and scrutinising a diverse cross-section of literature relevant to bone composition analysis, this review concludes that Mg-whitlockite is exclusively a pathological biomineral, and having never been reported in bone extracellular matrix, Mg-whitlockite does not constitute a biomimetic strategy for bone repair.
Collapse
|
14
|
Mosiman DS, Sutrisno A, Fu R, Mariñas BJ. Internalization of Fluoride in Hydroxyapatite Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2639-2651. [PMID: 33533604 DOI: 10.1021/acs.est.0c07398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydroxyapatite (HAP) is a cost-effective material to remove excess levels of fluoride from water. Historically, HAP has been considered a fluoride adsorbent in the environmental engineering community. This paper substantiates an uptake paradigm that has recently gained disparate support: assimilation of fluoride to bulk apatite lattice sites in addition to surface lattice sites. Pellets of HAP nanoparticles (NPs) were packed into a fixed-bed media filter to treat solutions containing 30 mg-F/L (1.58 mM) at pH 8, yielding an uptake of 15.97 ± 0.03 mg-F/g-HAP after 864 h. Solid-state 19F and 13C magic-angle spinning nuclear magnetic resonance spectroscopy demonstrated that all removed fluoride is apatitic. A transmission electron microscopy analysis of particle size distribution, morphology, and crystal habit resulted in the development of a model to quantify adsorption and total fluoride capacity. Low- and high-estimate median adsorption capacities were 2.40 and 6.90 mg-F/g-HAP, respectively. Discrepancies between experimental uptake and adsorption capacity indicate the range of F- that internalizes to satisfy conservation of mass. The model was developed to demonstrate that F- internalization in HAP NPs occurs under environmentally relevant conditions and as a tool to understand the extent of F- internalization in HAP NPs of any kind.
Collapse
Affiliation(s)
- Daniel S Mosiman
- Safe Global Water Institute, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois 61801, United States
| | - Andre Sutrisno
- NMR/EPR Laboratory, School of Chemical Sciences NMR Facility, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois 61801, United States
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Benito J Mariñas
- Safe Global Water Institute, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois 61801, United States
| |
Collapse
|
15
|
Bertolotti F, Carmona FJ, Dal Sasso G, Ramírez-Rodríguez GB, Delgado-López JM, Pedersen JS, Ferri F, Masciocchi N, Guagliardi A. On the amorphous layer in bone mineral and biomimetic apatite: A combined small- and wide-angle X-ray scattering analysis. Acta Biomater 2021; 120:167-180. [PMID: 32438109 DOI: 10.1016/j.actbio.2020.04.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/04/2020] [Accepted: 04/13/2020] [Indexed: 01/02/2023]
Abstract
The occurrence of an amorphous calcium phosphate layer covering the crystalline apatite core has been suggested to be an intrinsic feature of both bone mineral and synthetic biomimetic analogs. However, an exahustive quantitative picture of the amorphous-crystalline relationship in these materials is still missing. Here, we present a multiple scale modelling that combines small-angle X-ray scattering (SAXS) and synchrotron wide-angle X-ray total scattering (WAXTS) analyses to investigate the amorphous-crystalline spatial interplay in bone sample and biomimetic carbonated nano-apatites. SAXS analysis indicates the presence of a single morphology consisting of tiny nanoplates (NPLs) and provides a measure of their thickness (falling in the 3-5 nm range). WAXTS analysis was performed by developing atomistic models of apatite NPLs incorporating lattice strain, mostly attributed to the carbonate content, and calculating the X-ray patterns using the Debye Scattering Equation. Upon model optimization, the size and strain parameters of the crystalline platelets were derived and the amorphous component, co-existing with the crystalline one, separated and quantified (in the 23-33 wt% range). Notably, the thickness of the apatite core was found to exhibit nearly null (bone) or minor (< 0.5 nm, biomimetic samples) deviations from that of the entire NPLs, suggesting that the amorphous material remains predominantly distributed along the lateral sides of the NPLs, in a core-crown-like arrangement. The lattice strain analysis indicates a significant stiffness along the c axis, which is comparable in bone and synthetic samples, and larger deformations in the other directions. STATEMENT OF SIGNIFICANCE: Current models of bone mineral and biomimetic nanoapatites suggest the occurrence of an amorphous layer covering the apatitic crystalline nanoplates in a core-shell arrangement. By combining X-ray scattering techniques in the small and wide angle regions, we propose a joint atomic-to-nanometre scale modelling to investigate the amorphous-crystalline interplay within the nanoplates. Estimates are extracted for the thickness of the entire nanoplates and the crystalline core, together with the quantification of the amorphous fraction and apatite lattice strain. Based on the thickness matching, the location of the amorphous material mostly along the edges of the nanoplates is inferred, with a vanishing or very thin layer in the thickness direction, suggesting a core-crown-like arrangement, with possible implications on the mineral surface reactivity.
