1
|
Liu X, Zhang L, Li S, Xing L, Ni M, Huang M, Huang Y. Harnessing Surface Hydrophilicity of Inhalable Nanoparticles for Precision Delivery of Glucagon-like Peptide-1 Receptor Agonists or Anti-Asthmatic Therapeutics. ACS NANO 2025. [PMID: 40490304 DOI: 10.1021/acsnano.5c05745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Rational adjustment of surface physicochemical properties of inhalable nanocarriers significantly influences their in vivo fate during pulmonary delivery. Among these, surface hydrophilicity/hydrophobicity has been recognized as a critical factor in the transmucosal process. However, the impacts of surface hydrophilicity/hydrophobicity on the transcellular performance and ultimate therapeutic effects of pulmonary-delivered nanosystems still remain unelucidated. In this study, we developed a series of liposomes with varying surface hydrophilicity to investigate the effect of surface properties on both local and systemic drug delivery. Interestingly, low-hydrophilic liposomes exhibited enhanced systemic absorption, whereas high-hydrophilic liposomes demonstrated prolonged pulmonary residence after inhalation. To validate this principle, we applied two disease models. In a type II diabetes mellitus model, low hydrophilic liposomes loaded with GLP-1 receptor agonists (Liraglutide or Semaglutide) showed excellent systemic drug delivery and hypoglycemic effects. In an OVA-induced allergic asthma model, budesonide-loaded high hydrophilic liposomes significantly alleviated symptoms while reducing dosing frequency. Mechanistic studies further revealed that liposomes with lower surface hydrophilicity could enhance the transcellular transport efficiency of the drug through alveolar epithelial cells, while those with higher surface hydrophilicity prolonged the pulmonary residence of the drug by decreasing alveolar epithelium transportation and the avoidance of macrophage clearance. Lastly, we evaluated the biocompatibility of these liposomes following inhalation. Overall, tuning the surface hydrophilicity/hydrophobicity of inhalable nanocarriers to suit local or systemic delivery goals offers valuable insights for the rational design of advanced pulmonary delivery systems.
Collapse
Affiliation(s)
- Xi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lie Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Sa Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Liyun Xing
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Mingjie Ni
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Minyi Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Hou J, Xue Z, Chen Y, Li J, Yue X, Zhang Y, Gao J, Hao Y, Shen J. Development of Stimuli-Responsive Polymeric Nanomedicines in Hypoxic Tumors and Their Therapeutic Promise in Oral Cancer. Polymers (Basel) 2025; 17:1010. [PMID: 40284275 PMCID: PMC12030766 DOI: 10.3390/polym17081010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Hypoxic tumors pose considerable obstacles to cancer treatment, as diminished oxygen levels can impair drug effectiveness and heighten therapeutic resistance. Oral cancer, a prevalent malignancy, encounters specific challenges owing to its intricate anatomical structure and the technical difficulties in achieving complete resection, thereby often restricting treatment efficacy. The impact of hypoxia is particularly critical in influencing both the treatment response and prognosis of oral cancers. This article summarizes and examines the potential of polymer nanomedicines to address these challenges. By engineering nanomedicines that specifically react to the hypoxic tumor microenvironment, these pharmaceuticals can markedly enhance targeting precision and therapeutic effectiveness. Polymer nanomedicines enhance therapeutic efficacy while reducing side effects by hypoxia-targeted accumulation. The article emphasizes that these nanomedicines can overcome the drug resistance frequently observed in hypoxic tumors by improving the delivery and bioavailability of anticancer agents. Furthermore, this review elucidates the design and application of polymer nanomedicines for treating hypoxic tumors, highlighting their transformative potential in cancer therapy. Finally, this article gives an outlook on stimuli-responsive polymeric nanomedicines in the treatment of oral cancer.
Collapse
Affiliation(s)
- Jialong Hou
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China; (J.H.); (Z.X.)
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Zhijun Xue
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China; (J.H.); (Z.X.)
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Yao Chen
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China; (J.H.); (Z.X.)
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Jisen Li
- Tianjin Key Laboratory for Disaster Medicine Technology, Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China;
| | - Xin Yue
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Ying Zhang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Jing Gao
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Yonghong Hao
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
- The Second Clinical Division, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Jing Shen
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| |
Collapse
|
3
|
Kang ZY, Xuan NX, Zhou QC, Huang QY, Yu MJ, Zhang GS, Cui W, Zhang ZC, Du Y, Tian BP. Targeting alveolar epithelial cells with lipid micelle-encapsulated necroptosis inhibitors to alleviate acute lung injury. Commun Biol 2025; 8:573. [PMID: 40188179 PMCID: PMC11972349 DOI: 10.1038/s42003-025-08010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 03/27/2025] [Indexed: 04/07/2025] Open
Abstract
Acute lung injury (ALI) or its more severe form, acute respiratory distress syndrome (ARDS), represents a critical condition characterized by extensive inflammation within the airways. Necroptosis, a form of cell death, has been implicated in the pathogenesis of various inflammatory diseases. However, the precise characteristics and mechanisms of necroptosis in ARDS remain unclear. Thus, our study seeks to elucidate the specific alterations and regulatory factors associated with necroptosis in ARDS and to identify potential therapeutic targets for the disease. We discovered that necroptosis mediates the progression of ALI through the activation and formation of the RIPK1/RIPK3/MLKL complex. Moreover, we substantiated the involvement of both MYD88 and TRIF in the activation of the TLR4 signaling pathway in ALI. Furthermore, we have developed a lipid micelle-encapsulated drug targeting MLKL in alveolar type II epithelial cells and successfully applied it to treat ALI in mice. This targeted nanoparticle selectively inhibited necroptosis, thereby mitigating epithelial cell damage and reducing inflammatory injury. Our study delves into the specific mechanisms of necroptosis in ALI and proposes novel targeted therapeutic agents, presenting innovative strategies for the management of ARDS.
