1
|
Wang Z, Zhang T, Tang M. Navigating nanotoxicity: Unraveling nanomaterial-induced effects via multi-omics integration. NANOIMPACT 2025; 38:100565. [PMID: 40383513 DOI: 10.1016/j.impact.2025.100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/14/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
The growing use of nanomaterials in industry and medicine raises significant concerns about their safety, particularly regarding their interactions with biological systems. Traditional toxicological methods, with limited throughput and mechanistic understanding, are increasingly being complemented by omics technologies. Genomics, transcriptomics, proteomics, and metabolomics provide comprehensive insights into the molecular mechanisms of nanomaterial toxicity and enable the identification of potential biomarkers. In addition, single-cell and spatial omics approaches are emerging as powerful tools to assess toxicity at the cellular and tissue levels, revealing heterogeneous responses and spatial distribution of nanomaterials. Despite their advantages, omics technologies face challenges in nanotoxicology, including large, complex data sets, integration difficulties, and a lack of standardized protocols. To address these challenges, we propose the development of new bioinformatics tools, multi-omics integration platforms, and standardized analysis processes to enhance research efficiency and accuracy. These efforts can provide a practical roadmap for integrating the application of omics technologies, including single-cell and spatial approaches, in the study of nanomaterial toxicity studies.
Collapse
Affiliation(s)
- Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China.
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
2
|
Wang Q, Zhang B, Wang Q, Yang Z, Guo Q, Wen G, Nie Y, Wang D. Green biomass carbon points with efficient broad-spectrum antibacterial activity and widespread application. Ann N Y Acad Sci 2025. [PMID: 40376964 DOI: 10.1111/nyas.15358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
With low toxicity and good biocompatibility, carbon dots (CDs) are widely used in the fields of biosensing and drug delivery. In recent years, they have demonstrated excellent antimicrobial properties, thus becoming another research hotspot in the antimicrobial field. However, most of the studies showed that CDs were effective in inhibiting Gram-positive bacteria but ineffective against Gram-negative bacteria. In this study, macadamia nutshell (MNS)-CDs were prepared from the hard shells of macadamia nuts by a one-step hydrothermal method, and their appearance, morphology, structural composition, antimicrobial properties, and toxicity were investigated. The results showed that the MNS-CDs were spherical particles with an average diameter of about 4.25 nm, with hydrophilic groups, a hemolysis rate of less than 2%, good biocompatibility, and excellent antimicrobial properties against both Gram-negative and Gram-positive bacteria. The antimicrobial mechanism of these materials was also investigated. The inhibition of Gram-negative bacteria by MNS-CDs was mainly due to electrostatic interactions, while the inhibition of Gram-positive bacteria was mainly based on activated oxygen sterilization. Furthermore, MNS-CDs achieved good antimicrobial effects when applied in the fields of water purification, plates, fabrics, and food packaging, indicating that the prospects of their broad application are good.
Collapse
Affiliation(s)
- Qing Wang
- Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Bin Zhang
- Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Qisheng Wang
- Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Zhengfang Yang
- Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Qianqian Guo
- Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Guanbin Wen
- Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Yanli Nie
- Yunnan Forestry and Grassland Technology Extension Station, Yunnan, China
| | - Dongquan Wang
- Zhenkang Miaoling Jinyuan Agricultural Technology Co., LTD., Yunnan, China
| |
Collapse
|
3
|
Petrov GV, Koldina AM, Ledenev OV, Tumasov VN, Nazarov AA, Syroeshkin AV. Nanoparticles and Nanomaterials: A Review from the Standpoint of Pharmacy and Medicine. Pharmaceutics 2025; 17:655. [PMID: 40430945 PMCID: PMC12114779 DOI: 10.3390/pharmaceutics17050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Nanoparticles (NPs) represent a unique class of structures in the modern world. In comparison to macro- and microparticles, NPs exhibit advantages due to their physicochemical properties. This has resulted in their extensive application not only in technical and engineering sciences, but also in pharmacy and medicine. A recent analysis of the scientific literature revealed that the number of articles related to the search term "nanoparticle drugs" has exceeded 65,000 in the last decade alone, according to PubMed. The growth of scientific publications on NPs and nanomaterials (NMs) in pharmacy demonstrates the rapidly developing interest of scientists in exploring alternative ways to deliver drugs, thereby improving their pharmacokinetic and pharmacodynamic properties, and the increased biocompatibility of many nanopharmaceuticals is a unique key to two mandatory pharmaceutical requirements-drug efficacy and safety. A comprehensive review of the literature indicates that the modern pharmaceutical industry is increasingly employing nanostructures. The exploration of their physicochemical properties with a subsequent modern approach to quality control remains the main task of modern pharmaceutical chemistry. The primary objective of this review is to provide a comprehensive overview of data on NPs, their physicochemical properties, and modern approaches to their synthesis, modification of their surface, and application in pharmacy.