Collapse
Affiliation(s)
- Federica Bertolotti
- Department of Science and High Technology and To.Sca.Lab, University of Insubria, Via Valleggio 11, I-22100 Como, Italy
| | - Francisco J Carmona
- Department of Science and High Technology and To.Sca.Lab, University of Insubria, Via Valleggio 11, I-22100 Como, Italy
| | - Gregorio Dal Sasso
- Institute of Crystallography and To.Sca.Lab, Consiglio Nazionale delle Ricerche, Via Valleggio 11, I-22100 Como, Italy
| | - Gloria B Ramírez-Rodríguez
- Department of Science and High Technology and To.Sca.Lab, University of Insubria, Via Valleggio 11, I-22100 Como, Italy; Department of Inorganic Chemistry, University of Granada, Av. Fuentenueva S/N, E-18071 Granada, Spain
| | - José Manuel Delgado-López
- Department of Inorganic Chemistry, University of Granada, Av. Fuentenueva S/N, E-18071 Granada, Spain
| | - Jan Skov Pedersen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Fabio Ferri
- Department of Science and High Technology and To.Sca.Lab, University of Insubria, Via Valleggio 11, I-22100 Como, Italy
| | - Norberto Masciocchi
- Department of Science and High Technology and To.Sca.Lab, University of Insubria, Via Valleggio 11, I-22100 Como, Italy.
| | - Antonietta Guagliardi
- Institute of Crystallography and To.Sca.Lab, Consiglio Nazionale delle Ricerche, Via Valleggio 11, I-22100 Como, Italy.
| |
Collapse
|
16
|
Coppel Y, Prigent Y, Grégoire G. Characterization of hydrogenated dentin components by advanced 1H solid-state NMR experiments. Acta Biomater 2021; 120:156-166. [PMID: 32860946 DOI: 10.1016/j.actbio.2020.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/30/2020] [Accepted: 08/15/2020] [Indexed: 12/20/2022]
Abstract
Collecting information about molecular organisation on biological materials such as bone and dentin represents a major challenge in attaining a better understanding of their mechanical properties. To that end, solid state Nuclear Magnetic Resonance (ssNMR) spectroscopic study is an appropriate strategy to provide atomic structural details on these amorphous composite materials. However, species like water molecules and hydroxyl groups are usually observed through 1H magic angle spinning (MAS) ssNMR that suffers from poor resolution due to strong signal overlapping, making their identification difficult. This paper proposes a set of ssNMR experiments for 1H characterization of the main components of human dentin, based on homo- and hetero-nuclear dipolar couplings and composed mostly of fast 1D experiments. The 1H assignment is assisted by straightforward sample modifications: vacuum drying, deuterium exchange and demineralization. These experiments allow the hydrogen signal edition of dentin species like water molecules, HPO42- and OH- groups, depending on their localization (bound to the organic phase, linked to apatite or at the interface) and their dynamic behaviour. This ssNMR toolbox has the potential to provide important structural and dynamic information on chemical and physical modifications of biomaterials. STATEMENT OF SIGNIFICANCE: Molecular characterisation of apatitic biomaterials by biophysical techniques is extremely difficult due to their complex and amorphous nature. It is, however, crucial to obtain such information if we want to understand their mechanical properties in relation to their physical state, for example their hydration levels. In this article we used a set of solid state NMR experiments and sample modifications to distinguish 1H signal of human dentin components with a particular attention to water molecules, known for their major role in biomaterial structuring.
Collapse
Affiliation(s)
- Yannick Coppel
- Laboratoire de Chimie de Coordination UPR8241, CNRS, 205 Rte de Narbonne, F-31077, Toulouse Cedex 04, France.
| | - Yann Prigent
- Institut de Chimie de Toulouse (ICT) - FR 2599, Faculté des Sciences et de l'Ingénierie, Université Toulouse III, 31062 Toulouse, France
| | - Geneviève Grégoire
- Faculté d'Odontologie, Toulouse Cedex 31062; Unité de Recherche Biomatériaux Innovants et Interfaces EA4462/URB2i, Université Paris, 92120, France
| |
Collapse
|
17
|
Eichholz KF, Von Euw S, Burdis R, Kelly DJ, Hoey DA. Development of a New Bone-Mimetic Surface Treatment Platform: Nanoneedle Hydroxyapatite (nnHA) Coating. Adv Healthc Mater 2020; 9:e2001102. [PMID: 33111481 DOI: 10.1002/adhm.202001102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/17/2020] [Indexed: 12/15/2022]
Abstract
The hierarchical structure of bone plays pivotal roles in driving cell behavior and tissue regeneration and must be considered when designing materials for orthopedic applications. Herein, it is aimed to recapitulate the native bone environment by using melt electrowriting to fabricate fibrous microarchitectures which are modified with plate-shaped (pHA) or novel nanoneedle-shaped (nnHA) crystals. Nuclear magnetic resonance spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction demonstrate that these coatings replicate the nanostructure and composition of native bone. Human mesenchymal stem/stromal cell (MSC) mineralization is significantly increased fivefold with pHA scaffolds and 14-fold with nnHA scaffolds. Given the protein stabilizing properties of mineral, these materials are further functionalized with bone morphogenetic protein 2 (BMP2). nnHA treatment facilitates controlled release of BMP2 which further enhance MSC mineral deposition. Finally, the versatility of this nnHA treatment method, which may be used to coat different architectures/materials including fused deposition modeling (FDM) scaffolds and Ti6Al4V titanium, is demonstrated. This study thus outlines a method for fabricating scaffolds with precise fibrous microarchitectures and bone-mimetic nnHA extrafibrillar coatings which significantly enhance MSC osteogenesis and therapeutic protein delivery, and leverages these results to show how this surface treatment method may be applied to a wider field for multiple orthopedic applications.
