1
|
Liu X, Li C, Zhao F, Guidoin R, Liu K, Wang F, Wang L. A functional stent with near-infrared light triggered localized photothermal-chemo synergistic therapy for malignant stenosis of esophageal cancer. Colloids Surf B Biointerfaces 2025; 251:114634. [PMID: 40101464 DOI: 10.1016/j.colsurfb.2025.114634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 03/20/2025]
Abstract
Stent implantation is a widely used palliative treatment for relieving strictures in malignant esophageal cancer. However, conventional fully covered stents play a role in preventing the tumor from ingrowth but increasing the risk of migration. Therefore, there is an urgent need for a multifunctional stent that not only reduces migration but also provides synergistic therapeutic benefits to inhibit tumor growth. This study proposed a braided esophageal stent with synergistic photothermal and chemotherapy functions to achieve precise controllable drug release. The stent was braided of Nitinol fiber and polyethylene terephthalate fiber in one-step, in which Nitinol loaded with high-efficiency photothermal conversion agent gold nanoparticles and polyethylene terephthalate loaded anti-tumor drugs release mediated by a temperature-responsive coating. The stent showed anti-migration ability and orchestrated the localized hyperthermia plus thermal-stimuli drug release during the tumor lesion. Cell experiments confirmed that the stent showed a significantly synergistic tumor cell killing effect (28.29 %). In 3D tumor sphere model, the apoptosis rate of tumor cells reached 31.34 %. In summary, the composite stent design strategy integrates anti-migration features and photoheating-controlled drug release for synergistic cancer therapy, providing a new design idea for the application of nickel-titanium alloy stents in the treatment of malignant esophageal stenosis.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Chaojing Li
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Fan Zhao
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Robert Guidoin
- Department of Surgery, Laval University and Division of Regenerative Medicine, Research Center CHU, Quebec, Canada
| | - Kaitai Liu
- Department of Radiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315040, China
| | - Fujun Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China.
| | - Lu Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Tantray J, Patel A, Parveen H, Prajapati B, Prajapati J. Nanotechnology-based biomedical devices in the cancer diagnostics and therapy. Med Oncol 2025; 42:50. [PMID: 39828813 DOI: 10.1007/s12032-025-02602-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Nanotechnology has significantly transformed the field of cancer diagnostics and therapeutics by introducing advanced biomedical devices. These nanotechnology-based devices exhibit remarkable capabilities in detecting and treating various cancers, addressing the limitations of traditional approaches, such as limited specificity and sensitivity. This review aims to explore the advancements in nanotechnology-driven biomedical devices, emphasizing their role in the diagnosis and treatment of cancer. Through a comprehensive analysis, we evaluate various nanotechnology-based devices across different cancer types, detailing their diagnostic and therapeutic effectiveness. The review also discusses FDA-approved nanotechnology products, patents, and regulatory trends, highlighting the innovation and clinical impact in oncology. Nanotechnology-based devices, including nanobots, smart pills, and multifunctional nanoparticles, enable precise targeting and treatment, reducing adverse effects on healthy tissues. Devices such as DNA-based nanorobots, quantum dots, and biodegradable stents offer noninvasive diagnostic and therapeutic options, showing high efficacy in preclinical and clinical settings. FDA-approved products underscore the acceptance of these technologies. Nanotechnology-based biomedical devices offer a promising future for oncology, with the potential to revolutionize cancer care through early detection, targeted treatment, and minimal side effects. Continued research and technological improvements are essential to fully realize their potential in personalized cancer therapy.
Collapse
Affiliation(s)
- Junaid Tantray
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Akhilesh Patel
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Hiba Parveen
- Faculty of Pharmacy, Veer Madho Singh Bhandari Uttrakhand Technical University, Dehradun, India
| | - Bhupendra Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Jigna Prajapati
- Faculty of Computer Application, Ganpat University, Mehsana, Gujarat, 384012, India.
| |
Collapse
|
3
|
Parhi R, Garg A. Recent Advances in 4D Printing: A Review of Current Smart Materials, Technologies, and Drug Delivery Systems. Curr Pharm Des 2025; 31:1180-1204. [PMID: 39702931 DOI: 10.2174/0113816128341715241216060613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024]
Abstract
Research on shape memory materials (SMM) or smart materials, along with advancements in printing technology, has transformed three-dimensional (3D) printing into what we now refer to as 4D printing. In this context, the addition of time as a fourth dimension enhances 3D printing. 4D printing involves the creation of 3D-printed objects that can change their shapes into complex geometries when influenced by external stimuli such as temperature, light, or pH over time. Currently, the use of smart materials in 4D printing is being explored extensively across various fields, including automotive, wearable electronics, soft robotics, food, mechatronics, textiles, biomedicine, and pharmaceuticals. A particular focus is on designing and fabricating smart drug delivery systems (DDS). This review discusses the evolution of 3D printing into 4D printing, highlighting the differences between the two. It covers the history and fundamentals of 4D printing, the integration of machine learning in 4D printing, and the types of materials used, such as stimuli-responsive materials (SRMs), hydrogels, liquid crystal elastomers, and active composites. Moreover, it presents various 4D printing techniques. Additionally, the review highlights several smart DDS that have been fabricated using 4D printing techniques. These include tablets, capsules, grippers, scaffolds, robots, hydrogels, microneedles, stents, bandages, dressings, and other devices aimed at esophageal retention, gastro-retention, and intravesical DDS. Lastly, it elucidates the current limitations and future directions of 4D printing.
Collapse
Affiliation(s)
- Rabinarayan Parhi
- Department of Pharmaceutical Sciences, Susruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar-788011, Assam, India
| | - Anuj Garg
- Institute of Pharmaceutical Research, GLA University, Mathura-Delhi Road, Mathura-281406, Uttar Pradesh, India
| |
Collapse
|
4
|
Kermavnar T, Guttridge C, Mulcahy NJ, Duffy E, Twomey F, O'Sullivan L. 3D printing in palliative medicine: systematic review. BMJ Support Palliat Care 2024; 14:e2244-e2253. [PMID: 39806577 PMCID: PMC11671886 DOI: 10.1136/bmjspcare-2021-003196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/28/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Three-dimensional printing (3DP) enables the production of highly customised, cost-efficient devices in a relatively short time, which can be particularly valuable to clinicians treating patients with palliative care intent who are in need of timely and effective solutions in the management of their patients' specific needs, including the relief of distressing symptoms. METHOD Four online databases were searched for articles published by December 2020 that described studies using 3DP in palliative care. The fields of application, and the relevant clinical and technological data were extracted and analysed. RESULTS Thirty studies were reviewed, describing 36 medical devices, including anatomical models, endoluminal stents, navigation guides, obturators, epitheses, endoprostheses and others. Two-thirds of the studies were published after the year 2017. The main reason for using 3DP was the difficulty of producing customised devices with traditional methods. Eleven papers described proof-of-concept studies that did not involve human testing. For those devices that were tested on patients, favourable clinical outcomes were reported in general, and treatment with the use of 3DP was deemed superior to conventional clinical approaches. The most commonly employed 3DP technologies were fused filament fabrication with acrylonitrile butadiene styrene and stereolithography or material jetting with various types of photopolymer resin. CONCLUSION Recently, there has been a considerable increase in the application of 3DP to produce medical devices and bespoke solutions in the delivery of treatments with palliative care intent. 3DP was found successful in overcoming difficulties with conventional approaches and in treating medical conditions requiring highly customised solutions.
Collapse
Affiliation(s)
- Tjaša Kermavnar
- Health Research Institute, School of Design, and Confirm Smart Manufacturing Centre, University of Limerick, Limerick, Ireland
| | - Callum Guttridge
- Health Research Institute, School of Design, and Confirm Smart Manufacturing Centre, University of Limerick, Limerick, Ireland
| | - Niall J Mulcahy
- Health Research Institute, School of Design, and Confirm Smart Manufacturing Centre, University of Limerick, Limerick, Ireland
| | - Ed Duffy
- Deparment of Palliative Medicine, Milford Care Centre Castletroy, Limerick, Ireland
| | | | - Leonard O'Sullivan
- Health Research Institute, School of Design, and Confirm Smart Manufacturing Centre, University of Limerick, Limerick, Ireland
| |
Collapse
|
5
|
Yan J, Ye Z, Wang X, Zhong D, Wang Z, Yan T, Li T, Yuan Y, Liu Y, Wang Y, Cai X. Recent research progresses of bioengineered biliary stents. Mater Today Bio 2024; 29:101290. [PMID: 39444940 PMCID: PMC11497374 DOI: 10.1016/j.mtbio.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Bile duct lesion, including benign (eg. occlusion, cholelithiasis, dilatation, malformation) and malignant (cholangiocarcinoma) diseases, is a frequently encountered challenge in hepatobiliary diseases, which can be repaired by interventional or surgical procedures. A viable cure for bile duct lesions is implantation with biliary stents. Despite the placement achieved by current clinical biliary stents, the creation of functional and readily transplantable biliary stents remains a formidable obstacle. Excellent biocompatibility, stable mechanics, and absorbability are just a few benefits of using bioengineered biliary stents, which can also support and repair damaged bile ducts that drain bile. Additionally, cell sources & organoids derived from the biliary system that are loaded onto scaffolds can encourage bile duct regeneration. Therefore, the implantation of bioengineered biliary stent is considered as an ideal treatment for bile duct lesion, holding a broad potential for clinical applications in future. In this review, we look back on the development of conventional biliary stents, biodegradable biliary stents, and bioengineered biliary stents, highlighting the crucial elements of bioengineered biliary stents in promoting bile duct regeneration. After providing an overview of the various types of cell sources & organoids and fabrication methods utilized for the bioengineering process, we present the in vitro and in vivo applications of bioengineered biliary ducts, along with the latest advances in this exciting field. Finally, we also emphasize the ongoing challenges and future development of bioengineered biliary stents.
Collapse
Affiliation(s)
- Jianing Yan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Zhichao Ye
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Xiaofeng Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
| | - Danyang Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Ziyuan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Tingting Yan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Tianyu Li
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yuyang Yuan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yu Liu
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| |
Collapse
|
6
|
Liao J, Timoshenko AB, Cordova DJ, Astudillo Potes MD, Gaihre B, Liu X, Elder BD, Lu L, Tilton M. Propelling Minimally Invasive Tissue Regeneration With Next-Era Injectable Pre-Formed Scaffolds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400700. [PMID: 38842622 DOI: 10.1002/adma.202400700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/12/2024] [Indexed: 06/07/2024]
Abstract
The growing aging population, with its associated chronic diseases, underscores the urgency for effective tissue regeneration strategies. Biomaterials play a pivotal role in the realm of tissue reconstruction and regeneration, with a distinct shift toward minimally invasive (MI) treatments. This transition, fueled by engineered biomaterials, steers away from invasive surgical procedures to embrace approaches offering reduced trauma, accelerated recovery, and cost-effectiveness. In the realm of MI tissue repair and cargo delivery, various techniques are explored. While in situ polymerization is prominent, it is not without its challenges. This narrative review explores diverse biomaterials, fabrication methods, and biofunctionalization for injectable pre-formed scaffolds, focusing on their unique advantages. The injectable pre-formed scaffolds, exhibiting compressibility, controlled injection, and maintained mechanical integrity, emerge as promising alternative solutions to in situ polymerization challenges. The conclusion of this review emphasizes the importance of interdisciplinary design facilitated by synergizing fields of materials science, advanced 3D biomanufacturing, mechanobiological studies, and innovative approaches for effective MI tissue regeneration.
