1
|
Tian X, Wen Y, Zhang Z, Zhu J, Song X, Phan TT, Li J. Recent advances in smart hydrogels derived from polysaccharides and their applications for wound dressing and healing. Biomaterials 2025; 318:123134. [PMID: 39904188 DOI: 10.1016/j.biomaterials.2025.123134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/06/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Owing to their inherent biocompatibility and biodegradability, hydrogels derived from polysaccharides have emerged as promising candidates for wound management. However, the complex nature of wound healing often requires the development of smart hydrogels---intelligent materials capable of responding dynamically to specific physical or chemical stimuli. Over the past decade, an increasing number of stimuli-responsive polysaccharide-based hydrogels have been developed to treat various types of wounds. While a range of hydrogel types and their versatile functions for wound management have been discussed in the literature, there is still a need for a review of the crosslinking strategies used to create smart hydrogels from polysaccharides. This review provides a comprehensive overview of how stimuli-responsive hydrogels can be designed and made using five key polysaccharides: chitosan, hyaluronic acid, alginate, dextran, and cellulose. Various methods, such as chemical crosslinking, dynamic crosslinking, and physical crosslinking, which are used to form networks within these hydrogels, ultimately determine their ability to respond to stimuli, have been explored. This article further looks at different polysaccharide-based hydrogel wound dressings that can respond to factors such as reactive oxygen species, temperature, pH, glucose, light, and ultrasound in the wound environment and discusses how these responses can enhance wound healing. Finally, this review provides insights into how stimuli-responsive polysaccharide-based hydrogels can be developed further as advanced wound dressings in the future.
Collapse
Affiliation(s)
- Xuehao Tian
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Yuting Wen
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing, 401120, China.
| | - Zhongxing Zhang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Xia Song
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Toan Thang Phan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, 119228, Singapore; Cell Research Corporation Pte. Ltd., 048943, Singapore
| | - Jun Li
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing, 401120, China; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
2
|
Dong X, Xiang H, Li J, Hao A, Wang H, Gou Y, Li A, Rahaman S, Qiu Y, Li J, Mei O, Zhong J, You W, Shen G, Wu X, Li J, Shu Y, Shi LL, Zhu Y, Reid RR, He TC, Fan J. Dermal fibroblast-derived extracellular matrix (ECM) synergizes with keratinocytes in promoting re-epithelization and scarless healing of skin wounds: Towards optimized skin tissue engineering. Bioact Mater 2025; 47:1-17. [PMID: 39872210 PMCID: PMC11762682 DOI: 10.1016/j.bioactmat.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025] Open
Abstract
Skin serves as the first-order protective barrier against the environment and any significant disruptions in skin integrity must be promptly restored. Despite significant advances in therapeutic strategies, effective management of large chronic skin wounds remains a clinical challenge. Dermal fibroblasts are the primary cell type responsible for remodeling the extracellular matrix (ECM) in wound healing. Here, we investigated whether ECM derived from exogenous fibroblasts, in combination with keratinocytes, promoted scarless cutaneous wound healing. To overcome the limited lifespan of primary dermal fibroblasts, we established reversibly immortalized mouse dermal fibroblasts (imDFs), which were non-tumorigenic, expressed dermal fibroblast markers, and were responsive to TGF-β1 stimulation. The decellularized ECM prepared from both imDFs and primary dermal fibroblasts shared similar expression profiles of extracellular matrix proteins and promoted the proliferation of keratinocyte (iKera) cells. The imDFs-derived ECM solicited no local immune response. While the ECM and to a lesser extent imDFs enhanced skin wound healing with excessive fibrosis, a combination of imDFs-derived ECM and iKera cells effectively promoted the re-epithelization and scarless healing of full-thickness skin wounds. These findings strongly suggest that dermal fibroblast-derived ECM, not fibroblasts themselves, may synergize with keratinocytes in regulating scarless healing and re-epithelialization of skin wounds. Given its low immunogenic nature, imDFs-derived ECM should be a valuable resource of skin-specific biomaterial for wound healing and skin tissue engineering.
Collapse
Affiliation(s)
- Xiangyu Dong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Han Xiang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jiajia Li
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ailing Hao
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hao Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Yannian Gou
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Aohua Li
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Saidur Rahaman
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yiheng Qiu
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jiahao Li
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ou Mei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Orthopedic Surgery, Jiangxi Hospital of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| | - Jiamin Zhong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Wulin You
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Orthopaedic Surgery, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, China
| | - Guowei Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Orthopaedic Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, China
| | - Xingye Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jingjing Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Oncology, The Affiliated Hospital of Shandong Second Medical University, Weifang, 261053, China
| | - Yi Shu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Stem Cell Biology and Therapy Laboratory of the Pediatric Research Institute, the National Clinical Research Center for Child Health and Disorders, and Ministry of Education Key Laboratory of Child Development and Disorders, the Children's Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Western Institute of Digital-Intelligent Medicine, Chongqing, 401329, China
| |
Collapse
|
3
|
Wang J, Song N, Yin L, Cui Z, Wang Y, Zhou C, Li J, Qin J. Self-healing hydrogel based on oxidized pectin with grafted dopamine as gallic acid carrier for burn wound treatment. Int J Biol Macromol 2025; 306:141826. [PMID: 40057080 DOI: 10.1016/j.ijbiomac.2025.141826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
When the barrier function of the skin tissue is destroyed, the burn wound is prone to bacterial infection and difficult to repair during the healing process. Therefore, there is an urgent need to design functional dressing materials to promote burn wound repairing. In this research, injectable hydrogel with mussel-inspired tissue adhesion was fabricated from dopamine grafted oxidized pectin (OP-DA) and hydrazide terminated polyethylene oxide (PEO-AH) as dressing material for burn wounds. The catechol moiety on the grafted dopamine (DA) enhanced the tissue adhesion of hydrogel and the wound sealing performance, which can well adhere onto the skin to cover irregular wounds for consistent sealing under body moving. On this basis, the hydrogel also showed hemostatic performance based on liver and tail hemostasis model. The hydrogel was further loaded with gallic acid (GA) to enhance the antibacterial property to E. coli and S. aureus to inhibit wound infection. Along with good biocompatibility and biodegradability, the hydrogel showed improved burn wound repairing performance to second-degree burn wound models on mice. As a result, the OP-DA/PEO-AH hydrogel showed great advantage as GA carrier in wound healing applications.
Collapse
Affiliation(s)
- Junling Wang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Nannan Song
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Liping Yin
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Zhe Cui
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Yong Wang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding 071002, China
| | - Chengyan Zhou
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Jianheng Li
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.
| | - Jianglei Qin
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding 071002, China.
| |
Collapse
|
4
|
Atiyeh B, El Hachem TF, Chalhoub R, Emsieh SE. Have the recent advancements in wound repair and scar management technology improved the quality of life in burn patients? Burns 2025; 51:107443. [PMID: 40112656 DOI: 10.1016/j.burns.2025.107443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/26/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND The negative physical and psychosocial impact of scars, in particular burn scars, has been well documented. Altered personal appearance together with impaired function related to pain, heat intolerance, and contracture formation may last a lifetime and eventually can lead to low self-esteem and poor social and psychological adjustments. Though most patients recover within the first years and many report generally good life satisfaction and moderate quality of life (QoL), some severely burned patients continue to report impaired QoL almost 10 years after injury. It is repeatedly mentioned in the literature that patients' QoL and health-related quality of life (HRQoL) can be improved by improving wound healing and burn scar quality. Determining whether advances in burn wound healing and scar management modalities are positively impacting the lives of surviving patients is the aim of this review. METHODS A systematic literature review was used to identify studies measuring QoL of patients surviving severe burn injuries following various interventions to improve burn wound healing and scar quality. RESULTS A limited number of studies was identified. Given the limited available data, a narrative review approach including qualitative studies and reviews in addition to identifying common themes, trends, and gaps in the existing literature was deemed more appropriate for a comprehensive analysis. CONCLUSION The assumption that progress made in recent decades to improve burn wound healing and scar quality would improve QoL remains largely hypothetical. Except for functional release of burn scar contractures, improved scar aesthetic quality does not necessarily translate into improved QoL of surviving patients. Well-designed comparative studies are largely lacking.
Collapse
Affiliation(s)
- Bishara Atiyeh
- Department of Plastic and Reconstructive Surgery, American University of Beirut, Beirut, Lebanon
| | - Tarek F El Hachem
- Department of Plastic and Reconstructive Surgery, American University of Beirut, Beirut, Lebanon
| | - Rawad Chalhoub
- Department of Plastic and Reconstructive Surgery, American University of Beirut, Beirut, Lebanon.
| | - Saif E Emsieh
- Department of Plastic and Reconstructive Surgery, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
5
|
Ren M, Yao J, Yang D, Zhu J, Dai K, Zhong Y, Zhu J, Tang L, Xu Y, Yu J. Chitosan hydrogels loaded with Cu 3SnS 4 NSs for the treatment of second-degree burn wounds. Sci Rep 2025; 15:12449. [PMID: 40216779 PMCID: PMC11992096 DOI: 10.1038/s41598-024-84416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/23/2024] [Indexed: 04/14/2025] Open
Abstract
Globally, burns pose a significant health concern, impairing the skin's normal function and elevating the risk of bacterial infection. Traditional burn dressings often fail to deliver the anticipated therapeutic benefits. Hence, there is an urgent need to develop an ideal wound dressing that exhibits satisfactory antibacterial properties, biocompatibility, and the ability to expedite burn wound healing. Here, we prepared chitosan-based hydrogel (CS/GP), and then loaded copper-tin -sulfur (Cu3SnS4) synthesized by hydrothermal method into the hydrogel to construct a new hydrogel dressing (CS/GP/Cu3SnS4). In vitro antibacterial tests demonstrated that the CS/GP/Cu3SnS4 hydrogel dressing exhibits considerable antibacterial properties, achieving an antibacterial rate exceeding 95% after 4 h of contact with Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Additionally, CCK-8 and live/dead cell staining experiments confirmed the dressing's good biocompatibility. Furthermore, in vivo experiments confirmed that the CS/GP/Cu3SnS4 hydrogel dressing demonstrates superior wound healing performance compared to the control group. In conclusion, the CS/GP/Cu3SnS4 hydrogel shows potential application prospects as a burn wound dressing.
Collapse
Affiliation(s)
- Mingfei Ren
- School of Materials Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China
- National Engineering Research Center for Nanotechnology, No.28, East Jiang Chuan Road, Shanghai, 200241, China
| | - Jingjing Yao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China
- National Engineering Research Center for Nanotechnology, No.28, East Jiang Chuan Road, Shanghai, 200241, China
| | - Dicheng Yang
- National Engineering Research Center for Nanotechnology, No.28, East Jiang Chuan Road, Shanghai, 200241, China
| | - Jingyao Zhu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China
- National Engineering Research Center for Nanotechnology, No.28, East Jiang Chuan Road, Shanghai, 200241, China
| | - Kun Dai
- School of Materials Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China
- National Engineering Research Center for Nanotechnology, No.28, East Jiang Chuan Road, Shanghai, 200241, China
| | - Yujun Zhong
- School of Materials Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China
- National Engineering Research Center for Nanotechnology, No.28, East Jiang Chuan Road, Shanghai, 200241, China
| | - Jun Zhu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China
- National Engineering Research Center for Nanotechnology, No.28, East Jiang Chuan Road, Shanghai, 200241, China
| | - Liang Tang
- Department of Orthopedic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, People's Republic of China.
| | - Yan Xu
- National Engineering Research Center for Nanotechnology, No.28, East Jiang Chuan Road, Shanghai, 200241, China.
| | - Jiangming Yu
- Department of Orthopedic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, People's Republic of China.
| |
Collapse
|
6
|
Zhang HJ, Ming JJ, Zhang HX, Fang SYIH, Liu QW, Zhang HY. A Comprehensive Review: Advances in Mesenchymal Stem Cell Applications for Burn Wound Repair. Stem Cells Int 2025; 2025:6683745. [PMID: 40151391 PMCID: PMC11949610 DOI: 10.1155/sci/6683745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/12/2025] [Indexed: 03/29/2025] Open
Abstract
Tissue repair following skin injury is a complex process that encompasses hemostasis, inflammation, tissue cell proliferation, and structural remodeling. Mesenchymal stem cells (MSCs) are derived from the mesodermal layer of tissues and possess multidirectional differentiation potential and self-renewal capabilities. MSCs from various sources, including the bone marrow, adipose tissue, dental pulp, umbilical cord, and amniotic membrane, have demonstrated effectiveness in promoting skin injury repair. They aid in this process by fostering the formation of new blood vessels in damaged tissues, self-renewal, or transdifferentiation into skin or sweat gland cells. Moreover, MSCs promote the proliferation and migration of skin cells, reduce wound inflammation, and restore the extracellular matrix through paracrine secretion. In this paper, we review recent findings regarding MSCs and their role in burn wound repair. Additionally, we explore the potential of combining MSCs with various biomaterials for treating burn wounds and analyze clinical cases wherein MSCs were administered to patients, offering insights into ongoing research on MSC-based therapies for skin injuries.