Collapse
Affiliation(s)
- Kian F. Eichholz
- Department of Mechanical, Aeronautical and Biomedical Engineering Materials and Surface Science Institute University of Limerick Limerick V94 T9PX Ireland
- Trinity Centre for Biomedical Engineering Trinity Biomedical Sciences Institute Trinity College Dublin Pearse Street Dublin 2 D02 R590 Ireland
- Department of Mechanical and Manufacturing Engineering School of Engineering Trinity College Dublin Dublin D02 R590 Ireland
| | - Stanislas Von Euw
- Trinity Centre for Biomedical Engineering Trinity Biomedical Sciences Institute Trinity College Dublin Pearse Street Dublin 2 D02 R590 Ireland
- Department of Mechanical and Manufacturing Engineering School of Engineering Trinity College Dublin Dublin D02 R590 Ireland
| | - Ross Burdis
- Trinity Centre for Biomedical Engineering Trinity Biomedical Sciences Institute Trinity College Dublin Pearse Street Dublin 2 D02 R590 Ireland
- Department of Mechanical and Manufacturing Engineering School of Engineering Trinity College Dublin Dublin D02 R590 Ireland
| | - Daniel J. Kelly
- Trinity Centre for Biomedical Engineering Trinity Biomedical Sciences Institute Trinity College Dublin Pearse Street Dublin 2 D02 R590 Ireland
- Department of Mechanical and Manufacturing Engineering School of Engineering Trinity College Dublin Dublin D02 R590 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre Trinity College Dublin and RCSI Dublin D02 R590 Ireland
- CÚRAM Centre for Research in Medical Devices National University of Ireland Galway D02 R590 Ireland
| | - David A. Hoey
- Department of Mechanical, Aeronautical and Biomedical Engineering Materials and Surface Science Institute University of Limerick Limerick V94 T9PX Ireland
- Trinity Centre for Biomedical Engineering Trinity Biomedical Sciences Institute Trinity College Dublin Pearse Street Dublin 2 D02 R590 Ireland
- Department of Mechanical and Manufacturing Engineering School of Engineering Trinity College Dublin Dublin D02 R590 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre Trinity College Dublin and RCSI Dublin D02 R590 Ireland
- CÚRAM Centre for Research in Medical Devices National University of Ireland Galway D02 R590 Ireland
| |
Collapse
|
18
|
Querido W, Shanas N, Bookbinder S, Oliveira-Nunes MC, Krynska B, Pleshko N. Fourier transform infrared spectroscopy of developing bone mineral: from amorphous precursor to mature crystal. Analyst 2020; 145:764-776. [PMID: 31755889 DOI: 10.1039/c9an01588d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bone mineral development has been described to proceed through an amorphous precursor prior to apatite crystallization. However, further analytical approaches are necessary to identify specific markers of amorphous mineral components in bone. Here, we establish an original Fourier transform infrared (FTIR) spectroscopy approach to allow the specific identification of the amorphous and/or crystalline nature of bone mineral. Using a series of standards, our results demonstrate that obtaining the second derivative of the FTIR spectra could reveal a peak specifically corresponding to amorphous calcium phosphate (ACP) at ∼992 cm-1. The intensity of this peak was strongly correlated to ACP content in standard mixtures. The analysis of a variety of bones showed that a clear ACP peak could be identified as a specific marker of the existence of an amorphous mineral component in developing bones. In contrast, the ACP peak was not detected in the mature bones. Moreover, subjecting developing bones to ex vivo crystallization conditions led to a clear reduction of the ACP peak, further substantiating the conversion of amorphous mineral precursor into mature apatite crystals. Analysis of mineralization in osteogenic cell cultures corroborated our observations, showing the presence of ACP as a major transient component in early mineralization, but not in the mature matrix. Additionally, FTIR imaging revealed that ACP was present in areas of matrix development, distributed around the edges of mineralizing nodules. Using an original analytical approach, this work provides strong evidence to support that bone mineral development is initiated by an amorphous precursor prior to apatite crystallization.