Collapse
Affiliation(s)
- Junhan Liao
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Anastasia B Timoshenko
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Domenic J Cordova
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Benjamin D Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Maryam Tilton
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
7
|
Barcena AJR, Ravi P, Kundu S, Tappa K. Emerging Biomedical and Clinical Applications of 3D-Printed Poly(Lactic Acid)-Based Devices and Delivery Systems. Bioengineering (Basel) 2024; 11:705. [PMID: 39061787 PMCID: PMC11273440 DOI: 10.3390/bioengineering11070705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Poly(lactic acid) (PLA) is widely used in the field of medicine due to its biocompatibility, versatility, and cost-effectiveness. Three-dimensional (3D) printing or the systematic deposition of PLA in layers has enabled the fabrication of customized scaffolds for various biomedical and clinical applications. In tissue engineering and regenerative medicine, 3D-printed PLA has been mostly used to generate bone tissue scaffolds, typically in combination with different polymers and ceramics. PLA's versatility has also allowed the development of drug-eluting constructs for the controlled release of various agents, such as antibiotics, antivirals, anti-hypertensives, chemotherapeutics, hormones, and vitamins. Additionally, 3D-printed PLA has recently been used to develop diagnostic electrodes, prostheses, orthoses, surgical instruments, and radiotherapy devices. PLA has provided a cost-effective, accessible, and safer means of improving patient care through surgical and dosimetry guides, as well as enhancing medical education through training models and simulators. Overall, the widespread use of 3D-printed PLA in biomedical and clinical settings is expected to persistently stimulate biomedical innovation and revolutionize patient care and healthcare delivery.
Collapse
Affiliation(s)
- Allan John R. Barcena
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Prashanth Ravi
- Department of Radiology, University of Cincinnati, Cincinnati, OH 45219, USA;
| | - Suprateek Kundu
- Department of Biostatistics, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Karthik Tappa
- Department of Breast Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
8
|
Profitiliotis T, Koltsakidis S, Tsongas K, Tzetzis D. Innovative Design of a 3D Printed Esophageal Stent Inspired by Nature: Mitigating Migration Challenges in Palliative Esophageal Cancer Therapy. Biomimetics (Basel) 2024; 9:359. [PMID: 38921239 PMCID: PMC11201459 DOI: 10.3390/biomimetics9060359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Esophageal cancer is a complex and challenging tumor to treat, with esophageal stenting being used as a palliative measure to improve the quality of life of patients. Self-expandable metal stents (SEMS), self-expandable plastic stents (SEPS), and biodegradable stents are the most commonly used types of stents. However, complications can arise, such as migration, bleeding, and perforation. To address issues of migration, this study developed a novel 3D printed bioinspired esophageal stent utilizing a highly flexible and ductile TPU material. The stent was designed to be self-expanding and tubular with flared ends to provide secure anchorage at both the proximal and distal ends of the structure. Suction cups were strategically placed around the shaft of the stent to prevent migration. The stent was evaluated through compression-recovery, self-expansion, and anti-migration tests to evaluate its recovery properties, self-expansion ability, and anchoring ability, respectively. The results indicated that the novel stent was able to recover its shape, expand, keep the esophagus open, and resist migration, demonstrating its potential for further research and clinical applications. Finite element analysis (FEA) was leveraged to analyze the stent's mechanical behavior, providing insights into its structural integrity, self-expansion capability, and resistance against migration. These results, supported by FEA, highlight the potential of this innovative stent for further research and its eventual application in preclinical settings.
Collapse
Affiliation(s)
- Thomas Profitiliotis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 57001 Thermi, Greece
| | - Savvas Koltsakidis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 57001 Thermi, Greece
| | - Konstantinos Tsongas
- Department of Industrial Engineering and Management, School of Engineering, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Dimitrios Tzetzis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 57001 Thermi, Greece
| |
Collapse
|
9
|
Ledenko M, Toskich B, Mehner C, Ceylan H, Patel T. Therapeutic biliary stents: applications and opportunities. Expert Rev Med Devices 2024; 21:399-409. [PMID: 38716580 DOI: 10.1080/17434440.2024.2341960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/08/2024] [Indexed: 05/31/2024]
Abstract
INTRODUCTION Biliary stents are used to optimize ductal patency and enable bile flow in the management of obstruction or injury related to biliary tract tumors, strictures, stones, or leaks. Although direct therapeutic applications of biliary stents are less well developed, stents can be used to deliver drugs, radioisotopes, and photodynamic therapy. AREAS COVERED This report provides an in-depth overview of the clinical indications, and therapeutic utility of biliary stents. Unique considerations for the design of biliary stents are described. The properties and functionalities of materials used for stents such as metal alloys, plastic polymers, or biodegradable materials are described, and opportunities for design of future stents are outlined. Current and potential applications of stents for therapeutic applications for biliary tract diseases are described. EXPERT OPINION Therapeutic biliary stents could be used to minimize inflammation, prevent stricture formation, reduce infections, or provide localized anti-cancer therapy for biliary tract cancers. Stents could be transformed into therapeutic platforms using advanced materials, 3D printing, nanotechnology, and artificial intelligence. Whilst clinical study and validation will be required for adoption, future advances in stent design and materials are expected to expand the use of therapeutic biliary stents for the treatment of biliary tract disorders.
Collapse
Affiliation(s)
- Matthew Ledenko
- Department of Transplantation, Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | - Beau Toskich
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Christine Mehner
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, USA
| | - Hakan Ceylan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, USA
| | - Tushar Patel
- Department of Transplantation, Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
10
|
Yang Y, Yang Y, Hou Z, Wang T, Wu P, Shen L, Li P, Zhang K, Yang L, Sun S. Comprehensive review of materials, applications, and future innovations in biodegradable esophageal stents. Front Bioeng Biotechnol 2023; 11:1327517. [PMID: 38125305 PMCID: PMC10731276 DOI: 10.3389/fbioe.2023.1327517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Esophageal stricture (ES) results from benign and malignant conditions, such as uncontrolled gastroesophageal reflux disease (GERD) and esophageal neoplasms. Upper gastrointestinal endoscopy is the preferred diagnostic approach for ES and its underlying causes. Stent insertion using an endoscope is a prevalent method for alleviating or treating ES. Nevertheless, the widely used self-expandable metal stents (SEMS) and self-expandable plastic stents (SEPS) can result in complications such as migration and restenosis. Furthermore, they necessitate secondary extraction in cases of benign esophageal stricture (BES), rendering them unsatisfactory for clinical requirements. Over the past 3 decades, significant attention has been devoted to biodegradable materials, including synthetic polyester polymers and magnesium-based alloys, owing to their exceptional biocompatibility and biodegradability while addressing the challenges associated with recurring procedures after BES resolves. Novel esophageal stents have been developed and are undergoing experimental and clinical trials. Drug-eluting stents (DES) with drug-loading and drug-releasing capabilities are currently a research focal point, offering more efficient and precise ES treatments. Functional innovations have been investigated to optimize stent performance, including unidirectional drug-release and anti-migration features. Emerging manufacturing technologies such as three-dimensional (3D) printing and new biodegradable materials such as hydrogels have also contributed to the innovation of esophageal stents. The ultimate objective of the research and development of these materials is their clinical application in the treatment of ES and other benign conditions and the palliative treatment of malignant esophageal stricture (MES). This review aimed to offer a comprehensive overview of current biodegradable esophageal stent materials and their applications, highlight current research limitations and innovations, and offer insights into future development priorities and directions.
Collapse
Affiliation(s)
- Yaochen Yang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Yang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tingting Wang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Wu
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lufan Shen
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Li
- Liaoning Research Institute for Eugenic Birth and Fertility, China Medical University, Shenyang, China
| | - Kai Zhang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liqun Yang
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Institute for Eugenic Birth and Fertility, China Medical University, Shenyang, China
| | - Siyu Sun
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Guo H, Huang T, Dai Y, Fan Q, Zhang Y, He Y, Huang S, He X, Hu P, Chen G, Zhu W, Zhong Z, Liu D, Lu L, Zhang F. A Functional Stent Encapsulating Radionuclide in Temperature-Memory Spiral Tubes for Malignant Stenosis of Esophageal Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307141. [PMID: 37929924 DOI: 10.1002/adma.202307141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/22/2023] [Indexed: 11/07/2023]
Abstract
Stent implantation is a commonly used palliative treatment for alleviating stenosis in advanced esophageal cancer. However, tissue proliferation induced by stent implantation and continuous tumor growth can easily lead to restenosis. Therefore, functional stents are required to relieve stenosis while inhibiting tissue proliferation and tumor growth, thereby extending the patency. Currently, no ideal functional stents are available. Here, iodine-125 (125 I) nuclides are encapsulated into a nickel-titanium alloy (NiTi) tube to develop a novel temperature-memory spiral radionuclide stent (TSRS). It has the characteristics of temperature-memory, no cold regions at the end of the stent, and a uniform spatial dose distribution. Cell-viability experiments reveal that the TSRS can reduce the proliferation of fibroblasts and tumor cells. TSRS implantation is feasible and safe, has no significant systemic radiotoxicity, and can inhibit in-stent and edge stenosis caused by stent-induced tissue proliferation in healthy rabbits. Moreover, TSRS can improve malignant stenosis and luminal patency resulting from continuous tumor growth in a VX2 esophageal cancer model. As a functional stent, the TSRS combines the excellent properties of NiTi with brachytherapy of the 125 I nuclide and will make significant contributions to the treatment of malignant esophageal stenosis.
Collapse
Affiliation(s)
- Huanqing Guo
- Department of Minimally Invasive Intervention, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, P. R. China
| | - Tao Huang
- Department of Minimally Invasive Intervention, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, P. R. China
| | - Yi Dai
- Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Mianyang, 621900, P. R. China
| | - Qichao Fan
- Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Mianyang, 621900, P. R. China
| | - Yanling Zhang
- Department of Minimally Invasive Intervention, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, P. R. China
| | - Yao He
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, P. R. China
| | - Shuke Huang
- Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Mianyang, 621900, P. R. China
| | - Xiaofeng He
- Vascular and Interventional Therapy Department, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Pan Hu
- Department of Minimally Invasive Intervention, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, P. R. China
| | - Guanyu Chen
- Department of Minimally Invasive Intervention, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, P. R. China
| | - Wenliang Zhu
- Department of Minimally Invasive & Interventional Radiology, Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China
| | - Zhihui Zhong
- Department of Minimally Invasive Intervention, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, P. R. China
| | - Dengyao Liu
- Department of Minimally Invasive Intervention, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, P. R. China
- Department of Interventional Radiology, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi, 830011, P. R. China
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, P. R. China
| | - Fujun Zhang
- Department of Minimally Invasive Intervention, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, P. R. China
| |
Collapse
|
12
|
Lei N, Peng X, Hu M, Wan C, Yu X. Research on essential performance of oxidized chitosan-crosslinked acellular porcine aorta modified with bioactive SCPP/DOPA for esophageal scaffold with enhanced mechanical strength, biocompatibility and anti-inflammatory. Int J Biol Macromol 2023; 241:124522. [PMID: 37100332 DOI: 10.1016/j.ijbiomac.2023.124522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/06/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023]
Abstract
Acellular porcine aorta (APA) is an excellent candidate for an implanted scaffold but needs to be modified with appropriate cross-linking agent to increase its mechanical property and storage time in vitro as well as to give itself some bioactivities and eliminate its antigenicity for acting as a novel esophageal prosthesis. In this paper, a polysaccharide crosslinker (oxidized chitosan, OCS) was prepared by oxidizing chitosan using NaIO4 and further used to fix APA to prepare a novel esophageal prosthesis (scaffold). And then the surface modification with dopamine (DOPA) and strontium-doped calcium polyphosphate (SCPP) were performed one after another to prepare DOPA/OCS-APA and SCPP-DOPA/OCS-APA to improve the biocompatibility and inhibit inflammation of the scaffolds. The results showed that the OCS with a feeding ratio of 1.5:1.0 and a reaction time of 24 h had a suitable molecular weight and oxidation degree, almost no cytotoxicity and good cross-linking effect. Compared with glutaraldehyde (GA) and genipin (GP), OCS-fixed APA could provide a more suitable microenvironment for cell proliferation. The vital cross-linking characteristics and cytocompatibility of SCPP-DOPA/OCS-APA were evaluated. Results suggested that SCPP-DOPA/OCS-APA exhibited suitable mechanical properties, excellent resistance to enzymatic degradation/acid degradation, suitable hydrophilicity, and the ability to promote the proliferation of Human normal esophageal epithelial cells (HEECs) and inhibit inflammation in vitro. In vivo tests also confirmed that SCPP-DOPA/OCS-APA could diminish the immunological response to samples and had a positive impact on bioactivity and anti-inflammatory. In conclusion, SCPP-DOPA/OCS-APA could act as an effective, bioactive artificial esophageal scaffold and be expected to be used for clinical in the future.
