1
|
Jaipakdee N, Tabboon P, Jarungsirawat R, Khetklang K, Phumart P, Pongjanyakul T, Sakloetsakun D. Synergistic impact of pretreatment by planetary ball milling on the efficiency of chemical modifications of glutinous starch through thiolation: Synthesis and characterization. Int J Biol Macromol 2025; 314:144332. [PMID: 40389000 DOI: 10.1016/j.ijbiomac.2025.144332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 05/05/2025] [Accepted: 05/16/2025] [Indexed: 05/21/2025]
Abstract
This study examined the effects of planetary ball milling on glutinous rice starch (GS) thiolation. Native GS (NGS) and ball-milled GS (BMGS) were oxidized with periodate and conjugated with cysteamine (CYSM). FTIR, XRD, SEM, and EDX analyses confirmed successful conjugation with altered crystallinity, morphology, and elemental composition. BMGS-CYSM contained 828.9 ± 54.8 μmol/g of free thiol groups, which was 2.2 times greater than that of NGS-CYSM, and had disulfide bonds measuring 210.55 ± 6.25 μmol/g. Precipitation pH of GS-CYSM conjugates ranged between 6.3 and 7.2, with zeta potential values maintained near neutrality. Cytotoxicity tests showed >85 % Caco-2 cell viability after 24-h of exposure. GS-CYSM conjugates displayed layered, sheet-like structures instead of the original granular morphology, with BMGS-CYSM exhibiting more structural changes than NGS-CYSM. Swelling of GS-CYSM discs in an aqueous medium followed Fickian kinetics, with BMGS-CYSM exhibiting superior swelling rates. BMGS-CYSM showed lower erosion percentages in the pH 6.8 phosphate-buffered saline medium. Mucoadhesion tests on porcine intestinal mucosa using tensile strength and rotating cylinder techniques suggested the superior mucoadhesiveness of BMGS-CYSM over NGS-CYSM and BMGS, with mucosal retention exceeding 24 h. This study demonstrates that mechanical pretreatment via planetary ball milling enhances thiolation efficiency, offering a promising approach for developing mucoadhesive GS materials for drug delivery.
Collapse
Affiliation(s)
- Napaphak Jaipakdee
- Center for Research and Development of Herbal Health Products, Khon Kaen University, Khon Kaen 40002, Thailand; Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Peera Tabboon
- Center for Research and Development of Herbal Health Products, Khon Kaen University, Khon Kaen 40002, Thailand; Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Rapee Jarungsirawat
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Kusarin Khetklang
- Center for Research and Development of Herbal Health Products, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Panumart Phumart
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Thaned Pongjanyakul
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | |
Collapse
|
2
|
Razzaq FA, Khalid SH, Khan IU, Asghar S. Multifunctional moxifloxacin and essential oil loaded sodium alginate/thiolated karaya gum hydrogel dressings for improved wound healing. Int J Biol Macromol 2025; 312:144234. [PMID: 40379181 DOI: 10.1016/j.ijbiomac.2025.144234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 05/06/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
Numerous efforts have been done to develop wound dressings for effective wound treatment, remains a considerable challenge. The aim of current research work was to prepare multifunctional sodium alginate/thiolated karaya gum hydrogel dressings containing moxifloxacin in combination with artemesia/cedarwood essential oil. Thiolation of karaya gum was achieved by esterification reaction with 3 mercapto-propionic acid and synthesis of blended sodium alginate and thiolated karaya gum hydrogel films without (S1/TK1) and with moxifloxacin and artemesia/cedarwood oil (S1/TK1.DA1, S1/TK1.DC1) was achieved using solvent casting technique and were evaluated for fourier transform infrared spectrum and thermogravimetric analysis. Increasing the concentration of thiolated karaya gum substantially enhanced the bioadhesion, with a 350 % increase in bioadhesion-force and 353 % improvement in bond-strength while exhibiting balanced mechanical properties with an increase rate of 166 % in tensile strength and 73 % in percent-elongation. Incorporation of both moxifloxacin and artemesia/cedarwood oil also considerably enhanced the antibacterial activity of Optimized S1/TK1.DA1 and S1/TK1.DC1 formulations by 286 % and 253 % against s. aureus and 367 % and 269 % against e. coli respectively. Furthermore 2, 2 - di phenyl picryl hydrazyl (DPPH) and superoxide anion scavenging potential of S1/TK1.DA1 and S1/TK1.DC1 were enhanced by 1587 %, 1379 % and by 1384 % and 1245 % respectively. In vivo wound healing efficacy in cutaneous rat model also confirmed almost complete wound closure (≈ 99 %), collagen deposition and anti-inflammatory activity, enabling rapid wound recovery in twelve days. In conclusion, prepared hydrogel dressings might be an outstanding choice for wound healing applications.
Collapse
Affiliation(s)
- Fizza Abdul Razzaq
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan.
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| |
Collapse
|
3
|
Long W, George Joy J, Lee SJ, Kim JC. Collagen- and Hyaluronic Acid-Based Microneedles With Thiolated Pectin for Redox-Responsive Drug Delivery. J Biomed Mater Res A 2025; 113:e37903. [PMID: 40156176 DOI: 10.1002/jbm.a.37903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Microneedles have emerged as an effective strategy to bypass the stratum corneum by creating microchannels in the skin, allowing for enhanced drug permeation with minimal invasiveness. Pectin, a natural polysaccharide, when modified with thiol (-SH) groups, exhibits redox-sensitive behavior, making it responsive to reducing agents such as glutathione and dithiothreitol (DTT). The objective of this study was to investigate the transdermal delivery efficacy of redox-responsive microneedle-containing thiolated pectin. Various molar ratios of thiolated pectin were synthesized through the ring-opening reaction followed by nucleophilic substitution of propylene sulfide with pectin. MN matrices were formulated with thiolated pectin at various molar ratios, hyaluronic acid, collagen, and trehalose. The stiffness and mechanical strength of the microneedles increased with higher thiol-containing pectin molecules. The in vitro skin permeation release showed a large amount of FITC release when no thiol group was conjugated to pectin. MN-thio: pectin (20:10) with H2O2 showed greater release at higher DTT concentrations, and in the absence of DTT, the release was 50 times less than without thiol. In summary, the redox-responsive microneedle containing thiolated pectin may be a promising vehicle for transdermal drug delivery by harvesting the reducing agents in the human body.