Collapse
Affiliation(s)
- William Querido
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Reznikov N, Hoac B, Buss DJ, Addison WN, Barros NMT, McKee MD. Biological stenciling of mineralization in the skeleton: Local enzymatic removal of inhibitors in the extracellular matrix. Bone 2020; 138:115447. [PMID: 32454257 DOI: 10.1016/j.bone.2020.115447] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022]
Abstract
Biomineralization is remarkably diverse and provides myriad functions across many organismal systems. Biomineralization processes typically produce hardened, hierarchically organized structures usually having nanostructured mineral assemblies that are formed through inorganic-organic (usually protein) interactions. Calcium‑carbonate biomineral predominates in structures of small invertebrate organisms abundant in marine environments, particularly in shells (remarkably it is also found in the inner ear otoconia of vertebrates), whereas calcium-phosphate biomineral predominates in the skeletons and dentitions of both marine and terrestrial vertebrates, including humans. Reconciliation of the interplay between organic moieties and inorganic crystals in bones and teeth is a cornerstone of biomineralization research. Key molecular determinants of skeletal and dental mineralization have been identified in health and disease, and in pathologic ectopic calcification, ranging from small molecules such as pyrophosphate, to small membrane-bounded matrix vesicles shed from cells, and to noncollagenous extracellular matrix proteins such as osteopontin and their derived bioactive peptides. Beyond partly knowing the regulatory role of the direct actions of inhibitors on vertebrate mineralization, more recently the importance of their enzymatic removal from the extracellular matrix has become increasingly understood. Great progress has been made in deciphering the relationship between mineralization inhibitors and the enzymes that degrade them, and how adverse changes in this physiologic pathway (such as gene mutations causing disease) result in mineralization defects. Two examples of this are rare skeletal diseases having osteomalacia/odontomalacia (soft bones and teeth) - namely hypophosphatasia (HPP) and X-linked hypophosphatemia (XLH) - where inactivating mutations occur in the gene for the enzymes tissue-nonspecific alkaline phosphatase (TNAP, TNSALP, ALPL) and phosphate-regulating endopeptidase homolog X-linked (PHEX), respectively. Here, we review and provide a concept for how existing and new information now comes together to describe the dual nature of regulation of mineralization - through systemic mineral ion homeostasis involving circulating factors, coupled with molecular determinants operating at the local level in the extracellular matrix. For the local mineralization events in the extracellular matrix, we present a focused concept in skeletal mineralization biology called the Stenciling Principle - a principle (building upon seminal work by Neuman and Fleisch) describing how the action of enzymes to remove tissue-resident inhibitors defines with precision the location and progression of mineralization.
Collapse
Affiliation(s)
- N Reznikov
- Object Research Systems Inc., 760 St. Paul West, Montreal, Quebec H3C 1M4, Canada.
| | - B Hoac
- Faculty of Dentistry, McGill University, 3640 University St., Montreal, Quebec H3A 0C7, Canada
| | - D J Buss
- Department of Anatomy and Cell Biology, McGill University, 3640 University St., Montreal, Quebec H3A 0C7, Canada
| | - W N Addison
- Department of Molecular Signaling and Biochemistry, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, Japan
| | - N M T Barros
- Departamento de Biofísica, São Paulo, Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, Brazil
| | - M D McKee
- Faculty of Dentistry, McGill University, 3640 University St., Montreal, Quebec H3A 0C7, Canada; Department of Anatomy and Cell Biology, McGill University, 3640 University St., Montreal, Quebec H3A 0C7, Canada.
| |
Collapse
|
20
|
Olivier F, Rochet N, Delpeux-Ouldriane S, Chancolon J, Sarou-Kanian V, Fayon F, Bonnamy S. Strontium incorporation into biomimetic carbonated calcium-deficient hydroxyapatite coated carbon cloth: Biocompatibility with human primary osteoblasts. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111192. [PMID: 32806314 DOI: 10.1016/j.msec.2020.111192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/07/2020] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
It has already been shown that sono-electrodeposition can be used to coat activated carbon fiber cloth (ACC) with calcium phosphates (CaP) and we recently demonstrated that cathodic polarization at -1 V/Hg/Hg2SO4 was the best parameter to obtain a carbonated calcium deficient hydroxyapatite (CDA) coating with optimal uniformity and homogeneity. In the present study, we investigated whether this technique was suitable to dope this carbonated CDA coating by partial substitution with another bivalent cation such as strontium. We show here that a strontium-substituted carbonated CDA coating can be produced and quantitatively controlled up to at least 10 at.%. In this range we demonstrate that the presence of strontium does not modify either the textural or the structural properties of the carbonated CDA. Owing to the well-known effect of both carbonated CDA and strontium in bone formation, the biocompatibility of ACC coated or not with carbonated CDA or with strontium substituted carbonated CDA was tested using primary human osteoblasts. Our data revealed a positive and dose-dependent effect of strontium addition on osteoblast activity and proliferation. In conclusion, we show here that electrodeposition at -1 V is a suitable and easy process to incorporate cations of biological interest into CaP coating.
Collapse
Affiliation(s)
- F Olivier
- CNRS, ICMN UMR 7374, Univ. Orléans, Orléans, France.