Collapse
Affiliation(s)
- Zhi-Ying Kang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Nan-Xia Xuan
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Qi-Chao Zhou
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Qian-Yu Huang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Meng-Jia Yu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Gen-Sheng Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Wei Cui
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Zhao-Cai Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| | - Yang Du
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| | - Bao-Ping Tian
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
4
|
Li Z, Lei H, Hu J, Zhou T, Yuan S, Ma X, Zhu Y, Liu C, Wang D, Wu Y, Xu S. Inhaled pH-Responsive polymyxin B-loaded albumin nanoparticles against pneumonia caused by carbapenem resistant Klebsiella pneumoniae. Mater Today Bio 2025; 31:101590. [PMID: 40104651 PMCID: PMC11919421 DOI: 10.1016/j.mtbio.2025.101590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 01/16/2025] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
The pneumonia induced by carbapenem resistant Klebsiella pneumoniae (CRKP) has high morbidity and mortality. Among the antibiotics currently available, polymyxin B (PMB) is considered to be the last line of defense. Routine intravenous administration of PMB has many problems, such as severe neurotoxicity and nephrotoxicity. In this study, a novel inhaled PMB-loaded albumin nanoparticles (PEG-pHSA@PMB) capable of penetrating airway mucus and responding to the infection microenvironment is constructed. An acid-responsive functional molecule (PEBA) and NH2-PEG-SH are linked to the surface of human serum albumin (HSA) via the conjugation reaction. Subsequently, PMB is loaded through electrostatic interactions to yield PEG-pHSA@PMB. The sulfhydryl groups of PEG-pHSA@PMB interact with mucins to help penetrate mucus after inhaled. In an acidic environment, the protonation of the tertiary amino groups within PEG-pHSA@PMB causes the charge alteration, which leads to the release of PMB. It demonstrated excellent mucus permeability, potent bactericidal activity, and superior bacteriostatic effects compared to sole PMB. Inhalation of PEG-pHSA@PMB significantly reduced the bacterial load in the lungs of mice with CRKP pneumonia, alleviating inflammatory response. Moreover, PEG-pHSA@PMB exhibited good cytocompatibility and biosafety. The novel strategy of the inhalation drug delivery system is promising for the treatment of pneumonia caused by drug-resistant bacteria.
Collapse
Affiliation(s)
- Ziling Li
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
- Key Laboratory of Respiratory Diseases of National Health Commission, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, Hubei Province, China
| | - Huiling Lei
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei Province, China
| | - Jiannan Hu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
- Key Laboratory of Respiratory Diseases of National Health Commission, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, Hubei Province, China
| | - Tong Zhou
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei Province, China
| | - Shuaiqi Yuan
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei Province, China
| | - Xinyue Ma
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
- Key Laboratory of Respiratory Diseases of National Health Commission, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, Hubei Province, China
| | - Yunfei Zhu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
- Key Laboratory of Respiratory Diseases of National Health Commission, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, Hubei Province, China
| | - Chao Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
- Key Laboratory of Respiratory Diseases of National Health Commission, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, Hubei Province, China
| | - Decai Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
- Key Laboratory of Respiratory Diseases of National Health Commission, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, Hubei Province, China
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei Province, China
| | - Shuyun Xu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
- Key Laboratory of Respiratory Diseases of National Health Commission, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, Hubei Province, China
| |
Collapse
|
5
|
Bao Z, Kim J, Kwok C, Le Devedec F, Allen C. A dataset on formulation parameters and characteristics of drug-loaded PLGA microparticles. Sci Data 2025; 12:364. [PMID: 40025040 PMCID: PMC11873201 DOI: 10.1038/s41597-025-04621-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/12/2025] [Indexed: 03/04/2025] Open
Abstract
Polymer microparticles (MPs) are widely used to create long-acting injectable formulations due to their ability to enable sustained drug release. This feature can significantly benefit chronic disease management by reducing dosing frequency and improving patient adherence. To support the design and development of polymer MPs, we have compiled a dataset on MPs formed from poly(lactide-co-glycolide) (PLGA), the most commonly used polymer in commercial MP drug products. This dataset, derived from the literature, covers 321 in vitro release studies involving 89 different drugs. It aims to streamline future MP development by providing a reference for the current PLGA MP design space and supporting data-driven approaches such as machine learning. Published with open access, this dataset encourages broad utilization and aims to expand the range of available MP formulations.
Collapse
Affiliation(s)
- Zeqing Bao
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
- Acceleration Consortium, Toronto, ON, M5S 3H6, Canada
| | - Jongwhi Kim
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Candice Kwok
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | | | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
- Acceleration Consortium, Toronto, ON, M5S 3H6, Canada.
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada.
| |
Collapse
|
6
|
Yan R, Zou C, Yang X, Zhuang W, Huang Y, Zheng X, Hu J, Liao L, Yao Y, Sun X, Hu WW. Nebulized inhalation drug delivery: clinical applications and advancements in research. J Mater Chem B 2025; 13:821-843. [PMID: 39652178 DOI: 10.1039/d4tb01938e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Nebulized inhalation administration refers to the dispersion of drugs into small droplets suspended in the gas through a nebulized device, which are deposited in the respiratory tract by inhalation, to achieve the local therapeutic effect of the respiratory tract. Compared with other drug delivery methods, nebulized inhalation has the advantages of fast effect, high local drug concentration, less dosage, convenient application and less systemic adverse reactions, and has become one of the main drug delivery methods for the treatment of respiratory diseases. In this review, we first discuss the characteristics of nebulized inhalation, including its principles and influencing factors. Next, we compare the advantages and disadvantages of different types of nebulizers. Finally, we explore the clinical applications and recent research developments of nebulized inhalation therapy. By delving into these aspects, we aim to gain a deeper understanding of its pivotal role in contemporary medical treatment.
Collapse
Affiliation(s)
- Ruyi Yan
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Chang Zou
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xiaohang Yang
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Weihua Zhuang
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yushi Huang
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xiuli Zheng
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jie Hu
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Lingni Liao
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yongchao Yao
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xuping Sun
- High Altitude Medical Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Wenchuang Walter Hu
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
7
|
Zheng H, Li J, Leung SSY. Inhalable polysorbates stabilized nintedanib nanocrystals to facilitate pulmonary nebulization and alveolar macrophage evasion. BIOMATERIALS ADVANCES 2025; 166:214084. [PMID: 39471574 DOI: 10.1016/j.bioadv.2024.214084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
Pulmonary delivery of nintedanib has noticeable advantages over the current oral administration in managing idiopathic pulmonary fibrosis (IPF). However, it remains a challenge to construct an efficient lung delivery system for insoluble nintedanib to resist nebulization instabilities and alveolar macrophage clearance. Herein, we attempted to develop nintedanib as inhalable nanocrystals stabilized with polysorbates. Different types of polysorbates (polysorbate 20, 40, 60, 80) and various drug-surfactant molar ratios (DSR = 10, 30, 60) were screened to determine the optimal nintedanib nanocrystal formulation. Most formulations (except those stabilized by polysorbate 40) could tailor nintedanib nanocrystals with sizes around 600 nm, and the nebulization-caused drug loss could be significantly reduced when DSR increased to 60. Meanwhile, all nanocrystals boosted the in vitro drug dissolution rate and improved the aerosol performance of nintedanib. Although nebulization-caused particle aggregation was found in most formulations, the nanocrystal stabilized with polysorbate 80 at DSR 60 presented no apparent size change after nebulization. This formulation exhibited superior alveolar macrophage evasion, enhanced fibroblast cluster infiltration, and improved fibroblast cluster inhibition compared with other formulations, indicating its significant potential for pulmonary nintedanib delivery. Overall, this study explored the potential of polysorbates in stabilizing nintedanib nanocrystals for nebulization and proposed practical solutions to transfer nintedanib from oral to lung delivery.