Collapse
Affiliation(s)
- Wenting Long
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Jomon George Joy
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Seung-Jun Lee
- Department of Pharmaceutical Science and Engineering, Seowon University, Cheongju, Chungbuk, Republic of Korea
| | - Jin-Chul Kim
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
4
|
Haddadzadegan S, Saleh A, Veider F, Knoll P, Laffleur F, Kali G, Bernkop-Schnürch A. Cyclodextrin-mediated enhancement of gastrointestinal drug delivery: unveiling mucoadhesive and mucopenetrating synergy. Drug Deliv Transl Res 2025:10.1007/s13346-025-01832-w. [PMID: 40113660 DOI: 10.1007/s13346-025-01832-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2025] [Indexed: 03/22/2025]
Abstract
This study evaluates the in vivo mucoadhesive properties of thiolated cyclodextrins (CDs) with varying S-protection using polyethylene glycol (PEG) of different chain lengths. Free thiol groups of thiolated β-CDs (CD-SH) were S-protected with 1 kDa and 2 kDa PEG bearing a terminal thiol group, leading to third-generation of thiolated CDs (CD-SS-PEG). The structure of these thiolated CDs was confirmed and characterized by FT-IR, 1 H NMR, and colorimetric assays. Thiolated and S-protected CDs were evaluated regarding viscosity, cellular uptake and, in vitro and in vivo mucoadhesion. The viscosity of CD-SH, CD-SS-PEG 1 kDa, and CD-SS-PEG 2 kDa mixtures with mucus increased 9-, 7-, and 5.5-fold, respectively, compared to unmodified CD within 3 h. Cellular uptake on Caco-2 cells was 1.75 times higher for highly thiolated CDs than for unmodified CD. In vitro residence time on porcine intestine was prolonged 7-, 8.4-, and 7.9-fold for CD-SH, CD-SS-PEG 1 kDa, and CD-SS-PEG 2 kDa, respectively. In vivo results indicated CD-SS-PEG 1 kDa had the highest potential. Our comprehensive in vitro, ex vivo, and in vivo ffindings demonstrate that CD-SS-PEG 1 kDa is a highly promising candidate for mucoadhesive drug delivery systems.
Collapse
Affiliation(s)
- Soheil Haddadzadegan
- ThioMatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, Innsbruck, 6020, Austria
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Ahmad Saleh
- Department of Pharmacy, Universitas Mandala Waluya, Kendari, Southeast Sulawesi, 93231, Republic of Indonesia
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Florina Veider
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Patrick Knoll
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Flavia Laffleur
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Gergely Kali
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria.
| |
Collapse
|
5
|
Arshad S, Raza SA, Alamgeer, Bukhari SNA, Alotaibi NF, Ahmad N, Irfan HM, Mahmood A, Asim MH. Microwave-assisted, sulfhydryl-modified β-cyclodextrin-silymarin inclusion complex: A diverse approach to improve oral drug bioavailability via enhanced mucoadhesion and permeation. Carbohydr Polym 2025; 348:122880. [PMID: 39567122 DOI: 10.1016/j.carbpol.2024.122880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024]
Abstract
The current study aimed to generate a sulfhydryl-modified β-cyclodextrin-silymarin complex (sulfhydryl-modified β-CD-SMN complex) and to evaluate the enchantment in solubility, permeability, and bioavailability of a model BCS Class IV drug silymarin (SMN). For this purpose, sulfhydryl-modified β-CD was synthesized by replacing all primary and secondary -OH groups at the β-CD backbone with sulfhydryl groups via a novel microwave-assisted technique. Afterward, sulfhydryl-modified β-CD was complexed with silymarin and characterized by FTIR and 1H NMR spectroscopy. Moreover, no. of sulfhydryl groups and their oxidative stability, solubility, safety, mucoadhesion, release, diffusion, and rheological studies were performed. Furthermore, in-vivo studies were conducted to confirm enhanced pharmacokinetic properties of silymarin. Sulfhydryl-modified β-CD showed 8291 ± 418 μmol/g sulfhydryl groups that were prone to oxidation at pH ≥ 5, however, most of the sulfhydryl groups were found stable at pH 4 having a pKa value of 8.3. Modified β-CD oligomer showed improved solubility of SMN, significantly enhanced drug transport across goat intestinal mucosa, 78-fold improved mucoadhesion, improved drug dissolution and 4.4-fold enhanced dynamic viscosity. No toxic effects were reported to Caco-2 cells at 0.5% (m/v) concentration of sulfhydryl-modified β-CD for 24 h. The apparent permeability coefficient (Papp) of SMN was 6.9-fold enhanced on goat intestinal mucosa. Moreover, in-vivo studies confirmed a significantly enhanced oral bioavailability of SMN due to combination with sulfhydryl-modified β-CD. Based on these findings, the sulfhydryl-modified β-CD-silymarin inclusion complex can be a promising technique to enhance the bioavailability of BCS Class IV drugs via enhanced solubility, mucoadhesion, and permeability triple action.
Collapse
Affiliation(s)
- Shumaila Arshad
- ILM College of Pharmaceutical Sciences & Sargodha College of Medical Sciences, 40100 Sargodha, Pakistan
| | - Syed Atif Raza
- Punjab University College of Pharmacy, University of the Punjab, 54000 Lahore, Pakistan
| | - Alamgeer
- Punjab University College of Pharmacy, University of the Punjab, 54000 Lahore, Pakistan
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia.
| | - Nasser F Alotaibi
- Chemistry Department, College of Science, Jouf University, Sakaka 72388, Saudi Arabia
| | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| | | | - Arshad Mahmood
- College of Pharmacy, Al Ain University, 112612 Abu Dhabi, United Arab Emirates
| | | |
Collapse
|
6
|
Sanchez Armengol E, Sánchez Soler LA, Valverde Offermann N, Laffleur F. Polymer powerhouse: Methyl methacrylate - A breakthrough blend for superior adhesion to gingiva. Dent Mater 2024; 40:2101-2113. [PMID: 39424527 DOI: 10.1016/j.dental.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/01/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
The goal of this study was to develop a new poly(methyl methacrylate) (PMMA)-based conjugate with enhanced mucoadhesive features for gingiva. Five MMA-based conjugates with varying amounts of hydroxyethyl maleimide (HEM) and poly(ethylene glycol) (PEG) were synthesized and characterized using infrared spectroscopy and proton nuclear magnetic resonance. Quantification of attached HEM and PEG was performed using assay kits and established protocols. Mucoadhesiveness was tested through rheological measurements, retention time, and tensile strength studies. Results showed successful unification of MMA with HEM and PEG, with varying degrees of modification and no toxic effects. Dynamic viscosity was enhanced up to 13-fold for MMA-100Mal, decreasing incrementally for MMA-75Mal, MMA-50Mal, MMA-25Mal, and MMA-0Mal. Retention time improved up to 120-fold for MMA-100Mal, decreasing to 37.5-fold for MMA-0Mal. Mucoadhesiveness followed the order: MMA-100Mal > MMA-75Mal > MMA-50Mal > MMA-25Mal > MMA-0Mal. In conclusion, the novel modification of MMA with increased mucoadhesive features to buccal gingiva suggests its potential as a long-term total denture base material, paving the way for more patient-friendly prostheses.
