1
|
Zarro PR, De Felice S, Sabbieti MG, Agas D. The Inflamed Bone Marrow Scenery Amongst the Symplegades of Ageing and Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40279001 DOI: 10.1007/5584_2025_860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Upon inflammation, the bone marrow (BM) landscape undergoes significant architectural and functional modifications. Stimulation of the hematopoietic niche triggers a series of lightning events, which begin with stem/progenitor blood elements mobilization and culminates with the activation of immune responses. Ageing partially mirrors this process, albeit with a propensity towards chronic inflammation and immune dysfunction. Age-related chronic inflammation disrupts bone homeostasis and accompanies impaired tissue regeneration. Thus, focusing on the bone marrow's dynamics during inflammatory bone diseases could lay the way for the development of novel therapeutic platforms aimed at niche reprogramming. Herein, we summarize inflammatory and age-induced processes in multiple BM compartments, with particular reference to hematopoietic, stromal stem/progenitor cells, and mature immunocytes. Finally, we focus on autophagy and its potential to clinically re-modulate the pathological "flogistic" bias, possibly by restoring functional phenotypes within the bone marrow niche elements.
Collapse
Affiliation(s)
- Pier Raffaele Zarro
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, MC, Italy
| | - Simona De Felice
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, MC, Italy
| | | | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, MC, Italy.
| |
Collapse
|
2
|
Kumar D, Pandey S, Shivhare B, Bala M, Kumar M, Kumar P, Gupta J. Natural polysaccharide-based nanodrug delivery systems for targeted treatment of rheumatoid arthritis: A review. Int J Biol Macromol 2025; 310:143408. [PMID: 40274161 DOI: 10.1016/j.ijbiomac.2025.143408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 04/04/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by persistent inflammation of the joints, leading to pain, disability, and systemic complications. Conventional treatments often exhibit limitations, including adverse effects and suboptimal bioavailability. To address these challenges, natural polysaccharides-mediated nano drug delivery is a promising vehicle for RA management. This review explores the potential of natural polysaccharides in RA, including chitosan, cellulose, albumin, hyaluronic acid, polylactic acid, alginate, etc. Their biodegradable and biocompatible nature renders them ideal nanomaterials for RA applications. These properties facilitate targeted delivery, improved cellular uptake, and sustained release of therapeutic agents, enhancing their pharmacological effects while minimizing systemic toxicity. Recent advances in nanotechnology have enabled the formulations of polysaccharides that can encapsulate a range of therapeutic agents, including conventional anti-inflammatory drugs and novel biologics. The review also highlights various formulation strategies to optimize the physicochemical properties of polysaccharide-based nano drug delivery systems, including surface modification and combinatorial therapies. Overall, natural polysaccharides represent a versatile and effective approach for developing innovative nano drug delivery systems, offering a promising strategy for the effective treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Devesh Kumar
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Shubham Pandey
- Institute of Nuclear Medicine & Allied Sciences (INMAS), Brig. S. K Mazumdar Marg, Timarpur, Delhi 110054, India; Department of Chemistry, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Brijesh Shivhare
- Department of Botany, Faculty of Science, Baba Mastnath University, Asthal Bohar, Rohtak, Haryana 124021, India
| | - Madhu Bala
- Gautam college of pharmacy, Hamirpur, Himachal Pradesh, India
| | - Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India; Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India.
| | - Pawan Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India
| |
Collapse
|
3
|
Li K, Wang Y, Huang P. Association of Four VEGFA Gene Variants with Rheumatoid Arthritis Risk: A Meta-analysis and Trial Sequential Analysis. Biochem Genet 2025; 63:984-1013. [PMID: 38814384 DOI: 10.1007/s10528-024-10834-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
The association between rheumatoid arthritis (RA) risk and specific variants of the Vascular Endothelial Growth Factor A (VEGFA) gene remains contentious. This study sought to elucidate the correlations between RA risk and several VEGFA gene variants, including VEGFA-634 (rs2010963), VEGFA-C936 (rs3025039), VEGFA-2578 (rs699947), VEGFA-1154 (rs1570360), through a comprehensive meta-analysis. We systematically reviewed literature from the Cochrane Library database, Embase, PubMed, Web of Science, China National Knowledge Infrastructure, and the Wanfang Data Information Service platform to gather relevant case-control studies. Using odds ratio (OR) and 95% confidence interval (95% CI), we analyzed the data to assess potential correlations. Sensitivity analysis and the Egger's test were employed to ensure the results stability and to evaluate potential publication bias. Additionally, trial sequential analysis (TSA) was conducted to validate the findings. Our meta-analysis incorporated ten studies involving 2817 patients and 2855 controls. Results indicated that the AA genotype of VEGFA-1154 (rs1570360) is associated with a reduced risk of RA in the overall population (AG + GG vs AA: P = 0.032 OR = 1.932 95% CI 1.059-3.523). However, no significant association is found for VEGFA-634 (rs2010963), VEGFA-C936 (rs3025039), and VEGFA-2578 (rs699947) variants with RA risk. Subgroup analysis revealed a significant association between the VEGF rs3025039(C936) variant and RA risk in the PCR-RFLP group under the TC vs. CC model. TSA confirmed the sufficiency of the sample size for robust conclusions. These findings suggest that the G allele of VEGFA-1154 (rs1570360) may increase RA risk, whereas the A allele appears to confer a protective effect. This study enhances our understanding of the genetic predispositions to RA and underscores the potential role of VEGFA gene variants in its pathogenesis.
Collapse
Affiliation(s)
- Ke Li
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yilu Wang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Peng Huang
- Center for Evidence-Based Medicine, School of Public Health, Jiangxi Medical College, Nanchang University, No. 461, Bayi Avenue, Donghu District, Nanchang, 330006, China.
- Jiangxi Province Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
4
|
Zhou S, Yu Z, Yao W, Wang M, Yang Y, Qin J, Wu X, Guo C. Pectin/caffeic acid nanoparticles in a poloxamer thermosensitive gel for the treatment of ulcerative colitis by inhibiting cGAS-STING pathway. Colloids Surf B Biointerfaces 2025; 247:114419. [PMID: 39626611 DOI: 10.1016/j.colsurfb.2024.114419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 01/22/2025]
Abstract
Ulcerative colitis is a recurring condition that causes inflammation and sores in the digestive system. Current clinical treatments for ulcerative colitis have limitations due to side effects and poor patient compliance. This study investigates the therapeutic potential of a novel drug delivery system, CA-Gel, which comprises caffeic acid (CA) stabilized by pectin nanoparticles within a poloxamer thermosensitive gel for rectal administration. The system aims to provide controlled and sustained release of CA directly to the colon. In vitro studies demonstrated that CA-Gel exhibited excellent biocompatibility, cytoprotective effects, and reduced oxidative stress and cellular apoptosis. In vivo studies using a dextran sulfate sodium (DSS)-induced colitis mouse model showed that CA-Gel significantly alleviated colitis symptoms, as evidenced by improvements in body weight, disease activity index (DAI), colon length, and histopathological assessments. Additionally, CA-Gel modulated the Cyclic GMP AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, reduced mitochondrial DNA (mtDNA) release, and inhibited inflammatory cytokines, thereby demonstrating its therapeutic potential in ulcerative colitis. The study concludes that CA-Gel is a promising rectal treatment for ulcerative colitis, offering a safe and effective alternative to existing pharmacological therapies.
Collapse
Affiliation(s)
- Shilin Zhou
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhenxin Yu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenqing Yao
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mengdi Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yongqiang Yang
- National Graphene Products Quality Inspection and Testing Center (Jiangsu), Special Equipment Safety Supervision Inspection Institute of Jiangsu Province, Yanxin Road 330, Wuxi 214174, China
| | - Jien Qin
- Graphene Source technology Wuxi Co. Ltd. 801-1, Building A Tsinghua Entrepreneurship Building, No. 3 Qingyan Road, Huishan District, Wuxi City, Jiangsu Province, China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chuanlong Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
5
|
Xu Z, Liu J, Hu H, Ma J, Yang H, Chen J, Xu H, Hu H, Luo H, Chen G. Recent applications of stimulus-responsive smart hydrogels for osteoarthritis therapy. Front Bioeng Biotechnol 2025; 13:1539566. [PMID: 40035023 PMCID: PMC11872905 DOI: 10.3389/fbioe.2025.1539566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Osteoarthritis is one of the most common degenerative joint diseases, which seriously affects the life of middle-aged and elderly people. Traditional treatments such as surgical treatment and systemic medication, often do not achieve the expected or optimal results, which leads to severe trauma and a variety of side effects. Therefore, there is an urgent need to develop novel therapeutic options to overcome these problems. Hydrogels are widely used in biomedical tissue repairing as a platform for loading drugs, proteins and stem cells. In recent years, smart-responsive hydrogels have achieved excellent results as novel drug delivery systems in the treatment of osteoarthritis. This review focuses on the recent advances of endogenous stimuli (including enzymes, pH, reactive oxygen species and temperature, etc.) responsive hydrogels and exogenous stimuli (including light, shear, ultrasound and magnetism, etc.) responsive hydrogels in osteoarthritis treatment. Finally, the current limitations of application and future prospects of smart responsive hydrogels are summarized.
Collapse
Affiliation(s)
- Zhuoming Xu
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jintao Liu
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hanyin Hu
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jun Ma
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Haiyang Yang
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jiayi Chen
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hongwei Xu
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Haodong Hu
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Huanhuan Luo
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Gang Chen
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
6
|
Bhullar SK, Thingnam R, Kirshenbaum E, Nematisouldaragh D, Crandall M, Willerth SM, Ramkrishna S, Rabinovich-Nikitin I, Kirshenbaum LA. Living Nanofiber-Enabled Cardiac Patches for Myocardial Injury. JACC Basic Transl Sci 2025; 10:227-240. [PMID: 40131159 PMCID: PMC11897462 DOI: 10.1016/j.jacbts.2024.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 03/26/2025]
Abstract
Because the adult heart has only minimal regenerative capacity, its inability to induce regeneration is well-known in patients with myocardial infarction. However, based on multidisciplinary approaches, it is possible to restore myocardial capability with regenerative medicine via living cardiac patches seeded with therapeutic ingredients ranging from multiple cell types to bioactive molecules, including growth factors, microRNA, and extracellular vesicles to the affected site. Biomaterials, natural and/or synthesized polymers, or in vivo sources such as collagen, fibrin, and decellularized extracellular matrix are used to form these cardiac patches. Herein, we review various techniques where seeded cells and bioactive agents are incorporated within porous nanofibers to create functional cardiac patches that provide myocardial extracellular matrix-like features, mechanical support, and a large surface-to-volume ratio for promoting cellular metabolism as well as compensation for the loss of cardiomyocytes in the infarcted region. We summarize recent advances through electrospinning-generated nanofibers of synthetic and/or natural polymers combined with biological material to create cardiac patches to repair and improve the function of infarcted myocardium. As tailoring designs on cardiac patches have been shown to exhibit deformation mechanisms and enhanced myocardial tissue regeneration, significant roles of various patterns and associated parameters are also discussed. The enhanced delivery of therapeutics offered by tailored nanofiber cardiac patches to treat myocardial infarction and overcome challenges of existing cardiac regeneration therapies such as low stability, short half-lifetime, and delivery methods may promote the potential for their clinical impact on myocardial regeneration.