Collapse
Affiliation(s)
- Huangliang Zheng
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jiaqi Li
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | |
Collapse
|
8
|
Wu L, Xu W, Jiang H, Yang M, Cun D. Respiratory delivered vaccines: Current status and perspectives in rational formulation design. Acta Pharm Sin B 2024; 14:5132-5160. [PMID: 39807330 PMCID: PMC11725141 DOI: 10.1016/j.apsb.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/20/2024] [Accepted: 08/18/2024] [Indexed: 01/16/2025] Open
Abstract
The respiratory tract is susceptible to various infections and can be affected by many serious diseases. Vaccination is one of the most promising ways that prevent infectious diseases and treatment of some diseases such as malignancy. Direct delivery of vaccines to the respiratory tract could mimic the natural process of infection and shorten the delivery path, therefore unique mucosal immunity at the first line might be induced and the efficiency of delivery can be high. Despite considerable attempts at the development of respiratory vaccines, the rational formulation design still warrants attention, i.e., how the formulation composition, particle properties, formulation type (liquid or solid), and devices would influence the immune outcome. This article reviews the recent advances in the formulation design and development of respiratory vaccines. The focus is on the state of the art of delivering antigenic compounds through the respiratory tract, overcoming the pulmonary bio-barriers, enhancing delivery efficiencies of respiratory vaccines as well as maintaining the stability of vaccines during storage and use. The choice of devices and the influence of deposition sites on vaccine efficiencies were also reviewed.
Collapse
Affiliation(s)
- Lan Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Wenwen Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Huiyang Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
- School of Food and Drug, Shenzhen Polytechnic University, China, Shenzhen 518055, China
| |
Collapse
|
9
|
Wang B, Wang L, Yang Q, Zhang Y, Qinglai T, Yang X, Xiao Z, Lei L, Li S. Pulmonary inhalation for disease treatment: Basic research and clinical translations. Mater Today Bio 2024; 25:100966. [PMID: 38318475 PMCID: PMC10840005 DOI: 10.1016/j.mtbio.2024.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Pulmonary drug delivery has the advantages of being rapid, efficient, and well-targeted, with few systemic side effects. In addition, it is non-invasive and has good patient compliance, making it a highly promising drug delivery mode. However, there have been limited studies on drug delivery via pulmonary inhalation compared with oral and intravenous modes. This paper summarizes the basic research and clinical translation of pulmonary inhalation drug delivery for the treatment of diseases and provides insights into the latest advances in pulmonary drug delivery. The paper discusses the processing methods for pulmonary drug delivery, drug carriers (with a focus on various types of nanoparticles), delivery devices, and applications in pulmonary diseases and treatment of systemic diseases (e.g., COVID-19, inhaled vaccines, diagnosis of the diseases, and diabetes mellitus) with an updated summary of recent research advances. Furthermore, this paper describes the applications and recent progress in pulmonary drug delivery for lung diseases and expands the use of pulmonary drugs for other systemic diseases.
Collapse
Affiliation(s)
- Bin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Binzhou People's Hospital, Binzhou, 256610, Shandong, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Tang Qinglai
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lanjie Lei
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| |
Collapse
|
10
|
Sosnowski TR. Towards More Precise Targeting of Inhaled Aerosols to Different Areas of the Respiratory System. Pharmaceutics 2024; 16:97. [PMID: 38258107 PMCID: PMC10818612 DOI: 10.3390/pharmaceutics16010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Pharmaceutical aerosols play a key role in the treatment of lung disorders, but also systemic diseases, due to their ability to target specific areas of the respiratory system (RS). This article focuses on identifying and clarifying the influence of various factors involved in the generation of aerosol micro- and nanoparticles on their regional distribution and deposition in the RS. Attention is given to the importance of process parameters during the aerosolization of liquids or powders and the role of aerosol flow dynamics in the RS. The interaction of deposited particles with the fluid environment of the lung is also pointed out as an important step in the mass transfer of the drug to the RS surface. The analysis presented highlights the technical aspects of preparing the precursors to ensure that the properties of the aerosol are suitable for a given therapeutic target. Through an analysis of existing technical limitations, selected strategies aimed at enhancing the effectiveness of targeted aerosol delivery to the RS have been identified and presented. These strategies also include the use of smart inhaling devices and systems with built-in AI algorithms.
Collapse
Affiliation(s)
- Tomasz R Sosnowski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| |
Collapse
|
11
|
Zhang C, D'Angelo D, Buttini F, Yang M. Long-acting inhaled medicines: Present and future. Adv Drug Deliv Rev 2024; 204:115146. [PMID: 38040120 DOI: 10.1016/j.addr.2023.115146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Inhaled medicines continue to be an essential part of treatment for respiratory diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis. In addition, inhalation technology, which is an active area of research and innovation to deliver medications via the lung to the bloodstream, offers potential advantages such as rapid onset of action, enhanced bioavailability, and reduced side effects for local treatments. Certain inhaled macromolecules and particles can also end up in different organs via lymphatic transport from the respiratory epithelium. While the majority of research on inhaled medicines is focused on the delivery technology, particle engineering, combination therapies, innovations in inhaler devices, and digital health technologies, researchers are also exploring new pharmaceutical technologies and strategies to prolong the duration of action of inhaled drugs. This is because, in contrast to most inhaled medicines that exert a rapid onset and short duration of action, long-acting inhaled medicines (LAIM) improve not only the patient compliance by reducing the dosing frequency, but also the effectiveness and convenience of inhaled therapies to better manage patients' conditions. This paper reviews the advances in LAIM, the pharmaceutical technologies and strategies for developing LAIM, and emerging new inhaled modalities that possess a long-acting nature and potential in the treatment and prevention of various diseases. The challenges in the development of the future LAIM are also discussed where active research and innovations are taking place.
