1
|
Farahani N, Maghsoodlou A, Akbari M, Tahmasebi S, Daneshi S, Ramezani Farani M, Yusefi AR, Rahimzadeh P, Taheriazam A, Entezari M, Hashemi M. Translating preclinical insights into clinical strategies: Targeting cancer stem cells and stemness in prostate cancer. Pathol Res Pract 2025; 269:155934. [PMID: 40186890 DOI: 10.1016/j.prp.2025.155934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
CSCs represent a unique group within the tumor microenvironment (TME) elevating the tumorigenesis. The cause of cancer recurrence can also be investigated in the function of CSCs possessing self-renewing capabilities and differentiation into various types of cells. Prostate cancer (PCa) is a malignant disease of the urogenital system characterized by aggressive behavior and heterogeneous nature due to the dysregulation of molecular pathways and the interactions among cells within the TME. The PCa can quickly become resistant to standard chemotherapy and other kinds of therapies such as radiotherapy along with ability to mediate immune evasion. The focus of biology has been on the molecular and cellular alterations in PCa. The CSCs have been recognized as potential biomarkers for predicting the outcome of prostate PCa. Furthermore, a positive correlation exists between CSCs and the metastatic growth and stemness of PCa. The existence of hypoxia enhances the stemness of PCa, and CSCs play a role in dormancy. Genomic and epigenetic elements, including non-coding RNAs, can influence CSCs and the advancement of PCa. Additionally, therapeutic agents and nanotechnology methods aimed at targeting CSCs have been developed to inhibit CSCs in PCa treatment.
Collapse
Affiliation(s)
- Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Amin Maghsoodlou
- Young Researchers and Elite Club, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Mohammadarian Akbari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran,Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Ali Reza Yusefi
- Department of Public Health, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Parveen S, Konde DV, Paikray SK, Tripathy NS, Sahoo L, Samal HB, Dilnawaz F. Nanoimmunotherapy: the smart trooper for cancer therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002308. [PMID: 40230883 PMCID: PMC11996242 DOI: 10.37349/etat.2025.1002308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/20/2025] [Indexed: 04/16/2025] Open
Abstract
Immunotherapy has gathered significant attention and is now a widely used cancer treatment that uses the body's immune system to fight cancer. Despite initial successes, its broader clinical application is hindered by limitations such as heterogeneity in patient response and challenges associated with the tumor immune microenvironment. Recent advancements in nanotechnology have offered innovative solutions to these barriers, providing significant enhancements to cancer immunotherapy. Nanotechnology-based approaches exhibit multifaceted mechanisms, including effective anti-tumor immune responses during tumorigenesis and overcoming immune suppression mechanisms to improve immune defense capacity. Nanomedicines, including nanoparticle-based vaccines, liposomes, immune modulators, and gene delivery systems, have demonstrated the ability to activate immune responses, modulate tumor microenvironments, and target specific immune cells. Success metrics in preclinical and early clinical studies, such as improved survival rates, enhanced tumor regression, and elevated immune activation indices, highlight the promise of these technologies. Despite these achievements, several challenges remain, including scaling up manufacturing, addressing off-target effects, and navigating regulatory complexities. The review emphasizes the need for interdisciplinary approaches to address these barriers, ensuring broader clinical adoption. It also provides insights into interdisciplinary approaches, advancements, and the transformative potential of nano-immunotherapy and promising results in checkpoint inhibitor delivery, nanoparticle-mediated photothermal therapy, immunomodulation as well as inhibition by nanoparticles and cancer vaccines.
Collapse
Affiliation(s)
- Suphiya Parveen
- Department of Biotechnology and Genetics, School of Sciences, Jain (Deemed-to-be-University), Bengaluru 560027, Karnataka, India
| | - Dhanshree Vikrant Konde
- Department of Biotechnology and Genetics, School of Sciences, Jain (Deemed-to-be-University), Bengaluru 560027, Karnataka, India
| | - Safal Kumar Paikray
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Nigam Sekhar Tripathy
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Liza Sahoo
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Himansu Bhusan Samal
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Fahima Dilnawaz
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| |
Collapse
|
3
|
Wang T, Liu H, Li M, Ji Z, Zhang X, Wang N, Chen Y, Sun J, Liu F. Microneedle-based nanodrugs for tumor immunotherapy. J Control Release 2025; 380:539-562. [PMID: 39923854 DOI: 10.1016/j.jconrel.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/08/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
Microneedles have emerged as a promising and effective method for delivering therapeutic drugs and immunobiologics to treat various diseases. It is widely recognized that immune therapy has limited efficacy in solid tumors due to physical barriers and the immunosuppressive tumor microenvironment. Microneedle-based nanodrugs (NDMNs) offer a novel approach to overcome these limitations. These tiny needles are designed to load a variety of inorganic and organic nanoparticles, antigen vaccines, gene drugs, oncolytic viruses, and more. Utilizing microneedle arrays, NDMNs can effectively penetrate the skin barrier, delivering drugs precisely to the tumor site or immunoactive regions within the skin. Additionally, by designing and optimizing the microneedle structure, shape, and functionality, NDMNs enable precise drug release and efficient penetration, thereby enhancing the efficacy of tumor immunotherapy. In this review, we comprehensively discuss the pivotal role of NDMNs in cancer immunotherapy, summarizing innovative microneedle design strategies, mechanisms of immune activation, and delivery strategies of various nanodrugs. Furthermore, we explore the current clinical realities, limitations, and future prospects of NDMNs in tumor immunotherapy.
Collapse
Affiliation(s)
- Tianye Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China; Department of General Surgery, The First Hospital of Dalian Medical University, Dalian 116000, China
| | - Hongyu Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China
| | - Meng Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China
| | - Zao Ji
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China
| | - Xinyuan Zhang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China
| | - Nan Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China
| | - Ying Chen
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, China; Liaoning Province Clinical Research Center for Cancer, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang 110001, China.
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems Ministry of Education, Shenyang 110016, China.
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China; Phase I Clinical Trails Center, The First Hospital, China Medical University, Shenyang 110001, China.
| |
Collapse
|
4
|
Zhang A, Zhang X, Chen J, Shi X, Yu X, He Z, Sun J, Sun M, Liu Z. Approaches and applications in transdermal and transpulmonary gene drug delivery. Front Bioeng Biotechnol 2025; 12:1519557. [PMID: 39881959 PMCID: PMC11775749 DOI: 10.3389/fbioe.2024.1519557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
Gene therapy has emerged as a pivotal component in the treatment of diverse genetic and acquired human diseases. However, effective gene delivery remains a formidable challenge to overcome. The presence of degrading enzymes, acidic pH conditions, and the gastrointestinal mucus layer pose significant barriers for genetic therapy, necessitating exploration of alternative therapeutic options. In recent years, transdermal and transpulmonary gene delivery modalities offer promising avenues with multiple advantages, such as non-invasion, avoided liver first-pass effect and improved patient compliance. Considering the rapid development of gene therapeutics via transdermal and transpulmonary administration, here we aim to summarize the nearest advances in transdermal and transpulmonary gene drug delivery. In this review, we firstly elaborate on current delivery carrier in gene therapy. We, further, describe approaches and applications for enhancing transdermal and transpulmonary gene delivery encompassing microneedles, chemical enhancers, physical methods for transdermal administration as well as nebulized formulations, dry powder formulations, and pressurized metered dose formulations for efficient transpulmonary delivery. Last but not least, the opportunities and outlooks of gene therapy through both administrated routes are highlighted.
Collapse
Affiliation(s)
- Anni Zhang
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Xuran Zhang
- Department of Orthopedics, Fuxin Center Hospital, Fuxin, Liaoning, China
| | - Jiahui Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xijuan Yu
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning, China
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning, China
| | - Zhijun Liu
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Zhu C, Yang J, Liu L, Li B, Sun T, Sheng W, He Q. Bibliometric analysis of glycolysis and prostate cancer research from 2004 to 2024. Discov Oncol 2025; 16:34. [PMID: 39800812 PMCID: PMC11725561 DOI: 10.1007/s12672-025-01790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Prostate cancer (PCa) ranks as the second most common disease among men and the fourth most prevalent cancer worldwide. Enhanced glycolysis and excessive lactate secretion are recognized as critical factors driving the progression of various cancers. This study systematically investigated the research trends associated with glycolysis in PCa through bibliometric analysis. METHOD In this study, we conducted a systematic search of the Web of Science and PubMed databases for literature pertaining to the glycolysis of PCa that was published between January 1, 2004, and June 30, 2024. To achieve this objective, we employed CiteSpace software to generate visualizations that illustrate countries/regions, institutions, journals, and keywords. Additionally, we extracted pertinent quantitative data. Furthermore, we utilized VOSviewer software to create a collaboration network map among various journals. RESULTS Between 2004 and 2024, a total of 408 research articles on glycolysis in PCa were published, indicating a consistent upward trend in the annual publication rate. In this field, the United States not only leads in the volume of research papers but also has the highest degree of centrality. The journal "Cancer Research" is recognized as the most influential in the field, whereas "Prostate and Cancer" serves as a significant platform for disseminating research related to glycolysis in PCa. Keyword analysis has identified four primary research directions that have dominated this field over the past two decades. The role of glycolysis and its associated enzymes in PCa underpins this research. Glycolysis has also demonstrated significant clinical value in the diagnosis and prognosis of PCa. Moreover, drugs targeting glycolytic inhibitors and natural products have exhibited therapeutic potential against this disease. By modulating glycolytic mechanisms, there is potential to increase resistance in PCa. Currently, leading research in this area encompasses the application of nanotechnology to PCa glycolysis, the roles of long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) in this metabolic pathway, and the interactions between glycolysis and other biological processes in PCa. CONCLUSION This study employs bibliometric analysis to provide a comprehensive overview of research on glycolysis in PCa over the past two decades. It highlights the current state of knowledge in this field, identifies key research hotspots, and explores emerging frontiers, particularly nanotechnology, lncRNA, and miRNA, which are driving innovative research directions.