Collapse
Affiliation(s)
- Sukhwinder K Bhullar
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Raneeta Thingnam
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eryn Kirshenbaum
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Darya Nematisouldaragh
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Molly Crandall
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Stephanie M Willerth
- Division of Medical Sciences, Centre for Advanced Materials and Technology, University of Victoria, Victoria, British Columbia, Canada
| | - Seeram Ramkrishna
- National University of Singapore, Nanoscience and Nanotechnology Initiative, Engineering Drive, Singapore
| | - Inna Rabinovich-Nikitin
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lorrie A Kirshenbaum
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
7
|
Liu D, Niu R, Wang S, Shao L, Yang X, Liu X, Ma X, Zhu Z, Zhang J, Shi B, Ni H, Du X. Nitric Oxide-Releasing Mesoporous Hollow Cerium Oxide Nanozyme-Based Hydrogel Synergizes with Neural Stem Cell for Spinal Cord Injury Repair. ACS NANO 2025; 19:2591-2614. [PMID: 39723955 DOI: 10.1021/acsnano.4c14261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Neural stem cell (NSCs) transplantation is a promising therapeutic strategy for spinal cord injury (SCI), but its efficacy is greatly limited by the local inhibitory microenvironment. In this study, based on l-arginine (l-Arg)-loaded mesoporous hollow cerium oxide (AhCeO2) nanospheres, we constructed an injectable composite hydrogel (AhCeO2-Gel) with microenvironment modulation capability. AhCeO2-Gel protected NSCs from oxidative damage by eliminating excess reactive oxygen species while continuously delivering Nitric Oxide to the lesion of SCI in a pathological microenvironment, the latter of which effectively promoted the neural differentiation of NSCs. The process was confirmed to be closely related to the up-regulation of the cAMP-PKA pathway after NO-induced calcium ion influx. In addition, AhCeO2-Gel significantly promoted the polarization of microglia toward the M2 subtype as well as enhanced the regeneration of spinal nerves and myelinated axons. The prepared bioactive hydrogel system also efficiently facilitated the integration of transplanted NSCs with host neural circuits, replenished damaged neurons, alleviated neuroinflammation, and inhibited glial scar formation, thus significantly accelerating the recovery of motor function in SCI rats. Therefore, AhCeO2-Gel synergized with NSCs transplantation has great potential as an integrated therapeutic strategy to treat SCI by comprehensively reversing the inhibitory microenvironment.
Collapse
Affiliation(s)
- Dun Liu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Runyan Niu
- Department of Pharmacy, Nanjing Medical Center for Clinical Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Department of Pharmacy, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210008, China
| | - Siliang Wang
- Department of Pharmacy, Nanjing Medical Center for Clinical Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Lihua Shao
- Department of Colorectal Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xian Yang
- Department of Pharmacy, Nanjing Medical Center for Clinical Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xuexue Liu
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Xiaolong Ma
- Department of Colorectal Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Jinping Zhang
- Department of Pharmacy, Nanjing Medical Center for Clinical Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Benlong Shi
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Huanyu Ni
- Department of Pharmacy, Nanjing Medical Center for Clinical Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xiao Du
- Department of Pharmacy, Nanjing Medical Center for Clinical Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Department of Colorectal Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| |
Collapse
|
8
|
Zhang X, Ning F, Li Y, Lu J, He Y, Feng C, Dong CM. Pluripotent polysaccharide coordinated hydrogels remodel inflammation, neovascularization and reepithelization for efficient diabetic wound prohealing. J Control Release 2025; 377:37-53. [PMID: 39549729 DOI: 10.1016/j.jconrel.2024.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Chronic diabetic wounds seriously threaten the health and life of human beings, however, it is challenging to develop pluripotent dressings that comprehensively remodel inflammation microenvironment, neovascularization and reepithelization to achieve high performance healing in diabetic wounds. Herein we construct a bioinspired polysaccharide coordinated hydrogel composed of bisphosphate-modified β-glucan (BG) with bioactive metal ions of Zn2+ and Mg2+, in which multiple chelation enables fast gelation, self-healing, and dynamically sealing wounds. In vitro Mg2+ release from BGM or BGMZ could promote intracellular uptake of Zn2+ through upregulating Zn2+-related transporter protein ZIP6 while intracellular Mg2+ remained relatively stable via downregulating the Mg2+ transporter protein of MagT1. The screened lead hydrogel BGMZ could substantially polarize proinflammatory M1 to prohealing M2 phenotypes by the main BG-downregulating NF-kB signaling pathway, and both Mg2+ and Zn2+ release from BGMZ synergistically promoted proliferation and angiogenesis by upregulating PI3K/Akt signaling pathway, facilitating the reepithelization and tissue remodeling. Remarkably, single BGMZ treatment performed full-thickness wound closure, fast granulation and dermis regeneration, optimal neovascularization and reepithelization, high levels of overall collagen and fibrous collagen-I, and dense hair follicles, thus achieving high performance prohealing in diabetic wounds. Consequently, this study opens a new avenue to design pluripotent polysaccharide hydrogel dressing for structures and functions remodeling of chronic and diabetic wounds.
Collapse
Affiliation(s)
- Xueliang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Fangrui Ning
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yingying Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jiayu Lu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, PR China
| | - Yushi He
- School of Chemistry and Chemical Engineering, Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Chuanliang Feng
- School of Materials Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
9
|
Oluwole SA, Weldu WD, Jayaraman K, Barnard KA, Agatemor C. Design Principles for Immunomodulatory Biomaterials. ACS APPLIED BIO MATERIALS 2024; 7:8059-8075. [PMID: 38922334 DOI: 10.1021/acsabm.4c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The immune system is imperative to the survival of all biological organisms. A functional immune system protects the organism by detecting and eliminating foreign and host aberrant molecules. Conversely, a dysfunctional immune system characterized by an overactive or weakened immune system causes life-threatening autoimmune or immunodeficiency diseases. Therefore, a critical need exists to develop technologies that regulate the immune system to ensure homeostasis or treat several diseases. Accumulating evidence shows that biomaterials─artificial materials (polymers, metals, ceramics, or engineered cells and tissues) that interact with biological systems─can trigger immune responses, offering a materials science-based strategy to modulate the immune system. This Review discusses the expanding frontiers of biomaterial-based immunomodulation, focusing on principles for designing these materials. This Review also presents examples of immunomodulatory biomaterials, which include polymers and metal- and carbon-based nanomaterials, capable of regulating the innate and adaptive immune systems.
Collapse
Affiliation(s)
- Samuel Abidemi Oluwole
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Welday Desta Weldu
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Keerthana Jayaraman
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Kelsie Amanda Barnard
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Christian Agatemor
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
- Department of Biology, University of Miami, Coral Gables, Florida 33124, United States
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida 33136, United States
| |
Collapse
|
10
|
Ali A, Azmat U, Ji Z, Khatoon A, Murtaza B, Akbar K, Irshad U, Raza R, Su Z. Beyond Genes: Epiregulomes as Molecular Commanders in Innate Immunity. Int Immunopharmacol 2024; 142:113149. [PMID: 39278059 DOI: 10.1016/j.intimp.2024.113149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/09/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
The natural fastest way to deal with pathogens or danger signals is the innate immune system. This system prevents too much inflammation and tissue damage and efficiently eliminates pathogens. The epiregulome is the chromatin structure influenced by epigenetic factors and linked to cis-regulatory elements (CREs). The epiregulome helps to end the inflammatory response and also assists innate immune cells to show specific action by making cell-specific gene expression patterns. This inspection unfolds two concepts: (1) how epiregulomes are shaped by switching the expression levels of genes, manoeuvre enzyme activity and earmark of chromatin modifiers on specific genes; during and after the infection, and (2) how the expression of specific genes (aids in prompt management of innate cell growth, or the reaction to aggravation and illness) command by epiregulomes that formed during the above process. In this review, the consequences of intrinsic immuno-metabolic remodelling on epiregulomes and potential difficulties in identifying the master epiregulome that regulates innate immunity and inflammation have been discussed.
Collapse
Affiliation(s)
- Ashiq Ali
- Department of Histology and Embryology, Shantou University Medical College, China.
| | - Urooj Azmat
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Ziyi Ji
- Department of Histology and Embryology, Shantou University Medical College, China
| | - Aisha Khatoon
- Department of Pathology, University of Agriculture Faisalabad, Pakistan
| | - Bilal Murtaza
- School of Bioengineering, Dalian University of Science and Technology, Dalian, China
| | - Kaynaat Akbar
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Urooj Irshad
- Department Biological Sciences, Faculty of Sciences, Superior University Lahore, Punjab, Pakistan
| | - Rameen Raza
- Department of Pathology, University of Agriculture Faisalabad, Pakistan
| | - Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, China.
| |
Collapse
|
11
|
Mu W, Liu J, Zhang H, Weng L, Liu T, Chen X. Intelligent Hydrogel with Physiologically Dependent Capacities of Photothermal Conversion and Nanocatalytic Medicine to Integratively Inhibit Bacteria and Inflammation for On-Demand Treatment of Infected Wound. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405464. [PMID: 39370674 DOI: 10.1002/smll.202405464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Although chemodynamic therapy (CDT) and photothermal therapy (PTT) based on a variety of nanoparticles have been developed to achieve effective anti-bacterial therapy, the limited therapeutic efficiency of CDT alone, as well as the undifferentiated damage of PTT to both bacteria and surrounding healthy tissue are still challenges for their clinical application of infected wounds treatments. In addition, during the CDT and PTT-mediated antimicrobial processes, the endogenous macrophages would be easily converted to pro-inflammatory macrophages (M1 phenotype) under local ROS and hyperthermia to promote inflammation, resulting in unexpected suppression of tissue regeneration and possible wound deterioration. To address these problems, a biodegradable sodium alginate/hyaluronic acid hydrogel loaded with functional CeO2-Au nano-alloy (AO@ACP) is fabricated to not only achieve precise and efficient antibacterial activity through infection-environment dependent photothermal-chemodynamic therapy but also rapidly eliminate the excess reactive oxygens (ROS) in the M1 type macrophage at the infected area to induce their polarization to M2 type for significant inhibition of inflammation and remarkable enhancement of tissue regeneration, hopefully developing an effective strategy to treat infected wound.
Collapse
Affiliation(s)
- Wenyun Mu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an, 710049, China
| | - Jie Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an, 710049, China
| | - Handan Zhang
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an, 710049, China
| | - Lin Weng
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an, 710049, China
| | - Tao Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an, 710049, China
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an, 710049, China
| |
Collapse
|
12
|
Ye Q, Zhang M, Li S, Liu W, Xu C, Li Y, Xie R. Controlled Stimulus-Responsive Delivery Systems for Osteoarthritis Treatment. Int J Mol Sci 2024; 25:11799. [PMID: 39519350 PMCID: PMC11545989 DOI: 10.3390/ijms252111799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoarthritis (OA), a common and disabling degenerative joint disease, affects millions of people worldwide and imposes a considerable burden on patients and society due to its high prevalence and economic costs. The pathogenesis of OA is closely related to the progressive degradation of articular cartilage and the accompany inflammation; however, articular cartilage itself cannot heal and modulate the inflammation due to the lack of nerves, blood vessels, and lymph-vessels. Therefore, reliable and effective methods to treat OA remain highly desired. Local administration of drugs or bioactive materials by intra-articular injection of the delivery system represents a promising approach to treat OA, especially considering the prolonged joint retention, cartilage or chondrocytes targeting, and stimuli-responsive release to achieve precision OA therapy. This article summarizes and discusses the advances in the currently used delivery systems (nanoparticle, hydrogel, liposome, and microsphere) and then focuses on their applications in OA treatment from the perspective of endogenous stimulus (redox reactions, pH, enzymes, and temperature) and exogenous stimulus (near-infrared, magnetic, and ultrasound)-responsive release. Finally, the challenges and potential future directions for the development of nano-delivery systems are summarized.