Collapse
Affiliation(s)
- Ningning Lei
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xu Peng
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, PR China
| | - Mengyue Hu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Chang Wan
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
13
|
Moutzoukis M, Argyriou K, Kapsoritakis A, Christodoulou D. Endoscopic luminal stenting: Current applications and future perspectives. World J Gastrointest Endosc 2023; 15:195-215. [PMID: 37138934 PMCID: PMC10150289 DOI: 10.4253/wjge.v15.i4.195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/30/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Endoscopic luminal stenting (ELS) represents a minimally invasive option for the management of malignant obstruction along the gastrointestinal tract. Previous studies have shown that ELS can provide rapid relief of symptoms related to esophageal, gastric, small intestinal, colorectal, biliary, and pancreatic neoplastic strictures without compromising cancer patients’ overall safety. As a result, in both palliative and neoadjuvant settings, ELS has largely surpassed radiotherapy and surgery as a first-line treatment modality. Following the abovementioned success, the indications for ELS have gradually expanded. To date, ELS is widely used in clinical practice by well-trained endoscopists in managing a wide variety of diseases and complications, such as relieving non-neoplastic obstructions, sealing iatrogenic and non-iatrogenic perforations, closing fistulae and treating post-sphincterotomy bleeding. The abovementioned development would not have been achieved without corresponding advances and innovations in stent technology. However, the technological landscape changes rapidly, making clinicians’ adaptation to new technologies a real challenge. In our mini-review article, by systematically reviewing the relevant literature, we discuss current developments in ELS with regard to stent design, accessories, techniques, and applications, expanding the research basis that was set by previous studies and highlighting areas that need to be further investigated.
Collapse
Affiliation(s)
- Miltiadis Moutzoukis
- Department of Gastroenterology, University Hospital of Ioannina, Ioannina GR45333, Greece
| | - Konstantinos Argyriou
- Department of Gastroenterology, Medical School and University Hospital of Larissa, Larissa GR41334, Greece
| | - Andreas Kapsoritakis
- Department of Gastroenterology, Medical School and University Hospital of Larissa, Larissa GR41334, Greece
| | - Dimitrios Christodoulou
- Department of Gastroenterology, Medical School and University Hospital of Ioannina, Ioannina GR45500, Greece
| |
Collapse
|
14
|
Mahmoud DB, Schulz‐Siegmund M. Utilizing 4D Printing to Design Smart Gastroretentive, Esophageal, and Intravesical Drug Delivery Systems. Adv Healthc Mater 2023; 12:e2202631. [PMID: 36571721 PMCID: PMC11468531 DOI: 10.1002/adhm.202202631] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/16/2022] [Indexed: 12/27/2022]
Abstract
The breakthrough of 3D printing in biomedical research has paved the way for the next evolutionary step referred to as four dimensional (4D) printing. This new concept utilizes the time as the fourth dimension in addition to the x, y, and z axes with the idea to change the configuration of a printed construct with time usually in response to an external stimulus. This can be attained through the incorporation of smart materials or through a preset smart design. The 4D printed constructs may be designed to exhibit expandability, flexibility, self-folding, self-repair or deformability. This review focuses on 4D printed devices for gastroretentive, esophageal, and intravesical delivery. The currently unmet needs and challenges for these application sites are tried to be defined and reported on published solution concepts involving 4D printing. In addition, other promising application sites that may similarly benefit from 4D printing approaches such as tracheal and intrauterine drug delivery are proposed.
Collapse
Affiliation(s)
- Dina B. Mahmoud
- Pharmaceutical TechnologyInstitute of PharmacyFaculty of MedicineLeipzig University04317LeipzigGermany
- Department of PharmaceuticsEgyptian Drug Authority12311GizaEgypt
| | - Michaela Schulz‐Siegmund
- Pharmaceutical TechnologyInstitute of PharmacyFaculty of MedicineLeipzig University04317LeipzigGermany
| |
Collapse
|
15
|
Structural optimization and in vivo evaluation of a colorectal stent with anti-migration and anti-tumor properties. Acta Biomater 2022; 154:123-134. [PMID: 36306985 DOI: 10.1016/j.actbio.2022.10.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023]
Abstract
Clinically, colorectal stents can only palliatively relieve obstruction caused by colorectal cancer (CRC), with a high incidence of stent migration and tumor-related re-obstruction. To overcome these shortcomings, we developed a colorectal stent composed of a structure-optimized nitinol braided stent and a tubular film including an inner layer of poly (ethylene-co-vinyl acetate) (EVA) and a segmental outer layer of EVA with paclitaxel (PTX). The braiding pattern, segment number, and end shape of the stent were optimized based on the mechanical properties, ex vivo and in vivo anti-migration performance, and tissue response of the stent. The optimized nitinol stent had a structure of one middle segment in a hook-pattern and two end segments in a cross-pattern with two studs on each end in a staggered arrangement. Structure-optimized colorectal stents were prepared and evaluated in vivo. PTX released from the stent was mostly distributed in the rabbit rectum in contact with it. The biosafety of the colorectal stent was evaluated using blood tests, biochemical analysis, anatomical observation, and pathological analysis. The anti-tumor effect of the stent was also evaluated by endoscopy, anatomical observation, and pathological and immunohistochemical analyses in rabbits with orthotopic CRC. The results demonstrate that the optimized colorectal stents have effective anti-migration ability and anti-tumor effects with good biosafety. STATEMENT OF SIGNIFICANCE: In order to overcome the most common disadvantages of migration and re-obstruction of colorectal stents clinically, a colorectal stent composed of a structure-optimized nitinol stent and a tubular film including an inner layer of EVA and a segmental outer layer of EVA with PTX was put forward in this study. The optimized nitinol stent had a structure of one middle segment in hook-pattern and two end segments in cross-pattern with two studs on each end in staggered arrangement. The resulting colorectal stent has been proved with good anti-migration ability, anti-tumor effects, and biosafety in vivo, which provides a safe and effective potential treatment modality for patients with colorectal cancer.
Collapse
|
16
|
Tang H, Yue P, Wei N, Zhang L, Hu W, Sun W, Cao X, Liu L, Lin R, Xu S, Wang C, Ma X, She Y, Ma M, Chen C. Three-dimensional printing template for intraoperative localization of pulmonary nodules in the pleural cavity. JTCVS Tech 2022; 16:139-148. [PMID: 36510546 PMCID: PMC9737054 DOI: 10.1016/j.xjtc.2022.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Objectives Localization of pulmonary nodules is challenging. However, traditional localization methods have high radiation doses and a high risk of complications. We developed a noninvasive 3-dimensional printing navigational template for intraoperative localization. It can reduce puncture-related complications and simplify the localization process. This study will verify the feasibility of this method. Methods Patients with peripheral pulmonary nodules were included in this study. The computed tomography scan sequences were obtained to design a digital template model, which was then imported into a 3-dimensional printer to produce a physical navigational template. Finally, the navigational template is placed into the patient's pleural cavity for intraoperative localization. The precision of the nodule localization and associated complications were evaluated. Results Twelve patients were finally included in this study. Intraoperative navigational template localization was used in all patients. The success rate of intraoperative nodule localization was 100%, and the median time of localization was 19.5 minutes (range, 16-23.5 minutes). The deviation median of the navigational template was 2.1 mm (range, 1.1-2.7 mm). Among the included patients, no significant complications occurred during intraoperative localization. Conclusions The 3-dimensional printing template for intraoperative localization is feasible, will cause no trauma to the patient, and has acceptable accuracy for application in nodules localization. This navigational template greatly simplifies the localization process and may potentially break the dependence of percutaneous localization on computed tomography scanning.
Collapse
Affiliation(s)
- Hai Tang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
| | - Peng Yue
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China,The International Science and Technology Cooperation Base for Development and Application of Key Technologies in Thoracic Surgery, Lanzhou, Gansu Province, China,Medical Quality Control Center in Thoracic Surgery, Lanzhou, Gansu Province, China
| | - Ning Wei
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China,The International Science and Technology Cooperation Base for Development and Application of Key Technologies in Thoracic Surgery, Lanzhou, Gansu Province, China,Medical Quality Control Center in Thoracic Surgery, Lanzhou, Gansu Province, China
| | - Lei Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
| | - Wenteng Hu
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China,The International Science and Technology Cooperation Base for Development and Application of Key Technologies in Thoracic Surgery, Lanzhou, Gansu Province, China,Medical Quality Control Center in Thoracic Surgery, Lanzhou, Gansu Province, China
| | - Weiyan Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
| | - Xiong Cao
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China,The International Science and Technology Cooperation Base for Development and Application of Key Technologies in Thoracic Surgery, Lanzhou, Gansu Province, China,Medical Quality Control Center in Thoracic Surgery, Lanzhou, Gansu Province, China
| | - Lixin Liu
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China,The International Science and Technology Cooperation Base for Development and Application of Key Technologies in Thoracic Surgery, Lanzhou, Gansu Province, China,Medical Quality Control Center in Thoracic Surgery, Lanzhou, Gansu Province, China
| | - Ruijiang Lin
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China,The International Science and Technology Cooperation Base for Development and Application of Key Technologies in Thoracic Surgery, Lanzhou, Gansu Province, China,Medical Quality Control Center in Thoracic Surgery, Lanzhou, Gansu Province, China
| | - Shangqing Xu
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China,The International Science and Technology Cooperation Base for Development and Application of Key Technologies in Thoracic Surgery, Lanzhou, Gansu Province, China,Medical Quality Control Center in Thoracic Surgery, Lanzhou, Gansu Province, China
| | - Chenhan Wang
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China,The International Science and Technology Cooperation Base for Development and Application of Key Technologies in Thoracic Surgery, Lanzhou, Gansu Province, China,Medical Quality Control Center in Thoracic Surgery, Lanzhou, Gansu Province, China
| | - Xiang Ma
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China,The International Science and Technology Cooperation Base for Development and Application of Key Technologies in Thoracic Surgery, Lanzhou, Gansu Province, China,Medical Quality Control Center in Thoracic Surgery, Lanzhou, Gansu Province, China
| | - Yunlang She
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
| | - Minjie Ma
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China,The International Science and Technology Cooperation Base for Development and Application of Key Technologies in Thoracic Surgery, Lanzhou, Gansu Province, China,Medical Quality Control Center in Thoracic Surgery, Lanzhou, Gansu Province, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China,Address for reprints: Chang Chen, MD, PhD, Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
17
|
Paunović N, Marbach J, Bao Y, Berger V, Klein K, Schleich S, Coulter FB, Kleger N, Studart AR, Franzen D, Luo Z, Leroux J. Digital Light 3D Printed Bioresorbable and NIR-Responsive Devices with Photothermal and Shape-Memory Functions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200907. [PMID: 35896948 PMCID: PMC9507367 DOI: 10.1002/advs.202200907] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Digital light processing (DLP) 3D printing is a promising technique for the rapid manufacturing of customized medical devices with high precision. To be successfully translated to a clinical setting, challenges in the development of suitable photopolymerizable materials have yet to be overcome. Besides biocompatibility, it is often desirable for the printed devices to be biodegradable, elastic, and with a therapeutic function. Here, a multifunctional DLP printed material system based on the composite of gold nanorods and polyester copolymer is reported. The material demonstrates robust near-infrared (NIR) responsiveness, allowing rapid and stable photothermal effect leading to the time-dependent cell death. NIR light-triggerable shape transformation is demonstrated, resulting in a facilitated insertion and expansion of DLP printed stent ex vivo. The proposed strategy opens a promising avenue for the design of multifunctional therapeutic devices based on nanoparticle-polymer composites.
