1
|
Tian X, Wen Y, Zhang Z, Zhu J, Song X, Phan TT, Li J. Recent advances in smart hydrogels derived from polysaccharides and their applications for wound dressing and healing. Biomaterials 2025; 318:123134. [PMID: 39904188 DOI: 10.1016/j.biomaterials.2025.123134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/06/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Owing to their inherent biocompatibility and biodegradability, hydrogels derived from polysaccharides have emerged as promising candidates for wound management. However, the complex nature of wound healing often requires the development of smart hydrogels---intelligent materials capable of responding dynamically to specific physical or chemical stimuli. Over the past decade, an increasing number of stimuli-responsive polysaccharide-based hydrogels have been developed to treat various types of wounds. While a range of hydrogel types and their versatile functions for wound management have been discussed in the literature, there is still a need for a review of the crosslinking strategies used to create smart hydrogels from polysaccharides. This review provides a comprehensive overview of how stimuli-responsive hydrogels can be designed and made using five key polysaccharides: chitosan, hyaluronic acid, alginate, dextran, and cellulose. Various methods, such as chemical crosslinking, dynamic crosslinking, and physical crosslinking, which are used to form networks within these hydrogels, ultimately determine their ability to respond to stimuli, have been explored. This article further looks at different polysaccharide-based hydrogel wound dressings that can respond to factors such as reactive oxygen species, temperature, pH, glucose, light, and ultrasound in the wound environment and discusses how these responses can enhance wound healing. Finally, this review provides insights into how stimuli-responsive polysaccharide-based hydrogels can be developed further as advanced wound dressings in the future.
Collapse
Affiliation(s)
- Xuehao Tian
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Yuting Wen
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing, 401120, China.
| | - Zhongxing Zhang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Xia Song
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Toan Thang Phan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, 119228, Singapore; Cell Research Corporation Pte. Ltd., 048943, Singapore
| | - Jun Li
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing, 401120, China; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
2
|
Song A, Qi X, Xie S, Wu X, Wei J, Dai Y. Hydrogel Containing Bismuth Molybdate Nanosheets with Piezoelectricity and Nanoenzyme Activity for Promoting Osteoblast Responses. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23627-23641. [PMID: 40219947 DOI: 10.1021/acsami.5c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
The development of piezoelectric biomaterials with the capability to produce electrical signals and scavenge reactive oxygen species (ROS) is a novel strategy for stimulating osteoblast responses and promoting bone regeneration. Herein, tungsten (W), iridium (Ir), and ruthenium (Ru) codoped bismuth molybdate (4(W/Ru/Ir)-BMO) nanosheets with improved piezoelectricity and enzyme-like (CAT-like and SOD-like) activities were constructed by using the hydrothermal method. A composite hydrogel of oxidized sodium alginate/gelatin (OSA/GEL) and 4(W/Ru/Ir)-BMO (OSA/GEL/4-B) was also prepared. Due to the presence of 4(W/Ru/Ir)-BMO, OSA/GEL/4-B exhibited not only piezoelectricity but also enzyme-like activities. Under ultrasound (US), OSA/GEL/4-B generated electrical signals that significantly promoted the proliferation and osteogenic differentiation of bone marrow stromal cells. Furthermore, the piezoelectric effect of OSA/GEL/4-B improved the CAT-like (production of oxygen) and SOD-like (scavenger of ROS) activities. The improved piezoelectricity of 4(W/Ru/Ir)-BMO was attributed to the codoping of W, Ir, and Ru ions, which resulted in lattice distortion and enhanced crystal asymmetry, which produced electrical signals for regulating the osteogenic microenvironment. Moreover, the improvement of enzyme-like activities was attributed to the enhanced piezoelectric effect by the codoping of W, Ir, and Ru ions, which generated a piezoelectric field triggered by US that accelerated electron transfer for alleviating cellular oxidative stress and provided an antioxidant microenvironment for osteoblast responses. This piezoelectric hydrogel may provide a novel pathway for promoting osteogenic differentiation and bone regeneration.
Collapse
Affiliation(s)
- Anqi Song
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaodong Qi
- Central Laboratory, Shanghai Eighth Peoples Hospital, Shanghai 200235, China
| | - Shangyu Xie
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaolin Wu
- Central Laboratory, Shanghai Eighth Peoples Hospital, Shanghai 200235, China
| | - Jie Wei
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yong Dai
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| |
Collapse
|
3
|
Qureshi AT, Afrin S, Asim S, Rizwan M. Imine Crosslinked, Injectable, and Self-Healing Fucoidan Hydrogel with Immunomodulatory Properties. Adv Healthc Mater 2025:e2405260. [PMID: 40249131 DOI: 10.1002/adhm.202405260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 04/07/2025] [Indexed: 04/19/2025]
Abstract
Biomaterials with inherent anti-inflammatory properties and the ability to foster a pro-regenerative environment hold significant promise for enhancing cell transplantation and tissue regeneration. Fucoidan, a sulfated polysaccharide with well-documented immune-regulatory and antioxidant capabilities, offers strong potential for creating such biomaterials. Yet, there is a lack of engineered fucoidan hydrogels that are injectable and provide tunable physicochemical properties. In this study, the ability of fucoidan to undergo periodate-mediated oxidation is leveraged to introduce aldehydes into backbone (oxidized fucoidan, OFu), enabling the formation of reversible, imine-crosslinks with amine-containing molecules such as gelatin. The imine-crosslinked OFu-gelatin hydrogel provided excellent control over gelation rate and mechanical properties. Counter-intuitively, OFu-gelatin hydrogel exhibited excellent long-term stability (≥28 days), even though imine crosslinks are known to be relatively less stable. Moreover, the OFu-gelatin hydrogels are self-healing, injectable, and biocompatible, supporting cell culture and encapsulation. Furthermore, fucoidan hydrogels displayed immune-modulatory properties both in vitro and in vivo. This innovative injectable fucoidan hydrogel presents a versatile platform for applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Asma Talib Qureshi
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Shajia Afrin
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931, USA
| | - Saad Asim
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Muhammad Rizwan
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| |
Collapse
|
4
|
Chakraborty A, Luo W, Paul A. Nanominerals: a multifaceted biomaterial for regenerative medicine and drug delivery. Expert Opin Drug Deliv 2025:1-6. [PMID: 40211899 DOI: 10.1080/17425247.2025.2491642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/07/2025] [Indexed: 04/13/2025]
Affiliation(s)
- Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, Collaborative Specialization in Musculoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
| | - Wei Luo
- School of Biomedical Engineering, The University of Western Ontario, London, ON, Canada
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, Collaborative Specialization in Musculoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON, Canada
- Department of Chemistry, The Center for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
5
|
Acharya R, Dutta SD, Mallik H, Patil TV, Ganguly K, Randhawa A, Kim H, Lee J, Park H, Mo C, Lim KT. Physical stimuli-responsive DNA hydrogels: design, fabrication strategies, and biomedical applications. J Nanobiotechnology 2025; 23:233. [PMID: 40119420 PMCID: PMC11929200 DOI: 10.1186/s12951-025-03237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/16/2025] [Indexed: 03/24/2025] Open
Abstract
Physical stimuli-responsive DNA hydrogels hold immense potential for tissue engineering due to their inherent biocompatibility, tunable properties, and capacity to replicate the mechanical environment of natural tissue, making physical stimuli-responsive DNA hydrogels a promising candidate for tissue engineering. These hydrogels can be tailored to respond to specific physical triggers such as temperature, light, magnetic fields, ultrasound, mechanical force, and electrical stimuli, allowing precise control over their behavior. By mimicking the extracellular matrix (ECM), DNA hydrogels provide structural support, biomechanical cues, and cell signaling essential for tissue regeneration. This article explores various physical stimuli and their incorporation into DNA hydrogels, including DNA self-assembly and hybrid DNA hydrogel methods. The aim is to demonstrate how DNA hydrogels, in conjunction with other biomolecules and the ECM environment, generate dynamic scaffolds that respond to physical stimuli to facilitate tissue regeneration. We investigate the most recent developments in cancer therapies, including injectable DNA hydrogel for bone regeneration, personalized scaffolds, and dynamic culture models for drug discovery. The study concludes by delineating the remaining obstacles and potential future orientations in the optimization of DNA hydrogel design for the regeneration and reconstruction of tissue. It also addresses strategies for surmounting current challenges and incorporating more sophisticated technologies, thereby facilitating the clinical translation of these innovative hydrogels.
Collapse
Affiliation(s)
- Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institution of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hemadri Mallik
- Department of Botany, The University of Burdwan, Bardhaman, West Bengal, 713104, India
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hojin Kim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jieun Lee
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyeonseo Park
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Changyeun Mo
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Institution of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
6
|
Keshavarz M, Mohammadi M, Shokrolahi F. Progress in injectable hydrogels for hard tissue regeneration in the last decade. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-39. [PMID: 39853308 DOI: 10.1080/09205063.2024.2436292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/26/2024] [Indexed: 01/26/2025]
Abstract
Bone disorders have increased with increasing the human lifespan, and despite the tissue's ability to self-regeneration, in many congenital problems and hard fractures, bone grafting such as autograft, allograft, and biomaterials implantation through surgery is traditionally used. Because of the adverse effects of these methods, the emergence of injectable hydrogels without the need for surgery and causing more pain for the patient is stunning to develop a new pattern for hard tissue engineering. These materials are formed with various natural and synthetic polymers with a crosslinked network through various chemical methods such as click chemistry, Michael enhancement, Schiff's base and enzymatic reaction and physical interactions with high water absorption which can mimic the environment of cells. The purpose of this research is to review the capabilities of this class of materials in hard tissue regeneration in the last decade through adaptable physical and chemical properties, the ability to fill defect sites with an irregular shape, and the ability to grow hormones or release drugs, in response to external stimuli.