Collapse
Affiliation(s)
- Gleb V. Petrov
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.M.K.); (A.V.S.)
| | - Alena M. Koldina
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.M.K.); (A.V.S.)
| | - Oleg V. Ledenev
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia;
| | - Vladimir N. Tumasov
- Department of Pharmaceutical Chemistry and Organization of Pharmaceutical Business, Faculty of Medicine, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia;
| | - Aleksandr A. Nazarov
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.M.K.); (A.V.S.)
| | - Anton V. Syroeshkin
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.M.K.); (A.V.S.)
| |
Collapse
|
4
|
Razavi ZS, Razavi FS, Alizadeh SS. Inorganic nanoparticles and blood-brain barrier modulation: Advancing targeted neurological therapies. Eur J Med Chem 2025; 287:117357. [PMID: 39947054 DOI: 10.1016/j.ejmech.2025.117357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/19/2025] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
The blood-brain barrier (BBB) is a protective barrier that complicates the treatment of neurological disorders. Pharmaceutical compounds encounter significant challenges in crossing the central nervous system (CNS). Nanoparticles (NPs) are promising candidates for treating neurological conditions as they help facilitate drug delivery. This review explores the diverse characteristics and mechanisms of inorganic NPs (INPs), including metal-based, ferric-oxide, and carbon-based nanoparticles, which facilitate their passage through the BBB. Emphasis is placed on the physicochemical properties of NPs such as size, shape, surface charge, and surface modifications and their role in enhancing drug delivery efficacy, reducing immune clearance, and improving BBB permeability. Specific synthesis approaches are demonstrated, with an emphasis on the influence of each one on NP property, biological activity and the capability of an NP for its intended application. As for the advances in the field, the review emphasizes those characterized the NP formulation and surface chemistry that conquered the BBB and tested the need for its alteration. Current findings indicate that NP therapy can in the future enable effective targeting of specific brain disorders and eventually evolve this drug delivery system, which would allow for lower doses with less side effects.
Collapse
Affiliation(s)
- Zahra Sadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran; Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| | - Fateme Sadat Razavi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | |
Collapse
|
5
|
Chen J, Li T, Lin C, Hou Y, Cheng S, Gao B. Green synthesis of red-emitting carbon dots for bioimaging, sensing, and antibacterial applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 328:125458. [PMID: 39579727 DOI: 10.1016/j.saa.2024.125458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
It is a highly desirable and formidable challenge to synthesize carbon dots with long-wavelength emission using green synthesis. In this work, we explored red-emitting carbon dots (rCDs) via a hydrothermal strategy and their multifunctional application for bioimaging in vivo/vitro, curcumin sensing, and antibacterial materials. As-prepared rCDs were water-soluble and monodispersed with an average diameter of 2.34 nm. Significantly, these rCDs exhibited low toxicity and outstanding biocompatibility, which was consistent with the excellent bioimaging performance in living cells, zebrafish, and nude mice, providing them a promising prospect for clinical applications. Meanwhile, the obtained rCDs were also used as a fluorescent probe for sensitive detection of curcumin in a wide linear range of 0.03-135.73 μM with a limit of detection of 29.37 nM. Furthermore, quaternized rCDs were designed and used as antibacterial material with minimum inhibitory concentrations against Staphylococcus aureus and Escherichia coli of 0.15 mg/mL and 0.5 mg/mL, respectively, which advanced the development of novel antibacterial agents and broadened the applications of red-emitting CDs. Therefore, this work provided multifunctional CDs with red emission for use in the fields of biological imaging, fluorescence sensing, and antibacterial materials.
Collapse
Affiliation(s)
- Jiao Chen
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Ting Li
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Chengzhang Lin
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Yongxing Hou
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Shuanghuai Cheng
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China.
| | - Bingmiao Gao
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China.
| |
Collapse
|
6
|
Cao X, Cheng J, Yang Y, Wang J, Wang Y. Arginine-derived carbon dots with antioxidant activity for treating aflatoxin B1-induced liver injury via Nrf2/Keap1 and NLRP3 pathways in mice. Life Sci 2025; 364:123430. [PMID: 39884343 DOI: 10.1016/j.lfs.2025.123430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/18/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Aflatoxin B1 (AFB1) is a prevalent contaminant in food and feed matrices, known for its hepatotoxic effects. Its metabolic breakdown generates reactive oxygen species (ROS), leading to oxidative stress and subsequent liver damage. Mitigating oxidative stress is, therefore, essential for ameliorating the hepatocellular damage and systemic toxicity caused by AFB1. Here, we synthesized arginine carbon dots (Arg-CDs) with robust antioxidant properties through a simple hydrothermal method using arginine and citric acid. Our investigation demonstrated that Arg-CDs effectively mitigate oxidative stress in nematodes. Furthermore, in murine models of AFB1-induced hepatic injury, Arg-CDs effectively restored liver function, as evidenced by the improvement in histopathological features and biochemical markers. Notably, Arg-CDs administration upregulated the transcriptional activity of nuclear factor erythroid 2-related factor 2 (Nrf2), along with its downstream antioxidant effectors and phase II detoxifying enzymes under AFB1 exposure. Moreover, Arg-CDs alleviated hepatic inflammatory injury by modulating the NLRP3/Caspase-1/GSDMD-mediated pyroptosis pathway. Arg-CDs also demonstrated therapeutic potential in enhancing intestinal barrier function in AFB1-exposed mice. Collectively, these findings highlight the potential of Arg-CDs as a novel and biocompatible therapeutic modality for alleviating AFB1-induced hepatic and intestinal damage.
Collapse
Affiliation(s)
- Xuejing Cao
- School of Life Sciences, Anhui University, Hefei, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China; Anhui Healcurer Heath Biotech Co., Ltd. - Anhui University Joint Postgraduate Training Base of Anhui Province, Hefei, China.
| | - Jiuxiang Cheng
- School of Life Sciences, Anhui University, Hefei, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Yongshou Yang
- School of Life Sciences, Anhui University, Hefei, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China; Anhui Healcurer Heath Biotech Co., Ltd. - Anhui University Joint Postgraduate Training Base of Anhui Province, Hefei, China.
