1
|
Mendes M, Morais AS, Carlos A, Sousa JJ, Pais AC, Mihăilă SM, Vitorino C. Organ-on-a-chip: Quo vademus? Applications and regulatory status. Colloids Surf B Biointerfaces 2025; 249:114507. [PMID: 39826309 DOI: 10.1016/j.colsurfb.2025.114507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/15/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Organ-on-a-chip systems, also referred to as microphysiological systems (MPS), represent an advance in bioengineering microsystems designed to mimic key aspects of human organ physiology and function. Drawing inspiration from the intricate and hierarchical architecture of the human body, these innovative platforms have emerged as invaluable in vitro tools with wide-ranging applications in drug discovery and development, as well as in enhancing our understanding of disease physiology. The facility to replicate human tissues within physiologically relevant three-dimensional multicellular environments empowers organ-on-a-chip systems with versatility throughout different stages of the drug development process. Moreover, these systems can be tailored to mimic specific disease states, facilitating the investigation of disease progression, drug responses, and potential therapeutic interventions. In particular, they can demonstrate, in early-phase pre-clinical studies, the safety and toxicity profiles of potential therapeutic compounds. Furthermore, they play a pivotal role in the in vitro evaluation of drug efficacy and the modeling of human diseases. One of the most promising prospects of organ-on-a-chip technology is to simulate the pathophysiology of specific subpopulations and even individual patients, thereby being used in personalized medicine. By mimicking the physiological responses of diverse patient groups, these systems hold the promise of revolutionizing therapeutic strategies, guiding them towards tailored intervention to the unique needs of each patient. This review presents the development status and evolution of microfluidic platforms that have facilitated the transition from cells to organs recreated on chips and some of the opportunities and applications offered by organ-on-a-chip technology. Additionally, the current potential and future perspectives of these microphysiological systems and the challenges this technology still faces are discussed.
Collapse
Affiliation(s)
- Maria Mendes
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Ana Sofia Morais
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Carlos
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - João José Sousa
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Alberto Canelas Pais
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Silvia M Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal.
| |
Collapse
|
2
|
Su X, Wang M, Yuan R, Guo L, Han Y, Huang C, Li A, Kaplan DL, Wang X. Organoids in Dynamic Culture: Microfluidics and 3D Printing Technologies. ACS Biomater Sci Eng 2025. [PMID: 40248908 DOI: 10.1021/acsbiomaterials.4c02245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
With the rapid advancement of biomaterials and tissue engineering technologies, organoid research and its applications have made significant strides. Organoids are increasingly utilized in pharmacology, regenerative medicine, and precision clinical medicine. Current trends in organoid research are moving toward multifunctional composite three-dimensional cultivation and dynamic cultivation strategies. Key technologies driving this evolution, including 3D printing and microfluidics, continue to impact new areas of discovery and clinical relevance. This review provides a systematic overview of these emerging trends, discussing the strengths and limitations of these critical technologies and offering insight and research directions for professionals working in the organoid field.
Collapse
Affiliation(s)
- Xin Su
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China 116044
| | - Mingqi Wang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China 116044
| | - Ruqiang Yuan
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China 116044
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China 116044
| | - Lina Guo
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China 116044
| | - Yinhe Han
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China 116044
| | - Chun Huang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China 116044
| | - Ang Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China 116044
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Xiuli Wang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China 116044
| |
Collapse
|
3
|
Liu K, Chen X, Fan Z, Ren F, Liu J, Hu B. From organoids to organoids-on-a-chip: Current applications and challenges in biomedical research. Chin Med J (Engl) 2025; 138:792-807. [PMID: 39994843 PMCID: PMC11970821 DOI: 10.1097/cm9.0000000000003535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Indexed: 02/26/2025] Open
Abstract
ABSTRACT The high failure rates in clinical drug development based on animal models highlight the urgent need for more representative human models in biomedical research. In response to this demand, organoids and organ chips were integrated for greater physiological relevance and dynamic, controlled experimental conditions. This innovative platform-the organoids-on-a-chip technology-shows great promise in disease modeling, drug discovery, and personalized medicine, attracting interest from researchers, clinicians, regulatory authorities, and industry stakeholders. This review traces the evolution from organoids to organoids-on-a-chip, driven by the necessity for advanced biological models. We summarize the applications of organoids-on-a-chip in simulating physiological and pathological phenotypes and therapeutic evaluation of this technology. This section highlights how integrating technologies from organ chips, such as microfluidic systems, mechanical stimulation, and sensor integration, optimizes organoid cell types, spatial structure, and physiological functions, thereby expanding their biomedical applications. We conclude by addressing the current challenges in the development of organoids-on-a-chip and offering insights into the prospects. The advancement of organoids-on-a-chip is poised to enhance fidelity, standardization, and scalability. Furthermore, the integration of cutting-edge technologies and interdisciplinary collaborations will be crucial for the progression of organoids-on-a-chip technology.
Collapse
Affiliation(s)
- Kailun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaowei Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Fan
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Ren
- State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101 China
| |
Collapse
|
4
|
Zhang X, Wang Y, Han J, Zhao W, Zhang W, Li X, Chen J, Song W, Wang L. Cardiac-Focused Multi-Organ Chips: Advanced Disease Modeling, Drug Testing, and Inter-Organ Communication. Adv Biol (Weinh) 2025; 9:e2400512. [PMID: 39913111 DOI: 10.1002/adbi.202400512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/18/2024] [Indexed: 02/07/2025]
Abstract
Heart disease remains a leading cause of mortality worldwide, posing a significant challenge to global healthcare systems. Traditional animal models and cell culture techniques are instrumental in advancing the understanding of cardiac pathophysiology. However, these methods are limited in their ability to fully replicate the heart's intricate functions. This underscores the need for a deeper investigation into the fundamental mechanisms of heart disease. Notably, cardiac pathology is often influenced by systemic factors, with conditions in other organs contributing to disease onset and progression. Cardiac-focused multi-organ chip technology has emerged to better elucidate these complex inter-organ communications and address the limitations of current in vitro models. This technology offers a novel approach by recreating the cardiac microenvironment and integrating it with other organ systems, thereby enabling more precise disease modeling and drug toxicity assessment. This review provides a comprehensive overview of the heart's structure and function, explores the advancements in cardiac organ chip development, and highlights the applications of cardiac-focused multi-organ chips in medical research. Finally, the future potential of this technology in enhancing disease modeling and therapeutic evaluation is discussed.
Collapse
Affiliation(s)
- Xiaolong Zhang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250 353, China
- Shandong Institute of Mechanical Design and Research, Jinan, 250 353, China
| | - Yushen Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250 353, China
- Shandong Institute of Mechanical Design and Research, Jinan, 250 353, China
| | - Junlei Han
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250 353, China
- Shandong Institute of Mechanical Design and Research, Jinan, 250 353, China
| | - Weilong Zhao
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250 353, China
- Shandong Institute of Mechanical Design and Research, Jinan, 250 353, China
| | - Wenhong Zhang
- College of Mechanical Engineering, Donghua University, Shanghai, 201 620, China
| | - Xinyu Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250 021, China
| | - Jun Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250 353, China
- Shandong Institute of Mechanical Design and Research, Jinan, 250 353, China
| | - Wei Song
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250 021, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250 353, China
- Shandong Institute of Mechanical Design and Research, Jinan, 250 353, China
| |
Collapse
|
5
|
Li J, Isaakidou A, van Zanten LJ, Tas RP, Mirzaali MJ, Fratila-Apachitei LE, Zadpoor AA. Multi-scale additive manufacturing of 3D porous networks integrated with hydrogel for sustained in vitro tissue growth. Acta Biomater 2025; 196:198-212. [PMID: 40049309 DOI: 10.1016/j.actbio.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/06/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
The development of high-fidelity three-dimensional (3D) tissue models can minimize the need for animal models in clinical medicine and drug development. However, physical limitations regarding the distances within which diffusion processes are effective impose limitations on the size of such constructs. That is because larger-size constructs experience necrosis, especially in their centers, due to the cells residing deep inside such constructs not receiving enough oxygen and nutrients. This hampers the sustained in vitro growth of the tissues which is required for achieving functional microtissues. To address this challenge, we used three types of 3D printing technologies to create perfusable networks at different length scales and integrate them into such constructs. Toward this aim, networks incorporating porous conduits with increasingly complex configurations were designed and fabricated using fused deposition modeling, stereolithography, and two-photon polymerization while optimizing the printing conditions for each of these technologies. Furthermore, following network embedding in hydrogels, contrast agent-enhanced micro-computed tomography and confocal fluorescence microscopy were employed to characterize one of the essential network functionalities, namely the diffusion function. The investigations revealed the effects of various design parameters on the diffusion behavior of the porous conduits over 24 h. We found that the number of pores exerts the most significant influence on the diffusion behavior of the contrast agent, followed by variations in the pore size and hydrogel concentration. The analytical approach and the findings of this study establish a solid base for a new technological platform to fabricate perfusable multiscale 3D porous networks with complex designs while enabling the customization of diffusion characteristics to meet specific requirements for sustained in vitro tissue growth. STATEMENT OF SIGNIFICANCE: This study addresses an essential limitation of current 3D tissue engineering, namely, sustaining tissue viability in larger constructs through optimized nutrient and oxygen delivery. By utilizing advanced 3D printing techniques this research proposes the fabrication of perfusable, multiscale and customizable networks that enhance diffusion and enable cell access to essential nutrients throughout the construct. The findings highlighted the role of network characteristics on the diffusion of a model compound within a hydrogel matrix. This work represents a promising technological platform for creating advanced in vitro 3D tissue models that can reduce the use of animal models in research involving tissue regeneration, disease models and drug development.
Collapse
Affiliation(s)
- J Li
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft 2628 CD, The Netherlands.
| | - A Isaakidou
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft 2628 CD, The Netherlands
| | - L J van Zanten
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft 2628 CD, The Netherlands
| | - R P Tas
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft 2628 CD, The Netherlands
| | - M J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft 2628 CD, The Netherlands
| | - L E Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft 2628 CD, The Netherlands.
| | - A A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft 2628 CD, The Netherlands
| |
Collapse
|
6
|
Ni B, Ye L, Zhang Y, Hu S, Lei W. Advances in humanoid organoid-based research on inter-organ communications during cardiac organogenesis and cardiovascular diseases. J Transl Med 2025; 23:380. [PMID: 40156006 PMCID: PMC11951738 DOI: 10.1186/s12967-025-06381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/13/2025] [Indexed: 04/01/2025] Open
Abstract
The intimate correlation between cardiovascular diseases and other organ pathologies, such as metabolic and kidney diseases, underscores the intricate interactions among these organs. Understanding inter-organ communications is crucial for developing more precise drugs and effective treatments for systemic diseases. While animal models have traditionally been pivotal in studying these interactions, human-induced pluripotent stem cells (hiPSCs) offer distinct advantages when constructing in vitro models. Beyond the conventional two-dimensional co-culture model, hiPSC-derived humanoid organoids have emerged as a substantial advancement, capable of replicating essential structural and functional attributes of internal organs in vitro. This breakthrough has spurred the development of multilineage organoids, assembloids, and organoids-on-a-chip technologies, which allow for enhanced physiological relevance. These technologies have shown great potential for mimicking coordinated organogenesis, exploring disease pathogenesis, and facilitating drug discovery. As the central organ of the cardiovascular system, the heart serves as the focal point of an extensively studied network of interactions. This review focuses on the advancements and challenges of hiPSC-derived humanoid organoids in studying interactions between the heart and other organs, presenting a comprehensive exploration of this cutting-edge approach in systemic disease research.