Collapse
Affiliation(s)
- Chengqian Zhang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Davide D'Angelo
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Mingshi Yang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016, Shenyang, China.
| |
Collapse
|
12
|
Chaudhary KR, Singh K, Singh C. Recent Updates in Inhalable Drug Delivery System against Various Pulmonary Diseases: Challenges and Future Perspectives. Curr Drug Deliv 2024; 21:1320-1345. [PMID: 37870055 DOI: 10.2174/0115672018265571231011093546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
In the current scenario, pulmonary disease has become a prime burden for morbidity and mortality alongside tremendous social and economic crises throughout the world. Numerous conventional drug delivery system and treatment approach targeting the respiratory region has been driven out. However, effective and accurate recovery has not been achieved yet. In this regard, nanotechnological- based inhalable drug delivery strategy including polymeric, lipidic, or metallic-based respirable microparticles plays an indispensable role in circumventing numerous challenges faced during traditional treatment. Excellent aerodynamic performance leads to enhanced lung targetability, reduced dosing frequency and hence systemic toxicities, as well as improved pharmaceutical attributes, and therefore pharmacokinetic profiles are interminable factors associated with nanotechnologicalbased inhalable delivery. In this review, we comprehensively explored recent advancements in nanotechnologically engineered inhalable formulations targeting each of the mentioned pulmonary diseases. Moreover, we systematically discussed possible respiratory or systemic toxicities about the indeterminate and undefined physicochemical characteristics of inhaled particles.
Collapse
Affiliation(s)
- Kabi Raj Chaudhary
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India
- Department of Research and Development, United Biotech [P] Ltd. Bagbania, Nalagarh, Solan, Himachal Pradesh, India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India
- Department of Pharmaceutical Sciences HNB Garhwal University, Madhi Chauras, Srinagar, Uttarakhand 246174, India
| |
Collapse
|
13
|
Zhang W, Sun XL, Yang Q, Guo Y, Cui Y, Xiang Y, Hu B, Wei J, Tu P. In situ forming of PEG-NH 2/dialdehyde starch Schiff-base hydrogels and their application in slow-release urea. Int J Biol Macromol 2024; 256:128355. [PMID: 37995790 DOI: 10.1016/j.ijbiomac.2023.128355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
In this study, a biodegradable Schiff-base hydrogel urea, possessing substantial water retention and certain slow-release ability was designed and synthesized. Firstly, dialdehyde starch (DAS) and amine-terminated polyethylene glycol (PEG-(NH2)2) were synthesized using potato starch and polyethylene glycol. Then, a novel Schiff-base hydrogel (SH) was prepared through the in-situ reaction between the aldehyde group of DAS and the amino group of PEG-(NH2)2. Three SH based slow-release urea, designated as SHU1, SHU2, and SHU3 and distinguished by varying urea content, were obtained using SH as the substrate. Several characterizations and tests were conducted to determine the structure, thermal properties, morphology, swelling properties, sustainable use, water retention, and biodegradation properties of SH. Additionally, the slow-release behavior of SHU was studied. SEM results revealed that SH possessed a porous three-dimensional network structure, with a maximum water absorption capacity of 4440 % ± 6.23 %. Compared to pure urea, SHU exhibited better slow-release performance after 30 days of release in soil, with SHU1 having a residual nitrogen content of specifically 36.01 ± 0.57 % of the initial nitrogen content. A pot experiment with pakchoi substantiated the water retention and plant growth promotion properties of SHU. This study demonstrated a straightforward method for the preparation of starch-based Schiff-base hydrogels as fertilizer carriers.
Collapse
Affiliation(s)
- Wenli Zhang
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiang Liao Sun
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Qian Yang
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanyuan Guo
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanjun Cui
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yongsheng Xiang
- Lanzhou Petrochemical research center, Petrochemical Research Institute, Petrochina, Lanzhou 730060, China.
| | - Bing Hu
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jia Wei
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Peng Tu
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
14
|
Yan X, Sha X. Nanoparticle-Mediated Strategies for Enhanced Drug Penetration and Retention in the Airway Mucosa. Pharmaceutics 2023; 15:2457. [PMID: 37896217 PMCID: PMC10610050 DOI: 10.3390/pharmaceutics15102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Airway mucus is a complex viscoelastic gel composed mainly of water, glycoproteins, lipids, enzymes, minerals, etc. Among them, glycoproteins are the main factors determining mucus's gel-like rheology. Airway mucus forms a protective barrier by secreting mucin, which represents a barrier for absorption, especially for more lipophilic drugs. It rapidly removes drugs from the airway through the physiological mucus clearance mechanism so drugs cannot remain in the lungs or reach the airway epithelial tissue for a long time. Significant progress has been made in enhancing drug lung deposition recently, but strategies are still needed to help drugs break through the lung mucosal barrier. Based on the physiopathological mechanisms of airway mucus, this paper reviews and summarizes strategies to enhance drug penetration and retention in the airway mucosa mediated by nano-delivery systems, including mucosal permeation systems, mucosal adhesion systems, and enzyme-modified delivery systems. On this basis, the potential and challenges of nano-delivery systems for improving airway mucus clearance are revealed. New ideas and approaches are provided for designing novel nano-delivery systems that effectively improve drug retention and penetration in the airway mucus layer.
Collapse
Affiliation(s)
- Xin Yan
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, Shanghai 201203, China;
| | - Xianyi Sha
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, Shanghai 201203, China;
- The Institutes of Integrative Medicine of Fudan University, 120 Urumqi Middle Road, Shanghai 200040, China
| |
Collapse
|
15
|
Shi C, Guo K, Zhang L, Guo Y, Feng Y, Cvijić S, Cun D, Yang M. In Vitro and In Vivo Evaluation of Inhalable Ciprofloxacin Sustained Release Formulations. Pharmaceutics 2023; 15:2287. [PMID: 37765256 PMCID: PMC10537253 DOI: 10.3390/pharmaceutics15092287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Respiratory antibiotics delivery has been appreciated for its high local concentration at the infection sites. Certain formulation strategies are required to improve pulmonary drug exposure and to achieve effective antimicrobial activity, especially for highly permeable antibiotics. This study aimed to investigate lung exposure to various inhalable ciprofloxacin (CIP) formulations with different drug release rates in a rat model. Four formulations were prepared, i.e., CIP-loaded PLGA micro-particles (CHPM), CIP microcrystalline dry powder (CMDP), CIP nanocrystalline dry powder (CNDP), and CIP spray-dried powder (CHDP), which served as a reference. The physicochemical properties, drug dissolution rate, and aerosolization performance of these powders were characterized in vitro. Pharmacokinetic profiles were evaluated in rats. All formulations were suitable for inhalation (mass median aerodynamic diameter < 5 µm). CIP in CHPM and CHDP was amorphous, whereas the drug in CMDP and CNDP remained predominantly crystalline. CHDP exhibited the fastest drug release rate, while CMDP and CNDP exhibited much slower drug release. In addition, CMDP and CNDP exhibited significantly higher in vivo lung exposure to CIP compared with CHDP and CHPM. This study suggests that lung exposure to inhaled drugs with high permeability is governed by drug release rate, implying that lung exposure of inhaled antibiotics could be improved by a sustained-release formulation strategy.