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China; Anhui Healcurer Heath Biotech Co., Ltd. - Anhui University Joint Postgraduate Training Base of Anhui Province, Hefei, China.
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China; Anhui Healcurer Heath Biotech Co., Ltd. - Anhui University Joint Postgraduate Training Base of Anhui Province, Hefei, China.
| |
Collapse
|
7
|
Fang R, Yu N, Wang F, Xu X, Zhang J. Hemoadhican Fiber Composite with Carbon Dots for Treating Severe Hemorrhage and Infected Wounds. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9087-9102. [PMID: 39882714 DOI: 10.1021/acsami.4c20176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Uncontrolled bleeding and infection following trauma continue to pose significant clinical challenges. This study employs hemoadhican (HD) polysaccharide, known for its superior hemostatic properties, as the foundational material to synthesize antibacterial carbon dots (H-CDs) through a hydrothermal method at various temperatures. The H-CDs exhibiting optimal antimicrobial properties were identified via in vitro antimicrobial characterization. The selected H-CDs possess nanoscale dimensions and a positive surface charge. They contain aldehyde groups and generate reactive oxygen species, which effectively eliminate bacteria. Subsequently, H-CDs were integrated into HD fibers (CDs-HD fibers) using a wet-spinning technique. The water vapor transmission rate, blood contact angle, and in vitro antimicrobial efficacy were evaluated. In a rat model of severe femoral artery hemorrhage and a noncompressible hepatic hemorrhage model, CDs-HD fibers demonstrated superior hemostatic performance compared to the commercially available QuikClot Combat Gauze. Furthermore, in a rat model of mixed bacterial wound infection, CDs-HD fibers significantly enhanced epithelial tissue remodeling and collagen deposition. In vivo studies confirmed the excellent biocompatibility of CDs-HD fibers. These findings suggest that CDs-HD fibers hold promise as a potential dressing for managing severe bleeding and preventing wound infections.
Collapse
Affiliation(s)
- Rui Fang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, Jiangsu 210094, China
| | - Ning Yu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, Jiangsu 210094, China
| | - Fa Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, Jiangsu 210094, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, Jiangsu 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
8
|
Wang J, Tian N, Tian T, Xiao L, Zhou X, Liu G, Zhang Z, Zhao Y, Guo J, Lin Q, Jiang Y. Low toxicity ginsenoside Rg1-carbon nanodots as a potential therapeutic agent for human non-small cell lung cancer. Colloids Surf B Biointerfaces 2025; 246:114392. [PMID: 39579497 DOI: 10.1016/j.colsurfb.2024.114392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
Here ginsenoside Rg1 was used to synthesise Rg1 carbon nanodots via a one-step hydrothermal method. The surface of the Rg1 carbon nanodots is rich in hydrophilic functional groups with good water solubility and biocompatibility. The Rg1 carbon nanodots exhibited a high inhibitory effect on the proliferation, migration, and proapoptotic ability of non-small cell lung cancer A549 cells. The changes in the levels of ROS, Ca2+, and MMP in A549 cells after the administration of Rg1 carbon nanodots were evaluated and further correlated with relevant proteins in the caspase apoptotic pathway. Proteomic screening revealed that the Rg1 carbon nanodots could regulate A549 cell apoptosis by activating the expression of MAPK pathway-related proteins. In the in vivo experiment, the therapeutic efficacy of the Rg1 carbon nanodots in inhibiting tumour growth was much higher than that of commonly used chemotherapy drugs, with negligible toxicity and side effects. Immunohistochemical staining showed that the expression of caspase- and MAPK pathway-related proteins in mouse tumour tissues was consistent with that at the cellular level. The results suggest that Rg1 carbon nanodots can promote tumour apoptosis and represent a potential therapeutic agent for human non-small-cell lung cancer.
Collapse
Affiliation(s)
- Jifeng Wang
- Jilin Ginseng Academy, Institute of Traditional Chinese Medicine, Hospital of Affiliated Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China; Department of Chemistry, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, PR China
| | - Ning Tian
- Jilin Ginseng Academy, Institute of Traditional Chinese Medicine, Hospital of Affiliated Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Tenghui Tian
- Jilin Ginseng Academy, Institute of Traditional Chinese Medicine, Hospital of Affiliated Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Lizhi Xiao
- Jilin Ginseng Academy, Institute of Traditional Chinese Medicine, Hospital of Affiliated Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Xuechun Zhou
- Jilin Ginseng Academy, Institute of Traditional Chinese Medicine, Hospital of Affiliated Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Guancheng Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zhe Zhang
- Jilin Ginseng Academy, Institute of Traditional Chinese Medicine, Hospital of Affiliated Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Yu Zhao
- Jilin Ginseng Academy, Institute of Traditional Chinese Medicine, Hospital of Affiliated Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China.
| | - Jiajuan Guo
- Jilin Ginseng Academy, Institute of Traditional Chinese Medicine, Hospital of Affiliated Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China.
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yingnan Jiang
- Jilin Ginseng Academy, Institute of Traditional Chinese Medicine, Hospital of Affiliated Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
9
|
Wang S, Wang D, Wang G, Zhang M, Sun Y, Ding J. Antibacterial carbon dots. Mater Today Bio 2025; 30:101383. [PMID: 39811607 PMCID: PMC11730274 DOI: 10.1016/j.mtbio.2024.101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/16/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
Bacterial infections significantly threaten human health, leading to severe diseases and complications across multiple systems and organs. Antibiotics remain the primary treatment strategy for these infections. However, the growing resistance of bacteria to conventional antibiotics underscores the urgent need for safe and effective alternative treatments. In response, several approaches have been developed, including carbon dots (CDs), antimicrobial peptides, and antimicrobial polymers, all of which have proven effective in combating bacterial resistance. Among these, CDs stand out due to their unique advantages, including low preparation cost, stable physicochemical properties, high biocompatibility, tunable surface chemistry, strong photoluminescence, and efficient generation of reactive oxygen species. These features make CDs highly promising in antibacterial applications. This review explores the development of antibacterial CDs, focusing on their mechanisms of action-physical destroy, biochemical damage, and synergistic effects-while highlighting their potential for clinical use as antibacterial agents.