Collapse
Affiliation(s)
- Congxu Zhu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, No. 300 Bachelor's Road, Changsha, 410208, China
| | - Jingjing Yang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, No. 300 Bachelor's Road, Changsha, 410208, China
| | - Lumei Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, No. 300 Bachelor's Road, Changsha, 410208, China
| | - Bonan Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, No. 300 Bachelor's Road, Changsha, 410208, China
- Hunan Normal University Affiliated Changsha Hospital, No. 200 North Jinxing Road, Changsha, 410023, China
| | - Tiansong Sun
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, No. 300 Bachelor's Road, Changsha, 410208, China
| | - Wen Sheng
- School of Rehabilitation Medicine and Health Care, Hunan University of Medicine, No. 492 Jinxi South Road, Huaihua, 418000, China.
| | - Qinghu He
- School of Rehabilitation Medicine and Health Care, Hunan University of Medicine, No. 492 Jinxi South Road, Huaihua, 418000, China.
| |
Collapse
|
6
|
Panda P, Mohanty T, Mohapatra R. Advancements in Transdermal Drug Delivery Systems: Harnessing the Potential of Macromolecular Assisted Permeation Enhancement and Novel Techniques. AAPS PharmSciTech 2025; 26:29. [PMID: 39789371 DOI: 10.1208/s12249-024-03029-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
Transdermal drug delivery (TDD) represents a transformative paradigm in drug administration, offering advantages such as controlled drug release, enhanced patient adherence, and circumvention of hepatic first-pass metabolism. Despite these benefits, the inherent barrier function of the skin, primarily attributed to the stratum corneum, remains a significant impediment to the efficient permeation of therapeutic agents. Recent advancements have focused on macromolecular-assisted permeation enhancers, including carbohydrates, lipids, amino acids, nucleic acids, and cell-penetrating peptides, which modulate skin permeability by transiently altering its structural integrity. Concurrently, innovative methodologies such as iontophoresis, electroporation, microneedles, ultrasound, and sonophoresis have emerged as potent tools to enhance drug transport by creating transient microchannels or altering the skin's microenvironment. Among the novel approaches, the development of nanocarriers such as Liposome, niosomes, and transethosomes etc. has garnered substantial attention. These elastic vesicular systems, comprising lipids and edge activators, exhibit superior skin penetration owing to their deformability and enhanced payload delivery capabilities. Furthermore, the integration of nanocarriers with physical enhancement techniques demonstrates a synergistic potential, effectively addressing the limitations of conventional TDD systems. This comprehensive convergence of macromolecular-assisted enhancers, advanced physical techniques, and next-generation nanocarriers underscores the evolution of TDD, paving the way for optimized therapeutic outcomes.
Collapse
Affiliation(s)
- Pratikeswar Panda
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, 751003, Odisha, India
| | - Tejaswini Mohanty
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, 751003, Odisha, India
| | - Rajaram Mohapatra
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
7
|
Zhang X, Zhang Y, Rong X, Tang C, Liu H, Yue L, Su R, Wang Y, Qi W. Alkylated RALA-Derived Peptides for Efficient Gene Delivery. Biomacromolecules 2024; 25:8046-8057. [PMID: 39535929 DOI: 10.1021/acs.biomac.4c01355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
RALA is an amphipathic cationic peptide demonstrated to be a low-toxicity and high-efficiency delivery platform for the systemic delivery of nucleic acid therapeutics. This work reports three RALA-derived peptides modified with N-terminal palmitic acid, engineered through amino acid substitutions and truncated sequences. All three peptides have good nucleic acid encapsulation, release and uptake, biocompatibility, and endolysosome escape. The siRNA transfection efficiency is about 90%, and the silencing rate of GA (C16-GLFWHHHARLARALARHLARALRA) exceeds that of lipofectamine 2000 (siRNA concentration = 50 nM). Truncating the peptide chain while retaining a certain amount of arginine ensures an effective particle size. Replacing glutamic acid with three histidines ensures an effective zeta potential and accelerates the endosome escape process through the proton sponge phenomenon. Introducing phenylalanine enhances the carrier-cell interaction. We believe that they are powerful carriers of siRNA therapy and may have good application prospects in treating various diseases.
Collapse
Affiliation(s)
- Xuelin Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yexi Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xi Rong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Chuanmei Tang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Huiye Liu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Lei Yue
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
- Beyonpep Biotechnology Limited, Tianjin 300110, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| |
Collapse
|
8
|
Gu Q, Qi A, Wang N, Zhou Z, Zhou X. Unlocking Immunity: Innovative prostate cancer vaccine strategies. Int Immunopharmacol 2024; 142:113137. [PMID: 39276448 DOI: 10.1016/j.intimp.2024.113137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
OBJECTIVE Prostate Cancer (PCa) is a leading cause of cancer-related mortality in men, especially in Western societies. The objective of this research is to address the unmet need for effective treatments in advanced or recurrent PCa, where current strategies fall short of offering a cure. The focus is on leveraging immunotherapy and cancer vaccines to target the tumor's unique immunological microenvironment. MAIN RESULTS Despite immunotherapy's success in other cancers, its effectiveness in PCa has been limited by the tumor's immunosuppressive characteristics. However, cancer vaccines that engage Tumor-Specific Antigens (TSA) and Tumor-Associated Antigens (TAA) have emerged as a promising approach. Preclinical and clinical investigations of Dendritic Cell (DC) vaccines, DNA vaccines, mRNA vaccines, peptide vaccines, and viral vectors have shown their potential to elicit anti-tumor immune responses. The exploration of combination therapies with immune checkpoint inhibitors and the advent of novel adjuvants and oral microparticle vaccines present innovative strategies to improve efficacy and compliance. CONCLUSION The development of cancer vaccines for PCa holds significant potential. Future directions include optimizing vaccine design, refining combination therapy strategies, and creating patient-friendly administration methods. The integration of interdisciplinary knowledge and innovative clinical trial designs is essential for advancing personalized and precision immunotherapy for PCa.
Collapse
Affiliation(s)
- Qiannan Gu
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, Jiangsu 210009, China
| | - Anning Qi
- Medical Laboratory, Liuhe People's Hospital of Jiangsu Province, Nanjing 211500, Jiangsu, China
| | - Ne Wang
- Jiangning Hospital Tiandi New City Branch, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211198, Jiangsu Province, China
| | - Zhenxian Zhou
- Nanjing Second People's Hospital, 211103, Jiangsu Province, China
| | - Xiaohui Zhou
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, Jiangsu 210009, China; Jiangning Outpatient Department of China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
9
|
Tang H, Cheng X, Liang L, Chen BZ, Liu C, Wang Y. A stimulus responsive microneedle-based drug delivery system for cancer therapy. Biomater Sci 2024; 12:6274-6283. [PMID: 39501760 DOI: 10.1039/d4bm00741g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The intricate nature of the tumor microenvironment (TME) results in the inefficient delivery of anticancer drugs within tumor tissues, significantly compromising the therapeutic effect of cancer treatment. To address this issue, transdermal drug delivery microneedles (MNs) with high mechanical strength have emerged. Such MNs penetrate the skin barrier, enabling efficient drug delivery to tumor tissues. This approach enhances drug bioavailability, while also mitigating concerns such as liver and kidney toxicity associated with intravenous and oral drug administration. Notably, stimulus responsive MNs designed for drug delivery have the capacity to respond to various biological signals and pathological changes. This adaptability enables them to exert therapeutic effects within the TME, exploiting biochemical variations and tailoring treatment strategies to suit tumor characteristics. The present review surveys recent advancements in responsive MN systems. This comprehensive analysis serves as a valuable reference for the prospective application of smart MN drug delivery systems in cancer therapy.
Collapse
Affiliation(s)
- Hongyu Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xueqing Cheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ling Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yushu Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
10
|
Berger S, Zeyn Y, Wagner E, Bros M. New insights for the development of efficient DNA vaccines. Microb Biotechnol 2024; 17:e70053. [PMID: 39545748 PMCID: PMC11565620 DOI: 10.1111/1751-7915.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Despite the great potential of DNA vaccines for a broad range of applications, ranging from prevention of infections, over treatment of autoimmune and allergic diseases to cancer immunotherapies, the implementation of such therapies for clinical treatment is far behind the expectations up to now. The main reason is the poor immunogenicity of DNA vaccines in humans. Consequently, the improvement of the performance of DNA vaccines in vivo is required. This mini-review provides an overview of the current state of DNA vaccines and the various strategies to enhance the immunogenic potential of DNA vaccines, including (i) the optimization of the DNA construct itself regarding size, nuclear transfer and transcriptional regulation; (ii) the use of appropriate adjuvants; and (iii) improved delivery, for example, by careful choice of the administration route, physical methods such as electroporation and nanomaterials that may allow cell type-specific targeting. Moreover, combining nanoformulated DNA vaccines with other immunotherapies and prime-boost strategies may help to enhance success of treatment.
Collapse
Affiliation(s)
- Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScienceLudwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Yanira Zeyn
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg University (JGU) MainzMainzGermany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScienceLudwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Matthias Bros
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg University (JGU) MainzMainzGermany
| |
Collapse
|
11
|
Jiang Y, Wang C, Zu C, Rong X, Yu Q, Jiang J. Synergistic Potential of Nanomedicine in Prostate Cancer Immunotherapy: Breakthroughs and Prospects. Int J Nanomedicine 2024; 19:9459-9486. [PMID: 39371481 PMCID: PMC11456300 DOI: 10.2147/ijn.s466396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Given the global prevalence of prostate cancer in men, it is crucial to explore more effective treatment strategies. Recently, immunotherapy has emerged as a promising cancer treatment due to its unique mechanism of action and potential long-term effectiveness. However, its limited efficacy in prostate cancer has prompted renewed interest in developing strategies to improve immunotherapy outcomes. Nanomedicine offers a novel perspective on cancer treatment with its unique size effects and surface properties. By employing targeted delivery, controlled release, and enhanced immunogenicity, nanoparticles can be synergized with nanomedicine platforms to amplify the effectiveness of immunotherapy in treating prostate cancer. Simultaneously, nanotechnology can address the limitations of immunotherapy and the challenges of immune escape and tumor microenvironment regulation. Additionally, the synergistic effects of combining nanomedicine with other therapies offer promising clinical outcomes. Innovative applications of nanomedicine include smart nanocarriers, stimulus-responsive systems, and precision medicine approaches to overcome translational obstacles in prostate cancer immunotherapy. This review highlights the transformative potential of nanomedicine in enhancing prostate cancer immunotherapy and emphasizes the need for interdisciplinary collaboration to drive research and clinical applications forward.