| | - N Rochet
- Univ. Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | - J Chancolon
- CNRS, ICMN UMR 7374, Univ. Orléans, Orléans, France
| | | | - F Fayon
- CNRS, CEMHTI UPR 3079, Univ. Orléans, Orléans, France
| | - S Bonnamy
- CNRS, ICMN UMR 7374, Univ. Orléans, Orléans, France
| |
Collapse
|
21
|
Carmona FJ, Dal Sasso G, Bertolotti F, Ramírez-Rodríguez GB, Delgado-López JM, Pedersen JS, Masciocchi N, Guagliardi A. The role of nanoparticle structure and morphology in the dissolution kinetics and nutrient release of nitrate-doped calcium phosphate nanofertilizers. Sci Rep 2020; 10:12396. [PMID: 32709936 PMCID: PMC7382453 DOI: 10.1038/s41598-020-69279-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/09/2020] [Indexed: 01/06/2023] Open
Abstract
Bio-inspired synthetic calcium phosphate (CaP) nanoparticles (NPs), mimicking the mineral component of bone and teeth, are emergent materials for sustainable applications in agriculture. These sparingly soluble salts show self-inhibiting dissolution processes in undersaturated aqueous media, the control at the molecular and nanoscale levels of which is not fully elucidated. Understanding the mechanisms of particle dissolution is highly relevant to the efficient delivery of macronutrients to the plants and crucial for developing a valuable synthesis-by-design approach. It has also implications in bone (de)mineralization processes. Herein, we shed light on the role of size, morphology and crystallinity in the dissolution behaviour of CaP NPs and on their nitrate doping for potential use as (P,N)-nanofertilizers. Spherical fully amorphous NPs and apatite-amorphous nanoplatelets (NPLs) in a core-crown arrangement are studied by combining forefront Small-Angle and Wide-Angle X-ray Total Scattering (SAXS and WAXTS) analyses. Ca2+ ion release rates differ for spherical NPs and NPLs demonstrating that morphology plays an active role in directing the dissolution kinetics. Amorphous NPs manifest a rapid loss of nitrates governed by surface-chemistry. NPLs show much slower release, paralleling that of Ca2+ ions, that supports both detectable nitrate incorporation in the apatite structure and dissolution from the core basal faces.
Collapse
Affiliation(s)
- Francisco J Carmona
- Department of Science and High Technology and To.Sca.Lab, University of Insubria, Via Valleggio 11, 22100, Como, Italy
| | - Gregorio Dal Sasso
- Institute of Crystallography and To.Sca.Lab, Consiglio Nazionale Delle Ricerche, Via Valleggio 11, 22100, Como, Italy
| | - Federica Bertolotti
- Department of Science and High Technology and To.Sca.Lab, University of Insubria, Via Valleggio 11, 22100, Como, Italy
| | - Gloria B Ramírez-Rodríguez
- Department of Science and High Technology and To.Sca.Lab, University of Insubria, Via Valleggio 11, 22100, Como, Italy
- Department of Inorganic Chemistry, University of Granada, Av. Fuentenueva S/N, 18071, Granada, Spain
| | - José M Delgado-López
- Department of Inorganic Chemistry, University of Granada, Av. Fuentenueva S/N, 18071, Granada, Spain
| | - Jan Skov Pedersen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Norberto Masciocchi
- Department of Science and High Technology and To.Sca.Lab, University of Insubria, Via Valleggio 11, 22100, Como, Italy.
| | - Antonietta Guagliardi
- Institute of Crystallography and To.Sca.Lab, Consiglio Nazionale Delle Ricerche, Via Valleggio 11, 22100, Como, Italy.
| |
Collapse
|
22
|
Favarin BZ, Bolean M, Ramos AP, Magrini A, Rosato N, Millán JL, Bottini M, Costa-Filho AJ, Ciancaglini P. Lipid composition modulates ATP hydrolysis and calcium phosphate mineral propagation by TNAP-harboring proteoliposomes. Arch Biochem Biophys 2020; 691:108482. [PMID: 32710882 DOI: 10.1016/j.abb.2020.108482] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/22/2020] [Indexed: 01/13/2023]
Abstract
Bone biomineralization is mediated by a special class of extracellular vesicles, named matrix vesicles (MVs), released by osteogenic cells. The MV membrane is enriched in sphingomyelin (SM), cholesterol (Chol) and tissue non-specific alkaline phosphatase (TNAP) compared with the parent cells' plasma membrane. TNAP is an ATP phosphohydrolase bound to cell and MV membranes via a glycosylphosphatidylinositol (GPI) anchor. Previous studies have shown that the lipid microenvironment influences the catalytic activity of enzymes incorporated into lipid bilayers. However, there is a lack of information about how the lipid microenvironment controls the ability of MV membrane-bound enzymes to induce mineral precipitation. Herein, we used TNAP-harboring proteoliposomes made of either pure dimyristoylphosphatidylcholine (DMPC) or DMPC mixed with either Chol, SM or both of them as MV biomimetic systems to evaluate how the composition modulates the lipid microenvironment and, in turn, TNAP incorporation into the lipid bilayer by means of calorimetry. These results were correlated with the proteoliposomes' catalytic activity and ability to induce the precipitation of amorphous calcium phosphate (ACP) in vitro. DMPC:SM proteoliposomes displayed the highest efficiency of mineral propagation, apparent affinity for ATP and substrate hydrolysis efficiency, which correlated with their highest degree of membrane organization (highest ΔH), among the tested proteoliposomes. Results obtained from turbidimetry and Fourier transformed infrared (FTIR) spectroscopy showed that the tested proteoliposomes induced ACP precipitation with the order DMPC:SM>DMPC:Chol:SM≈DMPC:Chol>DMPC which correlated with the lipid organization and the presence of SM in the proteoliposome membrane. Our study arises important insights regarding the physical properties and role of lipid organization in MV-mediated mineralization.