Collapse
Affiliation(s)
- Eva Sanchez Armengol
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Luis Alberto Sánchez Soler
- Faculty of Medicine and Health Sciences, Department of Odontostomatology, University of Barcelona, Barcelona, Spain
| | - Noah Valverde Offermann
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Flavia Laffleur
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
7
|
Sepúlveda-Córdova A, Fernández-Martínez T, Campos-Requena VH. Synthesis of thiomer/nanoclay nanocomposites as a potential drug carrier: Evaluation of mucoadhesive and controlled release properties. J Pharm Sci 2024; 113:3323-3331. [PMID: 39216537 DOI: 10.1016/j.xphs.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Novel thiomer/nanoclay nanocomposites based on a thiomer and montmorillonite (MMT) were prepared in order to obtain a mucoadhesive material with controlled release properties for its potential use as drug carrier. The thiomer was synthesized by immobilization of L-cysteine in alginate mediated by carbodiimide reaction and further characterized by FT-IR and Ellman's reaction. Nanocomposites with growing concentrations of thiomer and MMT were prepared and analyzed by XRD, TGA and TEM. Rheological behavior of nanocomposite in contact with mucin and intestinal mucus were studied as in vitro and in situ mucoadhesion approach, showing until ∼10-fold increasing in the complex viscosity and ∼27-fold in elastic modulus when the amount of thiomer is increased. Higuchi and Korsmeyer-Peppas kinetic models were evaluated in order to study the release of deltamethrin from nanocomposite films. Release profiles showed a retard in the migration of the drug influenced by the amount of MMT (P < 0.05). Diffusion coefficient (D) showed a significant decrease (P < 0.0001) when concentration of MMT is increased reaching D = 4.18 × 10-7 m2 h-1, which resulted ∼7-fold lower in comparison with formulation without MMT. This hybrid nanocomposite can be projected as a potential mucoadhesive drug carrier with controlled release properties.
Collapse
Affiliation(s)
| | - Tomás Fernández-Martínez
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Víctor H Campos-Requena
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
8
|
Veider F, Haddadzadegan S, Sanchez Armengol E, Laffleur F, Kali G, Bernkop-Schnürch A. Inhibition of P-glycoprotein-mediated efflux by thiolated cyclodextrins. Carbohydr Polym 2024; 327:121648. [PMID: 38171673 DOI: 10.1016/j.carbpol.2023.121648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024]
Abstract
Overcoming P-glycoprotein (P-gp)-mediated efflux poses a significant challenge for the pharmaceutical industry. This study investigates the potential of thiolated β-cyclodextrins (β-CD-SHs) as inhibitors of P-gp-mediated efflux in Caco-2 cells. Through a series of transport assays, intracellular accumulation, and efflux of the P-gp substrates Rhodamine 123 (Rh123) and Calcein-AM with and without co-administration of β-CD-SHs were assessed. The results revealed that the cellular uptake of Rh123 and Calcein-AM were enhanced up to 7- and 3-fold, compared to the control, respectively. In efflux studies an up to 2.5-fold reduction of the Rh123 efflux was reached compared the control, indicating a substantial decrease of Rh123 efflux by β-CD-SHs. Furthermore, it was observed that β-CD-SHs led to a decrease in the reactivity of fluorescence-labeled anti-P-gp, suggesting additional effects on the conformation of P-gp. Overall, this study demonstrates the potential of β-CD-SHs as effective modulator of P-gp-mediated drug efflux in Caco-2 cells.
Collapse
Affiliation(s)
- Florina Veider
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Soheil Haddadzadegan
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Eva Sanchez Armengol
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Flavia Laffleur
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Gergely Kali
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
9
|
Kali G, Taha AMM, Campanella E, Truszkowska M, Haddadzadegan S, Denora N, Bernkop-Schnürch A. Enhanced Mucoadhesion of Thiolated β-Cyclodextrin by S-Protection with 2-Mercaptoethanesulfonic Acid. ACS OMEGA 2024; 9:5819-5828. [PMID: 38343993 PMCID: PMC10851230 DOI: 10.1021/acsomega.3c08836] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 04/19/2025]
Abstract
This study aimed at designing an S-protected thiolated β-cyclodextrin (β-CD) exhibiting enhanced mucoadhesive properties. The native β-CD was thiolated with phosphorus pentasulfide resulting in a thiolated β-CD (β-CD-SH) and subsequently S-protected with 2-mercaptoethanesulfonate (MESNA) to form β-CD-SS-MESNA. The structure of the novel excipient was confirmed by 1H NMR and Fourier-transform infrared spectroscopy. The sulfhydryl content of β-CD-SH, determined by Ellman's test, was 2281.00 ± 147 μmol/g, and it was decreased to 45.93 ± 19.40 μmol/g by S-protection. Due to thiolation and S-protection, the viscosity of the mixture of mucus with β-CD-SH and β-CD-SS-MESNA increased 1.8 and 4.1-fold, compared to native β-CD, respectively. The unprotected β-CD-SH diffused to a lesser extent into the mucus than native β-CD, while S-protected β-CD-SS-MESNA showed the highest mucodiffusion among the applied CDs. A 1.5- and 3.0-fold higher cellular uptake of β-CD-SH and β-CD-SS-MESNA, compared to the native one, was established on Caco-2 cell line by flow cytometry, respectively, causing slightly decreased cell viability. On account of the enhanced mucoadhesion, this higher cellular uptake does not affect the application potential of β-CD-SS-MESNA as an oral drug delivery system since the carrier remains in the mucus and does not reach the underlying epithelial layer. According to these results, the S-protection of β-CD-SH with MESNA promotes improved mucodiffusion, strong mucoadhesion, and prolonged mucosal residence time.