Collapse
Affiliation(s)
- Shuaishuai Wang
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, PR China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Dapeng Wang
- School of Mechanical and Aerospace Engineering, Jilin University, 5988 Renmin Street, Changchun 130033, PR China
| | - Guoliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Minglei Zhang
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, PR China
| | - Yirong Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, PR China
| |
Collapse
|
10
|
Zhang R, Lin X, Lin R, Chen Z, Miao C, Wang Y, Deng X, Lin J, Lin S, Weng S, Chen M. Effectively alleviate rheumatoid arthritis via maintaining redox balance, inducing macrophage repolarization and restoring homeostasis of fibroblast-like synoviocytes by metformin-derived carbon dots. J Nanobiotechnology 2025; 23:58. [PMID: 39881361 PMCID: PMC11776225 DOI: 10.1186/s12951-025-03159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
Overproduction of reactive oxygen species (ROS), elevated synovial inflammation, synovial hyperplasia and fibrosis are the main characteristic of microenvironment in rheumatoid arthritis (RA). Macrophages and fibroblast-like synoviocytes (FLSs) play crucial roles in the progression of RA. Hence, synergistic combination of ROS scavenging, macrophage polarization from pro-inflammatory M1 phenotype towards M2 anti-inflammatory phenotype, and restoring homeostasis of FLSs will provide a promising therapeutic strategy for RA. In this study, we successfully synthesized metformin-derived carbon dots (MCDs), and investigated the antirheumatic effect in vivo and in vitro. Designed MCDs could target inflamed cells and accumulate at the inflammatory joints of collagen-induced arthritis (CIA) rats. In vivo therapeutic investigation suggested that MCDs reduced synovial inflammation and hyperplasia, ultimately prevented cartilage destruction, bone erosion, and synovial fibrosis in CIA rats. In addition, MCDs eliminated the cellular ROS in M1 phenotype macrophages in RA microenvironment through the enzyme-like catalytic activity as well as inhibiting NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome signaling pathway, effectively polarizing them into the M2 phenotype to realize the anti-inflammatory effect. Furthermore, MCDs could inhibit the proliferation, migration, and fibrosis of inflamed FLSs. Mechanistically, MCDs restored the homeostasis of FLSs while reducing the level of synovial inflammation by blocking IL-6/gp130 signaling pathway. Combined with preferable biocompatibility, MCDs offer a prospective treatment approach for RA.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xingyu Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Rongjie Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Zhenbin Chen
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Chenfang Miao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Xiaoqin Deng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Jianlong Lin
- Department of Orthopedic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China
| | - Shishui Lin
- Department of Orthopedic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China.
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Min Chen
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
11
|
D’Amico E, Aceto GM, Petrini M, Cinquini C, D’Ercole S, Iezzi G, Pierfelice TV. How Will Nanomedicine Revolutionize Future Dentistry and Periodontal Therapy? Int J Mol Sci 2025; 26:592. [PMID: 39859308 PMCID: PMC11765319 DOI: 10.3390/ijms26020592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Periodontitis is a prevalent inflammatory disease affecting the supporting structures of the teeth, leading to gum recession, tooth loss, and systemic health complications. Traditional diagnostic methods and treatments, such as clinical evaluation and scaling, often fall short in early detection and targeted therapy, particularly in complex or advanced cases. Recent advancements in nanomedicine offer promising solutions for improving both the diagnosis and treatment of periodontitis. Nanoparticles, such as liposomes, quantum dots, and nanorods, have demonstrated potential in enhancing diagnostic accuracy by enabling more precise detection of periodontal pathogens and biomarkers at the molecular level. Furthermore, nanotechnology-based therapies, including drug delivery systems and antimicrobial agents, offer localized and controlled release of therapeutic agents, enhancing efficacy and reducing side effects compared to conventional treatments. This study reviews the current applications of nanomedicine in the diagnosis and treatment of periodontitis, highlighting its potential to revolutionize periodontal care by improving early detection, reducing treatment times, and enhancing therapeutic outcomes.
Collapse
Affiliation(s)
- Emira D’Amico
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio”, via dei Vestini 31, 66013 Chieti, Italy; (E.D.); (G.M.A.); (M.P.); (S.D.); (T.V.P.)
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio”, via dei Vestini 31, 66013 Chieti, Italy; (E.D.); (G.M.A.); (M.P.); (S.D.); (T.V.P.)
| | - Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio”, via dei Vestini 31, 66013 Chieti, Italy; (E.D.); (G.M.A.); (M.P.); (S.D.); (T.V.P.)
| | - Chiara Cinquini
- Department of Surgical, Medical, Molecular Pathologies and of the Critical Area, University of Pisa, Lungarno Antonio Pacinotti, 43, 56126 Pisa, Italy;
| | - Simonetta D’Ercole
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio”, via dei Vestini 31, 66013 Chieti, Italy; (E.D.); (G.M.A.); (M.P.); (S.D.); (T.V.P.)