Collapse
Affiliation(s)
- Mahya Keshavarz
- Department of Polymer Engineering, Faculty of Engineering, Qom University of Technology, Qom, Iran
| | - Mohsen Mohammadi
- Department of Polymer Engineering, Faculty of Engineering, Qom University of Technology, Qom, Iran
| | - Fatemeh Shokrolahi
- Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran, Iran
| |
Collapse
|
7
|
Li B, Li C, Yan Z, Yang X, Xiao W, Zhang D, Liu Z, Liao X. A review of self-healing hydrogels for bone repair and regeneration: Materials, mechanisms, and applications. Int J Biol Macromol 2025; 287:138323. [PMID: 39645113 DOI: 10.1016/j.ijbiomac.2024.138323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Bone defects, which arise from various factors such as trauma, tumor resection, and infection, present a significant clinical challenge. There is an urgent need to develop new biomaterials capable of repairing a wide array of damage and defects in bone tissue. Self-healing hydrogels, a groundbreaking advancement in the field of biomaterials, displaying remarkable ability to regenerate damaged connections after partial severing, thus offering a promising solution for bone defect repair. This review first presents a comprehensive overview of the progress made in the design and preparation of these hydrogels, focusing on the self-healing mechanisms based on physical non-covalent interactions and dynamic chemical covalent bonds. Subsequently, the applications of self-healing hydrogels including natural polymers, synthetic polymers, and nano-hybrid materials, are discussed in detail, emphasizing their mechanisms in promoting bone tissue regeneration. Finally, the review addresses current challenges as well as future prospects for the use of hydrogels in bone repair and regeneration, identifying osteogenic properties, mechanical performance, and long-term biocompatibility as key areas for further improvement. In summary, this paper provides an in-depth analysis of recent advances in self-healing hydrogels for bone repair and regeneration, underscoring their immense potential for clinical application.
Collapse
Affiliation(s)
- Bo Li
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Chenchen Li
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Ziyi Yan
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xiaoling Yang
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wenqian Xiao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Dawei Zhang
- Department of Orthopedics, The 960th Hospital of the PLA Joint Logistice Support Force, Jinan 250031, China.
| | - Zhongning Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China.
| | - Xiaoling Liao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| |
Collapse
|
8
|
Beilharz S, Debnath MK, Vinella D, Shoffstall AJ, Karayilan M. Advances in Injectable Polymeric Biomaterials and Their Contemporary Medical Practices. ACS APPLIED BIO MATERIALS 2024; 7:8076-8101. [PMID: 39471414 DOI: 10.1021/acsabm.4c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Injectable biomaterials have been engineered to operate within the human body, offering versatile solutions for minimally invasive therapies and meeting several stringent requirements such as biocompatibility, biodegradability, low viscosity for ease of injection, mechanical strength, rapid gelation postinjection, controlled release of therapeutic agents, hydrophobicity/hydrophilicity balance, stability under physiological conditions, and the ability to be sterilized. Their adaptability and performance in diverse clinical settings make them invaluable for modern medical treatments. This article reviews recent advancements in the design, synthesis, and characterization of injectable polymeric biomaterials, providing insights into their emerging applications. We discuss a broad spectrum of these materials, including natural, synthetic, hybrid, and composite types, that are being applied in targeted drug delivery, cell and protein transport, regenerative medicine, tissue adhesives, injectable implants, bioimaging, diagnostics, and 3D bioprinting. Ultimately, the review highlights the critical role of injectable polymeric biomaterials in shaping the future of medical treatments and improving patient outcomes across a wide range of therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Sophia Beilharz
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Mithun Kumar Debnath
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Daniele Vinella
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Metin Karayilan
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
9
|
Lin YH, Lou J, Xia Y, Chaudhuri O. Cross-Linker Architectures Impact Viscoelasticity in Dynamic Covalent Hydrogels. Adv Healthc Mater 2024; 13:e2402059. [PMID: 39407436 PMCID: PMC11617263 DOI: 10.1002/adhm.202402059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/30/2024] [Indexed: 10/23/2024]
Abstract
Dynamic covalent cross-linked (DCC) hydrogels represent a significant advance in biomaterials for regenerative medicine and mechanobiology, offering viscoelasticity, and self-healing properties that more closely mimic in vivo tissue mechanics than traditional, predominantly elastic, covalent hydrogels. However, the effects of varying cross-linker architecture on DCC hydrogel viscoelasticity have not been thoroughly investigated. This study introduces hydrazone-based alginate hydrogels to explore how cross-linker architectures impact stiffness and viscoelasticity. In hydrogels with side-chain cross-linker (SCX), higher cross-linker concentrations enhance stiffness and decelerate stress relaxation, while an off-stoichiometric hydrazine-to-aldehyde ratio reduces stiffness and shortens relaxation time. In hydrogels with telechelic cross-linking, maximal stiffness and relaxation time occurs at intermediate cross-linker mixing ratio for both linear cross-linker (LX) and star cross-linker (SX), with higher cross-linker valency further enhancing these properties. Further, the ranges of stiffness and viscoelasticity accessible with the different cross-linker architectures are found to be distinct, with SCX hydrogels leading to slower stress relaxation relative to the other architectures, and SX hydrogels providing increased stiffness and slower stress relaxation versus LX hydrogels. This research underscores the pivotal role of cross-linker architecture in defining hydrogel stiffness and viscoelasticity, providing insights for designing DCC hydrogels with tailored mechanical properties for specific biomedical applications.
Collapse
Affiliation(s)
- Yung-Hao Lin
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Junzhe Lou
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Yan Xia
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
10
|
Shaygani H, Mofrad YM, Demneh SMR, Hafezi S, Almasi-Jaf A, Shamloo A. Cartilage and bone injectable hydrogels: A review of injectability methods and treatment strategies for repair in tissue engineering. Int J Biol Macromol 2024; 282:136689. [PMID: 39447779 DOI: 10.1016/j.ijbiomac.2024.136689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Cartilage and bone are crucial tissues causing disability in the elderly population, often requiring prolonged treatment and surgical intervention due to limited regenerative capacity. Injectable hydrogels that closely mimic the extracellular matrix (ECM) of native hard tissue have attracted attention due to their minimally invasive application and ability to conform to irregular defect sites. These hydrogels facilitate key biological processes such as cell migration, chondrogenesis in cartilage repair, osteoinduction, angiogenesis, osteoconduction, and mineralization in bone repair. This review analyzes in-vitro and in-vivo biomedical databases over the past decade to identify advancements in hydrogel formulations, crosslinking mechanisms, and biomaterial selection for cartilage and bone tissue engineering. The review emphasizes the effectiveness of injectable hydrogels as carriers for cells, growth factors, and drugs, offering additional therapeutic benefits. The relevance of these findings is discussed in the context of their potential to serve as a robust alternative to current surgical and non-surgical treatments. This review also examines the advantages of injectable hydrogels, such as ease of administration, reduced patient recovery time, and enhanced bioactivity, thereby emphasizing their potential in clinical applications for cartilage and bone regeneration with emphasis on addressing the shortcomings of current treatments.
Collapse
Affiliation(s)
- Hossein Shaygani
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Yasaman Mozhdehbakhsh Mofrad
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran; School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Mohammadhossein Rezaei Demneh
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Shayesteh Hafezi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Aram Almasi-Jaf
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
11
|
Miao Y, Lu T, Cui S, Xu Z, Liu X, Zhang Y. Engineering natural DNA matrices with halloysite nanotubes to fabricate injectable therapeutic hydrogels for bone regeneration. J Orthop Translat 2024; 49:218-229. [PMID: 39507323 PMCID: PMC11538604 DOI: 10.1016/j.jot.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/08/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Background Injectable hydrogels are widely used in drug delivery and the repair of irregular tissue defects due to their advantages such as convenient and minimally invasive operation. Although the existing injectable hydrogels have excellent biocompatibility and osteoconduction, they still face clinical challenges such as low osteogenic activity. The key requirements for improved injectable hydrogels as repair materials for non-load bearing bone defects are optimal handling properties, the ability to fill irregular defects and provide osteoinductive stimulation. Methods We developed an approach to construct injectable hydrogels through a two-step gelation process. In the first step of gelation, the denaturation and rehybridization mechanism of natural biopolymer DNA was utilized to form interconnected structure through hydrogen bonding between complementary base pairs between the DNA strands. In the second step of gelation, the introduction of halloysite nanotubes (HNTs) loaded with osteogenic model drug dexamethasone (Dex) provided additional crosslinking sites through non-covalent interactions with the DNA backbone, including electrostatic interaction and hydrogen bonding interaction. Results The DNA-based nanocomposite hydrogel material developed in our work can be used as an injectable filling material for the repair of non-load bearing bone defect and can be loaded with osteogenic model drug dexamethasone (Dex) for improved osteoinductivity, promoting new bone regeneration in vivo. Translational potential of this article This article highlights the potential of using nanocomposite hydrogels to repair non-load bearing bone defects, which are common injuries in the clinic. This study provides a deeper understanding of how to optimize the properties of hydrogels to regulate cell differentiation and tissue formation.
Collapse
Affiliation(s)
- Yali Miao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Teliang Lu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Shangbin Cui
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ziyang Xu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Xiao Liu
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, Guangdong, 511300, China
| | - Yu Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| |
Collapse
|
12
|
Yadav P, Singh S, Jaiswal S, Kumar R. Synthetic and natural polymer hydrogels: A review of 3D spheroids and drug delivery. Int J Biol Macromol 2024; 280:136126. [PMID: 39349080 DOI: 10.1016/j.ijbiomac.2024.136126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
This review centers on the synthesis and characterization of both natural and synthetic hydrogels, highlighting their diverse applications across various fields. We will delve into the evolution of hydrogels, focusing on the importance of polysaccharide-based and synthetic variants, which have been particularly chosen for 3D spheroid development in cancer research and drug delivery. A detailed background on the research and specific methodologies, including the in-situ free radical polymerization used for synthesizing these hydrogels, will be extensively discussed. Additionally, the review will explore various applications of these hydrogels, such as their self-healing properties, swelling ratios, pH responsiveness, and cell viability. A comprehensive literature review will support this investigation. Ultimately, this review aims to clearly outline the objectives and significance of hydrogel synthesis and their applications.
Collapse
Affiliation(s)
- Paramjeet Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Shiwani Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Sheetal Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Rajesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
13
|
Ma X, Sekhar KPC, Zhang P, Cui J. Advances in stimuli-responsive injectable hydrogels for biomedical applications. Biomater Sci 2024; 12:5468-5480. [PMID: 39373614 DOI: 10.1039/d4bm00956h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Injectable hydrogels, as a class of highly hydrated soft materials, are of interest for biomedicine due to their precise implantation and minimally invasive local drug delivery at the implantation site. The combination of in situ gelation ability and versatile therapeutic agent/cell loading capabilities makes injectable hydrogels ideal materials for drug delivery, tissue engineering, wound dressing and tumor treatment. In particular, the stimuli-responsive injectable hydrogels that can respond to different stimuli in and out of the body (e.g., temperature, pH, redox conditions, light, magnetic fields, etc.) have significant advantages in biomedicine. Here, we summarize the design strategies, advantages, and recent developments of stimuli-responsive injectable hydrogels in different biomedical fields. Challenges and future perspectives of stimuli-responsive injectable hydrogels are also discussed and the future steps necessary to fulfill the potential of these promising materials are highlighted.