Collapse
Affiliation(s)
- Gergely Kali
- Center
for Chemistry and Biomedicine, Department of Pharmaceutical Technology,
Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Ali Magdi Mahmoud
Mahmoud Taha
- Center
for Chemistry and Biomedicine, Department of Pharmaceutical Technology,
Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Emiliano Campanella
- Center
for Chemistry and Biomedicine, Department of Pharmaceutical Technology,
Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
- Department
of Pharmacy, University of Bari Aldo Moro, Piazza Cesare Battisti, I-70121 Bari, Italy
| | - Martyna Truszkowska
- Center
for Chemistry and Biomedicine, Department of Pharmaceutical Technology,
Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Soheil Haddadzadegan
- Center
for Chemistry and Biomedicine, Department of Pharmaceutical Technology,
Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Nunzio Denora
- Department
of Pharmacy, University of Bari Aldo Moro, Piazza Cesare Battisti, I-70121 Bari, Italy
| | - Andreas Bernkop-Schnürch
- Center
for Chemistry and Biomedicine, Department of Pharmaceutical Technology,
Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
10
|
To D, Kali G, Haddadzadegan S, Jörgensen AM, Nigl K, Ricci F, Bernkop-Schnürch A. Power-Up for Mucoadhesiveness: Two Generations of Thiolated Surfactants for Enhanced Sticky Nanoemulsions. ACS Biomater Sci Eng 2023; 9:6797-6804. [PMID: 37996083 PMCID: PMC10716821 DOI: 10.1021/acsbiomaterials.3c01207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Nanoemulsions can be tuned toward enhanced gastro-intestinal retention time by incorporating thiolated surfactants into their surface. Tailoring the chemical reactivity of the thiol headgroup has major influence on mucoadhesive features of the nanoemulsion. Two generations of thiolated surfactants were synthetically derived from PEG-40-stearate featuring either a free thiol group or an S-protected thiol group. The surfactants were characterized regarding critical micelle concentration (CMC), hemolytic activity, and cytotoxicity. Subsequently, they were incorporated into nanoemulsions and the resulting nanoemulsions were characterized regarding particle size, polydispersity index (PDI), zeta potential, and time-dependent stability. Afterward, mucosal interactions as well as mucoadhesion on porcine intestinal mucosa were investigated. Successful synthesis of Cysteine-PEG-40-stearate (CYS-PEG-40-stearate) and MNA-Cysteine-PEG-40-stearate (MNA-CYS-PEG-40-stearate) was confirmed by 1H NMR spectroscopy. Both chemical modifications led to slightly elevated CMC values while preserving low cytotoxicity and hemotoxicity. Incorporation into nanoemulsions had minor influence on overall physical particle characteristics, while interactions with mucus and mucoadhesiveness of the nanoemulsions were drastically improved resulting in the rank order PEG-40-stearate < CYS-PEG-40-stearate < MNA-CYS-PEG-40-stearate. Accordingly, thiolated surfactants, especially S-protected derivatives, are versatile tools to generate highly mucoadhesive nanoemulsions.
Collapse
Affiliation(s)
- Dennis To
- Center
for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Gergely Kali
- Center
for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Soheil Haddadzadegan
- Center
for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Arne Matteo Jörgensen
- Center
for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Katharina Nigl
- Center
for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Fabrizio Ricci
- Thiomatrix
Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center
for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
11
|
Beltran O, Luna M, Gastelum M, Costa-Santos A, Cambón A, Taboada P, López-Mata MA, Topete A, Juarez J. Novel Gold Nanorods@Thiolated Pectin on the Killing of HeLa Cells by Photothermal Ablation. Pharmaceutics 2023; 15:2571. [PMID: 38004550 PMCID: PMC10675277 DOI: 10.3390/pharmaceutics15112571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Gold nanorods (AuNRs) have attracted attention in the field of biomedicine, particularly for their potential as photothermal agents capable of killing tumor cells by photothermic ablation. In this study, the synthesis of novel AuNRs stabilized with thiolated pectin (AuNR@SH-PEC) is reported. To achieve this, thiolated pectin (SH-PEC) was obtained by chemically binding cysteamine motifs to the pectin backbone. The success of the reaction was ascertained using FTIR-ATR. Subsequently, the SH-PEC was used to coat and stabilize the surface of AuNRs (AuNR@SH-PEC). In this context, different concentrations of SH-PEC (0.25, 0.50, 1.0, 2.0, 4.0, and 8.0 mg/mL) were added to 0.50 mL of AuNRs suspended in CTAB, aiming to determine the experimental conditions under which AuNR@SH-PEC maintains stability. The results show that SH-PEC effectively replaced the CTAB adsorbed on the surface of AuNRs, enhancing the stability of AuNRs without affecting their optical properties. Additionally, scanning electron and atomic force microscopy confirmed that SH-PEC is adsorbed into the surface of the AuNRs. Importantly, the dimension size (60 × 15 nm) and the aspect ratio (4:1) remained consistent with those of AuNRs stabilized with CTAB. Then, the photothermal properties of gold nanorods were evaluated by irradiating the aqueous suspension of AuNR@SH-PEC with a CW laser (808 nm, 1 W). These results showed that photothermal conversion efficiency is similar to the photothermal conversion observed for AuNR-CTAB. Lastly, the cell viability assays confirmed that the SH-PEC coating enhanced the biocompatibility of AuNR@SH-PEC. Most important, the viability cell assays subjected to laser irradiation in the presence of AuNR@SH-PEC showed a decrease in the cell viability relative to the non-irradiated cells. These results suggest that AuNRs stabilized with thiolated pectin can potentially be exploited in the implementation of photothermal therapy.
Collapse
Affiliation(s)
- Osvaldo Beltran
- Posgrado en Nanotecnología, Departamento de Física, Universidad de Sonora, Unidad Centro, Hermosillo 83000, Sonora, Mexico; (O.B.); (M.L.); (M.G.)
| | - Mariangel Luna
- Posgrado en Nanotecnología, Departamento de Física, Universidad de Sonora, Unidad Centro, Hermosillo 83000, Sonora, Mexico; (O.B.); (M.L.); (M.G.)
| | - Marisol Gastelum
- Posgrado en Nanotecnología, Departamento de Física, Universidad de Sonora, Unidad Centro, Hermosillo 83000, Sonora, Mexico; (O.B.); (M.L.); (M.G.)
| | - Alba Costa-Santos
- Grupo de Física de Coloides y Polímeros, Área de Materia Condensada, Departamento de Física de Partículas, Facultad de Física, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.-S.); (A.C.); (P.T.)