Collapse
Affiliation(s)
- Baoqiang Ni
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Lingqun Ye
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Yan Zhang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Shijun Hu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| | - Wei Lei
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
7
|
Peng Z, Lv X, Sun H, Zhao L, Huang S. 3D tumor cultures for drug resistance and screening development in clinical applications. Mol Cancer 2025; 24:93. [PMID: 40119343 PMCID: PMC11927140 DOI: 10.1186/s12943-025-02281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 02/24/2025] [Indexed: 03/24/2025] Open
Abstract
Tumor drug resistance presents a growing challenge in medical practice, particularly during anti-cancer therapies, where the emergence of drug-resistant cancer cells significantly complicates clinical treatment. In recent years, three-dimensional (3D) tumor culture technology, which more effectively simulates the in vivo physiological environment, has gained increasing attention in tumor drug resistance research and clinical applications. By mimicking the in vivo cellular microenvironment, 3D tumor culture technology not only recapitulates cell-cell interactions but also more faithfully reproduces the biological effects of therapeutic agents. Consequently, 3D tumor culture technology is emerging as a crucial tool in biomedical and clinical research. We summarize the benefits of 3D culture models and organoid technology, explore their application in the realm of drug resistance, drug screening, and personalized therapy, and discuss their potential application prospects and challenges in clinical transformation, with the aim of providing insights for optimizing cancer treatment strategies and advancing precision therapy.
Collapse
Affiliation(s)
- Zheng Peng
- Department of Clinical Laboratory, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, Guangxi, China
| | - Xiaolan Lv
- Department of Clinical Laboratory, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Hao Sun
- Faculty of Science, Autonomous University of Madrid, Spainish National Research Council -Consejo Superior de Investigaciones Científicas,(UAM-CSIC), Madrid, 28049, Spain
| | - Lina Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Shigao Huang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
8
|
Papamichail L, Koch LS, Veerman D, Broersen K, van der Meer AD. Organoids-on-a-chip: microfluidic technology enables culture of organoids with enhanced tissue function and potential for disease modeling. Front Bioeng Biotechnol 2025; 13:1515340. [PMID: 40134772 PMCID: PMC11933005 DOI: 10.3389/fbioe.2025.1515340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/12/2025] [Indexed: 03/27/2025] Open
Abstract
Organoids are stem-cell derived tissue structures mimicking specific structural and functional characteristics of human organs. Despite significant advancements in the field over the last decade, challenges like limited long-term functional culture and lack of maturation are hampering the implementation of organoids in biomedical research. Culture of organoids in microfluidic chips is being used to tackle these challenges through dynamic and precise control over the organoid microenvironment. This review highlights the significant breakthroughs that have been made in the innovative field of "organoids-on-chip," demonstrating how these have contributed to advancing organoid models. We focus on the incorporation of organoids representative for various tissues into chips and discuss the latest findings in multi-organoids-on-chip approaches. Additionally, we examine current limitations and challenges of the field towards the development of reproducible organoids-on-chip systems. Finally, we discuss the potential of organoids-on-chip technology for both in vitro and in vivo applications.
Collapse
Affiliation(s)
- Lito Papamichail
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Lena S. Koch
- Applied Stem Cell Technologies, Department of Bioengineering Technologies, University of Twente, Enschede, Netherlands
| | - Devin Veerman
- Applied Stem Cell Technologies, Department of Bioengineering Technologies, University of Twente, Enschede, Netherlands
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, Enschede, Netherlands
| | - Kerensa Broersen
- Applied Stem Cell Technologies, Department of Bioengineering Technologies, University of Twente, Enschede, Netherlands
| | - Andries D. van der Meer
- Applied Stem Cell Technologies, Department of Bioengineering Technologies, University of Twente, Enschede, Netherlands
| |
Collapse
|
9
|
Zhao J, Zhi Y, Ren H, Wang J, Zhao Y. Emerging biotechnologies for engineering liver organoids. Bioact Mater 2025; 45:1-18. [PMID: 39588483 PMCID: PMC11585797 DOI: 10.1016/j.bioactmat.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/02/2024] [Accepted: 11/02/2024] [Indexed: 11/27/2024] Open
Abstract
The engineering construction of the liver has attracted enormous attention. Organoids, as emerging miniature three-dimensional cultivation units, hold significant potential in the biomimetic simulation of liver structure and function. Despite notable successes, organoids still face limitations such as high variability and low maturity. To overcome these challenges, engineering strategies have been established to maintain organoid stability and enhance their efficacy, laying the groundwork for the development of advanced liver organoids. The present review comprehensively summarizes the construction of engineered liver organoids and their prospective applications in biomedicine. Initially, we briefly present the latest research progress on matrix materials that maintain the three-dimensional morphology of organoids. Next, we discuss the manipulative role of engineering technologies in organoid assembly. Additionally, we outline the impact of gene-level regulation on organoid growth and development. Further, we introduce the applications of liver organoids in disease modeling, drug screening and regenerative medicine. Lastly, we overview the current obstacles and forward-looking perspectives on the future of engineered liver organoids. We anticipate that ongoing innovations in engineered liver organoids will lead to significant advancements in medical applications.
Collapse
Affiliation(s)
- Junqi Zhao
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yue Zhi
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuanjin Zhao
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Shenzhen Research Institute, Southeast University, Shenzhen, 518038, China
| |
Collapse
|
10
|
Yang Y, Qu Y, Wang J, Wang Y, Zhao J, Wang M, Hu W, Zhao J, Lin B, Zhang X, Luo Y. Exploring microfluidics-based organoid interactions through analysis of albumin secretion. LAB ON A CHIP 2025; 25:487-499. [PMID: 39840425 DOI: 10.1039/d4lc01085j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Organoids-on-a-chip exhibit significant potential for advancing disease modeling, drug screening, and precision medicine, largely due to their capacity to facilitate interactions among organoids. However, the influence of chip design on these interactions remains poorly understood, primarily due to our limited knowledge of the mediators of communication and the complexity of interaction dynamics. This study demonstrates that analyzing albumin secretion from liver organoids within an organoids-on-a-chip system can provide a measure of the interaction intensity among organoids, offering valuable insights into how chip design influences these interactions. Our findings reveal that the interaction dynamics of target organoids is primarily affected by the types of neighboring organoids positioned upstream. For instance, adipose organoids located upstream and adjacent to liver organoids considerably stimulate functional improvements in the liver organoids, whereas adipose organoids in other arrangements do not produce similar effects. Importantly, both theoretical and experimental evidence indicate that the interaction dynamics is independent of the physical distance between organoids. Instead, it can be adjusted by flow rate, well depth, introducing a vascular barrier, or the media volume within the system. However, it is crucial to note that the influence of these factors is not linear. Finally, the exosome was identified as one of key mediators of communication within the organoids-on-a-chip system.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, #2 Linggong Road, Dalian, 116024, China
| | - Yueyang Qu
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Suzhou Medical College, Soochow University, #199 Renai Road, Suzhou, 215127, China.
| | - Jing Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, #2 Linggong Road, Dalian, 116024, China
| | - Yuxiu Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, #2 Linggong Road, Dalian, 116024, China
| | - Jiamin Zhao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, #2 Linggong Road, Dalian, 116024, China
| | - Miaomiao Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, #2 Linggong Road, Dalian, 116024, China
| | - Wanqing Hu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, #2 Linggong Road, Dalian, 116024, China
| | - Jiaqi Zhao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, #2 Linggong Road, Dalian, 116024, China
| | - Bingcheng Lin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, #457 Zhongshan Road, Dalian, 116023, China
| | - Xiuli Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Suzhou Medical College, Soochow University, #199 Renai Road, Suzhou, 215127, China.
| | - Yong Luo
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, #2 Linggong Road, Dalian, 116024, China
| |
Collapse
|
11
|
Kim Y, Kang M, Mamo MG, Adisasmita M, Huch M, Choi D. Liver organoids: Current advances and future applications for hepatology. Clin Mol Hepatol 2025; 31:S327-S348. [PMID: 39722609 PMCID: PMC11925438 DOI: 10.3350/cmh.2024.1040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024] Open
Abstract
The creation of self-organizing liver organoids represents a significant, although modest, step toward addressing the ongoing organ shortage crisis in allogeneic liver transplantation. However, researchers have recognized that achieving a fully functional whole liver remains a distant goal, and the original ambition of organoid-based liver generation has been temporarily put on hold. Instead, liver organoids have revolutionized the field of hepatology, extending their influence into various domains of precision and molecular medicine. These 3D cultures, capable of replicating key features of human liver function and pathology, have opened new avenues for human-relevant disease modeling, CRISPR gene editing, and high-throughput drug screening that animal models cannot accomplish. Moreover, advancements in creating more complex systems have led to the development of multicellular assembloids, dynamic organoid-on-chip systems, and 3D bioprinting technologies. These innovations enable detailed modeling of liver microenvironments and complex tissue interactions. Progress in regenerative medicine and transplantation applications continues to evolve and strives to overcome the obstacles of biocompatibility and tumorigenecity. In this review, we examine the current state of liver organoid research by offering insights into where the field currently stands, and the pivotal developments that are shaping its future.
Collapse
Affiliation(s)
- Yohan Kim
- Department of MetaBioHealth, Sungkyunkwan University, Suwon, Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Korea
- Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Korea
| | - Minseok Kang
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Michael Girma Mamo
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
| | - Michael Adisasmita
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul, Korea
| |
Collapse
|
12
|
Shao W, Xu H, Zeng K, Ye M, Pei R, Wang K. Advances in liver organoids: replicating hepatic complexity for toxicity assessment and disease modeling. Stem Cell Res Ther 2025; 16:27. [PMID: 39865320 PMCID: PMC11771052 DOI: 10.1186/s13287-025-04139-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025] Open
Abstract
The lack of in vivo accurate human liver models hinders the investigation of liver-related diseases, injuries, and drug-related toxicity, posing challenges for both basic research and clinical applications. Traditional cellular and animal models, while widely used, have significant limitations in replicating the liver's complex responses to various stressors. Liver organoids derived from human pluripotent stem cells, adult stem cells primary cells, or tissues can mimic diverse liver cell types, major physiological functions, and architectural features. Recent advancements in the field have shown that some liver organoids have sufficient accuracy to replicate specific aspects of the human liver's complexity. This review highlights recent progress in liver organoid research, with a particular emphasis on their potential for toxicity assessment and disease modeling. The intrinsic advantages of liver organoids include higher sensitivity and suitability for long-term studies, which enhance the predictive value in drug and nanomaterial toxicity testing. The integration of liver organoids with microfluidic devices enables the simulation of the liver microenvironment and facilitates high-throughput drug screening. The liver organoids also serve as ideal platforms for studying liver diseases such as hepatitis, liver fibrosis, viral liver diseases, and monogenic diseases. Additionally, this review discusses the advantages and limitations of liver organoids along with potential avenues for future research.