Collapse
Affiliation(s)
- Xuebin Ma
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
- Shandong Provincial Key Laboratory of Biomedical Polymers, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong 250100, China
| | - Kanaparedu P C Sekhar
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Peiyu Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
- Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
14
|
Kim S, Shin Y, Han J, Kim HJ, Sunwoo SH. Introductory Review of Soft Implantable Bioelectronics Using Conductive and Functional Hydrogels and Hydrogel Nanocomposites. Gels 2024; 10:614. [PMID: 39451267 PMCID: PMC11506957 DOI: 10.3390/gels10100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
Interfaces between implantable bioelectrodes and tissues provide critical insights into the biological and pathological conditions of targeted organs, aiding diagnosis and treatment. While conventional bioelectronics, made from rigid materials like metals and silicon, have been essential for recording signals and delivering electric stimulation, they face limitations due to the mechanical mismatch between rigid devices and soft tissues. Recently, focus has shifted toward soft conductive materials, such as conductive hydrogels and hydrogel nanocomposites, known for their tissue-like softness, biocompatibility, and potential for functionalization. This review introduces these materials and provides an overview of recent advances in soft hydrogel nanocomposites for implantable electronics. It covers material strategies for conductive hydrogels, including both intrinsically conductive hydrogels and hydrogel nanocomposites, and explores key functionalization techniques like biodegradation, bioadhesiveness, injectability, and self-healing. Practical applications of these materials in implantable electronics are also highlighted, showcasing their effectiveness in real-world scenarios. Finally, we discuss emerging technologies and future needs for chronically implantable bioelectronics, offering insights into the evolving landscape of this field.
Collapse
Affiliation(s)
- San Kim
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Yumin Shin
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Jaewon Han
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Hye Jin Kim
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91106, USA
| |
Collapse
|
15
|
Qi F, Li H, Wang Y, Ding C. Responsive DNA hydrogels: design strategies and prospects for biosensing. Chem Commun (Camb) 2024; 60:10231-10244. [PMID: 39171719 DOI: 10.1039/d4cc03829k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Hydrogels, water-filled networks that can adapt to external stimuli by altering their volume, are known for their high flexibility and biocompatibility. DNA, a critical biomolecule renowned for its exceptional characteristics including information transmission, molecular recognition, and editability, has found widespread applications in the biosensing field as well. The integration of these two biomaterials offers promising opportunities for the development of novel biosensors with enhanced sensitivity, specificity, and adaptability. Therefore, by virtue of the collective features, researchers have recently focused on the construction of responsive DNA hydrogel systems. This feature article describes recent developments in fabricating DNA hydrogels and their applications in the biosensing area. Initially, it focuses on the design strategies employed in preparing DNA hydrogels, encompassing both pure DNA hydrogels and hybridized DNA hydrogels. Subsequently, it summarizes the use of DNA hydrogels in biosensing applications, highlighting their applications in visual detection, electrochemical sensing, and optical biosensing analyses. Furthermore, the underlying responsive mechanisms within these biosensing systems are also described. Lastly, this article presents a comprehensive discussion on the existing challenges and prospects of responsive DNA hydrogels, offering insights into their potential to revolutionize the field of biosensing.
Collapse
Affiliation(s)
- Fenglian Qi
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, P. R. China.
| | - Hanwen Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, P. R. China.
| | - Yonghao Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, P. R. China.
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, P. R. China.
| |
Collapse
|
16
|
Wu R, Li W, Yang P, Shen N, Yang A, Liu X, Ju Y, Lei L, Fang B. DNA hydrogels and their derivatives in biomedical engineering applications. J Nanobiotechnology 2024; 22:518. [PMID: 39210464 PMCID: PMC11360341 DOI: 10.1186/s12951-024-02791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Deoxyribonucleotide (DNA) is uniquely programmable and biocompatible, and exhibits unique appeal as a biomaterial as it can be precisely designed and programmed to construct arbitrary shapes. DNA hydrogels are polymer networks comprising cross-linked DNA strands. As DNA hydrogels present programmability, biocompatibility, and stimulus responsiveness, they are extensively explored in the field of biomedicine. In this study, we provide an overview of recent advancements in DNA hydrogel technology. We outline the different design philosophies and methods of DNA hydrogel preparation, discuss its special physicochemical characteristics, and highlight the various uses of DNA hydrogels in biomedical domains, such as drug delivery, biosensing, tissue engineering, and cell culture. Finally, we discuss the current difficulties facing DNA hydrogels and their potential future development.
Collapse
Affiliation(s)
- Rui Wu
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Wenting Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences School of Basic Medicine, Peking Union Medical College, Beijing, 100000, China
| | - Pu Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Naisi Shen
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Anqi Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiangjun Liu
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
17
|
Huang J, Chakraborty A, Tadepalli LS, Paul A. Adoption of a Tetrahedral DNA Nanostructure as a Multifunctional Biomaterial for Drug Delivery. ACS Pharmacol Transl Sci 2024; 7:2204-2214. [PMID: 39144555 PMCID: PMC11320733 DOI: 10.1021/acsptsci.4c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
DNA nanostructures have been widely researched in recent years as emerging biomedical materials for drug delivery, biosensing, and cancer therapy, in addition to their hereditary function. Multiple precisely designed single-strand DNAs can be fabricated into complex, three-dimensional DNA nanostructures through a simple self-assembly process. Among all of the synthetic DNA nanostructures, tetrahedral DNA nanostructures (TDNs) stand out as the most promising biomedical nanomaterial. TDNs possess the merits of structural stability, cell membrane permeability, and natural biocompatibility due to their compact structures and DNA origin. In addition to their inherent advantages, TDNs were shown to have great potential in delivering therapeutic agents through multiple functional modifications. As a multifunctional material, TDNs have enabled innovative pharmaceutical applications, including antimicrobial therapy, anticancer treatment, immune modulation, and cartilage regeneration. Given the rapid development of TDNs in the biomedical field, it is critical to understand how to successfully produce and fine-tune the properties of TDNs for specific therapeutic needs and clinical translation. This article provides insights into the synthesis and functionalization of TDNs and summarizes the approaches for TDN-based therapeutics delivery as well as their broad applications in the field of pharmaceutics and nanomedicine, challenges, and future directions.
Collapse
Affiliation(s)
- Jiaqi Huang
- Department
of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Aishik Chakraborty
- Department
of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- Collaborative
Specialization in Musculoskeletal Health Research and Bone and Joint
Institute, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Lakshmi Suchitra Tadepalli
- Department
of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Arghya Paul
- Department
of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- School of
Biomedical Engineering, The University of
Western Ontario, London, Ontario N6A 5B9, Canada
- Collaborative
Specialization in Musculoskeletal Health Research and Bone and Joint
Institute, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- Department
of Chemistry, The University of Western
Ontario, London, Ontario N6A 5B9, Canada
| |
Collapse
|
18
|
Liu C, Kelley SO, Wang Z. Self-Healing Materials for Bioelectronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401219. [PMID: 38844826 DOI: 10.1002/adma.202401219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/21/2024] [Indexed: 08/29/2024]
Abstract
Though the history of self-healing materials stretches far back to the mid-20th century, it is only in recent years where such unique classes of materials have begun to find use in bioelectronics-itself a burgeoning area of research. Inspired by the natural ability of biological tissue to self-repair, self-healing materials play a multifaceted role in the context of soft, wireless bioelectronic systems, in that they can not only serve as a protective outer shell or substrate for the internal electronic circuitry-analogous to the mechanical barrier that skin provides for the human body-but also, and most importantly, act as an active sensing safeguard against mechanical damage to preserve device functionality and enhance overall durability. This perspective presents the historical overview, general design principles, recent developments, and future outlook of self-healing materials for bioelectronic devices, which integrates topics in many research disciplines-from materials science and chemistry to electronics and bioengineering-together.
Collapse
Affiliation(s)
- Claire Liu
- Chan Zuckerberg Biohub Chicago, Chicago, IL, 60607, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Shana O Kelley
- Chan Zuckerberg Biohub Chicago, Chicago, IL, 60607, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, 60611, USA
| | - Zongjie Wang
- Chan Zuckerberg Biohub Chicago, Chicago, IL, 60607, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
19
|
Kocaaga B, Inan T, Yasar Nİ, Yalcin CE, Sungur FA, Kurkcuoglu O, Demiroz A, Komurcu H, Kizilkilic O, Aydin SY, Aydin Ulgen O, Güner FS, Arslan H. Innovative Use of an Injectable, Self-Healing Drug-Loaded Pectin-Based Hydrogel for Micro- and Supermicro-Vascular Anastomoses. Biomacromolecules 2024; 25:3959-3975. [PMID: 38934558 PMCID: PMC11238333 DOI: 10.1021/acs.biomac.4c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Microvascular surgery plays a crucial role in reconnecting micrometer-scale vessel ends. Suturing remains the gold standard technique for small vessels; however, suturing the collapsed lumen of microvessels is challenging and time-consuming, with the risk of misplaced sutures leading to failure. Although multiple solutions have been reported, the emphasis has predominantly been on resolving challenges related to arteries rather than veins, and none has proven superior. In this study, we introduce an innovative solution to address these challenges through the development of an injectable lidocaine-loaded pectin hydrogel by using computational and experimental methods. To understand the extent of interactions between the drug and the pectin chain, molecular dynamics (MD) simulations and quantum mechanics (QM) calculations were conducted in the first step of the research. Then, a series of experimental studies were designed to prepare lidocaine-loaded injectable pectin-based hydrogels, and their characterization was performed by using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and rheological analysis. After all the results were evaluated, the drug-loaded pectin-based hydrogel exhibiting self-healing properties was selected as a potential candidate for in vivo studies to determine its performance during operation. In this context, the hydrogel was injected into the divided vessel ends and perivascular area, allowing for direct suturing through the gel matrix. While our hydrogel effectively prevented vasospasm and facilitated micro- and supermicro-vascular anastomoses, it was noted that it did not cause significant changes in late-stage imaging and histopathological analysis up to 6 months. We strongly believe that pectin-based hydrogel potentially enhanced microlevel arterial, lymphatic, and particularly venous anastomoses.