Collapse
Affiliation(s)
- Hui-Juan Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jing-Jie Ming
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Hong-Xiao Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Shao-YI-Han Fang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Quan-Wen Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang 330031, China
| | - Hong-Yan Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
7
|
Maghsoudi MAF, Asbagh RA, Tafti SMA, Aghdam RM, Najjari A, Pirayvatlou PS, Foroutani L, Fazeli AR. Alginate-gelatin composite hydrogels loading zeolitic imidazolate framework-8 (ZIF-8) nanoparticles on gauze for burn wound healing: In vitro and in vivo studies. Int J Biol Macromol 2025; 295:139348. [PMID: 39743056 DOI: 10.1016/j.ijbiomac.2024.139348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/18/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
This study addresses the limitations of traditional antibiotic treatments for burn wound dressings, which often lead to microbial resistance. It explores the development of innovative burn wound dressings by incorporating Zeolitic Imidazolate Framework-8 (ZIF-8) into alginate-gelatin (Al-Gl) hydrogels on gauze. Al-Gl patches with 0 %, 1 %, and 4 % ZIF-8 were fabricated and characterized using XRD, FTIR, FESEM, and EDX. Swelling, degradation, antibacterial activity, and biocompatibility were also evaluated, alongside in vivo wound healing using a Wistar rat model. FESEM confirmed ZIF-8 nanoparticles with hexagonal morphology (170-220 nm). The swelling ratio decreased from 600 % (Al-Gl 0 %) to 130 % (Al-Gl 4 %) over 10 h, and degradation rates increased from 50 % to over 70 %. Al-Gl 4 % patches demonstrated 99 % antibacterial efficacy against E. coli and S. aureus, compared to <5 % in Al-Gl 0 %. Biocompatibility was confirmed with over 90 % cell viability in MTT assays. In vivo studies showed Al-Gl 4 % achieved 89.40 % ± 3.21 % wound closure, significantly outperforming controls. Histological analyses confirmed enhanced tissue regeneration. These findings demonstrate that ZIF-8 significantly boosts antibacterial properties and wound healing, positioning ZIF-8 hydrogels as promising candidates for advanced burn wound care.
Collapse
Affiliation(s)
| | - Reza Akbari Asbagh
- Colorectal Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran; Department of Cardiovascular Surgery, Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohsen Ahmadi Tafti
- Colorectal Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran; Division of Colorectal Surgery, Department of Surgery, Tehran University of medical sciences, Tehran, Iran.
| | | | - Aryan Najjari
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States of America
| | | | - Laleh Foroutani
- Department of Surgery, University of California, San Francisco, United States of America
| | - Amir Reza Fazeli
- Division of Colorectal Surgery, Department of Surgery, Tehran University of medical sciences, Tehran, Iran
| |
Collapse
|
8
|
Rao H, Tan JBL. Polysaccharide-based hydrogels for atopic dermatitis management: A review. Carbohydr Polym 2025; 349:122966. [PMID: 39638516 DOI: 10.1016/j.carbpol.2024.122966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
Atopic dermatitis (AD) is the most common form of eczema and the most burdensome skin disease globally, affecting nearly 223 million. A major AD predisposition is genetic susceptibility, affecting skin barrier integrity and cell-mediated immunity. Manifesting as red, dry, and itchy skin, basic treatment involves skin hydration with emollients. Despite their effectiveness, poor patient compliance remains a major drawback. In severe cases, medicated emollients are used, but carry risks, including skin thinning, and immunosuppression. Hence, hydrogels have emerged as a promising alternative for AD management based on their ability to improve skin hydration, attributed to their hydrophilicity and high water retention capacity. Moreover, researchers have loaded hydrogels with various compounds for AD management; they also hold the potential to reduce systemic side effects of commercial drugs by enhancing dermal retention. Hydrogels address the challenges of patient compliance based on their non-greasy texture and reduced application frequency. Their appeal also stems from their versatility, as they can be fabricated from varying polymers. Due to their abundance, this review focuses on polysaccharides including alginate, cellulose, chitosan, and hyaluronic acid, which are preferred for fabricating natural and modified natural hydrogels for AD. It also briefly explores hydrogel application methods and key AD models.
Collapse
Affiliation(s)
- Harinash Rao
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Joash Ban Lee Tan
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
9
|
Lee SG, Lee EB, Nam TS, You S, Im D, Kim K, Gu B, Nam GY, Lee H, Kwon SJ, Kim YS, Kim SG. Anti-Inflammatory and Pain-Relieving Effects of Arnica Extract Hydrogel Patch in Carrageenan-Induced Inflammation and Hot Plate Pain Models. Pharmaceutics 2025; 17:171. [PMID: 40006537 PMCID: PMC11858859 DOI: 10.3390/pharmaceutics17020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 02/27/2025] Open
Abstract
Arnica montana (AM), which belongs to the daisy family Asteraceae, has a longstanding traditional use in Europe and North America for pain and inflammation treatment. This study investigates the inhibitory effects of 'Arnica montana extract hydrogel patch (AHP)' on Carrageenan-induced paw edema and hot plate-induced pain models. AHP exhibited transdermal permeability without the occurrence of issues like crystal precipitation. This study employed two animal model assessments using AHP, in comparison with Arnicare Gel (AG), to evaluate anti-inflammatory and pain relief effects. AHP treatment for 2 days showed a decrease in paw edema thickness in mice as compared to vehicle or AG groups; Carrageenan-induced swelling increased maximally at 1 h with the AHP group demonstrating a higher reduction. Thus, the AHP group exhibited a lower ratio of right/left paw thickness and a superior reduction in swelling, supportive of its ability to diminish edema. A histological analysis showed that AHP treatment reduced inflammatory cell infiltration. Consistently, the mRNA levels of inflammatory markers (tnfa, il1b, and il6) were decreased to a greater extent than the AG group. Particularly, tnfa inhibition was better in the AHP group, and the levels of il1b and il6 transcripts showed ~80% and 40% lower. Likewise, AHP reduced pain scores in a hot plate-induced rat model, although AG failed to do so. Together, these results demonstrate that AHP has long-lasting inhibitory effects on fluid effusion and edema formation, the production of inflammatory mediators, and pain-sensation, supporting its anti-inflammatory and pain-relieving pharmacological effects.
Collapse
Affiliation(s)
- Sang Gil Lee
- Center of Research and Development, A Pharma Inc., Goyang-si 10326, Gyeonggi-do, Republic of Korea; (S.G.L.); (E.B.L.)
| | - Eun Byul Lee
- Center of Research and Development, A Pharma Inc., Goyang-si 10326, Gyeonggi-do, Republic of Korea; (S.G.L.); (E.B.L.)
| | - Tack Soo Nam
- R&D Center, Wooshin Labottach, Digital-ro 288, Guro-gu, Seoul 08390, Republic of Korea; (T.S.N.); (S.Y.); (D.I.); (K.K.); (B.G.); (G.-y.N.); (H.L.)
| | - Sunho You
- R&D Center, Wooshin Labottach, Digital-ro 288, Guro-gu, Seoul 08390, Republic of Korea; (T.S.N.); (S.Y.); (D.I.); (K.K.); (B.G.); (G.-y.N.); (H.L.)
| | - Dahye Im
- R&D Center, Wooshin Labottach, Digital-ro 288, Guro-gu, Seoul 08390, Republic of Korea; (T.S.N.); (S.Y.); (D.I.); (K.K.); (B.G.); (G.-y.N.); (H.L.)
| | - Kyusun Kim
- R&D Center, Wooshin Labottach, Digital-ro 288, Guro-gu, Seoul 08390, Republic of Korea; (T.S.N.); (S.Y.); (D.I.); (K.K.); (B.G.); (G.-y.N.); (H.L.)
| | - Bonseung Gu
- R&D Center, Wooshin Labottach, Digital-ro 288, Guro-gu, Seoul 08390, Republic of Korea; (T.S.N.); (S.Y.); (D.I.); (K.K.); (B.G.); (G.-y.N.); (H.L.)
| | - Ga-young Nam
- R&D Center, Wooshin Labottach, Digital-ro 288, Guro-gu, Seoul 08390, Republic of Korea; (T.S.N.); (S.Y.); (D.I.); (K.K.); (B.G.); (G.-y.N.); (H.L.)
| | - Hyerim Lee
- R&D Center, Wooshin Labottach, Digital-ro 288, Guro-gu, Seoul 08390, Republic of Korea; (T.S.N.); (S.Y.); (D.I.); (K.K.); (B.G.); (G.-y.N.); (H.L.)
| | - Soon Jae Kwon
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si 10326, Kyeonggi-do, Republic of Korea;
| | - Yun Seok Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanakro-1, Gwanak-gu, Seoul 08826, Republic of Korea;
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si 10326, Kyeonggi-do, Republic of Korea;
| |
Collapse
|
10
|
Lai C, Chen W, Qin Y, Xu D, Lai Y, He S. Innovative Hydrogel Design: Tailoring Immunomodulation for Optimal Chronic Wound Recovery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412360. [PMID: 39575827 PMCID: PMC11727140 DOI: 10.1002/advs.202412360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Indexed: 01/14/2025]
Abstract
Despite significant progress in tissue engineering, the full regeneration of chronic wounds persists as a major challenge, with the immune response to tissue damage being a key determinant of the healing process's quality and duration. Post-injury, a crucial aspect is the transition of macrophages from a pro-inflammatory state to an anti-inflammatory. Thus, this alteration in macrophage polarization presents an enticing avenue within the realm of regenerative medicine. Recent advancements have entailed the integration of a myriad of cellular and molecular signals into hydrogel-based constructs, enabling the fine-tuning of immune cell activities during different phases. This discussion explores modern insights into immune cell roles in skin regeneration, underscoring the key role of immune modulation in amplifying the overall efficacy of wounds. Moreover, a comprehensive review is presented on the latest sophisticated technologies employed in the design of immunomodulatory hydrogels to regulate macrophage polarization. Furthermore, the deliberate design of hydrogels to deliver targeted immune stimulation through manipulation of chemistry and cell integration is also emphasized. Moreover, an overview is provided regarding the influence of hydrogel properties on immune traits and tissue regeneration process. Conclusively, the accent is on forthcoming pathways directed toward modulating immune responses in the milieu of chronic healing.
Collapse
Affiliation(s)
- Chun‐Mei Lai
- College of Life SciencesFujian Provincial Key laboratory of Haixia applied plant systems biologyFujian Agriculture and Forestry UniversityFuzhouFujian350002P. R. China
| | - Wei‐Ji Chen
- Shengli Clinical Medical College of Fujian Medical UniversityDepartment of Pediatrics surgery, Fujian Provincial Hospital University Affiliated Provincial Hospital, Fuzhou University Affiliated Provincial Hospital134 Dongjie RoadFuzhouFujian350001P. R. China
| | - Yuan Qin
- College of Life SciencesFujian Provincial Key laboratory of Haixia applied plant systems biologyFujian Agriculture and Forestry UniversityFuzhouFujian350002P. R. China
| | - Di Xu
- Shengli Clinical Medical College of Fujian Medical UniversityDepartment of Pediatrics surgery, Fujian Provincial Hospital University Affiliated Provincial Hospital, Fuzhou University Affiliated Provincial Hospital134 Dongjie RoadFuzhouFujian350001P. R. China
| | - Yue‐Kun Lai
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC‐CFC)College of Chemical EngineeringFuzhou UniversityFuzhou350116P. R. China
| | - Shao‐Hua He
- Shengli Clinical Medical College of Fujian Medical UniversityDepartment of Pediatrics surgery, Fujian Provincial Hospital University Affiliated Provincial Hospital, Fuzhou University Affiliated Provincial Hospital134 Dongjie RoadFuzhouFujian350001P. R. China
| |
Collapse
|
11
|
Wang W, Ren Y, Yu Q, Jiang L, Yu C, Yue Z, Wang Y, Lu J, Che P, Li J, Sun H. Biodegradable exosome-engineered hydrogels for the prevention of peritoneal adhesions via anti-oxidation and anti-inflammation. Mater Today Bio 2024; 29:101312. [PMID: 39525394 PMCID: PMC11550211 DOI: 10.1016/j.mtbio.2024.101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/16/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Peritoneal adhesions (PA) are a common and severe complication after abdominal surgery, impacting millions of patients worldwide. The use of anti-adhesion materials as physical barriers is an effective strategy to prevent postoperative adhesions. However, the local inflammatory microenvironment exerts a significant impact on the efficacy of anti-adhesion therapies. In this study, an injectable hydrogel based on oxidized dextran/carboxymethyl chitosan (DCC) is designed and prepared. Furthermore, the DCC hydrogel is specifically engineered to load the adipose mesenchymal stem cells (ADSCs)-derived exosomes (Exos) for the treatment of PA. The prepared DCC hydrogel can act as the physical barrier via covering the irregular wound surface effectively. Moreover, it shows controlled degradation property, enabling the regulated release of Exos. The DCC hydrogel loaded Exos (DCC/Exo) system has high antioxidant capacity, and can effectively modulate the inflammatory microenvironments and diminish apoptosis. Notably, it promotes a polarization shift towards the M2-like phenotype in macrophages. The RNA-seq analysis confirms that the DCC/Exo system exhibits significant anti-inflammatory properties and promotes a reduction in collagen deposition. Consequently, the DCC/Exo system can inhibit peritoneal adhesions significantly in a mouse cecum-abdominal wall injury model. These results demonstrate the DCC/Exo is an ideal material for preventing postoperative adhesions.