Collapse
Affiliation(s)
- Weidong Shao
- Organoid Innovation Center, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Rd, Suzhou, Jiangsu, 215123, China
- China Pharmaceutical University, 639 Longmian Rd, Nanjing, Jiangsu, 210009, China
| | - Hui Xu
- Organoid Innovation Center, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Rd, Suzhou, Jiangsu, 215123, China
| | - Kanghua Zeng
- Organoid Innovation Center, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Rd, Suzhou, Jiangsu, 215123, China
| | - Mingzhou Ye
- Organoid Innovation Center, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Rd, Suzhou, Jiangsu, 215123, China
| | - Renjun Pei
- Organoid Innovation Center, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Rd, Suzhou, Jiangsu, 215123, China.
| | - Kai Wang
- Organoid Innovation Center, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Rd, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
13
|
El-Tanani M, Rabbani SA, El-Tanani Y, Matalka II, Khalil IA. Bridging the gap: From petri dish to patient - Advancements in translational drug discovery. Heliyon 2025; 11:e41317. [PMID: 39811269 PMCID: PMC11730937 DOI: 10.1016/j.heliyon.2024.e41317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Translational research serves as the bridge between basic research and practical applications in clinical settings. The journey from "bench to bedside" is fraught with challenges and complexities such as the often-observed disparity between how compounds behave in a laboratory setting versus in the complex systems of living organisms. The challenge is further compounded by the limited ability of in vitro models to mimic the specific biochemical environment of human tissues. This article explores and details the recent advancements and innovative approaches that are increasingly successful in bridging the gap between laboratory research and patient care. These advancements include, but are not limited to, sophisticated in vitro models such as organ-on-a-chip and computational models that utilize artificial intelligence to predict drug efficacy and safety. The article aims to showcase how these technologies improve the predictability of drug performance in human bodies and significantly speed up the drug development process. Furthermore, it discusses the role of biomarker discovery in preparation of more targeted and personalized therapy approaches and covers the impact of regulatory changes designed to facilitate drug approvals. Additionally, by providing detailed case studies of successful applications, we illustrate the practical impacts of these innovations on drug discovery and patient care.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Syed Arman Rabbani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | | | - Ismail I. Matalka
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
- Department of Pathology and Microbiology, Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ikramy A. Khalil
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
- Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
14
|
Liu J, Zhang Y, Yu Y. Establishment of nasal and olfactory epithelium organoids for unveiling mechanism of tissue regeneration and pathogenesis of nasal diseases. Cell Mol Life Sci 2025; 82:33. [PMID: 39751829 PMCID: PMC11699091 DOI: 10.1007/s00018-024-05557-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025]
Abstract
Organoid is an ideal in vitro model with cellular heterogeneity and genetic stability when passaging. Currently, organoids are exploited as new tools in a variety of preclinical researches and applications for disease modeling, drug screening, host-microbial interactions, and regenerative therapy. Advances have been made in the establishment of nasal and olfactory epithelium organoids that are used to investigate the pathogenesis of smell-related diseases and cellular/molecular mechanism underlying the regeneration of olfactory epithelium. A set of critical genes are identified to function in cell proliferation and neuronal differentiation in olfactory epithelium organoids. Besides, nasal epithelium organoids derived from chronic rhinosinusitis patients have been established to reveal the pathogenesis of this disease, potentially applied in drug responses in individual patient. The present article reviews recent research progresses of nasal and olfactory epithelium organoids in fundamental and preclinical researches, and proposes current advances and potential future direction in the field of organoid research and application.
Collapse
Affiliation(s)
- Jinxia Liu
- ENT Institute, Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- Olfactory Disorder Diagnosis and Treatment Center, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Yunfeng Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yiqun Yu
- ENT Institute, Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
- Olfactory Disorder Diagnosis and Treatment Center, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
- Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai, 200031, China.
| |
Collapse
|
15
|
Wang H, Zhu W, Xu C, Su W, Li Z. Engineering organoids-on-chips for drug testing and evaluation. Metabolism 2025; 162:156065. [PMID: 39522593 DOI: 10.1016/j.metabol.2024.156065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/21/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Organoids-on-chips is an emerging innovative integration of stem cell-derived organoids with advanced organ-on-chip technology, providing a novel platform for the in vitro construction of biomimetic micro-physiological systems. The synergistic merger transcends the limitations of traditional drug screening and safety assessment methodologies, such as 2D cell cultures and animal models. In this review, we examine the prevailing challenges and prerequisites of preclinical models utilized for drug screening and safety evaluations. We highlighted the salient features and merits of organoids-on-chip, elucidating their capability to authentically replicate human physiology, thereby addressing contemporary impediments. We comprehensively overviewed the recent endeavors where organoids-on-chips have been harnessed for drug screening and safety assessment and delved into potential opportunities and challenges for evolving sophisticated, near-physiological organoids-on-chips. Based on current achievements, we further discuss how to enhance the practicality of organoids-on-chips and accelerate the translation from preclinical to clinical stages in healthcare and industry by utilizing multidisciplinary convergent innovation.
Collapse
Affiliation(s)
- Hui Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wan Zhu
- Shanghai General Hospital, Shanghai 200080, China
| | - Cong Xu
- Department of Biomedical Engineering, Columbia University Medical Center, New York 10032, USA
| | - Wentao Su
- Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, Liaoning, China.
| | - Zhongyu Li
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
16
|
Blazeski A, Garcia-Cardena G, Kamm RD. Advancing Cardiac Organoid Engineering Through Application of Biophysical Forces. IEEE Rev Biomed Eng 2024; PP:211-230. [PMID: 40030454 DOI: 10.1109/rbme.2024.3514378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Cardiac organoids represent an important bioengineering opportunity in the development of models to study human heart pathophysiology. By incorporating multiple cardiac cell types in three-dimensional culture and developmentally-guided biochemical signaling, cardiac organoids recapitulate numerous features of heart tissue. However, cardiac tissue also experiences a variety of mechanical forces as the heart develops and over the course of each contraction cycle. It is now clear that these forces impact cellular specification, phenotype, and function, and should be incorporated into the engineering of cardiac organoids in order to generate better models. In this review, we discuss strategies for engineering cardiac organoids and report the effects of organoid design on the function of cardiac cells. We then discuss the mechanical environment of the heart, including forces arising from tissue elasticity, contraction, blood flow, and stretch, and report on efforts to mimic these biophysical cues in cardiac organoids. Finally, we review emerging areas of cardiac organoid research, for the study of cardiac development, the formation of multi-organ models, and the simulation of the effects of spaceflight on cardiac tissue and consider how these investigations might benefit from the inclusion of mechanical cues.
Collapse
|
17
|
Landau S, Okhovatian S, Zhao Y, Liu C, Shakeri A, Wang Y, Ramsay K, Kieda J, Jiang R, Radisic M. Bioengineering vascularization. Development 2024; 151:dev204455. [PMID: 39611864 PMCID: PMC11698057 DOI: 10.1242/dev.204455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
This Review explores the rapidly evolving field of bioengineered vasculature, a key area of focus in tissue engineering and regenerative medicine. The broad relevance of this topic is attributed to its impacts on a wide range of biological processes, enabling studies in tissue development, fundamental biology and drug discovery, and the applications in tissue engineering and regenerative medicine. We outline the design criteria for bioengineered vasculature and the methodologies for constructing these systems by self-assembly and in microfluidics, organs-on-a-chip and macroscale tubular systems that often rely on biofabrication approaches such as 3D printing. We discuss existing challenges in developing functional vasculature that closely mirrors its native equivalent, including achieving hierarchical branching with organ and vessel-specific endothelial and supporting cells, providing perusable vasculature within organoids and scaling the systems for implantation and direct vascular anastomosis.
Collapse
Affiliation(s)
- Shira Landau
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto M5G 2C4, ON, Canada
| | - Sargol Okhovatian
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto M5G 2C4, ON, Canada
| | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto M5G 2C4, ON, Canada
- Acceleration Consortium, University of Toronto, Toronto M5G 1X6, ON, Canada
| | - Chuan Liu
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto M5G 2C4, ON, Canada
| | - Amid Shakeri
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto M5G 2C4, ON, Canada
| | - Ying Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto M5G 2C4, ON, Canada
| | - Kaitlyn Ramsay
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto M5G 2C4, ON, Canada
| | - Jennifer Kieda
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto M5G 2C4, ON, Canada
| | - Richard Jiang
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto M5G 2C4, ON, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto M5G 2C4, ON, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, ON, Canada
- Terence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto M5S 3E1, ON, Canada
| |
Collapse
|
18
|
Du C, Liu J, Liu S, Xiao P, Chen Z, Chen H, Huang W, Lei Y. Bone and Joint-on-Chip Platforms: Construction Strategies and Applications. SMALL METHODS 2024; 8:e2400436. [PMID: 38763918 DOI: 10.1002/smtd.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/28/2024] [Indexed: 05/21/2024]
Abstract
Organ-on-a-chip, also known as "tissue chip," is an advanced platform based on microfluidic systems for constructing miniature organ models in vitro. They can replicate the complex physiological and pathological responses of human organs. In recent years, the development of bone and joint-on-chip platforms aims to simulate the complex physiological and pathological processes occurring in human bones and joints, including cell-cell interactions, the interplay of various biochemical factors, the effects of mechanical stimuli, and the intricate connections between multiple organs. In the future, bone and joint-on-chip platforms will integrate the advantages of multiple disciplines, bringing more possibilities for exploring disease mechanisms, drug screening, and personalized medicine. This review explores the construction and application of Organ-on-a-chip technology in bone and joint disease research, proposes a modular construction concept, and discusses the new opportunities and future challenges in the construction and application of bone and joint-on-chip platforms.