Collapse
Affiliation(s)
- Banu Kocaaga
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, 34469 Istanbul, Turkey
| | - Tugce Inan
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, 34469 Istanbul, Turkey
| | - Nesrin İsil Yasar
- Informatics
Institute, Computational Science and Engineering Division, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Can Ege Yalcin
- Cerrahpasa
Medical Faculty, Department of Plastic, Reconstructive and Aesthetic
Surgery, Istanbul University-Cerrahpasa, Istanbul 34089, Turkey
| | - Fethiye Aylin Sungur
- Informatics
Institute, Computational Science and Engineering Division, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Ozge Kurkcuoglu
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, 34469 Istanbul, Turkey
| | - Anil Demiroz
- Cerrahpasa
Medical Faculty, Department of Plastic, Reconstructive and Aesthetic
Surgery, Istanbul University-Cerrahpasa, Istanbul 34089, Turkey
| | - Hasan Komurcu
- Department
of Plastic, Reconstructive and Aesthetic Surgery, Balat Or-Ahayim Hastanesi, Istanbul 34087, Turkey
| | - Osman Kizilkilic
- Cerrahpasa
Medical Faculty, Department of Interventional Radiology, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey
| | - Servet Yekta Aydin
- Cerrahpasa
Medical Faculty, Department of Plastic, Reconstructive and Aesthetic
Surgery, Istanbul University-Cerrahpasa, Istanbul 34089, Turkey
| | - Ovgu Aydin Ulgen
- Cerrahpasa
Medical Faculty, Department of Pathology, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey
| | - Fatma Seniha Güner
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, 34469 Istanbul, Turkey
- Sabancı
University Nanotechnology Research and Application Center, Istanbul 34956, Turkey
| | - Hakan Arslan
- Cerrahpasa
Medical Faculty, Department of Plastic, Reconstructive and Aesthetic
Surgery, Istanbul University-Cerrahpasa, Istanbul 34089, Turkey
| |
Collapse
|
20
|
Singhal R, Sarangi MK, Rath G. Injectable Hydrogels: A Paradigm Tailored with Design, Characterization, and Multifaceted Approaches. Macromol Biosci 2024; 24:e2400049. [PMID: 38577905 DOI: 10.1002/mabi.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Biomaterials denoting self-healing and versatile structural integrity are highly curious in the biomedicine segment. The injectable and/or printable 3D printing technology is explored in a few decades back, which can alter their dimensions temporarily under shear stress, showing potential healing/recovery tendency with patient-specific intervention toward the development of personalized medicine. Thus, self-healing injectable hydrogels (IHs) are stunning toward developing a paradigm for tissue regeneration. This review comprises the designing of IHs, rheological characterization and stability, several benchmark consequences for self-healing IHs, their translation into tissue regeneration of specific types, applications of IHs in biomedical such as anticancer and immunomodulation, wound healing and tissue/bone regeneration, antimicrobial potentials, drugs, gene and vaccine delivery, ocular delivery, 3D printing, cosmeceuticals, and photothermal therapy as well as in other allied avenues like agriculture, aerospace, electronic/electrical industries, coating approaches, patents associated with therapeutic/nontherapeutic avenues, and numerous futuristic challenges and solutions.
Collapse
Affiliation(s)
- Rishika Singhal
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, 751030, India
| |
Collapse
|
21
|
Brunchi CE, Morariu S. Laponite ®-From Dispersion to Gel-Structure, Properties, and Applications. Molecules 2024; 29:2823. [PMID: 38930887 PMCID: PMC11206873 DOI: 10.3390/molecules29122823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Laponite® (LAP) is an intensively studied synthetic clay due to the versatility given by its layered structure, which makes it usable in various applications. This review describes the multifaceted properties and applications of LAP in aqueous dispersions and gel systems. The first sections of the review discuss the LAP structure and the interactions between clay discs in an aqueous medium under different conditions (such as ionic strength, pH, temperature, and the addition of polymers) in order to understand the function of clay in tailoring the properties of the designed material. Additionally, the review explores the aging phenomenon characteristic of LAP aqueous dispersions as well as the development of shake-gels by incorporating LAP. The second part shows the most recent studies on materials containing LAP with possible applicability in the drilling industry, cosmetics or care products industry, and biomedical fields. By elucidating the remarkable versatility and ease of integration of LAP into various matrices, this review underscores its significance as a key ingredient for the creation of next-generation materials with tailored functionalities.
Collapse
Affiliation(s)
| | - Simona Morariu
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania;
| |
Collapse
|
22
|
Lin YH, Lou J, Xia Y, Chaudhuri O. Crosslinker Architectures Impact Viscoelasticity in Dynamic Covalent Hydrogels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.593040. [PMID: 38766044 PMCID: PMC11100722 DOI: 10.1101/2024.05.07.593040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Dynamic covalent crosslinked (DCC) hydrogels represent a significant advance in biomaterials for regenerative medicine and mechanobiology. These gels typically offer viscoelasticity and self-healing properties that more closely mimic in vivo tissue mechanics than traditional, predominantly elastic, covalent crosslinked hydrogels. Despite their promise, the effects of varying crosslinker architecture - side chain versus telechelic crosslinks - on the viscoelastic properties of DCC hydrogels have not been thoroughly investigated. This study introduces hydrazone-based alginate hydrogels and examines how side-chain and telechelic crosslinker architectures impact hydrogel viscoelasticity and stiffness. In hydrogels with side-chain crosslinking (SCX), higher polymer concentrations enhance stiffness and decelerates stress relaxation, while an off-stoichiometric hydrazine-to-aldehyde ratio leads to reduced stiffness and shorter relaxation time. In hydrogels with telechelic crosslinking, maximal stiffness and slowest stress relaxation occurs at intermediate crosslinker concentrations for both linear and star crosslinkers, with higher crosslinker valency further increasing stiffness and relaxation time. Our result suggested different ranges of stiffness and stress relaxation are accessible with the different crosslinker architectures, with SCX hydrogels leading to slower stress relaxation relative to the other architectures, and hydrogels with star crosslinking (SX) providing increased stiffness and slower stress relaxation relative to hydrogels with linear crosslinking (LX). The mechanical properties of SX hydrogels are more robust to changes induced by competing chemical reactions compared to LX hydrogels. Our research underscores the pivotal role of crosslinker architecture in defining hydrogel stiffness and viscoelasticity, providing crucial insights for the design of DCC hydrogels with tailored mechanical properties for specific biomedical applications.
Collapse
Affiliation(s)
- Yung-Hao Lin
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Junzhe Lou
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Yan Xia
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
23
|
Mitsuhashi K, Inagaki NF, Ito T. Moldable Tissue-Sealant Hydrogels Composed of In Situ Cross-Linkable Polyethylene Glycol via Thiol-Michael Addition and Carbomers. ACS Biomater Sci Eng 2024; 10:3343-3354. [PMID: 38695560 DOI: 10.1021/acsbiomaterials.3c01755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Moldable tissue-sealant hydrogels were developed herein by combining the yield stress fluidity of a Carbomer and in situ cross-linking of 3-arm PEG-thiol (PEG-SH) and 4-arm PEG-acrylate (PEG-AC). The Carbomer was mixed with each PEG oligomer to form two aqueous precursors: Carbomer/PEG-SH and Carbomer/PEG-AC. The two hydrogel precursors exhibited sufficient yield stress (>100 Pa) to prevent dripping from their placement on the tissue surface. Moreover, these hydrogel precursors exhibited rapid restructuring when the shear strain was repeatedly changed. These rheological properties contribute to the moldability of these hydrogel precursors. After mixing these two precursors, they were converted from yield-stress fluids to chemically cross-linked hydrogels, Carbomer/PEG hydrogel, via thiol-Michael addition. The gelation time was 5.0 and 11.2 min at 37 and 25 °C, respectively. In addition, the Carbomer/PEG hydrogels exhibited higher cellular viability than the pure Carbomer. They also showed stable adhesiveness and burst pressure resistance to various tissues, such as the skin, stomach, colon, and cecum of pigs. The hydrogels showed excellent tissue sealing in a cecum ligation and puncture model in mice and improved the survival rate due to their tissue adhesiveness and biocompatibility. The Carbomer/PEG hydrogel is a potential biocompatible tissue sealant that surgeons can mold. It was revealed that the combination of in situ cross-linkable PEG oligomers and yield stress fluid such as Carbomer is effective for developing the moldable tissue sealant without dripping of its hydrogel precursors.
Collapse
Affiliation(s)
- Kento Mitsuhashi
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Natsuko F Inagaki
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taichi Ito
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
24
|
Singh A, Sharma JJ, Mohanta B, Sood A, Han SS, Sharma A. Synthetic and biopolymers-based antimicrobial hybrid hydrogels: a focused review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:675-716. [PMID: 37943320 DOI: 10.1080/09205063.2023.2278814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
The constantly accelerating occurrence of microbial infections and their antibiotic resistance has spurred advancement in the field of material sciences and has guided the development of novel materials with anti-bacterial properties. To address the clinical exigencies, the material of choice should be biodegradable, biocompatible, and able to offer prolonged antibacterial effects. As an attractive option, hydrogels have been explored globally as a potent biomaterial platform that can furnish essential antibacterial attributes owing to its three-dimensional (3D) hydrophilic polymeric network, adequate biocompatibility, and cellular adhesion. The current review focuses on the utilization of different antimicrobial hydrogels based on their sources (natural and synthetic). Further, the review also highlights the strategies for the generation of hydrogels with their advantages and disadvantages and their applications in different biomedical fields. Finally, the prospects in the development of hydrogels-based antimicrobial biomaterials are discussed along with some key challenges encountered during their development and clinical translation.
Collapse
Affiliation(s)
- Anand Singh
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Janmay Jai Sharma
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Billeswar Mohanta
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Anirudh Sharma
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
25
|
Qiao L, Zhao Y, Zhang M, Tao Y, Xiao Y, Zhang N, Zhang Y, Zhu Y. Preparation Strategies, Functional Regulation, and Applications of Multifunctional Nanomaterials-Based DNA Hydrogels. SMALL METHODS 2024; 8:e2301261. [PMID: 38010956 DOI: 10.1002/smtd.202301261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/01/2023] [Indexed: 11/29/2023]
Abstract
With the extensive attention of DNA hydrogels in biomedicine, biomaterial, and other research fields, more and more functional DNA hydrogels have emerged to match the various needs. Incorporating nanomaterials into the hydrogel network is an emerging strategy for functional DNA hydrogel construction. Surprisingly, nanomaterials-based DNA hydrogels can be engineered to possess favorable properties, such as dynamic mechanical properties, excellent optical properties, particular electrical properties, perfect encapsulation properties, improved magnetic properties, and enhanced antibacterial properties. Herein, the preparation strategies of nanomaterials-based DNA hydrogels are first highlighted and then different nanomaterial designs are used to demonstrate the functional regulation of DNA hydrogels to achieve specific properties. Subsequently, representative applications in biosensing, drug delivery, cell culture, and environmental protection are introduced with some selected examples. Finally, the current challenges and prospects are elaborated. The study envisions that this review will provide an insightful perspective for the further development of functional DNA hydrogels.