Collapse
Affiliation(s)
- Qianwen Ye
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (Q.Y.); (M.Z.); (S.L.); (W.L.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Mingshuo Zhang
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (Q.Y.); (M.Z.); (S.L.); (W.L.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Shuyue Li
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (Q.Y.); (M.Z.); (S.L.); (W.L.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Wenyue Liu
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (Q.Y.); (M.Z.); (S.L.); (W.L.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Chunming Xu
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Yumei Li
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Renjian Xie
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (Q.Y.); (M.Z.); (S.L.); (W.L.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
13
|
Widener AE, Roberts A, Phelps EA. Granular Hydrogels for Harnessing the Immune Response. Adv Healthc Mater 2024; 13:e2303005. [PMID: 38145369 PMCID: PMC11196388 DOI: 10.1002/adhm.202303005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/13/2023] [Indexed: 12/26/2023]
Abstract
This review aims to understand the current progress in immune-instructive granular hydrogels and identify the key features used as immunomodulatory strategies. Published work is systematically reviewed and relevant information about granular hydrogels used throughout these studies is collected. The base polymer, microgel generation technique, polymer crosslinking chemistry, particle size and shape, annealing strategy, granular hydrogel stiffness, pore size and void space, degradability, biomolecule presentation, and drug release are cataloged for each work. Several granular hydrogel parameters used for immune modulation: porosity, architecture, bioactivity, drug release, cell delivery, and modularity, are identified. The authors found in this review that porosity is the most significant factor influencing the innate immune response to granular hydrogels, while incorporated bioactivity is more significant in influencing adaptive immune responses. Here, the authors' findings and summarized results from each section are presented and suggestions are made for future studies to better understand the benefits of using immune-instructive granular hydrogels.
Collapse
Affiliation(s)
- Adrienne E Widener
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr., Gainesville, 32611, USA
| | - Abilene Roberts
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr., Gainesville, 32611, USA
| | - Edward A Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr., Gainesville, 32611, USA
| |
Collapse
|
14
|
Zhang X, Zhang JK, Wu X, Liu X, Liu T, Chen KY. Predictive Value of the Naples Prognostic Score for Cardiovascular Outcomes in Patients With Chronic Kidney Disease Receiving Percutaneous Coronary Intervention. Angiology 2024:33197241285970. [PMID: 39298739 DOI: 10.1177/00033197241285970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The Naples prognostic score (NPS) is a novel multidimensional inflammatory and nutritional assessment system in cancer patients. However, its significance in patients with chronic kidney disease (CKD) after percutaneous coronary intervention (PCI) remains unclear. The study has a single-center, retrospective design and included 631 patients with CKD who underwent index PCI between 2019 and 2022. All participants were divided into 2 groups according to the NPS (Low-risk group: n = 209; High-risk group: n = 422) and followed up until November 2022. The primary endpoint was Major Adverse Cardiac Events (MACE). NPS predicted MACE events better than other scores, besides, high-risk NPS with severe renal dysfunction (RD) group (MODEL 2) had superior MACE diagnostic efficiency than NPS high-risk group lonely. (NPS: AUC: 0.605, P < .001; MODEL 2: AUC: 0.624, P < .001, respectively). Kaplan-Meier survival analysis of two groups showed that high-risk group had higher incidence of MACE (P < .001). Meanwhile, high-risk group had higher MACE events [adjusted Hazard Ratio (aHR) 2.013, 95% CI 1.294, 3.132; P = .002]. NPS is an independent prognostic factor for CKD patients undergoing index PCI before operation whose predictive value for survival prognosis is better than other nutritional and inflammatory indicators. Compared with low NPS, patients with high NPS have a relatively poor prognosis.
Collapse
Affiliation(s)
- Xue Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jing-Kun Zhang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Xue Wu
- Institute for Global Health Sciences, University of California, San Francisco, CA, USA
| | - Xing Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Kang-Yin Chen
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
15
|
Chen H, Xiang Z, Zhang T, Wang H, Li X, Chen H, Shi Q. Heparinized self-healing polymer coating with inflammation modulation for blood-contacting biomedical devices. Acta Biomater 2024; 186:201-214. [PMID: 39089350 DOI: 10.1016/j.actbio.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/03/2024]
Abstract
The current techniques for antithrombotic coating on blood-contacting biomedical materials and devices are usually complex and lack practical feasibility with weak coating stability and low heparin immobilization. Here, a heparinized self-healing polymer coating with inflammation modulation is introduced through thermal-initiated radical copolymerization of methacrylate esterified heparin (MA-heparin) with methyl methacrylate (MMA) and n-butyl acrylate (nBA), followed by the anchoring of reactive oxygen species (ROS)-responsive polyoxalate containing vanillyl alcohol (PVAX) onto the coating through esterification. The aspirin, which is readily dissolved in the solution of MMA and nBA, is encapsulated within the coating after copolymerization. The copolymerization of MA-heparin with MMA and nBA significantly increases the heparin content of the coating, effectively inhibiting thrombosis and rendering the coating self-healing to help maintain long-term stability. ROS-responsive PVAX and aspirin released in a temperature-dependent manner resist acute and chronic inflammation, respectively. The heparinized self-healing and inflammation-modulated polymer coating exhibits the ability to confer long-term stability and hemocompatibility to blood-contacting biomedical materials and devices. STATEMENT OF SIGNIFICANCE: Surface engineering for blood-contacting biomedical devices paves a successful way to reduce thrombotic and inflammatory complications. However, lack of effectiveness, long-term stability and practical feasibility hinders the development and clinical application of existing strategies. Here we design a heparinized self-healing and inflammation-modulated polymer coating, which possesses high heparin level and self-healing capability to maintain long-term stability. The polymer coating is practically feasible to varied substrates and demonstrated to manipulate inflammation and prevent thrombosis both in vitro and in vivo. Our work provides a new method to develop coatings for blood-contacting biomedical materials and devices with long-term stability and hemocompatibility.
Collapse
Affiliation(s)
- Honghong Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zehong Xiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tianci Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haozheng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Xian Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Hao Chen
- Department of Neurovascular Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
16
|
Xing X, Xu P, Xing X, Xu Z, Huang Z, Li Z, Li X, Xiao Y. Effects of ADSC-Derived Exosome LRRC75A-AS1 on Anti-inflammatory Function After SCI. Appl Biochem Biotechnol 2024; 196:5920-5935. [PMID: 38165592 DOI: 10.1007/s12010-023-04836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/04/2024]
Abstract
Spinal cord injury (SCI) is a highly debilitating disorder of the central nervous system that can severely impact an affected patient's quality of life. This study aimed to examine how adipose-derived mesenchymal stem cell exosomes (ADSC-exos) can be used to treat spinal cord injury. We analysed differentially expressed mRNAs in SCI using bioinformatics data, gene expression profiles in inflammatory cell models, RT-qPCR and WB. Apoptosis was detected with flow cytometry. Starbase provides the control mechanism for FDFT1. Target interactions were detected with dual-luciferase reporter and RIP assays. Exosomes were isolated from adipose tissue-derived mesenchymal stem cells and subsequently characterized with western blot analysis, transmission electron microscopy and nanoparticle tracking analysis. By analysing the GSE102964 database, we found that FDFT1 was significantly downregulated as SCI progressed. Overexpression of FDFT1 can significantly reverse the inflammatory response and apoptosis of BV2 cells induced by hemin. Mechanically, ADSC-exos can affect the expression of FDFT1 through the ceRNA mechanism mediated by LRRC75A-AS1 and in an RBP-dependent manner mediated by IGF2BP2. The overexpression of LRRC75A-AS1 significantly enhances BV2 apoptosis and can be reversed by FDFT1 knockdown. ADSC-exos LRRC75A-AS1 inhibits inflammation and reduces SCI by increasing the expression and stability of FDFT1 mRNA in a ceRNA and RBP-dependent manner.
Collapse
Affiliation(s)
- Xiaohui Xing
- Department of Neurosurgery, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng, 252000, China
| | - Peng Xu
- Department of Neurosurgery, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng, 252000, China
| | - Xiaoyang Xing
- Department of Laboratory, Liaocheng Maternal and Child Health Care Hospital, No.56, Changjiang Road, Liaocheng, 252000, Shandong, China
| | - Zhentao Xu
- Department of Neurosurgery, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng, 252000, China
| | - Zhen Huang
- Department of Neurosurgery, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng, 252000, China
| | - Zhongchen Li
- Department of Neurosurgery, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng, 252000, China
| | - Xueyuan Li
- Department of Neurosurgery, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng, 252000, China.
| | - Yilei Xiao
- Department of Neurosurgery, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng, 252000, China.
| |
Collapse
|
17
|
Ma D, Fu C, Li F, Ruan R, Lin Y, Li X, Li M, Zhang J. Functional biomaterials for modulating the dysfunctional pathological microenvironment of spinal cord injury. Bioact Mater 2024; 39:521-543. [PMID: 38883317 PMCID: PMC11179178 DOI: 10.1016/j.bioactmat.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 06/18/2024] Open
Abstract
Spinal cord injury (SCI) often results in irreversible loss of sensory and motor functions, and most SCIs are incurable with current medical practice. One of the hardest challenges in treating SCI is the development of a dysfunctional pathological microenvironment, which mainly comprises excessive inflammation, deposition of inhibitory molecules, neurotrophic factor deprivation, glial scar formation, and imbalance of vascular function. To overcome this challenge, implantation of functional biomaterials at the injury site has been regarded as a potential treatment for modulating the dysfunctional microenvironment to support axon regeneration, remyelination at injury site, and functional recovery after SCI. This review summarizes characteristics of dysfunctional pathological microenvironment and recent advances in biomaterials as well as the technologies used to modulate inflammatory microenvironment, regulate inhibitory microenvironment, and reshape revascularization microenvironment. Moreover, technological limitations, challenges, and future prospects of functional biomaterials to promote efficient repair of SCI are also discussed. This review will aid further understanding and development of functional biomaterials to regulate pathological SCI microenvironment.
