1
|
Xiao J, Lu W, Li Z, Zhang S, Zhu X, Yuan J, Gan D, Shen J, Wang M. A photothermal-enhanced thermoelectric nanosheet incorporated with zwitterionic hydrogels for wound repair and bioelectronics. Acta Biomater 2025:S1742-7061(25)00359-9. [PMID: 40368059 DOI: 10.1016/j.actbio.2025.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/23/2025] [Accepted: 05/12/2025] [Indexed: 05/16/2025]
Abstract
The new generation of smart wound dressings aims to encompass sensory restoration capabilities through multi-stimulation rather than merely focusing on skin rebuilding and repair. Wound dressings integrated with real-time measurement of wound motion can improve healing efficiency considerably by providing crucial guidance during the skin regeneration process. Herein, we report a conductive zwitterionic hydrogel dressing with photothermal and thermoelectric properties prepared using a poly(3,4-ethylenedioxythiophene)-modified polydopamine-functionalized bismuth telluride (PEDOT@PBT) sandwich-like nanosheet-incorporated poly(sulfobetaine methacrylate)/silk fibroin (PEDOT@PBT-PSBMA/SF) semi-interpenetrating polymer network hydrogel, which can accelerate chronic wound healing and monitor motion. With the incorporation of PEDOT@PBT nanosheets, the hydrogel exhibits remarkable photothermal and thermoelectric effects, endowing it with broad-spectrum antibacterial properties against Escherichia coli (E. coli, 99.02 %), Staphylococcus aureus (S. aureus, 99.14 %), and methicillin-resistant Staphylococcus aureus (MRSA, 97.70 %). Additionally, the PEDOT@PBT-PSBMA/SF hydrogel can be employed in bioelectronics because of its good conductivity (0.13 S/m). In-vivo experiments show that the PEDOT@PBT-PSBMA/SF hydrogel actively promotes the regeneration of MRSA-infected wounds through immunomodulation, collagen deposition, and vascularization. Consequently, this study presents a promising strategy for the development of next-generation multifunctional hydrogel dressings with considerable potential for application in chronic skin wound therapy and bioelectronics. STATEMENT OF SIGNIFICANCE: Thermoelectric materials are increasingly being incorporated into hydrogels to enhance tissue regeneration. However, improving the thermoelectric efficiency while effectively harnessing the generated electricity for tissue regeneration remains a significant challenge. This study presents a multifunctional hydrogel dressing that integrates advanced photothermal and thermoelectric properties with real-time motion sensing, offering a breakthrough in chronic wound therapy. The PEDOT@PBT-PSBMA/SF hydrogel demonstrates exceptional antibacterial efficacy against E. coli, S. aureus, and MRSA, along with remarkable conductivity suitable for bioelectronic applications. In vivo results highlight its ability to accelerate wound healing through immunomodulation, enhanced collagen deposition, and improved vascularization. In conclusion, this multifunctional hydrogel holds great promise for future development as an integrated platform for diabetic skin wound repair and real-time monitoring.
Collapse
Affiliation(s)
- Jiamu Xiao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Wei Lu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Ziyi Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Song Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Xiaolong Zhu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Jiang Yuan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Donglin Gan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, China.
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China.
| | - Mingqian Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
2
|
Yu X, Luo Z, Ouyang X, Wang W, Rao Y, Yuan Y, Cai Z, Hu Y, Xiang L. Highly Stable Polymeric Electrooculography Electrodes for Contactless Human-Machine Interactions. ACS Sens 2025; 10:3013-3022. [PMID: 40203133 DOI: 10.1021/acssensors.5c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Capturing the electrooculography (EOG) signals is very attractive for assistive devices and user interfaces for virtual reality (VR) systems. However, the current EOG acquisition systems face challenges in ensuring user comfort, particularly in terms of electrode electrical and mechanical performance, long-term usability, thermal effects, and overall system portability. This study presents polymeric dry flexible electrodes, composed of a composite of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS), poly(vinyl alcohol) (PVA), Gallic acid (GA), and D-sorbitol, forming a dynamic cross-linked network that ensures strong adhesion, stretchability, and electrical stability. These electrodes maintain their performance for up to 72 h, and can be restored through heat reactivation if performance degrades after prolonged storage. This electrode exhibits excellent biocompatibility, causing no skin irritation or thermal effects with continuous use. We have also developed a flexible circuit for real-time signal processing and wireless transmission, which operates in coordination with the EOG electrodes. The system employs a convolutional neural network (CNN) to achieve a 97.1% accuracy in classifying various eye movement patterns. The system enables contactless control of digital interfaces through simple eye movements, offering a solution for long-term, comfortable, and high-fidelity EOG-based human-machine interfaces, particularly for VR integration and assistive technologies for individuals with disabilities.
Collapse
Affiliation(s)
- Xingge Yu
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Zebang Luo
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Xilin Ouyang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Wenqiang Wang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Yuxuan Rao
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
| | - Yulong Yuan
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
| | - Zhenpeng Cai
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
| | - Youfan Hu
- Key Laboratory for the Physics and Chemistry of Nanodevices, Center for Carbon-Based Electronics and School of Electronics, Peking University, Beijing 100871, China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
| | - Li Xiang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
3
|
Ibrahim OO, Liu C, Zhou S, Jin B, He Z, Zhao W, Wang Q, Zhang S. Recent Advances in Nanomaterial-Based Self-Healing Electrodes Towards Sensing and Energy Storage Applications. SENSORS (BASEL, SWITZERLAND) 2025; 25:2248. [PMID: 40218759 PMCID: PMC11991356 DOI: 10.3390/s25072248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/22/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
Nanomaterial-based self-healing electrodes have demonstrated significant potential in sensing and energy storage applications due to their ability to withstand electrical breakdowns at high electric fields. However, such electrodes often face mechanical challenges, such as cracking under stress, compromising stability and reliability. This review critically examines nanomaterial-based self-healing mechanisms, focusing on properties and applications in health monitoring, motion sensing, environmental monitoring, and energy storage. By comprehensively reviewing research conducted on dimension-based nanomaterials (OD, 1D, 2D, and 3D) for self-healing electrode applications, this paper aims to provide essential insights into design strategies and performance enhancements afforded by nanoscale dimensions. This review paper highlights the tremendous potential of harnessing dimensional nanomaterials to develop autonomously restoring electrodes for next-generation sensing and energy devices.
Collapse
Affiliation(s)
- Oresegun Olakunle Ibrahim
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (O.O.I.); (C.L.); (S.Z.); (Z.H.)
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; (B.J.); (W.Z.)
| | - Chen Liu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (O.O.I.); (C.L.); (S.Z.); (Z.H.)
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Shulan Zhou
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (O.O.I.); (C.L.); (S.Z.); (Z.H.)
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; (B.J.); (W.Z.)
| | - Bo Jin
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; (B.J.); (W.Z.)
| | - Zhaotao He
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (O.O.I.); (C.L.); (S.Z.); (Z.H.)
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; (B.J.); (W.Z.)
| | - Wenjie Zhao
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; (B.J.); (W.Z.)
| | - Qianqian Wang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (O.O.I.); (C.L.); (S.Z.); (Z.H.)
- School of Mechanical and Energy Engineering, Ningbo Tech University, Ningbo 315100, China
| | - Sheng Zhang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (O.O.I.); (C.L.); (S.Z.); (Z.H.)
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; (B.J.); (W.Z.)
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- School of Mechanical and Energy Engineering, Ningbo Tech University, Ningbo 315100, China
| |
Collapse
|
4
|
Zhou M, Zhang S, Zhang X. Filler-free cellulose nanofiber composite papers with excellent mechanical properties for efficient electromagnetic interference shielding. Int J Biol Macromol 2025; 302:140562. [PMID: 39894116 DOI: 10.1016/j.ijbiomac.2025.140562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/10/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
The vast majority of conductive polymer composites (CPCs) currently available for electromagnetic interference (EMI) shielding rely on inorganic conductive fillers to construct conductive networks. However, the strategy inevitably causes some compromises in the biocompatibility, biodegradability, and mechanical properties of CPCs. In this work, the filler-free and high conductive cellulose nanofiber (CNF) composite papers containing poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) doped by lithium bis(trifloromethanesulfonyl) imide (Li-TFSI) are reported. The resultant Li-TFSI@PEDOT:PSS/CNF (LPPC) composite papers exhibit an exceptional absolute EMI shielding effectiveness of 14,525.5 dB∙cm-1, surpassing the reported values of many CPCs-based EMI shielding materials containing inorganic fillers. Li-TFSI can induce the structural reorganization of PEDOT chains. The conductivity of Li-TFSI@PEDOT:PSS was boosted with the enhancement of the crystalline order and oxidation level of PEDOT chains. Furthermore, the obtained LPPC composite papers demonstrate outstanding mechanical properties with a tensile strength of 44.42 MPa and EMI shielding stability with a retention ratio of up to 97 %, which are desirable for EMI shielding in wearable devices. Therefore, this work provides a feasible strategy to construct filler-free CPCs-based EMI shielding materials, which are expected to provide electromagnetic protection for the next flexible devices.
Collapse
Affiliation(s)
- Meng Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Shuo Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Xinya Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
5
|
Zhang JH, Tao J, Yao ZS. Organic Self-Healing Single Crystals. Chem Asian J 2025; 20:e202401273. [PMID: 39963923 DOI: 10.1002/asia.202401273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/23/2025] [Indexed: 03/19/2025]
Abstract
Self-healing single crystals, which possess the ability to recover from damage, represent an emerging filed within dynamic single-crystal materials. These materials not only deepen our understanding of the flexible structures inherent in single crystals but also offer a novel pathway for the development of smart materials, including soft robots, microelectronic devices, and optical devices. In this perspective, we provide a comprehensive summary of recent advancements in organic self-healing single crystals, highlighting various self-healing mechanisms, typical molecular structures, and the testing methods utilized to investigate these materials. We hope that our systematic overview of this field will significantly contribute to the advancement of self-healing single crystal materials as a new class of molecular-based functional materials, particularly in the integration of self-healing properties with innovative optoelectronic functionalities.