Collapse
Affiliation(s)
- Weitong Wang
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Yuchen Ren
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Qingyu Yu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Lijie Jiang
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Chaojie Yu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Zhiwei Yue
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Yue Wang
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Jiajun Lu
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Pengcheng Che
- School of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, 063210, China
| | - Junjie Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Hong Sun
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| |
Collapse
|
12
|
Song YT, Liu PC, Zhou XL, Chen YM, Wu W, Zhang JY, Li-Ling J, Xie HQ. Extracellular matrix-based biomaterials in burn wound repair: A promising therapeutic strategy. Int J Biol Macromol 2024; 283:137633. [PMID: 39549816 DOI: 10.1016/j.ijbiomac.2024.137633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
Burns are common traumatic injuries affecting many people worldwide. Development of specialized burn units, advances in acute care modalities, and burn prevention programs have successfully reduced the mortality rate of severe burns. Autologous skin grafting has been considered as the gold standard for wound coverage after the removal of burned skin. For full-thickness burns of a larger scale, however, the autograft donor site may be quickly exhausted, so that alternative skin coverage is necessary. Although rapid progress has been made in the development of skin substitutes for burn wounds during the last decade, no skin substitute has fulfilled the criteria as a perfect replacement for the damaged skin. Extracellular matrix (ECM) derived components have emerged as a source for the engineering of biomaterials capable of inducing desirable cell-specific responses and one of the most promising biomaterials for burn wound healing. Among these, acellular dermal matrix, small intestinal submucosa, and amniotic membrane have been applied to treat burn wounds with acceptable outcomes. This review has explored the use of biomaterials derived from naturally occurring ECM and their derivatives for approaches aiming to promote burn wound healing, and summarized the ECM-based wound dressings products applicable in burn wound and postburn scar contracture to date.
Collapse
Affiliation(s)
- Yu-Ting Song
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Peng-Cheng Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xing-Li Zhou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan-Ming Chen
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wu Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ji-Ye Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China.
| |
Collapse
|
13
|
Moshfeghi T, Najmoddin N, Arkan E, Hosseinzadeh L. A multifunctional polyacrylonitrile fibers/alginate-based hydrogel loaded with chamomile extract and silver sulfadiazine for full-thickness wound healing. Int J Biol Macromol 2024; 279:135425. [PMID: 39245113 DOI: 10.1016/j.ijbiomac.2024.135425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Most conventional wound dressings do not meet the clinical requisites owing to their limited multifunctionality. Herein, a bilayer wound dressing containing both hydrogel and fibrous structures with multifunctional features was developed for effective skin rehabilitation. Sodium alginate (SA)/gelatin (Gel) hydrogel comprising Matricaria chamomilla L extract and silver sulfadiazine (AgSD) drug as antibacterial agents was cross-linked using genipin and CaCl2. Then, the surface of the hydrogel was covered by electrospun polyacrylonitrile (PAN) nanofibers to fabricate a bilayer dressing. FESEM images revealed formation of continuous, smooth, and bead-free PAN nanofibers with excellent compatibility between hydrogel and fibers. The bilayer wound dressing exhibited satisfactory mechanical virtues including elastic modulus (2.4 ± 0.2 MPa), tensile strength (6.2 ± 0.5 MPa) and elongation at break (21.8 ± 1 %) as well as suitable swelling ratio. Such bilayer dressing revealed biodegradability, cytocompatibility and effective antibacterial performance against gram positive and gram negative strains. Release kinetics of AgSD drug followed a Fickian diffusion mechanism, ensuring sustained drug release. In vivo studies demonstrated bilayer dressing could promote rate of wound closure, re-epithelialization and collagen deposition, facilitating the replacement of damaged skin with healthy tissue. Such engineered wound dressing has a high potency for inducing skin repair and could be used in skin tissue engineering.
Collapse
Affiliation(s)
- Tahereh Moshfeghi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Najmeh Najmoddin
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Elham Arkan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Leila Hosseinzadeh
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
14
|
Ma J, Li S, Zhang L, Lei B. Oxidativestress-scavenging thermo-activated MXene hydrogel for rapid repair of MRSA impaired wounds and burn wounds. MATERIALS TODAY 2024; 80:139-155. [DOI: 10.1016/j.mattod.2024.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
15
|
Alkabli J. Recent advances in the development of chitosan/hyaluronic acid-based hybrid materials for skin protection, regeneration, and healing: A review. Int J Biol Macromol 2024; 279:135357. [PMID: 39245118 DOI: 10.1016/j.ijbiomac.2024.135357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/17/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Biomaterials play vital roles in regenerative medicine, specifically in tissue engineering applications. They promote angiogenesis and facilitate tissue creation and repair. The most difficult aspect of this field is acquiring smart biomaterials that possess qualities and functions that either surpass or are on par with those of synthetic products. The biocompatibility, biodegradability, film-forming capacity, and hydrophilic nature of the non-sulfated glycosaminoglycans (GAGs) (hyaluronic acid (HA) and chitosan (CS)) have attracted significant attention. In addition, CS and HA possess remarkable inherent biological capabilities, such as antimicrobial, antioxidant, and anti-inflammatory properties. This review provides a comprehensive overview of the recent progress made in designing and fabricating CS/HA-based hybrid materials for dermatology applications. Various formulations utilizing CS/HA have been developed, including hydrogels, microspheres, films, foams, membranes, and nanoparticles, based on the fabrication protocol (physical or chemical). Each formulation aims to enhance the materials' remarkable biological properties while also addressing their limited stability in water and mechanical strength. Additionally, this review gave a thorough outline of future suggestions for enhancing the mechanical strength of CS/HA wound dressings, along with methods to include biomolecules to make them more useful in skin biomedicine applications.
Collapse
Affiliation(s)
- J Alkabli
- Department of Chemistry, College of Sciences and Arts-Alkamil, University of Jeddah, Jeddah 23218, Saudi Arabia.
| |
Collapse
|
16
|
Chen SK, Liu JJ, Wang X, Luo H, He WW, Song XX, Nie SP, Yin JY. Hericium erinaceus β-glucan/tannic acid hydrogels based on physical cross-linking and hydrogen bonding strategies for accelerating wound healing. Int J Biol Macromol 2024; 279:135381. [PMID: 39244132 DOI: 10.1016/j.ijbiomac.2024.135381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/09/2024]
Abstract
The majority of natural fungal β-glucans exhibit diverse biological functionalities, such as immunomodulation and anti-inflammatory effects, attributed to their distinctive helix or highly branched conformation This study utilized β-glucan with helix conformation and high-viscosity extracted from Hericium erinaceus, employing freeze-thaw and solvent exchange strategies to induce multiple hydrogen bonding between molecules, thereby initiating the self-assembly process of β-glucan from random coil to stable helix conformation without chemical modifications. Subsequently, the natural bioactive compound tannic acid was introduced through physical entanglement, imparting exceptional antioxidant properties to the hydrogel. The HEBG/TA hydrogel exhibited injectable properties, appropriate mechanical characteristics, degradability, temperature-responsive tannic acid release, antioxidant activity, and hemostatic potential. In vivo experiments using skin full-thickness defect and deep second-degree burn wound models demonstrated significant therapeutic efficacy, including neovascularization, and tissue regeneration. Moreover, the HEBG/TA hydrogel demonstrated its ability to regulate cytokines by effectively inhibiting the production of inflammatory mediators (TNF-α, IL-6), while simultaneously enhancing the expression of cell proliferation factor KI-67 and markers associated with angiogenesis such as CD31 and α-SMA. This study highlights the potential of combining natural β-glucan with bioactive molecules for skin repair.
Collapse
Affiliation(s)
- Shi-Kang Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| | - Jin-Jin Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| | - Hui Luo
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Wei-Wei He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| | - Xiao-Xiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| |
Collapse
|
17
|
Jin C, Zhao R, Hu W, Wu X, Zhou L, Shan L, Wu H. Topical hADSCs-HA Gel Promotes Skin Regeneration and Angiogenesis in Pressure Ulcers by Paracrine Activating PPARβ/δ Pathway. Drug Des Devel Ther 2024; 18:4799-4824. [PMID: 39478872 PMCID: PMC11523932 DOI: 10.2147/dddt.s474628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Background Pressure ulcer is common in the bedridden elderly with high mortality and lack of effective treatment. In this study, human-adipose-derived-stem-cells-hyaluronic acid gel (hADSCs-HA gel) was developed and applied topically to treat pressure ulcers, of which efficacy and paracrine mechanisms were investigated through in vivo and in vitro experiments. Methods Pressure ulcers were established on the backs of C57BL/6 mice and treated topically with hADSCs-HA gel, hADSCs, hyaluronic acid, and normal saline respectively. The rate of wound closure was observed continuously during the following 14 days and the wound samples were obtained for Western blot, histopathology, immunohistochemistry, and proteomic analysis. Human dermal fibroblasts (HDFs) and human venous endothelial cells (HUVECs) under normal or hypoxic conditions were treated with conditioned medium of human ADSCs (ADSC-CM), then CCK-8, scratch test, tube formation, and Western blot were conducted to evaluate the paracrine effects of hADSCs and to explore the underlying mechanism. Results The in vivo data demonstrated that hADSCs-HA gel significantly accelerated the healing of pressure ulcers by enhancing collagen expression, angiogenesis, and skin proliferation. The in vitro data revealed that hADSCs strengthened the proliferation and wound healing capabilities of HDFs and HUVECs, meanwhile promoted collagen secretion and tube formation through paracrine mode. ADSC-CM was also proved to exert protective effects on hypoxic HDFs and HUVECs. Besides, the results of proteomic analysis and Western blot elucidated that lipid metabolism and PPARβ/δ pathway mediated the healing effect of hADSCs-HA gel on pressure ulcers. Conclusion Our research showed that topical application of hADSCs-HA gel played an important role in dermal regeneration and angiogenesis. Therefore, hADSCs-HA gel exhibited the potential as a novel stem-cell-based therapeutic strategy of treating pressure ulcers in clinical practices.
Collapse
Affiliation(s)
- Chaoying Jin
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, People’s Republic of China
| | - Ruolin Zhao
- Yichen Biotechnology Co., Ltd, Hangzhou, Zhejiang, 311200, People’s Republic of China
- Fuyang Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, People’s Republic of China
| | - Weihang Hu
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, Zhejiang, 310013, People’s Republic of China
| | - Xiaolong Wu
- Fuyang Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, People’s Republic of China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310060, People’s Republic of China
| | - Letian Shan
- Fuyang Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, People’s Republic of China
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310060, People’s Republic of China
| | - Huiling Wu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, People’s Republic of China
| |
Collapse
|
18
|
Deng J, Li J, Yan L, Guo W, Ding X, Ding P, Liu S, Sun Y, Jiang G, Okoro OV, Shavandi A, Xie Z, Fan L, Nie L. Accelerated, injectable, self-healing, scarless wound dressings using rGO reinforced dextran/chitosan hydrogels incorporated with PDA-loaded asiaticoside. Int J Biol Macromol 2024; 278:134424. [PMID: 39111509 DOI: 10.1016/j.ijbiomac.2024.134424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
The process of wound healing is intricate and complex, necessitating the intricate coordination of various cell types and bioactive molecules. Despite significant advances, challenges persist in achieving accelerated healing and minimizing scar formation. Herein, a multifunctional hydrogel engineered via dynamic Schiff base crosslinking between oxidized dextran and quaternized chitosan, reinforced with reduced graphene oxide (rGO) is reported. The resulting OQG hydrogels demonstrated injectability to aid in conforming to irregular wound geometries, rapid self-healing to maintain structural integrity and adhesion for intimate integration with wound beds. Moreover, the developed hydrogels possessed antioxidant and antibacterial activities, mitigating inflammation and preventing infection. The incorporation of conductive rGO further facilitated the transmission of endogenous electrical signals, stimulating cell migration and tissue regeneration. In addition, the polydopamine-encapsulated asiaticoside (AC@PDA) nanoparticles were encapsulated in OQG hydrogels to reduce scar formation during in vivo evaluations. In vitro results confirmed the histocompatibility of the hydrogels to promote cell migration. The recovery of the full-thickness rat wounds revealed that these designed OQG hydrogels with the incorporation of AC@PDA nanoparticles could accelerate wound healing, reduce inflammation, facilitate angiogenesis, and minimize scarring when implemented. This multifunctional hydrogel system offers a promising strategy for enhanced wound management and scarless tissue regeneration, addressing the multifaceted challenges in wound care.
Collapse
Affiliation(s)
- Jun Deng
- School of Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jingyu Li
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Lizhao Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Guo
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Xiaoyue Ding
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Peng Ding
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Shuang Liu
- School of Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou 310018, China
| | - Oseweuba Valentine Okoro
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| | - Zhizhong Xie
- School of Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Lihong Fan
- School of Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
19
|
Gandolfi S, Sanouj A, Chaput B, Coste A, Sallerin B, Varin A. The role of adipose tissue-derived stromal cells, macrophages and bioscaffolds in cutaneous wound repair. Biol Direct 2024; 19:85. [PMID: 39343924 PMCID: PMC11439310 DOI: 10.1186/s13062-024-00534-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Skin healing is a complex and dynamic physiological process that follows mechanical alteration of the skin barrier. Under normal conditions, this complex process can be divided into at least three continuous and overlapping phases: an inflammatory reaction, a proliferative phase that leads to tissue reconstruction and a phase of tissue remodeling. Macrophages critically contribute to the physiological cascade for tissue repair. In fact, as the inflammatory phase progresses, macrophage gene expression gradually shifts from pro-inflammatory M1-like to pro-resolutive M2-like characteristics, which is critical for entry into the repair phase. A dysregulation in this macrophage' shift phenotype leads to the persistence of the inflammatory phase. Mesenchymal stromal cells and specifically the MSC-derived from adipose tissue (ADSCs) are more and more use to treat inflammatory diseases and several studies have demonstrated that ADSCs promote the wound healing thanks to their neoangiogenic, immunomodulant and regenerative properties. In several studies, ADSCs and macrophages have been injected directly into the wound bed, but the delivery of exogenous cells directly to the wound raise the problem of cell engraftment and preservation of pro-resolutive phenotype and viability of the cells. Complementary approaches have therefore been explored, such as the use of biomaterials enriched with therapeutic cell to improve cell survival and function. This review will present a background of the current scaffold models, using adipose derived stromal-cells and macrophage as therapeutic cells for wound healing, through a discussion on the potential impact for future applications in skin regeneration. According to the PRISMA statement, we resumed data from investigations reporting the use ADSCs and bioscaffolds and data from macrophages behavior with functional biomaterials in wound healing models. In the era of tissue engineering, functional biomaterials, that can maintain cell delivery and cellular viability, have had a profound impact on the development of dressings for the treatment of chronic wounds. Promising results have been showed in pre-clinical reports using ADSCs- and macrophages-based scaffolds to accelerate and to improve the quality of the cutaneous healing.