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio”, via dei Vestini 31, 66013 Chieti, Italy; (E.D.); (G.M.A.); (M.P.); (S.D.); (T.V.P.)
| | - Tania Vanessa Pierfelice
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio”, via dei Vestini 31, 66013 Chieti, Italy; (E.D.); (G.M.A.); (M.P.); (S.D.); (T.V.P.)
| |
Collapse
|
12
|
Zhang H, Liu H, Liu X, Song A, Jiang H, Wang X. Progress on Carbon Dots with Intrinsic Bioactivities for Multimodal Theranostics. Adv Healthc Mater 2025; 14:e2402285. [PMID: 39440645 DOI: 10.1002/adhm.202402285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Carbon dots (CDs) with intrinsic bioactivities are candidates for bioimaging and disease therapy due to their diverse bioactivities, high biocompatibility, and multiple functionalities in multimodal theranostics. It is a multidisciplinary research hotspot that includes biology, physics, materials science, and chemistry. This progress report discusses the CDs with intrinsic bioactivities and their applications in multimodal theranostics. The relationship between the synthesis and structure of CDs is summarized and analyzed from a material and chemical perspective. The bioactivities of CDs including anti-tumor, antibacterial, anti-inflammatory etc. are discussed from biological points of view. Subsequently, the optical and electronic properties of CDs that can be applied in the biomedical field are summarized from a physical perspective. Based on the functional review of CDs, their applications in the biomedical field are reviewed, including optical diagnosis and treatment, biological activity, etc. Unlike previous reviews, this review combines multiple disciplines to gain a more comprehensive understanding of the mechanisms, functions, and applications of CDs with intrinsic bioactivities.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Hao Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Aiguo Song
- School of Instrument Science and Engineering, Southeast University, Nanjing, 210023, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| |
Collapse
|
13
|
Mohammed SJ, Sidiq MK, Najmuldeen HH, Kayani KF, Kader DA, Aziz SB. A comprehensive review on nitrogen-doped carbon dots for antibacterial applications. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2024; 12:114444. [DOI: 10.1016/j.jece.2024.114444] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
He F, Liu X, Yang S, Tan H, Yang LP, Wang LL. Guanidinium-Functionalized Carbon Dots: An Efficient Antibacterial Agent against Multidrug-Resistant ESKAPE Pathogens. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39561278 DOI: 10.1021/acsami.4c16813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The rise of multidrug-resistant (MDR) bacteria poses a substantial challenge in clinical settings, particularly with the increasing prevalence of ESKAPE pathogens (E. faecium, S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa, and E. coli) as critical MDR bacteria. These ESKAPE pathogens have the capability to undermine antibiotic treatments, leading to a high incidence of drug resistance. However, the development of efficient antibacterial agents against ESKAPE pathogens is still in the bottleneck. Herein, the first example of antibacterial carbon dots against ESKAPE pathogens was reported. Onion powder-based carbon dots were melted with poly(hexamethylene biguanide) hydrochloride (PHMB) to obtain guanidinium-functionalized carbon dots (GCDs), which exhibited satisfactory antibacterial activity against all the tested bacteria, including both Gram-positive and Gram-negative bacteria, and even ESKAPE pathogens. The efficient antibacterial ability of GCDs derives from the rupture of the bacterial cell membrane and elevated ROS levels. Safety assessments revealed that GCDs neither trigger detectable drug resistance nor exhibit any cytotoxic effects. Furthermore, GCDs effectively promoted wound healing without observable adverse reactions of mixed MDR bacteria-infected wounds in rats. The GCDs also showed excellent long-term stability. These findings indicate that GCDs hold promise as an efficient antibacterial agent for the treatment of MDR strain-caused clinical infected-wound healing.
Collapse
Affiliation(s)
- Fangli He
- Department of Biochemistry and Molecular Biology, Laboratory of Nuclear Radiation DNA Damage and Repair, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xi Liu
- Department of Biochemistry and Molecular Biology, Laboratory of Nuclear Radiation DNA Damage and Repair, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Sihui Yang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Huaxin Tan
- Department of Biochemistry and Molecular Biology, Laboratory of Nuclear Radiation DNA Damage and Repair, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Liu-Pan Yang
- Department of Biochemistry and Molecular Biology, Laboratory of Nuclear Radiation DNA Damage and Repair, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Li-Li Wang
- Department of Biochemistry and Molecular Biology, Laboratory of Nuclear Radiation DNA Damage and Repair, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
15
|
Bedair HM, Hamed M, Mansour FR. New emerging materials with potential antibacterial activities. Appl Microbiol Biotechnol 2024; 108:515. [PMID: 39540988 PMCID: PMC11564324 DOI: 10.1007/s00253-024-13337-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
The increasing prevalence of multidrug-resistant pathogens is a critical public health issue, necessitating the development of alternative antibacterial agents. Examples of these pathogens are methicillin-resistant Staphylococcus aureus (MRSA) and the emergence of "pan-resistant" Gram-negative strains, such as Pseudomonas aeruginosa and Acinetobacter baumannii, which occurred more recently. This review examines various emerging materials with significant antibacterial activities. Among these are nanomaterials such as quantum dots, carbon quantum dots, metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and layered double hydroxides, all of which demonstrate excellent antibacterial properties. Interestingly, including antibacterial agents within the structure of these materials can help avoid bacterial resistance and improve the long-term efficacy of the materials. Additionally, the antibacterial potential of liquid solvents, including ionic liquids and both deep eutectic solvents and natural deep eutectic solvents, is explored. The review discusses the synthesis methods, advantages, and antibacterial efficacy of these new materials. By providing a comprehensive overview of these innovative materials, this review aims to contribute to the ongoing search for effective solutions to combat antibiotic resistance. Key studies demonstrating antibacterial effects against pathogens like Escherichia coli, Staphylococcus aureus, and multidrug-resistant strains are summarized. MOFs have exhibited antibacterial properties through controlled ion release and surface interactions. COFs have enhanced the efficacy of encapsulated antibiotics and displayed intrinsic antibacterial activity. Other nanomaterials, such as quantum dots, have generated reactive oxygen species, leading to microbial inactivation. This review aims to provide insights into these new classes of antibacterial materials and highlight them for addressing the global crisis of antibiotic resistance. KEY POINTS: • Nanomaterials show strong antibacterial effects against drug-resistant bacteria • Emerging solvents like ionic liquids offer novel solutions for bacterial resistance • MOFs and COFs enhance antibiotic efficacy, showing promise in combating resistance.