Collapse
Affiliation(s)
- B Z Favarin
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - M Bolean
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - A P Ramos
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - A Magrini
- Department of Biopathology and Imaging Diagnostics, University of Rome Tor Vergata, Rome, Italy
| | - N Rosato
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - J L Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - M Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - A J Costa-Filho
- Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - P Ciancaglini
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
23
|
Gervais C, Bonhomme C, Laurencin D. Recent directions in the solid-state NMR study of synthetic and natural calcium phosphates. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 107:101663. [PMID: 32325374 DOI: 10.1016/j.ssnmr.2020.101663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Materials containing a calcium phosphate component have been the subject of much interest to NMR spectroscopists, especially in view of understanding the structure and properties of mineralized tissues like bone and teeth, and of developing synthetic biomaterials for bone regeneration. Here, we present a selection of recent developments in their structural characterization using advanced solid state NMR experiments, highlighting the level of insight which can now be accessed.
Collapse
Affiliation(s)
- Christel Gervais
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, Sorbonne Université, CNRS, 75005, Paris, France
| | - Christian Bonhomme
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, Sorbonne Université, CNRS, 75005, Paris, France
| | | |
Collapse
|
24
|
Uskoković V. Visualizing Different Crystalline States during the Infrared Imaging of Calcium Phosphates. VIBRATIONAL SPECTROSCOPY 2020; 108:103045. [PMID: 35360824 PMCID: PMC8967067 DOI: 10.1016/j.vibspec.2020.103045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Methods utilizing relatively simple mathematical operations during physical analyses to enable the visualization of otherwise invisible correlations and effects are of particular appeal to researchers and students in pedagogical settings. At the same time, discerning the amorphous phase from its crystalline counterpart in materials is challenging with the use of vibrational spectroscopy and is nowhere as straightforward as in phase composition analytical methods such as X-ray diffraction. A method is demonstrated for the use of first- and second-order differentiation of Fourier transform infrared spectra of calcium phosphates to distinguish their amorphous states from the crystalline ones based on the exact line positioning rather than on comparatively vaguer band broadening and splitting effects. The study utilizes a kinetic approach, focusing on the comparison of spectral features of amorphous precursors annealed in air at different temperatures and aged for different periods of time in an aqueous solution until transforming to one or a mixture of crystalline phases, including hydroxyapatite and α- and β-tricalcium phosphate. One of the findings challenges the concept of the nucleation lag time preceding the crystallization from amorphous precursors as a "dead" period and derives a finite degree of constructive changes occurring at the atomic scale in its course. The differential method for highlighting spectral differences depending on the sample crystallinity allows for monitoring in situ the process of conversion of the amorphous calcium phosphate phase to its crystalline analogue(s). One such method can be of practical significance for synthetic solid state chemists testing for the chemical stability and/or concentration of the reactive amorphous phase in these materials, but also for biologists measuring the maturity of bone and medical researchers evaluating its phase composition and, thus, the state of metabolic and mechanical stability.
Collapse
Affiliation(s)
- Vuk Uskoković
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Engineering Gateway 4200, Irvine, CA 92697, USA
| |
Collapse
|
25
|
Mahon OR, Browe DC, Gonzalez-Fernandez T, Pitacco P, Whelan IT, Von Euw S, Hobbs C, Nicolosi V, Cunningham KT, Mills KH, Kelly DJ, Dunne A. Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent manner. Biomaterials 2020; 239:119833. [DOI: 10.1016/j.biomaterials.2020.119833] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 12/22/2022]
|
26
|
Robin M, Von Euw S, Renaudin G, Gomes S, Krafft JM, Nassif N, Azaïs T, Costentin G. Insights into OCP identification and quantification in the context of apatite biomineralization. CrystEngComm 2020. [DOI: 10.1039/c9ce01972c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monitoring apatite formation throughin situRAMAN andex situssNMR spectroscopy.