Collapse
Affiliation(s)
- S Gandolfi
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France.
- Department of Plastic and Reconstructive Surgery, Toulouse University Hospital, 1 Av. Pr.Jean Poulhès, 31400, Toulouse, France.
| | - A Sanouj
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
| | - B Chaput
- Department of Plastic and Reconstructive Surgery, Toulouse University Hospital, 1 Av. Pr.Jean Poulhès, 31400, Toulouse, France
| | - A Coste
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
| | - B Sallerin
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
- Department of Pharmacology, Toulouse University Hospital, 1 Av Pr.Jean Poulhès, 31400, Toulouse, France
| | - A Varin
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
| |
Collapse
|
20
|
Zhu Y, Liu X, Chen X, Liao Y. Adipose-derived stem cells apoptosis rejuvenate radiation-impaired skin in mice via remodeling and rearranging dermal collagens matrix. Stem Cell Res Ther 2024; 15:324. [PMID: 39334464 PMCID: PMC11438223 DOI: 10.1186/s13287-024-03904-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Chronic radiation dermatitis (CRD) is a late consequence of radiation with high incidence in patients receiving radiotherapy. Conventional therapies often yield unsatisfactory results. Therefore, this study aimed to explore the therapeutic potential and mechanism of adipose-derived stem cells (ADSCs) for CRD, paving the way for novel regenerative therapies in clinical practice. METHODS Clinical CRD skin biopsies were analyzed to character the pathological changes of CRD skin and guided the animal modeling scheme. Subsequently, an in vivo analysisusing mouse CRD models was conducted to explore their effects of ADSCs on CRD, monitoring therapeutic impact for up to 8 weeks. Transcriptome sequencing and histologic sections analysis were performed to explore the potential therapeutic mechanism of ADSCs. Following observing extensive apoptosis of transplanted ADSCs, the therapeutic effect of ADSCs were compared with those of apoptosis-inhibited ADSCs. Multiphoton imaging and analysis of collagen morphologic features were employed to explain how translated ADSCs promote collagen remodeling at the microscopic level based on the contrast of morphology of collagen fibers. RESULTS Following injection into CRD-afflicted skin, ADSCs therapy effectively mitigated symptoms of CRD, including acanthosis of the epidermis, fibrosis, and irregular collagen deposition, consistent with the possible therapeutic mechanism suggested by transcriptome sequencing. Notably, in vivo tracking revealed a significant reduction in ADSCs number due to extensive apoptosis. Inhibiting apoptosis in ADSCs partially tempered their therapeutic effects. Mechanically, analysis of collagen morphologic features indicated that translated ADSCs might promote dermal extracellular matrix remodeling through enlarging, lengthening, crimping, and evening collagen, counteracting the atrophy and rupture caused by irradiation. CONCLUSIONS This study demonstrated that ADSCs underwent substantial apoptosis upon local skin transplantation, and paradoxically, this apoptosis is essential for their efficacy in promoting the regeneration of late radiation-impaired skin. Mechanically, transplanted ADSCs could promote the remodeling and rearrangement of radiation-damaged dermal collagen matrix.
Collapse
Affiliation(s)
- Yufan Zhu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xu Liu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xihang Chen
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Yunjun Liao
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
21
|
Senobari F, Abolmaali SS, Farahavr G, Tamaddon AM. Targeting inflammation with hyaluronic acid-based micro- and nanotechnology: A disease-oriented review. Int J Biol Macromol 2024; 280:135923. [PMID: 39322155 DOI: 10.1016/j.ijbiomac.2024.135923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Inflammation is a pivotal immune response in numerous diseases and presents therapeutic challenges. Traditional anti-inflammatory drugs and emerging cytokine inhibitors encounter obstacles such as limited bioavailability, poor tissue distribution, and adverse effects. Hyaluronic acid (HA), a versatile biopolymer, is widely employed to deliver therapeutic agents, including anti-inflammatory drugs, genes, and cell therapies owing to its unique properties, such as hydrophilicity, biodegradability, and safety. HA interacts with cell receptors to initiate processes such as angiogenesis, cell proliferation, and immune regulation. HA-based drug delivery systems offer dual strategies for effective inflammation management, capitalizing on passive and active mechanisms. This synergy permits the mitigation of inflammation by lowering the doses of anti-inflammatory drugs and their off-target adverse effects. A diverse array of micro- and nanotechnology techniques enable the fabrication of tailored HA-engineered systems, including hydrogels, microgels, nanogels, microneedles, nanofibers, and 3D-printed scaffolds, for diverse formulations and administration routes. This review explores recent insights into HA pharmacology in inflammatory conditions, material design, and fabrication methods, as well as its applications across a spectrum of inflammatory diseases, such as atherosclerosis, psoriasis, dermatitis, wound healing, rheumatoid arthritis, osteoarthritis, inflammatory bowel disease, and colitis, highlighting its potential for clinical translation.
Collapse
Affiliation(s)
- Fatemeh Senobari
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Samira Sadat Abolmaali
- Associate Professor, Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Ghazal Farahavr
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Ali Mohammad Tamaddon
- Professor, Pharmaceutics and Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran.
| |
Collapse
|
22
|
Zhang W, Qian S, Chen J, Jian T, Wang X, Zhu X, Dong Y, Fan G. Photo-Crosslinked Pro-Angiogenic Hydrogel Dressing for Wound Healing. Int J Mol Sci 2024; 25:9948. [PMID: 39337435 PMCID: PMC11432402 DOI: 10.3390/ijms25189948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Severe burns are one of the most devastating injuries, in which sustained inflammation and ischemia often delay the healing process. Pro-angiogenic growth factors such as vascular endothelial growth factor (VEGF) have been widely studied for promoting wound healing. However, the short half-life and instability of VEGF limit its clinical applications. In this study, we develop a photo-crosslinked hydrogel wound dressing from methacrylate hyaluronic acid (MeHA) bonded with a pro-angiogenic prominin-1-binding peptide (PR1P). The materials were extruded in wound bed and in situ formed a wound dressing via exposure to short-time ultraviolet radiation. The study shows that the PR1P-bonded hydrogel significantly improves VEGF recruitment, tubular formation, and cell migration in vitro. Swelling, Scanning Electron Microscope, and mechanical tests indicate the peptide does not affect the overall mechanical and physical properties of the hydrogels. For in vivo studies, the PR1P-bonded hydrogel dressing enhances neovascularization and accelerates wound closure in both deep second-degree burn and full-thickness excisional wound models. The Western blot assay shows such benefits can be related to the activation of the VEGF-Akt signaling pathway. These results suggest this photo-crosslinked hydrogel dressing efficiently promotes VEGF recruitment and angiogenesis in skin regeneration, indicating its potential for clinical applications in wound healing.
Collapse
Affiliation(s)
- Wang Zhang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, China; (W.Z.); (S.Q.); (J.C.); (T.J.); (X.W.); (X.Z.)
- Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuyi Qian
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, China; (W.Z.); (S.Q.); (J.C.); (T.J.); (X.W.); (X.Z.)
- Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jia Chen
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, China; (W.Z.); (S.Q.); (J.C.); (T.J.); (X.W.); (X.Z.)
- Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai 201210, China
| | - Tianshen Jian
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, China; (W.Z.); (S.Q.); (J.C.); (T.J.); (X.W.); (X.Z.)
- Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xuechun Wang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, China; (W.Z.); (S.Q.); (J.C.); (T.J.); (X.W.); (X.Z.)
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xianmin Zhu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, China; (W.Z.); (S.Q.); (J.C.); (T.J.); (X.W.); (X.Z.)
- Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai 201210, China
- Shanghai Academy of Sciences & Technology Institute of Model Animals Transformation, Shanghai 201203, China
| | - Yixiao Dong
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, China; (W.Z.); (S.Q.); (J.C.); (T.J.); (X.W.); (X.Z.)
- Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai 201210, China
- Shanghai Academy of Sciences & Technology Institute of Model Animals Transformation, Shanghai 201203, China
| | - Guoping Fan
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, China; (W.Z.); (S.Q.); (J.C.); (T.J.); (X.W.); (X.Z.)
- Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
23
|
Ranamalla SR, Tavakoli S, Porfire AS, Tefas LR, Banciu M, Tomuța I, Varghese OP. A quality by design approach to optimise disulfide-linked hyaluronic acid hydrogels. Carbohydr Polym 2024; 339:122251. [PMID: 38823918 DOI: 10.1016/j.carbpol.2024.122251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024]
Abstract
In this study, the disulfide-linked hyaluronic acid (HA) hydrogels were optimised for potential application as a scaffold in tissue engineering through the Quality by Design (QbD) approach. For this purpose, HA was first modified by incorporating the cysteine moiety into the HA backbone, which promoted the formation of disulfide cross-linked HA hydrogel at physiological pH. Utilising a Design of Experiments (DoE) methodology, the critical factors to achieve stable biomaterials, i.e. the degree of HA substitution, HA molecular weight, and coupling agent ratio, were explored. To establish a design space, the DoE was performed with 65 kDa, 138 kDa and 200 kDa HA and variable concentrations of coupling agent to optimise conditions to obtain HA hydrogel with improved rheological properties. Thus, HA hydrogel with a 12 % degree of modification, storage modulus of ≈2321 Pa and loss modulus of ≈15 Pa, was achieved with the optimum ratio of coupling agent. Furthermore, biocompatibility assessments in C28/I2 chondrocyte cells demonstrated the non-toxic nature of the hydrogel, underscoring its potential for tissue regeneration. Our findings highlight the efficacy of the QbD approach in designing HA hydrogels with tailored properties for biomedical applications.
Collapse
Affiliation(s)
- Saketh Reddy Ranamalla
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, "Babeș-Bolyai" University, 400015 Cluj-Napoca, Romania; Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy Iuliu Hațieganu, 400010 Cluj-Napoca, Romania
| | - Shima Tavakoli
- Macromolecular Chemistry Laboratory, Department of Chemistry-Ångstrom, Uppsala University, Uppsala 751 21, Sweden
| | - Alina Silvia Porfire
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy Iuliu Hațieganu, 400010 Cluj-Napoca, Romania
| | - Lucia Ruxandra Tefas
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy Iuliu Hațieganu, 400010 Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babeș-Bolyai" University, 400015 Cluj-Napoca, Romania
| | - Ioan Tomuța
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy Iuliu Hațieganu, 400010 Cluj-Napoca, Romania.
| | - Oommen P Varghese
- Macromolecular Chemistry Laboratory, Department of Chemistry-Ångstrom, Uppsala University, Uppsala 751 21, Sweden.
| |
Collapse
|
24
|
Zhao N, Qin L, Liu Y, Zhai M, Li D. Improved new bone formation capacity of hyaluronic acid-bone substitute compound in rat calvarial critical size defect. BMC Oral Health 2024; 24:994. [PMID: 39182066 PMCID: PMC11344309 DOI: 10.1186/s12903-024-04679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Bone loss of residual alveolar ridges is a great challenge in the field of dental implantology. Deproteinized bovine bone mineral (DBBM) is commonly used for bone regeneration, however, it is loose and difficult to handle in clinical practice. Hyaluronic acid (HA) shows viscoelasticity, permeability and excellent biocompatibility. The aim of this study is to evaluate whether high-molecular-weight (MW) HA combined with DBBM could promote new bone formation in rat calvarial critical size defects (CSDs). MATERIALS AND METHODS Rat calvarial CSDs (5 mm in diameter) were created. Rats (n = 45) were randomly divided into 3 groups: HA-DBBM compound grafting group, DBBM particles only grafting group and no graft group. Defect healing was assessed by hematoxylin-eosin staining and histomorphometry 2, 4 and 8 weeks postop, followed by Micro-CT scanning 8 weeks postop. Statistical analyses were performed by ANOVA followed by Tukey's post hoc test with P < 0.05 indicating statistical significance. RESULTS All rats survived after surgery. Histomorphometric evaluation revealed that at 2, 4 and 8 weeks postop, the percentage of newly formed bone was significantly greater in HA-DBBM compound grafting group than in the other two groups. Consistently, Micro-CT assessment revealed significantly more trabecular bone (BV/TV and Tb.N) in HA-DBBM compound group than in the other two groups, respectively (P < 0.05). Moreover, the trabecular bone was significantly more continuous (Tb.Pf) in HA-DBBM compound group than in the other two groups, respectively (P < 0.05). CONCLUSION HA not only significantly promoted new bone formation in rats calvarial CSDs but also improved the handling ability of DBBM.