Collapse
Affiliation(s)
- Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Senrui Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Pengcheng Xiao
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhuolin Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hong Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
19
|
Zhong C, Tang Z, Yu X, Wang L, Ren C, Qin L, Zhou P. Advances in the Construction and Application of Bone-on-a-Chip Based on Microfluidic Technologies. J Biomed Mater Res B Appl Biomater 2024; 112:e35502. [PMID: 39555794 DOI: 10.1002/jbm.b.35502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024]
Abstract
Bone-on-a-chip (BOC) models that based on microfluidic technology have widely applied to understand bone physiology and the pathogenesis of related diseases. In this review, we provide an overview of bone biology and related diseases, explain the advantages and applications of microfluidic technology in the construction of BOC models, and summarize their progress in physiology, pathology, and drug development. Finally, we discussed the problems to be solved and the future directions of microfluidic technology and BOC platforms, so as to provide a reference for researchers to design better BOC models.
Collapse
Affiliation(s)
- Chang Zhong
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Zihui Tang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Xin Yu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Lu Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Chenyuan Ren
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Liying Qin
- School of Stomatology, Gansu Health Vocational College, Lanzhou, China
| | - Ping Zhou
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| |
Collapse
|
20
|
Abed H, Radha R, Anjum S, Paul V, AlSawaftah N, Pitt WG, Ashammakhi N, Husseini GA. Targeted Cancer Therapy-on-A-Chip. Adv Healthc Mater 2024; 13:e2400833. [PMID: 39101627 PMCID: PMC11582519 DOI: 10.1002/adhm.202400833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/15/2024] [Indexed: 08/06/2024]
Abstract
Targeted cancer therapy (TCT) is gaining increased interest because it reduces the risks of adverse side effects by specifically treating tumor cells. TCT testing has traditionally been performed using two-dimensional (2D) cell culture and animal studies. Organ-on-a-chip (OoC) platforms have been developed to recapitulate cancer in vitro, as cancer-on-a-chip (CoC), and used for chemotherapeutics development and testing. This review explores the use of CoCs to both develop and test TCTs, with a focus on three main aspects, the use of CoCs to identify target biomarkers for TCT development, the use of CoCs to test free, un-encapsulated TCTs, and the use of CoCs to test encapsulated TCTs. Despite current challenges such as system scaling, and testing externally triggered TCTs, TCToC shows a promising future to serve as a supportive, pre-clinical platform to expedite TCT development and bench-to-bedside translation.
Collapse
Affiliation(s)
- Heba Abed
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Remya Radha
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Shabana Anjum
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Vinod Paul
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| | - Nour AlSawaftah
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| | - William G. Pitt
- Department of Chemical EngineeringBrigham Young UniversityProvoUT84602USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME)Michigan State UniversityEast LansingMI48824USA
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095‐1600USA
| | - Ghaleb A. Husseini
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| |
Collapse
|
21
|
Borisch C, Thum T, Bär C, Hoepfner J. Human in vitro models for Fabry disease: new paths for unravelling disease mechanisms and therapies. J Transl Med 2024; 22:965. [PMID: 39449071 PMCID: PMC11515389 DOI: 10.1186/s12967-024-05756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Fabry disease is a multi-organ disease, caused by mutations in the GLA gene and leading to a progressive accumulation of glycosphingolipids due to enzymatic absence or malfunction of the encoded alpha-galactosidase A. Since pathomechanisms are not yet fully understood and available treatments are not efficient for all mutation types and tissues, further research is highly needed. This research involves many different model types, with significant effort towards the establishment of an in vivo model. However, these models did not replicate the variety of symptoms observed in patients. As an alternative strategy, patient-derived somatic cells as well as patient-independent cell lines were used to model specific aspects of the disease in vitro. Fabry disease patients present different phenotypes according to the mutation and the level of residual enzyme activity, pointing to the necessity of personalized disease modeling. With the advent of induced pluripotent stem cells, the derivation of a multitude of disease-affected cell types became possible, even in a patient-specific and mutation-specific manner. Only recently, three-dimensional Fabry disease models were established that even more closely resemble the native tissue of investigated organs and will bring research closer to the in vivo situation. This review provides an overview of human in vitro models and their achievements in unravelling the Fabry disease pathomechanism as well as in elucidating current and future treatment strategies.
Collapse
Affiliation(s)
- Carla Borisch
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Jeannine Hoepfner
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
22
|
Yao Q, Cheng S, Pan Q, Yu J, Cao G, Li L, Cao H. Organoids: development and applications in disease models, drug discovery, precision medicine, and regenerative medicine. MedComm (Beijing) 2024; 5:e735. [PMID: 39309690 PMCID: PMC11416091 DOI: 10.1002/mco2.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Organoids are miniature, highly accurate representations of organs that capture the structure and unique functions of specific organs. Although the field of organoids has experienced exponential growth, driven by advances in artificial intelligence, gene editing, and bioinstrumentation, a comprehensive and accurate overview of organoid applications remains necessary. This review offers a detailed exploration of the historical origins and characteristics of various organoid types, their applications-including disease modeling, drug toxicity and efficacy assessments, precision medicine, and regenerative medicine-as well as the current challenges and future directions of organoid research. Organoids have proven instrumental in elucidating genetic cell fate in hereditary diseases, infectious diseases, metabolic disorders, and malignancies, as well as in the study of processes such as embryonic development, molecular mechanisms, and host-microbe interactions. Furthermore, the integration of organoid technology with artificial intelligence and microfluidics has significantly advanced large-scale, rapid, and cost-effective drug toxicity and efficacy assessments, thereby propelling progress in precision medicine. Finally, with the advent of high-performance materials, three-dimensional printing technology, and gene editing, organoids are also gaining prominence in the field of regenerative medicine. Our insights and predictions aim to provide valuable guidance to current researchers and to support the continued advancement of this rapidly developing field.
Collapse
Affiliation(s)
- Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Sheng Cheng
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Guoqiang Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic‐Chemical and Aging‐Related InjuriesHangzhouChina
| |
Collapse
|
23
|
Li J, Zhou M, Xie J, Chen J, Yang M, Ye C, Cheng S, Liu M, Li R, Tan R. Organoid modeling meets cancers of female reproductive tract. Cell Death Discov 2024; 10:410. [PMID: 39333482 PMCID: PMC11437045 DOI: 10.1038/s41420-024-02186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Diseases of the female reproductive system, especially malignant tumors, pose a serious threat to women's health worldwide. One of the key factors limiting research progress in this area is the lack of representative models. Organoid technology, especially tumor organoids, has been increasingly applied in the study of female reproductive system tumors due to their high heterogeneity, close resemblance to the physiological state, easy acquisition and cultivation advantages. They play a significant role in understanding the origin and causes of tumors, drug screening, and personalized treatment and more. This article reviews the organoid models for the female reproductive system, focusing on the cancer research advancements. It discusses the methods for constructing tumor organoids of the female reproductive tract and summarizes the limitations of current research. The aim is to offer a reference for future development and application of these organoid models, contributing to the advancement of anti-tumor drugs and treatment strategies for female reproductive tract cancer patients.
Collapse
Affiliation(s)
- Jiao Li
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Mengting Zhou
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Xie
- Information Technology Center, West China Hospital of Sichuan University, Sichuan University, Chengdu, China
| | - Jiani Chen
- Chongqing Medical University, Chongqing, China
| | - Mengni Yang
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changjun Ye
- Rehabilitation Department, Changgeng Yining Hospital, Wenzhou, China
| | - Shihu Cheng
- Geriatric Department, Changgeng Yining Hospital, Wenzhou, China
| | - Miao Liu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Rui Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Ruirong Tan
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| |
Collapse
|
24
|
Brasino DSK, Speese SD, Schilling K, Schutt CE, Barton MC. A Linkable, Polycarbonate Gut Microbiome-Distal Tumor Chip Platform for Interrogating Cancer Promoting Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309220. [PMID: 39023197 PMCID: PMC11425222 DOI: 10.1002/advs.202309220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/31/2024] [Indexed: 07/20/2024]
Abstract
Gut microbiome composition is tied to diseases ranging from arthritis to cancer to depression. However, mechanisms of action are poorly understood, limiting development of relevant therapeutics. Organ-on-chip platforms, which model minimal functional units of tissues and can tightly control communication between them, are ideal platforms to study these relationships. Many gut microbiome models are published to date but devices are typically fabricated using oxygen permeable polydimethylsiloxane, requiring interventions to support anaerobic bacteria. To address this challenge, a platform is developed where the chips are fabricated entirely from gas-impermeable polycarbonate without tapes or gaskets. These chips replicate polarized villus-like structures of the native tissue. Further, they enable co-cultures of commensal anaerobic bacteria Blautia coccoides on the surface of gut epithelia for two days within a standard incubator. Another complication of commonly used materials in organ-on-chip devices is high ad-/absorption, limiting applications in high-resolution microscopy and biomolecule interaction studies. For future communication studies between gut microbiota and distal tumors, an additional polycarbonate chip design is developed to support hydrogel-embedded tissue culture. These chips enable high-resolution microscopy with all relevant processing done on-chip. Designed for facile linking, this platform will make a variety of mechanistic studies possible.
Collapse
Affiliation(s)
- Danielle S K Brasino
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Sean D Speese
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Kevin Schilling
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Carolyn E Schutt
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Michelle C Barton
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| |
Collapse
|
25
|
Shoji JY, Davis RP, Mummery CL, Krauss S. Global Literature Analysis of Organoid and Organ-on-Chip Research. Adv Healthc Mater 2024; 13:e2301067. [PMID: 37479227 DOI: 10.1002/adhm.202301067] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Organoids and cells in organ-on-chip platforms replicate higher-level anatomical, physiological, or pathological states of tissues and organs. These technologies are widely regarded by academia, the pharmacological industry and regulators as key biomedical developments. To map advances in this emerging field, a literature analysis of 16,000 article metadata based on a quality-controlled text-mining algorithm is performed. The analysis covers titles, keywords, and abstracts of categorized academic publications in the literature and preprint databases published after 2010. The algorithm identifies and tracks 149 and 107 organs or organ substructures modeled as organoids and organ-on-chip, respectively, stem cell sources, as well as 130 diseases, and 16 groups of organisms other than human and mouse in which organoid/organ-on-chip technology is applied. The analysis illustrates changing diversity and focus in organoid/organ-on-chip research and captures its geographical distribution. The downloadable dataset provided is a robust framework for researchers to interrogate with their own questions.