Collapse
Affiliation(s)
- Marc Robin
- Sorbonne Université
- CNRS
- Collège de France
- Laboratoire Chimie de la Matière Condensée de Paris
- LCMCP
| | - Stanislas Von Euw
- Sorbonne Université
- CNRS
- Collège de France
- Laboratoire Chimie de la Matière Condensée de Paris
- LCMCP
| | - Guillaume Renaudin
- Université Clermont Auvergne
- CNRS
- ICCF
- SIGMA Clermont
- F-63000 Clermont-Ferrand
| | - Sandrine Gomes
- Université Clermont Auvergne
- CNRS
- ICCF
- SIGMA Clermont
- F-63000 Clermont-Ferrand
| | - Jean-Marc Krafft
- Sorbonne Université
- CNRS
- Laboratoire Réactivité de Surface
- LRS
- F-75005 Paris
| | - Nadine Nassif
- Sorbonne Université
- CNRS
- Collège de France
- Laboratoire Chimie de la Matière Condensée de Paris
- LCMCP
| | - Thierry Azaïs
- Sorbonne Université
- CNRS
- Collège de France
- Laboratoire Chimie de la Matière Condensée de Paris
- LCMCP
| | - Guylène Costentin
- Sorbonne Université
- CNRS
- Laboratoire Réactivité de Surface
- LRS
- F-75005 Paris
| |
Collapse
|
27
|
Bystrom JL, Pujari-Palmer M. Phosphoserine Functionalized Cements Preserve Metastable Phases, and Reprecipitate Octacalcium Phosphate, Hydroxyapatite, Dicalcium Phosphate, and Amorphous Calcium Phosphate, during Degradation, In Vitro. J Funct Biomater 2019; 10:E54. [PMID: 31783637 PMCID: PMC6963472 DOI: 10.3390/jfb10040054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/15/2023] Open
Abstract
Phosphoserine modified cements (PMC) exhibit unique properties, including strong adhesion to tissues and biomaterials. While TTCP-PMCs remodel into bone in vivo, little is known regarding the bioactivity and physiochemical changes that occur during resorption. In the present study, changes in the mechanical strength and composition were evaluated for 28 days, for three formulations of αTCP based PMCs. PMCs were significantly stronger than unmodified cement (38-49 MPa vs. 10 MPa). Inclusion of wollastonite in PMCs appeared to accelerate the conversion to hydroxyapatite, coincident with slight decrease in strength. In non-wollastonite PMCs the initial compressive strength did not change after 28 days in PBS (p > 0.99). Dissolution/degradation of PMC was evaluated in acidic (pH 2.7, pH 4.0), and supersaturated fluids (simulated body fluid (SBF)). PMCs exhibited comparable mass loss (<15%) after 14 days, regardless of pH and ionic concentration. Electron microscopy, infrared spectroscopy, and X-ray analysis revealed that significant amounts of brushite, octacalcium phosphate, and hydroxyapatite reprecipitated, following dissolution in acidic conditions (pH 2.7), while amorphous calcium phosphate formed in SBF. In conclusion, PMC surfaces remodel into metastable precursors to hydroxyapatite, in both acidic and neutral environments. By tuning the composition of PMCs, durable strength in fluids, and rapid transformation can be obtained.
Collapse
Affiliation(s)
| | - Michael Pujari-Palmer
- Applied Material Science, Department of Engineering, Uppsala University, 75121 Uppsala, Sweden;
| |
Collapse
|
28
|
Yoshihara K, Nagaoka N, Yoshida Y, Van Meerbeek B, Hayakawa S. Atomic level observation and structural analysis of phosphoric-acid ester interaction at dentin. Acta Biomater 2019; 97:544-556. [PMID: 31425891 DOI: 10.1016/j.actbio.2019.08.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022]
Abstract
The functional monomer 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP), used in many dental adhesives, self-assembles in nano-layers at adhesive-tooth interfaces. Recently, several states of the POH groups of 10-MDP_Ca salts were suggested, while their actual status has not been elucidated yet. We mechanistically investigated 10-MDP_Ca-salt nano-layering at adhesive-dentin interfaces, correlatively using scanning transmission electron microscopy with energy-dispersive X-ray spectrometry (STEM-EDS), X-ray diffraction (XRD) and solid state nuclear magnetic resonance (NMR). STEM-EDS confirmed the presence of Ca and P in each nano-layer. Both XRD and NMR revealed that the two terminal POH groups of 10-MDP reacted with Ca. This twofold POH interaction of 10-MDP with Ca was stable in water and is therefore expected to contribute to durable nano-layering of 10-MDP_Ca salts in the hybrid and adhesive layer. STATEMENT OF SIGNIFICANCE: The functional monomer 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP), commonly used in dental adhesives with favorable long-term clinical outcome, has been documented to self-assemble into nano-layers at adhesive-tooth interfaces. Characterizing ultra-morphologically (STEM) and chemically (STEM-EDS, XRD, NMR) the mechanisms of interaction of 10-MDP with bulk dentin in a similar manner as what occurs clinically, it was found that the water stable 10-MDP_Ca salts consist of CaRPO4, meaning that the two OH groups of the phosphate group of 10-MDP ionically reacted with Ca. This stable structure is expected to contribute to durable nano-layering of 10-MDP_Ca salts in the hybrid and adhesive layer and hence to clinical longevity of the adhesively bonded tooth restoration.
Collapse
|
29
|
Azaïs T, Von Euw S, Ajili W, Auzoux-Bordenave S, Bertani P, Gajan D, Emsley L, Nassif N, Lesage A. Structural description of surfaces and interfaces in biominerals by DNP SENS. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 102:2-11. [PMID: 31216494 DOI: 10.1016/j.ssnmr.2019.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
Biological mineralized tissues are hybrid materials with complex hierarchical architecture composed of biominerals often embedded in an organic matrix. The atomic-scale comprehension of surfaces and organo-mineral interfaces of these biominerals is of paramount importance to understand the ultrastructure, the formation mechanisms as well as the biological functions of the related biomineralized tissue. In this communication we demonstrate the capability of DNP SENS to reveal the fine atomic structure of biominerals, and more specifically their surfaces and interfaces. For this purpose, we studied two key examples belonging to the most significant biominerals family in nature: apatite in bone and aragonite in nacreous shell. As a result, we demonstrate that DNP SENS is a powerful approach for the study of intact biomineralized tissues. Signal enhancement factors are found to be up to 40 and 100, for the organic and the inorganic fractions, respectively, as soon as impregnation time with the radical solution is long enough (between 12 and 24 h) to allow an efficient radical penetration into the calcified tissues. Moreover, ions located at the biomineral surface are readily detected and identified through 31P or 13C HETCOR DNP SENS experiments. Noticeably, we show that protonated anions are preponderant at the biomineral surfaces in the form of HPO42- for bone apatite and HCO32- for nacreous aragonite. Finally, we demonstrate that organo-mineral interactions can be probed at the atomic level with high sensitivity. In particular, reliable 13C-{31P} REDOR experiments are achieved in a few hours, leading to the determination of distances, molar proportion and binding mode of citrate bonded to bone mineral in native compact bone. According to our results, only 80% of the total amount of citrate in bone is directly interacting with bone apatite through two out of three carboxylic groups.