Collapse
Affiliation(s)
- Ningbo Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shaanxi, 710004, People's Republic of China
- Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Lei Qin
- DeLun Dental, Baiyun District, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Yi Liu
- State Key Laboratory of Military Stomatology, Department of Oral Implants, School of Stomatology, Fourth Military Medical University, No. 145 Changle West Road, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Min Zhai
- Department of Stomatology, General Hospital of the Tibet Military Area Command, Lhasa, Tibet, 850007, People's Republic of China
| | - Dehua Li
- State Key Laboratory of Military Stomatology, Department of Oral Implants, School of Stomatology, Fourth Military Medical University, No. 145 Changle West Road, Xi'an, Shaanxi, 710032, People's Republic of China.
| |
Collapse
|
25
|
Qiao Z, Ding J, Yang M, Wang Y, Zhou T, Tian Y, Zeng M, Wu C, Wei D, Sun J, Fan H. Red-light-excited TiO 2/Bi 2S 3 heterojunction nanotubes and photoelectric hydrogels mediate epidermal-neural network reconstruction in deep burns. Acta Biomater 2024; 184:114-126. [PMID: 38942188 DOI: 10.1016/j.actbio.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Inspired by the strong light absorption of carbon nanotubes, we propose a fabrication approach involving one-dimensional TiO2/Bi2S3 QDs nanotubes (TBNTs) with visible red-light excitable photoelectric properties. By integrating the construction of heterojunctions, quantum confinement effects, and morphological modifications, the photocurrent reached 9.22 µA/cm2 which is 66 times greater than that of TiO2 nanotubes (TNTs). Then, a red light-responsive photoelectroactive hydrogel dressing (TBCHA) was developed by embedding TBNTs into a collagen/hyaluronic acid-based biomimetic extracellular matrix hydrogel with good biocompatibility, aiming to promote wound healing and skin function restoration. This approach is primarily grounded in the recognized significance of electrical stimulation in modulating nerve function and immune responses. Severe burns are often accompanied by extensive damage to epithelial-neural networks, leading to a loss of excitatory function and difficulty in spontaneous healing, while conventional dressings inadequately address the critical need for nerve reinnervation. Furthermore, we highlight the remarkable ability of the TBCHA photoelectric hydrogel to promote the reinnervation of nerve endings, facilitate the repair of skin substructures, and modulate immune responses in a deep burn model. This hydrogel not only underpins wound closure and collagen synthesis but also advances vascular reformation, immune modulation, and neural restoration. This photoelectric-based therapy offers a robust solution for the comprehensive repair of deep burns and functional tissue regeneration. STATEMENT OF SIGNIFICANCE: We explore the fabrication of 1D TiO2/Bi2S3 nanotubes with visible red-light excitability and high photoelectric conversion properties. By integrating heterojunctions, quantum absorption effects, and morphological modifications, the photocurrent of TiO2/Bi2S3 nanotubes could reach 9.22 µA/cm², which is 66 times greater than that of TiO2 nanotubes under 625 nm illumination. The efficient red-light excitability solves the problem of poor biosafety and low tissue penetration caused by shortwave excitation. Furthermore, we highlight the remarkable ability of the TiO2/Bi2S3 nanotubes integrated photoelectric hydrogel in promoting the reinnervation of nerve endings and modulating immune responses. This work proposes an emerging therapeutic strategy of remote, passive electrical stimulation, offering a robust boost for repairing deep burn wounds.
Collapse
Affiliation(s)
- Zi Qiao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jie Ding
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Mei Yang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yuchen Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Ting Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yuan Tian
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Mingze Zeng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China; Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, Sichuan, China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
26
|
Duan X, Zhang R, Feng H, Zhou H, Luo Y, Xiong W, Li J, He Y, Ye Q. A new subtype of artificial cell-derived vesicles from dental pulp stem cells with the bioequivalence and higher acquisition efficiency compared to extracellular vesicles. J Extracell Vesicles 2024; 13:e12473. [PMID: 38965648 PMCID: PMC11223992 DOI: 10.1002/jev2.12473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/14/2024] [Indexed: 07/06/2024] Open
Abstract
Extracellular vesicles (EVs) derived from dental pulp stem cells (DPSC) have been shown an excellent efficacy in a variety of disease models. However, current production methods fail to meet the needs of clinical treatment. In this study, we present an innovative approach to substantially enhance the production of 'Artificial Cell-Derived Vesicles (ACDVs)' by extracting and purifying the contents released by the DPSC lysate, namely intracellular vesicles. Comparative analysis was performed between ACDVs and those obtained through ultracentrifugation. The ACDVs extracted from the cell lysate meet the general standard of EVs and have similar protein secretion profile. The new ACDVs also significantly promoted wound healing, increased or decreased collagen regeneration, and reduced the production of inflammatory factors as the EVs. More importantly, the extraction efficiency is improved by 16 times compared with the EVs extracted using ultracentrifuge method. With its impressive attributes, this new subtype of ACDVs emerge as a prospective candidate for the future clinical applications in regenerative medicine.
Collapse
Affiliation(s)
- Xingxiang Duan
- Center of Regenerative Medicine & Department of Plastic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Rui Zhang
- Center of Regenerative Medicine & Department of Plastic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Huixian Feng
- Department of StomatologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Heng Zhou
- Center of Regenerative Medicine & Department of Plastic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yu Luo
- Center of Regenerative Medicine & Department of Plastic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Wei Xiong
- Center of Regenerative Medicine & Department of Plastic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Junyi Li
- Center of Regenerative Medicine & Department of Plastic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yan He
- Institute of Regenerative and Translational Medicine, Department of StomatologyTianyou Hospital of Wuhan University of Science and TechnologyWuhanHubeiChina
- Department of Oral and Maxillofacial Surgery, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Qingsong Ye
- Center of Regenerative Medicine & Department of Plastic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
- Department of StomatologyRenmin Hospital of Wuhan UniversityWuhanChina
- Department of StomatologyLinhai Second People's HospitalZhejiangChina
| |
Collapse
|
27
|
Yang J, Dong X, Wei W, Liu K, Wu X, Dai H. An injectable hydrogel dressing for controlled release of hydrogen sulfide pleiotropically mediates the wound microenvironment. J Mater Chem B 2024; 12:5377-5390. [PMID: 38716615 DOI: 10.1039/d4tb00411f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The healing of scalded wounds faces many challenges such as chronic inflammation, oxidative stress, wound infection, and difficulties in vascular and nerve regeneration. Treating a single problem cannot effectively coordinate the complex regenerative microenvironment of scalded wounds, limiting the healing and functional recovery of the skin. Therefore, there is a need to develop a multi-effect treatment plan that can adaptively address the issues at each stage of wound healing. In this study, we propose a scheme for on-demand release of hydrogen sulfide (H2S) based on the concentration of reactive oxygen species (ROS) in the wound microenvironment. This is achieved by encapsulating peroxythiocarbamate (PTCM) in the ROS-responsive polymer poly(ethylene glycol)-poly(L-methionine) (PMet) to form nanoparticles, which are loaded into a thermosensitive injectable hydrogel, F127-poly(L-aspartic acid-N-hydroxysuccinimide) (F127-P(Asp-NHS)), to create a scald dressing. The H2S released by the hydrogel dressing on demand regulates the wound microenvironment by alleviating infection, reducing oxidative stress, and remodeling inflammation, thereby accelerating the healing of full-thickness scalded wounds. This hydrogel dressing for the adaptive release of H2S has great potential in addressing complex scalded wounds associated with infection and chronic inflammation.
Collapse
Affiliation(s)
- Junwei Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Xianzhen Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Kun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Xiaopei Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
- Wuhan University of Technology Advanced Engineering Technology Research Institute of Zhongshan City, Zhongshan 528400, China
| |
Collapse
|
28
|
Aljamal D, Iyengar PS, Nguyen TT. Translational Challenges in Drug Therapy and Delivery Systems for Treating Chronic Lower Extremity Wounds. Pharmaceutics 2024; 16:750. [PMID: 38931872 PMCID: PMC11207742 DOI: 10.3390/pharmaceutics16060750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Despite several promising preclinical studies performed over the past two decades, there remains a paucity of market-approved drugs to treat chronic lower extremity wounds in humans. This translational gap challenges our understanding of human chronic lower extremity wounds and the design of wound treatments. Current targeted drug treatments and delivery systems for lower extremity wounds rely heavily on preclinical animal models meant to mimic human chronic wounds. However, there are several key differences between animal preclinical wound models and the human chronic wound microenvironment, which can impact the design of targeted drug treatments and delivery systems. To explore these differences, this review delves into recent new drug technologies and delivery systems designed to address the chronic wound microenvironment. It also highlights preclinical models used to test drug treatments specific for the wound microenvironments of lower extremity diabetic, venous, ischemic, and burn wounds. We further discuss key differences between preclinical wound models and human chronic wounds that may impact successful translational drug treatment design.
Collapse
Affiliation(s)
- Danny Aljamal
- Chan School of Medicine, University of Massachusetts, Worcester, MA 01655, USA; (D.A.); (P.S.I.)
| | - Priya S. Iyengar
- Chan School of Medicine, University of Massachusetts, Worcester, MA 01655, USA; (D.A.); (P.S.I.)
| | - Tammy T. Nguyen
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of Massachusetts, Worcester, MA 01655, USA
- Diabetes Center of Excellence, University of Massachusetts, Worcester, MA 01655, USA
| |
Collapse
|
29
|
Fu X, Hu G, Abker AM, Oh DH, Ma M, Fu X. A Novel Food Bore Protein Hydrogel with Silver Ions for Promoting Burn Wound Healing. Macromol Biosci 2024; 24:e2300520. [PMID: 38412873 DOI: 10.1002/mabi.202300520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/31/2024] [Indexed: 02/29/2024]
Abstract
Hydrogels have emerged as a promising option for treating local scald wounds due to their unique physical and chemical properties. This study aims to evaluate the efficacy of ovalbumin/gelatin composite hydrogels in repairing deep II-degree scald wounds using a mouse dorsal skin model. Trauma tissues collected at various time points are analyzed for total protein content, hydroxyproline content, histological features, and expression of relevant markers. The results reveal that the hydrogel accelerates the healing process of scalded wounds, which is 17.27% higher than the control group. The hydrogel treatment also effectively prevents wound enlargement and redness of the edges caused by infection during the initial stage of scalding. The total protein and hydroxyproline content of the treated wounds are significantly elevated. Additionally, the hydrogel up-regulates the expression of VEGF (a crucial angiogenic factor) and down-regulates CD68 (a macrophage marker). In summary, this study provides valuable insights into the potential of multifunctional protein-based hydrogels in wound healing.
Collapse
Affiliation(s)
- Xiaowen Fu
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Gan Hu
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Adil M Abker
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
- Institute for Agro-Industries, Industrial Research and Consultancy Centre (IRCC), Khartoum, 400076, Sudan
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, 200701, South Korea
| | - Meihu Ma
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Xing Fu
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| |
Collapse
|
30
|
Chang W, Chen L, Chen K. The bioengineering application of hyaluronic acid in tissue regeneration and repair. Int J Biol Macromol 2024; 270:132454. [PMID: 38763255 DOI: 10.1016/j.ijbiomac.2024.132454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
The multifaceted role of hyaluronic acid (HA) across diverse biomedical disciplines underscores its versatility in tissue regeneration and repair. HA hydrogels employ different crosslinking including chemical (chitosan, collagen), photo- initiation (riboflavin, LAP), enzymatic (HRP/H2O2), and physical interactions (hydrogen bonds, metal coordination). In biophysics and biochemistry, HA's signaling pathways, primarily through CD44 and RHAMM receptors, modulate cell behavior (cell migration; internalization of HA), inflammation, and wound healing. Particularly, smaller HA fragments stimulate inflammatory responses through toll-like receptors, impacting macrophages and cytokine expression. HA's implications in oncology highlight its involvement in tumor progression, metastasis, and treatment. Elevated HA in tumor stroma impacts apoptosis resistance and promotes tumor growth, presenting potential therapeutic targets to halt tumor progression. In orthopedics, HA's presence in synovial fluid aids in osteoarthritis management, as its supplementation alleviates pain, enhances synovial fluid's viscoelastic properties, and promotes cartilage integrity. In ophthalmology, HA's application in dry eye syndrome addresses symptoms by moisturizing the eyes, replenishing tear film deficiencies, and facilitating wound healing. Intravitreal injections and hydrogel-based systems offer versatile approaches for drug delivery and vitreous humor replacement. For skin regeneration and wound healing, HA hydrogel dressings exhibit exceptional properties by promoting moist wound healing and facilitating tissue repair. Integration of advanced regenerative tools like stem cells and solubilized amnion membranes into HA-based systems accelerates wound closure and tissue recovery. Overall, HA's unique properties and interactions render it a promising candidate across diverse biomedical domains, showcasing immense potentials in tissue regeneration and therapeutic interventions. Nevertheless, many detailed cellular and molecular mechanisms of HA and its applications remain unexplored and warrant further investigation.
Collapse
Affiliation(s)
- WeiTing Chang
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan
| | - LiRu Chen
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei, Taiwan; Department of Mechanical Engineering, National YangMing ChiaoTung University, Hsinchu, Taiwan
| | - KuoHu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan; School of Medicine, Tzu-Chi University, Hualien, Taiwan.
| |
Collapse
|
31
|
Omran BA, Tseng BS, Baek KH. Nanocomposites against Pseudomonas aeruginosa biofilms: Recent advances, challenges, and future prospects. Microbiol Res 2024; 282:127656. [PMID: 38432017 DOI: 10.1016/j.micres.2024.127656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that causes life-threatening and persistent infections in immunocompromised patients. It is the culprit behind a variety of hospital-acquired infections owing to its multiple tolerance mechanisms against antibiotics and disinfectants. Biofilms are sessile microbial aggregates that are formed as a result of the cooperation and competition between microbial cells encased in a self-produced matrix comprised of extracellular polymeric constituents that trigger surface adhesion and microbial aggregation. Bacteria in biofilms exhibit unique features that are quite different from planktonic bacteria, such as high resistance to antibacterial agents and host immunity. Biofilms of P. aeruginosa are difficult to eradicate due to intrinsic, acquired, and adaptive resistance mechanisms. Consequently, innovative approaches to combat biofilms are the focus of the current research. Nanocomposites, composed of two or more different types of nanoparticles, have diverse therapeutic applications owing to their unique physicochemical properties. They are emerging multifunctional nanoformulations that combine the desired features of the different elements to obtain the highest functionality. This review assesses the recent advances of nanocomposites, including metal-, metal oxide-, polymer-, carbon-, hydrogel/cryogel-, and metal organic framework-based nanocomposites for the eradication of P. aeruginosa biofilms. The characteristics and virulence mechanisms of P. aeruginosa biofilms, as well as their devastating impact and economic burden are discussed. Future research addressing the potential use of nanocomposites as innovative anti-biofilm agents is emphasized. Utilization of nanocomposites safely and effectively should be further strengthened to confirm the safety aspects of their application.