Collapse
Affiliation(s)
- Dezun Ma
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian, 350122, PR China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Changlong Fu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian, 350122, PR China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Fenglu Li
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
| | - Renjie Ruan
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
| | - Yanming Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian, 350122, PR China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Xihai Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian, 350122, PR China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Min Li
- Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center, 966 Hengyu Road, Fuzhou, 350014, PR China
- Fujian Maternity and Child Health Hospital, 111 Daoshan Road, Fuzhou, 350005, PR China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 111 Daoshan Road, Fuzhou, 350005, PR China
| | - Jin Zhang
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
| |
Collapse
|
18
|
Liang J, Ling J, Sun D, Wu G, Ouyang XK, Wang N, Yang G. Dextran-Based Antibacterial Hydrogel Dressings for Accelerating Infected Wound Healing by Reducing Inflammation Levels. Adv Healthc Mater 2024; 13:e2400494. [PMID: 38801122 DOI: 10.1002/adhm.202400494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Infected wounds pose challenges such as exudate management, bacterial infections, and persistent inflammation, making them a significant challenge for modern dressings. To address these issues in infected wounds more effectively, aerogel-hydrogel biphase gels based on dextran are developed. The gel introduced in this study exhibits antibacterial and anti-inflammatory properties in the process of wound therapy, contributing to accelerated wound healing. The aerogel phase exhibits exceptional water-absorption capabilities, rapidly soaking up exudate from infected wound, thereby fostering a clean and hygienic wound healing microenvironment. Concurrently, the aerogel phase is enriched with hydrogen sulfide donors. Following water absorption and the formation of the hydrogel phase, it enables the sustained release of hydrogen sulfide around the wound sites. The experiments confirm that hydrogen sulfide, by promoting M2 macrophage differentiation and reducing the levels of inflammatory factors, effectively diminishes local inflammation levels at the wound site. Furthermore, the sodium copper chlorophyllin component within the hydrogel phase demonstrates effective antibacterial properties through photodynamic antimicrobial therapy, providing a viable solution to wound infection challenges.
Collapse
Affiliation(s)
- Jianhao Liang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 310622, P. R. China
| | - Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 310622, P. R. China
| | - Deguan Sun
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, 316000, P. R. China
| | - Guanhuai Wu
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, 316000, P. R. China
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 310622, P. R. China
| | - Nan Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 310622, P. R. China
| | - Guocai Yang
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, 316000, P. R. China
| |
Collapse
|
19
|
Omar A, Barakat M, Alzaghari LF, Abdulrazzaq SB, Hasen E, Chellappan DK, Al-Najjar MAA. The effect of Jordanian essential oil from coriander seeds on antioxidant, anti-inflammatory, and immunostimulatory activities using RAW 246.7 murine macrophages. PLoS One 2024; 19:e0297250. [PMID: 39106253 DOI: 10.1371/journal.pone.0297250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/22/2024] [Indexed: 08/09/2024] Open
Abstract
Coriander (Coriandrum sativum L.) is a member of the Umbelliferae/Apiaceae family and one of the well-known essential oil-containing plants, in which the seeds are used in traditional medicine, and as flavoring in food preparation. Knowing the diverse chemical components of different parts of the plant, this work aims to investigate the antioxidant, the anti-inflammatory, and the immunostimulatory modulator effects of the Jordanian C. sativum's seed extracted essential oil (JCEO). Coriander oil extract was prepared by hydro-distillation method using the Clevenger apparatus. Different concentrations of coriander oil were examined by using DPPH radical scavenging assay, MTT assay, pro-inflammatory cytokine (Tumor Necrosis Factor-TNF-alpha) production in RAW264.7 murine macrophages in addition, scratch-wound assessment, NO level examination, Th1/Th2 assay, phagocytosis assay, and fluorescence imaging using DAPI stain were conducted. JCEO had a potential metabolic enhancer effect at a concentration of 0.3 mg/mL on cell viability with anti-inflammatory activities via increasing cytokines like IL-10, IL-4, and limiting NO, INF-γ, and TNF-α release into cell supernatant. Antioxidant activity was seen significantly at higher concentrations of JCEO reaching 98.7% when using 100mg/mL and minimally reaching 50% at 12.5mg/mL of the essential oil. Treated macrophages were able to attain full scratch closure after 48-hrs at concentrations below 0.3mg/mL. The seed-extracted JCEO showed significant free radical scavenging activity even at lower dilutions. It also significantly induced an anti-inflammatory effect via an increase in the release of cytokines but reduced the LPS-induced NO and TNF-α production at 0.16-0.3mg/mL. In summary, coriander essential oil demonstrated antioxidant, anti-inflammatory, and immunostimulatory effects, showcasing its therapeutic potential at specific concentrations. The findings underscore its safety and metabolic enhancement properties, emphasizing its promising role in promoting cellular health.
Collapse
Affiliation(s)
- Amin Omar
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Sciences, Applied Science Private University, Amman, Jordan
| | - Muna Barakat
- Faculty of Pharmacy, Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| | - Lujain F Alzaghari
- Faculty of Pharmacy, Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| | - Shaymaa B Abdulrazzaq
- Department of Chemical and Pharmaceutical Sciences and Biotechnology, Chemical Sciences Division, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Camerino (Macerata), Italy
| | - Eliza Hasen
- Faculty of Pharmacy, Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Mohammad A A Al-Najjar
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Sciences, Applied Science Private University, Amman, Jordan
| |
Collapse
|
20
|
Liu H, Shi J, Liu F, Zhang L. Integrating network pharmacology and experimental verification to reveal the anti-inflammatory ingredients and molecular mechanism of pycnogenol. Front Pharmacol 2024; 15:1408304. [PMID: 38989153 PMCID: PMC11233470 DOI: 10.3389/fphar.2024.1408304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/06/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction: Pycnogenol (PYC), a standardized extract from French maritime pine, has traditionally been used to treat inflammation. However, its primary active components and their mechanisms of action have not yet been determined. Methods: This study employed UPLC-MS/MS (Ultra-high performance liquid chromatography-tandem mass spectrometry) and network pharmacology to identify the potential active components of PYC and elucidate their anti-inflammatory mechanisms by cell experiments. Results: 768 PYC compounds were identified and 19 anti-inflammatory compounds were screened with 85 target proteins directly involved in the inflammation. PPI (protein-protein interaction) analysis identified IL6, TNF, MMP9, IL1B, AKT1, IFNG, CXCL8, NFKB1, CCL2, IL10, and PTGS2 as core targets. KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis suggested that the compound in PYC might exert anti-inflammatory effects through the IL17 and TNF signal pathways. Cell experiments determined that PYC treatment can reduce the expression of IL6 and IL1β to relieve inflammation in LPS (lipopolysaccharide)-induced BV2 cells. Conclusion: PYC could affect inflammation via multi-components, -targets, and -mechanisms.
Collapse
Affiliation(s)
| | | | | | - Litao Zhang
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
21
|
Nikmanesh N, Hosseini S, Mirbagheri F, Asadsangabi K, Fattahi MR, Safarpour AR, Abarghooee EF, Moravej A, Shamsdin SA, Akrami H, Saghi SA, Nikmanesh Y. Knowledge on Human Papillomavirus Infections, Cancer Biology, Immune Interactions, Vaccination Coverage and Common Treatments: A Comprehensive Review. Viral Immunol 2024; 37:221-239. [PMID: 38841885 DOI: 10.1089/vim.2023.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
Human papillomavirus (HPV) is a circular, double-stranded DNA virus and recognized as the most prevalent sexually transmitted infectious agent worldwide. The HPV life cycle encompasses three primary stages. First, the virus infiltrates the basal cells of the stratified epidermis. Second, there is a low-level expression of viral genes and preservation of the viral genome in the basal layer. Lastly, productive replication of HPV occurs in differentiated cells. An effective immune response, involving various immune cells, including innate immunity, keratinocytes, dendritic cells, and natural killer T cells, is instrumental in clearing HPV infection and thwarting the development of HPV-associated tumors. Vaccines have demonstrated their efficacy in preventing genital warts, high-grade precancerous lesions, and cancers in females. In males, the vaccines can also aid in preventing genital warts, anal precancerous lesions, and cancer. This comprehensive review aims to provide a thorough and detailed exploration of HPV infections, delving into its genetic characteristics, life cycle, pathogenesis, and the role of high-risk and low-risk HPV strains. In addition, this review seeks to elucidate the intricate immune interactions that govern HPV infections, spanning from innate immunity to adaptive immune responses, as well as examining the evasion mechanisms used by the virus. Furthermore, the article discusses the current landscape of HPV vaccines and common treatments, contributing to a holistic understanding of HPV and its associated diseases.
Collapse
Affiliation(s)
- Nika Nikmanesh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - SeyedehZahra Hosseini
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | | | - Kimiya Asadsangabi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Fattahi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Reza Safarpour
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali Moravej
- Department of Laboratory Sciences, School of Allied Medical Sciences, Fasa University of Medical Science, Fasa, Iran
| | - Seyedeh Azra Shamsdin
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Akrami
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Amirreza Saghi
- Cellular and Molecular Biology Research Center, Larestan University of Medical Sciences, Larestan, Iran
- Student Research Committee, Faculty of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Nikmanesh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
22
|
Pang J, Kuang TD, Yu XY, Novák P, Long Y, Liu M, Deng WQ, Zhu X, Yin K. N6-methyladenosine in myeloid cells: a novel regulatory factor for inflammation-related diseases. J Physiol Biochem 2024; 80:249-260. [PMID: 38158555 DOI: 10.1007/s13105-023-01002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
N6-methyladenosine (m6A) is one of the most abundant epitranscriptomic modifications on eukaryotic mRNA. Evidence has highlighted that m6A is altered in response to inflammation-related factors and it is closely associated with various inflammation-related diseases. Multiple subpopulations of myeloid cells, such as macrophages, dendritic cells, and granulocytes, are crucial for the regulating of immune process in inflammation-related diseases. Recent studies have revealed that m6A plays an important regulatory role in the functional of multiple myeloid cells. In this review, we comprehensively summarize the function of m6A modification in myeloid cells from the perspective of myeloid cell production, activation, polarization, and migration. Furthermore, we discuss how m6A-mediated myeloid cell function affects the progression of inflammation-related diseases, including autoimmune diseases, chronic metabolic diseases, and malignant tumors. Finally, we discuss the challenges encountered in the study of m6A in myeloid cells, intended to provide a new direction for the study of the pathogenesis of inflammation-related diseases.
Collapse
Affiliation(s)
- Jin Pang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Tong-Dong Kuang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Xin-Yuan Yu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Petr Novák
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Yuan Long
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Min Liu
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Wei-Qian Deng
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China.
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
23
|
González-Restrepo D, Zuluaga-Vélez A, Orozco LM, Sepúlveda-Arias JC. Silk fibroin-based dressings with antibacterial and anti-inflammatory properties. Eur J Pharm Sci 2024; 195:106710. [PMID: 38281552 DOI: 10.1016/j.ejps.2024.106710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Silk fibroin is a fibrillar protein obtained from arthropods such as mulberry and non-mulberry silkworms. Silk fibroin has been used as a dressing in wound treatment for its physical, chemical, mechanical, and biological properties. This systematic review analyzed studies from PubMed, Web of Science, and Scopus databases to identify the molecules preferred for functionalizing silk fibroin-based dressings and to describe their mechanisms of exhibiting anti-inflammatory and antibacterial properties. The analysis of the selected articles allowed us to classify the dressings into different conformations, such as membranes, films, hydrogels, sponges, and bioadhesives. The incorporation of various molecules, including antibiotics, natural products, peptides, nanocomposites, nanoparticles, secondary metabolites, growth factors, and cytokines, has allowed the development of dressings that promote wound healing with antibacterial and immunomodulatory properties. In addition, silk fibroin-based dressings have been established to have the potential to regenerate wounds such as venous ulcers, arterial ulcers, diabetic foot, third-degree burns, and neoplastic ulcers. Evaluation of the efficacy of silk fibroin-based dressings in tissue engineering is an area of great activity that has shown significant advances in recent years.