Collapse
Affiliation(s)
- Lu Qiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Yue Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Mingjuan Zhang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Yani Tao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Yao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Ni Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Yi Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Yuan Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
26
|
Wang Z, Cheng Q, Lu B, Zhang P, Zhang L, Wu W, Li J, Narain R. Fabrication of antimicrobial cationic hydrogels driven by physically and chemically crosslinking for wound healing. Int J Biol Macromol 2024; 259:129213. [PMID: 38184052 DOI: 10.1016/j.ijbiomac.2024.129213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
The wound therapy based on antibiotic delivery inevitably leads to the emergence of drug resistance. Hydrogel biomaterials with inherent antibacterial activities have emerged as promising candidates for addressing this issue. However, developing an inherently antibacterial hydrogel through simple and facile strategies to promote localized wound infection healing remains a challenge. In this study, we successfully constructed antimicrobial cationic hydrogels with self-healing and injectable properties through physically and chemically dual-crosslinked networks. The networks were formed by the copolymers poly[(di(ethylene glycol) methyl ether methacrylate)-co-(4-formylphenyl methacrylate)-co-(2-(methacryloyloxy)ethyl]trimethylammonium chloride solution)] (PDFM) and poly[(di(ethylene glycol) methyl ether methacrylate)-co-(2-aminoethyl methacrylate hydrochloride)-co-(2-(((6-(6-methyl-4[1H]pyrimidionylureido) hexyl)carbamoyl)oxy)ethyl methacrylate)] (PDAU). The hydrogel systems effectively facilitate the regeneration and healing of infected wounds through the contact bactericidal feature of quaternary ammonium cations. The presence of Schiff base bonds in the injectable hydrogels imparts remarkable pH responsiveness and self-healing properties. In vitro experiments verified their intrinsic antibacterial activities along with their favorable cytocompatibility and hemocompatibility in both in vitro and in vivo. In addition, the hydrogel significantly accelerated the healing of bacterially infected in a full-thickness skin wound. This facilely prepared dual-crosslinked hydrogel, without antibiotics loading, holds significant prospects for treating infected wounds.
Collapse
Affiliation(s)
- Zhihao Wang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, PR China; School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Qiuli Cheng
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, PR China.
| | - Binzhong Lu
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Panpan Zhang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Leitao Zhang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Wenlan Wu
- School of Medicine, Henan University of Science & Technology, Luoyang 471023, PR China
| | - Junbo Li
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, PR China.
| | - Ravin Narain
- Department of Chemical and Material Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
27
|
Dananjaya SHS, Bandara N, Molagoda IMN, Sandamalika WMG, Kim D, Ganepola N, Attanayake AP, Choi D. Multifunctional alginate/polydeoxyribonucleotide hydrogels for promoting diabetic wound healing. Int J Biol Macromol 2024; 257:128367. [PMID: 38029897 DOI: 10.1016/j.ijbiomac.2023.128367] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
A multifunctional alginate/PDRN hydrogel system by ionic crosslinking and the Schiff base reaction between oxidized alginate (OA) and PDRN was developed in the present study. Biocompatibility assessment of the PDRN-loaded OA hydrogels showed a significant enhancement in cell viability in human dermal fibroblast (HDF) cells. In addition, hydrogels showed migratory, anti-inflammatory, intracellular reactive oxygen species scavenging, and anti-apoptotic activities. In vivo studies using a streptozotocin-induced diabetic Wister rat model indicated that OA-4PDRN had the highest percentage of wound closure (96.1 ± 2.6 %) at day 14 compared to the control (79.0 ± 2.3 %) group. This was accompanied by up-regulation of vascular endothelial growth factor (VEGF), interleukin-10 (IL-10), and transforming growth factor-beta (TGF-β) accompanied by down-regulation of pro-inflammatory markers (IL-6, IL-1β). Following histopathological observations, PDRN-loaded OA hydrogel ensured tissue safety and induced wound healing with granular tissue formation, collagen deposition, re-epithelialization, and regeneration of blood vessels and hair follicles. The downregulation of inflammatory cytokines (CD68) and expression of angiogenesis-related cytokines (CD31) in wound sites revealed the suppression of inflammation and increased angiogenesis, ensuring skin tissue regeneration in diabetic wound healing. In conclusion, the findings suggest that PDRN-loaded OA hydrogel has enormous therapeutic potential as a diabetic wound dressing.
Collapse
Affiliation(s)
- S H S Dananjaya
- Zerone Cellvane Inc, Dankook University, 3(rd) Floor, Sanhak Building, Dandae-ro 119, Dongnam-gu, Cheonan Si, Chungcheongnam-do, 31116, Republic of Korea
| | - Nadeeka Bandara
- O'Brien Institute Department, St. Vincent's Institute of Medical Research, Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Australia
| | | | - W M Gayashani Sandamalika
- Department of Aquaculture and Fisheries, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka, Sri Lanka
| | - Dukgyu Kim
- Zerone Cellvane Inc, Dankook University, 3(rd) Floor, Sanhak Building, Dandae-ro 119, Dongnam-gu, Cheonan Si, Chungcheongnam-do, 31116, Republic of Korea
| | - Nipuni Ganepola
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | - Anoja P Attanayake
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka.
| | - Dongrack Choi
- Zerone Cellvane Inc, Dankook University, 3(rd) Floor, Sanhak Building, Dandae-ro 119, Dongnam-gu, Cheonan Si, Chungcheongnam-do, 31116, Republic of Korea.
| |
Collapse
|
28
|
Yi B, Xu Y, Wang X, Wang G, Li S, Xu R, Liu X, Zhou Q. Overview of Injectable Hydrogels for the Treatment of Myocardial Infarction. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2024; 9. [DOI: 10.15212/cvia.2024.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Myocardial infarction (MI) triggers adverse remodeling mechanisms, thus leading to heart failure. Since the application of biomaterial-based scaffolds emerged as a viable approach for providing mechanical support and promoting cell growth, injectable hydrogels have garnered substantial attention in MI treatment because of their minimally invasive administration through injection and diminished risk of infection. To fully understand the interplay between injectable hydrogels and infarcted myocardium repair, this review provides an overview of recent advances in injectable hydrogel-mediated MI therapy, including: I) material designs for repairing the infarcted myocardium, considering the pathophysiological mechanism of MI and design principles for biomaterials in MI treatment; II) the development of injectable functional hydrogels for MI treatment, including conductive, self-healing, drug-loaded, and stimulus-responsive hydrogels; and III) research progress in using injectable hydrogels to restore cardiac function in infarcted myocardium by promoting neovascularization, enhancing cardiomyocyte proliferation, decreasing myocardial fibrosis, and inhibiting excessive inflammation. Overall, this review presents the current state of injectable hydrogel research in MI treatment, offering valuable information to facilitate interdisciplinary knowledge transfer and enable the development of prognostic markers for suitable injectable materials.
Collapse
|
29
|
Yang P, Li Z, Fang B, Liu L. Self-healing hydrogels based on biological macromolecules in wound healing: A review. Int J Biol Macromol 2023; 253:127612. [PMID: 37871725 DOI: 10.1016/j.ijbiomac.2023.127612] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/02/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
The complete healing of skin wounds has been a challenge in clinical treatment. Self-healing hydrogels are special hydrogels formed by distinctive physicochemically reversible bonds, and they are considered promising biomaterials in the biomedical field owing to their inherently good drug-carrying capacity as well as self-healing and repair abilities. Moreover, natural polymeric materials have received considerable attention in skin tissue engineering owing to their low cytotoxicity, low immunogenicity, and excellent biodegradation rates. In this paper, we review recent advances in the design of self-healing hydrogels based on natural polymers for skin-wound healing applications. First, we outline a variety of natural polymers that can be used to construct self-healing hydrogel systems and highlight the advantages and disadvantages of different natural polymers. We then describe the principle of self-healing hydrogels in terms of two different crosslinking mechanisms-physical and chemical-and dissect their performance characteristics based on the practical needs of skin-trauma applications. Next, we outline the biological mechanisms involved in the healing of skin wounds and describe the current application strategies for self-healing hydrogels based on these mechanisms. Finally, we analyze and summarize the challenges and prospects of natural-material-based self-healing hydrogels for skin applications.
Collapse
Affiliation(s)
- Pu Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhen Li
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
30
|
Quan VM, Do DQ, Luong TD, Tang TN, Vu BT, Le HP, Vo PH, Dang NNT, Tran QN, Trinh NT, Nguyen TH. Oxidized Xanthan Gum Crosslinked NOCC: Hydrogel System and Their Biological Stability from Oxidation Levels of the Polymer. Macromol Biosci 2023; 23:e2300156. [PMID: 37579128 DOI: 10.1002/mabi.202300156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/18/2023] [Indexed: 08/16/2023]
Abstract
Dynamic hydrogel systems from N,O-carboxymethyl chitosan (NOCC) are investigated in the past years, which has facilitated their widespread use in many biomedical engineering applications. However, the influence of the polymer's oxidation levels on the hydrogel biological properties is not fully investigated. In this study, chitosan is converted into NOCC and introduced to react spontaneously with oxidized xanthan gum (OXG) to form several injectable hydrogels with controlled degradability. Different oxidation levels of xanthan gum, as well as NOCC/OXG volume ratios, are trialed. The infrared spectroscopy spectra verify chemical modification on OXG and successful crosslinking. With increasing oxidation levels, more dialdehyde groups are introduced into the OXG, resulting in changes in physical properties including gelation, swelling, and self-healing efficiency. Under different volume ratios, the hydrogel shows a stable structure and rigidity with higher mechanical properties, and a slower degradation rate. The shear-thinning and self-healing properties of the hydrogels are confirmed. In vitro assays with L929 cells show the biocompatibility of all formulations although the use of a high amount of OXG15 and OXG25 limited the cell proliferation capacity. Findings in this study suggested a suitable amount of OXG at different oxidation levels in NOCC hydrogel systems for tissue engineering applications.