Collapse
Affiliation(s)
- Basma A Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), PO 11727, Nasr City, Cairo, Egypt
| | - Boo Shan Tseng
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
32
|
Sun Y, Chen S, Zhang Y, Qi X, Guo D, Feng B, Qi R, Wu Y, Gao X. Filament coating system assists recovery of ablative fCO 2 laser treatment: A split-face clinical observation. J Cosmet Dermatol 2024; 23:1629-1637. [PMID: 38192154 DOI: 10.1111/jocd.16169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/04/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND The current nursing procedure after fractional carbon dioxide (fCO2) is complex and needs to be optimized. The present study was conducted to evaluate the assisting effect of filament coating system after fCO2 laser treatment. METHODS Chinese individuals aged from 18 to 65 years diagnosed as photoaging or atrophic acne scar were recruited and each participant was treated with one single pass of fCO2 laser. A split face was randomly assigned as treatment side or control side. For control side, conventional procedure was topically applied respectively, including desonide cream two times for 3 days, fusidic acid cream two times for 7 days, and recombinant human epidermal growth factor (RhEGF) gel four times for 7 days; for treating side, a filament coating system was applied immediately after one application of fusidic acid cream, desonide cream and RhEGF, and removed 3 h later, for 3 days. Erythema, edema, crust, and pain on both sides were scored from 0 to 10 before and 1, 2, 4, and 7 days after fCO2 laser treatment. Stratum corneum hydration (SCH) and sebum of forehead and cheek on both sides were also measured by using Corneometer-Sebumeter. RESULTS Twenty photoaging and 11 atrophic acne scar participants finished the observation. All of them complained of erythema, edema, crust, and pain after fCO2 laser treatment, and the scores decreased as time passed by. There were no statistical significances of erythema, edema, crust, pain, SCH, and sebum between treating side and control side at each observation time. CONCLUSION Filament coating system was effective, safe, convenient, and economic in assisting recovery of ablative fCO2 laser, which might be a new option for additional nursing procedure.
Collapse
Affiliation(s)
- Yan Sun
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Immunodermatology, Ministry of Education Key Laboratory of Immunodermatology, National Joint Engineering Research Center for Diagnosis and Treatment of Immunologic Skin Diseases, The First Hospital of China Medical University, Shenyang, China
| | - ShuYan Chen
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Immunodermatology, Ministry of Education Key Laboratory of Immunodermatology, National Joint Engineering Research Center for Diagnosis and Treatment of Immunologic Skin Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Ying Zhang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Immunodermatology, Ministry of Education Key Laboratory of Immunodermatology, National Joint Engineering Research Center for Diagnosis and Treatment of Immunologic Skin Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Xin Qi
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Immunodermatology, Ministry of Education Key Laboratory of Immunodermatology, National Joint Engineering Research Center for Diagnosis and Treatment of Immunologic Skin Diseases, The First Hospital of China Medical University, Shenyang, China
| | - DeChao Guo
- Department of General Surgery, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Feng
- Liaoning Yanyang Medical Equipment Co., LTD, Shenyang, China
| | - RuiQun Qi
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Immunodermatology, Ministry of Education Key Laboratory of Immunodermatology, National Joint Engineering Research Center for Diagnosis and Treatment of Immunologic Skin Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Yan Wu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Immunodermatology, Ministry of Education Key Laboratory of Immunodermatology, National Joint Engineering Research Center for Diagnosis and Treatment of Immunologic Skin Diseases, The First Hospital of China Medical University, Shenyang, China
| | - XingHua Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Immunodermatology, Ministry of Education Key Laboratory of Immunodermatology, National Joint Engineering Research Center for Diagnosis and Treatment of Immunologic Skin Diseases, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
33
|
Jabbari F, Babaeipour V. Bacterial cellulose as an ideal potential treatment for burn wounds: A comprehensive review. Wound Repair Regen 2024; 32:323-339. [PMID: 38445725 DOI: 10.1111/wrr.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Burn wound regeneration is a complex process, which has many serious challenges such as slow wound healing, secondary infection, and inflammation. Therefore, it is essential to utilise appropriate biomaterials to accelerate and guide the wound healing process. Bacterial cellulose (BC), a natural polymer synthesised by some bacteria, has attracted much attention for wound healing applications due to its unique properties including excellent physicochemical and mechanical properties, simple purification process, three-dimensional (3D) network structure similar to extracellular matrix, high purity, high water holding capacity and significant permeability to gas and liquid. BC's lack of antibacterial activity significantly limits its biomedical and tissue engineering application, but adding antimicrobial agents to it remarkably improves its performance in tissue regeneration applications. Burn wound healing is a complex long-lasting process. Using biomaterials in wound treatment has shown that they can satisfactorily accelerate wound healing. The purpose of this review is to elaborate on the importance of BC-based structures as one of the most widely used modern wound dressings in the treatment of burn wounds. In addition, the combination of various drugs, agents, cells and biomolecules with BC to expand its application in burn injury regeneration is discussed. Finally, the main challenges and future development direction of BC-based structures for burn wound repair are considered. The four most popular search engines PubMed/MEDLINE, Science Direct, Scopus and Google Scholar were used to help us find relevant papers. The most frequently used keywords were bacterial cellulose, BC-based biocomposite, wound healing, burn wound and vascular graft.
Collapse
Affiliation(s)
- Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran
| | - Valiollah Babaeipour
- Faculty of Chemistry and Chemical Engineering, Malek-Ashtar University of Technology, Tehran, Iran
- Department of Bioactive Compounds, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
34
|
Deng K, Huang Q, Yan X, Dai Y, Zhao J, Xiong X, Wang H, Chen X, Chen P, Liu L. Facile fabrication of a novel, photodetachable salecan-based hydrogel dressing with self-healing, injectable, and antibacterial properties based on metal coordination. Int J Biol Macromol 2024; 264:130551. [PMID: 38431010 DOI: 10.1016/j.ijbiomac.2024.130551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/05/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Achieving the controllable detachment of polysaccharide-based wound dressings is challenging. In this study, a novel, photodetachable salecan-based hydrogel dressing with injectable, self-healing, antibacterial, and wound healing properties was developed using a green and facile approach. A salecan hydrogel with a uniform porous structure and water content of 90.4 % was prepared by simply mixing salecan and an Fe3+-citric acid complexing solution in an acidic D-(+)-glucono-1,5-lactone environment. Metal coordinate interactions were formed between the released Fe3+ ions and carboxyl groups on the salecan polysaccharide, inducing homogeneous gelation. Benefiting from this dynamic and reversible crosslinking, the salecan hydrogel exhibited self-healing and injectable behavior, facilitating the formation of the desired shapes in situ. The exposure of Fe3+-citric acid to UV light (365 nm) resulted in the reduction of Fe3+ to Fe2+ through photochemical reactions, enabling phototriggered detachment. Moreover, the hydrogel exhibited excellent biocompatibility and satisfactory antibacterial efficacy against Escherichia coli and Staphylococcus aureus of 72.5 % and 85.3 %, respectively. The adhesive strength of the salecan hydrogel to porcine skin was 1.06 ± 0.12 kPa. In vivo wound healing experiments further highlighted the advantages of the prepared hydrogel in alleviating the degree of wound inflammation and promoting tissue regeneration within 12 days.
Collapse
Affiliation(s)
- Ke Deng
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Qin Huang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Xiaotong Yan
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yan Dai
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Juan Zhao
- Sichuan Synlight Biotech Ltd., 88 Keyuan South Road, Chengdu 610000, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Hailan Wang
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Pengfei Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Li Liu
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
35
|
Vila Nova BG, Silva LDS, Andrade MDS, de Santana AVS, da Silva LCT, Sá GC, Zafred IF, Moreira PHDA, Monteiro CA, da Silva LCN, Abreu AG. The essential oil of Melaleuca alternifolia incorporated into hydrogel induces antimicrobial and anti-inflammatory effects on infected wounds by Staphylococcus aureus. Biomed Pharmacother 2024; 173:116389. [PMID: 38461682 DOI: 10.1016/j.biopha.2024.116389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Staphylococcus aureus is one of the most common bacterial isolates found in wounds. Thus, innovative dressings, such as hydrogels, are interesting vehicles for incorporating bioactive compounds like those from Melaleuca alternifolia essential oil (MaEO). In this study, we evaluated the antimicrobial and anti-inflammatory potential of MaEO incorporated into an alginate and chitosan hydrogel for treating wounds infected by S. aureus. The hydrogel incorporated with MaEO 1% (HMa 1%) was homogeneous with a bright pale-yellow color and the characteristic smell of Melaleuca. The incorporation of MaEO 1% does not affect the stability of the hydrogel, which was stable up to 90 days of storage. The Scanning electron microscopy analysis revealed that hydrogels showed irregular surfaces and interconnected porous structures with accumulations of oil crystals distributed throughout the formulation. HMa 1% has a high moisture content (95.1%) and can absorb simulated wound fluid. Regarding the antimicrobial effects, HMa 1% reduced the growth of S. aureus ATCC 6538 in both in vitro conditions and in an ex vivo model of wounds using porcine skin. In addition, the dairy topical treatment of murine skin lesions with HMa 1% induced a significant reduction of the wound area, inflammation score, and bacterial load, as well as tissue re-epithelialization and modulation of inflammatory mediators. Therefore, hydrogel incorporated with MaEO 1% has excellent potential to be used in the pharmacotherapy of infected wounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Cristina Andrade Monteiro
- Laboratory of Research and Study in Microbiology, Federal Institute of Education, Science and Technology of the Maranhão (IFMA), São Luís, MA, Brazil
| | | | - Afonso Gomes Abreu
- Microbial Pathogenicity Laboratory, CEUMA University, São Luís, MA, Brazil.
| |
Collapse
|
36
|
Wu S, Sun S, Fu W, Yang Z, Yao H, Zhang Z. The Role and Prospects of Mesenchymal Stem Cells in Skin Repair and Regeneration. Biomedicines 2024; 12:743. [PMID: 38672102 PMCID: PMC11048165 DOI: 10.3390/biomedicines12040743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have been recognized as a cell therapy with the potential to promote skin healing. MSCs, with their multipotent differentiation ability, can generate various cells related to wound healing, such as dermal fibroblasts (DFs), endothelial cells, and keratinocytes. In addition, MSCs promote neovascularization, cellular regeneration, and tissue healing through mechanisms including paracrine and autocrine signaling. Due to these characteristics, MSCs have been extensively studied in the context of burn healing and chronic wound repair. Furthermore, during the investigation of MSCs, their unique roles in skin aging and scarless healing have also been discovered. In this review, we summarize the mechanisms by which MSCs promote wound healing and discuss the recent findings from preclinical and clinical studies. We also explore strategies to enhance the therapeutic effects of MSCs. Moreover, we discuss the emerging trend of combining MSCs with tissue engineering techniques, leveraging the advantages of MSCs and tissue engineering materials, such as biodegradable scaffolds and hydrogels, to enhance the skin repair capacity of MSCs. Additionally, we highlight the potential of using paracrine and autocrine characteristics of MSCs to explore cell-free therapies as a future direction in stem cell-based treatments, further demonstrating the clinical and regenerative aesthetic applications of MSCs in skin repair and regeneration.
Collapse
Affiliation(s)
- Si Wu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Shengbo Sun
- School of Basic Medical Sciences, Capital Medical University, Beijing 100050, China
| | - Wentao Fu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Zhengyang Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| |
Collapse
|
37
|
Ribeiro M, Simões M, Vitorino C, Mascarenhas-Melo F. Hydrogels in Cutaneous Wound Healing: Insights into Characterization, Properties, Formulation and Therapeutic Potential. Gels 2024; 10:188. [PMID: 38534606 DOI: 10.3390/gels10030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Hydrogels are polymeric materials that possess a set of characteristics meeting various requirements of an ideal wound dressing, making them promising for wound care. These features include, among others, the ability to absorb and retain large amounts of water and the capacity to closely mimic native structures, such as the extracellular matrix, facilitating various cellular processes like proliferation and differentiation. The polymers used in hydrogel formulations exhibit a broad spectrum of properties, allowing them to be classified into two main categories: natural polymers like collagen and chitosan, and synthetic polymers such as polyurethane and polyethylene glycol. This review offers a comprehensive overview and critical analysis of the key polymers that can constitute hydrogels, beginning with a brief contextualization of the polymers. It delves into their function, origin, and chemical structure, highlighting key sources of extraction and obtaining. Additionally, this review encompasses the main intrinsic properties of these polymers and their roles in the wound healing process, accompanied, whenever available, by explanations of the underlying mechanisms of action. It also addresses limitations and describes some studies on the effectiveness of isolated polymers in promoting skin regeneration and wound healing. Subsequently, we briefly discuss some application strategies of hydrogels derived from their intrinsic potential to promote the wound healing process. This can be achieved due to their role in the stimulation of angiogenesis, for example, or through the incorporation of substances like growth factors or drugs, such as antimicrobials, imparting new properties to the hydrogels. In addition to substance incorporation, the potential of hydrogels is also related to their ability to serve as a three-dimensional matrix for cell culture, whether it involves loading cells into the hydrogel or recruiting cells to the wound site, where they proliferate on the scaffold to form new tissue. The latter strategy presupposes the incorporation of biosensors into the hydrogel for real-time monitoring of wound conditions, such as temperature and pH. Future prospects are then ultimately addressed. As far as we are aware, this manuscript represents the first comprehensive approach that brings together and critically analyzes fundamental aspects of both natural and synthetic polymers constituting hydrogels in the context of cutaneous wound healing. It will serve as a foundational point for future studies, aiming to contribute to the development of an effective and environmentally friendly dressing for wounds.