Collapse
Affiliation(s)
- Hadeer M Bedair
- Department of Microbiology and Immunology, Faculty of Pharmacy, Misr University for Science and Technology, 6Th of October City, Egypt
| | - Mahmoud Hamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Km 28 Ismailia Road, Cairo, 44971, Egypt
- MIU Chemistry Society (MIU-CS), Faculty of Pharmacy, Misr International University, Km 28 Ismailia Road, Cairo, 44971, Egypt
| | - Fotouh R Mansour
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, The Medical Campus of Tanta University, Elgeish Street, Tanta, 31111, Egypt.
| |
Collapse
|
16
|
Wang H, Sun S, Zhao Y, Wang P, Zhou Y, Sun H, Yang J, Cheng K, Li S, Lin H. Carbon Dots with Integrated Photothermal Antibacterial and Heat-Enhanced Antioxidant Properties for Diabetic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403160. [PMID: 39051538 DOI: 10.1002/smll.202403160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Diabetic wounds pose a persistent challenge due to their slow healing nature, primarily caused by bacterial infection and excessive reactive oxygen species (ROS)-induced inflammation. In this study, carbon dots with synergistic antibacterial and antioxidant properties, referred to as AA-CDs, are developed specifically for diabetic wound healing using a straightforward solvothermal method. By utilizing cost-effective precursors like citric acid and ascorbic acid, AA-CDs are engineered to possess tailored functions of photothermal sterilization and ROS scavenging. The resulting AA-CDs demonstrats broad-spectrum antibacterial activity, particularly against multidrug-resistant strains, along with efficient ROS scavenging both in solution and within cells. Additionally, AA-CDs exhibits a protective effect against oxidative stress-induced damage. Notably, with a high photothermal conversion efficiency (41.18%), AA-CDs displays heat-enhanced antioxidant performance, providing not only augmented ROS scavenging but also additional protection against oxidative stress, yielding a true "1 + 1 > 2" effect. To facilitate their use in vivo, AA-CDs are incorporated into a thermally responsive hydrogel, which exhibits evident anti-inflammatory properties by modulating inflammatory factors and significantly promots the healing of diabetic wounds. This study underscores the value of integrated platforms for diabetic wound healing and highlights the potential of versatile CDs as promising therapeutic agents in biomedical applications.
Collapse
Affiliation(s)
- Henggang Wang
- International Joint Research Center for Photo-responsive Molecules and Materials School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Shan Sun
- International Joint Research Center for Photo-responsive Molecules and Materials School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ye Zhao
- International Joint Research Center for Photo-responsive Molecules and Materials School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Peng Wang
- Department of radiology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yonghua Zhou
- Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, 214122, China
| | - Haoyi Sun
- International Joint Research Center for Photo-responsive Molecules and Materials School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jin Yang
- International Joint Research Center for Photo-responsive Molecules and Materials School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ke Cheng
- International Joint Research Center for Photo-responsive Molecules and Materials School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Si Li
- International Joint Research Center for Photo-responsive Molecules and Materials School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hengwei Lin
- International Joint Research Center for Photo-responsive Molecules and Materials School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
17
|
Ruan Z, Xu Z, Liu T, Chen L, Liu X, Chen K, Zhao C. Multifunctional nitrogen-sulfur codoped carbon quantum dots: Determining reduced glutathione, broad-spectrum antibacterial activity, and cell imaging. Heliyon 2024; 10:e38177. [PMID: 39386857 PMCID: PMC11462334 DOI: 10.1016/j.heliyon.2024.e38177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
In this study, nitrogen-sulfur codoped carbon quantum dots (N-S/CQDs) with various functions and properties were synthesized through a one-step method utilizing citric acid and cysteine as reaction substrates. The fluorescence of N-S/CQDs can be specifically quenched by permanganate ion (MnO4 -), and the quenched fluorescence can be recovered by the presence of reduced glutathione (GSH). A fluorescence sensing system based on N-S/CQDs@MnO4 - was developed and successfully applied for the determination of GSH in pharmaceutical preparations. Additionally, N-S/CQDs demonstrated broad-spectrum antibacterial activity, with minimum inhibitory concentrations of 32 μg/ml against Staphylococcus aureus (gram-positive bacterium) and 64 μg/ml against Escherichia coli (gram-negative bacterium). N-S/CQDs also proved effective for cell imaging, exhibiting excellent biocompatibility. These findings underscore the multifunctional characteristics and promising application potential of N-S/CQDs. Furthermore, this study provides a solid foundation for the development of multifunctional carbon quantum dots and the expansion of their applications in various fields.