Collapse
Affiliation(s)
- Changzhi Shi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang 110016, China
| | - Kewei Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang 110016, China
| | - Li Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang 110016, China
| | - Yi Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang 110016, China
| | - Yu Feng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang 110016, China
| | - Sandra Cvijić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang 110016, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang 110016, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
16
|
Jung S, Heo S, Oh Y, Park K, Park S, Choi W, Kim YH, Jung SY, Hong J. Zwitterionic Inhaler with Synergistic Therapeutics for Reprogramming of M2 Macrophage to Pro-Inflammatory Phenotype. Adv Healthc Mater 2023; 12:e2300226. [PMID: 37166052 DOI: 10.1002/adhm.202300226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/03/2023] [Indexed: 05/12/2023]
Abstract
Myriad lung diseases are life threatening and macrophages play a key role in both physiological and pathological processes. Macrophages have each pro-/anti-inflammatory phenotype, and each lung disease can be aggravated by over-polarized macrophage. Therefore, development of a method capable of mediating the macrophage phenotype is one of the solutions for lung disease treatment. For mediating the phenotype of macrophages, the pulmonary delivery system (PDS) is widely used due to its advantages, such as high efficiency and accessibility of the lungs. However, it has a low drug delivery efficiency ironically because of the perfect lung defense system consisting of the mucus layer and airway macrophages. In this study, zwitterion-functionalized poly(lactide-co-glycolide) (PLGA) inhalable microparticles (ZwPG) are synthesized to increase the efficiency of the PDS. The thin layer of zwitterions formed on PLGA surface has high nebulizing stability and show high anti-mucus adhesion and evasion of macrophages. As a reprogramming agent for macrophages, ZwPG containing dexamethasone (Dex) and pirfenidone (Pir) are treated to over-polarized M2 macrophages. As a result, a synergistic effect of Dex/Pir induces reprogramming of M2 macrophage to pro-inflammatory phenotypes.
Collapse
Affiliation(s)
- Sungwon Jung
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sungeun Heo
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yoogyeong Oh
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyungtae Park
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sohyeon Park
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Woojin Choi
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yang-Hee Kim
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Se Yong Jung
- Division of Pediatric Cardiology, Department of Pediatrics, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jinkee Hong
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
17
|
Qiu S, Fu X, Shi Y, Zang H, Zhao Y, Qin Z, Lin G, Zhao X. Relaxin-Loaded Inhaled Porous Microspheres Inhibit Idiopathic Pulmonary Fibrosis and Improve Pulmonary Function Post-Bleomycin Challenges. Mol Pharm 2023; 20:3947-3959. [PMID: 37358639 DOI: 10.1021/acs.molpharmaceut.3c00111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) causes worsening pulmonary function, and no effective treatment for the disease etiology is available now. Recombinant Human Relaxin-2 (RLX), a peptide agent with anti-remodeling and anti-fibrotic effects, is a promising biotherapeutic candidate for musculoskeletal fibrosis. However, due to its short circulating half-life, optimal efficacy requires continuous infusion or repeated injections. Here, we developed the porous microspheres loading RLX (RLX@PMs) and evaluated their therapeutic potential on IPF by aerosol inhalation. RLX@PMs have a large geometric diameter as RLX reservoirs for a long-term drug release, but smaller aerodynamic diameter due to their porous structures, which were beneficial for higher deposition in the deeper lungs. The results showed a prolonged release over 24 days, and the released drug maintained its peptide structure and activity. RLX@PMs protected mice from excessive collagen deposition, architectural distortion, and decreased compliance after a single inhalation administration in the bleomycin-induced pulmonary fibrosis model. Moreover, RLX@PMs showed better safety than frequent gavage administration of pirfenidone. We also found RLX-ameliorated human myofibroblast-induced collagen gel contraction and suppressed macrophage polarization to the M2 type, which may be the reason for reversing fibrosis. Hence, RLX@PMs represent a novel strategy for the treatment of IPF and suggest clinical translational potential.
Collapse
Affiliation(s)
- Shengnan Qiu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medience, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China
| | - Xianglei Fu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medience, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China
| | - Yanbin Shi
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hengchang Zang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medience, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China
- National Medical Products Administration Key Laboratory for Technology Research and Evaluation of Drug Products, Shandong University, Jinan 250012, China
| | - Yunpeng Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan 250012, China
| | - Zhilong Qin
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guimei Lin
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medience, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China
- National Medical Products Administration Key Laboratory for Technology Research and Evaluation of Drug Products, Shandong University, Jinan 250012, China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
18
|
Lenders V, Koutsoumpou X, Phan P, Soenen SJ, Allegaert K, de Vleeschouwer S, Toelen J, Zhao Z, Manshian BB. Modulation of engineered nanomaterial interactions with organ barriers for enhanced drug transport. Chem Soc Rev 2023; 52:4672-4724. [PMID: 37338993 DOI: 10.1039/d1cs00574j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The biomedical use of nanoparticles (NPs) has been the focus of intense research for over a decade. As most NPs are explored as carriers to alter the biodistribution, pharmacokinetics and bioavailability of associated drugs, the delivery of these NPs to the tissues of interest remains an important topic. To date, the majority of NP delivery studies have used tumor models as their tool of interest, and the limitations concerning tumor targeting of systemically administered NPs have been well studied. In recent years, the focus has also shifted to other organs, each presenting their own unique delivery challenges to overcome. In this review, we discuss the recent advances in leveraging NPs to overcome four major biological barriers including the lung mucus, the gastrointestinal mucus, the placental barrier, and the blood-brain barrier. We define the specific properties of these biological barriers, discuss the challenges related to NP transport across them, and provide an overview of recent advances in the field. We discuss the strengths and shortcomings of different strategies to facilitate NP transport across the barriers and highlight some key findings that can stimulate further advances in this field.