Collapse
Affiliation(s)
- Jia-Hui Zhang
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 8 and 9 Yards, Liangxiang East Roud, Fangshan District, Beijing, China
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 8 and 9 Yards, Liangxiang East Roud, Fangshan District, Beijing, China
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 8 and 9 Yards, Liangxiang East Roud, Fangshan District, Beijing, China
| |
Collapse
|
6
|
Hong S, Yu T, Wang Z, Lee CH. Biomaterials for reliable wearable health monitoring: Applications in skin and eye integration. Biomaterials 2025; 314:122862. [PMID: 39357154 PMCID: PMC11787905 DOI: 10.1016/j.biomaterials.2024.122862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Recent advancements in biomaterials have significantly impacted wearable health monitoring, creating opportunities for personalized and non-invasive health assessments. These developments address the growing demand for customized healthcare solutions. Durability is a critical factor for biomaterials in wearable applications, as they must withstand diverse wearing conditions effectively. Therefore, there is a heightened focus on developing biomaterials that maintain robust and stable functionalities, essential for advancing wearable sensing technologies. This review examines the biomaterials used in wearable sensors, specifically those interfaced with human skin and eyes, highlighting essential strategies for achieving long-lasting and stable performance. We specifically discuss three main categories of biomaterials-hydrogels, fibers, and hybrid materials-each offering distinct properties ideal for use in durable wearable health monitoring systems. Moreover, we delve into the latest advancements in biomaterial-based sensors, which hold the potential to facilitate early disease detection, preventative interventions, and tailored healthcare approaches. We also address ongoing challenges and suggest future directions for research on material-based wearable sensors to encourage continuous innovation in this dynamic field.
Collapse
Affiliation(s)
- Seokkyoon Hong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Tianhao Yu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Ziheng Wang
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA; School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA; Center for Implantable Devices, Purdue University, West Lafayette, IN, 47907, USA; School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA; Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
7
|
Di Spirito NA, Liu W, Di Lorenzo M, Grizzuti N, Laabei M, Leese HS, Pasquino R. Electrically conductive and antimicrobial Pluronic-based hydrogels. J Colloid Interface Sci 2025; 679:544-553. [PMID: 39383833 DOI: 10.1016/j.jcis.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/10/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Electrically conductive hydrogels (ECHs) combine the electrical properties of conductive materials with the unique features of hydrogels. They are attractive for various biomedical applications due to their smart response to electrical fields. Owing to their distinctive properties, such as biocompatibility, thermosensitivity and self-assembling behaviour, Pluronics can be adopted for the generation of hydrogels for biomedical applications. Here, innovative self-assembling ECHs holding antimicrobial properties for biomedical applications are developed, providing a full characterization of their macroscopic and microscopic properties. The rheological, morphological, and structural properties of Pluronic F68 (PF68) in the presence of conductive poly(3,4-ethylenedioxythiophene):poly-(styrenesulfonate) (PEDOT:PSS) are studied to optimize the synthesis of novel biocompatible and electrically conductive hydrogels. The addition of silver (Ag) flakes to the aqueous samples of PF68/PEDOT:PSS is used to further enhance the systems electrical conductivity and antimicrobial potency. Aqueous optimal samples with 45 wt% PF68 and different PEDOT:PSS/silver contents are investigated by means of experimental rheology and small-angle X-ray scattering (SAXS), to unveil the influence of both PEDOT:PSS and silver on the phase diagram, macroscopic flow properties, and morphology of the Pluronic-based systems. The presence of PEDOT:PSS and silver flakes endows Pluronic systems with high conductive properties, while preserving the same self-assembly features of PF68 in water. Moreover, the functionalisation with silver flakes confers antimicrobial properties to the ECHs, as demonstrated by growth inhibition of the multi-drug resistant bacterium Staphylococcus aureus. The use of PF68 in this work provides a novel route for the synthesis of innovative ECHs, whose functionalities such as self-assembling behaviour, biocompatibility, conductivity, and bioactivity may inspire future avenues in the biomedical field.
Collapse
Affiliation(s)
- Nicola Antonio Di Spirito
- DICMaPI, Università degli Studi di Napoli Federico II, P. le Tecchio 80, 80125 Napoli, Italy; Department of Chemical Engineering and Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath, Claverton Down, BA2 7AY Bath, UK.
| | - Wanli Liu
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK.
| | - Mirella Di Lorenzo
- Department of Chemical Engineering and Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath, Claverton Down, BA2 7AY Bath, UK.
| | - Nino Grizzuti
- DICMaPI, Università degli Studi di Napoli Federico II, P. le Tecchio 80, 80125 Napoli, Italy.
| | - Maisem Laabei
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD Bristol, UK.
| | - Hannah S Leese
- Department of Chemical Engineering and Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath, Claverton Down, BA2 7AY Bath, UK.
| | - Rossana Pasquino
- DICMaPI, Università degli Studi di Napoli Federico II, P. le Tecchio 80, 80125 Napoli, Italy.
| |
Collapse
|
8
|
Qing X, Liu Z, Vananroye A, Franceschini F, Bouropoulos N, Katsaounis A, Taurino I, Fardim P. Self-healing and transparent ionic conductive PVA/pullulan/borax hydrogels with multi-sensing capabilities for wearable sensors. Int J Biol Macromol 2025; 284:137841. [PMID: 39581394 DOI: 10.1016/j.ijbiomac.2024.137841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/30/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Conductive hydrogels as wearable sensors have been used for numerous applications in human motion detection, personal healthcare monitoring and other diverse scenarios. However, it remains a challenge to integrate self-healing ability, multiple sensing capabilities, and transparency in one single unit. In this work, multifunctional polyvinyl alcohol (PVA)/Pullulan/Borax conductive hydrogels were fabricated by introducing borate ester bonds and hydrogen bonds. The described hydrogels showed fast self-healing properties, which could autonomously completely recover within 15 s. The hydrogels possessed high optical transparency (92.9%) in the visible light range and had multi-sensing capabilities, such as strain, temperature and humidity sensing. The assembled hydrogel sensor displayed a high strain sensitivity of 2.74 within the strain range of 300%, and it could be used to monitor human motions such as finger and wrist bending. In addition, the hydrogel sensor could sense temperature variations with a temperature coefficient of resistance of -0.914 °C-1 over 28-46 °C. Besides, the hydrogel sensor demonstrated the humidity sensing ability and can recognize human inhale and exhale. The overall sensing performance of the PVA/Pullulan/Borax hydrogel was satisfactory and repeatable. This conductive hydrogel shows great potential in wearable electronics and personal healthcare and inspires a new generation of multifunctional hydrogel sensors.
Collapse
Affiliation(s)
- Xiaoyan Qing
- Chemical and Biochemical Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200f, 3001 Leuven, Belgium
| | - Zhongda Liu
- Department of Chemical Engineering, University of Patras, Caratheodory 1 St, 26504 Patras, Greece
| | - Anja Vananroye
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, 3001 Leuven, Belgium
| | - Filippo Franceschini
- Semiconductor Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200d, 3001 Leuven, Belgium
| | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, 26504 Patras, Greece; Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, Stadiou Street, Platani, 26504 Patras, Greece
| | - Alexandros Katsaounis
- Department of Chemical Engineering, University of Patras, Caratheodory 1 St, 26504 Patras, Greece
| | - Irene Taurino
- Micro and Nano Systems (MNS), Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium; Semiconductor Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200d, 3001 Leuven, Belgium
| | - Pedro Fardim
- Chemical and Biochemical Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200f, 3001 Leuven, Belgium.
| |
Collapse
|
9
|
Yao M, Hsieh JC, Tang KWK, Wang H. Hydrogels in wearable neural interfaces. MED-X 2024; 2:23. [PMID: 39659711 PMCID: PMC11625692 DOI: 10.1007/s44258-024-00040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 12/12/2024]
Abstract
The integration of wearable neural interfaces (WNIs) with the human nervous system has marked a significant progression, enabling progress in medical treatments and technology integration. Hydrogels, distinguished by their high-water content, low interfacial impedance, conductivity, adhesion, and mechanical compliance, effectively address the rigidity and biocompatibility issues common in traditional materials. This review highlights their important parameters-biocompatibility, interfacial impedance, conductivity, and adhesiveness-that are integral to their function in WNIs. The applications of hydrogels in wearable neural recording and neurostimulation are discussed in detail. Finally, the opportunities and challenges faced by hydrogels for WNIs are summarized and prospected. This review aims to offer a thorough examination of hydrogel technology's present landscape and to encourage continued exploration and innovation. As developments progress, hydrogels are poised to revolutionize wearable neural interfaces, offering significant enhancements in healthcare and technological applications. Graphical Abstract
Collapse
Affiliation(s)
- Mengmeng Yao
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Ju-Chun Hsieh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Kai Wing Kevin Tang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Huiliang Wang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
10
|
Zhang Q, Zhao G, Li Z, Guo F, Huang Y, Guo G, Wang J, Zhou J, Chow L, Huang X, He X, Gao Y, Gao Z, Yao K, Qiu Y, Zhao Z, Zhang B, Yang Y, Liu Y, Hu Y, Wu M, Li J, Wu P, Xu G, He P, Yang Z, Yu X. Multi-functional adhesive hydrogel as bio-interface for wireless transient pacemaker. Biosens Bioelectron 2024; 263:116597. [PMID: 39059179 DOI: 10.1016/j.bios.2024.116597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/01/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Traditional temporary cardiac pacemakers (TCPs), which employ transcutaneous leads and external wired power systems are battery-dependent and generally non-absorbable with rigidity, thereby necessitating surgical retrieval after therapy and resulting in potentially severe complications. Wireless and bioresorbable transient pacemakers have, hence, emerged recently, though hitting a bottleneck of unfavorable tissue-device bonding interface subject to mismatched mechanical modulus, low adhesive strength, inferior electrical performances, and infection risks. Here, to address such crux, we develop a multifunctional interface hydrogel (MIH) with superior electrical performance to facilitate efficient electrical exchange, comparable mechanical strength to natural heart tissue, robust adhesion property to enable stable device-tissue fixation (tensile strength: ∼30 kPa, shear strength of ∼30 kPa, and peel-off strength: ∼85 kPa), and good bactericidal effect to suppress bacterial growth. Through delicate integration of this versatile MIH with a leadless, battery-free, wireless, and transient pacemaker, the entire system exhibits stable and conformal adhesion to the beating heart while enabling precise and constant electrical stimulation to modulate the cardiac rhythm. It is envisioned that this versatile MIH and the proposed integration framework will have immense potential in overcoming key limitations of traditional TCPs, and may inspire the design of novel bioelectronic-tissue interfaces for next-generation implantable medical devices.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Guangyao Zhao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Zhiyuan Li
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Fang Guo
- School of Public Health, The University of Hong Kong, Pok Fu Lam, HKSAR, China
| | - Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China; Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, 999077, Hong Kong, China
| | - Guihuan Guo
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Jiachen Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Jingkun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China; Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, 999077, Hong Kong, China
| | - Lung Chow
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Xinxin He
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Yuyu Gao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Zhan Gao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Yuze Qiu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Zirui Zhao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Binbin Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China; Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, 999077, Hong Kong, China
| | - Yawen Yang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Yingjian Liu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Yue Hu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Mengge Wu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Jian Li
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China; Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, 999077, Hong Kong, China
| | - Pengcheng Wu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Guoqiang Xu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Pinyuan He
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China
| | - Zhihui Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China; Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, 999077, Hong Kong, China.
| |
Collapse
|
11
|
Li W, Li Y, Song Z, Wang YX, Hu W. PEDOT-based stretchable optoelectronic materials and devices for bioelectronic interfaces. Chem Soc Rev 2024; 53:10575-10603. [PMID: 39254255 DOI: 10.1039/d4cs00541d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The rapid development of wearable and implantable electronics has enabled the real-time transmission of electrophysiological signals in situ, thus allowing the precise monitoring and regulation of biological functions. Devices based on organic materials tend to have low moduli and intrinsic stretchability, making them ideal choices for the construction of seamless bioelectronic interfaces. In this case, as an organic ionic-electronic conductor, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has low impedance to offer a high signal-to-noise ratio for monitoring bioelectrical signals, which has become one of the most promising conductive polymers. However, the initial conductivity and stretchability of pristine PEDOT:PSS are insufficient to meet the application requirements, and there is a trade-off between their improvement. In addition, PEDOT:PSS has poor stability in aqueous environments due to the hygroscopicity of the PSS chains, which severely limits its long-term applications in water-rich bioelectronic interfaces. Considering the growing demands of multi-function integration, the high-resolution fabrication of electronic devices is urgent. It is a great challenge to maintain both electrical and mechanical performance after miniaturization, particularly at feature sizes below 100 μm. In this review, we focus on the combined improvement in the conductivity and stretchability of PEDOT:PSS, as well as the corresponding mechanisms in detail. Also, we summarize the effective strategies to improve the stability of PEDOT:PSS in aqueous environments, which plays a vital role in long-term applications. Finally, we introduce the reliable micropatterning technologies and PEDOT:PSS-based stretchable optoelectronic devices applied at bio-interfaces.