Collapse
Affiliation(s)
- Jun-Ya Shoji
- Hybrid Technology Hub, Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0372, Norway
| | - Richard P Davis
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, 2300RC, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, 2300RC, the Netherlands
| | - Christine L Mummery
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, 2300RC, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, 2300RC, the Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, Enschede, 7522NB, the Netherlands
| | - Stefan Krauss
- Hybrid Technology Hub, Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0372, Norway
| |
Collapse
|
26
|
Liu H, Gan Z, Qin X, Wang Y, Qin J. Advances in Microfluidic Technologies in Organoid Research. Adv Healthc Mater 2024; 13:e2302686. [PMID: 38134345 DOI: 10.1002/adhm.202302686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Organoids have emerged as major technological breakthroughs and novel organ models that have revolutionized biomedical research by recapitulating the key structural and functional complexities of their in vivo counterparts. The combination of organoid systems and microfluidic technologies has opened new frontiers in organoid engineering and offers great opportunities to address the current challenges of existing organoid systems and broaden their biomedical applications. In this review, the key features of the existing organoids, including their origins, development, design principles, and limitations, are described. Then the recent progress in integrating organoids into microfluidic systems is highlighted, involving microarrays for high-throughput organoid manipulation, microreactors for organoid hydrogel scaffold fabrication, and microfluidic chips for functional organoid culture. The opportunities in the nascent combination of organoids and microfluidics that lie ahead to accelerate research in organ development, disease studies, drug screening, and regenerative medicine are also discussed. Finally, the challenges and future perspectives in the development of advanced microfluidic platforms and modified technologies for building organoids with higher fidelity and standardization are envisioned.
Collapse
Affiliation(s)
- Haitao Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhongqiao Gan
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyuan Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaqing Wang
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
27
|
Lopez I, Truskey GA. Multi-cellular engineered living systems to assess reproductive toxicology. Reprod Toxicol 2024; 127:108609. [PMID: 38759876 PMCID: PMC11179964 DOI: 10.1016/j.reprotox.2024.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Toxicants and some drugs can negatively impact reproductive health. Many toxicants haven't been tested due to lack of available models. The impact of many drugs taken during pregnancy to address maternal health may adversely affect fetal development with life-long effects and clinical trials do not examine toxicity effects on the maternal-fetal interface, requiring indirect assessment of safety and efficacy. Due to current gaps in reproductive toxicological knowledge and limitations of animal models, multi-cellular engineered living systems may provide solutions for modeling reproductive physiology and pathology for chemical and xenobiotic toxicity studies. Multi-cellular engineered living systems, such as microphysiological systems (MPS) and organoids, model of functional units of tissues. In this review, we highlight the key functions and structures of human reproductive organs and well-known representative toxicants afflicting these systems. We then discuss current approaches and specific studies where scientists have used MPS or organoids to recreate in vivo markers and cellular responses of the female and male reproductive system, as well as pregnancy-associated placenta formation and embryo development. We provide specific examples of organoids and organ-on-chip that have been used for toxicological purposes with varied success. Finally, we address current issues related to usage of MPS, emerging techniques for improving upon these complications, and improvements needed to make MPS more capable in assessing reproductive toxicology. Overall, multi-cellular engineered living systems have considerable promise to serve as a suitable, alternative reproductive biological model compared to animal studies and 2D culture.
Collapse
Affiliation(s)
- Isabella Lopez
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
28
|
Huang Y, Liu T, Huang Q, Wang Y. From Organ-on-a-Chip to Human-on-a-Chip: A Review of Research Progress and Latest Applications. ACS Sens 2024; 9:3466-3488. [PMID: 38991227 DOI: 10.1021/acssensors.4c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Organ-on-a-Chip (OOC) technology, which emulates the physiological environment and functionality of human organs on a microfluidic chip, is undergoing significant technological advancements. Despite its rapid evolution, this technology is also facing notable challenges, such as the lack of vascularization, the development of multiorgan-on-a-chip systems, and the replication of the human body on a single chip. The progress of microfluidic technology has played a crucial role in steering OOC toward mimicking the human microenvironment, including vascularization, microenvironment replication, and the development of multiorgan microphysiological systems. Additionally, advancements in detection, analysis, and organoid imaging technologies have enhanced the functionality and efficiency of Organs-on-Chips (OOCs). In particular, the integration of artificial intelligence has revolutionized organoid imaging, significantly enhancing high-throughput drug screening. Consequently, this review covers the research progress of OOC toward Human-on-a-chip, the integration of sensors in OOCs, and the latest applications of organoid imaging technologies in the biomedical field.
Collapse
Affiliation(s)
- Yisha Huang
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China
| | - Tong Liu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qi Huang
- School of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
29
|
Galdon G, Zarandi NP, Deebel NA, Zhang S, Cornett O, Lyalin D, Pettenati MJ, Lue Y, Wang C, Swerdloff R, Shupe TD, Bishop C, Stogner K, Kogan SJ, Howards S, Atala A, Sadri-Ardekani H. In Vitro Generation of Haploid Germ Cells from Human XY and XXY Immature Testes in a 3D Organoid System. Bioengineering (Basel) 2024; 11:677. [PMID: 39061759 PMCID: PMC11274239 DOI: 10.3390/bioengineering11070677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Increasing survival rates of children following cancer treatment have resulted in a significant population of adult survivors with the common side effect of infertility. Additionally, the availability of genetic testing has identified Klinefelter syndrome (classic 47,XXY) as the cause of future male infertility for a significant number of prepubertal patients. This study explores new spermatogonia stem cell (SSC)-based fertility therapies to meet the needs of these patients. Testicular cells were isolated from cryopreserved human testes tissue stored from XY and XXY prepubertal patients and propagated in a two-dimensional culture. Cells were then incorporated into a 3D human testicular organoid (HTO) system. During a 3-week culture period, HTOs maintained their structure, viability, and metabolic activity. Cell-specific PCR and flow cytometry markers identified undifferentiated spermatogonia, Sertoli, Leydig, and peritubular cells within the HTOs. Testosterone was produced by the HTOs both with and without hCG stimulation. Upregulation of postmeiotic germ cell markers was detected after 23 days in culture. Fluorescence in situ hybridization (FISH) of chromosomes X, Y, and 18 identified haploid cells in the in vitro differentiated HTOs. Thus, 3D HTOs were successfully generated from isolated immature human testicular cells from both euploid (XY) and Klinefelter (XXY) patients, supporting androgen production and germ cell differentiation in vitro.
Collapse
Affiliation(s)
- Guillermo Galdon
- Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Facultad de Medicina, Universidad de Barcelona, 08036 Barcelona, Spain
| | - Nima Pourhabibi Zarandi
- Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Department of Internal Medicine, University of Pittsburgh Medical Center, Harrisburg, PA 17101, USA
| | - Nicholas A. Deebel
- Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Sue Zhang
- Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Olivia Cornett
- Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Dmitry Lyalin
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Department of Pathology, Molecular Diagnostics Division, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Mark J. Pettenati
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - YanHe Lue
- Division of Endocrinology, Department of Medicine, The Lundquist Institute, Harbor-University of California Los Angeles (UCLA) Medical Center, Los Angeles, CA 90502, USA
| | - Christina Wang
- Division of Endocrinology, Department of Medicine, The Lundquist Institute, Harbor-University of California Los Angeles (UCLA) Medical Center, Los Angeles, CA 90502, USA
| | - Ronald Swerdloff
- Division of Endocrinology, Department of Medicine, The Lundquist Institute, Harbor-University of California Los Angeles (UCLA) Medical Center, Los Angeles, CA 90502, USA
| | - Thomas D. Shupe
- Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Colin Bishop
- Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Kimberly Stogner
- Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Stanley J. Kogan
- Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Stuart Howards
- Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Hooman Sadri-Ardekani
- Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
30
|
Kim JT, Song K, Han SW, Youn DH, Jung H, Kim KS, Lee HJ, Hong JY, Cho YJ, Kang SM, Jeon JP. Modeling of the brain-lung axis using organoids in traumatic brain injury: an updated review. Cell Biosci 2024; 14:83. [PMID: 38909262 PMCID: PMC11193205 DOI: 10.1186/s13578-024-01252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/24/2024] [Indexed: 06/24/2024] Open
Abstract
Clinical outcome after traumatic brain injury (TBI) is closely associated conditions of other organs, especially lungs as well as degree of brain injury. Even if there is no direct lung damage, severe brain injury can enhance sympathetic tones on blood vessels and vascular resistance, resulting in neurogenic pulmonary edema. Conversely, lung damage can worsen brain damage by dysregulating immunity. These findings suggest the importance of brain-lung axis interactions in TBI. However, little research has been conducted on the topic. An advanced disease model using stem cell technology may be an alternative for investigating the brain and lungs simultaneously but separately, as they can be potential candidates for improving the clinical outcomes of TBI.In this review, we describe the importance of brain-lung axis interactions in TBI by focusing on the concepts and reproducibility of brain and lung organoids in vitro. We also summarize recent research using pluripotent stem cell-derived brain organoids and their preclinical applications in various brain disease conditions and explore how they mimic the brain-lung axis. Reviewing the current status and discussing the limitations and potential perspectives in organoid research may offer a better understanding of pathophysiological interactions between the brain and lung after TBI.
Collapse
Affiliation(s)
- Jong-Tae Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Kang Song
- Department of Green Chemical Engineering, Sangmyung University, Cheonan, 31066, Republic of Korea
| | - Sung Woo Han
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Harry Jung
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Keun-Suh Kim
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Hyo-Jung Lee
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Ji Young Hong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Sung-Min Kang
- Department of Green Chemical Engineering, Sangmyung University, Cheonan, 31066, Republic of Korea.
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
31
|
Mihaylova A, Shopova D, Parahuleva N, Yaneva A, Bakova D. (3D) Bioprinting-Next Dimension of the Pharmaceutical Sector. Pharmaceuticals (Basel) 2024; 17:797. [PMID: 38931464 PMCID: PMC11206453 DOI: 10.3390/ph17060797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
To create a review of the published scientific literature on the benefits and potential perspectives of the use of 3D bio-nitrification in the field of pharmaceutics. This work was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for reporting meta-analyses and systematic reviews. The scientific databases PubMed, Scopus, Google Scholar, and ScienceDirect were used to search and extract data using the following keywords: 3D bioprinting, drug research and development, personalized medicine, pharmaceutical companies, clinical trials, drug testing. The data points to several aspects of the application of bioprinting in pharmaceutics were reviewed. The main applications of bioprinting are in the development of new drug molecules as well as in the preparation of personalized drugs, but the greatest benefits are in terms of drug screening and testing. Growth in the field of 3D printing has facilitated pharmaceutical applications, enabling the development of personalized drug screening and drug delivery systems for individual patients. Bioprinting presents the opportunity to print drugs on demand according to the individual needs of the patient, making the shape, structure, and dosage suitable for each of the patient's physical conditions, i.e., print specific drugs for controlled release rates; print porous tablets to reduce swallowing difficulties; make transdermal microneedle patches to reduce patient pain; and so on. On the other hand, bioprinting can precisely control the distribution of cells and biomaterials to build organoids, or an Organ-on-a-Chip, for the testing of drugs on printed organs mimicking specified disease characteristics instead of animal testing and clinical trials. The development of bioprinting has the potential to offer customized drug screening platforms and drug delivery systems meeting a range of individualized needs, as well as prospects at different stages of drug development and patient therapy. The role of bioprinting in preclinical and clinical testing of drugs is also of significant importance in terms of shortening the time to launch a medicinal product on the market.