Collapse
Affiliation(s)
- Vincent Lenders
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| | - Xanthippi Koutsoumpou
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| | - Philana Phan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Stefaan J Soenen
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Karel Allegaert
- Department of Hospital Pharmacy, Erasmus MC University Medical Center, CN Rotterdam, 3015, The Netherlands
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B3000 Leuven, Belgium
- Leuven Child and Youth Institute, KU Leuven, 3000 Leuven, Belgium
- Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Steven de Vleeschouwer
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jaan Toelen
- Leuven Child and Youth Institute, KU Leuven, 3000 Leuven, Belgium
- Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| |
Collapse
|
19
|
B Japiassu K, Fay F, Marengo A, Mendanha SA, Cailleau C, Louaguenouni Y, Wang Q, Denis S, Tsapis N, Nascimento TL, Lima EM, Fattal E. Hyaluronic acid-conjugated liposomes loaded with dexamethasone: a promising approach for the treatment of inflammatory diseases. Int J Pharm 2023; 639:122946. [PMID: 37044230 DOI: 10.1016/j.ijpharm.2023.122946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Dexamethasone is a well-known anti-inflammatory drug readily used to treat many lung diseases. However, its side effects and poor lower airway deposition and retention are significant limitations to its usage. In this work, we developed lipid nanoparticulate platforms loaded with dexamethasone and evaluated their behavior in inflammatory lung models in vitro and in vivo. Dexamethasone-loaded liposomes with an average diameter below 150 nm were obtained using a solvent injection method. Three different formulations were produced with a distinct surface coating (polyethylene glycol, hyaluronic acid, or a mixture of both) as innovative strategies to cross the pulmonary mucus layer and/or target CD44 expressed on alveolar proinflammatory macrophages. Interestingly, while electron paramagnetic spectroscopy showed that surface modifications did not induce any molecular changes in the liposomal membrane, drug loading analysis revealed that adding the hyaluronic acid in the bilayer led to a decrease of dexamethasone loading (from 3.0 to 1.7w/w%). In vitro experiments on LPS-activated macrophages demonstrated that the encapsulation of dexamethasone in liposomes, particularly in HA-bearing ones, improved its anti-inflammatory efficacy compared to the free drug. Subsequently, in vivo data revealed that while intratracheal administration of free dexamethasone led to an important inter-animals variation of efficacy, dexamethasone-loaded liposomes showed an improved consistency within the results. Our data indicate that encapsulating dexamethasone into lipid nanoparticles is a potent strategy to improve its efficacy after lung delivery.
Collapse
Affiliation(s)
- Kamila B Japiassu
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France; Center for RD&I in Pharmaceutical Nano/Technology (FarmaTec), Federal University of Goias, Goiania, 74605-220 Goias, Brazil
| | - Francois Fay
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Alessandro Marengo
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Sebastião A Mendanha
- Center for RD&I in Pharmaceutical Nano/Technology (FarmaTec), Federal University of Goias, Goiania, 74605-220 Goias, Brazil
| | - Catherine Cailleau
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Younès Louaguenouni
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Qinglin Wang
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Stéphanie Denis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Nicolas Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Thais L Nascimento
- Center for RD&I in Pharmaceutical Nano/Technology (FarmaTec), Federal University of Goias, Goiania, 74605-220 Goias, Brazil
| | - Eliana M Lima
- Center for RD&I in Pharmaceutical Nano/Technology (FarmaTec), Federal University of Goias, Goiania, 74605-220 Goias, Brazil
| | - Elias Fattal
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France.
| |
Collapse
|
20
|
PLGA-Based Micro/Nanoparticles: An Overview of Their Applications in Respiratory Diseases. Int J Mol Sci 2023; 24:ijms24054333. [PMID: 36901762 PMCID: PMC10002081 DOI: 10.3390/ijms24054333] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), are critical areas of medical research, as millions of people are affected worldwide. In fact, more than 9 million deaths worldwide were associated with respiratory diseases in 2016, equivalent to 15% of global deaths, and the prevalence is increasing every year as the population ages. Due to inadequate treatment options, the treatments for many respiratory diseases are limited to relieving symptoms rather than curing the disease. Therefore, new therapeutic strategies for respiratory diseases are urgently needed. Poly (lactic-co-glycolic acid) micro/nanoparticles (PLGA M/NPs) have good biocompatibility, biodegradability and unique physical and chemical properties, making them one of the most popular and effective drug delivery polymers. In this review, we summarized the synthesis and modification methods of PLGA M/NPs and their applications in the treatment of respiratory diseases (asthma, COPD, cystic fibrosis (CF), etc.) and also discussed the research progress and current research status of PLGA M/NPs in respiratory diseases. It was concluded that PLGA M/NPs are the promising drug delivery vehicles for the treatment of respiratory diseases due to their advantages of low toxicity, high bioavailability, high drug loading capacity, plasticity and modifiability. And at the end, we presented an outlook on future research directions, aiming to provide some new ideas for future research directions and hopefully to promote their widespread application in clinical treatment.
Collapse
|
21
|
Zhou W, Li B, Min R, Zhang Z, Huang G, Chen Y, Shen B, Zheng Q, Yue P. Mucus-penetrating dendritic mesoporous silica nanoparticle loading drug nanocrystal clusters to enhance permeation and intestinal absorption. Biomater Sci 2023; 11:1013-1030. [PMID: 36545798 DOI: 10.1039/d2bm01404a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiple gastrointestinal barriers (mucus clearance and epithelium barrier) are the main challenges in the oral administration of nanocarriers. To achieve efficient mucus penetration and epithelial absorption, a novel strategy based on mesoporous silica nanoparticles with dendritic superstructure, hydrophilicity, and nearly neutral-charged modification was designed. The mPEG covalently grafted dendritic mesoporous silica nanoparticles (mPEG-DMSNs) had a particle size of about 200 nm and a loading capacity of up to 50% andrographolide (AG) as a nanocrystal cluster in the mesoporous structure. This dual strategy of combining with the surface topography structure and hydrophilic modification maintained a high mucus permeability and showed an increase in cell absorption. The mPEG-DMSN formulation also exhibited effective transepithelial transport and intestinal tract distribution. The pharmacokinetics study demonstrated that compared with other AG formulations, the andrographolide nanocrystals-loaded mPEG-DMSN (AG@mPEG-DMSN) exhibited much higher bioavailability. Also, AG@mPEG-DMSN could significantly improve the in vitro and in vivo anti-inflammatory efficacy of AG. In summary, mPEG-DMSN offers an interesting strategy to overcome the mucus clearance and epithelium barriers of the gastrointestinal tract.