Collapse
Affiliation(s)
- Thierry Azaïs
- Sorbonne Université, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005, Paris, France.
| | - Stanislas Von Euw
- Sorbonne Université, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005, Paris, France
| | - Widad Ajili
- Sorbonne Université, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005, Paris, France
| | - Stéphanie Auzoux-Bordenave
- Sorbonne Université, UMR BOREA, Biologie des Organismes et Ecosystèmes Aquatiques, MNHN/CNRS-7208/IRD-207/UPMC, Muséum National d'Histoire Naturelle, Station Marine de Concarneau, Place de la Croix 29900 Concarneau, France
| | - Philippe Bertani
- Laboratoire de RMN et Biophysique des Membranes, UMR 7177 Chimie Université de Strasbourg, Institut Le Bel, 4 rue Blaise Pascal, 67008, Strasbourg, France
| | - David Gajan
- High Field NMR Center of Lyon, CRNS/ENS Lyon/ UCB Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Nadine Nassif
- Sorbonne Université, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005, Paris, France
| | - Anne Lesage
- High Field NMR Center of Lyon, CRNS/ENS Lyon/ UCB Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| |
Collapse
|
30
|
Von Euw S, Wang Y, Laurent G, Drouet C, Babonneau F, Nassif N, Azaïs T. Bone mineral: new insights into its chemical composition. Sci Rep 2019; 9:8456. [PMID: 31186433 PMCID: PMC6560110 DOI: 10.1038/s41598-019-44620-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/27/2019] [Indexed: 01/02/2023] Open
Abstract
Some compositional and structural features of mature bone mineral particles remain unclear. They have been described as calcium-deficient and hydroxyl-deficient carbonated hydroxyapatite particles in which a fraction of the PO43- lattice sites are occupied by HPO42- ions. The time has come to revise this description since it has now been proven that the surface of mature bone mineral particles is not in the form of hydroxyapatite but rather in the form of hydrated amorphous calcium phosphate. Using a combination of dedicated solid-state nuclear magnetic resonance techniques, the hydrogen-bearing species present in bone mineral and especially the HPO42- ions were closely scrutinized. We show that these HPO42- ions are concentrated at the surface of bone mineral particles in the so-called amorphous surface layer whose thickness was estimated here to be about 0.8 nm for a 4-nm thick particle. We also show that their molar proportion is much higher than previously estimated since they stand for about half of the overall amount of inorganic phosphate ions that compose bone mineral. As such, the mineral-mineral and mineral-biomolecule interfaces in bone tissue must be driven by metastable hydrated amorphous environments rich in HPO42- ions rather than by stable crystalline environments of hydroxyapatite structure.
Collapse
Affiliation(s)
- Stanislas Von Euw
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4, place Jussieu, F-75005, Paris, France.,Trinity College Dublin, Trinity Centre for Bioengineering (TCBE), Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland
| | - Yan Wang
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4, place Jussieu, F-75005, Paris, France
| | - Guillaume Laurent
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4, place Jussieu, F-75005, Paris, France
| | - Christophe Drouet
- CIRIMAT, Université de Toulouse, CNRS, INP-Ensiacet, 4 allée Emile Monso, F-31030, Toulouse, France
| | - Florence Babonneau
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4, place Jussieu, F-75005, Paris, France
| | - Nadine Nassif
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4, place Jussieu, F-75005, Paris, France
| | - Thierry Azaïs
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4, place Jussieu, F-75005, Paris, France.
| |
Collapse
|
31
|
Abstract
The mechanism (s) that drive the organization of bone mineral throughout the bone extracellular matrix remain unclear. The long-standing theory implicates the organic matrix, namely specific non-collagenous proteins and/or collagen fibrils, while a recent theory proposes a self-assembly mechanism. Applying a combination of spectroscopic and microscopic techniques in wet and dry conditions to bone-like hydroxyapatite nanoparticles that were used as a proxy for bone mineral, we confirm that mature bone mineral particles have the capacity to self-assemble into organized structures. A large quantity of water is present at the surface of bone mineral due to the presence of a hydrophilic, amorphous surface layer that coats bone mineral nanoparticles. These water molecules must not only be strongly bound to the surface of bone mineral in the form of a rigid hydration shell, but they must also be trapped within the amorphous surface layer. Cohesive forces between these water molecules present at the mineral–mineral interface not only hold the mature bone mineral particles together, but also promote their oriented stacking. This intrinsic ability of mature bone mineral particles to organize themselves without recourse to the organic matrix forms the foundation for the development of the next generation of orthopedic biomaterials.
Collapse
|