Collapse
Affiliation(s)
- Nevena Paunović
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH ZurichZurich8093Switzerland
| | - Jessica Marbach
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH ZurichZurich8093Switzerland
| | - Yinyin Bao
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH ZurichZurich8093Switzerland
| | - Valentine Berger
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH ZurichZurich8093Switzerland
| | - Karina Klein
- Musculoskeletal Research UnitVetsuisse FacultyUniversity of ZurichZurich8057Switzerland
| | - Sarah Schleich
- Musculoskeletal Research UnitVetsuisse FacultyUniversity of ZurichZurich8057Switzerland
| | | | - Nicole Kleger
- Complex MaterialsDepartment of MaterialsETH ZurichZurich8093Switzerland
| | - André R. Studart
- Complex MaterialsDepartment of MaterialsETH ZurichZurich8093Switzerland
| | - Daniel Franzen
- Department of PulmonologyUniversity Hospital ZurichZurich8006Switzerland
| | - Zhi Luo
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH ZurichZurich8093Switzerland
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Jean‐Christophe Leroux
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH ZurichZurich8093Switzerland
| |
Collapse
|
18
|
Lin C, Huang Z, Wang Q, Wang W, Wang W, Wang Z, Liu L, Liu Y, Leng J. 3D Printed Bioinspired Stents with Photothermal Effects for Malignant Colorectal Obstruction. Research (Wash D C) 2022; 2022:9825656. [PMID: 35909937 PMCID: PMC9285633 DOI: 10.34133/2022/9825656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/09/2022] [Indexed: 11/06/2022] Open
Abstract
Stent placement is an effective palliation therapy for malignant colorectal obstruction. However, recurrent obstruction is a common severe complication caused by tumor ingrowth into the stent lumen. Conventional covered stents play a part in preventing the tumor from growing inward but at the expense of significantly increasing the risk of stent migration. Therefore, there is an urgent demand to develop stents with sustained antitumor and antimigration abilities. Herein, we propose a facile method for fabricating multifunctional bioinspired colorectal stents using 3D printing technology. Inspired by high-adhesion biological structures (gecko feet, tree frog toe pads, and octopus suckers) in nature, different types of bioinspired colorectal stents are designed to reduce migration. After functionalization with graphene oxide (GO), bioinspired colorectal stents show excellent and controllable photothermal performance, which is validated by effective ablation of colon cancer cells in vitro and tumors in vivo. Besides, the bioinspired colorectal stents demonstrate the feasibility of transanal placement and opening of the obstructed colon. More importantly, the facile manufacturing process of multifunctional bioinspired colorectal stents is appealing for mass production. Hence, the developed multifunctional bioinspired colorectal stents exhibit a highly promising potential in clinical applications.
Collapse
Affiliation(s)
- Cheng Lin
- Centre for Composite Materials and Structures, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin 150001, China
| | - Zhipeng Huang
- Tangdu Hospital of the Air Force Military Medical University, No. 1, Xinsi Road, Xi'an 710038, China
| | - Qinglong Wang
- The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin 150001, China
| | - Wantao Wang
- The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin 150001, China
| | - Wenbo Wang
- The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin 150001, China
| | - Zhen Wang
- The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Street, Nangang District, Harbin 150001, China
| | - Liwu Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology, No. 92 West Dazhi Street, Harbin 150001, China
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology, No. 92 West Dazhi Street, Harbin 150001, China
| | - Jinsong Leng
- Centre for Composite Materials and Structures, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin 150001, China
| |
Collapse
|
19
|
Ramaraju H, Sferra SR, Kunisaki SM, Hollister SJ. Finite element analysis of esophageal atresia repair with biodegradable polymer sleeves. J Mech Behav Biomed Mater 2022; 133:105349. [DOI: 10.1016/j.jmbbm.2022.105349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
|
20
|
Mai Y, Ouyang Y, Qin Y, Jia C, McCoubrey LE, Basit AW, Nie Y, Jia Y, Yu L, Dou L, Deng W, Deng Y, Liu Y. Poly(lactic acid)-hyperbranched polyglycerol nanoparticles enhance bioadhesive treatment of esophageal disease and reduce systemic drug exposure. NANOSCALE 2022; 14:8418-8428. [PMID: 35639565 DOI: 10.1039/d2nr01846b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The effective treatment of esophageal disease represents a significant unmet clinical need, as existing treatments often lead to unnecessary systemic drug exposure and suboptimal concentrations at the disease site. Here, surface-modified bioadhesive poly(lactic acid)-hyperbranched polyglycerol nanoparticles (BNPs), with an average 100-200 nm diameter, were developed for local and sustained esophageal drug delivery. BNPs showed significantly higher adhesion and permeation into ex vivo human and rat esophageal tissue than non-adhesive nanoparticles (NNPs) and had longer residence times within the rat esophagus in vivo. Incubation with human esophagus (Het-1A) cells confirmed BNPs' biocompatibility at clinically relevant concentrations. In a rat model of achalasia, nifedipine-loaded BNPs significantly enhanced esophageal drug exposure, increased therapeutic efficacy, and reduced systemic drug exposure compared to NNPs and free drug. The safety of BNPs was demonstrated by an absence of intestinal, hepatic, and splenic toxicity following administration. This study is the first to demonstrate the efficacy of BNPs for esophageal drug delivery and highlight their potential for improving the lives of patients suffering with esophageal conditions.
Collapse
Affiliation(s)
- Yang Mai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yaqi Ouyang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yujia Qin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| | - Changchang Jia
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| | - Laura E McCoubrey
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Abdul W Basit
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Yichu Nie
- Clinical Research Institute, The First People's Hospital of Foshan & Sun Yat-sen University Foshan Hospital, Foshan, 528000, China
| | - Yizhen Jia
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| | - Liu Yu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| | - Liu Dou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yang Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yang Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
21
|
Qudah Y, Abdallah M, Barajas-Gamboa JS, Del Gobbo GD, Pablo Pantoja J, Corcelles R, Rodriguez J, Balci N, Kroh M. Personalized Health Care Technology in Managing Postoperative Gastrointestinal Surgery Complications: Proof of Concept Study. J Laparoendosc Adv Surg Tech A 2022; 32:1170-1175. [PMID: 35483077 DOI: 10.1089/lap.2022.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Advances in three-dimensional (3D) printing technology have allowed the development of customized medical devices. Endoscopic internal drainage (EID) is a novel method to facilitate drainage of an abscess cavity into the lumen of the gastrointestinal tract by placing a double pigtail biliary stent through the fistula opening, originally designed for biliary drainage. They are available in manufacture-determined sizes and shapes. The aim of this study is to explore the feasibility of 3D printing personalized internal drainage stents for the treatment of leaks following gastrointestinal surgery over a sequential period. Methods: We retrospectively identified patients who underwent gastrointestinal anastomotic surgery complicated by postoperative leaks and underwent serial EID for treatment. Computerized Tomography scans were reviewed over a period of time, abscess cavity dimensions and characterizations were evaluated, and 3D reconstructions were obtained. The stents were designed, their shape and size were customized to the unique dimensions of the abscess and lumen of the patient. Stereolithography (SLA) 3D printing technique was used to produce the stents. Results: A total of 8 stents were produced, representing 3 patients. These stents corresponded to 2 or 3 stents per patients. Each patient underwent several endoscopic treatments, before resolution of leak. Conclusions: Customized stents may improve drainage of intra-abdominal abscesses after gastrointestinal surgery, if based on unique anatomy. This proof-of-concept study is a real-world application of personalized health care, which introduces the novel description of customizable 3D printed stents to manage complications following gastrointestinal surgery and may advance therapy for this complex clinical condition. Research Ethics Committees (REC) number is A-2021-012.
Collapse
Affiliation(s)
- Yaqeen Qudah
- Department of General Surgery, Digestive Disease Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mohammed Abdallah
- Department of General Surgery, Digestive Disease Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Juan S Barajas-Gamboa
- Department of General Surgery, Digestive Disease Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Gabriel Diaz Del Gobbo
- Department of General Surgery, Digestive Disease Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Juan Pablo Pantoja
- Department of General Surgery, Digestive Disease Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ricard Corcelles
- Department of General Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - John Rodriguez
- Department of General Surgery, Digestive Disease Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates.,Department of General Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Numan Balci
- Diagnostic Radiology, Imaging Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Matthew Kroh
- Department of General Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
22
|
Wang X, Zhang Y, Shen P, Cheng Z, Chu C, Xue F, Bai J. Preparation of 4D printed peripheral vascular stent and its degradation behavior under fluid shear stress after deployment. Biomater Sci 2022; 10:2302-2314. [PMID: 35373795 DOI: 10.1039/d2bm00088a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Shape memory stents are mild intervention devices for vascular diseases as compared to balloon-dilated ones; however, their degradation behavior under blood shear stress after deployment also deserves further attention. To understand the degradation behavior, we first prepared 4D printed poly(lactic acid) (PLA) stents via 3D printing technology and studied their failure behavior in a dynamic condition after self-expandable deployment. Mechanical property tests showed that the 4D printed stents had a compression force of 0.06-0.39 N mm-1 and a recovery ratio of 85.3-93.4%, respectively, which was verified to be wall thickness dependent. The stents were then implanted in simulated blood vessels with minimal microstructural damage at 60 °C followed by 8-week degradation tests. The results showed the microstructure damage caused by deployment could accelerate the degradation of stents faster than fluid shear stress. Furthermore, we conducted microstructural analysis and numerical simulation on the stent by finite element analysis (FEA) to explain the relationship between stent injury, vascular injury, and stent deployment temperature. A physical model derived from micro-morphologies on the degradation mechanism of PLA was also proposed. These results may provide new insights for the examination of the degradation behavior of 4D printed stents and minimize medical risk.
Collapse
Affiliation(s)
- Xianli Wang
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China. .,Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China
| | - Yue Zhang
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China. .,Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China
| | - Peiqi Shen
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China. .,Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China
| | - Zhaojun Cheng
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China. .,Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China. .,Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China
| | - Feng Xue
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China. .,Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China. .,Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China
| |
Collapse
|
23
|
Vasanthan KS, Srinivasan V, Mathur V, Agarwal P, Negi N, Kumari S. 3D Bioprinting for esophageal tissue regeneration: A review. JOURNAL OF MATERIALS RESEARCH 2022; 37:88-113. [DOI: 10.1557/s43578-021-00409-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2025]
|
24
|
Ferreira-Silva J, Medas R, Girotra M, Barakat M, Tabibian JH, Rodrigues-Pinto E. Futuristic Developments and Applications in Endoluminal Stenting. Gastroenterol Res Pract 2022; 2022:6774925. [PMID: 35069729 PMCID: PMC8767390 DOI: 10.1155/2022/6774925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
Endoscopic stenting is a well-established option for the treatment of malignant obstruction, temporary management of benign strictures, and sealing transmural defects, as well as drainage of pancreatic fluid collections and biliary obstruction. In recent years, in addition to expansion in indications for endoscopic stenting, considerable strides have been made in stent technology, and several types of devices with advanced designs and materials are continuously being developed. In this review, we discuss the important developments in stent designs and novel indications for endoluminal and transluminal stenting. Our discussion specifically focuses on (i) biodegradable as well as (ii) irradiating and drug-eluting stents for esophageal, gastroduodenal, biliary, and colonic indications, (iii) endoscopic stenting in inflammatory bowel disease, and (iv) lumen-apposing metal stent.