Collapse
Affiliation(s)
- Yueyao Jiang
- Department of Pharmacy, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Chengran Wang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Chuancheng Zu
- China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Xin’ao Rong
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Qian Yu
- Department of Pharmacy, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Jinlan Jiang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| |
Collapse
|
12
|
Graham JP, Castro JG, Werba LC, Fardone LC, Francis KP, Ramamurthi A, Layden M, McCarthy HO, Gonzalez-Fernandez T. Versatile Cell Penetrating Peptide for Multimodal CRISPR Gene Editing in Primary Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614499. [PMID: 39386541 PMCID: PMC11463527 DOI: 10.1101/2024.09.23.614499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
CRISPR gene editing offers unprecedented genomic and transcriptomic control for precise regulation of cell function and phenotype. However, delivering the necessary CRISPR components to therapeutically relevant cell types without cytotoxicity or unexpected side effects remains challenging. Viral vectors risk genomic integration and immunogenicity while non-viral delivery systems are challenging to adapt to different CRISPR cargos, and many are highly cytotoxic. The arginine-alanine-leucine-alanine (RALA) cell penetrating peptide is an amphiphilic peptide that self-assembles into nanoparticles through electrostatic interactions with negatively charged molecules before delivering them across the cell membrane. This system has been used to deliver DNAs, RNAs, and small anionic molecules to primary cells with lower cytotoxicity compared to alternative non-viral approaches. Given the low cytotoxicity, versatility, and competitive transfection rates of RALA, we aimed to establish this peptide as a new CRISPR delivery system in a wide range of molecular formats across different editing modalities. We report that RALA was able to effectively encapsulate and deliver CRISPR in DNA, RNA, and ribonucleic protein (RNP) formats to primary mesenchymal stem cells (MSCs). Comparisons between RALA and commercially available reagents revealed superior cell viability leading to higher numbers of transfected cells and the maintenance of cell proliferative capacity. We then used the RALA peptide for the knock-in and knock-out of reporter genes into the MSC genome as well as for the transcriptional activation of therapeutically relevant genes. In summary, we establish RALA as a powerful tool for safer and effective delivery of CRISPR machinery in multiple cargo formats for a wide range of gene editing strategies.
Collapse
Affiliation(s)
- Josh P. Graham
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | | | - Lisette C. Werba
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Luke C. Fardone
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | | | - Anand Ramamurthi
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Michael Layden
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Helen O. McCarthy
- School of Pharmacy, Queen’s University Belfast, Northern Ireland, United Kingdom
| | | |
Collapse
|
13
|
Wu L, Yang L, Qian X, Hu W, Wang S, Yan J. Mannan-Decorated Lipid Calcium Phosphate Nanoparticle Vaccine Increased the Antitumor Immune Response by Modulating the Tumor Microenvironment. J Funct Biomater 2024; 15:229. [PMID: 39194667 DOI: 10.3390/jfb15080229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
With the rapid development of tumor immunotherapy, nanoparticle vaccines have attracted much attention as potential therapeutic strategies. A systematic review and analysis must be carried out to investigate the effect of mannose modification on the immune response to nanoparticles in regulating the tumor microenvironment, as well as to explore its potential clinical application in tumor therapy. Despite the potential advantages of nanoparticle vaccines in immunotherapy, achieving an effective immune response in the tumor microenvironment remains a challenge. Tumor immune escape and the overexpression of immunosuppressive factors limit its clinical application. Therefore, our review explored how to intervene in the immunosuppressive mechanism in the tumor microenvironment through the use of mannan-decorated lipid calcium phosphate nanoparticle vaccines to improve the efficacy of immunotherapy in patients with tumors and to provide new ideas and strategies for the field of tumor therapy.
Collapse
Affiliation(s)
- Liusheng Wu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 19077, Singapore
| | - Lei Yang
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xinye Qian
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wang Hu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shuang Wang
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jun Yan
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Fattahi MR, Dehghani M, Paknahad S, Rahiminia S, Zareie D, Hoseini B, Oroomi TR, Motedayyen H, Arefnezhad R. Clinical insights into nanomedicine and biosafety: advanced therapeutic approaches for common urological cancers. Front Oncol 2024; 14:1438297. [PMID: 39193389 PMCID: PMC11347329 DOI: 10.3389/fonc.2024.1438297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Urological cancers including those of the prostate, bladder, and kidney, are prevalent and often lethal malignancies besides other less common ones like testicular and penile cancers. Current treatments have major limitations like side effects, recurrence, resistance, high costs, and poor quality of life. Nanotechnology offers promising solutions through enhanced diagnostic accuracy, targeted drug delivery, controlled release, and multimodal imaging. This review reflects clinical challenges and nanomedical advances across major urological cancers. In prostate cancer, nanoparticles improve delineation and radiosensitization in radiation therapy, enable fluorescent guidance in surgery, and enhance chemotherapy penetration in metastatic disease. Nanoparticles also overcome bladder permeability barriers to increase the residence time of intravesical therapy and chemotherapy agents. In renal cancer, nanocarriers potentiate tyrosine kinase inhibitors and immunotherapy while gene vectors and zinc oxide nanoparticles demonstrate antiproliferative effects. Across modalities, urological applications of nanomedicine include polymeric, liposomal, and metal nanoparticles for targeted therapy, prodrug delivery, photodynamic therapy, and thermal ablation. Biosafety assessments reveal favorable profiles but clinical translation remains limited, necessitating further trials. In conclusion, nanotechnology holds significant potential for earlier detection, precise intervention, and tailored treatment of urological malignancies, warranting expanded research to transform patient outcomes.
Collapse
Affiliation(s)
- Mohammad Reza Fattahi
- Student Research Committee, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Shafa Rahiminia
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Deniz Zareie
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Behzad Hoseini
- School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran
- Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Zhang W, Jiao Y, Zhang Z, Zhang Y, Yu J, Gu Z. Transdermal gene delivery. J Control Release 2024; 371:516-529. [PMID: 38849095 DOI: 10.1016/j.jconrel.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Gene delivery has revolutionized conventional medical approaches to vaccination, cancer, and autoimmune diseases. However, current gene delivery methods are limited to either intravenous administration or direct local injections, failing to achieve well biosafety, tissue targeting, drug retention, and transfection efficiency for desired therapeutic outcomes. Transdermal drug delivery based on various delivery strategies can offer improved therapeutic potential and superior patient experiences. Recently, there has been increased foundational and clinical research focusing on the role of the transdermal route in gene delivery and exploring its impact on the efficiency of gene delivery. This review introduces the recent advances in transdermal gene delivery approaches facilitated by drug formulations and medical devices, as well as discusses their prospects.
Collapse
Affiliation(s)
- Wentao Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Jiao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ziru Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuqi Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jicheng Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China.
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
16
|
Xiang M, Yang C, Zhang L, Wang S, Ren Y, Gou M. Dissolving microneedles for transdermal drug delivery in cancer immunotherapy. J Mater Chem B 2024; 12:5812-5822. [PMID: 38856691 DOI: 10.1039/d4tb00659c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Immunotherapy is an important approach in cancer treatment. Transdermal administration is emerging as a promising method for delivering immunotherapeutics. Dissolving microneedles are made mainly of soluble or biodegradable polymers and have garnered widespread attention due to their painlessness, safety, convenience, excellent drug loading capacity, and easy availability of various materials, making them an ideal transdermal delivery system. This review comprehensively summarized the preparation methods, materials, and applications of dissolving microneedles in cancer vaccines, immune checkpoint inhibitors, and adoptive cell therapy. Additionally, the challenges and perspectives associated with their future clinical translation are discussed.
Collapse
Affiliation(s)
- Maya Xiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
- Department of Chemistry, University of Washington-Seattle Campus, Seattle, WA, USA
| | - Chunli Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Li Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
- Huahang Microcreate Technology Co., Ltd, Chengdu, China
| | - Siyi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Ya Ren
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Maling Gou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Yang G, Cao Y, Yang X, Cui T, Tan NZV, Lim YK, Fu Y, Cao X, Bhandari A, Enikeev M, Efetov S, Balaban V, He M. Advancements in nanomedicine: Precision delivery strategies for male pelvic malignancies - Spotlight on prostate and colorectal cancer. Exp Mol Pathol 2024; 137:104904. [PMID: 38788248 DOI: 10.1016/j.yexmp.2024.104904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Pelvic malignancies consistently pose significant global health challenges, adversely affecting the well-being of the male population. It is anticipated that clinicians will continue to confront these cancers in their practice. Nanomedicine offers promising strategies that revolutionize the treatment of male pelvic malignancies by providing precise delivery methods that aim to improve the efficacy of therapeutic outcomes while minimizing side effects. Nanoparticles are designed to encapsulate therapeutic agents and selectively target cancer cells. They can also be loaded with theragnostic agents, enabling multifunctional capabilities. OBJECTIVE This review aims to summarize the latest nanomedicine research into clinical applications, focusing on nanotechnology-based treatment strategies for male pelvic malignancies, encompassing chemotherapy, radiotherapy, immunotherapy, and other cutting-edge therapies. The review is structured to assist physicians, particularly those with limited knowledge of biochemistry and bioengineering, in comprehending the functionalities and applications of nanomaterials. METHODS Multiple databases, including PubMed, the National Library of Medicine, and Embase, were utilized to locate and review recently published articles on advancements in nano-drug delivery for prostate and colorectal cancers. CONCLUSION Nanomedicine possesses considerable potential in improving therapeutic outcomes and reducing adverse effects for male pelvic malignancies. Through precision delivery methods, this emerging field presents innovative treatment modalities to address these challenging diseases. Nevertheless, the majority of current studies are in the preclinical phase, with a lack of sufficient evidence to fully understand the precise mechanisms of action, absence of comprehensive pharmacotoxicity profiles, and uncertainty surrounding long-term consequences.