- Instituto de Materiales (IMATUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Adriana Cambón
- Grupo de Física de Coloides y Polímeros, Área de Materia Condensada, Departamento de Física de Partículas, Facultad de Física, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.-S.); (A.C.); (P.T.)
- Instituto de Materiales (IMATUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo Taboada
- Grupo de Física de Coloides y Polímeros, Área de Materia Condensada, Departamento de Física de Partículas, Facultad de Física, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.-S.); (A.C.); (P.T.)
- Instituto de Materiales (IMATUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Marco A. López-Mata
- Departamento de Ciencias de la Salud, Universidad de Sonora, Campus Cajeme, Blvd. Bordo Nuevo s/n, Antiguo Providencia, Ciudad Obregón 85040, Sonora, Mexico;
| | - Antonio Topete
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico;
| | - Josue Juarez
- Posgrado en Nanotecnología, Departamento de Física, Universidad de Sonora, Unidad Centro, Hermosillo 83000, Sonora, Mexico; (O.B.); (M.L.); (M.G.)
- Departamento de Física, Universidad de Sonora, Unidad Centro, Hermosillo 83000, Sonora, Mexico
| |
Collapse
|
12
|
Torlopov MA, Martakov IS, Mikhaylov VI, Cherednichenko KA, Sitnikov PА. Synthesis and properties of thiol-modified CNC via surface tosylation. Carbohydr Polym 2023; 319:121169. [PMID: 37567709 DOI: 10.1016/j.carbpol.2023.121169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 08/13/2023]
Abstract
SH-containing polymers and nanoparticles are a significant direction in the creation of novel materials. The aim of this work is the synthesis of cellulose nanocrystals (CNC) with a surface modified by tosyl functions (CNC-Ts) and their further modification into SH-containing nanocrystals (CNC-SH). CNC-Ts were synthesized in an aqueous-organic emulsion from never-dried particles, while maintaining the size and supramolecular structure of CNC; the content of Ts-functions is up to 2.5 mmol·g-1. Structure of the derivatives was analyzed by TEM, XRD, CP/MAS 13C NMR and FTIR spectroscopies. Nucleophilic substitution and hydrolysis of the obtained thioisouronium salts leads to the production of CNC-SH. To quantify SH-groups we used elemental analysis, potentiometric titration and Folin-Ciocalteu and Ellman's reagents. It is shown that SH-groups on the surface are partially oxidized and are involved in a dense network of hydrogen bonds. Rheological properties of CNC-SH hydrosols are close to those of CNC, addition of H2O2 at acidic pH leads to an increase in viscosity of the system; H2O2 added at neutral pH causes opposite effect - viscosity decreases. CNC-SH have a high capacity for sorption of Cr(VI) in acidic environments and exhibit photoreductive properties under UV irradiation.
Collapse
Affiliation(s)
- Mikhail A Torlopov
- Institute of Chemistry of Federal Research Centre "Komi Science Centre, the Ural Branch, Russian Academy of Sciences", 167982, 48 Pervomayskaya st., Syktyvkar, Russian Federation
| | - Ilia S Martakov
- Institute of Chemistry of Federal Research Centre "Komi Science Centre, the Ural Branch, Russian Academy of Sciences", 167982, 48 Pervomayskaya st., Syktyvkar, Russian Federation.
| | - Vasily I Mikhaylov
- Institute of Chemistry of Federal Research Centre "Komi Science Centre, the Ural Branch, Russian Academy of Sciences", 167982, 48 Pervomayskaya st., Syktyvkar, Russian Federation
| | | | - Petr А Sitnikov
- Institute of Chemistry of Federal Research Centre "Komi Science Centre, the Ural Branch, Russian Academy of Sciences", 167982, 48 Pervomayskaya st., Syktyvkar, Russian Federation
| |
Collapse
|
13
|
Kali G, Fürst A, Efiana NA, Dizdarević A, Bernkop-Schnürch A. Intraoral Drug Delivery: Highly Thiolated κ-Carrageenan as Mucoadhesive Excipient. Pharmaceutics 2023; 15:1993. [PMID: 37514179 PMCID: PMC10384811 DOI: 10.3390/pharmaceutics15071993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
AIM This study aims to design a novel thiolated κ-carrageenan (κ-CA-SH) and evaluate its potential as an excipient for the design of mucoadhesive drug delivery systems. METHODS Native κ-carrageenan (κ-CA) was thiolated with phosphorous pentasulfide in sulfolane and characterized via 1H NMR, FTIR, as well as Ellman's test. Cytotoxicity was assessed via resazurin assay. In vitro release of the model drug, benzydamine hydrochloride, was determined. Tensile and mucosal residence time studies were performed on buccal and small intestinal mucosa. Mucoadhesive features were investigated via rheological studies with freshly isolated porcine mucus. RESULTS Thiolated κ-CA (κ-CA-SH) with 1213.88 ± 52 µmol/g thiol groups showed no cytotoxicity at a concentration of 1% (m/v) and low cytotoxicity up to 2% (m/v). Benzydamine hydrochloride showed slow release in solution for both polymers. Tensile studies on buccal and intestinal mucosa showed an up to 2.7-fold and 7.7-fold enhancement in the maximum detachment force (MDF) and total work of adhesion (TWA) of κ-CA-SH vs. κ-CA, respectively. The κ-CA-SH exhibited an up to 4.4-fold improved dynamic viscosity with mucus and significantly prolonged residence time on mucosa compared to native κ-CA. CONCLUSION Since highly thiolated κ-CA shows a slow release of positively charged active pharmaceutical ingredients and enhanced mucoadhesive properties, it might be a promising excipient for local drug delivery in the oral cavity.