Collapse
Affiliation(s)
- Weicheng Zhou
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang 330004, China.
| | - Biao Li
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang 330004, China.
| | - Rongting Min
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang 330004, China.
| | - Zengzhu Zhang
- Department of Pharmaceutics, 908th Hospital of Joint Logistics Support Force of PLA, Nanchang 330000, China
| | - Guiting Huang
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang 330004, China.
| | - Yingchong Chen
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang 330004, China.
| | - Baode Shen
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang 330004, China.
| | - Qin Zheng
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang 330004, China.
| | - Pengfei Yue
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang 330004, China.
| |
Collapse
|
22
|
Mahar R, Chakraborty A, Nainwal N, Bahuguna R, Sajwan M, Jakhmola V. Application of PLGA as a Biodegradable and Biocompatible Polymer for Pulmonary Delivery of Drugs. AAPS PharmSciTech 2023; 24:39. [PMID: 36653547 DOI: 10.1208/s12249-023-02502-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Pulmonary administration of biodegradable polymeric formulation is beneficial in the treatment of various respiratory diseases. For respiratory delivery, the polymer must be non-toxic, biodegradable, biocompatible, and stable. Poly D, L-lactic-co-glycolic acid (PLGA) is a widely used polymer for inhalable formulations because of its attractive mechanical and processing characteristics which give great opportunities to pharmaceutical industries to formulate novel inhalable products. PLGA has many pharmaceutical applications and its biocompatible nature produces non-toxic degradation products. The degradation of PLGA takes place through the non-enzymatic hydrolytic breakdown of ester bonds to produce free lactic acid and glycolic acid. The biodegradation products of PLGA are eliminated in the form of carbon dioxide (CO2) and water (H2O) by the Krebs cycle. The biocompatible properties of PLGA are investigated in various in vivo and in vitro studies. The high structural integrity of PLGA particles provides better stability, excellent drug loading, and sustained drug release. This review provides detailed information about PLGA as an inhalable grade polymer, its synthesis, advantages, physicochemical properties, biodegradability, and biocompatible characteristics. The important formulation aspects that must be considered during the manufacturing of inhalable PLGA formulations and the toxicity of PLGA in the lungs are also discussed in this paper. Additionally, a thorough overview is given on the application of PLGA as a particulate carrier in the treatment of major respiratory diseases, such as cystic fibrosis, lung cancer, tuberculosis, asthma, and pulmonary hypertension.
Collapse
Affiliation(s)
- Riya Mahar
- School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, 248001, Uttarakhand, India
| | - Arpita Chakraborty
- School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, 248001, Uttarakhand, India
| | - Nidhi Nainwal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun, 248007, Uttarakhand, India.
| | - Richa Bahuguna
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Premnagar, Dehradun, 248007, Uttarakhand, India
| | - Meenakshi Sajwan
- Department of Pharmacy, GRD (PG) IMT, 214 Raipur Road, Dehradun, 248001, India
| | - Vikash Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun, 248007, Uttarakhand, India
| |
Collapse
|
23
|
Knap K, Kwiecień K, Reczyńska-Kolman K, Pamuła E. Inhalable microparticles as drug delivery systems to the lungs in a dry powder formulations. Regen Biomater 2022; 10:rbac099. [PMID: 36683752 PMCID: PMC9845529 DOI: 10.1093/rb/rbac099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 12/13/2022] Open
Abstract
Inhalation-administrated drugs remain an interesting possibility of addressing pulmonary diseases. Direct drug delivery to the lungs allows one to obtain high concentration in the site of action with limited systemic distribution, leading to a more effective therapy with reduced required doses and side effects. On the other hand, there are several difficulties in obtaining a formulation that would meet all the criteria related to physicochemical, aerodynamic and biological properties, which is the reason why only very few of the investigated systems can reach the clinical trial phase and proceed to everyday use as a result. Therefore, we focused on powders consisting of polysaccharides, lipids, proteins or natural and synthetic polymers in the form of microparticles that are delivered by inhalation to the lungs as drug carriers. We summarized the most common trends in research today to provide the best dry powders in the right fraction for inhalation that would be able to release the drug before being removed by natural mechanisms. This review article addresses the most common manufacturing methods with novel modifications, pros and cons of different materials, drug loading capacities with release profiles, and biological properties such as cytocompatibility, bactericidal or anticancer properties.
Collapse
Affiliation(s)
| | | | - Katarzyna Reczyńska-Kolman
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Krakow, Poland
| | | |
Collapse
|
24
|
Recent Advances in Nanomaterials for Asthma Treatment. Int J Mol Sci 2022; 23:ijms232214427. [PMID: 36430906 PMCID: PMC9696023 DOI: 10.3390/ijms232214427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease with complex mechanisms, and these patients often encounter difficulties in their treatment course due to the heterogeneity of the disease. Currently, clinical treatments for asthma are mainly based on glucocorticoid-based combination drug therapy; however, glucocorticoid resistance and multiple side effects, as well as the occurrence of poor drug delivery, require the development of more promising treatments. Nanotechnology is an emerging technology that has been extensively researched in the medical field. Several studies have shown that drug delivery systems could significantly improve the targeting, reduce toxicity and improve the bioavailability of drugs. The use of multiple nanoparticle delivery strategies could improve the therapeutic efficacy of drugs compared to traditional delivery methods. Herein, the authors presented the mechanisms of asthma development and current therapeutic methods. Furthermore, the design and synthesis of different types of nanomaterials and micromaterials for asthma therapy are reviewed, including polymetric nanomaterials, solid lipid nanomaterials, cell membranes-based nanomaterials, and metal nanomaterials. Finally, the challenges and future perspectives of these nanomaterials are discussed to provide guidance for further research directions and hopefully promote the clinical application of nanotherapeutics in asthma treatment.
Collapse
|
25
|
Self-assembled flagella protein nanofibers induce enhanced mucosal immunity. Biomaterials 2022; 288:121733. [PMID: 36038418 DOI: 10.1016/j.biomaterials.2022.121733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 12/28/2022]
Abstract
Nanofibers are potential vaccines or adjuvants for vaccination at the mucosal interface. However, how their lengths affect the mucosal immunity is not well understood. Using length-tunable flagella (self-assembled from a protein termed flagellin) as model protein nanofibers, we studied the mechanisms of their interaction with mucosal interface to induce immune responses length-dependently. Briefly, through tuning flagellin assembly, length-controlled protein nanofibers were prepared. The shorter nanofibers exhibited more pronounced toll-like receptor 5 (TLR5) and inflammasomes activation accompanied by pyroptosis, as a result of cellular uptake, lysosomal damage, and mitochondrial reactive oxygen species generation. Accordingly, the shorter nanofibers elevated the IgA level in mucosal secretions and enhanced the serum IgG level in ovalbumin-based intranasal vaccinations. These mucosal and systematic antibody responses were correlated with the mucus penetration capacity of the nanofibers. Intranasal administration of vaccines (human papillomavirus type 16 peptides) adjuvanted with shorter nanofibers significantly elicited cytotoxic T lymphocyte responses, strongly inhibiting tumor growth and improving survival rates in a TC-1 cervical cancer model. This work suggests that length-dependent immune responses of nanofibers can be elucidated for designing nanofibrous vaccines and adjuvants for both infectious diseases and cancer.