Collapse
Affiliation(s)
- Zhipeng Ruan
- Department of Pharmacy, School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Putian, 351100, China
| | - Zhifeng Xu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Putian University, Putian University, Putian, 351100, China
| | - Tianhui Liu
- Department of Pharmacy, School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Putian, 351100, China
| | - Liwen Chen
- Department of Pharmacy, School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China
| | - Xiaoling Liu
- Department of Pharmacy, School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China
| | - Kaiying Chen
- Pathology Department, The First Hospital of Putian City, Putian, 351100, China
| | - Chengfei Zhao
- Department of Pharmacy, School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Putian, 351100, China
| |
Collapse
|
18
|
Shen J, Yang Y, Zhang J, Lin W, Gu H. Carbon Quantum Dot-Functionalized Dermis-Derived Transparent Electronic Skin for Multimodal Human Motion Signal Monitoring and Construction of Self-Powered Triboelectric Nanogenerator. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46771-46788. [PMID: 39166375 DOI: 10.1021/acsami.4c09618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Electronic skin (e-skin) is considered as a highly promising interface for human-computer interaction systems and wearable electronic devices. Through elaborate design and assembly of various materials, it possesses multiple characteristics similar to human skin, including remarkable flexibility, stretchability, sensitivity to temperature and humidity, biocompatibility, and efficient interfacial ion/electron transport capabilities. Here, we innovatively integrate multifunctional carbon quantum dots (CQDs), which exhibit conductivity, antibacterial properties, ultraviolet absorption, and fluorescence emission, with poly(acrylic acid) and glycerin (Gly) into a three-dimensional network structure of natural goatskin collagen fibers. Through a top-down design strategy enhanced by hydrogen bond reconstruction, we successfully fabricated a novel transparent e-skin (PAC-eSkin). This e-skin exhibited significant tensile properties (4.94 MPa of tensile strength and 263.42% of a maximum breaking elongation), while also possessing Young's modulus similar to human skin (2.32 MPa). It is noteworthy that the functionalized CQDs used was derived from discarded goat hair, and the addition of Gly gave PAC-eSkin excellent antifreezing and moisturizing properties. Due to the presence of ultrasmall CQDs, which creates efficient ion/electron transport channels within PAC-eSkin, it could rapidly sense human motion and physiological signals (with a gauge factor (GF) of 1.88). Furthermore, PAC-eSkin had the potential to replace traditional electrode patches for real-time monitoring of electrocardiogram, electromyogram, and electrooculogram signals, with a higher SNR (signal-to-noise ratio) of 25.1 dB. Additionally, the customizable size and shape of PAC-eSkin offer vast possibilities for the construction of single-electrode triboelectric nanogenerator systems. We have reason to believe that the design and development of this transparent e-skin based on CQDs-functionalized dermal collagen matrices can pave a new way for innovations in human-computer interaction interfaces and their sensing application in diverse scenarios.
Collapse
Affiliation(s)
- Jialu Shen
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Yao Yang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Jinwei Zhang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Wei Lin
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| |
Collapse
|
19
|
Jiang XJ, Ma Y, Zhou Y, Xiao RD, Meng YJ, Ye-Hou, Xie BT, Wu LH, Zhao DH. Green one-step synthesis of N-doped carbon quantum dots for fluorescent detection of lemon yellow in soft drinks. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124305. [PMID: 38657331 DOI: 10.1016/j.saa.2024.124305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
A new fluorescent sensor for the determination of lemon yellow was developed based on nitrogen-doped carbon quantum dots (N-CQDs), which were prepared via a hydrothermal method with dried pomelo peel and L-tyrosine. The N-CQDs exhibited the blue fluorescence with a quantum yield of 28 %. The sensing principle of N-CQDs was quenched by lemon yellow via static quenching. The potential interfering substances showed no influence on the detection of lemon yellow. The limit of detection was 0.023 mg/L and lower than that of national standard. Furthermore, the synthesized N-CQDs have been successfully applied to the measurement of lemon yellow in real samples. Hence, the N-CQDs would be a promising sensor in food analysis.
Collapse
Affiliation(s)
- Xiu-Juan Jiang
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China; Jia Sixie College of Agriculture, Weifang University of Science and Technology, Shouguang, PR China.
| | - Yuan Ma
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China.