Collapse
Affiliation(s)
- Weizhen Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yiming Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Ziyu Song
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yi-Xuan Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
12
|
Feng H, Ang K, Guan P, Li J, Meng H, Yang J, Fan L, Sun Y. Application of adhesives in the treatment of cartilage repair. INTERDISCIPLINARY MEDICINE 2024; 2. [DOI: 10.1002/inmd.20240015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/08/2024] [Indexed: 01/04/2025]
Abstract
AbstractFrom degeneration causing intervertebral disc issues to trauma‐induced meniscus tears, diverse factors can injure the different types of cartilage. This review highlights adhesives as a promising and rapidly implemented repair strategy. Compared to traditional techniques such as sutures and wires, adhesives offer several advantages. Importantly, they seamlessly connect with the injured tissue, deliver bioactive substances directly to the repair site, and potentially alleviate secondary problems like inflammation or degeneration. This review delves into the cutting‐edge advancements in adhesive technology, specifically focusing on their effectiveness in cartilage injury treatment and their underlying mechanisms. We begin by exploring the material characteristics of adhesives used in cartilage tissue, focusing on essential aspects like adhesion, biocompatibility, and degradability. Subsequently, we investigate the various types of adhesives currently employed in this context. Our discussion then moves to the unique role adhesives play in addressing different cartilage injuries. Finally, we acknowledge the challenges currently faced by this promising technology.
Collapse
Affiliation(s)
- Haoyang Feng
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| | - Kai Ang
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| | - Pengfei Guan
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| | - Junji Li
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| | - Huan Meng
- Postdoc Cartilage Biology AO Research Institute Davos Davos Platz Wellington Switzerland
| | - Jian Yang
- Biomedical Engineering Program School of Engineering Westlake University Hangzhou China
| | - Lei Fan
- Department of Orthopedic Surgery Nanfang Hospital Southern Medical University Guangzhou China
| | - Yongjian Sun
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| |
Collapse
|
13
|
Sauvage E, Matta J, Dang CT, Fan J, Cruzado G, Cicoira F, Merle G. Electroconductive cardiac patch based on bioactive PEDOT:PSS hydrogels. J Biomed Mater Res A 2024; 112:1817-1826. [PMID: 38689450 DOI: 10.1002/jbm.a.37729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Engineering cardiac implants for treating myocardial infarction (MI) has advanced, but challenges persist in mimicking the structural properties and variability of cardiac tissues using traditional bioconstructs and conventional engineering methods. This study introduces a synthetic patch with a bioactive surface designed to swiftly restore functionality to the damaged myocardium. The patch combines a composite, soft, and conductive hydrogel-based on (3,4-ethylenedioxythiophene):polystyrene-sulfonate (PEDOT:PSS) and polyvinyl alcohol (PVA). This cardiac patch exhibits a reasonably high electrical conductivity (40 S/cm) and a stretchability up to 50% of its original length. Our findings reveal its resilience to 10% cyclic stretching at 1 Hz with no loss of conductivity over time. To mediate a strong cell-scaffold adhesion, we biofunctionalize the hydrogel with a N-cadherin mimic peptide, providing the cardiac patch with a bioactive surface. This modification promote increased adherence and proliferation of cardiac fibroblasts (CFbs) while effectively mitigating the formation of bacterial biofilm, particularly against Staphylococcus aureus, a common pathogen responsible for surgical site infections (SSIs). Our study demonstrates the successful development of a structurally validated cardiac patch possessing the desired mechanical, electrical, and biofunctional attributes for effective cardiac recovery. Consequently, this research holds significant promise in alleviating the burden imposed by myocardial infarctions.
Collapse
Affiliation(s)
- Erwan Sauvage
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Justin Matta
- Department of Experimental Surgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Cat-Thy Dang
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Jiaxin Fan
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Graziele Cruzado
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Fabio Cicoira
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Géraldine Merle
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| |
Collapse
|
14
|
Yang S, Liu C, Tang L, Shang J, Zhang J, Jiang X. Highly Adhesive and Stretchable Epidermal Electrode for Bimodal Recording Patch. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43880-43891. [PMID: 39133011 DOI: 10.1021/acsami.4c05705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
For numerous biological and human-machine applications, it is critical to have a stable electrophysiological interface to obtain reliable signals. To achieve this, epidermal electrodes should possess conductivity, stretchability, and adhesiveness. However, limited types of materials can simultaneously satisfy these requirements to provide satisfying recording performance. Here, we present a dry electromyography (EMG) electrode based on conductive polymers and tea polyphenol (CPT), which offers adhesiveness (0.51 N/cm), stretchability (157%), and low impedance (14 kΩ cm2 at 100 Hz). The adhesiveness of the electrode is attributed to the interaction between catechol groups and hydroxyls in the polymer blend. This adhesive electrode ensures stable EMG recording even in the presence of vibrations and provides signals with a high signal-to-noise ratio (>25 dB) for over 72 h. By integrating the CPT electrode with a liquid metal strain sensor, we have developed a bimodal rehabilitation monitoring patch (BRMP) for sports injuries. The patch utilizes Kinesio Tape as a substrate, which serves to accelerate rehabilitation. It also tackles the challenge of recording with knee braces by fitting snugly between the brace and the skin, due to its thin and stretchable design. CPT electrodes not only enable BRMP to assist clinicians in formulating effective rehabilitation plans and offer patients a more comfortable rehabilitation experience, but also hold promise for future applications in biological and human-machine interface domains.
Collapse
Affiliation(s)
- Shuaijian Yang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Chenqi Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Lixue Tang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
- School of Biomedical Engineering, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, No. 10 Xitoutiao, You An Men Wai, Beijing 100069, China
| | - Jin Shang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Junrui Zhang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| |
Collapse
|
15
|
Liu F, Ye P, Cheng Q, Zhang D, Nie Y, Shen X, Zhu M, Xu H, Li S. By Introducing Multiple Hydrogen Bonds Endows MOF Electrodes with an Enhanced Structural Stability. Inorg Chem 2024; 63:14630-14640. [PMID: 39033405 DOI: 10.1021/acs.inorgchem.4c02159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Recently, metal-organic frameworks (MOFs) have attracted great interest in energy storage areas. However, the poor structural stability of MOFs derived from weak coordination bonds limits their applications. Here, quadruple hydrogen bonds (H-bonds) were introduced onto the MOFs to enhance their structural stability. Cross-linked networks could be formed between molecules owing to multiple H-bonds, strengthening the framework stability. Moreover, the dynamic reversibility of H-bonds could endow MOFs with self-healing ability. Furthermore, due to lower binding energy compared to coordination bonds, H-bonds break preferentially when subjected to internal stress, thus protecting the MOFs. Consequently, the as-prepared self-healing hybrid (SHH-Cu-MOF@Ti3C2TX) exhibited high capacitance retention (89.4%) after 5000 cycles at 1 A g-1, while that hybrid without dynamic H-bonds (H-Cu-MOF@Ti3C2TX) presented a 79.9% retention, delivering an enhancement in cycling stability. Moreover, an asymmetric supercapacitor (ASC) was fabricated by employing SHH-Cu-MOF@Ti3C2TX and activated carbon (AC) as the electrodes. The ASC delivered a specific capacitance (47.4 F g-1 at 1 A g-1), an energy density (16.9 Wh kg-1), and a power density (800 W kg-1) as well as good rate ability (retains 81% of its initial capacitance from 0.2 A g-1 to 5 A g-1).
Collapse
Affiliation(s)
- Feng Liu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Pingwei Ye
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Qiang Cheng
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daohong Zhang
- School of Chemistry and Materials science, South-Central Minzu University, Wuhan 430074, China
| | - Yijing Nie
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaojuan Shen
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Maiyong Zhu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hui Xu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sumin Li
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
16
|
Liu C, Kelley SO, Wang Z. Self-Healing Materials for Bioelectronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401219. [PMID: 38844826 DOI: 10.1002/adma.202401219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/21/2024] [Indexed: 08/29/2024]
Abstract
Though the history of self-healing materials stretches far back to the mid-20th century, it is only in recent years where such unique classes of materials have begun to find use in bioelectronics-itself a burgeoning area of research. Inspired by the natural ability of biological tissue to self-repair, self-healing materials play a multifaceted role in the context of soft, wireless bioelectronic systems, in that they can not only serve as a protective outer shell or substrate for the internal electronic circuitry-analogous to the mechanical barrier that skin provides for the human body-but also, and most importantly, act as an active sensing safeguard against mechanical damage to preserve device functionality and enhance overall durability. This perspective presents the historical overview, general design principles, recent developments, and future outlook of self-healing materials for bioelectronic devices, which integrates topics in many research disciplines-from materials science and chemistry to electronics and bioengineering-together.