Collapse
Affiliation(s)
- Joel Ferreira-Silva
- Gastroenterology Department, Centro Hospitalar São João, Porto, Portugal
- Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Renato Medas
- Gastroenterology Department, Centro Hospitalar São João, Porto, Portugal
- Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Mohit Girotra
- Digestive Health Institute, Swedish Medical Center, Seattle, Washington, USA
| | - Monique Barakat
- Division of Gastroenterology, Stanford University, California, USA
| | - James H. Tabibian
- Division of Gastroenterology, Department of Medicine, Olive View-UCLA Medical Center, Sylmar, CA, USA
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Eduardo Rodrigues-Pinto
- Gastroenterology Department, Centro Hospitalar São João, Porto, Portugal
- Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|
25
|
Guan J, You S, Xiang Y, Schimelman J, Alido J, Ma X, Tang M, Chen S. Compensating the cell-induced light scattering effect in light-based bioprinting using deep learning. Biofabrication 2021; 14:10.1088/1758-5090/ac3b92. [PMID: 34798629 PMCID: PMC8695056 DOI: 10.1088/1758-5090/ac3b92] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/19/2021] [Indexed: 12/27/2022]
Abstract
Digital light processing (DLP)-based three-dimensional (3D) printing technology has the advantages of speed and precision comparing with other 3D printing technologies like extrusion-based 3D printing. Therefore, it is a promising biomaterial fabrication technique for tissue engineering and regenerative medicine. When printing cell-laden biomaterials, one challenge of DLP-based bioprinting is the light scattering effect of the cells in the bioink, and therefore induce unpredictable effects on the photopolymerization process. In consequence, the DLP-based bioprinting requires extra trial-and-error efforts for parameters optimization for each specific printable structure to compensate the scattering effects induced by cells, which is often difficult and time-consuming for a machine operator. Such trial-and-error style optimization for each different structure is also very wasteful for those expensive biomaterials and cell lines. Here, we use machine learning to learn from a few trial sample printings and automatically provide printer the optimal parameters to compensate the cell-induced scattering effects. We employ a deep learning method with a learning-based data augmentation which only requires a small amount of training data. After learning from the data, the algorithm can automatically generate the printer parameters to compensate the scattering effects. Our method shows strong improvement in the intra-layer printing resolution for bioprinting, which can be further extended to solve the light scattering problems in multilayer 3D bioprinting processes.
Collapse
Affiliation(s)
- Jiaao Guan
- Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Shangting You
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Yi Xiang
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Jacob Schimelman
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Jeffrey Alido
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Xinyue Ma
- Division of Biological Science, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Min Tang
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| |
Collapse
|
26
|
Liu J, Yao X, Wang Z, Ye J, Luan C, Fu J, He Y. A novel wavy non-uniform ligament chiral stent with J-shaped stress–strain behavior to mimic the native trachea. Biodes Manuf 2021. [DOI: 10.1007/s42242-021-00159-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Lin M, Shapiro SZ, Doulgeris J, Engeberg ED, Tsai CT, Vrionis FD. Cage-screw and anterior plating combination reduces the risk of micromotion and subsidence in multilevel anterior cervical discectomy and fusion-a finite element study. Spine J 2021; 21:874-882. [PMID: 33460810 DOI: 10.1016/j.spinee.2021.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Anterior cervical discectomy and fusion (ACDF) is widely used to treat patients with spinal disorders, where the cage is a critical component to achieve satisfactory fusion results. However, it is still not clear whether a cage with screws or without screws will be the best choice for long-term fusion as the micromotion (sliding distance) and subsidence (penetration) of the cage still take place repeatedly. PURPOSE This study aims to examine the effect of cage-screws on the biomechanical characteristics of the human spine, implanted cage, and associate hardware by comparing the micromotion and subsidence. STUDY DESIGN A finite element (FE) analysis study. METHODS A FE model of a C3-C5 cervical spine with ACDF was developed. The spinal segment was modeled with the removal of the anterior longitudinal ligament (ALL), posterior longitudinal ligament (PLL), and discectomy was then implanted with a cage-screw system. Three models were analyzed: the first was the original spine (S1 model), the second, S2, was implanted with cages and anterior plating, and the third, S3, was implanted with a cage-screw system in addition to the anterior plate. All investigations were under 1 N•m in flexion, extension, lateral bending, and axial rotation situations. RESULTS Finite element analysis (FEA) demonstrated that range of motion (ROM) at C3-C4 in the S2 model was significantly reduced more than that in the S3 model, while the ROM at both C4-C5 in the S3 model was reduced more than that in the S2 model in all simulations. The ROM at C3-C5 in the S1 model was reduced by over 5° in the S2 and S3 models in all loading conditions. The micromotion and subsidence at all contacts of C3-C5 in the S3 model were lower than that in the S2 model in all flexion, extension, bending, and axial simulations. The subsidence and micromotion could be seen in the barrier area of the S2 model, while they occurred near the edge of the screw in the S3 model. CONCLUSIONS These results showed that the cage-screw and anterior plating combination has promising potential to reduce the risk of micromotion and subsidence of implanted cages in two or more level ACDFs. CLINICAL SIGNIFICANCE The use of double segmental fixation with cage-screw anterior plating combination constructs may increase the stiffness of the construct and reduce the incidence of clinical and radiographic pseudarthrosis following multilevel ACDF, which in turn, could decrease the need for revision surgeries or supplemental posterior fixation.
Collapse
Affiliation(s)
- Maohua Lin
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL, USA
| | - Stephen Z Shapiro
- Department of Neurosurgery, Marcus Neuroscience Institute, Boca Raton Regional Hospital, Boca Raton, FL, USA.
| | - James Doulgeris
- Department of Neurosurgery, Marcus Neuroscience Institute, Boca Raton Regional Hospital, Boca Raton, FL, USA
| | - Erik D Engeberg
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL, USA
| | - Chi-Tay Tsai
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL, USA
| | - Frank D Vrionis
- Department of Neurosurgery, Marcus Neuroscience Institute, Boca Raton Regional Hospital, Boca Raton, FL, USA
| |
Collapse
|
28
|
Singh M, Jonnalagadda S. Design and characterization of 3D printed, neomycin-eluting poly-L-lactide mats for wound-healing applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:44. [PMID: 33830338 PMCID: PMC8032582 DOI: 10.1007/s10856-021-06509-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/15/2021] [Indexed: 05/04/2023]
Abstract
This study evaluates the suitability of 3D printed biodegradable mats to load and deliver the topical antibiotic, neomycin, for up to 3 weeks in vitro. A 3D printer equipped with a hot melt extruder was used to print bandage-like wound coverings with porous sizes appropriate for cellular attachment and viability. The semicrystalline polyester, poly-l-lactic acid (PLLA) was used as the base polymer, coated (post-printing) with polyethylene glycols (PEGs) of MWs 400 Da, 6 kDa, or 20 kDa to enable manipulation of physicochemical and biological properties to suit intended applications. The mats were further loaded with a topical antibiotic (neomycin sulfate), and cumulative drug-release monitored for 3 weeks in vitro. Microscopic imaging as well as Scanning Electron Microscopy (SEM) studies showed pore dimensions of 100 × 400 µm. These pore dimensions were achieved without compromising mechanical strength; because of the "tough" individual fibers constituting the mat (Young's Moduli of 50 ± 20 MPa and Elastic Elongation of 10 ± 5%). The in vitro dissolution study showed first-order release kinetics for neomycin during the first 20 h, followed by diffusion-controlled (Fickian) release for the remaining duration of the study. The release of neomycin suggested that the ability to load neomycin on to PLLA mats increases threefold, as the MW of the applied PEG coating is lowered from 20 kDa to 400 Da. Overall, this study demonstrates a successful approach to using a 3D printer to prepare porous degradable mats for antibiotic delivery with potential applications to dermal regeneration and tissue engineering. Illustration of the process used to create and characterize 3D printed PLLA mats.
Collapse
Affiliation(s)
- Mahima Singh
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, USciences 600 S 43rd St, Philadelphia, PA, 19143, USA
| | - Sriramakamal Jonnalagadda
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, USciences 600 S 43rd St, Philadelphia, PA, 19143, USA.
| |
Collapse
|
29
|
Liu J, Yao X, Wang Z, Ye J, Luan C, He Y, Lin H, Fu J. A flexible porous chiral auxetic tracheal stent with ciliated epithelium. Acta Biomater 2021; 124:153-165. [PMID: 33529770 DOI: 10.1016/j.actbio.2021.01.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022]
Abstract
Tracheal stent placement is a principal treatment for tracheobronchial stenosis, but complications such as mucus plugging, secondary stenosis, migration, and strong foreign body sensation remain unavoidable challenges. In this study, we designed a flexible porous chiral tracheal stent intended to reduce or overcome these complications. The stent was innovatively designed with a flexible tetrachiral and anti-tetrachiral hybrid structure as the frame and hollows filled with porous silicone sponge. Detailed finite element analysis (FEA) showed that the designed frame can maintain a Poisson's ratio that is negative or close to zero at up to 50% tensile strain. This contributes to improved airway ventilation and better resistance to migration during physiological activities such as respiration and neck movement. The preparation process combined indirect 3D printing with gas foaming and particulate leaching methods to efficiently fabricate the stent. The stent was then subjected to uniaxial tension and local radial compression tests, which indicated that it not only has the same desirable auxetic performance but also has flexibility similar to the native trachea. The porous sponge facilitated the adhesion of cells, allowed nutrient diffusion, and would prevent the ingrowth of granulation tissue. Furthermore, a ciliated tracheal epithelium similar to that of the native trachea was differentiated from normal human bronchial primary epithelial cells on the internal wall of the stent under air-liquid interface conditions. These results suggest that the designed stent has the potential for application in the treatment of tracheobronchial stenosis.
Collapse
Affiliation(s)
- Jiapeng Liu
- State Key Laboratory of Fluid Power & Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China; Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Xinhua Yao
- State Key Laboratory of Fluid Power & Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China; Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.
| | - Zhenwei Wang
- State Key Laboratory of Fluid Power & Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China; Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jian Ye
- Department of Pneumology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, People's Republic of China
| | - Congcong Luan
- State Key Laboratory of Fluid Power & Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China; Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yong He
- State Key Laboratory of Fluid Power & Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China; Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power & Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China; Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
30
|
Abstract
Malignant biliary obstruction (MBO), result of pancreatobiliary diseases is a challenging condition. Most patients with MBO are inoperable at the time of diagnosis, and the disease is poorly controlled using external-beam radiotherapy and chemotherapy. Biliary stent therapy emerged as a promising strategy for alleviating MBO and prolonging life. However, physicians find it difficult to determine the optimal type of biliary stent for the palliation of MBO. Here, we review the safety and efficacy of available biliary stents, used alone or in combination with brachytherapy, photodynamic therapy and advanced chemotherapeutics, in patients with pancreatobiliary malignancies and put forward countermeasures involving stent obstruction. Furthermore, 3D-printing stents and nanoparticle-loaded stents have broad application prospects for fabricating tailor-made biliary stents.
Collapse
|
31
|
Lee H, Jang TS, Han G, Kim HW, Jung HD. Freeform 3D printing of vascularized tissues: Challenges and strategies. J Tissue Eng 2021; 12:20417314211057236. [PMID: 34868539 PMCID: PMC8638074 DOI: 10.1177/20417314211057236] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/17/2021] [Indexed: 11/26/2022] Open
Abstract
In recent years, freeform three-dimensional (3D) printing has led to significant advances in the fabrication of artificial tissues with vascularized structures. This technique utilizes a supporting matrix that holds the extruded printing ink and ensures shape maintenance of the printed 3D constructs within the prescribed spatial precision. Since the printing nozzle can be translated omnidirectionally within the supporting matrix, freeform 3D printing is potentially applicable for the fabrication of complex 3D objects, incorporating curved, and irregular shaped vascular networks. To optimize freeform 3D printing quality and performance, the rheological properties of the printing ink and supporting matrix, and the material matching between them are of paramount importance. In this review, we shall compare conventional 3D printing and freeform 3D printing technologies for the fabrication of vascular constructs, and critically discuss their working principles and their advantages and disadvantages. We also provide the detailed material information of emerging printing inks and supporting matrices in recent freeform 3D printing studies. The accompanying challenges are further discussed, aiming to guide freeform 3D printing by the effective design and selection of the most appropriate materials/processes for the development of full-scale functional vascularized artificial tissues.