Collapse
Affiliation(s)
- Anna Mihaylova
- Department of Healthcare Management, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Dobromira Shopova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Nikoleta Parahuleva
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Antoniya Yaneva
- Department of Medical Informatics, Biostatistics and eLearning, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Desislava Bakova
- Department of Healthcare Management, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| |
Collapse
|
32
|
Nishimura T, Takebe T. Synthetic human gonadal tissues for toxicology. Reprod Toxicol 2024; 126:108598. [PMID: 38657700 DOI: 10.1016/j.reprotox.2024.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
The process of mammalian reproduction involves the development of fertile germ cells in the testis and ovary, supported by the surrounders. Fertilization leads to embryo development and ultimately the birth of offspring inheriting parental genome information. Any disruption in this process can result in disorders such as infertility and cancer. Chemical toxicity affecting the reproductive system and embryogenesis can impact birth rates, overall health, and fertility, highlighting the need for animal toxicity studies during drug development. However, the translation of animal data to human health remains challenging due to interspecies differences. In vitro culture systems offer a promising solution to bridge this gap, allowing the study of mammalian cells in an environment that mimics the physiology of the human body. Current advances on in vitro culture systems, such as organoids, enable the development of biomaterials that recapitulate the physiological state of reproductive organs. Application of these technologies to human gonadal cells would provide effective tools for drug screening and toxicity testing, and these models would be a powerful tool to study reproductive biology and pathology. This review focuses on the 2D/3D culture systems of human primary testicular and ovarian cells, highlighting the novel approaches for in vitro study of human reproductive toxicology, specifically in the context of testis and ovary.
Collapse
Affiliation(s)
- Toshiya Nishimura
- WPI Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka 565-0871, Japan.
| | - Takanori Takebe
- WPI Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka 565-0871, Japan; Division of Stem Cell and Organoid Medicine, Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Communication Design Center, Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|
33
|
Vasconez Martinez MG, Frauenlob M, Rothbauer M. An update on microfluidic multi-organ-on-a-chip systems for reproducing drug pharmacokinetics: the current state-of-the-art. Expert Opin Drug Metab Toxicol 2024; 20:459-471. [PMID: 38832686 DOI: 10.1080/17425255.2024.2362183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
INTRODUCTION Advances in the accessibility of manufacturing technologies and iPSC-based modeling have accelerated the overall progress of organs-on-a-chip. Notably, the progress in multi-organ systems is not progressing with equal speed, indicating that there are still major technological barriers to overcome that may include biological relevance, technological usability as well as overall accessibility. AREAS COVERED We here review the progress in the field of multi-tissue- and body-on-a-chip pre and post- SARS-CoV-2 pandemic and review five selected studies with increasingly complex multi-organ chips aiming at pharmacological studies. EXPERT OPINION We discuss future and necessary advances in the field of multi-organ chips including how to overcome challenges regarding cell diversity, improved culture conditions, model translatability as well as sensor integrations to enable microsystems to cover organ-organ interactions in not only toxicokinetic but more importantly pharmacodynamic and -kinetic studies.
Collapse
Affiliation(s)
| | - Martin Frauenlob
- CellChipGroup, Institute of Applied Synthetic Chemistry, Technische Universitaet Wien, Vienna, Austria
| | - Mario Rothbauer
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Lee SW, Song M, Woo DH, Jeong GS. Proposal for considerations during human iPSC-derived cardiac organoid generation for cardiotoxicity drug testing. Biomed Pharmacother 2024; 174:116511. [PMID: 38574616 DOI: 10.1016/j.biopha.2024.116511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/14/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
Human iPSC-derived cardiac organoids (hiPSC-COs) for cardiotoxicity drug testing via the variety of cell lines and unestablished protocols may lead to differences in response results due to a lack of criteria for generation period and size. To ensure reliable drug testing, it is important for researchers to set optimal generation period and size of COs according to the cell line and protocol applied in their studies. Hence, we sought to propose a process to establish minimum criteria for the generation duration and size of hiPSC-COs for cardiotoxic drug testing. We generated hiPSC-COs of different sizes based on our protocol and continuously monitored organoids until they indicated a minimal beating rate change as a control that could lead to more accurate beating rate changes on drug testing. Calcium transients and physiological tests to assess the functionality of hiPSC-COs on selected generation period, which showed regular cardiac beating, and immunostaining assays to compare characteristics were performed. We explained the generation period and size that exhibited and maintained regular beating rate changes on hiPSC-COs, and lead to reliable response results to cardiotoxicity drugs. We anticipate that this study will offer valuable insights into considering the appropriate generation period and size of hiPSC-COs ensuring reliable outcomes in cardiotoxicity drug testing.
Collapse
Affiliation(s)
- Sang Woo Lee
- Biomedical Engineering Research Center, Asan Medical Center, Seoul 05505, Republic of Korea; Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
| | - MyeongJin Song
- Department of Commercializing iPSC Technology, NEXEL Co., Ltd., Seoul 07802, Republic of Korea
| | - Dong-Hun Woo
- Department of Commercializing iPSC Technology, NEXEL Co., Ltd., Seoul 07802, Republic of Korea
| | - Gi Seok Jeong
- Biomedical Engineering Research Center, Asan Medical Center, Seoul 05505, Republic of Korea; Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea.
| |
Collapse
|
35
|
Skardal A, Sivakumar H, Rodriguez MA, Popova L, Dedhia PH. Bioengineered in vitro three-dimensional tumor models in endocrine cancers. Endocr Relat Cancer 2024; 31:e230344. [PMID: 38289290 PMCID: PMC11800312 DOI: 10.1530/erc-23-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Abstract
Graphical abstract Abstract Endocrine tumors are a heterogeneous cluster of malignancies that originate from cells that can secrete hormones. Examples include, but are not limited to, thyroid cancer, adrenocortical carcinoma, and neuroendocrine tumors. Many endocrine tumors are relatively slow to proliferate, and as such, they often do not respond well to common antiproliferative chemotherapies. Therefore, increasing attention has been given to targeted therapies and immunotherapies in these diseases. However, in contrast to other cancers, many endocrine tumors are relatively rare, and as a result, less is understood about their biology, including specific targets for intervention. Our limited understanding of such tumors is in part due to a limitation in model systems that accurately recapitulate and enable mechanistic exploration of these tumors. While mouse models and 2D cell cultures exist for some endocrine tumors, these models often may not accurately model nuances of human endocrine tumors. Mice differ from human endocrine physiology and 2D cell cultures fail to recapitulate the heterogeneity and 3D architectures of in vivo tumors. To complement these traditional cancer models, bioengineered 3D tumor models, such as organoids and tumor-on-a-chip systems, have advanced rapidly in the past decade. However, these technologies have only recently been applied to most endocrine tumors. In this review we provide descriptions of these platforms, focusing on thyroid, adrenal, and neuroendocrine tumors and how they have been and are being applied in the context of endocrine tumors.
Collapse
Affiliation(s)
- Aleksander Skardal
- Department of Biomedical Engineering, The Ohio State University, 140 W. 19 Ave, Columbus, OH, 43210, USA
- The Ohio State University and Arthur G. James Comprehensive Cancer Center, 460 W. 10th Ave, Columbus, OH, 43210, USA
- Center for Cancer Engineering, The Ohio State University, 460 W. 10th Ave, Columbus, OH, 43210, USA
| | - Hemamylammal Sivakumar
- Department of Biomedical Engineering, The Ohio State University, 140 W. 19 Ave, Columbus, OH, 43210, USA
| | - Marco A. Rodriguez
- The Ohio State University and Arthur G. James Comprehensive Cancer Center, 460 W. 10th Ave, Columbus, OH, 43210, USA
| | - Liudmila Popova
- Division of Surgical Oncology, The Ohio State University and Arthur G. James Comprehensive Cancer Center, 460 W. 10th Ave, Columbus, OH, 43210, USA
| | - Priya H. Dedhia
- The Ohio State University and Arthur G. James Comprehensive Cancer Center, 460 W. 10th Ave, Columbus, OH, 43210, USA
- Center for Cancer Engineering, The Ohio State University, 460 W. 10th Ave, Columbus, OH, 43210, USA
- Division of Surgical Oncology, The Ohio State University and Arthur G. James Comprehensive Cancer Center, 460 W. 10th Ave, Columbus, OH, 43210, USA
| |
Collapse
|
36
|
Lu Z, Miao X, Zhang C, Sun B, Skardal A, Atala A, Ai S, Gong J, Hao Y, Zhao J, Dai K. An osteosarcoma-on-a-chip model for studying osteosarcoma matrix-cell interactions and drug responses. Bioact Mater 2024; 34:1-16. [PMID: 38173844 PMCID: PMC10761322 DOI: 10.1016/j.bioactmat.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Marrow niches in osteosarcoma (OS) are a specialized microenvironment that is essential for the maintenance and regulation of OS cells. However, existing animal xenograft models are plagued by variability, complexity, and high cost. Herein, we used a decellularized osteosarcoma extracellular matrix (dOsEM) loaded with extracellular vesicles from human bone marrow-derived stem cells (hBMSC-EVs) and OS cells as a bioink to construct a micro-osteosarcoma (micro-OS) through 3D printing. The micro-OS was further combined with a microfluidic system to develop into an OS-on-a-chip (OOC) with a built-in recirculating perfusion system. The OOC system successfully integrated bone marrow niches, cell‒cell and cell-matrix crosstalk, and circulation, allowing a more accurate representation of OS characteristics in vivo. Moreover, the OOC system may serve as a valuable research platform for studying OS biological mechanisms compared with traditional xenograft models and is expected to enable precise and rapid evaluation and consequently more effective and comprehensive treatments for OS.
Collapse
Affiliation(s)
- Zuyan Lu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - XiangWan Miao
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Chenyu Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Binbin Sun
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aleksander Skardal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Songtao Ai
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - JiaNing Gong
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Yongqiang Hao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai, China
| | - Kerong Dai
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Koh I, Hagiwara M. Modular tissue-in-a-CUBE platform to model blood-brain barrier (BBB) and brain interaction. Commun Biol 2024; 7:177. [PMID: 38418614 PMCID: PMC10901775 DOI: 10.1038/s42003-024-05857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
With the advent of increasingly sophisticated organoids, there is growing demand for technology to replicate the interactions between multiple tissues or organs. This is challenging to achieve, however, due to the varying culture conditions of the different cell types that make up each tissue. Current methods often require complicated microfluidic setups, but fragile tissue samples tend not to fare well with rough handling. Furthermore, the more complicated the human system to be replicated, the more difficult the model becomes to operate. Here, we present the development of a multi-tissue chip platform that takes advantage of the modularity and convenient handling ability of a CUBE device. We first developed a blood-brain barrier-in-a-CUBE by layering astrocytes, pericytes, and brain microvascular endothelial cells in the CUBE, and confirmed the expression and function of important tight junction and transporter proteins in the blood-brain barrier model. Then, we demonstrated the application of integrating Tissue-in-a-CUBE with a chip in simulating the in vitro testing of the permeability of a drug through the blood-brain barrier to the brain and its effect on treating the glioblastoma brain cancer model. We anticipate that this platform can be adapted for use with organoids to build complex human systems in vitro by the combination of multiple simple CUBE units.