Collapse
Affiliation(s)
- David González-Restrepo
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Augusto Zuluaga-Vélez
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Lina M Orozco
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia; Grupo Polifenoles, Facultad de Tecnologías, Escuela de Química, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Juan C Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia.
| |
Collapse
|
24
|
Huang D, Zou M, Xu C, Wang Y, Xu Z, Zhang W, Tang S, Weng Z. Colon-Targeted Oral Delivery of Hydroxyethyl Starch-Curcumin Microcapsules Loaded with Multiple Drugs Alleviates DSS-Induced Ulcerative Colitis in Mice. Macromol Biosci 2024; 24:e2300465. [PMID: 38111343 DOI: 10.1002/mabi.202300465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/05/2023] [Indexed: 12/20/2023]
Abstract
Combination therapy through colon-targeted oral delivery of multiple drugs presents a promising approach for effectively treating ulcerative colitis (UC). However, the codelivery of drugs with diverse physicochemical properties in a single formulation remains a formidable challenge. Here, microcapsules are designed based on hydroxyethyl starch-curcumin (HES─CUR) conjugates to enable the simultaneous delivery of hydrophobic dexamethasone acetate (DA) and hydrophilic cefazolin sodium (CS), yielding multiple drug-loaded microcapsules (CS/DA-loaded HES─CUR microcapsules, CDHC-MCs) tailored for colon-targeted therapy of UC. Thorough characterization confirms the successful synthesis and exceptional biocompatibility of CDHC-MCs. Biodistribution studies demonstrate that the microcapsules exhibit an impressive inflammatory targeting effect, accumulating preferentially in inflamed colons. In vivo experiments employing a dextran-sulfate-sodium-induced UC mouse model reveal that CDHC-MCs not only arrest UC progression but also facilitate the restoration of colon length and alleviate inflammation-related splenomegaly. These findings highlight the potential of colon-targeted delivery of multiple drugs within a single formulation as a promising strategy to enhance UC treatment, and the CDHC-MCs developed in this study hold great potential in developing novel oral formulations for advanced UC therapy.
Collapse
Affiliation(s)
- Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Minglang Zou
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Chenlan Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yongming Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zhenjin Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515051, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, 515051, China
- Shantou Plastic surgery Clinical Research Center, Shantou, Guangdong, 515051, China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515051, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, 515051, China
- Shantou Plastic surgery Clinical Research Center, Shantou, Guangdong, 515051, China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
25
|
Kurian AG, Singh RK, Sagar V, Lee JH, Kim HW. Nanozyme-Engineered Hydrogels for Anti-Inflammation and Skin Regeneration. NANO-MICRO LETTERS 2024; 16:110. [PMID: 38321242 PMCID: PMC10847086 DOI: 10.1007/s40820-024-01323-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/24/2023] [Indexed: 02/08/2024]
Abstract
Inflammatory skin disorders can cause chronic scarring and functional impairments, posing a significant burden on patients and the healthcare system. Conventional therapies, such as corticosteroids and nonsteroidal anti-inflammatory drugs, are limited in efficacy and associated with adverse effects. Recently, nanozyme (NZ)-based hydrogels have shown great promise in addressing these challenges. NZ-based hydrogels possess unique therapeutic abilities by combining the therapeutic benefits of redox nanomaterials with enzymatic activity and the water-retaining capacity of hydrogels. The multifaceted therapeutic effects of these hydrogels include scavenging reactive oxygen species and other inflammatory mediators modulating immune responses toward a pro-regenerative environment and enhancing regenerative potential by triggering cell migration and differentiation. This review highlights the current state of the art in NZ-engineered hydrogels (NZ@hydrogels) for anti-inflammatory and skin regeneration applications. It also discusses the underlying chemo-mechano-biological mechanisms behind their effectiveness. Additionally, the challenges and future directions in this ground, particularly their clinical translation, are addressed. The insights provided in this review can aid in the design and engineering of novel NZ-based hydrogels, offering new possibilities for targeted and personalized skin-care therapies.
Collapse
Affiliation(s)
- Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Varsha Sagar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea.
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea.
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
26
|
AlSalhi MS, Oza G, Castillo-Maldonado I, Sharma A. Evaluation of antimicrobial, antioxidant, and anti-inflammatory abilities of sustainably synthesized Co3O4 NPs. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2024; 56:103025. [DOI: 10.1016/j.bcab.2024.103025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Li J, Zhao M, Liang J, Geng Z, Fan Y, Sun Y, Zhang X. Hollow Copper Sulfide Photothermal Nanodelivery Platform Boosts Angiogenesis of Diabetic Wound by Scavenging Reactive Oxygen Species. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4395-4407. [PMID: 38247262 DOI: 10.1021/acsami.3c15593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Sharply rising oxidative stress and ineffectual angiogenesis have imposed restrictions on diabetic wound healing. Here, a photothermal-responsive nanodelivery platform (HHC) was prepared by peroxidase (CAT)-loaded hollow copper sulfide dispersed in photocurable methacrylamide hyaluronan. The HHC could scavenge reactive oxygen species (ROS) and promote angiogenesis by photothermally driven CAT and Cu2+ release. Under near-infrared light irradiation, the HHC presented safe photothermal performance (<43 °C), efficient bacteriostatic ability against E. coli and S. aureus. It could rapidly release CAT into the external environment for decomposing H2O2 and oxygen generation to alleviate oxidative stress while promoting fibroblast migration and VEGF protein expression of endothelial cells by reducing intracellular ROS levels. The nanodelivery platform presented satisfactory therapeutic effects on murine diabetic wound healing by modulating tissue inflammation, promoting collagen deposition and increasing vascularization in the neodermis. This HHC provided a viable strategy for diabetic wound dressing design.
Collapse
Affiliation(s)
- Jiadong Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Mingda Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- Sichuan Testing Centre for Biomaterials and Medical Devices, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
28
|
Yan B, Hua Y, Wang J, Shao T, Wang S, Gao X, Gao J. Surface Modification Progress for PLGA-Based Cell Scaffolds. Polymers (Basel) 2024; 16:165. [PMID: 38201830 PMCID: PMC10780542 DOI: 10.3390/polym16010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Poly(lactic-glycolic acid) (PLGA) is a biocompatible bio-scaffold material, but its own hydrophobic and electrically neutral surface limits its application as a cell scaffold. Polymer materials, mimics ECM materials, and organic material have often been used as coating materials for PLGA cell scaffolds to improve the poor cell adhesion of PLGA and enhance tissue adaptation. These coating materials can be modified on the PLGA surface via simple physical or chemical methods, and coating multiple materials can simultaneously confer different functions to the PLGA scaffold; not only does this ensure stronger cell adhesion but it also modulates cell behavior and function. This approach to coating could facilitate the production of more PLGA-based cell scaffolds. This review focuses on the PLGA surface-modified materials, methods, and applications, and will provide guidance for PLGA surface modification.
Collapse
Affiliation(s)
- Bohua Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| | - Yabing Hua
- Department of Pharmacy, Xuzhou Medical University Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China;
| | - Jinyue Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| | - Tianjiao Shao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| | - Shan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| | - Jing Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| |
Collapse
|
29
|
Rosellini E, Cascone MG, Guidi L, Schubert DW, Roether JA, Boccaccini AR. Mending a broken heart by biomimetic 3D printed natural biomaterial-based cardiac patches: a review. Front Bioeng Biotechnol 2023; 11:1254739. [PMID: 38047285 PMCID: PMC10690428 DOI: 10.3389/fbioe.2023.1254739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2023] Open
Abstract
Myocardial infarction is one of the major causes of mortality as well as morbidity around the world. Currently available treatment options face a number of drawbacks, hence cardiac tissue engineering, which aims to bioengineer functional cardiac tissue, for application in tissue repair, patient specific drug screening and disease modeling, is being explored as a viable alternative. To achieve this, an appropriate combination of cells, biomimetic scaffolds mimicking the structure and function of the native tissue, and signals, is necessary. Among scaffold fabrication techniques, three-dimensional printing, which is an additive manufacturing technique that enables to translate computer-aided designs into 3D objects, has emerged as a promising technique to develop cardiac patches with a highly defined architecture. As a further step toward the replication of complex tissues, such as cardiac tissue, more recently 3D bioprinting has emerged as a cutting-edge technology to print not only biomaterials, but also multiple cell types simultaneously. In terms of bioinks, biomaterials isolated from natural sources are advantageous, as they can provide exceptional biocompatibility and bioactivity, thus promoting desired cell responses. An ideal biomimetic cardiac patch should incorporate additional functional properties, which can be achieved by means of appropriate functionalization strategies. These are essential to replicate the native tissue, such as the release of biochemical signals, immunomodulatory properties, conductivity, enhanced vascularization and shape memory effects. The aim of the review is to present an overview of the current state of the art regarding the development of biomimetic 3D printed natural biomaterial-based cardiac patches, describing the 3D printing fabrication methods, the natural-biomaterial based bioinks, the functionalization strategies, as well as the in vitro and in vivo applications.
Collapse
Affiliation(s)
| | | | - Lorenzo Guidi
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | - Dirk W. Schubert
- Department of Materials Science and Engineering, Institute of Polymer Materials, Friedrich-Alexander-University (FAU), Erlangen, Germany
- Bavarian Polymer Institute (BPI), Erlangen, Germany
| | - Judith A. Roether
- Department of Materials Science and Engineering, Institute of Polymer Materials, Friedrich-Alexander-University (FAU), Erlangen, Germany
| | - Aldo R. Boccaccini
- Bavarian Polymer Institute (BPI), Erlangen, Germany
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander-University (FAU), Erlangen, Germany
| |
Collapse
|
30
|
Lazar KM, Shetty S, Chilkoti A, Collier JH. Immune-active polymeric materials for the treatment of inflammatory diseases. Curr Opin Colloid Interface Sci 2023; 67:101726. [DOI: 10.1016/j.cocis.2023.101726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
31
|
Jackson Hoffman BA, Pumford EA, Enueme AI, Fetah KL, Friedl OM, Kasko AM. Engineered macromolecular Toll-like receptor agents and assemblies. Trends Biotechnol 2023; 41:1139-1154. [PMID: 37068999 DOI: 10.1016/j.tibtech.2023.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 04/19/2023]
Abstract
Macromolecular Toll-like receptor (TLR) agents have been utilized as agonists and inhibitors in preclinical and clinical settings. These agents interface with the TLR class of innate immune receptors which recognize macromolecular ligands that are characteristic of pathogenic material. As such, many agents that have been historically investigated are derived from the natural macromolecules which activate or inhibit TLRs. This review covers recent research and clinically available TLR agents that are macromolecular or polymeric. Synthetic materials that have been found to interface with TLRs are also discussed. Assemblies of these materials are investigated in the context of improving stability or efficacy of ligands. Attention is given to strategies which modify or enhance the current agents and to future outlooks on the development of these agents.