Collapse
Affiliation(s)
- Guodong Yang
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Yu Cao
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Xinyi Yang
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Te Cui
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Yuen Kai Lim
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Yu Fu
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Xinren Cao
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Aanchal Bhandari
- HBT Medical College and Dr. R N Cooper Municipal General Hospital, Mumbai, India
| | - Mikhail Enikeev
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Sergey Efetov
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir Balaban
- Clinic of Coloproctology and Minimally Invasive Surgery, Sechenov University, Moscow, Russia
| | - Mingze He
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia.
| |
Collapse
|
18
|
Shah SA, Oakes RS, Jewell CM. Advancing immunotherapy using biomaterials to control tissue, cellular, and molecular level immune signaling in skin. Adv Drug Deliv Rev 2024; 209:115315. [PMID: 38670230 PMCID: PMC11111363 DOI: 10.1016/j.addr.2024.115315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Immunotherapies have been transformative in many areas, including cancer treatments, allergies, and autoimmune diseases. However, significant challenges persist in extending the reach of these technologies to new indications and patients. Some of the major hurdles include narrow applicability to patient groups, transient efficacy, high cost burdens, poor immunogenicity, and side effects or off-target toxicity that results from lack of disease-specificity and inefficient delivery. Thus, there is a significant need for strategies that control immune responses generated by immunotherapies while targeting infection, cancer, allergy, and autoimmunity. Being the outermost barrier of the body and the first line of host defense, the skin presents a unique immunological interface to achieve these goals. The skin contains a high concentration of specialized immune cells, such as antigen-presenting cells and tissue-resident memory T cells. These cells feature diverse and potent combinations of immune receptors, providing access to cellular and molecular level control to modulate immune responses. Thus, skin provides accessible tissue, cellular, and molecular level controls that can be harnessed to improve immunotherapies. Biomaterial platforms - microneedles, nano- and micro-particles, scaffolds, and other technologies - are uniquely capable of modulating the specialized immunological niche in skin by targeting these distinct biological levels of control. This review highlights recent pre-clinical and clinical advances in biomaterial-based approaches to target and modulate immune signaling in the skin at the tissue, cellular, and molecular levels for immunotherapeutic applications. We begin by discussing skin cytoarchitecture and resident immune cells to establish the biological rationale for skin-targeting immunotherapies. This is followed by a critical presentation of biomaterial-based pre-clinical and clinical studies aimed at controlling the immune response in the skin for immunotherapy and therapeutic vaccine applications in cancer, allergy, and autoimmunity.
Collapse
Affiliation(s)
- Shrey A Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Robert S Oakes
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD 20742, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD 21201, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD 20742, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD 21201, USA; Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD 20742, USA; Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, 21201, USA; Marlene and Stewart Greenebaum Cancer Center, 22 S. Greene Street, Suite N9E17, Baltimore, MD, 21201, USA.
| |
Collapse
|
19
|
Edwards C, Shah SA, Gebhardt T, Jewell CM. Exploiting Unique Features of Microneedles to Modulate Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302410. [PMID: 37380199 PMCID: PMC10753036 DOI: 10.1002/adma.202302410] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/01/2023] [Indexed: 06/30/2023]
Abstract
Microneedle arrays (MNAs) are small patches containing hundreds of short projections that deliver signals directly to dermal layers without causing pain. These technologies are of special interest for immunotherapy and vaccine delivery because they directly target immune cells concentrated in the skin. The targeting abilities of MNAs result in efficient immune responses-often more protective or therapeutic-compared to conventional needle delivery. MNAs also offer logistical benefits, such as self-administration and transportation without refrigeration. Thus, numerous preclinical and clinical studies are exploring these technologies. Here the unique advantages of MNA, as well as critical challenges-such as manufacturing and sterility issues-the field faces to enable widespread deployment are discussed. How MNA design parameters can be exploited for controlled release of vaccines and immunotherapies, and the application to preclinical models of infection, cancer, autoimmunity, and allergies are explained. Specific strategies are also discussed to reduce off-target effects compared to conventional vaccine delivery routes, and novel chemical and manufacturing controls that enable cargo stability in MNAs across flexible intervals and temperatures. Clinical research using MNAs is then examined. Drawbacks of MNAs and the implications, and emerging opportunities to exploit MNAs for immune engineering and clinical use are concluded.
Collapse
Affiliation(s)
- Camilla Edwards
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Shrey A Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Thomas Gebhardt
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, VIC, 3000, Australia
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- US Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, 21201, USA
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD, 20742, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, 21201, USA
| |
Collapse
|
20
|
Chambers P, Ziminska M, Elkashif A, Wilson J, Redmond J, Tzagiollari A, Ferreira C, Balouch A, Bogle J, Donahue SW, Dunne NJ, McCarthy HO. The osteogenic and angiogenic potential of microRNA-26a delivered via a non-viral delivery peptide for bone repair. J Control Release 2023; 362:489-501. [PMID: 37673308 DOI: 10.1016/j.jconrel.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Bone-related injuries and diseases are among the most common causes of morbidity worldwide. Current bone-regenerative strategies such as auto- and allografts are invasive by nature, with adverse effects such as pain, infection and donor site morbidity. MicroRNA (miRNA) gene therapy has emerged as a promising area of research, with miRNAs capable of regulating multiple gene pathways simultaneously through the repression of post-transcriptional mRNAs. miR-26a is a key regulator of osteogenesis and has been found to be upregulated following bone injury, where it induces osteodifferentiation of mesenchymal stem cells (MSCs) and facilitates bone formation. This study demonstrates, for the first time, that the amphipathic, cell-penetrating peptide RALA can efficiently deliver miR-26a to MSCs in vitro to regulate osteogenic signalling. Transfection with miR-26a significantly increased expression of osteogenic and angiogenic markers at both gene and protein level. Using a rat calvarial defect model with a critical size defect, RALA/miR-26a NPs were delivered via an injectable, thermo-responsive Cs-g-PNIPAAm hydrogel to assess the impact on both rate and quality of bone healing. Critical defects treated with the RALA/miR-26a nanoparticles (NPs) had significantly increased bone volume and bone mineral density at 8 weeks, with increased blood vessel formation and mechanical properties. This study highlights the utility of RALA to deliver miR-26a for the purpose of bone healing within an injectable biomaterial, warranting further investigation of dose-related efficacy of the therapeutic across a range of in vivo models.
Collapse
Affiliation(s)
- Phillip Chambers
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Monika Ziminska
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ahmed Elkashif
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Jordan Wilson
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - John Redmond
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - Antzela Tzagiollari
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - Cole Ferreira
- Department of Biomedical Engineering, University of Massachusetts, Amherst, United States
| | - Auden Balouch
- Department of Biomedical Engineering, University of Massachusetts, Amherst, United States
| | - Jasmine Bogle
- Department of Biomedical Engineering, University of Massachusetts, Amherst, United States
| | - Seth W Donahue
- Department of Biomedical Engineering, University of Massachusetts, Amherst, United States
| | - Nicholas J Dunne
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Biodesign Europe, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
21
|
Wang H, Xu J, Xiang L. Microneedle-Mediated Transcutaneous Immunization: Potential in Nucleic Acid Vaccination. Adv Healthc Mater 2023; 12:e2300339. [PMID: 37115817 DOI: 10.1002/adhm.202300339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/07/2023] [Indexed: 04/29/2023]
Abstract
Efforts aimed at exploring economical and efficient vaccination have taken center stage to combat frequent epidemics worldwide. Various vaccines have been developed for infectious diseases, among which nucleic acid vaccines have attracted much attention from researchers due to their design flexibility and wide application. However, the lack of an efficient delivery system considerably limits the clinical translation of nucleic acid vaccines. As mass vaccinations via syringes are limited by low patient compliance and high costs, microneedles (MNs), which can achieve painless, cost-effective, and efficient drug delivery, can provide an ideal vaccination strategy. The MNs can break through the stratum corneum barrier in the skin and deliver vaccines to the immune cell-rich epidermis and dermis. In addition, the feasibility of MN-mediated vaccination is demonstrated in both preclinical and clinical studies and has tremendous potential for the delivery of nucleic acid vaccines. In this work, the current status of research on MN vaccines is reviewed. Moreover, the improvements of MN-mediated nucleic acid vaccination are summarized and the challenges of its clinical translation in the future are discussed.