Collapse
Affiliation(s)
- Mariana Ribeiro
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CISUC-Center for Informatics and Systems, University of Coimbra, Pinhal de Marrocos, 3030-290 Coimbra, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3000-535 Coimbra, Portugal
| | - Marco Simões
- CISUC-Center for Informatics and Systems, University of Coimbra, Pinhal de Marrocos, 3030-290 Coimbra, Portugal
- CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3000-535 Coimbra, Portugal
- CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Filipa Mascarenhas-Melo
- Higher School of Health, Polytechnic Institute of Guarda, Rua da Cadeia, 6300-307 Guarda, Portugal
- REQUIMTE/LAQV, Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
38
|
Liu L, Fan X, Lu Q, Wang P, Wang X, Han Y, Wang R, Zhang C, Han S, Tsuboi T, Dai H, Yeow J, Geng H. Antimicrobial research of carbohydrate polymer- and protein-based hydrogels as reservoirs for the generation of reactive oxygen species: A review. Int J Biol Macromol 2024; 260:129251. [PMID: 38211908 DOI: 10.1016/j.ijbiomac.2024.129251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Reactive oxygen species (ROS) play an important role in biological milieu. Recently, the rapid growth in our understanding of ROS and their promise in antibacterial applications has generated tremendous interest in the combination of ROS generators with bulk hydrogels. Hydrogels represent promising supporters for ROS generators and can locally confine the nanoscale distribution of ROS generators whilst also promoting cellular integration via biomaterial-cell interactions. This review highlights recent efforts and progress in developing hydrogels derived from biological macromolecules with embedded ROS generators with a focus on antimicrobial applications. Initially, an overview of passive and active antibacterial hydrogels is provided to show the significance of proper hydrogel selection and design. These are followed by an in-depth discussion of the various approaches for ROS generation in hydrogels. The structural engineering and fabrication of ROS-laden hydrogels are given with a focus on their biomedical applications in therapeutics and diagnosis. Additionally, we discuss how a compromise needs to be sought between ROS generation and removal for maximizing the efficacy of therapeutic treatment. Finally, the current challenges and potential routes toward commercialization in this rapidly evolving field are discussed, focusing on the potential translation of laboratory research outcomes to real-world clinical outcomes.
Collapse
Affiliation(s)
- Lan Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China; Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Xin Fan
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Qianyun Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China; Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Pengxu Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China.
| | - Yuxing Han
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Runming Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Canyang Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Sanyang Han
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Tatsuhisa Tsuboi
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China.
| | - Jonathan Yeow
- Graduate School of Biomedical Engineering, The University of New South Wales Sydney, Sydney, NSW 2052, Australia.
| | - Hongya Geng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| |
Collapse
|
39
|
Browne S, Petit N, Quondamatteo F. Functionalised biomaterials as synthetic extracellular matrices to promote vascularisation and healing of diabetic wounds. Cell Tissue Res 2024; 395:133-145. [PMID: 38051351 DOI: 10.1007/s00441-023-03849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023]
Abstract
Diabetic foot ulcers (DFU) are a type of chronic wound that constitute one of the most serious and debilitating complications associated with diabetes. The lack of clinically efficacious treatments to treat these recalcitrant wounds can lead to amputations for those worst affected. Biomaterial-based approaches offer great hope in this regard, as they provide a template for cell infiltration and tissue repair. However, there is an additional need to treat the underlying pathophysiology of DFUs, in particular insufficient vascularization of the wound which significantly hampers healing. Thus, the addition of pro-angiogenic moieties to biomaterials is a promising strategy to promote the healing of DFUs and other chronic wounds. In this review, we discuss the potential of biomaterials as treatments for DFU and the approaches that can be taken to functionalise these biomaterials such that they promote vascularisation and wound healing in pre-clinical models.
Collapse
Affiliation(s)
- Shane Browne
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Dublin, Ireland.
- CÚRAM, Centre for Research in Medical Devices, University of Galway, H91 W2TY, Galway, Ireland.
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland.
| | - Noémie Petit
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Dublin, Ireland
| | - Fabio Quondamatteo
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Dublin, Ireland.
| |
Collapse
|
40
|
Lee S, Baek SW, Kim DS, Park SY, Kim JH, Jung JW, Lee JK, Park GM, Park CG, Han DK. Injectable Microparticle-containing hydrogel with controlled release of bioactive molecules for facial rejuvenation. Mater Today Bio 2024; 24:100890. [PMID: 38162281 PMCID: PMC10755792 DOI: 10.1016/j.mtbio.2023.100890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
The skin is the largest organ and a crucial barrier for protection against various intrinsic and extrinsic factors. As we age, the skin's components become more vulnerable to damage, forming wrinkles. Among different procedures, hyaluronic acid-based hydrogel has been extensively utilized for skin regeneration and reducing wrinkles. However, it has limitations like low retention and weak mechanical properties. In this study, we suggested the poly(l-lactic acid) (PLLA) microparticles containing alkaline magnesium hydroxide and nitric oxide-generating zinc oxide and rejuvenative hyaluronic acid (HA) hydrogels including these functional microparticles and asiaticoside, creating a novel delivery system for skin rejuvenation and regeneration. The fabricated rejuvenative hydrogels have exhibited enhanced biocompatibility, pH neutralization, reactive oxygen species scavenging, collagen biosynthesis, and angiogenesis capabilities in vitro and in vivo. Additionally, an excellent volume retention ability was demonstrated due to the numerous hydrogen bonds that formed between hyaluronic acid and asiaticoside. Overall, our advanced injectable hydrogel containing functional microparticles, with controlled release of bioactive molecules, has a significant potential for enhancing the regeneration and rejuvenation of the skin.
Collapse
Affiliation(s)
- Semi Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyenggi 13488, South Korea
| | - Seung-Woon Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyenggi 13488, South Korea
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyenggi 16419, South Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyenggi 16419, South Korea
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyenggi 13488, South Korea
| | - So-Yeon Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyenggi 13488, South Korea
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Jun Hyuk Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyenggi 13488, South Korea
| | - Ji-Won Jung
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyenggi 13488, South Korea
| | - Jun-Kyu Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyenggi 13488, South Korea
| | - Gi-Min Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyenggi 13488, South Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyenggi 16419, South Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyenggi 16419, South Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyenggi 13488, South Korea
| |
Collapse
|
41
|
Su H, Chen Y, Jing X, Zhao X, Sun H, Liu Z, Qiu Y, Zhang Z, Guan H, Meng L. Antimicrobial, Antioxidant, and Anti-Inflammatory Nanoplatform for Effective Management of Infected Wounds. Adv Healthc Mater 2024; 13:e2302868. [PMID: 37925607 DOI: 10.1002/adhm.202302868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/13/2023] [Indexed: 11/06/2023]
Abstract
Burn wound healing continues to pose significant challenges due to excessive inflammation, the risk of infection, and impaired tissue regeneration. In this regard, an antibacterial, antioxidant, and anti-inflammatory nanocomposite (called HPA) that combines a nanosystem using hexachlorocyclotriphosphazene and the natural polyphenol of Phloretin with silver nanoparticles (AgNPs) is developed. HPA effectively disperses AgNPs to mitigate any toxicity caused by aggregation while also showing the pharmacological activities of Phloretin. During the initial stage of wound healing, HPA rapidly releases silver ions from its surface to suppress bacterial activity. Moreover, these nanoparticles are pH-sensitive and degrade efficiently in the acidic infection microenvironment, gradually releasing Phloretin. This sustained release of Phloretin helps scavenge overexpressed reactive oxygen species in the infected microenvironment area, thus reducing the upregulation of pro-inflammatory cytokines. The antibacterial activity, free radical clearance, and regulation of inflammatory factors of HPA through in vitro experiments are validated. Additionally, its effects using an infectious burn mouse model in vivo are evaluated. HPA is found to promote collagen deposition and epithelialization in the wound area. With its synergistic antibacterial, antioxidant, and anti-inflammatory activities, as well as favorable biocompatibilities, HPA shows great promise as a safe and effective multifunctional nanoplatform for burn injury wound dressings.
Collapse
Affiliation(s)
- Huining Su
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yang Chen
- Department of Burns and Cutaneous Surgery, The First Affiliated Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Xunan Jing
- Department of Talent Highland, Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoping Zhao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Heng Sun
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhicheng Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yao Qiu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zuoliang Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hao Guan
- Department of Burns and Cutaneous Surgery, The First Affiliated Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Lingjie Meng
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Talent Highland, Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
42
|
Zhong Y, Zhang Y, Lu B, Deng Z, Zhang Z, Wang Q, Zhang J. Hydrogel Loaded with Components for Therapeutic Applications in Hypertrophic Scars and Keloids. Int J Nanomedicine 2024; 19:883-899. [PMID: 38293605 PMCID: PMC10824614 DOI: 10.2147/ijn.s448667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024] Open
Abstract
Hypertrophic scars and keloids are common fibroproliferative diseases following injury. Patients with pathologic scars suffer from impaired quality of life and psychological health due to appearance disfiguration, itch, pain, and movement disorders. Recently, the advancement of hydrogels in biomedical fields has brought a variety of novel materials, methods and therapeutic targets for treating hypertrophic scars and keloids, which exhibit broad prospects. This review has summarized current research on hydrogels and loaded components used in preventing and treating hypertrophic scars and keloids. These hydrogels attenuate keloid and hypertrophic scar formation and progression by loading organic chemicals, drugs, or bioactive molecules (such as growth factors, genes, proteins/peptides, and stem cells/exosomes). Among them, smart hydrogels (a very promising method for loading many types of bioactive components) are currently favoured by researchers. In addition, combining hydrogels and current therapy (such as laser or radiation therapy, etc.) could improve the treatment of hypertrophic scars and keloids. Then, the difficulties and limitations of the current research and possible suggestions for improvement are listed. Moreover, we also propose novel strategies for facilitating the construction of target multifunctional hydrogels in the future.
Collapse
Affiliation(s)
- Yixiu Zhong
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Youfan Zhang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Beibei Lu
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Zhenjun Deng
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Zhiwen Zhang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Qi Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
43
|
Huang Y, Chen Y, Cheng G, Li W, Zhang H, Yu C, Fang J, Zuo J, Li Y, Xu L, Sun D. A TA/Cu 2+ Nanoparticle Enhanced Carboxymethyl Chitosan-Based Hydrogel Dressing with Antioxidant Properties and Promoting Wound Healing. Int J Nanomedicine 2024; 19:231-245. [PMID: 38223881 PMCID: PMC10788072 DOI: 10.2147/ijn.s445844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024] Open
Abstract
Background As the first line of immune defense and the largest organ of body, skin is vulnerable to damage caused by surgery, burns, collisions and other factors. Wound healing in the skin is a long and complex physiological process that is influenced by a number of different factors. Proper wound care can greatly improve the speed of wound healing and reduce the generation of scars. However, traditional wound dressings (bandages, gauze, etc.) often used in clinical practice have a single function, lack of active ingredients and are limited in use. Hydrogels with three-dimensional network structure are a potential biomedical material because of their physical and chemical environment similar to extracellular matrix. In particular, hydrogel dressings with low price, good biocompatibility, degradability, antibacterial and angiogenic activity are favored by the public. Methods Here, a carboxymethyl chitosan-based hydrogel dressing (CMCS-TA/Cu2+) reinforced by copper ion crosslinked tannic acid (TA/Cu2+) nanoparticles was developed. This study investigated the physical and chemical characteristics, cytotoxicity, and angiogenesis of TA/Cu2+ nanoparticles and CMCS-TA/Cu2+ hydrogels. Furthermore, a full-thickness skin defect wound model was employed to assess the in vivo wound healing capacity of hydrogel dressings. Results The introduction of TA/Cu2+ nanoparticles not only could increase the mechanical properties of the hydrogel but also continuously releases copper ions to promote cell migration (the cell migration could reach 92% at 48 h) and tubule formation, remove free radicals and promote wound healing (repair rate could reach 90% at 9 days). Conclusion Experiments have proved that CMCS-TA/Cu2+ hydrogel has good cytocompatibility, antioxidant and wound healing ability, providing an advantageous solution for skin repair.