Collapse
Affiliation(s)
| | - Elizabeth A Pumford
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Amaka I Enueme
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kirsten L Fetah
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Olivia M Friedl
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Andrea M Kasko
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA; California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
32
|
Yadav TC, Bachhuka A. Tuning foreign body response with tailor-engineered nanoscale surface modifications: fundamentals to clinical applications. J Mater Chem B 2023; 11:7834-7854. [PMID: 37528807 DOI: 10.1039/d3tb01040f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Biomaterials are omnipresent in today's healthcare services and are employed in various applications, including implants, sensors, healthcare accessories, and drug delivery systems. Unfavorable host immunological responses frequently jeopardize the efficacy of biomaterials. As a result, surface modification has received much attention in controlling inflammatory responses since it helps camouflage the biomaterial from the host immune system, influencing the foreign body response (FBR) from protein adsorption to fibrous capsule formation. Surfaces with controlled nanotopography and chemistry, among other surface modification methodologies, have effectively altered the immune response to biomaterials. However, the field is still in its early stages, with only a few studies showing a synergistic effect of surface chemistry and nanotopography on inflammatory and wound healing pathways. Therefore, this review will concentrate on the individual and synergistic effects of surface chemistry and nanotopography on FBR modulation and the molecular processes known to modulate these responses. This review will also provide insights into crucial research gaps and advancements in various tactics for modulating FBR, opening new paths for future research. This will further aid in improving our understanding of the immune response to biomaterials, developing advanced surface modification techniques, designing immunomodulatory biomaterials, and translating discoveries into clinical applications.
Collapse
Affiliation(s)
- Tara Chand Yadav
- Department of Bioinformatics, Faculty of Engineering & Technology, Marwadi University, Gujarat, 360003, India
- Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University (URV), Tarragona, 43003, Spain.
| | - Akash Bachhuka
- Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University (URV), Tarragona, 43003, Spain.
| |
Collapse
|
33
|
Ni R, Luo Y, Jiang L, Mao X, Feng Y, Tuersun S, Hu Z, Zhu Y. Repairing gastric ulcer with hyaluronic acid/extracellular matrix composite through promoting M2-type polarization of macrophages. Int J Biol Macromol 2023:125556. [PMID: 37364804 DOI: 10.1016/j.ijbiomac.2023.125556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/19/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
The treatment of gastric ulcer and perforation using synthetic and biomaterials has been a clinical challenge. In this work, a drug-carrying layer of hyaluronic acid was combined with a gastric submucosal decellularized extracellular matrix called gHECM. The regulation of macrophage polarization by the extracellular matrix's components was then investigated. This work proclaims how gHECM responds to inflammation and aids in the regeneration of the gastric lining by altering the phenotype of surrounding macrophages and stimulating the body's whole immune response. In a nutshell, gHECM promotes tissue regeneration by changing the phenotype of macrophages around the site of injury. In particular, gHECM reduces the production of pro-inflammatory cytokines, decreases the percentage of M1 macrophages, and further encourages differentiation of macrophage subpopulation to the M2 phenotype and the release of anti-inflammatory cytokines, which could block the NF-κB pathway. Activated macrophages are capable of immediately delivering through spatial barriers, modulating the peripheral immune system, influencing the inflammatory microenvironment, and ultimately promoting the recovery of inflammation and healing of ulcers. They contribute to the secreted cytokines that act on local tissues or enhance the chemotactic ability of macrophages through paracrine secretion. In this study, we focused on the immunological regulatory network of macrophage polarization to further develop the mechanisms behind this process. Nevertheless, the signaling pathways involved in this process need to be further explored and identified. We think that our research will encourage more investigation into how the decellularized matrix affects immune modulation and will help the decellularized matrix perform better as a new class of natural biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Renhao Ni
- Ningbo University, Health Science Center, Ningbo 315211, China
| | - Yang Luo
- Ningbo University, Health Science Center, Ningbo 315211, China
| | - Lingjing Jiang
- Ningbo University, Health Science Center, Ningbo 315211, China
| | - Xufeng Mao
- Department of Orthopedics, the First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Yuyao Feng
- Ningbo University, Health Science Center, Ningbo 315211, China
| | | | - Zeming Hu
- Ningbo University, Health Science Center, Ningbo 315211, China
| | - Yabin Zhu
- Ningbo University, Health Science Center, Ningbo 315211, China.
| |
Collapse
|
34
|
Shu C, Qin C, Chen L, Wang Y, Shi Z, Yu J, Huang J, Zhao C, Huan Z, Wu C, Zhu M, Zhu Y. Metal-Organic Framework Functionalized Bioceramic Scaffolds with Antioxidative Activity for Enhanced Osteochondral Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206875. [PMID: 36828785 PMCID: PMC10161093 DOI: 10.1002/advs.202206875] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/19/2023] [Indexed: 05/06/2023]
Abstract
Osteoarthritis (OA) is a degenerative disease that often causes cartilage lesions and even osteochondral damage. Osteochondral defects induced by OA are accompanied by an inflammatory arthrosis microenvironment with overproduced reactive oxygen species (ROS), resulting in the exacerbation of defects and difficulty regenerating osteochondral tissues. Therefore, it is urgently needed to develop osteochondral scaffolds that can not only promote the integrated regeneration of cartilage and subchondral bone, but also possess ROS-scavenging ability to protect tissues from oxidative stress. Herein, zinc-cobalt bimetallic organic framework (Zn/Co-MOF) functionalized bioceramic scaffolds are designed for repairing osteochondral defects under OA environment. By functionalizing Zn/Co-MOF on the 3D-printed beta-tricalcium phosphate (β-TCP) scaffolds, the Zn/Co-MOF functionalized β-TCP (MOF-TCP) scaffolds with broad-spectrum ROS-scavenging ability are successfully developed. Benefiting from its catalytic active sites and degradation products, Zn/Co-MOF endows the scaffolds with excellent antioxidative and anti-inflammatory properties to protect cells from ROS invasion, as well as dual-bioactivities of simultaneously inducing osteogenic and chondrogenic differentiation in vitro. Furthermore, in vivo results confirm that MOF-TCP scaffolds accelerate the integrated regeneration of cartilage and subchondral bone in severe osteochondral defects. This study offers a promising strategy for treating defects induced by OA as well as other inflammatory diseases.
Collapse
Affiliation(s)
- Chaoqin Shu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Chen Qin
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Lei Chen
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Yufeng Wang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Zhe Shi
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Jiangming Yu
- Department of OrthopaedicsTongren HospitalShanghai Jiaotong UniversityShanghai200336P. R. China
| | - Jimin Huang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Chaoqian Zhao
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Zhiguang Huan
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Min Zhu
- School of Materials and ChemistryUniversity of Shanghai for Science and TechnologyShanghai200093P. R. China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
35
|
Namjoo AR, Abrbekoh FN, Saghati S, Amini H, Saadatlou MAE, Rahbarghazi R. Tissue engineering modalities in skeletal muscles: focus on angiogenesis and immunomodulation properties. Stem Cell Res Ther 2023; 14:90. [PMID: 37061717 PMCID: PMC10105969 DOI: 10.1186/s13287-023-03310-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/28/2023] [Indexed: 04/17/2023] Open
Abstract
Muscular diseases and injuries are challenging issues in human medicine, resulting in physical disability. The advent of tissue engineering approaches has paved the way for the restoration and regeneration of injured muscle tissues along with available conventional therapies. Despite recent advances in the fabrication, synthesis, and application of hydrogels in terms of muscle tissue, there is a long way to find appropriate hydrogel types in patients with congenital and/or acquired musculoskeletal injuries. Regarding specific muscular tissue microenvironments, the applied hydrogels should provide a suitable platform for the activation of endogenous reparative mechanisms and concurrently deliver transplanting cells and therapeutics into the injured sites. Here, we aimed to highlight recent advances in muscle tissue engineering with a focus on recent strategies related to the regulation of vascularization and immune system response at the site of injury.
Collapse
Affiliation(s)
- Atieh Rezaei Namjoo
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- General and Vascular Surgery Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
36
|
Chiang YT, Xiao YB, Hsu SH, Chang SW, Chou CC. Molecular interactions of tannic acid and matrix metalloproteinases 2 and 9. Comput Struct Biotechnol J 2023; 21:2792-2800. [PMID: 37181658 PMCID: PMC10172635 DOI: 10.1016/j.csbj.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Tannic acid (TA) has antibacterial, antioxidant, and anti-inflammatory properties and acts as an adhesive, hemostatic, and crosslinking agent in hydrogels. Matrix metalloproteinases (MMPs), a family of endopeptidase enzymes, play important roles in tissue remodeling and wound healing. TA has been reported to inhibit MMP-2/- 9 activities, thereby improving both tissue remodeling and wound healing. However, the mechanism of interaction of TA with MMP-2 and MMP-9 has not been fully elucidated. In this study, the full atomistic modeling approach was applied to explore the mechanisms and structures of TA binding with MMP-2 and MMP-9. Macromolecular models of the TA-MMP-2/- 9 complex were built by docking based on experimentally resolved MMP structures, and further equilibrium processes were examined by molecular dynamics (MD) simulations to investigate the binding mechanism and structural dynamics of the TA-MMP-2/- 9 complexes. The molecular interactions between TA and MMPs, including H-bond formation and hydrophobic and electrostatic interactions, were analyzed and decoupled to elucidate the dominant factors in TA-MMP binding. TA binds to MMPs mainly at two binding regions, residues 163-164 and 220-223 in MMP-2 and residues 179-190 and 228-248 in MMP-9. Two arms of TA participate in binding MMP-2 with 3.61 hydrogen bonds. On the other hand, TA binds MMP-9 with a distinct configuration involving four arms with 4.75 hydrogen bonds, resulting in a tighter binding conformation. Understanding the binding mechanism and structural dynamics of TA with these two MMPs provides crucial and fundamental knowledge regarding the inhibitory and stabilizing effects of TA on MMPs.
Collapse
Affiliation(s)
- Ya-Tang Chiang
- Institute of Polymer Science and Engineering, National Taiwan University, Roosevelt Road No. 1, Section 4, 10617 Taipei, Taiwan
| | - Yu-Bai Xiao
- Department of Civil Engineering, College of Engineering, National Taiwan University, Roosevelt Road No. 1, Section 4, 10617 Taipei, Taiwan
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Roosevelt Road No. 1, Section 4, 10617 Taipei, Taiwan
| | - Shu-Wei Chang
- Department of Civil Engineering, College of Engineering, National Taiwan University, Roosevelt Road No. 1, Section 4, 10617 Taipei, Taiwan
- Department of Biomedical Engineering, College of Engineering, National Taiwan University, Roosevelt Road No. 1, Section 4, 10617 Taipei, Taiwan
| | - Chia-Ching Chou
- Institute of Applied Mechanics, College of Engineering, National Taiwan University, Roosevelt Road No. 1, Section 4, 10617 Taipei, Taiwan
| |
Collapse
|
37
|
Xin W, Baokun Z, Zhiheng C, Qiang S, Erzhu Y, Jianguang X, Xiaofeng L. Biodegradable bilayer hydrogel membranes loaded with bazedoxifene attenuate blood-spinal cord barrier disruption via the NF-κB pathway after acute spinal cord injury. Acta Biomater 2023; 159:140-155. [PMID: 36736849 DOI: 10.1016/j.actbio.2023.01.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
After spinal cord injury (SCI), blood-spinal cord barrier (BSCB) disruption and hemorrhage lead to blood cell infiltration and progressive secondary injuries. Therefore, early restoration of the BSCB represents a key step in the treatment of SCI. Bazedoxifene (BZA), a third-generation estrogen receptor modulator, has recently been reported to inhibit inflammation and alleviate blood-brain barrier disruption caused by traumatic brain injury, attracting great interest in the field of central nervous system injury and repair. However, whether BZA can attenuate BSCB disruption and contribute to SCI repair remains unknown. Here, we developed a new type of biomaterial carrier and constructed a BZA-loaded HSPT (hyaluronic acid (HA), sodium alginate (SA), polyvinyl alcohol (PVA), tetramethylpropane (TPA) material construction) (HSPT@Be) system to effectively deliver BZA to the site of SCI. We found that HSPT@Be could significantly reduce inflammation in the spinal cord in SCI rats and attenuate BSCB disruption by providing covering scaffold, inhibiting oxidative stress, and upregulating tight junction proteins, which was mediated by regulation of the NF-κB/MMP signaling pathway. Importantly, functional assessment showed the evident improvement of behavioral functions in the HSPT@Be-treated SCI rats. These results indicated that HSPT@Be can attenuate BSCB disruption via the NF-κB pathway after SCI, shedding light on its potential therapeutic benefit for SCI. STATEMENT OF SIGNIFICANCE: After spinal cord injury, blood-spinal cord barrier disruption and hemorrhage lead to blood cell infiltration and progressive secondary injuries. Bazedoxifene has recently been reported to inhibit inflammation and alleviate blood-brain barrier disruption caused by traumatic brain injury. However, whether BZA can attenuate BSCB disruption and contribute to SCI repair remains unknown. In this study, we developed a new type of biomaterial carrier and constructed a bazedoxifene-loaded HSPT (HSPT@Be) system to efficiently treat SCI. HSPT@Be could provide protective coverage, inhibit oxidative stress, and upregulate tight junction proteins through NF-κB/MMP pathway both in vivo and in vitro, therefore attenuating BSCB disruption. Our study fills the application gap of biomaterials in BSCB restoration.