Collapse
Affiliation(s)
- Hyun Lee
- Department of Biomedical and Chemical
Engineering (BMCE), The Catholic University of Korea, Bucheon, Republic of
Korea
- Department of Biotechnology, The
Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Tae-Sik Jang
- Department of Materials Science and
Engineering, Chosun University, Gwangju, Republic of Korea
| | - Ginam Han
- Department of Biomedical and Chemical
Engineering (BMCE), The Catholic University of Korea, Bucheon, Republic of
Korea
- Department of Biotechnology, The
Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Chungcheongnam-do, Republic of
Korea
- Department of Biomaterials Science,
College of Dentistry, Dankook University, Cheonan, Chungcheongnam-do, Republic of
Korea
- Department of Nanobiomedical Science
& BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook
University, Cheonan, Chungcheongnam-do, Republic of Korea
- Cell & Matter Institute, Dankook
University, Cheonan, Chungcheongnam-do, Republic of Korea
- Department of Regenerative Dental
Medicine, College of Dentistry, Dankook University, Cheonan, Chungcheongnam-do,
Republic of Korea
| | - Hyun-Do Jung
- Department of Biomedical and Chemical
Engineering (BMCE), The Catholic University of Korea, Bucheon, Republic of
Korea
- Department of Biotechnology, The
Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
32
|
Lin M, Vatani M, Choi JW, Dilibal S, Engeberg ED. Compliant Underwater Manipulator with Integrated Tactile Sensor for Nonlinear Force Feedback Control of an SMA Actuation System. SENSORS AND ACTUATORS. A, PHYSICAL 2020; 315:112221. [PMID: 34629752 PMCID: PMC8494145 DOI: 10.1016/j.sna.2020.112221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Design, sensing, and control of underwater gripping systems remain challenges for soft robotic manipulators. Our study investigates these critical issues by designing a shape memory alloy (SMA) actuation system for a soft robotic finger with a directly 3D-printed stretchable skin-like tactile sensor. SMA actuators were thermomechanically trained to assume a curved finger-like shape when Joule heated, and the flexible multi-layered tactile sensor was directly 3D-printed onto the surface of the fingertip. A nonlinear controller was developed to enable precise fingertip force control using feedback from the compliant tactile sensor. Underwater experiments were conducted using closed-loop force feedback from the directly 3D-printed tactile sensor with the SMA actuators, showing satisfactory force tracking ability. Furthermore, a 3D finite element model was developed to more deeply understand the shape memory thermal-fluidic-structural multi-physics simulation of the manipulator underwater. An application for human control via electromyogram (EMG) signals also demonstrated an intuitive way for a person to operate the submerged robotic finger. Together, these results suggested that the soft robotic finger could be used to carefully manipulate fragile objects underwater.
Collapse
Affiliation(s)
- Maohua Lin
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Morteza Vatani
- University of Akron, Mechanical Engineering Department, Akron, OH, 44325, USA
| | - Jae-Won Choi
- University of Akron, Mechanical Engineering Department, Akron, OH, 44325, USA
| | - Savas Dilibal
- Mechatronics Engineering Department, Istanbul Gedik University, Yakacιk Kartal, Istanbul, 34876, Turkey
| | - Erik D. Engeberg
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
33
|
Farhat W, Chatelain F, Marret A, Faivre L, Arakelian L, Cattan P, Fuchs A. Trends in 3D bioprinting for esophageal tissue repair and reconstruction. Biomaterials 2020; 267:120465. [PMID: 33129189 DOI: 10.1016/j.biomaterials.2020.120465] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 02/08/2023]
Abstract
In esophageal pathologies, such as esophageal atresia, cancers, caustic burns, or post-operative stenosis, esophageal replacement is performed by using parts of the gastrointestinal tract to restore nutritional autonomy. However, this surgical procedure most often does not lead to complete functional recovery and is instead associated with many complications resulting in a decrease in the quality of life and survival rate. Esophageal tissue engineering (ETE) aims at repairing the defective esophagus and is considered as a promising therapeutic alternative. Noteworthy progress has recently been made in the ETE research area but strong challenges remain to replicate the structural and functional integrity of the esophagus with the approaches currently being developed. Within this context, 3D bioprinting is emerging as a new technology to facilitate the patterning of both cellular and acellular bioinks into well-organized 3D functional structures. Here, we present a comprehensive overview of the recent advances in tissue engineering for esophageal reconstruction with a specific focus on 3D bioprinting approaches in ETE. Current biofabrication techniques and bioink features are highlighted, and these are discussed in view of the complexity of the native esophagus that the designed substitute needs to replace. Finally, perspectives on recent strategies for fabricating other tubular organ substitutes via 3D bioprinting are discussed briefly for their potential in ETE applications.
Collapse
Affiliation(s)
- Wissam Farhat
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France; CEA, IRIG, F-38000, Grenoble, France
| | - François Chatelain
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France; CEA, IRIG, F-38000, Grenoble, France
| | - Auriane Marret
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France; CEA, IRIG, F-38000, Grenoble, France
| | - Lionel Faivre
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; Assistance Publique - Hôpitaux de Paris, Unité de Thérapie Cellulaire, Hôpital Saint-Louis, Paris, France
| | - Lousineh Arakelian
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; Assistance Publique - Hôpitaux de Paris, Unité de Thérapie Cellulaire, Hôpital Saint-Louis, Paris, France
| | - Pierre Cattan
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; Assistance Publique - Hôpitaux de Paris, Service de Chirurgie Digestive, Hôpital Saint-Louis, Paris, France
| | - Alexandra Fuchs
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France; CEA, IRIG, F-38000, Grenoble, France.
| |
Collapse
|
34
|
Synthesized biocompatible and conductive ink for 3D printing of flexible electronics. J Mech Behav Biomed Mater 2020; 110:103960. [DOI: 10.1016/j.jmbbm.2020.103960] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 01/24/2023]
|
35
|
Yeazel TR, Becker ML. Advancing Toward 3D Printing of Bioresorbable Shape Memory Polymer Stents. Biomacromolecules 2020; 21:3957-3965. [PMID: 32924443 DOI: 10.1021/acs.biomac.0c01082] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stents have evolved significantly since their introduction to the medical field in the early 1980s, becoming widely used in percutaneous coronary interventions and following nephrological procedures. However, the current commercially available stents do not degrade and remain in the body forever, leading to problems like restenosis in cardiovascular applications or requiring removal procedures in ureteral applications. Efforts to replace metal with resorbable materials have largely been halted after the commercial failure of and safety concerns elicited by Abbott's Absorb stent in 2017. Industry continues to use common polymers such as poly(l-lactide) (PLLA) and polycaprolactone (PCL) for biomedical products, but due to the weak mechanical properties of these bioresorbable materials in comparison to metals, these devices have struggled to accomplish the goals set, increasing risk of thrombosis. 3D printing stents using bioresorbable and shape memory materials could provide a method of patient-personalized production, remove the need for balloon expansion, and limit stent migration, thus bringing a new age of stent technology. The investigation of a range of 3D-printable and bioresorbable shape-memory polymers can provide solutions to the shortcomings of previously explored bioresorbable stents and revitalize the medical device industry efforts into advancing stent technology.
Collapse
Affiliation(s)
- Taylor R Yeazel
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Matthew L Becker
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.,Departments of Chemistry, Biomedical Engineering, Orthopaedic Surgery, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
36
|
Firoozi N, Kang Y. Immobilization of FGF on Poly(xylitol dodecanedioic Acid) Polymer for Tissue Regeneration. Sci Rep 2020; 10:10419. [PMID: 32591607 PMCID: PMC7320172 DOI: 10.1038/s41598-020-67261-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor (FGF) plays a vital role in the repair and regeneration of most tissues. However, its low stability, short half-life, and rapid inactivation by enzymes in physiological conditions affect their clinical applications. Therefore, to increase the effectiveness of growth factors and to improve tissue regeneration, we developed an elastic polymeric material poly(xylitol dodecanedioic acid) (PXDDA) and loaded FGF on the PXDDA for sustained drug delivery. In this study, we used a simple dopamine coating method to load FGF on the surface of PXDDA polymeric films. The polydopamine-coated FGF-loaded PXDDA samples were then characterized using FTIR and XRD. The in vitro drug release profile of FGF from PXDDA film and cell growth behavior were measured. Results showed that the polydopamine layer coated on the surface of the PXDDA film enhanced the immobilization of FGF and controlled its sustained release. Human fibroblast cells attachment and proliferation on FGF-immobilized PXDDA films were much higher than the other groups without coatings or FGF loading. Based on our results, the surface modification procedure with immobilizing growth factors shows excellent application potential in tissue regeneration.
Collapse
Affiliation(s)
- Negar Firoozi
- Department of Ocean & Mechanical Engineering, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida, 33431, United States
| | - Yunqing Kang
- Department of Ocean & Mechanical Engineering, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida, 33431, United States.
- Department of Biomedical Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida, 33431, United States.
- Integrative Biology Ph.D. Program, Department of Biological Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida, 33431, United States.
| |
Collapse
|
37
|
Lee J, Oh SJ, An SH, Kim WD, Kim SH. Machine learning-based design strategy for 3D printable bioink: elastic modulus and yield stress determine printability. Biofabrication 2020; 12:035018. [PMID: 32252038 DOI: 10.1088/1758-5090/ab8707] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although three-dimensional (3D) bioprinting technology is rapidly developing, the design strategies for biocompatible 3D-printable bioinks remain a challenge. In this study, we developed a machine learning-based method to design 3D-printable bioink using a model system with naturally derived biomaterials. First, we demonstrated that atelocollagen (AC) has desirable physical properties for printing compared to native collagen (NC). AC gel exhibited weakly elastic and temperature-responsive reversible behavior forming a soft cream-like structure with low yield stress, whereas NC gel showed highly crosslinked and temperature-responsive irreversible behavior resulting in brittleness and high yield stress. Next, we discovered a universal relationship between the mechanical properties of ink and printability that is supported by machine learning: a high elastic modulus improves shape fidelity and extrusion is possible below the critical yield stress; this is supported by machine learning. Based on this relationship, we derived various formulations of naturally derived bioinks that provide high shape fidelity using multiple regression analysis. Finally, we produced a 3D construct of a cell-laden hydrogel with a framework of high shape fidelity bioink, confirming that cells are highly viable and proliferative in the 3D constructs.
Collapse
Affiliation(s)
- Jooyoung Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | | | | | | | | |
Collapse
|
38
|
Jeong HJ, Nam H, Jang J, Lee SJ. 3D Bioprinting Strategies for the Regeneration of Functional Tubular Tissues and Organs. Bioengineering (Basel) 2020; 7:E32. [PMID: 32244491 PMCID: PMC7357036 DOI: 10.3390/bioengineering7020032] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 01/01/2023] Open
Abstract
It is difficult to fabricate tubular-shaped tissues and organs (e.g., trachea, blood vessel, and esophagus tissue) with traditional biofabrication techniques (e.g., electrospinning, cell-sheet engineering, and mold-casting) because these have complicated multiple processes. In addition, the tubular-shaped tissues and organs have their own design with target-specific mechanical and biological properties. Therefore, the customized geometrical and physiological environment is required as one of the most critical factors for functional tissue regeneration. 3D bioprinting technology has been receiving attention for the fabrication of patient-tailored and complex-shaped free-form architecture with high reproducibility and versatility. Printable biocomposite inks that can facilitate to build tissue constructs with polymeric frameworks and biochemical microenvironmental cues are also being actively developed for the reconstruction of functional tissue. In this review, we delineated the state-of-the-art of 3D bioprinting techniques specifically for tubular tissue and organ regeneration. In addition, this review described biocomposite inks, such as natural and synthetic polymers. Several described engineering approaches using 3D bioprinting techniques and biocomposite inks may offer beneficial characteristics for the physiological mimicry of human tubular tissues and organs.