Collapse
Affiliation(s)
- Haochen Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Junhua Xu
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
22
|
Dahri M, Beheshtizadeh N, Seyedpour N, Nakhostin-Ansari A, Aghajani F, Seyedpour S, Masjedi M, Farjadian F, Maleki R, Adibkia K. Biomaterial-based delivery platforms for transdermal immunotherapy. Biomed Pharmacother 2023; 165:115048. [PMID: 37385212 DOI: 10.1016/j.biopha.2023.115048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Nowadays, immunotherapy is one of the most essential treatments for various diseases and a broad spectrum of disorders are assumed to be treated by altering the function of the immune system. For this reason, immunotherapy has attracted a great deal of attention and numerous studies on different approaches for immunotherapies have been investigated, using multiple biomaterials and carriers, from nanoparticles (NPs) to microneedles (MNs). In this review, the immunotherapy strategies, biomaterials, devices, and diseases supposed to be treated by immunotherapeutic strategies are reviewed. Several transdermal therapeutic methods, including semisolids, skin patches, chemical, and physical skin penetration enhancers, are discussed. MNs are the most frequent devices implemented in transdermal immunotherapy of cancers (e.g., melanoma, squamous cell carcinoma, cervical, and breast cancer), infectious (e.g., COVID-19), allergic and autoimmune disorders (e.g., Duchenne's muscular dystrophy and Pollinosis). The biomaterials used in transdermal immunotherapy vary in shape, size, and sensitivity to external stimuli (e.g., magnetic field, photo, redox, pH, thermal, and even multi-stimuli-responsive) were reported. Correspondingly, vesicle-based NPs, including niosomes, transferosomes, ethosomes, microemulsions, transfersomes, and exosomes, are also discussed. In addition, transdermal immunotherapy using vaccines has been reviewed for Ebola, Neisseria gonorrhoeae, Hepatitis B virus, Influenza virus, respiratory syncytial virus, Hand-foot-and-mouth disease, and Tetanus.
Collapse
Affiliation(s)
- Mohammad Dahri
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nasrin Seyedpour
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Nakhostin-Ansari
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Aghajani
- Research Development Center, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Seyedpour
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Masjedi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Maleki
- Department of Chemical Technologies, Iranian Research Organization for Sciences and Technology (IROST), P.O. Box 33535111 Tehran, Iran.
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Wang M, Li X, Du W, Sun M, Ling G, Zhang P. Microneedle-mediated treatment for superficial tumors by combining multiple strategies. Drug Deliv Transl Res 2023; 13:1600-1620. [PMID: 36735217 PMCID: PMC9897165 DOI: 10.1007/s13346-023-01297-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 02/04/2023]
Abstract
Superficial tumors are still challenging to overcome due to the high risk and toxicity of surgery and conventional chemotherapy. Microneedles (MNs) are widely used in the treatment of superficial skin tumors (SST) due to the high penetration rate of the stratum corneum (SC), excellent biocompatibility, simple preparation process, high patient compliance, and minimal invasion. Most importantly, MNs can provide not only efficient and rarely painful delivery carriers, but also combine multi-model strategies with photothermal therapy (PTT), immunotherapy, and gene therapy for synergistic efficacy. To promote an in-depth understanding of their superiorities, this paper systematically summarized the latest application progress of MNs in the treatment of SST by delivering various types of photosensitizers, immune signal molecules, genes, and chemotherapy drugs. Just as important, the advantages, limitations, and drug release mechanisms of MNs based on different materials are introduced in the paper. In addition, the application of MN technology to clinical practice is the ultimate goal of all the work. The obstacles and possible difficulties in expanding the production of MNs and achieving clinical transformation are briefly discussed in this paper. To be anticipated, our work will provide new insights into the precise and rarely painful treatment of SST in the future.
Collapse
Affiliation(s)
- Meng Wang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Xiaodan Li
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Wenzhen Du
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Minge Sun
- Shenyang Narnia Biomedical Technology Company, Ltd, Shenyang, 110167, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
24
|
Wickline SA, Hou KK, Pan H. Peptide-Based Nanoparticles for Systemic Extrahepatic Delivery of Therapeutic Nucleotides. Int J Mol Sci 2023; 24:ijms24119455. [PMID: 37298407 DOI: 10.3390/ijms24119455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Peptide-based nanoparticles (PBN) for nucleotide complexation and targeting of extrahepatic diseases are gaining recognition as potent pharmaceutical vehicles for fine-tuned control of protein production (up- and/or down-regulation) and for gene delivery. Herein, we review the principles and mechanisms underpinning self-assembled formation of PBN, cellular uptake, endosomal release, and delivery to extrahepatic disease sites after systemic administration. Selected examples of PBN that have demonstrated recent proof of concept in disease models in vivo are summarized to offer the reader a comparative view of the field and the possibilities for clinical application.
Collapse
Affiliation(s)
- Samuel A Wickline
- Division of Cardiology, Department of Medical Engineering, University of South Florida, Tampa, FL 33602, USA
| | - Kirk K Hou
- Department of Ophthalmology, Stein and Doheny Eye Institutes, University of California, Los Angeles, CA 90095, USA
| | - Hua Pan
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
25
|
Liu X, Song H, Sun T, Wang H. Responsive Microneedles as a New Platform for Precision Immunotherapy. Pharmaceutics 2023; 15:1407. [PMID: 37242649 PMCID: PMC10220742 DOI: 10.3390/pharmaceutics15051407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Microneedles are a well-known transdermal or transdermal drug delivery system. Different from intramuscular injection, intravenous injection, etc., the microneedle delivery system provides unique characteristics for immunotherapy administration. Microneedles can deliver immunotherapeutic agents to the epidermis and dermis, where immune cells are abundant, unlike conventional vaccine systems. Furthermore, microneedle devices can be designed to respond to certain endogenous or exogenous stimuli including pH, reactive oxygen species (ROS), enzyme, light, temperature, or mechanical force, thereby allowing controlled release of active compounds in the epidermis and dermis. In this way, multifunctional or stimuli-responsive microneedles for immunotherapy could enhance the efficacy of immune responses to prevent or mitigate disease progression and lessen systemic adverse effects on healthy tissues and organs. Since microneedles are a promising drug delivery system for accurate delivery and controlled drug release, this review focuses on the progress of using reactive microneedles for immunotherapy, especially for tumors. Limitations of current microneedle system are summarized, and the controllable administration and targeting of reactive microneedle systems are examined.
Collapse
Affiliation(s)
- Xinyang Liu
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Haohao Song
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Tairan Sun
- The Second Affiliated Hospital of Hebei North University, Zhangjiakou 075100, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Han W, Liu F, Liu G, Li H, Xu Y, Sun S. Research progress of physical transdermal enhancement techniques in tumor therapy. Chem Commun (Camb) 2023; 59:3339-3359. [PMID: 36815500 DOI: 10.1039/d2cc06219d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The advancement and popularity of transdermal drug delivery (TDD) based on the physical transdermal enhancement technique (PTET) has opened a new paradigm for local tumor treatment. The drug can be directly delivered to the tumor site through the skin, thus avoiding the toxic side effects caused by the first-pass effect and achieving high patient compliance. Further development of PTETs has provided many options for antitumor drugs and laid the foundation for future applications of wearable closed-loop targeting drug delivery systems. In this highlight, the different types of PTETs and related mechanisms, and applications of PTET-related tumor detection and therapy are highlighted. According to their type and characteristics, PTETs are categorized as follows: (1) iontophoresis, (2) electroporation, (3) ultrasound, (4) thermal ablation, and (5) microneedles. PTET-related applications in the local treatment of tumors are categorized as follows: (1) melanoma, (2) breast tumor, (3) squamous cell carcinoma, (4) cervical tumor, and (5) others. The challenges and future prospects of existing PTETs are also discussed. This highlight will provide guidance for the design of PTET-based wearable closed-loop targeting drug delivery systems and personalized therapy for tumors.
Collapse
Affiliation(s)
- Weiqiang Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Fengyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116023, P. R. China.
| | - Guoxin Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
27
|
Li X, Xie X, Wu Y, Zhang Z, Liao J. Microneedles: structure, classification, and application in oral cancer theranostics. Drug Deliv Transl Res 2023:10.1007/s13346-023-01311-0. [PMID: 36892816 DOI: 10.1007/s13346-023-01311-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2023] [Indexed: 03/10/2023]
Abstract
Oral cancer is a malignant tumor that threatens the health of individuals on a global scale. Currently available clinical treatment methods, including surgery, radiotherapy, and chemotherapy, significantly impact the quality of life of patients with systemic side effects. In the treatment of oral cancer, local and efficient delivery of antineoplastic drugs or other substances (like photosensitizers) to improve the therapy effect is a potential way to optimize oral cancer treatments. As an emerging drug delivery system in recent years, microneedles (MNs) can be used for local drug delivery, offering the advantages of high efficiency, convenience, and noninvasiveness. This review briefly introduces the structures and characteristics of various types of MNs and summarizes MN preparation methods. An overview of the current research application of MNs in different cancer treatments is provided. Overall, MNs, as a means of transporting substances, demonstrate great potential in oral cancer treatments, and their promising future applications and perspectives of MNs are outlined in this review.
Collapse
Affiliation(s)
- Xintong Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xi Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhuoyuan Zhang
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
28
|
Tian Y, Liu Z, Wang J, Li L, Wang F, Zhu Z, Wang X. Nanomedicine for Combination Urologic Cancer Immunotherapy. Pharmaceutics 2023; 15:546. [PMID: 36839868 PMCID: PMC9960671 DOI: 10.3390/pharmaceutics15020546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Urologic cancers, particularly kidney, bladder, and prostate cancer, have a growing incidence and account for about a million annual deaths worldwide. Treatments, including surgery, chemotherapy, radiotherapy, hormone therapy, and immunotherapy are the main therapeutic options in urologic cancers. Immunotherapy is now a clinical reality with marked success in solid tumors. Immunological checkpoint blockade, non-specific activation of the immune system, adoptive cell therapy, and tumor vaccine are the main modalities of immunotherapy. Immunotherapy has long been used to treat urologic cancers; however, dose-limiting toxicities and low response rates remain major challenges in the clinic. Herein, nanomaterial-based platforms are utilized as the "savior". The combination of nanotechnology with immunotherapy can achieve precision medicine, enhance efficacy, and reduce toxicities. In this review, we highlight the principles of cancer immunotherapy in urology. Meanwhile, we summarize the nano-immune technology and platforms currently used for urologic cancer treatment. The ultimate goal is to help in the rational design of strategies for nanomedicine-based immunotherapy in urologic cancer.