Collapse
Affiliation(s)
- Claire Liu
- Chan Zuckerberg Biohub Chicago, Chicago, IL, 60607, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Shana O Kelley
- Chan Zuckerberg Biohub Chicago, Chicago, IL, 60607, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, 60611, USA
| | - Zongjie Wang
- Chan Zuckerberg Biohub Chicago, Chicago, IL, 60607, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
17
|
Kim J, Fan J, Petrossian G, Zhou X, Kateb P, Gagnon-Lafrenais N, Cicoira F. Self-healing, stretchable and recyclable polyurethane-PEDOT:PSS conductive blends. MATERIALS HORIZONS 2024; 11:3548-3560. [PMID: 38869226 DOI: 10.1039/d4mh00203b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Future electronics call for materials with mechanical toughness, flexibility, and stretchability. Moreover, self-healing and recyclability are highly desirable to mitigate the escalating environmental threat of electronic waste (e-waste). Herein, we report a stretchable, self-healing, and recyclable material based on a mixture of the conductive polymer poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) with a custom-designed polyurethane (PU) and polyethylene glycol (PEG). This material showed excellent elongation at brake (∼350%), high toughness (∼24.6 MJ m-3), moderate electrical conductivity (∼10 S cm-1), and outstanding mechanical and electrical healing efficiencies. In addition, it demonstrated exceptional recyclability with no significant loss in the mechanical and electrical properties after being recycled 20 times. Based on these properties, as a proof of principle for sustainable electronic devices, we demonstrated that electrocardiogram (ECG) electrodes and pressure sensors based on this material could be recycled without significant performance loss. The development of multifunctional electronic materials that are self-healing and fully recyclable is a promising step toward sustainable electronics, offering a potential solution to the e-waste challenge.
Collapse
Affiliation(s)
- Jinsil Kim
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, H3C 3A7, Canada.
| | - Jiaxin Fan
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, H3C 3A7, Canada.
| | - Gayaneh Petrossian
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, H3C 3A7, Canada.
| | - Xin Zhou
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, H3C 3A7, Canada.
| | - Pierre Kateb
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, H3C 3A7, Canada.
| | - Noemy Gagnon-Lafrenais
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, H3C 3A7, Canada.
| | - Fabio Cicoira
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, H3C 3A7, Canada.
| |
Collapse
|
18
|
Li Z, Lu J, Ji T, Xue Y, Zhao L, Zhao K, Jia B, Wang B, Wang J, Zhang S, Jiang Z. Self-Healing Hydrogel Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306350. [PMID: 37987498 DOI: 10.1002/adma.202306350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/07/2023] [Indexed: 11/22/2023]
Abstract
Hydrogels have emerged as powerful building blocks to develop various soft bioelectronics because of their tissue-like mechanical properties, superior bio-compatibility, the ability to conduct both electrons and ions, and multiple stimuli-responsiveness. However, hydrogels are vulnerable to mechanical damage, which limits their usage in developing durable hydrogel-based bioelectronics. Self-healing hydrogels aim to endow bioelectronics with the property of repairing specific functions after mechanical failure, thus improving their durability, reliability, and longevity. This review discusses recent advances in self-healing hydrogels, from the self-healing mechanisms, material chemistry, and strategies for multiple properties improvement of hydrogel materials, to the design, fabrication, and applications of various hydrogel-based bioelectronics, including wearable physical and biochemical sensors, supercapacitors, flexible display devices, triboelectric nanogenerators (TENGs), implantable bioelectronics, etc. Furthermore, the persisting challenges hampering the development of self-healing hydrogel bioelectronics and their prospects are proposed. This review is expected to expedite the research and applications of self-healing hydrogels for various self-healing bioelectronics.
Collapse
Affiliation(s)
- Zhikang Li
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jijian Lu
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tian Ji
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kang Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Boqing Jia
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bin Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaxiang Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shiming Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
19
|
Shan M, Chen X, Zhang X, Zhang S, Zhang L, Chen J, Wang X, Liu X. Injectable Conductive Hydrogel with Self-Healing, Motion Monitoring, and Bacteria Theranostics for Bioelectronic Wound Dressing. Adv Healthc Mater 2024; 13:e2303876. [PMID: 38217457 DOI: 10.1002/adhm.202303876] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Wounds at joints are difficult to treat and tend to recover more slowly due to the frequent motions. When using traditional hydrogel dressings, they are easy to crack and undergo bacterial infection, difficult to match and monitor the irregular wounds. Integrating multiple functions within a hydrogel dressing to achieve intelligent wound monitoring and healing remains a significant challenge. In this research, a multifunctional hydrogel is developed based on polysaccharide biopolymer, poly(vinyl alcohol), and hydroxylated graphene through dynamic borate ester bonding and supramolecular interaction. The prepared hydrogel not only exhibits rapid self-healing (within 60 s), injectable, conductive and motion monitoring properties, but also realizes in situ bacterial sensing and killing functions. It shows excellent bacterial sensitivity (within 15 min) and killing ability via the changes of electrical signals and photothermal therapy, avoiding the emergence of drug-resistant bacteria. In vivo experiments prove that the hydrogel can promote wound healing effectively. In addition, it displays great electromechanical performance to achieve real-time monitoring and prevent re-tearing of the wound at human joints. The injectable pH-responsive hydrogel with good biocompatibility demonstrates considerable potential as multifunctional bioelectronic dressing for the detection, treatment, management, and healing of infected joint wounds.
Collapse
Affiliation(s)
- Mengyao Shan
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Sinopec Oilfield Equipment Corporation, Wuhan, 430070, China
| | - Xin Chen
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China
| | - Xiaoyang Zhang
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
| | - Shike Zhang
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
| | - Linlin Zhang
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinzhou Chen
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
| | - Xianghong Wang
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
| | - Xuying Liu
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
20
|
Hong S, Park T, Lee J, Ji Y, Walsh J, Yu T, Park JY, Lim J, Benito Alston C, Solorio L, Lee H, Kim YL, Kim DR, Lee CH. Rapid Self-Healing Hydrogel with Ultralow Electrical Hysteresis for Wearable Sensing. ACS Sens 2024; 9:662-673. [PMID: 38300847 DOI: 10.1021/acssensors.3c01835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Self-healing hydrogels are in high demand for wearable sensing applications due to their remarkable deformability, high ionic and electrical conductivity, self-adhesiveness to human skin, as well as resilience to both mechanical and electrical damage. However, these hydrogels face challenges such as delayed healing times and unavoidable electrical hysteresis, which limit their practical effectiveness. Here, we introduce a self-healing hydrogel that exhibits exceptionally rapid healing with a recovery time of less than 0.12 s and an ultralow electrical hysteresis of less than 0.64% under cyclic strains of up to 500%. This hydrogel strikes an ideal balance, without notable trade-offs, between properties such as softness, deformability, ionic and electrical conductivity, self-adhesiveness, response and recovery times, durability, overshoot behavior, and resistance to nonaxial deformations such as twisting, bending, and pressing. Owing to this unique combination of features, the hydrogel is highly suitable for long-term, durable use in wearable sensing applications, including monitoring body movements and electrophysiological activities on the skin.
Collapse
Affiliation(s)
- Seokkyoon Hong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Taewoong Park
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Junsang Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yuhyun Ji
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julia Walsh
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tianhao Yu
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jae Young Park
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jongcheon Lim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Claudia Benito Alston
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Center for Implantable Devices, Purdue University, West Lafayette, Indiana 47907, United States
| | - Young L Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dong Rip Kim
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Center for Implantable Devices, Purdue University, West Lafayette, Indiana 47907, United States
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
21
|
Ma H, Hou J, Xiao X, Wan R, Ge G, Zheng W, Chen C, Cao J, Wang J, Liu C, Zhao Q, Zhang Z, Jiang P, Chen S, Xiong W, Xu J, Lu B. Self-healing electrical bioadhesive interface for electrophysiology recording. J Colloid Interface Sci 2024; 654:639-648. [PMID: 37864869 DOI: 10.1016/j.jcis.2023.09.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/01/2023] [Accepted: 09/30/2023] [Indexed: 10/23/2023]
Abstract
Electrical bioadhesive interfaces (EBIs) are standing out in various applications, including medical diagnostics, prosthetic devices, rehabilitation, and human-machine interactions. Nonetheless, crafting a reliable and advanced EBI with comprehensive properties spanning electrochemical, electrical, mechanical, and self-healing capabilities remains a formidable challenge. Herein, we develop a self-healing EBI by thoughtfully integrating conducting polymer nanofibers and a typical bioadhesive within a robust hydrogel matrix. The accomplished EBI demonstrates extraordinary adhesion (lap shear strength of 197 kPa), exceptional electrical conductivity (2.18 S m-1), and outstanding self-healing performance. Taking advantage of these attributes, we integrated the EBI into flexible skin electrodes for surface electromyography (sEMG) signal recording from forearm muscles. The engineered skin electrodes exhibit robust adhesion to the skin even when sweating, rapid self-healing from damage, and seamless real-time signal recording with a higher signal-to-noise ratio (39 dB). Our EBI, along with its skin electrodes, offers a promising platform for tissue-device integration, health monitoring, and an array of bioelectronic applications.
Collapse
Affiliation(s)
- Hude Ma
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China; School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Jingdan Hou
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China; School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Xiao Xiao
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Rongtai Wan
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China; School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Gang Ge
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | | | - Chen Chen
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Cao
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Jinye Wang
- Liaocheng Ecological Environment Monitoring Centre of Shandong Province, Liaocheng 252000, Shandong, China
| | - Chang Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Qi Zhao
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China; School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Zhilin Zhang
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China; School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Peng Jiang
- Xi'an Physical Education University, Xi'an 710068, Shaanxi, China
| | - Shuai Chen
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Wenhui Xiong
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China; School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Jingkun Xu
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China; School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
| | - Baoyang Lu
- Jiangxi Key Lab of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China; School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China.
| |
Collapse
|
22
|
Jiang X, Wei S, Wang J. Preparation of Tough and Adhesive PVA/P(AM-AMPS)/Glycerol/Laponite/Na 2SO 4 Organohydrogels for All-Solid-State Supercapacitors and Self-Powered Wearable Strain Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1380-1393. [PMID: 38109561 DOI: 10.1021/acsami.3c13256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Hydrogel electrolytes are ideal for flexible wearable electronic devices because of their high ionic conductivity, flexibility, and biocompatibility. However, some problems, such as poor mechanical properties, low conductivity, and lack of adhesivity, are encountered in the process of hydrogel preparation and application, which restrict the further development of hydrogel electrolytes. In this study, PVA was used as the first network, and P(AM-co-AMPS) as the second network to prepare a double-network hydrogel electrolyte. Laponite and Na2SO4 were introduced into the hydrogel during hydrogel formation as the nanofiller and salt with the salting-out effect to enhance its mechanical properties. The hydrogel electrolyte with high toughness (1663 kJ·m-3), adhesivity (77 kPa), and ionic conductivity (1.7 S·m-1) was obtained. In addition, the hydrogel electrolyte also has excellent antifatigue performance. In the 10 consecutive tensile cycles, the tensile strength does not decay. Due to the high adhesivity of the hydrogel electrolyte, a symmetrical all-solid-state supercapacitor was assembled with a tight interface between the hydrogel electrolyte and the AC/CNT composite electrode. The supercapacitor has a high specific capacitance of 186.1 mF·cm-2 at the current density of 1 mA·cm-2. In addition, the capacitor has good flexibility and can withstand bending at various angles. The hydrogel electrolyte also has excellent strain sensing performance, with an ultrafast tensile response time (0.17 s) and high sensitivity factor (GF = 10.01). Finally, the self-powered sensor system composed of a supercapacitor as the power supply device and hydrogel electrolyte as the sensing part was obtained and applied to human motion monitoring, which provides a potential application in the integrated flexible electronic system.