Collapse
Affiliation(s)
- Yongjun Huang
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Yong Chen
- Department of Orthopedics, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, People’s Hospital, Qingyuan, 511518, People’s Republic of China
| | - Guoyun Cheng
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Wenqiang Li
- Engineering Technology Research Center for Sports Assistive Devices of Guangdong, Guangzhou Sport University, Guangzhou, 510500, People’s Republic of China
| | - Hongan Zhang
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
- The Second Clinical School of Medicine, Southern Medical University, Guangzhou, 510260, People’s Republic of China
| | - Chaoqun Yu
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Jia Fang
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Jieyi Zuo
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Ying Li
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Lei Xu
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Dawei Sun
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| |
Collapse
|
44
|
Kohlhauser M, Tuca A, Kamolz LP. The efficacy of adipose-derived stem cells in burn injuries: a systematic review. Cell Mol Biol Lett 2024; 29:10. [PMID: 38182971 PMCID: PMC10771009 DOI: 10.1186/s11658-023-00526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Burn injuries can be associated with prolonged healing, infection, a substantial inflammatory response, extensive scarring, and eventually death. In recent decades, both the mortality rates and long-term survival of severe burn victims have improved significantly, and burn care research has increasingly focused on a better quality of life post-trauma. However, delayed healing, infection, pain and extensive scar formation remain a major challenge in the treatment of burns. ADSCs, a distinct type of mesenchymal stem cells, have been shown to improve the healing process. The aim of this review is to evaluate the efficacy of ADSCs in the treatment of burn injuries. METHODS A systematic review of the literature was conducted using the electronic databases PubMed, Web of Science and Embase. The basic research question was formulated with the PICO framework, whereby the usage of ADSCs in the treatment of burns in vivo was determined as the fundamental inclusion criterion. Additionally, pertinent journals focusing on burns and their treatment were screened manually for eligible studies. The review was registered in PROSPERO and reported according to the PRISMA statement. RESULTS Of the 599 publications screened, 21 were considered relevant to the key question and were included in the present review. The included studies were almost all conducted on rodents, with one exception, where pigs were investigated. 13 of the studies examined the treatment of full-thickness and eight of deep partial-thickness burn injuries. 57,1 percent of the relevant studies have demonstrated that ADSCs exhibit immunomodulatory effects during the inflammatory response. 16 studies have shown improved neovascularisation with the use of ADSCs. 14 studies report positive influences of ADSCs on granulation tissue formation, while 11 studies highlight their efficacy in promoting re-epithelialisation. 11 trials demonstrated an improvement in outcomes during the remodelling phase. CONCLUSION In conclusion, it appears that adipose-derived stem cells demonstrate remarkable efficacy in the field of regenerative medicine. However, the usage of ADSCs in the treatment of burns is still at an early experimental stage, and further investigations are required in order to examine the potential usage of ADSCs in future clinical burn care.
Collapse
Affiliation(s)
- Michael Kohlhauser
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria.
| | - Alexandru Tuca
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- Department of Surgery, State Hospital Güssing, Güssing, Austria
| | - Lars-Peter Kamolz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria
| |
Collapse
|
45
|
Keshavarz R, Olsen S, Almeida B. Using biomaterials to improve mesenchymal stem cell therapies for chronic, nonhealing wounds. Bioeng Transl Med 2024; 9:e10598. [PMID: 38193114 PMCID: PMC10771568 DOI: 10.1002/btm2.10598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 01/10/2024] Open
Abstract
Historically, treatment of chronic, nonhealing wounds has focused on managing symptoms using biomaterial-based wound dressings, which do not adequately address the underlying clinical issue. Mesenchymal stem cells (MSCs) are a promising cell-based therapy for the treatment of chronic, nonhealing wounds, yet inherent cellular heterogeneity and susceptibility to death during injection limit their clinical use. Recently, researchers have begun to explore the synergistic effects of combined MSC-biomaterial therapies, where the biomaterial serves as a scaffold to protect the MSCs and provides physiologically relevant physicochemical cues that can direct MSC immunomodulatory behavior. In this review, we highlight recent progress in this field with a focus on the most commonly used biomaterials, classified based on their source, including natural biomaterials, synthetic biomaterials, and the combination of natural and synthetic biomaterials. We also discuss current challenges regarding the clinical translation of these therapies, as well as a perspective on the future outlook of the field.
Collapse
Affiliation(s)
- Romina Keshavarz
- Department of Chemical and Biomolecular EngineeringClarkson UniversityPotsdamNew YorkUSA
| | - Sara Olsen
- Department of Chemical and Biomolecular EngineeringClarkson UniversityPotsdamNew YorkUSA
| | - Bethany Almeida
- Department of Chemical and Biomolecular EngineeringClarkson UniversityPotsdamNew YorkUSA
| |
Collapse
|
46
|
Chelminiak-Dudkiewicz D, Machacek M, Dlugaszewska J, Wujak M, Smolarkiewicz-Wyczachowski A, Bocian S, Mylkie K, Goslinski T, Marszall MP, Ziegler-Borowska M. Fabrication and characterization of new levan@CBD biocomposite sponges as potential materials in natural, non-toxic wound dressing applications. Int J Biol Macromol 2023; 253:126933. [PMID: 37722631 DOI: 10.1016/j.ijbiomac.2023.126933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Wound healing is a complex process; therefore, new dressings are frequently required to facilitate it. In this study, porous bacterial levan-based sponges containing cannabis oil (Lev@CBDs) were prepared and fully characterized. The sponges exhibited a suitable swelling ratio, proper water vapor transmission rate, sufficient thermal stability, desired mechanical properties, and good antioxidant and anti-inflammatory properties. The obtained Lev@CBD materials were evaluated in terms of their interaction with proteins, human serum albumin and fibrinogen, of which fibrinogen revealed the highest binding effect. Moreover, the obtained biomaterials exhibited antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, as well as being non-hemolytic material as indicated by hemolysis tests. Furthermore, the sponges were non-toxic and compatible with L929 mouse fibroblasts and HDF cells. Most significantly, the levan sponge with the highest content of cannabis oil, in comparison to others, retained its non-hemolytic, anti-inflammatory, and antimicrobial properties after prolonged storage in a climate chamber at a constant temperature and relative humidity. The designed sponges have conclusively proven their beneficial physicochemical properties and, at the preliminary stage, biocompatibility as well, and therefore can be considered a promising material for wound dressings in future in vivo applications.
Collapse
Affiliation(s)
- Dorota Chelminiak-Dudkiewicz
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland.
| | - Miloslav Machacek
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Akademika Heyrovskeho 1203, 500-05 Hradec Kralove, Czech Republic
| | - Jolanta Dlugaszewska
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Magdalena Wujak
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Aleksander Smolarkiewicz-Wyczachowski
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Szymon Bocian
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Kinga Mylkie
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - T Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 10, 60-780 Poznan, Poland
| | - Michal P Marszall
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Marta Ziegler-Borowska
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland.
| |
Collapse
|
47
|
Wang S, Wu S, Yang Y, Zhang J, Wang Y, Zhang R, Yang L. Versatile Hydrogel Dressings That Dynamically Regulate the Healing of Infected Deep Burn Wounds. Adv Healthc Mater 2023; 12:e2301224. [PMID: 37657086 DOI: 10.1002/adhm.202301224] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Severe burns threaten patient lives due to pain, inflammation, bacterial infection, and scarring. Most burn dressings that are commonly used perform a single function and are not well suited for the management of deep burns. Therefore, a multifunctional antimicrobial peptide- and stem cell-loaded macroporous hydrogel that can fight bacterial infection and regulate wound healing progression by temporally regulating cytokine production by internal stem cells is developed. The macroporous skeletal hydrogel is manufactured via the cryogenic gelation of hyaluronic acid (cryogel). Based on the oxidative polymerization reaction of dopamine, the antimicrobial peptide DP7 is immobilized on the surface of the cryogel (DA7CG). Placental mesenchymal stem cells (PMSCs) are then packaged inside the macroporous hydrogel (DA7CG@C). According to the results of in vitro and in vivo experiments, during the inflammatory phase, DP7 inhibits infection and modulates inflammation; during the proliferative phase, DA7CG@C accelerates the regeneration of skin, blood vessels, and hair follicles via internal stem cells; and during the remodeling phase, DA7CG@C contributes to extracellular matrix remodeling due to the ability of DP7 to regulate the paracrine secretion of PMSCs, synergistically promoting scar-free healing. DA7CG@C can participate in all phases of wound healing; therefore, it is a promising dressing for burn treatment.
Collapse
Affiliation(s)
- Shihan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Siwen Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuling Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiani Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
48
|
Ahmadpour F, Salim MM, Esmailinejad MR, Razei A, Talebi S, Rasouli HR. Comparison of the effects of human fetal umbilical cord-derived hyaluronic acid and fibroblast-derived exosomes on wound healing in rats. Burns 2023; 49:1983-1989. [PMID: 37357060 DOI: 10.1016/j.burns.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/19/2023] [Accepted: 05/06/2023] [Indexed: 06/27/2023]
Abstract
INTRODUCTION Exosomes and hyaluronic acid influence tissue regeneration and may be used as an alternative to more conventional wound treatment methods. This study compared how well hyaluronic acid from the human umbilical cord and exosomes from fibroblast cells heal burn wounds in a preclinical model. METHODS Ninety-six male Westar rats were used and allocated into four groups: The treatment group received 10% hyaluronic acid (HA); the treatment group received 300 l of exosome solution (EX); the treatment group received phenytoin (PC); the negative control group received no treatment (NC). The wound healing process was evaluated after 3, 6, 9, and 12 days. Histopathological analysis was done on the skin biopsy taken from the wounds. Re-epithelialization, inflammatory cells (PMNs), lymphocytes (LYMs), granulation tissue, collagen maturation (fibrosis), and eschar formation parameters were assessed for histopathological evaluation. On a scale from 0 to 4, each parameter received a score. RESULTS Compared to the PC and NC groups, the median score for re-epithelialization was greater in the HA and EX groups (P < 0.05). At three days, PMN abundance distinguished the PC and NC groups from the HA and EX groups (P < 0.01). Compared to the PC and NC groups, the HA and EX groups had a lower median LYM score (P < 0.01). We found no statistical difference between the four groups for granulation tissue and fibrosis (P > 0.05). The EX group had a lower average score for eschar formation than the PC, NC, and HA groups (P < 0.01). The HA and EX groups demonstrated faster healing in the clinical and microscopic examinations than the NC and PC groups. CONCLUSION The results showed that hyaluronic acid and exosomes improved wound healing. Also, the study demonstrated that hyaluronic acid has better effects in the re-epithelization. The exosome was more effective than HA in eschar formation. Both compounds were more influential in the PMNs and LYMs parameters than other groups. The combination of both compounds should be assessed further to achieve better therapeutic effects on wound healing.
Collapse
Affiliation(s)
- Fathollah Ahmadpour
- Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Esmailinejad
- Molecular Biology Research Center, System Biology and Poising Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Razei
- Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Samira Talebi
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Hamid Reza Rasouli
- Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Radzikowska-Büchner E, Łopuszyńska I, Flieger W, Tobiasz M, Maciejewski R, Flieger J. An Overview of Recent Developments in the Management of Burn Injuries. Int J Mol Sci 2023; 24:16357. [PMID: 38003548 PMCID: PMC10671630 DOI: 10.3390/ijms242216357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
According to the World Health Organization (WHO), around 11 million people suffer from burns every year, and 180,000 die from them. A burn is a condition in which heat, chemical substances, an electrical current or other factors cause tissue damage. Burns mainly affect the skin, but can also affect deeper tissues such as bones or muscles. When burned, the skin loses its main functions, such as protection from the external environment, pathogens, evaporation and heat loss. Depending on the stage of the burn, the patient's condition and the cause of the burn, we need to choose the most appropriate treatment. Personalization and multidisciplinary collaboration are key to the successful management of burn patients. In this comprehensive review, we have collected and discussed the available treatment options, focusing on recent advances in topical treatments, wound cleansing, dressings, skin grafting, nutrition, pain and scar tissue management.
Collapse
Affiliation(s)
- Elżbieta Radzikowska-Büchner
- Department of Plastic, Reconstructive and Maxillary Surgery, National Medical Institute of the Ministry of the Interior and Administration, Wołoska 137 Street, 02-507 Warszawa, Poland;
| | - Inga Łopuszyńska
- Department of Plastic, Reconstructive and Maxillary Surgery, National Medical Institute of the Ministry of the Interior and Administration, Wołoska 137 Street, 02-507 Warszawa, Poland;
| | - Wojciech Flieger
- Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4 Street, 20-090 Lublin, Poland;
| | - Michał Tobiasz
- Department of Plastic Surgery, Reconstructive Surgery and Burn Treatment, Medical University of Lublin, Krasnystawska 52 Street, 21-010 Łęczna, Poland;
| | - Ryszard Maciejewski
- Faculty of Medicine, University of Warsaw, Żwirki i Wigury 101 Street, 02-089 Warszawa, Poland;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A Street, 20-093 Lublin, Poland
| |
Collapse
|
50
|
Gu R, Zhou H, Zhang Z, Lv Y, Pan Y, Li Q, Shi C, Wang Y, Wei L. Research progress related to thermosensitive hydrogel dressings in wound healing: a review. NANOSCALE ADVANCES 2023; 5:6017-6037. [PMID: 37941954 PMCID: PMC10629053 DOI: 10.1039/d3na00407d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/27/2023] [Indexed: 11/10/2023]
Abstract
Wound healing is a dynamic and complex process in which the microenvironment at the wound site plays an important role. As a common material for wound healing, dressings accelerate wound healing and prevent external wound infections. Hydrogels have become a hot topic in wound-dressing research because of their high water content, good biocompatibility, and adjustable physical and chemical properties. Intelligent hydrogel dressings have attracted considerable attention because of their excellent environmental responsiveness. As smart polymer hydrogels, thermosensitive hydrogels can respond to small temperature changes in the environment, and their special properties make them superior to other hydrogels. This review mainly focuses on the research progress in thermosensitive intelligent hydrogel dressings for wound healing. Polymers suitable for hydrogel formation and the appropriate molecular design of the hydrogel network to achieve thermosensitive hydrogel properties are discussed, followed by the application of thermosensitive hydrogels as wound dressings. We also discuss the future perspectives of thermosensitive hydrogels as wound dressings and provide systematic theoretical support for wound healing.
Collapse
Affiliation(s)
- Ruting Gu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Haiqing Zhou
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Zirui Zhang
- Emergency Departments, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Yun Lv
- School of Nursing, Qingdao University Qingdao 266000 China
| | - Yueshuai Pan
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Qianqian Li
- Ophthalmology Department, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Changfang Shi
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Yanhui Wang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Lili Wei
- Office of the Dean, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| |
Collapse
|