Collapse
Affiliation(s)
- Yun Tian
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Zhenzhu Liu
- Department of Cardiovascular, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Jianbo Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Linan Li
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Fuli Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Zheng Zhu
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xuejian Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| |
Collapse
|
29
|
Wang T, Gao H, Wang D, Zhang C, Hu K, Zhang H, Lin J, Chen X. Stem cell-derived exosomes in the treatment of melasma and its percutaneous penetration. Lasers Surg Med 2023; 55:178-189. [PMID: 36573453 DOI: 10.1002/lsm.23628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/05/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Melasma is a refractory skin disease due to its complex pathogenesis and difficult treatment. Studies have found that human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-Exos) could serve as a novel cell-free therapeutic strategy in regenerative and esthetic medicine. It could potentially treat melasma, but the skin barrier is a challenge. In this study, we aim to explore the safety and efficacy of hUCMSC-Exos in the treatment of melasma and the means to promote its percutaneous penetration. MATERIALS AND METHODS In the animal study about the effect of penetration, percutaneous penetration of PKH67-labeled hUCMSC-Exos was studied under microneedles, 1565 nm nonablative fractional laser (NAFL), and a plasma named Peninsula Blue Aurora Shumin Master (PBASM) treatments, observed by confocal laser scanning microscopy. In the clinical application study, 60 patients with melasma treated in our department were divided into four groups. NAFL combined with normal saline treatment was used for Group A. Microneedles, NAFL, and PBASM combined with hUCMSC-Exos treatments were used for Groups B, C, and D, respectively. Each patient received four treatments at 1-month intervals. Assessments were done using the degree of pain posttreatment, melasma area and severity score, improvement rate, physician global assessment score, satisfaction, and complications. RESULTS In the animal study about the effect of penetration, hUCMSC-Exos can penetrate the deep dermis under microneedles, NAFL, and PBASM treatments. In the clinical application study, compared with Group A, Groups B, C, and D showed significantly improved therapeutic effect and patient satisfaction (p < 0.05), and there was no significant difference among Groups B, C, and D.(p > 0.05). Patients in Group B reported higher pain levels than those in the other three groups (p < 0.05); the treatment experience of patients in Group D was better. CONCLUSION hUCMSC-Exos can improve the symptoms of melasma safely and effectively. Compared with microneedles, NAFL and PBASM can also achieve a good effect toward promoting penetration. These findings are worthy of exploration and clinical application.
Collapse
Affiliation(s)
- Ting Wang
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hangqi Gao
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Dezhi Wang
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chaoyu Zhang
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Kailun Hu
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Haoruo Zhang
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jian Lin
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaosong Chen
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
30
|
Polymeric Microneedle-Based Drug Delivery Platforms for Application in Cancer Therapy. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
31
|
Microneedle arrays for cutaneous and transcutaneous drug delivery, disease diagnosis, and cosmetic aid. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
32
|
Jin H, Qin S, He J, Xiao J, Li Q, Mao Y, Zhao L. Systematic pan-cancer analysis identifies RALA as a tumor targeting immune therapeutic and prognostic marker. Front Immunol 2022; 13:1046044. [PMID: 36466919 PMCID: PMC9713825 DOI: 10.3389/fimmu.2022.1046044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/02/2022] [Indexed: 10/07/2023] Open
Abstract
INTRODUCTION RALA is a member of the small GTPase Ras superfamily and has been shown to play a role in promoting cell proliferation and migration in most tumors, and increase the resistance of anticancer drugs such as imatinib and cisplatin. Although many literatures have studied the cancer-promoting mechanism of RALA, there is a lack of relevant pan-cancer analysis. METHODS This study systematically analyzed the differential expression and mutation of RALA in pan-cancer, including different tissues and cancer cell lines, and studied the prognosis and immune infiltration associated with RALA in various cancers. Next, based on the genes co-expressed with RALA in pan-cancer, we selected 241 genes with high correlation for enrichment analysis. In terms of pan-cancer, we also analyzed the protein-protein interaction pathway of RALA and the application of small molecule drug Guanosine-5'-Diphosphate. We screened hepatocellular cancer (HCC) to further study RALA. RESULTS The results indicated that RALA was highly expressed in most cancers. RALA was significantly correlated with the infiltration of B cells and macrophages, as well as the expression of immune checkpoint molecules such as CD274, CTLA4, HAVCR2 and LAG3, suggesting that RALA can be used as a kind of new pan-cancer immune marker. The main functions of 241 genes are mitosis and protein localization to nucleosome, which are related to cell cycle. For HCC, the results displayed that RALA was positively correlated with common intracellular signaling pathways such as angiogenesis and apoptosis. DISCUSSION In summary, RALA was closely related to the clinical prognosis and immune infiltration of various tumors, and RALA was expected to become a broad-spectrum molecular immune therapeutic target and prognostic marker for pan-cancer.
Collapse
Affiliation(s)
- Haoer Jin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Sha Qin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiang He
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juxiong Xiao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qingling Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
33
|
Saha C, Bojdo J, Dunne NJ, Duary RK, Buckley N, McCarthy HO. Nucleic acid vaccination strategies for ovarian cancer. Front Bioeng Biotechnol 2022; 10:953887. [PMID: 36420446 PMCID: PMC9677957 DOI: 10.3389/fbioe.2022.953887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/26/2022] [Indexed: 09/19/2023] Open
Abstract
High grade serous carcinoma (HGSC) is one of the most lethal ovarian cancers that is characterised by asymptomatic tumour growth, insufficient knowledge of malignant cell origin and sub-optimal detection. HGSC has been recently shown to originate in the fallopian tube and not in the ovaries. Conventional treatments such as chemotherapy and surgery depend upon the stage of the disease and have resulted in higher rates of relapse. Hence, there is a need for alternative treatments. Differential antigen expression levels have been utilised for early detection of the cancer and could be employed in vaccination strategies using nucleic acids. In this review the different vaccination strategies in Ovarian cancer are discussed and reviewed. Nucleic acid vaccination strategies have been proven to produce a higher CD8+ CTL response alongside CD4+ T-cell response when compared to other vaccination strategies and thus provide a good arena for antitumour immune therapy. DNA and mRNA need to be delivered into the intracellular matrix. To overcome ineffective naked delivery of the nucleic acid cargo, a suitable delivery system is required. This review also considers the suitability of cell penetrating peptides as a tool for nucleic acid vaccine delivery in ovarian cancer.
Collapse
Affiliation(s)
- Chayanika Saha
- School of Pharmacy, Queen’s University of Belfast, Belfast, United Kingdom
| | - James Bojdo
- School of Pharmacy, Queen’s University of Belfast, Belfast, United Kingdom
| | - Nicholas J. Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Raj Kumar Duary
- Department of Food Engineering and Technology, Tezpur University, Tezpur, India
| | - Niamh Buckley
- School of Pharmacy, Queen’s University of Belfast, Belfast, United Kingdom
| | - Helen O. McCarthy
- School of Pharmacy, Queen’s University of Belfast, Belfast, United Kingdom
- School of Chemical Sciences, Dublin City University, Dublin, Ireland
| |
Collapse
|
34
|
Xu G, Mao Y, Jiang T, Gao B, He B. Structural design strategies of microneedle-based vaccines for transdermal immunity augmentation. J Control Release 2022; 351:907-922. [DOI: 10.1016/j.jconrel.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022]
|
35
|
Martínez-Puente DH, Pérez-Trujillo JJ, Zavala-Flores LM, García-García A, Villanueva-Olivo A, Rodríguez-Rocha H, Valdés J, Saucedo-Cárdenas O, Montes de Oca-Luna R, Loera-Arias MDJ. Plasmid DNA for Therapeutic Applications in Cancer. Pharmaceutics 2022; 14:pharmaceutics14091861. [PMID: 36145609 PMCID: PMC9503848 DOI: 10.3390/pharmaceutics14091861] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, the interest in using nucleic acids for therapeutic applications has been increasing. DNA molecules can be manipulated to express a gene of interest for gene therapy applications or vaccine development. Plasmid DNA can be developed to treat different diseases, such as infections and cancer. In most cancers, the immune system is limited or suppressed, allowing cancer cells to grow. DNA vaccination has demonstrated its capacity to stimulate the immune system to fight against cancer cells. Furthermore, plasmids for cancer gene therapy can direct the expression of proteins with different functions, such as enzymes, toxins, and cytotoxic or proapoptotic proteins, to directly kill cancer cells. The progress and promising results reported in animal models in recent years have led to interesting clinical results. These DNA strategies are expected to be approved for cancer treatment in the near future. This review discusses the main strategies, challenges, and future perspectives of using plasmid DNA for cancer treatment.