Collapse
Affiliation(s)
- Gergely Kali
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andrea Fürst
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Nuri Ari Efiana
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Aida Dizdarević
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
14
|
Haddadzadegan S, Knoll P, Wibel R, Kali G, Bernkop-Schünrch A. Three generations of thiolated cyclodextrins: A direct comparison of their mucus permeating and mucoadhesive properties. Acta Biomater 2023:S1742-7061(23)00315-X. [PMID: 37271247 DOI: 10.1016/j.actbio.2023.05.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
AIM This study aims to compare the mucus permeating and mucoadhesive properties of three generations of thiolated cyclodextrins (CDs). METHODS Free thiol groups of thiolated γ-CDs (CD-SH) were S-protected with 2-mercaptonicotinic acid (MNA), leading to a second generation of thiolated CDs (CD-SS-MNA) and with 2 kDa polyethylene glycol (PEG) bearing a terminal thiol group leading to a third generation of thiolated CDs (CD-SS-PEG). The structure of these thiolated CDs was confirmed and characterized by FT-IR, 1H NMR and colorimetric assays. Thiolated CDs were evaluated regarding viscosity, mucus diffusion, and mucoadhesion. RESULTS The viscosity of the mixture of CD-SH, CD-SS-MNA, or CD-SS-PEG with mucus increased up to 11-, 16-, and 14.1-fold compared to unmodified CD within 3 hours, respectively. Mucus diffusion increased in the following rank order: unprotected CD-SH < CD-SS-MNA < CD-SS-PEG. The residence time of CD-SH, CD-SS-MNA, and CD-SS-PEG on porcine intestine was up to 9.6-, 12.55-, and 11.2-fold prolonged compared to native CD, respectively. CONCLUSION According to these results, S-protection of thiolated CDs can be a promising approach to improve their mucus permeating and mucoadhesive properties. STATEMENT OF SIGNIFICANCE Three generations of thiolated cyclodextrins (CDs) with different types of thiol ligands have been synthesized to improve mucus interaction. 1st generation of thiolated CDs was synthesized by converting hydroxyl groups into thiols by reaction with Thiourea. For 2nd generation, free thiol groups were S-protected by reaction with 2-mercaptonicotinic acid (MNA), resulting in high reactive disulfide bonds. For 3rd generation, terminally thiolated short PEG chains (2 kDa) were used for S-protection of thiolated CDs. Mucus penetrating properties were found to be increased as follows: 1st generation < 2nd generation < 3rd generation. Furthermore, mucoadhesive properties were improved in the following rank order: 1st generation < 3rd generation < 2nd generation. This study suggests that the S-protection of thiolated CDs can enhance mucus penetrating and mucoadhesive properties.
Collapse
Affiliation(s)
- Soheil Haddadzadegan
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Patrick Knoll
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Richard Wibel
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Gergely Kali
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Andreas Bernkop-Schünrch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
15
|
Lipid-based nanoparticles: Enhanced cellular uptake via surface thiolation. Int J Pharm 2023; 635:122753. [PMID: 36863545 DOI: 10.1016/j.ijpharm.2023.122753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 03/04/2023]
Abstract
The aim of this study was to evaluate the uptake mechanism of thiolated nanostructured lipid carriers (NLCs). NLCs were decorated with a short-chain polyoxyethylene(10)stearyl ether with a terminal thiol group (NLCs-PEG10-SH) or without (NLCs-PEG10-OH) as well as with a long-chain polyoxyethylene(100)stearyl ether with thiolation (NLCs-PEG100-SH) or without (NLCs-PEG100-OH). NLCs were evaluated for size, polydispersity index (PDI), surface morphology, zeta potential and storage stability over six months. Cytotoxicity, adhesion to the cell surface and internalization of these NLCs in increasing concentrations were evaluated on Caco-2 cells. The influence of NLCs on the paracellular permeability of lucifer yellow was determined. Furthermore, cellular uptake was examined with and without various endocytosis inhibitors as well as reducing and oxidizing agents. NLCs were obtained in a size ranging from 164 to 190 nm, a PDI of 0.2, a negative zeta potential < -33 mV and stability over six months. Cytotoxicity was shown to be concentration dependent and to be lower for NLCs with shorter PEG chains. Permeation of lucifer yellow was 2-fold increased by NLCs-PEG10-SH. All NLCs displayed concentration dependent adhesion to the cell surface and internalization, which was in particular 9.5-fold higher for NLCs-PEG10-SH compared to NLCs-PEG10-OH. Short PEG chain NLCs and especially thiolated short PEG chain NLCs showed higher cellular uptake than NLCs with longer PEG chain. Cellular uptake of all NLCs was mainly clathrin-mediated endocytosis. Thiolated NLCs showed also caveolae-dependent and clathrin- and caveolae-independent uptake. Macropinocytosis was involved in NLCs with long PEG chains. NLCs-PEG10-SH indicated thiol-dependent uptake, which was influenced by reducing and oxidizing agents. Due to thiol groups on the surface of NLCs their cellular uptake and paracellular permeation enhancing properties can be substantially improved.
Collapse
|
16
|
Spleis H, Sandmeier M, Claus V, Bernkop-Schnürch A. Surface design of nanocarriers: Key to more efficient oral drug delivery systems. Adv Colloid Interface Sci 2023; 313:102848. [PMID: 36780780 DOI: 10.1016/j.cis.2023.102848] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
As nanocarriers (NCs) can improve the solubility of drugs, prevent their degradation by gastrointestinal (GI) enzymes and promote their transport across the mucus gel layer and absorption membrane, the oral bioavailability of these drugs can be substantially enhanced. All these properties of NCs including self-emulsifying drug delivery systems (SEDDS), solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), liposomes, polymeric nanoparticles, inorganic nanoparticles and polymeric micelles depend mainly on their surface chemistry. In particular, interaction with food, digestive enzymes, bile salts and electrolytes, diffusion behaviour across the mucus gel layer and fate on the absorption membrane are determined by their surface. Bioinert surfaces limiting interactions with gastrointestinal fluid and content as well as with mucus, adhesive surfaces providing an intimate contact with the GI mucosa and absorption enhancing surfaces can be designed. Furthermore, charge converting surfaces shifting their zeta potential from negative to positive directly at the absorption membrane and surfaces providing a targeted drug release are advantageous. In addition to these passive surfaces, even active surfaces cleaving mucus glycoproteins on their way through the mucus gel layer can be created. Within this review, we provide an overview on these different surfaces and discuss their impact on the performance of NCs in the GI tract.