Collapse
Affiliation(s)
- Hun-Jin Jeong
- Department of Mechanical Engineering, Wonkwang University, 460, Iksan-daero, Iksan-si, Jeollabuk-do 54538, Korea;
| | - Hyoryung Nam
- Department of Creative IT Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea;
| | - Jinah Jang
- Department of Creative IT Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea;
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- Institute of Convergence Science, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Seung-Jae Lee
- Department of Mechanical Engineering, Wonkwang University, 460, Iksan-daero, Iksan-si, Jeollabuk-do 54538, Korea;
- Department of Mechanical and Design Engineering, Wonkwang University, 460, Iksan-daero, Iksan-si, Jeollabuk-do 54538, Korea
| |
Collapse
|
39
|
Pisani S, Croce S, Chiesa E, Dorati R, Lenta E, Genta I, Bruni G, Mauramati S, Benazzo A, Cobianchi L, Morbini P, Caliogna L, Benazzo M, Avanzini MA, Conti B. Tissue Engineered Esophageal Patch by Mesenchymal Stromal Cells: Optimization of Electrospun Patch Engineering. Int J Mol Sci 2020; 21:ijms21051764. [PMID: 32143536 PMCID: PMC7084816 DOI: 10.3390/ijms21051764] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Aim of work was to locate a simple, reproducible protocol for uniform seeding and optimal cellularization of biodegradable patch minimizing the risk of structural damages of patch and its contamination in long-term culture. Two seeding procedures are exploited, namely static seeding procedures on biodegradable and biocompatible patches incubated as free floating (floating conditions) or supported by CellCrownTM insert (fixed conditions) and engineered by porcine bone marrow MSCs (p-MSCs). Scaffold prototypes having specific structural features with regard to pore size, pore orientation, porosity, and pore distribution were produced using two different techniques, such as temperature-induced precipitation method and electrospinning technology. The investigation on different prototypes allowed achieving several implementations in terms of cell distribution uniformity, seeding efficiency, and cellularization timing. The cell seeding protocol in stating conditions demonstrated to be the most suitable method, as these conditions successfully improved the cellularization of polymeric patches. Furthermore, the investigation provided interesting information on patches’ stability in physiological simulating experimental conditions. Considering the in vitro results, it can be stated that the in vitro protocol proposed for patches cellularization is suitable to achieve homogeneous and complete cellularizations of patch. Moreover, the protocol turned out to be simple, repeatable, and reproducible.
Collapse
Affiliation(s)
- Silvia Pisani
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (S.P.); (E.C.); (I.G.); (B.C.)
| | - Stefania Croce
- Department of Clinical, Surgical, Diagnostic & Pediatric Sciences, University of Pavia, IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.C.); (L.C.)
| | - Enrica Chiesa
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (S.P.); (E.C.); (I.G.); (B.C.)
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (S.P.); (E.C.); (I.G.); (B.C.)
- Correspondence:
| | - Elisa Lenta
- Department of Paediatric Oncoaematology, IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (E.L.); (M.A.A.)
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (S.P.); (E.C.); (I.G.); (B.C.)
| | - Giovanna Bruni
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy;
| | - Simone Mauramati
- Department of Surgery, Otolaryngologist section, IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.B.)
| | - Alberto Benazzo
- Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Lorenzo Cobianchi
- Department of Clinical, Surgical, Diagnostic & Pediatric Sciences, University of Pavia, IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.C.); (L.C.)
| | - Patrizia Morbini
- Department of Diagnostic Medicine, IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Laura Caliogna
- Orthopaedic and Traumatology, IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Marco Benazzo
- Department of Surgery, Otolaryngologist section, IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.B.)
| | - Maria Antonietta Avanzini
- Department of Paediatric Oncoaematology, IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (E.L.); (M.A.A.)
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (S.P.); (E.C.); (I.G.); (B.C.)
| |
Collapse
|
40
|
|
41
|
Balčiūnas E, Dreižė N, Grubliauskaitė M, Urnikytė S, Šimoliūnas E, Bukelskienė V, Valius M, Baldock SJ, Hardy JG, Baltriukienė D. Biocompatibility Investigation of Hybrid Organometallic Polymers for Sub-Micron 3D Printing via Laser Two-Photon Polymerisation. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3932. [PMID: 31783647 PMCID: PMC6926539 DOI: 10.3390/ma12233932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2019] [Accepted: 11/24/2019] [Indexed: 01/20/2023]
Abstract
Hybrid organometallic polymers are a class of functional materials which can be used to produce structures with sub-micron features via laser two-photon polymerisation. Previous studies demonstrated the relative biocompatibility of Al and Zr containing hybrid organometallic polymers in vitro. However, a deeper understanding of their effects on intracellular processes is needed if a tissue engineering strategy based on these materials is to be envisioned. Herein, primary rat myogenic cells were cultured on spin-coated Al and Zr containing polymer surfaces to investigate how each material affects the viability, adhesion strength, adhesion-associated protein expression, rate of cellular metabolism and collagen secretion. We found that the investigated surfaces supported cellular growth to full confluency. A subsequent MTT assay showed that glass and Zr surfaces led to higher rates of metabolism than did the Al surfaces. A viability assay revealed that all surfaces supported comparable levels of cell viability. Cellular adhesion strength assessment showed an insignificantly stronger relative adhesion after 4 h of culture than after 24 h. The largest amount of collagen was secreted by cells grown on the Al-containing surface. In conclusion, the materials were found to be biocompatible in vitro and have potential for bioengineering applications.
Collapse
Affiliation(s)
- Evaldas Balčiūnas
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, 10257 Vilnius, Lithuania; (E.B.); (N.D.); (M.G.); (S.U.); (E.Š.); (V.B.); (M.V.)
| | - Nadežda Dreižė
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, 10257 Vilnius, Lithuania; (E.B.); (N.D.); (M.G.); (S.U.); (E.Š.); (V.B.); (M.V.)
| | - Monika Grubliauskaitė
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, 10257 Vilnius, Lithuania; (E.B.); (N.D.); (M.G.); (S.U.); (E.Š.); (V.B.); (M.V.)
| | - Silvija Urnikytė
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, 10257 Vilnius, Lithuania; (E.B.); (N.D.); (M.G.); (S.U.); (E.Š.); (V.B.); (M.V.)
| | - Egidijus Šimoliūnas
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, 10257 Vilnius, Lithuania; (E.B.); (N.D.); (M.G.); (S.U.); (E.Š.); (V.B.); (M.V.)
| | - Virginija Bukelskienė
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, 10257 Vilnius, Lithuania; (E.B.); (N.D.); (M.G.); (S.U.); (E.Š.); (V.B.); (M.V.)
| | - Mindaugas Valius
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, 10257 Vilnius, Lithuania; (E.B.); (N.D.); (M.G.); (S.U.); (E.Š.); (V.B.); (M.V.)
| | - Sara J. Baldock
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, UK;
- Materials Science Institute, Lancaster University, Lancaster LA1 4YB, UK
| | - John G. Hardy
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, UK;
- Materials Science Institute, Lancaster University, Lancaster LA1 4YB, UK
| | - Daiva Baltriukienė
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, 10257 Vilnius, Lithuania; (E.B.); (N.D.); (M.G.); (S.U.); (E.Š.); (V.B.); (M.V.)
| |
Collapse
|
42
|
The Potential Selective Cytotoxicity of Poly (L- Lactic Acid)-Based Scaffolds Functionalized with Nanohydroxyapatite and Europium (III) Ions toward Osteosarcoma Cells. MATERIALS 2019; 12:ma12223779. [PMID: 31752084 PMCID: PMC6888250 DOI: 10.3390/ma12223779] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023]
Abstract
Osteosarcoma (OSA) is malignant bone tumor, occurring in children and adults, characterized by poor prognosis. Despite advances in chemotherapy and surgical techniques, the survival of osteosarcoma patients is not improving significantly. Currently, great efforts are taken to identify novel selective strategies, distinguishing between cancer and normal cells. This includes development of biomimetic scaffolds with anticancer properties that can simultaneously support and modulate proper regeneration of bone tissue. In this study cytotoxicity of scaffolds composed from poly (L-lactic acid) functionalized with nanohydroxyapatite (nHAp) and doped with europium (III) ions-10 wt % 3 mol % Eu3+: nHAp@PLLA was tested using human osteosarcoma cells: U-2 OS, Saos-2 and MG-63. Human adipose tissue-derived stromal cells (HuASCs) were used as non-transformed cells to determine the selective cytotoxicity of the carrier. Analysis included evaluation of cells morphology (confocal/scanning electron microscopy (SEM)), metabolic activity and apoptosis profile in cultures on the scaffolds. Results obtained indicated on high cytotoxicity of scaffolds toward all OSA cell lines, associated with a decrease of cells' viability, deterioration of metabolic activity and activation of apoptotic factors determined at mRNA and miRNA levels. Simultaneously, the biomaterials did not affect HuASCs' viability and proliferation rate. Obtained scaffolds showed a bioimaging function, due to functionalization with luminescent europium ions, and thus may find application in theranostics treatment of OSA.
Collapse
|
43
|
Biocompatible Polymer Materials with Antimicrobial Properties for Preparation of Stents. NANOMATERIALS 2019; 9:nano9111548. [PMID: 31683612 PMCID: PMC6915381 DOI: 10.3390/nano9111548] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/15/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022]
Abstract
Biodegradable polymers are promising materials for use in medical applications such as stents. Their properties are comparable to commercially available resistant metal and polymeric stents, which have several major problems, such as stent migration and stent clogging due to microbial biofilm. Consequently, conventional stents have to be removed operatively from the patient's body, which presents a number of complications and can also endanger the patient's life. Biodegradable stents disintegrate into basic substances that decompose in the human body, and no surgery is required. This review focuses on the specific use of stents in the human body, the problems of microbial biofilm, and possibilities of preventing microbial growth by modifying polymers with antimicrobial agents.
Collapse
|
44
|
Choi JW, Ahn JJ, Son K, Huh JB. Three-Dimensional Evaluation on Accuracy of Conventional and Milled Gypsum Models and 3D Printed Photopolymer Models. MATERIALS 2019; 12:ma12213499. [PMID: 31731447 PMCID: PMC6862028 DOI: 10.3390/ma12213499] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/08/2019] [Accepted: 10/24/2019] [Indexed: 11/25/2022]
Abstract
The aim of this study was to evaluate the accuracy of dental models fabricated by conventional, milling, and three-dimensional (3D) printing methods. A reference model with inlay, single crown, and three-unit fixed dental prostheses (FDP) preparations was prepared. Conventional gypsum models (CON) were manufactured from the conventional method. Digital impressions were obtained by intraoral scanner, which were converted into physical models such as milled gypsum models (MIL), stereolithography (SLA), and digital light processing (DLP) 3D printed photopolymer models (S3P and D3P). Models were extracted as standard triangulated language (STL) data by reference scanner. All STL data were superimposed by 3D analysis software and quantitative and qualitative analysis was performed using root mean square (RMS) values and color difference map. Statistical analyses were performed using the Kruskal–Wallis test and Mann–Whitney U test with Bonferroni’s correction. For full arch, the RMS value of trueness and precision in CON was significantly smaller than in the other groups (p < 0.05/6 = 0.008), and there was no significant difference between S3P and D3P (p > 0.05/6 = 0.008). On the other hand, the RMS value of trueness in CON was significantly smaller than in the other groups for all prepared teeth (p < 0.05/6 = 0.008), and there was no significant difference between MIL and S3P (p > 0.05/6 = 0.008). In conclusion, conventional gypsum models showed better accuracy than digitally milled and 3D printed models.