Collapse
Affiliation(s)
| | - José Juan Pérez-Trujillo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Laura Mireya Zavala-Flores
- Department of Molecular Genetics, Northeast Biomedical Research Center (CIBIN) of IMSS, Nuevo Leon Delegation, Monterrey 64720, Mexico
| | - Aracely García-García
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Arnulfo Villanueva-Olivo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Humberto Rodríguez-Rocha
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Jesús Valdés
- Departamento de Bioquímica, CINVESTAV-México, Av. IPN 2508, Colonia San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Odila Saucedo-Cárdenas
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Roberto Montes de Oca-Luna
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
- Correspondence: (R.M.d.O.-L.); (M.d.J.L.-A.); Tel.: +52-81-8329-4195 (R.M.d.O.-L. & M.d.J.L.-A.)
| | - María de Jesús Loera-Arias
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
- Correspondence: (R.M.d.O.-L.); (M.d.J.L.-A.); Tel.: +52-81-8329-4195 (R.M.d.O.-L. & M.d.J.L.-A.)
| |
Collapse
|
36
|
Nie W, Chen J, Wang B, Gao X. Nonviral vector system for cancer immunogene therapy. MEDCOMM – BIOMATERIALS AND APPLICATIONS 2022. [DOI: 10.1002/mba2.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Wen Nie
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu PR China
| | - Jing Chen
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu PR China
| | - Bilan Wang
- Department of Pharmacy West China Second University Hospital of Sichuan University Chengdu PR China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu PR China
| |
Collapse
|
37
|
Emerging concepts in designing next-generation multifunctional nanomedicine for cancer treatment. Biosci Rep 2022; 42:231373. [PMID: 35638450 PMCID: PMC9272595 DOI: 10.1042/bsr20212051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Nanotherapy has emerged as an improved anticancer therapeutic strategy to circumvent the harmful side effects of chemotherapy. It has been proven to be beneficial to offer multiple advantages, including their capacity to carry different therapeutic agents, longer circulation time and increased therapeutic index with reduced toxicity. Over time, nanotherapy evolved in terms of their designing strategies like geometry, size, composition or chemistry to circumvent the biological barriers. Multifunctional nanoscale materials are widely used as molecular transporter for delivering therapeutics and imaging agents. Nanomedicine involving multi-component chemotherapeutic drug-based combination therapy has been found to be an improved promising approach to increase the efficacy of cancer treatment. Next-generation nanomedicine has also utilized and combined immunotherapy to increase its therapeutic efficacy. It helps in targeting tumor immune response sparing the healthy systemic immune function. In this review, we have summarized the progress of nanotechnology in terms of nanoparticle designing and targeting cancer. We have also discussed its further applications in combination therapy and cancer immunotherapy. Integrating patient-specific proteomics and biomarker based information and harnessing clinically safe nanotechnology, the development of precision nanomedicine could revolutionize the effective cancer therapy.
Collapse
|
38
|
Sustainable drug release using nanoparticle encapsulated microneedles. Chem Asian J 2022; 17:e202200333. [DOI: 10.1002/asia.202200333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/26/2022] [Indexed: 11/07/2022]
|
39
|
Bletilla striata polysaccharide microneedle for effective transdermal administration of model protein antigen. Int J Biol Macromol 2022; 205:511-519. [PMID: 35217076 DOI: 10.1016/j.ijbiomac.2022.02.116] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 02/03/2023]
Abstract
Traditional vaccination relies on subcutaneous injection or intramuscular injection, which requires professional medical personnel and is accompanied by the risk of needle-related diseases and injuries. Therefore, to promote immunization coverage and reduce costs, it is necessary to provide a new method of vaccine administration. Dissolving microneedle (DMN) has been proposed as an alternative to hypodermic needles, providing prospects for self-inoculation and increasing immunogenicity by directly targeting skin dendritic cells. This study reported the successful preparation and characterization of Bletilla striata polysaccharide microneedles (BMNs) and investigated the potential of this natural material-based DMN as a vaccine carrier. The prepared BMNs exhibited more excellent mechanical properties and stability compared with microneedles made of hyaluronic acid and polyvinyl alcohol. BMNs had good cell compatibility, low bacterial skin permeability, slight irritation to the skin, and no infection or inflammation in the body. In addition, as shown by circular dichroism, the molecular structure of the antigen ovalbumin (OVA) loaded in BMN did not change during storage for 21 days. The Franz diffusion cell experiment showed 76.74% of OVA was released to the skin within 3 h. These encouraging findings indicate that the BMNs can be a promising tool for effective vaccine delivery.
Collapse
|
40
|
Ej M, Em M, N D, Ho M. A Peptide/MicroRNA-31 nanomedicine within an electrospun biomaterial designed to regenerate wounds in vivo. Acta Biomater 2022; 138:285-300. [PMID: 34800718 DOI: 10.1016/j.actbio.2021.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/20/2022]
Abstract
microRNA-31 (miR-31) has been identified to be downregulated in pathologies associated with delayed wound repair. Thus, it was proposed that the delivery of a plasmid encoding miR-31 (pmiR-31) to the skin could hold potential in promoting wound healing. Effective delivery of pmiR-31 was potentiated by encapsulation with the CHAT peptide to form nanocomplexes, this improved cellular entry and elicited a potent increase in miR-31 expression in vitro in both skin human keratinocyte cell line (HaCaT) and human microvascular endothelial cell line (HMEC-1). Transfection efficiencies with CHAT/pEFGP-N1 were significant at 15.2 ± 8.1% in HMEC-1 cells and >40% in HaCaT cells. In this study, the CHAT/pmiR-31 nanocomplexes at a N:P ratio of 10 had an average particle size of 74.2 nm with a cationic zeta potential of 9.7 mV. Delivery of CHAT/pmiR-31 to HaCaT and HMEC-1 cells resulted in significant improvements in cell migration capacity and increased angiogenesis. In vivo studies were conducted in C57BL/6 J mice were CHAT/pmiR-31 was delivered via electrospun PVA nanofibres, demonstrating a significant increase in epidermal (increase of ∼38.2 µm) and stratum corneum (increase of 8.2 µm) layers compared to controls. Furthermore, treatment in vivo with CHAT/pmiR-31 increased angiogenesis in wounds compared to controls, with a significant increase in vessel diameter by ∼20.4 µm compared against a commercial dressing control (Durafiber™). Together, these data demonstrate that the delivery of CHAT/pmiR-31 nanocomplexes from electrospun PVA nanofibres represent an innovative therapy for wound repair, eliciting a positive therapeutic response across both stromal and epithelial tissue compartments of the skin. STATEMENT OF SIGNIFICANCE: This study advances research regarding the development of our unique electrospun nanofibre patch to deliver genetic nanoparticles into wounds in vivo to promote healing. The genetic nanoparticles are comprised of: (a) plasmid micro-RNA31 that has been shown to be downregulated in pathologies with delayed wound repair and (b) a 15 amino acid linear peptide termed CHAT. The CHAT facilitates complexation of miR-31 and cellular uptake. Herein, we report for the first time on the use of CHAT to deliver a therapeutic cargo pmiR-31 for wound healing applications from a nanofibre patch. Application of the nanofibre patch resulted in the controlled delivery of the CHAT/pmiR-31 nanoparticles with a significant increase in both epidermal and stratum corneum layers compared to untreated and commercial controls.
Collapse
Affiliation(s)
- Mulholland Ej
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom; Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom.
| | - McErlean Em
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Dunne N
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom; School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - McCarthy Ho
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom; School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
41
|
Microneedle systems for delivering nucleic acid drugs. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022; 52:273-292. [PMID: 35003824 PMCID: PMC8726529 DOI: 10.1007/s40005-021-00558-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022]
Abstract
Background Nucleic acid-based gene therapy is a promising technology that has been used in various applications such as novel vaccination platforms for infectious/cancer diseases and cellular reprogramming because of its fast, specific, and effective properties. Despite its potential, the parenteral nucleic acid drug formulation exhibits instability and low efficacy due to various barriers, such as stability concerns related to its liquid state formulation, skin barriers, and endogenous nuclease degradation. As promising alternatives, many attempts have been made to perform nucleic acid delivery using a microneedle system. With its minimal invasiveness, microneedle can deliver nucleic acid drugs with enhanced efficacy and improved stability. Area covered This review describes nucleic acid medicines' current state and features and their delivery systems utilizing non-viral vectors and physical delivery systems. In addition, different types of microneedle delivery systems and their properties are briefly reviewed. Furthermore, recent advances of microneedle-based nucleic acid drugs, including featured vaccination applications, are described. Expert opinion Nucleic acid drugs have shown significant potential beyond the limitation of conventional small molecules, and the current COVID-19 pandemic highlights the importance of nucleic acid therapies as a novel vaccination platform. Microneedle-mediated nucleic acid drug delivery is a potential platform for less invasive nucleic acid drug delivery. Microneedle system can show enhanced efficacy, stability, and improved patient convenience through self-administration with less pain.
Collapse
|
42
|
Nazary Abrbekoh F, Salimi L, Saghati S, Amini H, Fathi Karkan S, Moharamzadeh K, Sokullu E, Rahbarghazi R. Application of microneedle patches for drug delivery; doorstep to novel therapies. J Tissue Eng 2022; 13:20417314221085390. [PMID: 35516591 PMCID: PMC9065468 DOI: 10.1177/20417314221085390] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
In the past decade, microneedle-based drug delivery systems showed promising approaches to become suitable and alternative for hypodermic injections and can control agent delivery without side effects compared to conventional approaches. Despite these advantages, the procedure of microfabrication is facing some difficulties. For instance, drug loading method, stability of drugs, and retention time are subjects of debate. Besides, the application of novel refining fabrication methods, types of materials, and instruments are other issues that need further attention. Herein, we tried to summarize recent achievements in controllable drug delivery systems (microneedle patches) in vitro and in vivo settings. In addition, we discussed the influence of delivered drugs on the cellular mechanism and immunization molecular signaling pathways through the intradermal delivery route. Understanding the putative efficiency of microneedle patches in human medicine can help us develop and design sophisticated therapeutic modalities.
Collapse
Affiliation(s)
| | - Leila Salimi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sonia Fathi Karkan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Keyvan Moharamzadeh
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Emel Sokullu
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
43
|
Singh P, Muhammad I, Nelson NE, Tran KTM, Vinikoor T, Chorsi MT, D’Orio E, Nguyen TD. Transdermal delivery for gene therapy. Drug Deliv Transl Res 2022; 12:2613-2633. [PMID: 35538189 PMCID: PMC9089295 DOI: 10.1007/s13346-022-01138-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2022] [Indexed: 12/15/2022]
Abstract
Gene therapy is a critical constituent of treatment approaches for genetic diseases and has gained tremendous attention. Treating and preventing diseases at the genetic level using genetic materials such as DNA or RNAs could be a new avenue in medicine. However, delivering genes is always a challenge as these molecules are sensitive to various enzymes inside the body, often produce systemic toxicity, and suffer from off-targeting problems. In this regard, transdermal delivery has emerged as an appealing approach to enable a high efficiency and low toxicity of genetic medicines. This review systematically summarizes outstanding transdermal gene delivery methods for applications in skin cancer treatment, vaccination, wound healing, and other therapies.