Collapse
Affiliation(s)
- Helen Spleis
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria; Thiomatrix Forschungs und Beratungs GmbH, Trientlgasse 65, Innsbruck 6020, Austria
| | - Matthias Sandmeier
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria; Thiomatrix Forschungs und Beratungs GmbH, Trientlgasse 65, Innsbruck 6020, Austria
| | - Victor Claus
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria; Thiomatrix Forschungs und Beratungs GmbH, Trientlgasse 65, Innsbruck 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria.
| |
Collapse
|
17
|
Kulkarni R, Fanse S, Burgess DJ. Mucoadhesive drug delivery systems: a promising non-invasive approach to bioavailability enhancement. Part I: biophysical considerations. Expert Opin Drug Deliv 2023; 20:395-412. [PMID: 36803111 DOI: 10.1080/17425247.2023.2181331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
INTRODUCTION Mucoadhesive drug delivery systems (MDDS) are specifically designed to interact and bind to the mucosal layer for localized, prolonged, and/or targeted drug delivery. Over the past 4 decades, different sites have been explored for mucoadhesion including the nasal, oral, and vaginal cavities, the gastrointestinal tract and ocular tissues. AREAS COVERED The present review aims to provide a comprehensive understanding of different aspects of MDDS development. Part I focuses on the anatomical and biological aspects of mucoadhesion, which include a detailed elucidation of the structure and anatomy of the mucosa, the properties of mucin, the different theories of mucoadhesion and evaluation techniques. EXPERT OPINION The mucosal layer presents a unique opportunity for effective localization as well as systemic drug delivery via MDDS. Formulation of MDDS requires a thorough understanding of the anatomy of mucus tissue, the rate of mucus secretion and turnover, and the physicochemical properties of mucus. Further, the moisture content and the hydration of polymers are crucial for interaction with mucus. A confluence of different theories used to explain the mechanism of mucoadhesion is useful for understanding the mucoadhesion of different MDDS and their evaluation is subject to factors, such as the site of administration, type of dosage form, and duration of action. [Figure: see text].
Collapse
Affiliation(s)
- Radha Kulkarni
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| | - Suraj Fanse
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| | - Diane J Burgess
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
18
|
Zhang P, Wu G, Zhang D, Lai WF. Mechanisms and strategies to enhance penetration during intravesical drug therapy for bladder cancer. J Control Release 2023; 354:69-79. [PMID: 36603810 DOI: 10.1016/j.jconrel.2023.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
Bladder cancer (BCa) is one of the most prevalent cancers worldwide. The effectiveness of intravesical therapy for bladder cancer, however, is limited due to the short dwell time and the presence of permeation barriers. Considering the histopathological features of BCa, the permeation barriers for drugs to transport across consist of a mucus layer and a nether tumor physiological barrier. Mucoadhesive delivery systems or mucus-penetrating delivery systems are developed to enhance their retention in or penetration across the mucus layer, but delivery systems that are capable of mucoadhesion-to-mucopenetration transition are more efficient to deliver drugs across the mucus layer. For the tumor physiological barrier, delivery systems mainly rely on four types of penetration mechanisms to cross it. This review summarizes the classical and latest approaches to intravesical drug delivery systems to penetrate BCa.
Collapse
Affiliation(s)
- Pu Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Guoqing Wu
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Dahong Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| | - Wing-Fu Lai
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Department of Food Science and Nutrition, Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
19
|
Chitosan-maleic acid conjugate as potential excipient candidate for oral drug delivery? Future Med Chem 2023; 15:241-253. [PMID: 36876477 DOI: 10.4155/fmc-2022-0258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Aim: To develop and evaluate chitosan-maleic acid conjugate. Methods: Maleic anhydride was attached to chitosan backbone via amide bond formation resulting in chitosan-maleic acid. After characterization of the product via 1H nuclear magnetic resonance, attenuated total reflectance-Fourier transform IR spectroscopy and 2,4,6-trinitrobenzenesulfonic acid assay, examination of mucoadhesion assessment was carried out. Results: The conjugate presented 44.91% modification and no toxicity could be observed after 1 day of incubation. Mucoadhesive properties exhibited 40.97-fold, 13.31-fold and 9.07-fold increase in elastic modulus, dynamic viscosity and viscous modulus, respectively. Moreover, detachment time was increased in 44.44-fold. Conclusion: Chitosan-maleic acid demonstrated enhanced in mucoadhesive properties resulting in biocompatibility. Therefore, potent candidates as polymeric excipients for oral drug delivery could be developed over corresponding chitosan.
Collapse
|
20
|
Thiolated pectin-chitosan composites: Potential mucoadhesive drug delivery system with selective cytotoxicity towards colorectal cancer. Int J Biol Macromol 2023; 225:1-12. [PMID: 36481327 DOI: 10.1016/j.ijbiomac.2022.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Mucoadhesive drug delivery systems (DDS) may promote safer chemotherapy for colorectal cancer (CRC) by maximizing local drug distribution and residence time. Carbohydrate polymers, e.g. pectin (P) and chitosan (CS), are potential biomaterials for CRC-targeted DDS due to their gelling ability, mucoadhesive property, colonic digestibility, and anticancer activity. Polymer mucoadhesion is augmentable by thiolation, e.g. pectin to thiolated pectin (TP). Meanwhile, P-CS polyelectrolyte complex has been shown to improve structural stability. Herein, we fabricated, characterized, and evaluated 5-fluorouracil-loaded primary DDS combining TP and CS as a composite (TPCF) through triple crosslinking actions (calcium pectinate, polyelectrolyte complex, disulfide). Combination of these crosslinking yields superior mucoadhesion property relative to single- or dual-crosslinked counterparts, with comparable drug release profile and drug compatibility. PCF and TPCF exhibited targeted cytotoxicity towards HT29 CRC cells with milder cytotoxicity towards HEK293 normal cells. In conclusion, TP-CS composites are promising next-generation mucoadhesive and selectively cytotoxic biomaterials for CRC-targeted DDS.