Collapse
Affiliation(s)
- Wang Xin
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhang Baokun
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chen Zhiheng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Shi Qiang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yang Erzhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xu Jianguang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Lian Xiaofeng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
38
|
Composite Fibrin and Carbon Microfibre Implant to Modulate Postraumatic Inflammation after Spinal Cord Injury. Cells 2023; 12:cells12060839. [PMID: 36980180 PMCID: PMC10047285 DOI: 10.3390/cells12060839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Poor functional recovery after spinal cord injury (SCI) drives the development of novel strategies to manage this devastating condition. We recently showed promising immunomodulatory and pro-regenerative actions of bio-functionalized carbon microfibres (MFs) implanted in a rodent model of SCI. In order to maximize tissue repair while easing MF implantation, we produced a composite implant based on the embedding of several MFs within a fibrin hydrogel. We used intravital imaging of fluorescent reporter mice at the early stages and spinal sections of the same animals 3 months later to characterize the neuroinflammatory response to the implant and its impact on axonal regeneration. Whereas fibrin alone was inert in the first week, its enzymatic degradation drove the chronic activation of microglial cells and axonal degeneration within 3 months. However, the presence of MFs inside the fibrin hydrogel slowed down fibrin degradation and boosted the early recruitment of immune cells. Noteworthy, there was an enhanced contribution of monocyte-derived dendritic cells (moDCs), preceding a faster transition toward an anti-inflammatory environment with increased axonal regeneration over 3 months. The inclusion of MF here ensured the long-term biocompatibility of fibrin hydrogels, which would otherwise preclude successful spinal cord regeneration.
Collapse
|
39
|
Lee CY, Chooi WH, Ng S, Chew SY. Modulating neuroinflammation through molecular, cellular and biomaterial-based approaches to treat spinal cord injury. Bioeng Transl Med 2023; 8:e10389. [PMID: 36925680 PMCID: PMC10013833 DOI: 10.1002/btm2.10389] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/02/2022] [Accepted: 07/16/2022] [Indexed: 11/09/2022] Open
Abstract
The neuroinflammatory response that is elicited after spinal cord injury contributes to both tissue damage and reparative processes. The complex and dynamic cellular and molecular changes within the spinal cord microenvironment result in a functional imbalance of immune cells and their modulatory factors. To facilitate wound healing and repair, it is necessary to manipulate the immunological pathways during neuroinflammation to achieve successful therapeutic interventions. In this review, recent advancements and fresh perspectives on the consequences of neuroinflammation after SCI and modulation of the inflammatory responses through the use of molecular-, cellular-, and biomaterial-based therapies to promote tissue regeneration and functional recovery will be discussed.
Collapse
Affiliation(s)
- Cheryl Yi‐Pin Lee
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Wai Hon Chooi
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Shi‐Yan Ng
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Sing Yian Chew
- School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
40
|
Liu J, Jia B, Li Z, Li W. Reactive oxygen species-responsive polymer drug delivery systems. Front Bioeng Biotechnol 2023; 11:1115603. [PMID: 36815896 PMCID: PMC9932603 DOI: 10.3389/fbioe.2023.1115603] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Applying reactive polymer materials sensitive to biological stimuli has recently attracted extensive research interest. The special physiological effects of reactive oxygen species (ROS) on tumors or inflammation and the application of ROS-responsive polymers as drug-delivery systems in organisms have attracted much attention. ROS is a vital disease signal molecule, and the unique accumulation of ROS-responsive polymers in pathological sites may enable ROS-responsive polymers to deliver payload (such as drugs, ROS-responsive prodrugs, and gene therapy fragments) in a targeted fashion. In this paper, the research progress of ROS-responsive polymers and their application in recent years were summarized and analyzed. The research progress of ROS-responsive polymers was reviewed from the perspective of nanoparticle drug delivery systems, multi-responsive delivery systems, and ROS-responsive hydrogels. It is expected that our work will help understand the future development trends in this field.
Collapse
Affiliation(s)
- Jiaxue Liu
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Boyan Jia
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Zhibo Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China,*Correspondence: Zhibo Li, ; Wenliang Li,
| | - Wenliang Li
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China,*Correspondence: Zhibo Li, ; Wenliang Li,
| |
Collapse
|
41
|
Sun S, Yuan Q, Li X, Wang X, Wu S, Chen S, Ma J, Zhou F. Curcumin Functionalized Electrospun Fibers with Efficient pH Real-Time Monitoring and Antibacterial and Anti-inflammatory Properties. ACS Biomater Sci Eng 2023; 9:474-484. [PMID: 36487189 DOI: 10.1021/acsbiomaterials.2c00759] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Wound infection has threatened the health of humans, and developing novel dressings by integrating infection detection and wound treatment in biomaterials is urgently required in the medical industry. In this study, we report a facile strategy to develop curcumin functionalized poly(ε-caprolactone) and gelatin composite fibrous membranes with pH real-time monitoring and antibacterial and anti-inflammatory properties. The developed curcumin-functionalized composite fibers displayed highly sensitive and visible response to the variation of the pH value of a buffer solution in the range of 5.6-8.6. In addition, the resultant fibrous membrane showed obviously enhanced antibacterial efficiency against both E. coli and S. aureus and no obvious cytotoxicity to human dermal fibroblasts when the curcumin content was less than 5 wt %. More importantly, 3 wt % curcumin-functionalized composite membrane exhibited excellent anti-inflammatory activities, good antioxidant activity of ca. 82%, and significantly decreased expression levels of pro-inflammatory cytokines like TNF-α and IL-6 in vitro (p < 0.001). Furthermore, subcutaneous embedding experiments showed that the 3 wt % curcumin-functionalized membrane significantly promoted cell penetration, recruited less macrophages, and facilitated collage deposition. Therefore, the curcumin-functionalized composite fibers could be employed to fabricate multifunctional dressings for the future treatment of chronic wounds.
Collapse
Affiliation(s)
- Shibin Sun
- College of Textiles and Clothing, Qingdao University, Qingdao266061, P. R. China
| | - Qifan Yuan
- College of Textiles and Clothing, Qingdao University, Qingdao266061, P. R. China
| | - Xueyan Li
- College of Textiles and Clothing, Qingdao University, Qingdao266061, P. R. China
| | - Xueqin Wang
- College of Textiles and Clothing, Qingdao University, Qingdao266061, P. R. China
| | - Shaohua Wu
- College of Textiles and Clothing, Qingdao University, Qingdao266061, P. R. China
| | - Shaojuan Chen
- College of Textiles and Clothing, Qingdao University, Qingdao266061, P. R. China
| | - Jianwei Ma
- College of Textiles and Clothing, Qingdao University, Qingdao266061, P. R. China.,Shandong Center for Engineered Nonwovens, Qingdao, 266071, P. R. China
| | - Fang Zhou
- College of Textiles and Clothing, Qingdao University, Qingdao266061, P. R. China
| |
Collapse
|
42
|
Li Z, Zhao T, Ding J, Gu H, Wang Q, Wang Y, Zhang D, Gao C. A reactive oxygen species-responsive hydrogel encapsulated with bone marrow derived stem cells promotes repair and regeneration of spinal cord injury. Bioact Mater 2023; 19:550-568. [PMID: 35600969 PMCID: PMC9108756 DOI: 10.1016/j.bioactmat.2022.04.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 10/29/2022] Open
Abstract
Spinal cord injury (SCI) is an overwhelming and incurable disabling event accompanied by complicated inflammation-related pathological processes, such as excessive reactive oxygen species (ROS) produced by the infiltrated inflammatory immune cells and released to the extracellular microenvironment, leading to the widespread apoptosis of the neuron cells, glial and oligodendroctyes. In this study, a thioketal-containing and ROS-scavenging hydrogel was prepared for encapsulation of the bone marrow derived mesenchymal stem cells (BMSCs), which promoted the neurogenesis and axon regeneration by scavenging the overproduced ROS and re-building a regenerative microenvironment. The hydrogel could effectively encapsulate BMSCs, and played a remarkable neuroprotective role in vivo by reducing the production of endogenous ROS, attenuating ROS-mediated oxidative damage and downregulating the inflammatory cytokines such as interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), resulting in a reduced cell apoptosis in the spinal cord tissue. The BMSCs-encapsulated ROS-scavenging hydrogel also reduced the scar formation, and improved the neurogenesis of the spinal cord tissue, and thus distinctly enhanced the motor functional recovery of SCI rats. Our work provides a combinational strategy against ROS-mediated oxidative stress, with potential applications not only in SCI, but also in other central nervous system diseases with similar pathological conditions.
Collapse
|
43
|
Apte A, Liechty KW, Zgheib C. Immunomodulatory biomaterials on chemokine signaling in wound healing. Front Pharmacol 2023; 14:1084948. [PMID: 37153787 PMCID: PMC10160628 DOI: 10.3389/fphar.2023.1084948] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Normal wound healing occurs through a careful orchestration of cytokine and chemokine signaling in response to injury. Chemokines are a small family of chemotactic cytokines that are secreted by immune cells in response to injury and are primarily responsible for recruiting appropriate immune cell types to injured tissue at the appropriate time. Dysregulation of chemokine signaling is suspected to contribute to delayed wound healing and chronic wounds in diseased states. Various biomaterials are being used in the development of new therapeutics for wound healing and our understanding of their effects on chemokine signaling is limited. It has been shown that modifications to the physiochemical properties of biomaterials can affect the body's immune reaction. Studying these effects on chemokine expression by various tissues and cell type can help us develop novel biomaterial therapies. In this review, we summarize the current research available on both natural and synthetic biomaterials and their effects on chemokine signaling in wound healing. In our investigation, we conclude that our knowledge of chemokines is still limited and that many in fact share both pro-inflammatory and anti-inflammatory properties. The predominance of either a pro-inflammatory or anti-inflammatory profile is mostly likely dependent on timing after injury and exposure to the biomaterial. More research is needed to better understand the interaction and contribution of biomaterials to chemokine activity in wound healing and their immunomodulatory effects.