Collapse
Affiliation(s)
- Isabel Koh
- Cluster for Pioneering Research, RIKEN, Kobe, Hyogo, Japan
- Biosystems Dynamics Research, RIKEN, Kobe, Hyogo, Japan
| | - Masaya Hagiwara
- Cluster for Pioneering Research, RIKEN, Kobe, Hyogo, Japan.
- Biosystems Dynamics Research, RIKEN, Kobe, Hyogo, Japan.
| |
Collapse
|
38
|
Zhang T, Qian C, Song M, Tang Y, Zhou Y, Dong G, Shen Q, Chen W, Wang A, Shen S, Zhao Y, Lu Y. Application Prospect of Induced Pluripotent Stem Cells in Organoids and Cell Therapy. Int J Mol Sci 2024; 25:2680. [PMID: 38473926 DOI: 10.3390/ijms25052680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Since its inception, induced pluripotent stem cell (iPSC) technology has been hailed as a powerful tool for comprehending disease etiology and advancing drug screening across various domains. While earlier iPSC-based disease modeling and drug assessment primarily operated at the cellular level, recent years have witnessed a significant shift towards organoid-based investigations. Organoids derived from iPSCs offer distinct advantages, particularly in enabling the observation of disease progression and drug metabolism in an in vivo-like environment, surpassing the capabilities of iPSC-derived cells. Furthermore, iPSC-based cell therapy has emerged as a focal point of clinical interest. In this review, we provide an extensive overview of non-integrative reprogramming methods that have evolved since the inception of iPSC technology. We also deliver a comprehensive examination of iPSC-derived organoids, spanning the realms of the nervous system, cardiovascular system, and oncology, as well as systematically elucidate recent advancements in iPSC-related cell therapies.
Collapse
Affiliation(s)
- Teng Zhang
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cheng Qian
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengyao Song
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Tang
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yueke Zhou
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guanglu Dong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiuhong Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenxing Chen
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Aiyun Wang
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, University of Galway, H91 W2TY Galway, Ireland
| | - Yang Zhao
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yin Lu
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
39
|
Skardal A. Grand challenges in organoid and organ-on-a-chip technologies. Front Bioeng Biotechnol 2024; 12:1366280. [PMID: 38456004 PMCID: PMC10919399 DOI: 10.3389/fbioe.2024.1366280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 03/09/2024] Open
Affiliation(s)
- Aleksander Skardal
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
- Center for Cancer Engineering, The Ohio State University, Columbus, OH, United States
- Cancer Biology Program, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
40
|
Saglam-Metiner P, Yildirim E, Dincer C, Basak O, Yesil-Celiktas O. Humanized brain organoids-on-chip integrated with sensors for screening neuronal activity and neurotoxicity. Mikrochim Acta 2024; 191:71. [PMID: 38168828 DOI: 10.1007/s00604-023-06165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
The complex structure and function of the human central nervous system that develops from the neural tube made in vitro modeling quite challenging until the discovery of brain organoids. Human-induced pluripotent stem cells-derived brain organoids offer recapitulation of the features of early human neurodevelopment in vitro, including the generation, proliferation, and differentiation into mature neurons and micro-macroglial cells, as well as the complex interactions among these diverse cell types of the developing brain. Recent advancements in brain organoids, microfluidic systems, real-time sensing technologies, and their cutting-edge integrated use provide excellent models and tools for emulation of fundamental neurodevelopmental processes, the pathology of neurological disorders, personalized transplantation therapy, and high-throughput neurotoxicity testing by bridging the gap between two-dimensional models and the complex three-dimensional environment in vivo. In this review, we summarize how bioengineering approaches are applied to mitigate the limitations of brain organoids for biomedical and clinical research. We further provide an extensive overview and future perspectives of the humanized brain organoids-on-chip platforms with integrated sensors toward brain organoid intelligence and biocomputing studies. Such approaches might pave the way for increasing approvable clinical applications by solving their current limitations.
Collapse
Affiliation(s)
- Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
- Department of Translational Neuroscience, Division of Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ender Yildirim
- Department of Mechanical Engineering, Middle East Technical University, Ankara, Turkey
- ODTÜ MEMS Center, Ankara, Turkey
| | - Can Dincer
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Onur Basak
- Department of Translational Neuroscience, Division of Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.
| |
Collapse
|
41
|
Zhang C, Sui Y, Liu S, Yang M. In vitro and in vivo experimental models for cancer immunotherapy study. CURRENT RESEARCH IN BIOTECHNOLOGY 2024; 7:100210. [DOI: 10.1016/j.crbiot.2024.100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025] Open
|
42
|
R N, Aggarwal A, Sravani AB, Mallya P, Lewis S. Organ-On-A-Chip: An Emerging Research Platform. Organogenesis 2023; 19:2278236. [PMID: 37965897 PMCID: PMC10653779 DOI: 10.1080/15476278.2023.2278236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
In drug development, conventional preclinical and clinical testing stages rely on cell cultures and animal experiments, but these methods may fall short of fully representing human biology. To overcome this limitation, the emergence of organ-on-a-chip (OOC) technology has sparked interest as a transformative approach in drug testing research. By closely replicating human organ responses to external signals, OOC devices hold immense potential in revolutionizing drug efficacy and safety predictions. This review focuses on the advancements, applications, and prospects of OOC devices in drug testing. Based on the latest advances in the field of OOC systems and their clinical applications, this review reflects the effectiveness of OOC devices in replacing human volunteers in certain clinical studies. This review underscores the critical role of OOC technology in transforming drug testing methodologies.
Collapse
Affiliation(s)
- Nithin R
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Ayushi Aggarwal
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Anne Boyina Sravani
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Pooja Mallya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Shaila Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| |
Collapse
|
43
|
Wang Z, Zhang Y, Li Z, Wang H, Li N, Deng Y. Microfluidic Brain-on-a-Chip: From Key Technology to System Integration and Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304427. [PMID: 37653590 DOI: 10.1002/smll.202304427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/02/2023] [Indexed: 09/02/2023]
Abstract
As an ideal in vitro model, brain-on-chip (BoC) is an important tool to comprehensively elucidate brain characteristics. However, the in vitro model for the definition scope of BoC has not been universally recognized. In this review, BoC is divided into brain cells-on-a- chip, brain slices-on-a-chip, and brain organoids-on-a-chip according to the type of culture on the chip. Although these three microfluidic BoCs are constructed in different ways, they all use microfluidic chips as carrier tools. This method can better meet the needs of maintaining high culture activity on a chip for a long time. Moreover, BoC has successfully integrated cell biology, the biological material platform technology of microenvironment on a chip, manufacturing technology, online detection technology on a chip, and so on, enabling the chip to present structural diversity and high compatibility to meet different experimental needs and expand the scope of applications. Here, the relevant core technologies, challenges, and future development trends of BoC are summarized.
Collapse
Affiliation(s)
- Zhaohe Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yongqian Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhe Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Hao Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Nuomin Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
44
|
Abstract
Tissue regeneration is not simply a local repair event occurring in isolation from the distant, uninjured parts of the body. Rather, evidence indicates that regeneration is a whole-animal process involving coordinated interactions between different organ systems. Here, we review recent studies that reveal how remote uninjured tissues and organ systems respond to and engage in regeneration. We also discuss the need for toolkits and technological advancements to uncover and dissect organ communication during regeneration.
Collapse
Affiliation(s)
- Fei Sun
- Duke Regeneration Center, Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kenneth D. Poss
- Duke Regeneration Center, Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
45
|
Zheng W, Bian S, Qiu S, Bishop CE, Wan M, Xu N, Sun X, Sequeira RC, Atala A, Gu Z, Zhao W. Placenta mesenchymal stem cell-derived extracellular vesicles alleviate liver fibrosis by inactivating hepatic stellate cells through a miR-378c/SKP2 axis. Inflamm Regen 2023; 43:47. [PMID: 37798761 PMCID: PMC10557276 DOI: 10.1186/s41232-023-00297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Extracellular vesicles derived from mesenchymal stem/stromal cells (MSCs) have shown therapeutic effects on liver fibrosis. This study aimed to evaluate the effects of extracellular vesicles from placenta-derived MSCs (Pd-MSCs-EVs) on liver fibrosis at 3D/2D levels and explore the potential mechanisms. METHODS The multicellular liver organoids, consisting of hepatocytes, hepatic stellate cells (HSCs), Kupffer cells, and liver sinusoidal endothelial cells, were observed for growth status, morphological changes, and metabolism. Human transformation growth factor- beta 1 (TGF-β1) was used to induce fibrosis at optimal concentration. The anti-fibrosis effects of Pd-MSCs-EVs were evaluated in liver organoids and HSCs models. Anti-fibrotic content of Pd-MSCs-EVs was identified by multiple experimental validations. RESULTS TGF-β1 induced fibrosis in liver organoids, while Pd-MSCs-EVs significantly alleviated fibrotic phenotypes. Following serial verifications, miR-378c was identified as a potential key anti-fibrosis content. In contrast, miR-378c depletion decreased the anti-fibrotic effects of Pd-MSCs-EVs. Additionally, Pd-MSCs-EVs administration repressed TGF-β1-mediated HSCs activation at 2D or 3D levels. Mechanistically, exosomal miR-378c inactivated HSCs by inhibiting epithelial-mesenchymal transition (EMT) through stabilizing E-cadherin via targeting its E3 ubiquitin ligase S-Phase Kinase Associated Protein 2 (SKP2). CONCLUSION Pd-MSCs-EVs ameliorated TGF-β1-induced fibrosis by deactivating HSCs in a miR-378c/SKP2-dependent manner, which may be an efficient therapeutic candidate for liver fibrosis.