Collapse
Affiliation(s)
- Xiancai Jiang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362114, China
| | - Siqi Wei
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362114, China
| | - Jinquan Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362114, China
| |
Collapse
|
23
|
Li Y, Chen C, Han L, Lu Z, Zhang N, Miao R. Lignosulfonate sodium assisted PEDOT-based all-gel supercapacitors with enhanced supercapacitance and wide temperature tolerance. Int J Biol Macromol 2024; 254:127852. [PMID: 37924918 DOI: 10.1016/j.ijbiomac.2023.127852] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Conducting polymer hydrogels are typically employed in all-gel supercapacitors; however, Poly[3,4-ethylene-dioxythiophene] (PEDOT)-based hydrogel supercapacitors still suffer from low capacitance because of the low packing density of PEDOT in the electrodes. Here, we demonstrate lignosulfonate sodium (LS) as an excellent template to synthesize various LS-PEDOT conductive nanofillers for high mass-loading LS-PEDOT/PAAM hydrogel electrodes. Then, the optimum LS-PEDOT/PAAM electrode was assembled with a redox-active LS/PAAM/Fe3+ hydrogel electrolyte to form sandwich-structured all-gel supercapacitors, which could deliver a high specific capacitance of 672.5 mF/cm2 and an energy efficiency of 60 μWh/cm2, which are three times higher than the 220 mF/cm2 and 19.5 μWh/cm2 of the device without Fe3+ at the same condition. Such a device shows excellent temperature tolerance from -30 to 100 °C. Besides, the LS-PEDOT/PAAM electrode has excellent photothermal conversion effects under simulated solar illumination. The sluggish electrochemical performance of the SC under low temperatures could be significantly boosted by ~50 % under simulated solar light. All of these findings demonstrate that the capacitance performance of the PEDOT-based hydrogel device is successfully improved not only at room temperature but also under subzero conditions.
Collapse
Affiliation(s)
- Yueqin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China.
| | - Chen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Lin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Zichun Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Ning Zhang
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Runtian Miao
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
24
|
Guo X, Sun Y, Sun X, Li J, Wu J, Shi Y, Pan L. Doping Engineering of Conductive Polymers and Their Application in Physical Sensors for Healthcare Monitoring. Macromol Rapid Commun 2024; 45:e2300246. [PMID: 37534567 DOI: 10.1002/marc.202300246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/17/2023] [Indexed: 08/04/2023]
Abstract
Physical sensors have emerged as a promising technology for real-time healthcare monitoring, which tracks various physical signals from the human body. Accurate acquisition of these physical signals from biological tissue requires excellent electrical conductivity and long-term durability of the sensors under complex mechanical deformation. Conductive polymers, combining the advantages of conventional polymers and organic conductors, are considered ideal conductive materials for healthcare physical sensors due to their intrinsic conductive network, tunable mechanical properties, and easy processing. Doping engineering has been proposed as an effective approach to enhance the sensitivity, lower the detection limit, and widen the operational range of sensors based on conductive polymers. This approach enables the introduction of dopants into conductive polymers to adjust and control the microstructure and energy levels of conductive polymers, thereby optimizing their mechanical and conductivity properties. This review article provides a comprehensive overview of doping engineering methods to improve the physical properties of conductive polymers and highlights their applications in the field of healthcare physical sensors, including temperature sensors, strain sensors, stress sensors, and electrophysiological sensing. Additionally, the challenges and opportunities associated with conductive polymer-based physical sensors in healthcare monitoring are discussed.
Collapse
Affiliation(s)
- Xin Guo
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Yuqiong Sun
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Xidi Sun
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Jiean Li
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Jing Wu
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
25
|
Liu C, Peng K, Wu Y, Fu F. Functional adhesive hydrogels for biological interfaces. SMART MEDICINE 2023; 2:e20230024. [PMID: 39188302 PMCID: PMC11235964 DOI: 10.1002/smmd.20230024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/09/2023] [Indexed: 08/28/2024]
Abstract
Hydrogel adhesives are extensively employed in biological interfaces such as epidermal flexible electronics, tissue engineering, and implanted device. The development of functional hydrogel adhesives is a critical, yet challenging task since combining two or more attributes that seem incompatible into one adhesive hydrogel without sacrificing the hydrogel's pristine capabilities. In this Review, we highlight current developments in the fabrication of functional adhesive hydrogels, which are suitable for a variety of application scenarios, particularly those that occur underwater or on tissue/organ surface conditions. The design strategies for a multifunctional adhesive hydrogel with desirable properties including underwater adhesion, self-healing, good biocompatibility, electrical conductivity, and anti-swelling are discussed comprehensively. We then discuss the challenges faced by adhesive hydrogels, as well as their potential applications in biological interfaces. Adhesive hydrogels are the star building blocks of bio-interface materials for individualized healthcare and other bioengineering areas.
Collapse
Affiliation(s)
- Changyi Liu
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Kexin Peng
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Yilun Wu
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Fanfan Fu
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
26
|
Wang Y, Wu J, Chen J, Lu C, Liang J, Shan Y, Liu J, Li Q, Miao L, He M, Wang X, Zhang J, Wu Z. Mesenchymal stem cells paracrine proteins from three-dimensional dynamic culture system promoted wound healing in third-degree burn models. Bioeng Transl Med 2023; 8:e10569. [PMID: 38023693 PMCID: PMC10658564 DOI: 10.1002/btm2.10569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 12/01/2023] Open
Abstract
Recovery of skin function remains a significant clinical challenge for deep burns owing to the severe scar formation and poor appendage regeneration, and stem cell therapy has shown great potential for injured tissue regeneration. Here, a cell-free therapy system for deep burn skin was explored using mesenchymal stem cell paracrine proteins (MSC-PP) and polyethylene glycol (PEG) temperature-sensitive hydrogels. A three-dimensional (3D) dynamic culture system for MSCs' large-scale expansion was established using a porous gelatin microcarrier crosslinked with hyaluronic acid (PGM-HA), and the purified MSC-PP from culture supernatant was characterized by mass spectrometric analysis. The results showed the 3D dynamic culture system regulated MSCs cell cycle, reduced apoptosis, and decreased lactic acid content, and the MSC-PP produced in 3D group can promote cell proliferation, migration, and adhesion. The MSC-PP + PEG system maintained stable release in 28 days of observation in vitro. The in vivo therapeutic efficacy was investigated in the rabbit's third-degree burn model, and saline, PEG, MSC-PP, and MSC-PP + PEG treatments groups were set. The in vivo results showed that the MSC-PP + PEG group significantly improved wound healing, inhibited scar formation, and facilitated skin appendage regeneration. In conclusion, the MSC-PP + PEG sustained-release system provides a potentially effective treatment for deep burn skin healing.
Collapse
Affiliation(s)
- Yingwei Wang
- Department of OphthalmologyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Jiaxin Wu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Jiamin Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Cheng Lu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Jinchao Liang
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Yingyi Shan
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Jie Liu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Qi Li
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Liang Miao
- Burn plastic surgeryLonggang Central HospitalShenzhenChina
| | - Mu He
- Burn plastic surgeryLonggang Central HospitalShenzhenChina
| | - Xiaoying Wang
- Department of Biomedical EngineeringJinan UniversityGuangzhouChina
| | - Jianhua Zhang
- Special WardsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Zheng Wu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| |
Collapse
|
27
|
Petrossian G, Kateb P, Miquet-Westphal F, Cicoira F. Advances in Electrode Materials for Scalp, Forehead, and Ear EEG: A Mini-Review. ACS APPLIED BIO MATERIALS 2023; 6:3019-3032. [PMID: 37493408 DOI: 10.1021/acsabm.3c00322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Electroencephalogram (EEG) records the electrical activity of neurons in the cerebral cortex and is used extensively to diagnose, treat, and monitor psychiatric and neurological conditions. Reliable contact between the skin and the electrodes is essential for achieving consistency and for obtaining electroencephalographic information. There has been an increasing demand for effective equipment and electrodes to overcome the time-consuming and cumbersome application of traditional systems. Recently, ear-centered EEG has met with growing interest since it can provide good signal quality due to the proximity of the ear to the brain. In addition, it can facilitate mobile and unobtrusive usage due to its smaller size and ease of use, since it can be used without interfering with the patient's daily activities. The purpose of this mini-review is to first introduce the broad range of electrodes used in conventional (scalp) EEG and subsequently discuss the state-of-the-art literature about around- and in-the-ear EEG.
Collapse
Affiliation(s)
- Gayaneh Petrossian
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Pierre Kateb
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | | | - Fabio Cicoira
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| |
Collapse
|
28
|
Hua J, Su M, Sun X, Li J, Sun Y, Qiu H, Shi Y, Pan L. Hydrogel-Based Bioelectronics and Their Applications in Health Monitoring. BIOSENSORS 2023; 13:696. [PMID: 37504095 PMCID: PMC10377104 DOI: 10.3390/bios13070696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Flexible bioelectronics exhibit promising potential for health monitoring, owing to their soft and stretchable nature. However, the simultaneous improvement of mechanical properties, biocompatibility, and signal-to-noise ratio of these devices for health monitoring poses a significant challenge. Hydrogels, with their loose three-dimensional network structure that encapsulates massive amounts of water, are a potential solution. Through the incorporation of polymers or conductive fillers into the hydrogel and special preparation methods, hydrogels can achieve a unification of excellent properties such as mechanical properties, self-healing, adhesion, and biocompatibility, making them a hot material for health monitoring bioelectronics. Currently, hydrogel-based bioelectronics can be used to fabricate flexible bioelectronics for motion, bioelectric, and biomolecular acquisition for human health monitoring and further clinical applications. This review focuses on materials, devices, and applications for hydrogel-based bioelectronics. The main material properties and research advances of hydrogels for health monitoring bioelectronics are summarized firstly. Then, we provide a focused discussion on hydrogel-based bioelectronics for health monitoring, which are classified as skin-attachable, implantable, or semi-implantable depending on the depth of penetration and the location of the device. Finally, future challenges and opportunities of hydrogel-based bioelectronics for health monitoring are envisioned.