Collapse
|
21
|
pH-responsive in situ gelling properties of thiolated citrus high-methoxyl pectin and its potential gel mechanism. Food Res Int 2023; 163:112220. [PMID: 36596149 DOI: 10.1016/j.foodres.2022.112220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
pH-responsive in situ gelling properties of thiolated citrus high-methoxyl pectin (TCHMP) were investigated in this study. The gelation capacity results revealed that the in situ gelation behavior of TCHMP only occurred when the pH value was higher than 6.25. The gel strength increased from 26.63 g to 42.77 g as the pH value increased from 7.4 to 8.9. Rheological measurements confirmed that the apparent viscosity and viscoelasticity of TCHMP were highly dependent on pH value and dialysis time. Compared with the control group, the apparent viscosity of TCHMP dialyzed in phosphate-buffered saline (PBS) of pH 8.9 for 180 min increased 695-fold. During the dialysis process of TCHMP at different pH values (7.4-8.9), the final thiol groups content decreased and the final disulfide bonds content increased with the increase in pH value. This illustrates that the mechanism of in situ gelation is mainly the oxidation of thiol-thiol groups to form disulfide bonds. These results can put forward new insights into the pH-responsive in situ gelling properties of TCHMP and provide a theoretical basis for the application of TCHMP in neutral and alkaline gel systems.
Collapse
|
22
|
Dubashynskaya NV, Skorik YA. Patches as Polymeric Systems for Improved Delivery of Topical Corticosteroids: Advances and Future Perspectives. Int J Mol Sci 2022; 23:12980. [PMID: 36361769 PMCID: PMC9657685 DOI: 10.3390/ijms232112980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 12/25/2023] Open
Abstract
Mucoadhesive polymer patches are a promising alternative for prolonged and controlled delivery of topical corticosteroids (CS) to improve their biopharmaceutical properties (mainly increasing local bioavailability and reducing systemic toxicity). The main biopharmaceutical advantages of patches compared to traditional oral dosage forms are their excellent bioadhesive properties and their increased drug residence time, modified and unidirectional drug release, improved local bioavailability and safety profile, additional pain receptor protection, and patient friendliness. This review describes the main approaches that can be used for the pharmaceutical R&D of oromucosal patches with improved physicochemical, mechanical, and pharmacological properties. The review mainly focuses on ways to increase the bioadhesion of oromucosal patches and to modify drug release, as well as ways to improve local bioavailability and safety by developing unidirectional -release poly-layer patches. Various techniques for obtaining patches and their influence on the structure and properties of the resulting dosage forms are also presented.
Collapse
Affiliation(s)
| | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia
| |
Collapse
|
23
|
Francesco Racaniello G, Knoll P, Matteo Jörgensen A, Arduino I, Laquintana V, Assunta Lopedota A, Bernkop-Schnürch A, Denora N. Thiolation of non-ionic surfactants for the development of lipid-based mucoadhesive drug delivery systems. Eur J Pharm Biopharm 2022; 179:95-104. [PMID: 36058444 DOI: 10.1016/j.ejpb.2022.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 11/28/2022]
Abstract
The aim of this study was to develop thiolated self-emulsifying drug delivery systems (SEDDS) and nanostructured lipid carriers (NLCs) with improved mucoadhesive properties. Two non-ionic surfactants bearing a short and long PEG chain, namely polyoxyethylene (10) stearyl ether (PSE10) and polyoxyethylene (100) stearyl ether (PSE100), were thiolated for the first time by substituting the terminal hydroxyl group with a thiol group. The synthesis was confirmed by FT-IR, NMR and Ellman's test. SEDDS and NLCs containing these thiolated compounds were investigated for size, polydispersity index (PDI) and ζ potential. Subsequently, mucus diffusion studies, rheological evaluations after mixing the nanocarriers with mucus and mucoadhesion studies on porcine intestinal mucosa were performed. All nanocarriers had a size less than 250 nm, a maximum PDI of 0.3 and a ζ potential < -9.0 mV. Mucus diffusion studies resulted in the rank order of increasing diffusivity: PSE10-SH < PSE100-SH < PSE10-OH < PSE100-OH for NLCs and PSE10-OH < PSE100-OH < PSE100-SH < PSE10-SH for SEDDS. The mucoadhesive properties and increase in viscosity of SEDDS and NLCs ranked: PSE100-OH < PSE10-OH < PSE100-SH < PSE10-SH. In addition, the short chain PSE10-SH showed higher mucus interactions than the long chain PSE100-SH for both SEDDS and NLCs. The thiolated PSE surfactants appeared to be promising excipients for the design of highly mucoadhesive drug delivery systems.
Collapse
Affiliation(s)
| | - Patrick Knoll
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Austria
| | - Arne Matteo Jörgensen
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Austria
| | - Ilaria Arduino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Italy
| | - Valentino Laquintana
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Italy
| | | | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Austria
| | - Nunzio Denora
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Italy.
| |
Collapse
|
24
|
Wibel R, Braun DE, Hämmerle L, Jörgensen AM, Knoll P, Salvenmoser W, Steinbring C, Bernkop-Schnürch A. In Vitro Investigation of Thiolated Chitosan Derivatives as Mucoadhesive Coating Materials for Solid Lipid Nanoparticles. Biomacromolecules 2021; 22:3980-3991. [PMID: 34459197 PMCID: PMC8441978 DOI: 10.1021/acs.biomac.1c00776] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, chitosan (CS) was thiolated by introducing l-cysteine via amide bond formation. Free thiol groups were protected with highly reactive 6-mercaptonicotinic acid (6-MNA) and less-reactive l-cysteine, respectively, via thiol/disulfide-exchange reactions. Unmodified CS, l-cysteine-modified thiolated CS (CS-Cys), 6-MNA-S-protected thiolated CS (CS-Cys-MNA), and l-cysteine-S-protected thiolated CS (CS-Cys-Cys) were applied as coating materials to solid lipid nanoparticles (SLN). The strength of mucus interaction followed the rank order plain < CS < CS-Cys-Cys < CS-Cys < CS-Cys-MNA, whereas mucus diffusion followed the rank order CS-Cys < CS-Cys-Cys < CS < CS-Cys-MNA < plain. In accordance with lower reactivity, CS-Cys-Cys-coated SLN were immobilized to a lower extent than CS-Cys-coated SLN, while CS-Cys-MNA-coated SLN dissociated from their coating material resulting in a similar diffusion behavior as plain SLN. Consequently, CS-Cys-Cys-coated SLN and CS-Cys-MNA-coated SLN showed the highest retention on porcine intestinal mucosa by enabling a synergism of efficient mucus diffusion and strong mucoadhesion.
Collapse
Affiliation(s)
- Richard Wibel
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Doris E Braun
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Laurenz Hämmerle
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Arne M Jörgensen
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Patrick Knoll
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Willi Salvenmoser
- Department of Zoology, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Christian Steinbring
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| |
Collapse
|