Collapse
|
44
|
Wang Q, Luo Z, Wu YL, Li Z. Recent Advances in Enzyme‐Based Biomaterials Toward Diabetic Wound Healing. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Qi Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University Xiamen 361102 China
| | - Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University Xiamen 361102 China
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Innovis, #08-03 Singapore 138634 Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University Xiamen 361102 China
| | - Zibiao Li
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Innovis, #08-03 Singapore 138634 Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way Singapore 138634 Singapore
- Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 Singapore 117576 Singapore
| |
Collapse
|
45
|
Yang J, Liu C, Sun H, Liu Y, Liu Z, Zhang D, Zhao G, Wang Q, Yang D. The progress in titanium alloys used as biomedical implants: From the view of reactive oxygen species. Front Bioeng Biotechnol 2022; 10:1092916. [PMID: 36601391 PMCID: PMC9806234 DOI: 10.3389/fbioe.2022.1092916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Titanium and Titanium alloys are widely used as biomedical implants in oral and maxillofacial surgery, due to superior mechanical properties and biocompatibility. In specific clinical populations such as the elderly, diabetics and patients with metabolic diseases, the failure rate of medical metal implants is increased significantly, putting them at increased risk of revision surgery. Many studies show that the content of reactive oxygen species (ROS) in the microenvironment of bone tissue surrounding implant materials is increased in patients undergoing revision surgery. In addition, the size and shape of materials, the morphology, wettability, mechanical properties, and other properties play significant roles in the production of ROS. The accumulated ROS break the original balance of oxidation and anti-oxidation, resulting in host oxidative stress. It may accelerate implant degradation mainly by activating inflammatory cells. Peri-implantitis usually leads to a loss of bone mass around the implant, which tends to affect the long-term stability and longevity of implant. Therefore, a great deal of research is urgently needed to focus on developing antibacterial technologies. The addition of active elements to biomedical titanium and titanium alloys greatly reduce the risk of postoperative infection in patients. Besides, innovative technologies are developing new biomaterials surfaces conferring anti-infective properties that rely on the production of ROS. It can be considered that ROS may act as a messenger substance for the communication between the host and the implanted material, which run through the entire wound repair process and play a role that cannot be ignored. It is necessary to understand the interaction between oxidative stress and materials, the effects of oxidative stress products on osseointegration and implant life as well as ROS-induced bactericidal activity. This helps to facilitate the development of a new generation of well-biocompatible implant materials with ROS responsiveness, and ultimately prolong the lifespan of implants.
Collapse
Affiliation(s)
- Jun Yang
- School of Stomatology, Jiamusi University, Jiamusi, China,Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Chang Liu
- School of Stomatology, Jiamusi University, Jiamusi, China,Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Hui Sun
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ying Liu
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Zhaogang Liu
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Dan Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China,*Correspondence: Donghong Yang, ; Dan Zhang,
| | - Gang Zhao
- School of Stomatology, Jiamusi University, Jiamusi, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Donghong Yang
- School of Stomatology, Jiamusi University, Jiamusi, China,*Correspondence: Donghong Yang, ; Dan Zhang,
| |
Collapse
|
46
|
Dong J, Wang W, Zhou W, Zhang S, Li M, Li N, Pan G, Zhang X, Bai J, Zhu C. Immunomodulatory biomaterials for implant-associated infections: from conventional to advanced therapeutic strategies. Biomater Res 2022; 26:72. [PMID: 36471454 PMCID: PMC9721013 DOI: 10.1186/s40824-022-00326-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/19/2022] [Indexed: 12/11/2022] Open
Abstract
Implant-associated infection (IAI) is increasingly emerging as a serious threat with the massive application of biomaterials. Bacteria attached to the surface of implants are often difficult to remove and exhibit high resistance to bactericides. In the quest for novel antimicrobial strategies, conventional antimicrobial materials often fail to exert their function because they tend to focus on direct bactericidal activity while neglecting the modulation of immune systems. The inflammatory response induced by host immune cells was thought to be a detrimental force impeding wound healing. However, the immune system has recently received increasing attention as a vital player in the host's defense against infection. Anti-infective strategies based on the modulation of host immune defenses are emerging as a field of interest. This review explains the importance of the immune system in combating infections and describes current advanced immune-enhanced anti-infection strategies. First, the characteristics of traditional/conventional implant biomaterials and the reasons for the difficulty of bacterial clearance in IAI were reviewed. Second, the importance of immune cells in the battle against bacteria is elucidated. Then, we discuss how to design biomaterials that activate the defense function of immune cells to enhance the antimicrobial potential. Based on the key premise of restoring proper host-protective immunity, varying advanced immune-enhanced antimicrobial strategies were discussed. Finally, current issues and perspectives in this field were offered. This review will provide scientific guidance to enhance the development of advanced anti-infective biomaterials.
Collapse
Affiliation(s)
- Jiale Dong
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Wenzhi Wang
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Wei Zhou
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Siming Zhang
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Meng Li
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China ,grid.263761.70000 0001 0198 0694Medical College, Soochow University, 215006 Suzhou, Jiangsu P. R. China
| | - Ning Li
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Guoqing Pan
- grid.440785.a0000 0001 0743 511XInstitute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Xianzuo Zhang
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Jiaxiang Bai
- grid.263761.70000 0001 0198 0694Medical College, Soochow University, 215006 Suzhou, Jiangsu P. R. China
| | - Chen Zhu
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| |
Collapse
|
47
|
Yan Y, Ren P, Wu Q, Zhang T. Precise Design of Alginate Hydrogels Crosslinked with Microgels for Diabetic Wound Healing. Biomolecules 2022; 12:1582. [PMID: 36358932 PMCID: PMC9687833 DOI: 10.3390/biom12111582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 09/10/2023] Open
Abstract
Alginate hydrogel has received great attention in diabetic wound healing. However, the limited tunability of the ionic crosslinking method prevents the delicate management of physical properties in response to diverse wound conditions. We addressed this issue by using a microgel particle (fabricated by zinc ions and coordinated through the complex of carboxymethyl chitosan and aldehyde hyaluronic acid) as a novel crosslinker. Then the cation was introduced as a second crosslinker to create a double crosslinked network. The method leads to the precise regulation of the hydrogel characters, including the biodegradation rate and the controlled release rate of the drug. As a result, the optimized hydrogels facilitated the live-cell infiltration in vitro and boosted the tissue regeneration of diabetic wounds in vivo. The results indicated that the addition of the microgel as a new crosslinker created flexibility during the construction of the alginate hydrogel, adapting for diverse applications during diabetic-induced wound therapy.
Collapse
Affiliation(s)
- Yishu Yan
- School of Life Science and Health Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi 214122, China
| | - Panpan Ren
- School of Life Science and Health Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi 214122, China
| | - Qingqing Wu
- School of Life Science and Health Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi 214122, China
| | - Tianmeng Zhang
- Bloomage Biotechnology Corporation Limited, Jinan 250101, China
| |
Collapse
|
48
|
Ma S, Zhang J, Liu H, Li S, Wang Q. The Role of Tissue-Resident Macrophages in the Development and Treatment of Inflammatory Bowel Disease. Front Cell Dev Biol 2022; 10:896591. [PMID: 35721513 PMCID: PMC9199005 DOI: 10.3389/fcell.2022.896591] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn’s disease and ulcerative colitis, is a refractory disease with many immune abnormalities and pathologies in the gastrointestinal tract. Because macrophages can distinguish innocuous antigens from potential pathogens to maintain mucosa barrier functions, they are essential cells in the intestinal immune system. With numerous numbers in the intestinal tract, tissue-resident macrophages have a significant effect on the constant regeneration of intestinal epithelial cells and maintaining the immune homeostasis of the intestinal mucosa. They also have a significant influence on IBD through regulating pro-(M1) or anti-inflammatory (M2) phenotype polarization according to different environmental cues. The disequilibrium of the phenotypes and functions of macrophages, disturbed by intracellular or extracellular stimuli, influences the progression of disease. Further investigation of macrophages’ role in the progression of IBD will facilitate deciphering the pathogenesis of disease and exploring novel targets to develop novel medications. In this review, we shed light on the origin and maintenance of intestinal macrophages, as well as the role of macrophages in the occurrence and development of IBD. In addition, we summarize the interaction between gut microbiota and intestinal macrophages, and the role of the macrophage-derived exosome. Furthermore, we discuss the molecular and cellular mechanisms participating in the polarization and functions of gut macrophages, the potential targeted strategies, and current clinical trials for IBD.
Collapse
Affiliation(s)
- Shengjie Ma
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| | - Jiaxin Zhang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| | - Heshi Liu
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| | - Shuang Li
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| | - Quan Wang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| |
Collapse
|
49
|
Wang Y, Chen L, Ren DY, Feng ZX, Zhang LY, Zhong YF, Jin MY, Xu FW, Feng CY, Du YZ, Tan WQ. Mussel-inspired collagen-hyaluronic acid composite scaffold with excellent antioxidant properties and sustained release of a growth factor for enhancing diabetic wound healing. Mater Today Bio 2022; 15:100320. [PMID: 35757026 PMCID: PMC9218585 DOI: 10.1016/j.mtbio.2022.100320] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 01/13/2023]
Abstract
Long-term non-healing diabetic wounds are always a serious challenge and a global healthcare burden that needs to be resolved urgently in the clinic. Prolonged inflammation and impaired angiogenesis are the main direct causes of diabetic wounds. With the development of polymer biomaterials, various wound dressings have been created, but a few of them have been applied to the clinical management of diabetic wounds. Here, we developed a mussel-inspired bioactive scaffold consisting mainly of collagen and hyaluronic acid, which are natural biopolymer materials contained in human tissues. First, we fabricated different polydopamine modified lyophilized collagen hyaluronic acid scaffolds under different concentrations of dopamine alkaline solutions, 0.5, 1, 2 mg/mL, so named CHS-PDA-0.5, CHS-PDA-1, CHS-PDA-2. After testing their physical and chemical properties, antioxidant effect, inflammation regulation, as well as drug loading and release capabilities, we obtained a bioactive endothelial growth factor (EGF)-loaded wound dressing, CHS-PDA-2@EGF, which can resist reactive oxygen species (ROS) and promote the regeneration of chronic wounds in diabetic rats by reducing inflammation. In addition, the scaffold showed excellent swelling ability, a certain coagulation effect and reasonable degradation. Therefore, the scaffold has great potential to be used in clinical diabetic wound treatment as a low-cost and easily available wound dressing to accelerate chronic wound healing.
Collapse
Affiliation(s)
- Yong Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, PR China
| | - Li Chen
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, PR China
| | - Dan-Yang Ren
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, PR China
| | - Zi-Xuan Feng
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, PR China
| | - Li-Yun Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, PR China
| | - Yu-Fan Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, PR China
| | - Ming-Yuan Jin
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, PR China
| | - Fa-Wei Xu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, PR China
| | - Chun-Yan Feng
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, PR China
| | - Yong-Zhong Du
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, PR China.,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, PR China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, PR China
| |
Collapse
|
50
|
Sun Y, Liu T, Hu H, Xiong Z, Zhang K, He X, Liu W, Lei P, Hu Y. Differential effect of tantalum nanoparticles versus tantalum micron particles on immune regulation. Mater Today Bio 2022; 16:100340. [PMID: 35847379 PMCID: PMC9278074 DOI: 10.1016/j.mtbio.2022.100340] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 10/29/2022] Open
|