Collapse
Affiliation(s)
- Jiangbo Hua
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Mengrui Su
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Xidi Sun
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Jiean Li
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yuqiong Sun
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Hao Qiu
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
29
|
Kim DH, Akbar ZA, Malik YT, Jeon JW, Jang SY. Self-healable polymer complex with a giant ionic thermoelectric effect. Nat Commun 2023; 14:3246. [PMID: 37277360 PMCID: PMC10241813 DOI: 10.1038/s41467-023-38830-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/17/2023] [Indexed: 06/07/2023] Open
Abstract
In this study, we develop a stretchable/self-healable polymer, PEDOT:PAAMPSA:PA, with remarkably high ionic thermoelectric (iTE) properties: an ionic figure-of-merit of 12.3 at 70% relative humidity (RH). The iTE properties of PEDOT:PAAMPSA:PA are optimized by controlling the ion carrier concentration, ion diffusion coefficient, and Eastman entropy, and high stretchability and self-healing ability are achieved based on the dynamic interactions between the components. Moreover, the iTE properties are retained under repeated mechanical stress (30 cycles of self-healing and 50 cycles of stretching). An ionic thermoelectric capacitor (ITEC) device using PEDOT:PAAMPSA:PA achieves a maximum power output and energy density of 4.59 μW‧m-2 and 1.95 mJ‧m-2, respectively, at a load resistance of 10 KΩ, and a 9-pair ITEC module produces a voltage output of 0.37 V‧K-1 with a maximum power output of 0.21 μW‧m-2 and energy density of 0.35 mJ‧m-2 at 80% RH, demonstrating the potential for a self-powering source.
Collapse
Affiliation(s)
- Dong-Hu Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Zico Alaia Akbar
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Yoga Trianzar Malik
- Department of Chemistry, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 136-702, Republic of Korea
| | - Ju-Won Jeon
- Department of Chemistry, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 136-702, Republic of Korea.
| | - Sung-Yeon Jang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
30
|
Pupeikė J, Sankauskaitė A, Varnaitė-Žuravliova S, Rubežienė V, Abraitienė A. Investigation of Electrical and Wearing Properties of Wool Fabric Coated with PEDOT:PSS. Polymers (Basel) 2023; 15:polym15112539. [PMID: 37299337 DOI: 10.3390/polym15112539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The way to improve the properties (resistance to washing, delamination, and rubbing off) of the PEDOT:PSS coating applied on wool fabric without reduction of its electrical conductivity by introducing a commercially available combination of low formaldehyde content melamine resins into the printing paste is presented in this paper. Primarily, to improve the hydrophilicity and dyeability of wool fabric, the samples were modified using low-pressure nitrogen (N2) gas plasma. Two commercially available PEDOT:PSS dispersions were used to treat wool fabric by the exhaust dyeing and screen printing methods, respectively. Spectrophotometric measurements of the color difference (ΔE*ab) and visual evaluation of woolen fabric dyed and printed with PEDOT:PSS in different shades of the blue color showed that the sample modified with N2 plasma obtained a more intense color compared to the unmodified one. SEM was used to examine the surface morphology and a cross-sectional view of wool fabric that had undergone various modifications. SEM image shows that the dye penetrates deeper into the wool fabric after plasma modification using dyeing and coating methods with a PEDOT:PSS polymer. In addition, with a Tubicoat fixing agent, HT coating looks more homogeneous and uniform. The chemical structure spectra of wool fabrics coated with PEDOT:PSS were investigated using FTIR-ATR characterization. The influence of melamine formaldehyde resins on the electrical properties, resistance to washing, and mechanical effects of PEDOT:PSS treated wool fabric was also evaluated. The resistivity measurement of the samples containing melamine-formaldehyde resins as an additive did not show a significant decrease in electrical conductivity, while the electrical conductivity was maintained after the washing and rubbing test as well. The best results of electrical conductivity for investigated wool fabrics before and after washing and mechanical action were determined for samples subjected to the combined processing-surface modification by low-pressure N2 plasma, dyeing by exhaust with PEDOT:PSS, and coating by the screen-printing method of PEDOT:PSS and a 3 wt.% melamine formaldehyde resins mixture.
Collapse
Affiliation(s)
- Julija Pupeikė
- Center for Physical Sciences and Technology, Department of Textiles Technology, Demokratu˛ Str. 53, LT-48485 Kaunas, Lithuania
| | - Audronė Sankauskaitė
- Center for Physical Sciences and Technology, Department of Textiles Technology, Demokratu˛ Str. 53, LT-48485 Kaunas, Lithuania
| | - Sandra Varnaitė-Žuravliova
- Center for Physical Sciences and Technology, Department of Textiles Technology, Demokratu˛ Str. 53, LT-48485 Kaunas, Lithuania
| | - Vitalija Rubežienė
- Center for Physical Sciences and Technology, Department of Textiles Technology, Demokratu˛ Str. 53, LT-48485 Kaunas, Lithuania
| | - Aušra Abraitienė
- Center for Physical Sciences and Technology, Department of Textiles Technology, Demokratu˛ Str. 53, LT-48485 Kaunas, Lithuania
| |
Collapse
|
31
|
Rybak D, Su YC, Li Y, Ding B, Lv X, Li Z, Yeh YC, Nakielski P, Rinoldi C, Pierini F, Dodda JM. Evolution of nanostructured skin patches towards multifunctional wearable platforms for biomedical applications. NANOSCALE 2023; 15:8044-8083. [PMID: 37070933 DOI: 10.1039/d3nr00807j] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Recent advances in the field of skin patches have promoted the development of wearable and implantable bioelectronics for long-term, continuous healthcare management and targeted therapy. However, the design of electronic skin (e-skin) patches with stretchable components is still challenging and requires an in-depth understanding of the skin-attachable substrate layer, functional biomaterials and advanced self-powered electronics. In this comprehensive review, we present the evolution of skin patches from functional nanostructured materials to multi-functional and stimuli-responsive patches towards flexible substrates and emerging biomaterials for e-skin patches, including the material selection, structure design and promising applications. Stretchable sensors and self-powered e-skin patches are also discussed, ranging from electrical stimulation for clinical procedures to continuous health monitoring and integrated systems for comprehensive healthcare management. Moreover, an integrated energy harvester with bioelectronics enables the fabrication of self-powered electronic skin patches, which can effectively solve the energy supply and overcome the drawbacks induced by bulky battery-driven devices. However, to realize the full potential offered by these advancements, several challenges must be addressed for next-generation e-skin patches. Finally, future opportunities and positive outlooks are presented on the future directions of bioelectronics. It is believed that innovative material design, structure engineering, and in-depth study of fundamental principles can foster the rapid evolution of electronic skin patches, and eventually enable self-powered close-looped bioelectronic systems to benefit mankind.
Collapse
Affiliation(s)
- Daniel Rybak
- Institute of Fundamental Technological Research, Polish Academy of Science, 02-106 Warsaw, Poland.
| | - Yu-Chia Su
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Yang Li
- College of Electronic and Optical Engineering & College of Microelectronics, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| | - Xiaoshuang Lv
- Shanghai Frontier Science Research Center for Modern Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Zhaoling Li
- Shanghai Frontier Science Research Center for Modern Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Pawel Nakielski
- Institute of Fundamental Technological Research, Polish Academy of Science, 02-106 Warsaw, Poland.
| | - Chiara Rinoldi
- Institute of Fundamental Technological Research, Polish Academy of Science, 02-106 Warsaw, Poland.
| | - Filippo Pierini
- Institute of Fundamental Technological Research, Polish Academy of Science, 02-106 Warsaw, Poland.
| | - Jagan Mohan Dodda
- New Technologies - Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic.
| |
Collapse
|
32
|
Chen Y, Yuan X, Li C, Ruan R, You H. Self-Healing and Self-Adhesive Substrate-Free Tattoo Electrode. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093499. [PMID: 37176381 PMCID: PMC10180316 DOI: 10.3390/ma16093499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Electronic tattoos have great potential application in the biomedical field; moreover, the substrate-free electronic tattoo offers better comfortability and conformal contact. However, the substrate-free electronic tattoo is more prone to malfunction, including fall off and fracture. In this paper, a self-healing and self-adhesive substate-free tattoo based on PEDOT: PSS is studied and reported. The dry composite electrode will turn into self-healing material while it transforms into hydrogel, and a cut with a width up to 24 μm could be healed in 1 s. In terms of adhesion performance, the substrate-free electrode can hang a 28.2 g weight by a contact area of 8 mm × 8 mm. Additionally, the substate-free electrode could maintain fully conformal contact with porcine skin in 15 days by its self-adhesiveness. When applied as a substrate-free tattoo, the contact impedance and ECG signal measurement performance before and after self-healing are almost the same. At a frequency of 10 Hz, the contact impedance of the undamaged electrode, healed electrode, and Ag/AgCl gel electrode are 32.2 kΩ, 39.2 kΩ, and 62.9 kΩ, respectively. In addition, the ECG signals measured by the undamaged electrode and healed electrode are comparable to that of Ag/AgCl electrode. The self-healing and self-adhesive substrate-free tattoo electrode reported here has broad application in health monitoring.
Collapse
Affiliation(s)
- Yuanfen Chen
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiaoming Yuan
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Chunlin Li
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Ruicheng Ruan
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Hui You
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
33
|
Gamboa J, Paulo-Mirasol S, Estrany F, Torras J. Recent Progress in Biomedical Sensors Based on Conducting Polymer Hydrogels. ACS APPLIED BIO MATERIALS 2023; 6:1720-1741. [PMID: 37115912 DOI: 10.1021/acsabm.3c00139] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Biosensors are increasingly taking a more active role in health science. The current needs for the constant monitoring of biomedical signals, as well as the growing spending on public health, make it necessary to search for materials with a combination of properties such as biocompatibility, electroactivity, resorption, and high selectivity to certain bioanalytes. Conducting polymer hydrogels seem to be a very promising materials, since they present many of the necessary properties to be used as biosensors. Furthermore, their properties can be shaped and enhanced by designing conductive polymer hydrogel-based composites with more specific functionalities depending on the end application. This work will review the recent state of the art of different biological hydrogels for biosensor applications, discuss the properties of the different components alone and in combination, and reveal their high potential as candidate materials in the fabrication of all-organic diagnostic, wearable, and implantable sensor devices.