Collapse
Affiliation(s)
- Vo Minh Quan
- School of Biomedical Engineering, International University, Ho Chi Minh, 70000, Vietnam
- Vietnam National University, Ho Chi Minh, 70000, Vietnam
| | - Dat-Quoc Do
- School of Biomedical Engineering, International University, Ho Chi Minh, 70000, Vietnam
- Vietnam National University, Ho Chi Minh, 70000, Vietnam
| | - Tin Dai Luong
- School of Biomedical Engineering, International University, Ho Chi Minh, 70000, Vietnam
- Vietnam National University, Ho Chi Minh, 70000, Vietnam
| | - Tuan-Ngan Tang
- School of Biomedical Engineering, International University, Ho Chi Minh, 70000, Vietnam
- Vietnam National University, Ho Chi Minh, 70000, Vietnam
| | - Binh Thanh Vu
- School of Biomedical Engineering, International University, Ho Chi Minh, 70000, Vietnam
- Vietnam National University, Ho Chi Minh, 70000, Vietnam
| | - Hien-Phuong Le
- School of Biomedical Engineering, International University, Ho Chi Minh, 70000, Vietnam
- Vietnam National University, Ho Chi Minh, 70000, Vietnam
| | - Phuc H Vo
- School of Biomedical Engineering, International University, Ho Chi Minh, 70000, Vietnam
- Vietnam National University, Ho Chi Minh, 70000, Vietnam
| | - Nhi Ngoc-Thao Dang
- School of Biomedical Engineering, International University, Ho Chi Minh, 70000, Vietnam
- Vietnam National University, Ho Chi Minh, 70000, Vietnam
| | - Quyen Ngoc Tran
- Institute of Applied Materials Science, Vietnam Academy Science and Technology, Ho Chi Minh, 70000, Vietnam
- Graduate University of Science and Technology Viet Nam, Vietnam Academy of Science and Technology, Ho Chi Minh, 70000, Vietnam
| | - Nhu-Thuy Trinh
- School of Biomedical Engineering, International University, Ho Chi Minh, 70000, Vietnam
- Vietnam National University, Ho Chi Minh, 70000, Vietnam
| | - Thi-Hiep Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh, 70000, Vietnam
- Vietnam National University, Ho Chi Minh, 70000, Vietnam
| |
Collapse
|
31
|
Liu S, Cheng S, Chen B, Xiao P, Zhan J, Liu J, Chen Z, Liu J, Zhang T, Lei Y, Huang W. Microvesicles-hydrogel breaks the cycle of cellular senescence by improving mitochondrial function to treat osteoarthritis. J Nanobiotechnology 2023; 21:429. [PMID: 37968657 PMCID: PMC10652587 DOI: 10.1186/s12951-023-02211-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is an age-related disease characterised by the accumulation of senescent chondrocytes, which drives its pathogenesis and progression. Senescent cells exhibit distinct features, including mitochondrial dysfunction and the excessive accumulation and release of reactive oxygen species (ROS), which are highly correlated and lead to a vicious cycle of increasing senescent cells. Stem cell therapy has proven effective in addressing cellular senescence, however, it still has issues such as immune rejection and ethical concerns. Microvesicles (MVs) constitute the primary mechanism through which stem cell therapy exerts its effects, offering a cell-free approach that circumvents these risks and has excellent anti-ageing potential. Nonetheless, MVs have a short in vivo half-life, and their secretion composition varies considerably under diverse conditions. This study aims to address these issues by constructing a ROS-responsive hydrogel loaded with pre-stimulant MVs. Through responding to ROS levels this hydrogel intelligently releases MVs, and enhancing mitochondrial function in chondrocytes to improving cellular senescence. RESULT We employed Interferon-gamma (IFN-γ) as a stem cell-specific stimulus to generate IFN-γ-microvesicles (iMVs) with enhanced anti-ageing effects. Simultaneously, we developed a ROS-responsive carrier utilising 3-aminophenylboronic acid (APBA)-modified silk fibroin (SF) and polyvinyl alcohol (PVA). This carrier served to protect MVs, prolong longevity, and facilitate intelligent release. In vitro experiments demonstrated that the Hydrogel@iMVs effectively mitigated cell senescence, improved mitochondrial function, and enhanced cellular antioxidant capacity. In vivo experiments further substantiated the anti-ageing capabilities of the Hydrogel@iMVs. CONCLUSION The effect of MVs can be significantly enhanced by appropriate pre-stimulation and constructing a suitable carrier. Therefore, we have developed a ROS-responsive hydrogel containing IFN-γ pre-stimulated iMVs to target the characteristics of ageing chondrocytes in OA for therapeutic purposes. Overall, this novel approach effectively improving mitochondrial dysfunction by regulating the balance between mitochondrial fission and fusion, and the accumulation of reactive oxygen species was reduced, finally, alleviates cellular senescence, offering a promising therapeutic strategy for OA.
Collapse
Affiliation(s)
- Senrui Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shengwen Cheng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Bowen Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Pengcheng Xiao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jingdi Zhan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jiacheng Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhuolin Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Junyan Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Tao Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yiting Lei
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Wei Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
32
|
Han H, Zhao X, Ma H, Zhang Y, Lei B. Multifunctional injectable hydrogels with controlled delivery of bioactive factors for efficient repair of intervertebral disc degeneration. Heliyon 2023; 9:e21867. [PMID: 38027562 PMCID: PMC10665751 DOI: 10.1016/j.heliyon.2023.e21867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/07/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Millions of people worldwide suffer from intervertebral disc degeneration (IVDD), which imposes a significant socioeconomic burden on society. There is an urgent clinical demand for more effective treatments for IVDD because conventional treatments can only alleviate the symptoms rather than preventing the progression of IVDD. Hydrogels, a class of elastic biomaterials with good biocompatibility, are promising candidates for intervertebral disc repair and regeneration. In recent years, various hydrogels have been investigated in vitro and in vivo for the repair of intervertebral discs, some of which are ready for clinical testing. This review summarizes the latest findings and developments in using bioactive factors-released bioactive injectable hydrogels for the repair and regeneration of intervertebral discs. It focuses on the analysis and summary of the use of multifunctional injectable hydrogels to delivery bioactive factors (cells, exosomes, growth factors, genes, drugs) for disc regeneration, providing guidance for future study. Finally, we discussed and analyzed the optimal timing for the application of controlled-release hydrogels in the treatment of IVDD to meet the high standards required for intervertebral disc regeneration and precision medicine.
Collapse
Affiliation(s)
- Hao Han
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoming Zhao
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hongyun Ma
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yingang Zhang
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Bo Lei
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710000, China
- Fronter Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| |
Collapse
|
33
|
Tadge T, Garje S, Saxena V, Raichur AM. Application of Shape Memory and Self-Healable Polymers/Composites in the Biomedical Field: A Review. ACS OMEGA 2023; 8:32294-32310. [PMID: 37720748 PMCID: PMC10500588 DOI: 10.1021/acsomega.3c04569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023]
Abstract
Shape memory-assisted self-healing polymers have drawn attention over the past few years owing to their interdisciplinary and wide range of applications. Self-healing and shape memory are two approaches used to improve the applicability of polymers in the biomedical field. Combining both these approaches in a polymer composite opens new possibilities for its use in biomedical applications, such as the "close then heal" concept, which uses the shape memory capabilities of polymers to bring injured sections together to promote autonomous healing. This review focuses on using shape memory-assisted self-healing approaches along with their respective affecting factors for biomedical applications such as tissue engineering, drug delivery, biomaterial-inks, and 4D printed scaffolds, soft actuators, wearable electronics, etc. In addition, quantification of self-healing and shape memory efficiency is also discussed. The challenges and prospects of these polymers for biomedical applications have been summarized.
Collapse
Affiliation(s)
| | | | - Varun Saxena
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Ashok M. Raichur
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
34
|
Song Y, Wang N, Shi H, Zhang D, Wang Q, Guo S, Yang S, Ma J. Biomaterials combined with ADSCs for bone tissue engineering: current advances and applications. Regen Biomater 2023; 10:rbad083. [PMID: 37808955 PMCID: PMC10551240 DOI: 10.1093/rb/rbad083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/07/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
In recent decades, bone tissue engineering, which is supported by scaffold, seed cells and bioactive molecules (BMs), has provided new hope and direction for treating bone defects. In terms of seed cells, compared to bone marrow mesenchymal stem cells, which were widely utilized in previous years, adipose-derived stem cells (ADSCs) are becoming increasingly favored by researchers due to their abundant sources, easy availability and multi-differentiation potentials. However, there is no systematic theoretical basis for selecting appropriate biomaterials loaded with ADSCs. In this review, the regulatory effects of various biomaterials on the behavior of ADSCs are summarized from four perspectives, including biocompatibility, inflammation regulation, angiogenesis and osteogenesis, to illustrate the potential of combining various materials with ADSCs for the treatment of bone defects. In addition, we conclude the influence of additional application of various BMs on the bone repair effect of ADSCs, in order to provide more evidences and support for the selection or preparation of suitable biomaterials and BMs to work with ADSCs. More importantly, the associated clinical case reports and experiments are generalized to provide additional ideas for the clinical transformation and application of bone tissue engineering loaded with ADSCs.
Collapse
Affiliation(s)
- Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Dan Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Jia Ma
- School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| |
Collapse
|
35
|
Han Y, Cao L, Li G, Zhou F, Bai L, Su J. Harnessing Nucleic Acids Nanotechnology for Bone/Cartilage Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301996. [PMID: 37116115 DOI: 10.1002/smll.202301996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The effective regeneration of weight-bearing bone defects and critical-sized cartilage defects remains a significant clinical challenge. Traditional treatments such as autologous and allograft bone grafting have not been successful in achieving the desired outcomes, necessitating the need for innovative therapeutic approaches. Nucleic acids have attracted significant attention due to their ability to be designed to form discrete structures and programmed to perform specific functions at the nanoscale. The advantages of nucleic acid nanotechnology offer numerous opportunities for in-cell and in vivo applications, and hold great promise for advancing the field of biomaterials. In this review, the current abilities of nucleic acid nanotechnology to be applied in bone and cartilage regeneration are summarized and insights into the challenges and future directions for the development of this technology are provided.