Collapse
Affiliation(s)
- Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| | - Saiyan Bian
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Shi Qiu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Colin E Bishop
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Meimei Wan
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Nuo Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Xieyin Sun
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Russel Clive Sequeira
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Zhifeng Gu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
46
|
Jordan R, Ford-Scheimer SL, Alarcon RM, Atala A, Borenstein JT, Brimacombe KR, Cherry S, Clevers H, Davis MI, Funnell SGP, Gehrke L, Griffith LG, Grossman AC, Hartung T, Ingber DE, Kleinstreuer NC, Kuo CJ, Lee EM, Mummery CL, Pickett TE, Ramani S, Rosado-Olivieri EA, Struble EB, Wan Z, Williams MS, Hall MD, Ferrer M, Markossian S. Report of the Assay Guidance Workshop on 3-Dimensional Tissue Models for Antiviral Drug Development. J Infect Dis 2023; 228:S337-S354. [PMID: 37669225 PMCID: PMC10547463 DOI: 10.1093/infdis/jiad334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
The National Center for Advancing Translational Sciences (NCATS) Assay Guidance Manual (AGM) Workshop on 3D Tissue Models for Antiviral Drug Development, held virtually on 7-8 June 2022, provided comprehensive coverage of critical concepts intended to help scientists establish robust, reproducible, and scalable 3D tissue models to study viruses with pandemic potential. This workshop was organized by NCATS, the National Institute of Allergy and Infectious Diseases, and the Bill and Melinda Gates Foundation. During the workshop, scientific experts from academia, industry, and government provided an overview of 3D tissue models' utility and limitations, use of existing 3D tissue models for antiviral drug development, practical advice, best practices, and case studies about the application of available 3D tissue models to infectious disease modeling. This report includes a summary of each workshop session as well as a discussion of perspectives and challenges related to the use of 3D tissues in antiviral drug discovery.
Collapse
Affiliation(s)
- Robert Jordan
- Bill and Melinda Gates Foundation, Seattle, Washington, USA
| | - Stephanie L Ford-Scheimer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Rodolfo M Alarcon
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Kyle R Brimacombe
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Mindy I Davis
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Simon G P Funnell
- UK Health Security Agency, Salisbury, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Lee Gehrke
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Abigail C Grossman
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Thomas Hartung
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Donald E Ingber
- Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts, USA
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - Nicole C Kleinstreuer
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle, North Carolina, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California, USA
| | - Emily M Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | | | - Thames E Pickett
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Evi B Struble
- US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Zhengpeng Wan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mark S Williams
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Sarine Markossian
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
47
|
Gan Z, Qin X, Liu H, Liu J, Qin J. Recent advances in defined hydrogels in organoid research. Bioact Mater 2023; 28:386-401. [PMID: 37334069 PMCID: PMC10273284 DOI: 10.1016/j.bioactmat.2023.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/11/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023] Open
Abstract
Organoids are in vitro model systems that mimic the complexity of organs with multicellular structures and functions, which provide great potential for biomedical and tissue engineering. However, their current formation heavily relies on using complex animal-derived extracellular matrices (ECM), such as Matrigel. These matrices are often poorly defined in chemical components and exhibit limited tunability and reproducibility. Recently, the biochemical and biophysical properties of defined hydrogels can be precisely tuned, offering broader opportunities to support the development and maturation of organoids. In this review, the fundamental properties of ECM in vivo and critical strategies to design matrices for organoid culture are summarized. Two typically defined hydrogels derived from natural and synthetic polymers for their applicability to improve organoids formation are presented. The representative applications of incorporating organoids into defined hydrogels are highlighted. Finally, some challenges and future perspectives are also discussed in developing defined hydrogels and advanced technologies toward supporting organoid research.
Collapse
Affiliation(s)
- Zhongqiao Gan
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Xinyuan Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Haitao Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiayue Liu
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Science, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| |
Collapse
|
48
|
Dedhia PH, Sivakumar H, Rodriguez MA, Nairon KG, Zent JM, Zheng X, Jones K, Popova LV, Leight JL, Skardal A. A 3D adrenocortical carcinoma tumor platform for preclinical modeling of drug response and matrix metalloproteinase activity. Sci Rep 2023; 13:15508. [PMID: 37726363 PMCID: PMC10509170 DOI: 10.1038/s41598-023-42659-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Adrenocortical carcinoma (ACC) has a poor prognosis, and no new drugs have been identified in decades. The absence of drug development can partly be attributed to a lack of preclinical models. Both animal models and 2D cell cultures of ACC fail to accurately mimic the disease, as animal physiology is inherently different than humans, and 2D cultures fail to represent the crucial 3D architecture. Organoids and other small 3D in vitro models of tissues or tumors can model certain complexities of human in vivo biology; however, this technology has largely yet to be applied to ACC. In this study, we describe the generation of 3D tumor constructs from an established ACC cell line, NCI-H295R. NCI-H295R cells were encapsulated to generate 3D ACC constructs. Tumor constructs were assessed for biomarker expression, viability, proliferation, and cortisol production. In addition, matrix metalloproteinase (MMP) functionality was assessed directly using fluorogenic MMP-sensitive biosensors and through infusion of NCI-H295R cells into a metastasis-on-a-chip microfluidic device platform. ACC tumor constructs showed expression of biomarkers associated with ACC, including SF-1, Melan A, and inhibin α. Treatment of ACC tumor constructs with chemotherapeutics demonstrated decreased drug sensitivity compared to 2D cell culture. Since most tumor cells migrate through tissue using MMPs to break down extracellular matrix, we validated the utility of ACC tumor constructs by integrating fluorogenic MMP-sensitive peptide biosensors within the tumor constructs. Lastly, in our metastasis-on-a-chip device, NCI-H295R cells successfully engrafted in a downstream lung cell line-based construct, but invasion distance into the lung construct was decreased by MMP inhibition. These studies, which would not be possible using 2D cell cultures, demonstrated that NCI-H295R cells secreted active MMPs that are used for invasion in 3D. This work represents the first evidence of a 3D tumor constructs platform for ACC that can be deployed for future mechanistic studies as well as development of new targets for intervention and therapies.
Collapse
Affiliation(s)
- Priya H Dedhia
- Division of Surgical Oncology, The Ohio State University and Arthur G. James Comprehensive Cancer Center, 816 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA.
- Translational Therapeutics Program, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA.
- Center for Cancer Engineering, The Ohio State University, Columbus, OH, USA.
| | - Hemamylammal Sivakumar
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, 886 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Marco A Rodriguez
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, 886 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Kylie G Nairon
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, 886 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Joshua M Zent
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, 886 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Xuguang Zheng
- Division of Surgical Oncology, The Ohio State University and Arthur G. James Comprehensive Cancer Center, 816 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Katie Jones
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, 886 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Liudmila V Popova
- Division of Surgical Oncology, The Ohio State University and Arthur G. James Comprehensive Cancer Center, 816 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Jennifer L Leight
- Center for Cancer Engineering, The Ohio State University, Columbus, OH, USA.
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, 886 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA.
- Cancer Biology Program, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA.
| | - Aleksander Skardal
- Center for Cancer Engineering, The Ohio State University, Columbus, OH, USA.
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, 886 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA.
- Cancer Biology Program, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
49
|
Xu YE, Ao DS, Sun X, Chen W, Luo X, Zhao C, Wang SY, Song H. A Novel Airway-Organoid Model Based on a Nano-Self-Assembling Peptide: Construction and Application in Adenovirus Infection Studies. Int J Nanomedicine 2023; 18:5225-5241. [PMID: 37727651 PMCID: PMC10505585 DOI: 10.2147/ijn.s413743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023] Open
Abstract
Purpose Hydrogels containing the nano-self-assembling peptide RADA16-I (Nanogels) were utilized as scaffolds to establish airway organoids and an adenovirus-infected model. The results support in vitro adenovirus studies, including isolation and culture, pathogenesis research, and antiviral drug screening. Methods HSAEC1-KT, HuLEC-5a and HELF cells were cocultured in RADA16-I hydrogel scaffolds to construct an airway organoid model. Adenovirus was used to infect this model for adenovirus-related studies. The morphological characteristics and the proliferation and activity of airway organoids before and after adenovirus infection were evaluated. The expression of the airway organoid marker proteins CC10, KRT8, AQP5, SPC, VIM and CD31 was detected. TEM and qPCR were used to detect adenovirus proliferation in airway organoids. Results HSAEC1-KT, HuLEC-5a and HELF cells cocultured at 10:7:2 self-assembled into airway organoids and maintained long-term proliferation in a RADA16-I hydrogel 3D culture system. The organoids stably expressed the lumen-forming protein KRT8 and the terminal airway markers AQP5 and SPC. Adenoviruses maintained long-term proliferation in this model. Conclusion An airway-organoid model of adenovirus infection was constructed in vitro from three human lung-derived cell lines on RADA16-I hydrogels. The model has potential as a novel research tool for adenovirus isolation and culture, pathogenesis research, and antiviral drug screening.
Collapse
Affiliation(s)
- Yun-E Xu
- Department of Microbiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Di-Shu Ao
- Department of Microbiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Xin Sun
- Department of Microbiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Wei Chen
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, 563000, People’s Republic of China
| | - Xue Luo
- Department of Microbiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Can Zhao
- Department of Microbiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Sheng-Yu Wang
- Department of Microbiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Hong Song
- Department of Microbiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| |
Collapse
|
50
|
Dedhia P, Sivakumar H, Rodriguez MA, Nairon KG, Zent JM, Zheng X, Jones K, Popova L, Leight JL, Skardal A. A 3D adrenocortical carcinoma tumor platform for preclinical modeling of drug response and matrix metalloproteinase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525287. [PMID: 36747748 PMCID: PMC9900758 DOI: 10.1101/2023.01.24.525287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Adrenocortical carcinoma (ACC) has a poor prognosis, and no new drugs have been identified in decades. The absence of drug development can partly be attributed to a lack of preclinical models. Both animal models and 2D cell cultures of ACC fail to accurately mimic the disease, as animal physiology is inherently different than humans, and 2D cultures fail to represent the crucial 3D architecture. Organoids and other small 3D in vitro models of tissues or tumors can model certain complexities of human in vivo biology; however, this technology has largely yet to be applied to ACC. In this study, we describe the generation of 3D tumor constructs from an established ACC cell line, NCI-H295R. NCI-H295R cells were encapsulated to generate 3D ACC constructs. Tumor constructs were assessed for biomarker expression, viability, proliferation, and cortisol production. In addition, matrix metalloproteinase (MMP) functionality was assessed directly using fluorogenic MMP-sensitive biosensors and through infusion of NCI-H295R cells into a metastasis-on-a-chip microfluidic device platform. ACC tumor constructs showed expression of biomarkers associated with ACC, including SF-1, Melan A, and inhibin alpha. Treatment of ACC tumor constructs with chemotherapeutics demonstrated decreased drug sensitivity compared to 2D cell culture. Since most tumor cells migrate through tissue using MMPs to break down extracellular matrix, we validated the utility of ACC tumor constructs by integrating fluorogenic MMP-sensitive peptide biosensors within the tumor constructs. Lastly, in our metastasis-on-a-chip device, NCI-H295R cells successfully engrafted in a downstream lung cell line-based construct, but invasion distance into the lung construct was decreased by MMP inhibition. These studies, which would not be possible using 2D cell cultures, demonstrated that NCI-H295R cells secreted active MMPs that are used for invasion in 3D. This work represents the first evidence of a 3D tumor constructs platform for ACC that can be deployed for future mechanistic studies as well as development of new targets for intervention and therapies.
Collapse
|