Collapse
Affiliation(s)
- Jillian Gamboa
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, Barcelona 08019, Spain
| | - Sofia Paulo-Mirasol
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, Barcelona 08019, Spain
| | - Francesc Estrany
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, Barcelona 08019, Spain
| | - Juan Torras
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, Barcelona 08019, Spain
| |
Collapse
|
34
|
Chen M, Murphy BB, Wang Y, Vitale F, Yang S. SMART Silly Putty: Stretchable, Malleable, Adherable, Reusable, and Tear-Resistible Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205854. [PMID: 36433864 DOI: 10.1002/smll.202205854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Cell engineering, soft robotics, and wearable electronics often desire soft materials that are easy to deform, self-heal readily, and can relax stress rapidly. Hydrogels, a type of hydrophilic networks, are such kind of materials that can be made responsive to environmental stimuli. However, conventional hydrogels often suffer from poor stretchability and repairability. Here, hydrogels consisting of boronic ester dynamic covalent bonds in a double network of poly(vinyl alcohol)/boric acid and chitosan are synthesized, which demonstrate extreme stretchability (up to 310 times the original length), instant self-healing (within 5 s), and reusability and inherent adhesion. Their instant stress relaxation stems from a low activation energy of the boronic ester bond exchange (≤20 kJ mol-1 ) and contributes to the extreme stretchability and self-healing behaviors. Various water-dispersible additives can be readily incorporated in the hydrogels via hand kneading for potential applications such as soft electronics, bio-signal sensing, and soft artificial joints.
Collapse
Affiliation(s)
- Mingtao Chen
- Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Brendan B Murphy
- Departments of Neurology, Bioengineering, Physical Medicine and Rehabilitation, University of Pennsylvania, 3400 Spruce St Ste 3 W, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Yuchen Wang
- Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Flavia Vitale
- Departments of Neurology, Bioengineering, Physical Medicine and Rehabilitation, University of Pennsylvania, 3400 Spruce St Ste 3 W, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Shu Yang
- Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
35
|
Zhu T, Ni Y, Biesold GM, Cheng Y, Ge M, Li H, Huang J, Lin Z, Lai Y. Recent advances in conductive hydrogels: classifications, properties, and applications. Chem Soc Rev 2023; 52:473-509. [PMID: 36484322 DOI: 10.1039/d2cs00173j] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrogel-based conductive materials for smart wearable devices have attracted increasing attention due to their excellent flexibility, versatility, and outstanding biocompatibility. This review presents the recent advances in multifunctional conductive hydrogels for electronic devices. First, conductive hydrogels with different components are discussed, including pure single network hydrogels based on conductive polymers, single network hydrogels with additional conductive additives (i.e., nanoparticles, nanowires, and nanosheets), double network hydrogels based on conductive polymers, and double network hydrogels with additional conductive additives. Second, conductive hydrogels with a variety of functionalities, including self-healing, super toughness, self-growing, adhesive, anti-swelling, antibacterial, structural color, hydrophobic, anti-freezing, shape memory and external stimulus responsiveness are introduced in detail. Third, the applications of hydrogels in flexible devices are illustrated (i.e., strain sensors, supercapacitors, touch panels, triboelectric nanogenerator, bioelectronic devices, and robot). Next, the current challenges facing hydrogels are summarized. Finally, an imaginative but reasonable outlook is given, which aims to drive further development in the future.
Collapse
Affiliation(s)
- Tianxue Zhu
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Yimeng Ni
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yan Cheng
- Zhejiang Engineering Research Center for Tissue Repair Materials, Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, Zhejiang 325000, P. R. China
| | - Mingzheng Ge
- School of Textile and Clothing, Nantong University, Nantong 226019, P. R. China
| | - Huaqiong Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, Zhejiang 325000, P. R. China
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China. .,Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China. .,Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| |
Collapse
|
36
|
Wu Z, Li X, Feng Z, Wan C, Li Y, Li T, Yang Q, Liu X, Ren M, Li J, Shang X, Zhang X, Huang X. Stable and Dynamic Multiparameter Monitoring on Chests Using Flexible Skin Patches with Self-Adhesive Electrodes and a Synchronous Correlation Peak Extraction Algorithm. Adv Healthc Mater 2023; 12:e2202629. [PMID: 36604167 DOI: 10.1002/adhm.202202629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/26/2022] [Indexed: 01/07/2023]
Abstract
Advances in wearable bioelectronics interfacing directly with skin offer important tools for non-invasive measurements of physiological parameters. However, wearable monitoring devices majorly conduct static sensing to avoid signal disturbance and unreliable contact with the skin. Dynamic multiparameter sensing is challenging even with the advanced flexible skin patches. This epidermal electronics system with self-adhesive conductive electrodes to supply stable skin contact and a unique synchronous correlation peak extraction (SCPE) algorithm to minimize motion artifacts in the photoplethysmogram (PPG) signals. The skin patch system can simultaneously and precisely monitor electrocardiogram (ECG), PPG, body temperature, and acceleration on chests undergoing daily activities. The low latency between the ECG and the PPG signals enables the SCPE algorithm that leads to reduced errors in deduced heart rates and improved performance in oxygen level determination than conventional adaptive filtering and wavelet transformation approaches. Dynamic multiparameter recording over 24 h by the system can reflect the circadian patterns of the wearers with low disturbance from motion artifacts. This demonstrated system may be applied for health monitoring in large populations to alleviate pressure on medical systems and assist management of public health crisis.
Collapse
Affiliation(s)
- Ziyue Wu
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xueting Li
- Institute of Wearable Technology and Bioelectronics, Qiantang Science and Technology Innovation Center, 1002 23rd Street, Hangzhou, Zhejiang, 310018, China
| | - Zhijie Feng
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Chunxue Wan
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Ya Li
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Tianyu Li
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Qing Yang
- Center of Flexible Wearable Technology, Institute of Flexible Electronic Technology of Tsinghua, 906 Asia-Pacific Road, Jiaxing, Zhejiang, 314006, China
| | - Xinyu Liu
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Miaoning Ren
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jiameng Li
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xue Shang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xiangyu Zhang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xian Huang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.,Center of Flexible Wearable Technology, Institute of Flexible Electronic Technology of Tsinghua, 906 Asia-Pacific Road, Jiaxing, Zhejiang, 314006, China
| |
Collapse
|
37
|
Investigation of the Conditions for the Synthesis of Poly(3,4-ethylenedioxythiophene) ATRP Macroinitiator. Polymers (Basel) 2023; 15:polym15020253. [PMID: 36679137 PMCID: PMC9867338 DOI: 10.3390/polym15020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
One of the most widely used conductive polymers in the growing conductive polymer industry is poly(3,4-ethylenedioxythiophene) (PEDOT), whose main advantages are good thermal and chemical stability, a conjugated backbone, and ease of functionalization. The main drawback of PEDOT for use as wearable electronics is the lack of stretchable and self-healing properties. This can be overcome by grafting PEDOT with flexible side branches. As pure PEDOT is highly stable and grafting would not be possible, a new bromine-functionalized thiophene derivative, 2-(tiophen-3-yl) ethyl 2-bromo-2-methylpropanoate (ThBr), was synthesized and copolymerized with EDOT for the synthesis of a poly(EDOT-co-ThBr) ATRP macroinitiator. After the synthesis of the macroinitiator, flexible polymers could be introduced as side branches by atom-transfer radical polymerization (ATRP) to modify mechanical properties. Before this last synthesis step, the conditions for the synthesis of the ATRP macroinitiator should be investigated, as only functionalized units can function as grafting sites. In this study, nine new copolymers with different monomer ratios were synthesized to investigate the reactivity of each monomer. The ratios used in the different syntheses were ThBr:EDOT = 1:0.2, 1:0.4, 1:0.6, 1:0.8, 1:1, 0.8:1, 0.6:1, 0.4:1, and 0.2:1. In order to determine the effect of reaction time on the final properties of the polymer, macroinitiator synthesis at a 1:1 ratio was carried out at different time periods: 8 h, 16 h, 24 h, and 48 h. The obtained products were characterized by different techniques, and it was found that polymerizations longer than 24 h yielded practically insoluble macroinitiators, thus limiting its further application. Reactivity ratios of both monomers were found to be similar and close to 1, making the copolymerization reaction symmetrical and the obtained macroinitiators almost random copolymers.
Collapse
|
38
|
O'Neill SJK, Huang Z, Ahmed MH, Boys AJ, Velasco-Bosom S, Li J, Owens RM, McCune JA, Malliaras GG, Scherman OA. Tissue-Mimetic Supramolecular Polymer Networks for Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207634. [PMID: 36314408 DOI: 10.1002/adma.202207634] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Addressing the mechanical mismatch between biological tissue and traditional electronic materials remains a major challenge in bioelectronics. While rigidity of such materials limits biocompatibility, supramolecular polymer networks can harmoniously interface with biological tissues as they are soft, wet, and stretchable. Here, an electrically conductive supramolecular polymer network that simultaneously exhibits both electronic and ionic conductivity while maintaining tissue-mimetic mechanical properties, providing an ideal electronic interface with the human body, is introduced. Rational design of an ultrahigh affinity host-guest ternary complex led to binding affinities (>1013 M-2 ) of over an order of magnitude greater than previous reports. Embedding these complexes as dynamic cross-links, coupled with in situ synthesis of a conducting polymer, resulted in electrically conductive supramolecular polymer networks with tissue-mimetic Young's moduli (<5 kPa), high stretchability (>500%), rapid self-recovery and high water content (>84%). Achieving such properties enabled fabrication of intrinsically-stretchable stand-alone bioelectrodes, capable of accurately monitoring electromyography signals, free from any rigid materials.
Collapse
Affiliation(s)
- Stephen J K O'Neill
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Zehuan Huang
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Mohammed H Ahmed
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Alexander J Boys
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Santiago Velasco-Bosom
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Jiaxuan Li
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Róisín M Owens
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Jade A McCune
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| |
Collapse
|
39
|
Liu Q, Zhou J, Yang L, Xie J, Guo C, Li Z, Qi J, Shi S, Zhang Z, Yang H, Hu J, Wu J, Zhang Y. A reversible gel-free electrode for continuous noninvasive electrophysiological signal monitoring. JOURNAL OF MATERIALS CHEMISTRY C 2023; 11:8866-8875. [DOI: 10.1039/d3tc00948c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
PPEM gel-free electrode for continuous noninvasive electrophysiological signal monitoring.
Collapse
Affiliation(s)
- Qing Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jie Zhou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Liangtao Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiajia Xie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Chenhui Guo
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Department of Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215127, China
| | - Zimo Li
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Jun Qi
- Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu’an, 237100, China
| | - Shuo Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong S.A.R, 999077, China
| | - Zhilin Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hui Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong S.A.R, 999077, China
| | - Jinglong Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yi Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
40
|
Park K, Kang K, Kim J, Kim SD, Jin S, Shin M, Son D. Balanced Coexistence of Reversible and Irreversible Covalent Bonds in a Conductive Triple Polymeric Network Enables Stretchable Hydrogels with High Toughness and Adhesiveness. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56395-56406. [PMID: 36484343 DOI: 10.1021/acsami.2c17676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The application of soft hydrogels to stretchable devices has attracted increasing attention in deformable bioelectronics owing to their unique characteristic, "modulus matching between materials and organs". Despite considerable progress, their low toughness, low conductivity, and absence of tissue adhesiveness remain substantial challenges associated with unstable skin-interfacing, where body movements undesirably disturb electrical signal acquisitions. Herein, we report a material design of a highly tough strain-dissipative and skin-adhesive conducting hydrogel fabricated through a facile one-step sol-gel transition and its application to an interactive human-machine interface. The hydrogel comprises a triple polymeric network where irreversible amide linkage of polyacrylamide with alginate and dynamic covalent bonds entailing conjugated polymer chains of poly(3,4-ethylenedioxythiophene)-co-(3-thienylboronic acid) are simultaneously capable of high stretchability (1300% strain), efficient strain dissipation (36,209 J/m2), low electrical resistance (590 Ω), and even robust skin adhesiveness (35.0 ± 5.6 kPa). Based on such decent characteristics, the hydrogel was utilized as a multifunctional layer for successfully performing either electrophysiological cardiac/muscular on-skin sensors or an interactive stretchable human-machine interface.