Collapse
Affiliation(s)
- Yafei Han
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Liehu Cao
- Department of Orthopedics, Shanghai Luodian Hospital, Shanghai, 201908, China
| | - Guangfeng Li
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 201941, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
36
|
Sun Z, Zhu D, Zhao H, Liu J, He P, Luan X, Hu H, Zhang X, Wei G, Xi Y. Recent advance in bioactive hydrogels for repairing spinal cord injury: material design, biofunctional regulation, and applications. J Nanobiotechnology 2023; 21:238. [PMID: 37488557 PMCID: PMC10364437 DOI: 10.1186/s12951-023-01996-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Functional hydrogels show potential application in repairing spinal cord injury (SCI) due to their unique chemical, physical, and biological properties and functions. In this comprehensive review, we present recent advance in the material design, functional regulation, and SCI repair applications of bioactive hydrogels. Different from previously released reviews on hydrogels and three-dimensional scaffolds for the SCI repair, this work focuses on the strategies for material design and biologically functional regulation of hydrogels, specifically aiming to show how these significant efforts can promoting the repairing performance of SCI. We demonstrate various methods and techniques for the fabrication of bioactive hydrogels with the biological components such as DNA, proteins, peptides, biomass polysaccharides, and biopolymers to obtain unique biological properties of hydrogels, including the cell biocompatibility, self-healing, anti-bacterial activity, injectability, bio-adhesion, bio-degradation, and other multi-functions for repairing SCI. The functional regulation of bioactive hydrogels with drugs/growth factors, polymers, nanoparticles, one-dimensional materials, and two-dimensional materials for highly effective treating SCI are introduced and discussed in detail. This work shows new viewpoints and ideas on the design and synthesis of bioactive hydrogels with the state-of-the-art knowledges of materials science and nanotechnology, and will bridge the connection of materials science and biomedicine, and further inspire clinical potential of bioactive hydrogels in biomedical fields.
Collapse
Affiliation(s)
- Zhengang Sun
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, People's Republic of China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hong Zhao
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Jia Liu
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Huiqiang Hu
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xuanfen Zhang
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, People's Republic of China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Yongming Xi
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
37
|
Thang NH, Chien TB, Cuong DX. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023; 9:523. [PMID: 37504402 PMCID: PMC10379988 DOI: 10.3390/gels9070523] [Citation(s) in RCA: 184] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Polymer-based hydrogels are hydrophilic polymer networks with crosslinks widely applied for drug delivery applications because of their ability to hold large amounts of water and biological fluids and control drug release based on their unique physicochemical properties and biocompatibility. Current trends in the development of hydrogel drug delivery systems involve the release of drugs in response to specific triggers such as pH, temperature, or enzymes for targeted drug delivery and to reduce the potential for systemic toxicity. In addition, developing injectable hydrogel formulations that are easily used and sustain drug release during this extended time is a growing interest. Another emerging trend in hydrogel drug delivery is the synthesis of nano hydrogels and other functional substances for improving targeted drug loading and release efficacy. Following these development trends, advanced hydrogels possessing mechanically improved properties, controlled release rates, and biocompatibility is developing as a focus of the field. More complex drug delivery systems such as multi-drug delivery and combination therapies will be developed based on these advancements. In addition, polymer-based hydrogels are gaining increasing attention in personalized medicine because of their ability to be tailored to a specific patient, for example, drug release rates, drug combinations, target-specific drug delivery, improvement of disease treatment effectiveness, and healthcare cost reduction. Overall, hydrogel application is advancing rapidly, towards more efficient and effective drug delivery systems in the future.
Collapse
Affiliation(s)
- Nguyen Hoc Thang
- Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| | - Truong Bach Chien
- Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| | - Dang Xuan Cuong
- Innovation and Entrepreneurship Center, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
38
|
Zare I, Taheri-Ledari R, Esmailzadeh F, Salehi MM, Mohammadi A, Maleki A, Mostafavi E. DNA hydrogels and nanogels for diagnostics, therapeutics, and theragnostics of various cancers. NANOSCALE 2023. [PMID: 37337663 DOI: 10.1039/d3nr00425b] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
As an efficient class of hydrogel-based therapeutic drug delivery systems, deoxyribonucleic acid (DNA) hydrogels (particularly DNA nanogels) have attracted massive attention in the last five years. The main contributor to this is the programmability of these 3-dimensional (3D) scaffolds that creates fundamental effects, especially in treating cancer diseases. Like other active biological ingredients (ABIs), DNA hydrogels can be functionalized with other active agents that play a role in targeting drug delivery and modifying the half-life of the therapeutic cargoes in the body's internal environment. Considering the brilliant advantages of DNA hydrogels, in this survey, we intend to submit an informative collection of feasible methods for the design and preparation of DNA hydrogels and nanogels, and the responsivity of the immune system to these therapeutic cargoes. Moreover, the interactions of DNA hydrogels with cancer biomarkers are discussed in this account. Theragnostic DNA nanogels as an advanced species for both detection and therapeutic purposes are also briefly reviewed.
Collapse
Affiliation(s)
- Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Farhad Esmailzadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
39
|
Wang Q, Zhang Y, Ma Y, Wang M, Pan G. Nano-crosslinked dynamic hydrogels for biomedical applications. Mater Today Bio 2023; 20:100640. [PMID: 37179534 PMCID: PMC10173301 DOI: 10.1016/j.mtbio.2023.100640] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Hydrogels resemble natural extracellular matrices and have been widely studied for biomedical applications. Nano-crosslinked dynamic hydrogels combine the injectability and self-healing property of dynamic hydrogels with the versatility of nanomaterials and exhibit unique advantages. The incorporation of nanomaterials as crosslinkers can improve the mechanical properties (strength, injectability, and shear-thinning properties) of hydrogels by reinforcing the skeleton and endowing them with multifunctionality. Nano-crosslinked functional hydrogels that can respond to external stimuli (such as pH, heat, light, and electromagnetic stimuli) and have photothermal properties, antimicrobial properties, stone regeneration abilities, or tissue repair abilities have been constructed through reversible covalent crosslinking strategies and physical crosslinking strategies. The possible cytotoxicity of the incorporated nanomaterials can be reduced. Nanomaterial hydrogels show excellent biocompatibility and can facilitate cell proliferation and differentiation for biomedical applications. This review introduces different nano-crosslinked dynamic hydrogels in the medical field, from fabrication to application. In this review, nanomaterials for dynamic hydrogel fabrication, such as metals and metallic oxides, nanoclays, carbon-based nanomaterials, black phosphorus (BP), polymers, and liposomes, are discussed. We also introduce the dynamic crosslinking method commonly used for nanodynamic hydrogels. Finally, the medical applications of nano-crosslinked hydrogels are presented. We hope that this summary will help researchers in the related research fields quickly understand nano-crosslinked dynamic hydrogels to develop more preparation strategies and promote their development and application.
Collapse
Affiliation(s)
- Qinghe Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, PR China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, PR China
| | - Yue Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, PR China
| | - Miao Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, PR China
- Corresponding author.
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, PR China
- Corresponding author.
| |
Collapse
|
40
|
Erezuma I, Lukin I, Desimone M, Zhang YS, Dolatshahi-Pirouz A, Orive G. Progress in self-healing hydrogels and their applications in bone tissue engineering. BIOMATERIALS ADVANCES 2023; 146:213274. [PMID: 36640523 DOI: 10.1016/j.bioadv.2022.213274] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
Bone tissue engineering (BTE) is constantly seeking novel treatments to address bone injuries in all their varieties. It is necessary to find new ways to create structures that perfectly emulate the native tissue. Self-healing hydrogels have been a breakthrough in this regard, as they are able to reconstitute their links after they have been partially broken. Among the most outstanding biomaterials when it comes to developing these hydrogels for BTE, those polymers of natural origin (e.g., gelatin, alginate) stand out, although synthetics such as PEG or nanomaterials like laponite are also key for this purpose. Self-healing hydrogels have proven to be efficient in healing bone, but have also played a key role as delivery-platforms for drugs or other biological agents. Moreover, some researchers have identified novel uses for these gels as bone fixators or implant coatings. Here, we review the progress of self-healing hydrogels, which hold great promise in the field of tissue engineering.
Collapse
Affiliation(s)
- Itsasne Erezuma
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Izeia Lukin
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Martin Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | | | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria 01007, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| |
Collapse
|
41
|
Duan N, Mei L, Hu L, Yin X, Wei X, Li Y, Li Q, Zhao G, Zhou Q, Du Z. Biomimetic, Injectable, and Self-Healing Hydrogels with Sustained Release of Ranibizumab to Treat Retinal Neovascularization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6371-6384. [PMID: 36700786 DOI: 10.1021/acsami.2c17626] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Retinal neovascularization (RNV) is a typical feature of ischemic retinal diseases that can lead to traction retinal detachment and even blindness in patients, in which the vascular endothelial cell growth factor (VEGF) plays a pivotal role. However, most anti-VEGF drugs currently used for treating RNV, such as ranibizumab, need frequent and repeated intravitreal injections due to their short intravitreal half-life, which increases the incidence of complications. Herein, a hydrogel intravitreal drug delivery system (DDS) is prepared by a dynamic Schiff base reaction between aminated hyaluronic acid and aldehyde-functionalized Pluronic 127 for sustained release of ranibizumab. The prepared hydrogel system named HP@Ran exhibits excellent injectability, self-healing ability, structural stability, cytocompatibility, and blood compatibility. According to an in vitro drug release study, the hydrogel system continuously releases the model drug bovine serum albumin for more than 56 days. Importantly, in an in vivo rabbit persistent RNV model, the HP@Ran hydrogel system continuously releases pharmacologically active ranibizumab for more than 7 weeks and also exhibits superior anti-angiogenic efficacy over ranibizumab treatment by decreasing vascular leakage and neovascularization at 12 weeks. Thus, the developed HP@Ran hydrogel system possesses great potential for intravitreal DDS for the treatment of RNV.
Collapse
Affiliation(s)
- Ning Duan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao266003, China
| | - Li Mei
- Department of Stomatology, Qingdao University, Qingdao266003, China
| | - Liting Hu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao266003, China
| | - Xiaoni Yin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao266003, China
| | - Xiangyang Wei
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao266003, China
| | - Ying Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao266003, China
| | - Qinghua Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao266003, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao266003, China
| | - Qihui Zhou
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao266071, China
- Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin300038, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang325000, China
| | - Zhaodong Du
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao266003, China
| |
Collapse
|
42
|
Zhu CN, Lv MY, Song F, Zheng DY, Liu C, Liu XJ, Cheng DB, Qiao ZY. Reversible covalent nanoassemblies for augmented nuclear drug translocation in drug resistance tumor. J Control Release 2023; 353:186-195. [PMID: 36403684 DOI: 10.1016/j.jconrel.2022.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
Abstract
The drug efflux by P-glycoprotein (P-gp) is the primary contributor of multidrug resistance (MDR), which eventually generates insufficient nuclear drug accumulation and chemotherapy failure. In this paper, reversible covalent nanoassemblies on the basis of catechol-functionalized methoxy poly (ethylene glycol) (mPEG-dop) and phenylboronic acid-modified cholesterol (Chol-PBA) are successfully synthesized for delivery of both doxorubicin (DOX, anti-cancer drug) and tariquidar (TQR, P-glycoprotein inhibitor), which shows efficient nuclear DOX accumulation for overcoming tumor MDR. Through naturally forming phenylboronate linkage in physiological circumstances, Chol-PBA is able to bond with mPEG-dop. The resulting conjugates (PC) could self-assemble into reversible covalent nanoassemblies by dialysis method, and transmission electron microscopy analysis reveals the PC distributes in nano-scaled spherical particles before and after drug encapsulation. Under the assistance of Chol, PC can enter into lysosome of tumor cells via low-density lipoprotein (LDL) receptor-mediated endocytosis. Then the loaded TQR and DOX are released in acidic lysosomal compartments, which inhibit P-gp mediated efflux and elevate nuclear accumulation of DOX, respectively. At last, this drug loaded PC nanoassemblies show significant tumor suppression efficacy in multidrug-resistant tumor models, which suggests great potential for addressing MDR in cancer therapy.