Collapse
|
26
|
Liu Q, Zhang X, Xue J, Chai J, Qin L, Guan J, Zhang X, Mao S. Exploring the intrinsic micro-/nanoparticle size on their in vivo fate after lung delivery. J Control Release 2022; 347:435-448. [PMID: 35537539 DOI: 10.1016/j.jconrel.2022.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/14/2022] [Accepted: 05/02/2022] [Indexed: 12/18/2022]
Abstract
Micro-/nanocarriers due to their significant advantages are widely investigated in pulmonary drug delivery. However, different size carriers have varied drug release rate, concealing the effect of particle size on the fate of drugs in vivo. Therefore, by keeping drug release rate comparable, the objective of this study is to elucidate the influence of particle size itself on drug in vivo fate after intratracheal instillation to mice. Here, using paclitaxel (PTX) as a drug model, 100 nm, 300 nm, 800 nm, and 2500 nm poly(lactide-co-glycolide) (PLGA) particles with the same release rate were prepared. It was demonstrated that the in vivo fate of particles after lung delivery was size-dependent. Consistent with most reports of model particles with neglected release kinetics, the mucus penetration capacity in airtifical mucus decreased with increasing particle size and there is no significant difference between 800 nm and 2500 nm particles. The in vivo airway distribution experiments confirmed the results of the in vitro mucus penetration study, that is, the smaller the particles, the more distributed in the airway. Both in vitro and in vivo macrophage uptake results confirmed that the larger particles were more readily taken up by macrophages. In contrast, the uptake of smaller particles in A549 cells was higher than that of larger particles. Some new findings were disclosed in lung retention, lung absorption and lung targeting. Different from previous reports, this study demonstrated that particles with smaller size had longer lung retention, AUC(0-t) in bronchoalveolar lavage fluid (BALF) of 100 nm particles was 1.6, 1.9, 2.5 times higher than that of 300 nm, 800 nm, and 2500 nm particles and 11.7 times of the PTX solution group. The same trend was observed in lung tissue absorption, the AUC(0-t) in the lavaged lung of 100 nm particles was 1.8, 2.2, 2.8, 8.6 times higher than that of 300 nm, 800 nm, 2500 nm particles and PTX solution groups, respectively. The lung targeting efficiency was particles size independent. In conclusion, the in vivo fate of particles with the same release kinetics after intratracheal instillation is size-dependent, smaller size particles are conducive for lung retention and lung absorption. Overall, our study provided scientific guidance for the rational design of particle based pulmonary drug delivery system.
Collapse
Affiliation(s)
- Qiaoyu Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinrui Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingwen Xue
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Juanjuan Chai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lu Qin
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Guan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
27
|
Wu J, Zhai T, Sun J, Yu Q, Feng Y, Li R, Wang H, Ouyang Q, Yang T, Zhan Q, Deng L, Qin M, Wang F. Mucus-permeable polymyxin B-hyaluronic acid/ poly (lactic-co-glycolic acid) nanoparticle platform for the nebulized treatment of lung infections. J Colloid Interface Sci 2022; 624:307-319. [DOI: 10.1016/j.jcis.2022.05.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
|
28
|
Elucidating inhaled liposome surface charge on its interaction with biological barriers in the lung. Eur J Pharm Biopharm 2022; 172:101-111. [PMID: 35149189 DOI: 10.1016/j.ejpb.2022.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/23/2022]
Abstract
Liposome is the promising nanocarrier for pulmonary drug delivery and surface charge is its basic property. However, there is a lack of knowledge about relationship between the liposomal surface charge and its interaction with biological barriers in the lung. Therefore, the purpose of this research is to elucidate the influence of liposome surface charge on its in vivo fate. Firstly, liposomes with positive, negative and neutral surface charge were constructed and characterized, their compatibility towards pulmonary cells was studied. Then their interaction with different biological barriers in lung, including mucus, trachea, bronchoalveolar lavage fluid (BALF) and alveolar macrophage, were investigated. Their retention behavior in lung and systemic exposure were further explored. It was demonstrated that neutrally and negatively charged liposomes were safer than positively charged ones. In the conducting airway, liposome with positive surface charge could better enhance trachea distribution but only within 2 h. In the respiratory region, both neutrally and negatively charged liposomes presented improved mucus permeability, good stability in BALF containing pulmonary surfactant, decreased macrophage uptake, prolonged lung retention and decreased systemic exposure to other organs, with neutrally charged liposome showing superior performance than the negatively charged ones. While the positively charged liposome was not stable in lung microenvironment with aggregation observed, leading to increased alveolar macrophage uptake, thereby lower pulmonary retention and higher risk of systemic exposure. In conclusion, liposomal surface charge is a tunable formulation factor to modulate the interaction with biological barriers in the lung and thus in vivo fate of inhaled liposomes.
Collapse
|
29
|
Vlachopoulos A, Karlioti G, Balla E, Daniilidis V, Kalamas T, Stefanidou M, Bikiaris ND, Christodoulou E, Koumentakou I, Karavas E, Bikiaris DN. Poly(Lactic Acid)-Based Microparticles for Drug Delivery Applications: An Overview of Recent Advances. Pharmaceutics 2022; 14:359. [PMID: 35214091 PMCID: PMC8877458 DOI: 10.3390/pharmaceutics14020359] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
The sustained release of pharmaceutical substances remains the most convenient way of drug delivery. Hence, a great variety of reports can be traced in the open literature associated with drug delivery systems (DDS). Specifically, the use of microparticle systems has received special attention during the past two decades. Polymeric microparticles (MPs) are acknowledged as very prevalent carriers toward an enhanced bio-distribution and bioavailability of both hydrophilic and lipophilic drug substances. Poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA), and their copolymers are among the most frequently used biodegradable polymers for encapsulated drugs. This review describes the current state-of-the-art research in the study of poly(lactic acid)/poly(lactic-co-glycolic acid) microparticles and PLA-copolymers with other aliphatic acids as drug delivery devices for increasing the efficiency of drug delivery, enhancing the release profile, and drug targeting of active pharmaceutical ingredients (API). Potential advances in generics and the constant discovery of therapeutic peptides will hopefully promote the success of microsphere technology.
Collapse
Affiliation(s)
- Antonios Vlachopoulos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Georgia Karlioti
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Evangelia Balla
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Vasileios Daniilidis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Theocharis Kalamas
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Myrika Stefanidou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Nikolaos D. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Ioanna Koumentakou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| | - Evangelos Karavas
- Pharmathen S.A., Pharmaceutical Industry, Dervenakion Str. 6, Pallini Attikis, GR-153 51 Attiki, Greece
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.V.); (G.K.); (E.B.); (V.D.); (T.K.); (M.S.); (N.D.B.); (E.C.); (I.K.)
| |
Collapse
|