Collapse
Affiliation(s)
- Kyuha Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon16419, Republic of Korea
| | - Kyumin Kang
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon16419, Republic of Korea
| | - Jungwoo Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon16419, Republic of Korea
| | - Sung Dong Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Institute for Convergence, Suwon16419, Republic of Korea
| | - Subin Jin
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon16419, Republic of Korea
| | - Mikyung Shin
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Institute for Convergence, Suwon16419, Republic of Korea
| | - Donghee Son
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon16419, Republic of Korea
- Department of Superintelligence Engineering, Sungkyunkwan University (SKKU), Suwon16419, Republic of Korea
| |
Collapse
|
41
|
Cheng Y, Zhou Y, Wang R, Chan KH, Liu Y, Ding T, Wang XQ, Li T, Ho GW. An Elastic and Damage-Tolerant Dry Epidermal Patch with Robust Skin Adhesion for Bioelectronic Interfacing. ACS NANO 2022; 16:18608-18620. [PMID: 36318185 DOI: 10.1021/acsnano.2c07097] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
On-skin patches that record biopotential and biomechanical signals are essential for wearable healthcare monitoring, clinical treatment, and human-machine interaction. To acquire wearing comfort and high-quality signals, patches with tissue-like softness, elastic recovery, damage tolerance, and robust bioelectronic interface are highly desired yet challenging to achieve. Here, we report a dry epidermal patch made from a supramolecular polymer (SESA) and an in situ transferred carbon nanotubes' percolation network. The polymer possesses a hybrid structure of copolymerized permanent scaffold permeated by multiple dynamic interactions, which imparts a desired mechanical response transition from elastic recoil to energy dissipation with increased elongation. Such SESA-based patches are soft (Young's modulus ∼0.1 MPa) and elastic within physiologically relevant strain levels (97% elastic recovery at 50% tensile strain), intrinsically mechanical-electrical damage-resilient (∼90% restoration from damage after 5 min), and interference-immune in dynamic signal acquisition (stretch, underwater, sweat). We demonstrate its versatile physiological sensing applications, including electrocardiogram recording under various disturbances, machine-learning-enabled hand-gesture recognition through electromyogram measurement, subtle radial artery pulse, and drastic knee kinematics sensing. This epidermal patch offers a promising noninvasive, long-duration, and ambulant bioelectronic interfacing with anti-interference robustness.
Collapse
Affiliation(s)
- Yin Cheng
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China
| | - Yi Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Ranran Wang
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China
| | - Kwok Hoe Chan
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Yan Liu
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China
| | - Tianpeng Ding
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Xiao-Qiao Wang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Tongtao Li
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| |
Collapse
|
42
|
Carboxymethyl cellulose assisted PEDOT in polyacrylamide hydrogel for high performance supercapacitors and self-powered sensing system. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Bucak CD, Sahin MO. Super-flexible, moldable, injectable, self-healing PVA/B/CMC hydrogels synthesis and characterization, as potential water-retaining agent in agriculture. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04379-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Lerond M, Raj AM, Wu V, Skene WG, Cicoira F. An intrinsically stretchable and bendable electrochromic device. NANOTECHNOLOGY 2022; 33:405706. [PMID: 35704978 DOI: 10.1088/1361-6528/ac78f0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Stretchable electrochromic devices (ECDs) were fabricated from electrospun PEDOT:PSS (poly(3, 4-ethylenedioxythiophene):polystyrene sulfonate) fibers. Stretchable and transparent electrodes with a sheet resistance of 1200 Ω sq-1were prepared by depositing the conductive fibers on elastomeric substrates that were prepared from polydimethylsiloxane. The conductive substrates replaced the ITO coated glass electrodes that are typically used in ECDs. The functioning device was prepared from a flexible chitosan electrolytic gel and a 4, 7-bis(4-diphenylaminophenyl)-2, 1, 3-benzothiaziazole (TPA-BZT-TPA) electrochrome that were deposited on the streatchable transparent electrodes. The assembled device could be stretched to 150% its original length and bent to a curvature of 0.1. The device could be operated and switched between its yellow (off) and blue (on) states while being stretched and bent with a maximum contrast ΔT ≈ 30% at 805 nm and a coloration efficiency of 168 cm2C-1. The stretchable device had an electrochromic contrast that was 30% greater than its counterpart that was prepared from conventional ITO-glass electrodes. The critical composition required for making devices truly stretchable was possible by evaluating the performance of five types of devices consisting of different layers.
Collapse
Affiliation(s)
- Michael Lerond
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - A Mohan Raj
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Veronica Wu
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - W G Skene
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Fabio Cicoira
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| |
Collapse
|
45
|
Hsieh JC, Li Y, Wang H, Perz M, Tang Q, Tang KWK, Pyatnitskiy I, Reyes R, Ding H, Wang H. Design of hydrogel-based wearable EEG electrodes for medical applications. J Mater Chem B 2022; 10:7260-7280. [PMID: 35678148 DOI: 10.1039/d2tb00618a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The electroencephalogram (EEG) is considered to be a promising method for studying brain disorders. Because of its non-invasive nature, subjects take a lower risk compared to some other invasive methods, while the systems record the brain signal. With the technological advancement of neural and material engineering, we are in the process of achieving continuous monitoring of neural activity through wearable EEG. In this article, we first give a brief introduction to EEG bands, circuits, wired/wireless EEG systems, and analysis algorithms. Then, we review the most recent advances in the interfaces used for EEG recordings, focusing on hydrogel-based EEG electrodes. Specifically, the advances for important figures of merit for EEG electrodes are reviewed. Finally, we summarize the potential medical application of wearable EEG systems.
Collapse
Affiliation(s)
- Ju-Chun Hsieh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Yang Li
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C3J7, Canada
| | - Huiqian Wang
- Department of Mathematics, The University of Texas at Austin, Austin, TX 78712, USA
| | - Matt Perz
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Qiong Tang
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kai Wing Kevin Tang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Ilya Pyatnitskiy
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Raymond Reyes
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Hong Ding
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Huiliang Wang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
46
|
Li Y, Zhou X, Sarkar B, Gagnon-Lafrenais N, Cicoira F. Recent Progress on Self-Healable Conducting Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108932. [PMID: 35043469 DOI: 10.1002/adma.202108932] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Materials able to regenerate after damage have been the object of investigation since the ancient times. For instance, self-healing concretes, able to resist earthquakes, aging, weather, and seawater have been known since the times of ancient Rome and are still the object of research. During the last decade, there has been an increasing interest in self-healing electronic materials, for applications in electronic skin (E-skin) for health monitoring, wearable and stretchable sensors, actuators, transistors, energy harvesting, and storage devices. Self-healing materials based on conducting polymers are particularly attractive due to their tunable high conductivity, good stability, intrinsic flexibility, excellent processability and biocompatibility. Here recent developments are reviewed in the field of self-healing electronic materials based on conducting polymers, such as poly 3,4-ethylenedioxythiophene (PEDOT), polypyrrole (PPy), and polyaniline (PANI). The different types of healing, the strategies adopted to optimize electrical and mechanical properties, and the various possible healing mechanisms are introduced. Finally, the main challenges and perspectives in the field are discussed.
Collapse
Affiliation(s)
- Yang Li
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Xin Zhou
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Biporjoy Sarkar
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Noémy Gagnon-Lafrenais
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Fabio Cicoira
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| |
Collapse
|
47
|
Hu M, Zhang J, Liu Y, Zheng X, Li X, Li X, Yang H. Highly Conformal Polymers for Ambulatory Electrophysiological Sensing. Macromol Rapid Commun 2022; 43:e2200047. [PMID: 35419904 DOI: 10.1002/marc.202200047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/09/2022] [Indexed: 11/08/2022]
Abstract
Stable ambulatory electrophysiological sensing is widely utilized for smart e-healthcare monitoring, clinical diagnosis of cardiovascular diseases, treatment of neurological diseases, and intelligent human-machine interaction. As the favorable signal interaction platform of electrophysiological sensing, the conformal property of on-skin electrodes is an extremely crucial factor that can affect the stability of long-term ambulatory electrophysiological sensing. From the perspective of materials, to realize conformal contact between electrodes and skin for stable sensing, highly conformal polymers are strongly demanding and attracting ever-growing attention. In this review, we focused on the recent progress of highly conformal polymers for ambulatory electrophysiological sensing, including their synthetic methods, conformal property, and potential applications. Specifically, three main types of highly conformal polymers for stable long-term electrophysiological signals monitoring were proposed, including nature silk fibroin based conformal polymers, marine mussels bio-inspired conformal polymers, and other conformal polymers such as zwitterionic polymers and polyacrylamide. Furthermore, the future challenges and opportunities of preparing highly conformal polymers for on-skin electrodes were also highlighted. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mingshuang Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Jun Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Yixuan Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Xinran Zheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Xiangxiang Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Ximing Li
- Chest hospital, Tianjin University, Tianjin, 300072, China
| | - Hui Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| |
Collapse
|
48
|
Affiliation(s)
- Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Biodesign Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, United States.
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Simpson Querrey Institute, Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, United States.
| |
Collapse
|
49
|
Xie X, Yu J, Li Z, Wu Z, Chen S. Self-healable PEDOT-based all-organic films with excellent electrochromic performances. NEW J CHEM 2022. [DOI: 10.1039/d2nj03966d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PEDOT-based all-organic films after breaking up can be intrinsically self-healed through thermal stimulation (no more than 130 °C), and maintain excellent electrochromic properties.
Collapse
Affiliation(s)
- Xiaowen Xie
- Flexible Electronics Innovation Institute and School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Jiarui Yu
- Flexible Electronics Innovation Institute and School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Zhanqi Li
- Jiangxi Engineering Laboratory of Waterborne Coatings, Nanchang 330013, Jiangxi, China
| | - Zhixin Wu
- Flexible Electronics Innovation Institute and School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Shuai Chen
- Flexible Electronics Innovation Institute and School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
- Jiangxi Engineering Laboratory of Waterborne Coatings, Nanchang 330013, Jiangxi, China
| |
Collapse
|