Collapse
Affiliation(s)
- Chun-Nan Zhu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Key Laboratory of Brain Cognitive Science (State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China..
| | - Mei-Yu Lv
- Department of Respiratory, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Fei Song
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Key Laboratory of Brain Cognitive Science (State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
| | - Dong-Yun Zheng
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Key Laboratory of Brain Cognitive Science (State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
| | - Chao Liu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Key Laboratory of Brain Cognitive Science (State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
| | - Xiao-Jun Liu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Key Laboratory of Brain Cognitive Science (State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No.122 Luoshi Road, Wuhan 430070, China..
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience Laboratory for Biological Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST), Beijing 100190, China..
| |
Collapse
|
43
|
Yu Y, Yu T, Wang X, Liu D. Functional Hydrogels and Their Applications in Craniomaxillofacial Bone Regeneration. Pharmaceutics 2022; 15:pharmaceutics15010150. [PMID: 36678779 PMCID: PMC9864650 DOI: 10.3390/pharmaceutics15010150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Craniomaxillofacial bone defects are characterized by an irregular shape, bacterial and inflammatory environment, aesthetic requirements, and the need for the functional recovery of oral-maxillofacial areas. Conventional clinical treatments are currently unable to achieve high-quality craniomaxillofacial bone regeneration. Hydrogels are a class of multifunctional platforms made of polymers cross-linked with high water content, good biocompatibility, and adjustable physicochemical properties for the intelligent delivery of goods. These characteristics make hydrogel systems a bright prospect for clinical applications in craniomaxillofacial bone. In this review, we briefly demonstrate the properties of hydrogel systems that can come into effect in the field of bone regeneration. In addition, we summarize the hydrogel systems that have been developed for craniomaxillofacial bone regeneration in recent years. Finally, we also discuss the prospects in the field of craniomaxillofacial bone tissue engineering; these discussions can serve as an inspiration for future hydrogel design.
Collapse
Affiliation(s)
- Yi Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Correspondence: (X.W.); (D.L.)
| | - Dawei Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
- Correspondence: (X.W.); (D.L.)
| |
Collapse
|
44
|
Wang Z, Chen R, Yang S, Li S, Gao Z. Design and application of stimuli-responsive DNA hydrogels: A review. Mater Today Bio 2022; 16:100430. [PMID: 36157049 PMCID: PMC9493390 DOI: 10.1016/j.mtbio.2022.100430] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
Deoxyribonucleic acid (DNA) hydrogels combine the properties of DNAs and hydrogels, and adding functionalized DNAs is key to the wide application of DNA hydrogels. In stimuli-responsive DNA hydrogels, the DNA transcends its application in genetics and bridges the gap between different fields. Specifically, the DNA acts as both an information carrier and a bridge in constructing DNA hydrogels. The programmability and biocompatibility of DNA hydrogel make it change macroscopically in response to a variety of stimuli. In order to meet the needs of different scenarios, DNA hydrogels were also designed into microcapsules, beads, membranes, microneedle patches, and other forms. In this study, the stimuli were classified into single biological and non-biological stimuli and composite stimuli. Stimuli-responsive DNA hydrogels from the past five years were summarized, including but not limited to their design and application, in particular logic gate pathways and signal amplification mechanisms. Stimuli-responsive DNA hydrogels have been applied to fields such as sensing, nanorobots, information carriers, controlled drug release, and disease treatment. Different potential applications and the developmental pro-spects of stimuli-responsive DNA hydrogels were discussed.
Collapse
Affiliation(s)
- Zhiguang Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin, 300050, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Ruipeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shiping Yang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| |
Collapse
|
45
|
Wang X, Chen C, Waterhouse GIN, Qiao X, Xu Z. Ultra-sensitive detection of streptomycin in foods using a novel SERS switch sensor fabricated by AuNRs array and DNA hydrogel embedded with DNAzyme. Food Chem 2022; 393:133413. [PMID: 35751206 DOI: 10.1016/j.foodchem.2022.133413] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 11/18/2022]
Abstract
Detrimental health effects caused by the intake of food contaminated with streptomycin have drawn concerns on effective monitoring using sensitive and selective methods. In this work, a DNA hydrogel surface enhanced Raman spectroscopy (SERS) sensor was successfully developed for the ultrasensitive determination of streptomycin residues in foods. The sensor used a DNA hydrogel containing DNAzyme (Pb-DNAzyme), triggering release of the Raman reporter 4-mercaptobenzonitrile, which was detected using a gold nanorods (AuNRs) array. The linear range of the sensor was 0.01-150 nM and the limit of detection was 4.85 × 10-3 nM. Tests conducted with four streptomycin structural analogues confirmed the sensor was specific. Milk and honey samples spiked with streptomycin were analysed, resulting in standard recoveries in the range 98.2-117.3%. These findings demonstrated that such a sensor can be used for ultrasensitive detection of streptomycin in foods.
Collapse
Affiliation(s)
- Ximo Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Chen Chen
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | | | - Xuguang Qiao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Zhixiang Xu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China.
| |
Collapse
|
46
|
Rama M, Vijayalakshmi U. Drug delivery system in bone biology: an evolving platform for bone regeneration and bone infection management. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Alginate as a Promising Biopolymer in Drug Delivery and Wound Healing: A Review of the State-of-the-Art. Int J Mol Sci 2022; 23:ijms23169035. [PMID: 36012297 PMCID: PMC9409034 DOI: 10.3390/ijms23169035] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/20/2022] Open
Abstract
Biopolymeric nanoparticulate systems hold favorable carrier properties for active delivery. The enhancement in the research interest in alginate formulations in biomedical and pharmaceutical research, owing to its biodegradable, biocompatible, and bioadhesive characteristics, reiterates its future use as an efficient drug delivery matrix. Alginates, obtained from natural sources, are the colloidal polysaccharide group, which are water-soluble, non-toxic, and non-irritant. These are linear copolymeric blocks of α-(1→4)-linked l-guluronic acid (G) and β-(1→4)-linked d-mannuronic acid (M) residues. Owing to the monosaccharide sequencing and the enzymatically governed reactions, alginates are well-known as an essential bio-polymer group for multifarious biomedical implementations. Additionally, alginate’s bio-adhesive property makes it significant in the pharmaceutical industry. Alginate has shown immense potential in wound healing and drug delivery applications to date because its gel-forming ability maintains the structural resemblance to the extracellular matrices in tissues and can be altered to perform numerous crucial functions. The initial section of this review will deliver a perception of the extraction source and alginate’s remarkable properties. Furthermore, we have aspired to discuss the current literature on alginate utilization as a biopolymeric carrier for drug delivery through numerous administration routes. Finally, the latest investigations on alginate composite utilization in wound healing are addressed.
Collapse
|
48
|
Abstract
Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.
Collapse
Affiliation(s)
- Pascal Bertsch
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands
| | - Mani Diba
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,
| |
Collapse
|
49
|
Wang S, Qiu Y, Qu L, Wang Q, Zhou Q. Hydrogels for Treatment of Different Degrees of Osteoarthritis. Front Bioeng Biotechnol 2022; 10:858656. [PMID: 35733529 PMCID: PMC9207401 DOI: 10.3389/fbioe.2022.858656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/18/2022] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA) is a common disease that severely restricts human activities and degrades the quality of life. Every year, millions of people worldwide are diagnosed with osteoarthritis, placing a heavy burden on society. Hydrogels, a polymeric material with good biocompatibility and biodegradability, are a novel approach for the treatment of osteoarthritis. In recent years, this approach has been widely studied with the development of materials science and tissue engineering technology. We reviewed the research progress of hydrogels in the treatment of osteoarthritis in the past 3 years. We summarized the required hydrogel properties and current applications according to the development and treatment of osteoarthritis. Furthermore, we listed the challenges of hydrogels for different types of osteoarthritis and presented prospects for future development.
Collapse
Affiliation(s)
- Shuze Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yueyang Qiu
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Liu Qu
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Qing Zhou
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
- *Correspondence: Qing Zhou,
| |
Collapse
|
50
|
Olov N, Bagheri-Khoulenjani S, Mirzadeh H. Injectable hydrogels for bone and cartilage tissue engineering: a review. Prog Biomater 2022; 11:113-135. [PMID: 35420394 PMCID: PMC9156638 DOI: 10.1007/s40204-022-00185-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/24/2022] [Indexed: 10/18/2022] Open
Abstract
Tissue engineering, using a combination of living cells, bioactive molecules, and three-dimensional porous scaffolds, is a promising alternative to traditional treatments such as the use of autografts and allografts for bone and cartilage tissue regeneration. Scaffolds, in this combination, can be applied either through surgery by implantation of cell-seeded pre-fabricated scaffolds, or through injection of a solidifying precursor and cell mixture, or as an injectable cell-seeded pre-fabricated scaffold. In situ forming and pre-fabricated injectable scaffolds can be injected directly into the defect site with complex shape and critical size in a minimally invasive manner. Proper and homogeneous distribution of cells, biological factors, and molecular signals in these injectable scaffolds is another advantage over pre-fabricated scaffolds. Due to the importance of injectable scaffolds in tissue engineering, here different types of injectable scaffolds, their design challenges, and applications in bone and cartilage tissue regeneration are reviewed.
Collapse
Affiliation(s)
- Nafiseh Olov
- Polymer and Colour Engineering Department, Amirkabir University of Technology, 424 Hafez-Ave., 15875-4413, Tehran, Iran
| | - Shadab Bagheri-Khoulenjani
- Polymer and Colour Engineering Department, Amirkabir University of Technology, 424 Hafez-Ave., 15875-4413, Tehran, Iran.
| | - Hamid Mirzadeh
- Polymer and Colour Engineering Department, Amirkabir University of Technology, 424 Hafez-Ave., 15875-4413, Tehran, Iran.
| |
Collapse
|