Collapse
Affiliation(s)
- Jae-Won Choi
- Department of Prosthodontics, Dental Research Institute, Institute of Translational Dental Sciences, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (J.-W.C.); (J.-J.A.)
| | - Jong-Ju Ahn
- Department of Prosthodontics, Dental Research Institute, Institute of Translational Dental Sciences, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (J.-W.C.); (J.-J.A.)
| | - Keunbada Son
- Department of Dental Science, Graduate School, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu 41940, Korea;
| | - Jung-Bo Huh
- Department of Prosthodontics, Dental Research Institute, Institute of Translational Dental Sciences, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (J.-W.C.); (J.-J.A.)
- Correspondence: ; Tel.: +82-10-8007-9099; Fax: +82-55-360-5134
| |
Collapse
|
45
|
Antill-O'Brien N, Bourke J, O'Connell CD. Layer-By-Layer: The Case for 3D Bioprinting Neurons to Create Patient-Specific Epilepsy Models. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3218. [PMID: 31581436 PMCID: PMC6804258 DOI: 10.3390/ma12193218] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
Abstract
The ability to create three-dimensional (3D) models of brain tissue from patient-derived cells, would open new possibilities in studying the neuropathology of disorders such as epilepsy and schizophrenia. While organoid culture has provided impressive examples of patient-specific models, the generation of organised 3D structures remains a challenge. 3D bioprinting is a rapidly developing technology where living cells, encapsulated in suitable bioink matrices, are printed to form 3D structures. 3D bioprinting may provide the capability to organise neuronal populations in 3D, through layer-by-layer deposition, and thereby recapitulate the complexity of neural tissue. However, printing neuron cells raises particular challenges since the biomaterial environment must be of appropriate softness to allow for the neurite extension, properties which are anathema to building self-supporting 3D structures. Here, we review the topic of 3D bioprinting of neurons, including critical discussions of hardware and bio-ink formulation requirements.
Collapse
Affiliation(s)
- Natasha Antill-O'Brien
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.
| | - Justin Bourke
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
- Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, VIC 3065, Australia.
| | - Cathal D O'Connell
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
| |
Collapse
|
46
|
Wang Q, Li Y, Zhou X, Wang T, Qiu L, Gu Y, Chang J. Toughened Poly(lactic acid)/BEP Composites with Good Biodegradability and Cytocompatibility. Polymers (Basel) 2019; 11:E1413. [PMID: 31466330 PMCID: PMC6780854 DOI: 10.3390/polym11091413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 01/22/2023] Open
Abstract
Using novel biodegradable elastomer particles (BEP) prepared by the technologies of melt polycondensation, emulsification, and irradiation vulcanization, we successfully prepared advanced poly(lactic acid) (PLA)/BEP composites with higher toughness, higher biodegradability, and better cytocompatibility than neat PLA by means of the melt blending technology. The experimental results revealed that the elongation at break of the PLA/BEP composites containing 8 parts per hundred rubber (phr) by weight BEP increased dramatically from 2.9% of neat PLA to 67.1%, and the notched impact strength increased from 3.01 to 7.24 kJ/m2. Meanwhile, the biodegradation rate of the PLA/BEP composites increased dramatically in both soil environment and lipase solution, and the crystallization rate and crystallinity of the PLA/BEP composites increased significantly compared to those of neat PLA. The methyl thiazolyl tetrazolium (MTT) assay also showed that the viability of L929 cells in the presence of extracts of PLA/BEP composites was more than 75%, indicating that the PLA/BEP composites were not cytotoxic and had better cytocompatibility than neat PLA. Research on advanced PLA/BEP composites opens up new potential avenues for preparing advanced PLA products, especially for advanced biomedical materials.
Collapse
Affiliation(s)
- Qingguo Wang
- Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China.
- Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao 266042, China.
| | - Yongxuan Li
- Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xue Zhou
- Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tongyao Wang
- Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Liyan Qiu
- Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuanchun Gu
- Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiabing Chang
- Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
47
|
Ameer JM, Pr AK, Kasoju N. Strategies to Tune Electrospun Scaffold Porosity for Effective Cell Response in Tissue Engineering. J Funct Biomater 2019; 10:E30. [PMID: 31324062 PMCID: PMC6787600 DOI: 10.3390/jfb10030030] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering aims to develop artificial human tissues by culturing cells on a scaffold in the presence of biochemical cues. Properties of scaffold such as architecture and composition highly influence the overall cell response. Electrospinning has emerged as one of the most affordable, versatile, and successful approaches to develop nonwoven nano/microscale fibrous scaffolds whose structural features resemble that of the native extracellular matrix. However, dense packing of the fibers leads to small-sized pores which obstruct cell infiltration and therefore is a major limitation for their use in tissue engineering applications. To this end, a variety of approaches have been investigated to enhance the pore properties of the electrospun scaffolds. In this review, we collect state-of-the-art modification methods and summarize them into six classes as follows: approaches focused on optimization of packing density by (a) conventional setup, (b) sequential or co-electrospinning setups, (c) involving sacrificial elements, (d) using special collectors, (e) post-production processing, and (f) other specialized methods. Overall, this review covers historical as well as latest methodologies in the field and therefore acts as a quick reference for those interested in electrospinning matrices for tissue engineering and beyond.
Collapse
Affiliation(s)
- Jimna Mohamed Ameer
- Division of Tissue Culture, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, Kerala, India
| | - Anil Kumar Pr
- Division of Tissue Culture, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, Kerala, India
| | - Naresh Kasoju
- Division of Tissue Culture, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, Kerala, India.
| |
Collapse
|
48
|
Arnold C, Monsees D, Hey J, Schweyen R. Surface Quality of 3D-Printed Models as a Function of Various Printing Parameters. MATERIALS 2019; 12:ma12121970. [PMID: 31248083 PMCID: PMC6631072 DOI: 10.3390/ma12121970] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/16/2022]
Abstract
Although 3D-printing is common in dentistry, the technique does not produce the required quality for all target applications. Resin type, printing resolution, positioning, alignment, target structure, and the type and number of support structures may influence the surface roughness of printed objects, and this study investigates the effects of these variables. A stereolithographic data record was generated from a master model. Twelve printing processes were executed with a stereolithography Desktop 3D Printer, including models aligned across and parallel to the printer front as well as solid and hollow models. Three layer thicknesses were used, and in half of all processes, the models were inclined at 15°. For comparison, eight gypsum models and milled polyurethane models were manufactured. The mean roughness index of each model was determined with a perthometer. Surface roughness values were approximately 0.65 µm (master), 0.87–4.44 µm (printed), 2.32–2.57 µm (milled), 1.72–1.86 µm (cast plaster/alginate casting), and 0.98–1.03 µm (cast plaster/polyether casting). The layer height and type and number of support structures influenced the surface roughness of printed models (p ≤ 0.05), but positioning, structure, and alignment did not.
Collapse
Affiliation(s)
- Christin Arnold
- Department of Prosthetic Dentistry, University School of Dental Medicine, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 16, 06112 Halle, Germany.
| | - Delf Monsees
- Department of Prosthetic Dentistry, University School of Dental Medicine, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 16, 06112 Halle, Germany.
| | - Jeremias Hey
- Department of Prosthetic Dentistry, University School of Dental Medicine, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 16, 06112 Halle, Germany.
| | - Ramona Schweyen
- Department of Prosthetic Dentistry, University School of Dental Medicine, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 16, 06112 Halle, Germany.
| |
Collapse
|
49
|
A Review of Self-Expanding Esophageal Stents for the Palliation Therapy of Inoperable Esophageal Malignancies. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9265017. [PMID: 31080835 PMCID: PMC6475558 DOI: 10.1155/2019/9265017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/09/2019] [Accepted: 03/17/2019] [Indexed: 02/07/2023]
Abstract
Esophageal cancer is a very deadly disease, killing more than 15,000 people in the United States annually. Almost 400,000 new cases happen in the worldwide every year. More than 50% esophageal cancer patients are diagnosed at an advanced stage when they need an esophageal stent to open the blocked esophagus for feeding and drinking. Esophageal stents have evolved in stages over the years. Current clinically used stents commonly include stainless steel or nitinol self-expandable metallic stent (SEMS) and self-expandable plastic stent (SEPS). There are many choices of different types of stents and sizes, with fierce competition among manufacturers. However, current stent technology, whether uncovered, partially covered, fully covered SEMS or SEPS, has their own advantages to solve the dysphagia, stricture, and fistula problems, but they also cause some clinical complications. The ideal stent remains elusive. New 3D printing technique may bring new promising potential to manufacturing personalized esophageal stents. Drug-eluting stents could be the new avenue to do more than just pry open a stricture or cover a defect in the esophageal lumen, a possibility of proving local anticancer therapy simultaneously. Additionally, the lack of esophageal cancer animal models also hinders the progress of stent development. This paper reviews these topics for a comprehensive understanding of this field. In a conclusion, the ultimate goal of the future esophageal stent would have multifunction to treat the underlying conditions and restore esophageal function to near normal.
Collapse
|
50
|
Boyer CJ, Boktor M, Samant H, White LA, Wang Y, Ballard DH, Huebert RC, Woerner JE, Ghali GE, Alexander JS. 3D Printing for Bio-Synthetic Biliary Stents. Bioengineering (Basel) 2019; 6:E16. [PMID: 30744131 PMCID: PMC6466390 DOI: 10.3390/bioengineering6010016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/20/2022] Open
Abstract
Three-dimensional (3D) printing is an additive manufacturing method that holds great potential in a variety of future patient-specific medical technologies. This project validated a novel crosslinked polyvinyl alcohol (XL-PVA) 3D printed stent infused with collagen, human placental mesenchymal stem cells (PMSCs), and cholangiocytes. The biofabrication method in the present study examined 3D printing and collagen injection molding for rapid prototyping of customized living biliary stents with clinical applications in the setting of malignant and benign bile duct obstructions. XL-PVA stents showed hydrophilic swelling and addition of radiocontrast to the stent matrix improved radiographic opacity. Collagen loaded with PMSCs contracted tightly around hydrophilic stents and dense choloangiocyte coatings were verified through histology and fluorescence microscopy. It is anticipated that design elements used in these stents may enable appropriate stent placement, provide protection of the stent-stem cell matrix against bile constituents, and potentially limit biofilm development. Overall, this approach may allow physicians to create personalized bio-integrating stents for use in biliary procedures and lays a foundation for new patient-specific stent fabrication techniques.
Collapse
Affiliation(s)
- Christen J Boyer
- Molecular and Cellular Physiology, Health Sciences Center, Louisiana State University, Shreveport, LA 71103, USA.
- Oral and Maxillofacial Surgery, Health Sciences Center, Louisiana State University, Shreveport, LA 71103, USA.
| | - Moheb Boktor
- Gastroenterology and Hepatology, Health Sciences Center, Louisiana State University, Shreveport, LA 71103, USA.
| | - Hrishikesh Samant
- Gastroenterology and Hepatology, Health Sciences Center, Louisiana State University, Shreveport, LA 71103, USA.
| | - Luke A White
- Molecular and Cellular Physiology, Health Sciences Center, Louisiana State University, Shreveport, LA 71103, USA.
| | - Yuping Wang
- Obstetrics and Gynecology, Health Sciences Center, Louisiana State University, Shreveport, LA 71103, USA.
| | - David H Ballard
- Mallinckrodt Institute of Radiology, School of Medicine, Washington University, St. Louis, MO 63110, USA.
| | - Robert C Huebert
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Jennifer E Woerner
- Oral and Maxillofacial Surgery, Health Sciences Center, Louisiana State University, Shreveport, LA 71103, USA.
| | - Ghali E Ghali
- Oral and Maxillofacial Surgery, Health Sciences Center, Louisiana State University, Shreveport, LA 71103, USA.
| | - Jonathan S Alexander
- Molecular and Cellular Physiology, Health Sciences Center, Louisiana State University, Shreveport, LA 71103, USA.
| |
Collapse
|