Collapse
Affiliation(s)
- Parbeen Singh
- Department of Mechanical Engineering, University of Connecticut, Storrs, USA
| | - I’jaaz Muhammad
- Department of Biomedical Engineering, University of Connecticut, Storrs, USA
| | - Nicole E. Nelson
- Department of Biomedical Engineering, University of Connecticut, Storrs, USA
| | - Khanh T. M. Tran
- Department of Biomedical Engineering, University of Connecticut, Storrs, USA
| | - Tra Vinikoor
- Department of Biomedical Engineering, University of Connecticut, Storrs, USA
| | - Meysam T. Chorsi
- Department of Mechanical Engineering, University of Connecticut, Storrs, USA ,Department of Biomedical Engineering, University of Connecticut, Storrs, USA
| | - Ethan D’Orio
- Department of Biomedical Engineering, University of Connecticut, Storrs, USA ,Department of Biomedical Engineering and Department of Advanced Manufacturing for Energy Systems, Storrs, USA
| | - Thanh D. Nguyen
- Department of Mechanical Engineering, University of Connecticut, Storrs, USA ,Department of Biomedical Engineering, University of Connecticut, Storrs, USA
| |
Collapse
|
44
|
Ruan S, Zhang Y, Feng N. Microneedle-mediated transdermal nanodelivery systems: a review. Biomater Sci 2021; 9:8065-8089. [PMID: 34752590 DOI: 10.1039/d1bm01249e] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The greatest limitation in the development of transdermal drug delivery systems is that only a few drugs can permeate the skin due to the barrier function of the stratum corneum. Active and passive methods are generally available for improving the ability of drug transdermal delivery. However, nanoparticles, as a passive approach, exhibit capacity-constrained permeation enhancement. Thus, microneedle-mediated nanoparticles possess enormous potential and broad prospects. Microneedles promote the penetration of macromolecules by creating microchannels on the skin surface. In this review, the prevailing subknowledge on microneedles (mechanism, classification, and applications of microneedles combined with nanoparticles) is discussed to provide a guideline for readers and a basic reference for further in-depth studies of this novel drug delivery system.
Collapse
Affiliation(s)
- Shuyao Ruan
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
45
|
Emerging role of exosomes as biomarkers in cancer treatment and diagnosis. Crit Rev Oncol Hematol 2021; 169:103565. [PMID: 34871719 DOI: 10.1016/j.critrevonc.2021.103565] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is a leading cause of death worldwide and cancer incidence and mortality are rapidly growing. These massive amounts of cancer patients require rapid diagnosis and efficient treatment strategies. However, the currently utilized methods are invasive and cost-effective. Recently, the effective roles of exosomes as promising diagnostic, prognostic, and predictive biomarkers have been revealed. Exosomes are membrane-bound extracellular vesicles containing RNAs, DNAs, and proteins, and are present in a wide array of body fluids. Exosomal cargos have shown the potential to detect various types of cancers at early stages with high sensitivity and specificity. They can also delivery therapeutic agents efficiently. In this article, an overview of recent advances in the research of exosomal biomarkers and their applications in cancer diagnosis and treatment has been provided. Furthermore, the advantages and challenges of exosomes as liquid biopsy targets are discussed and the clinical implications of using exosomal miRNAs have been revealed.
Collapse
|
46
|
Singh V, Kesharwani P. Recent advances in microneedles-based drug delivery device in the diagnosis and treatment of cancer. J Control Release 2021; 338:394-409. [PMID: 34481019 DOI: 10.1016/j.jconrel.2021.08.054] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Microneedles are unique, novel and an effective approach designed to deliver therapeutic agents and immunobiologicals in several diseases. These tiny needle patches are designed to load vaccine, small or large drug molecule, heavy molecular weighted proteins, genes, antibodies, nanoparticles and many more. These nanoparticles loaded microneedles deliver drugs deep within the skin near underlying neutrophils, langerhans and dendritic cells and induces required immunological response. With the drawbacks associated with conventional methods of cancer chemotherapy, the focus was shifted towards use of microneedles in not just anti-cancer vaccine/drug delivery but also for their early diagnosis. This delivery device is also suited for synergistic approaches such as chemotherapy or gene therapy combined with photothermal or photodynamic therapy. The painless self-administrative device offers an alternative over traditional routes of drug delivery including systemic administration via hypodermic needles. Additionally, these microneedles can be fabricated and altered in shape, size and geometry and the material polymer can be chosen depending on use and release mechanism. This review consolidates positive results obtained from studies done for different type of microneedle array in several tumor cell lines and animal models. It further highlights the use of biodegradable polymers such as hydrogel or any dissolving polymer that can be utilized for sustained codelivery of drug/vaccine to shun the need of multiple dosing. It covers the existing limitations that still needs to be resolved and further highlights on the future aspects of their use in cancer therapy.
Collapse
Affiliation(s)
- Vanshikha Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
47
|
Weimer P, Rossi RC, Koester LS. Dissolving Microneedles Developed in Association with Nanosystems: A Scoping Review on the Quality Parameters of These Emerging Systems for Drug or Protein Transdermal Delivery. Pharmaceutics 2021; 13:1601. [PMID: 34683895 PMCID: PMC8538119 DOI: 10.3390/pharmaceutics13101601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
The largest organ of the body provides the main challenge for the transdermal delivery of lipophilic or high molecular weight drugs. To cross the main barrier of the skin, the stratum corneum, many techniques have been developed and improved. In the last 20 years, the association of microneedles with nanostructured systems has gained prominence for its versatility and for enabling targeted drug delivery. Currently, the combination of these mechanisms is pointed to as an emerging technology; however, some gaps need to be answered to transcend the development of these devices from the laboratory scale to the pharmaceutical market. It is known that the lack of regulatory guidelines for quality control is a hindrance to market conquest. In this context, this study undertakes a scoping review of original papers concerning methods applied to evaluate both the quality and drug/protein delivery of dissolving and hydrogel-forming microneedles developed in association with nanostructured systems.
Collapse
Affiliation(s)
- Patrícia Weimer
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Brazil;
| | - Rochele Cassanta Rossi
- Programa de Pós-Graduação em Nutrição e Alimentos, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo 93022-000, Brazil;
| | - Letícia Scherer Koester
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Brazil;
| |
Collapse
|
48
|
Novel tip-loaded dissolving and implantable microneedle array patches for sustained release of finasteride. Int J Pharm 2021; 606:120885. [PMID: 34271153 DOI: 10.1016/j.ijpharm.2021.120885] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/23/2022]
Abstract
Finasteride (FND) is a competitive inhibitor of 5α-reductase, an enzyme involved in benign prostatic hyperplasia (BPH) and androgenic alopecia. FND is administered in oral, often lifelong treatments, increasing the pill burden of polymedicated patients. Microneedle array patches (MAPs) are minimally invasive devices that painlessly pierce the outermost layers of the skin, forming slowly-dissolving drug depots in the dermis, which can release drugs over weeks or months, making this platform an attractive, patient-friendly option for long-term treatments. This work describes the development of long-acting dissolving and implantable PLGA MAPs aimed for systemic release of FND for at least two weeks. Mechanically strong tip-loaded MAPs with pyramidal geometry were obtained using micromoulding methodology. In vitro studies revealed that the dissolving and implantable MAPs were able to release the drug for over 7 and 14 days, respectively. Skin deposition experiments in Franz cells demonstrated that after 24 h, dissolving and implantable MAPs were able to deposit 629.00 ± 214.54 μg and 1861.64 ± 383.30 μg of FND in the skin, respectively. On the other hand, transdermal permeation studies showed that both formulations produced a slow release of the drug to the receptor compartment of the Franz cells, with dissolving and implantable MAPs releasing 90.43 ± 6.20 μg and 27.80 ± 3.94 μg of FND after 24 h. The formulations described here could be an alternative to current oral treatments, having the potential to deliver the drug for extended periods, simplifying the treatment of BPH and androgenic alopecia.
Collapse
|
49
|
Zhi D, Yang T, Zhang T, Yang M, Zhang S, Donnelly RF. Microneedles for gene and drug delivery in skin cancer therapy. J Control Release 2021; 335:158-177. [DOI: 10.1016/j.jconrel.2021.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/14/2022]
|
50
|
Boisguérin P, Konate K, Josse E, Vivès E, Deshayes S. Peptide-Based Nanoparticles for Therapeutic Nucleic Acid Delivery. Biomedicines 2021; 9:583. [PMID: 34065544 PMCID: PMC8161338 DOI: 10.3390/biomedicines9050583] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Gene therapy offers the possibility to skip, repair, or silence faulty genes or to stimulate the immune system to fight against disease by delivering therapeutic nucleic acids (NAs) to a patient. Compared to other drugs or protein treatments, NA-based therapies have the advantage of being a more universal approach to designing therapies because of the versatility of NA design. NAs (siRNA, pDNA, or mRNA) have great potential for therapeutic applications for an immense number of indications. However, the delivery of these exogenous NAs is still challenging and requires a specific delivery system. In this context, beside other non-viral vectors, cell-penetrating peptides (CPPs) gain more and more interest as delivery systems by forming a variety of nanocomplexes depending on the formulation conditions and the properties of the used CPPs/NAs. In this review, we attempt to cover the most important biophysical and biological aspects of non-viral peptide-based nanoparticles (PBNs) for therapeutic nucleic acid formulations as a delivery system. The most relevant peptides or peptide families forming PBNs in the presence of NAs described since 2015 will be presented. All these PBNs able to deliver NAs in vitro and in vivo have common features, which are characterized by defined formulation conditions in order to obtain PBNs from 60 nm to 150 nm with a homogeneous dispersity (PdI lower than 0.3) and a positive charge between +10 mV and +40 mV.
Collapse
Affiliation(s)
| | | | | | | | - Sébastien Deshayes
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34295 Montpellier, France; (P.B.); (K.K.); (E.J.); (E.V.)
| |
Collapse
|