| | - You Zhou
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Rong-Dan Xiao
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Yi-Jie Meng
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Ye-Hou
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Ben-Ting Xie
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Lin-Hong Wu
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - De-Hong Zhao
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| |
Collapse
|
20
|
Eker F, Duman H, Akdaşçi E, Bolat E, Sarıtaş S, Karav S, Witkowska AM. A Comprehensive Review of Nanoparticles: From Classification to Application and Toxicity. Molecules 2024; 29:3482. [PMID: 39124888 PMCID: PMC11314082 DOI: 10.3390/molecules29153482] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Nanoparticles are structures that possess unique properties with high surface area-to-volume ratio. Their small size, up to 100 nm, and potential for surface modifications have enabled their use in a wide range of applications. Various factors influence the properties and applications of NPs, including the synthesis method and physical attributes such as size and shape. Additionally, the materials used in the synthesis of NPs are primary determinants of their application. Based on the chosen material, NPs are generally classified into three categories: organic, inorganic, and carbon-based. These categories include a variety of materials, such as proteins, polymers, metal ions, lipids and derivatives, magnetic minerals, and so on. Each material possesses unique attributes that influence the activity and application of the NPs. Consequently, certain NPs are typically used in particular areas because they possess higher efficiency along with tenable toxicity. Therefore, the classification and the base material in the NP synthesis hold significant importance in both NP research and application. In this paper, we discuss these classifications, exemplify most of the major materials, and categorize them according to their preferred area of application. This review provides an overall review of the materials, including their application, and toxicity.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
21
|
Guan S, Tang M. Exposure of quantum dots in the nervous system: Central nervous system risks and the blood-brain barrier interface. J Appl Toxicol 2024; 44:936-952. [PMID: 38062852 DOI: 10.1002/jat.4568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 07/21/2024]
Abstract
Quantum dots currently possess significant importance in the field of biomedical science. Upon introduction into the body, quantum dots exhibit a tendency to accumulate in diverse tissues including the central nervous system (CNS). Consequently, it becomes imperative to devote specific attention to their potential toxic effects. Moreover, the preservation of optimal CNS function relies heavily on blood-brain barrier (BBB) integrity, thereby necessitating its prioritization in neurotoxicological investigations. A more comprehensive understanding of the BBB and CNS characteristics, along with the underlying mechanisms that may contribute to neurotoxicity, will greatly aid researchers in the development of effective design strategies. This article offers an in-depth look at the methods used to reduce the harmful effects of quantum dots on the nervous system, alongside the progression of effective treatments for brain-related conditions. The focal point of this discussion is the BBB and its intricate association with the CNS and neurotoxicology. The discourse commences by recent advancements in the medical application of quantum dots are examined. Subsequently, elucidating the mechanisms through which quantum dots infiltrate the human body and traverse into the brain. Additionally, the discourse delves into the factors that facilitate the passage of quantum dots across the BBB, primarily encompassing the physicochemical properties of quantum dots and the BBB's inherent capacity for self-permeability alteration. Furthermore, a concluding summary is presented, emphasizing existing research deficiencies and identifying promising avenues for further investigation within this field.
Collapse
Affiliation(s)
- Shujing Guan
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
22
|
Lv N, Zhang X, Li R, Liu X, Liang P. Mesoporous silica nanospheres-mediated insecticide and antibiotics co-delivery system for synergizing insecticidal toxicity and reducing environmental risk of insecticide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171984. [PMID: 38547983 DOI: 10.1016/j.scitotenv.2024.171984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Mesoporous silica nanoparticles (MSNs) are efficient carriers of drugs, and are promising in developing novel pesticide formulations. The cotton aphids Aphis gossypii Glover is a world devastating insect pest. It has evolved high level resistance to various insecticides thus resulted in the application of higher doses of insecticides, which raised environmental risk. In this study, the MSNs based pesticide/antibiotic delivery system was constructed for co-delivery of ampicillin (Amp) and imidacloprid (IMI). The IMI@Amp@MSNs complexes have improved toxicity against cotton aphids, and reduced acute toxicity to zebrafish. From the 16S rDNA sequencing results, Amp@MSNs, prepared by loading ampicillin to the mesoporous of MSNs, greatly disturbed the gut community of cotton aphids. Then, the relative expression of at least 25 cytochrome P450 genes of A. gossypii was significantly suppressed, including CYP6CY19 and CYP6CY22, which were found to be associated with imidacloprid resistance by RNAi. The bioassay results indicated that the synergy ratio of ampicillin to imidacloprid was 1.6, while Amp@MSNs improved the toxicity of imidacloprid by 2.4-fold. In addition, IMI@Amp@MSNs significantly improved the penetration of imidacloprid, and contributed to the amount of imidacloprid delivered to A. gossypii increased 1.4-fold. Thus, through inhibiting the relative expression of cytochrome P450 genes and improving penetration of imidacloprid, the toxicity of IMI@Amp@MSNs was 6.0-fold higher than that of imidacloprid. The greenhouse experiments further demonstrated the enhanced insecticidal activity of IMI@Amp@MSNs to A. gossypii. Meanwhile, the LC50 of IMI@Amp@MSNs to zebrafish was 3.9-fold higher than that of IMI, and the EC50 for malformation was 2.8-fold higher than IMI, respectively, which indicated that the IMI@Amp@MSNs complexes significantly reduced the environmental risk of imidacloprid. These findings encouraged the development of pesticide/antibiotic co-delivery nanoparticles, which would benefit pesticide reduction and environmental safety.
Collapse
Affiliation(s)
- Nannan Lv
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xudong Zhang
- Analytical & Testing Center, Beihang University, Beijing 100191, China
| | - Ren Li
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
23
|
Li J, Wang X, Wang H, Ran P, Liu Y, Wang J, Xu X, Zhou Z. Regulating molecular brush structure on cotton textiles for efficient antibacterial properties. Int J Biol Macromol 2024; 267:131486. [PMID: 38604420 DOI: 10.1016/j.ijbiomac.2024.131486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
The molecular brush structures have been developed on cotton textiles for long-term and efficient broad-spectrum antimicrobial performances through the cooperation of alkyl-chain and quaternary ammonium sites. Results show that efficient antibacterial performances can be achieved by the regulation of the alkyl chain length and quaternary ammonium sites. The antibacterial efficiency of the optimized molecular brush structure of [3-(N,N-Dimethylamino)propyl]trimethoxysilane with cetyl modification on cotton textiles (CT-DM-16) can reach more than 99 % against both E. coli and S. aureus. Alkyl-chain grafting displayed significantly improvement in the antibacterial activity against S. aureus with (N,N-Diethyl-3-aminopropyl)trimethoxysilane modification on cotton textiles (CT-DE) based materials. The positive N sites and alkyl chains played important roles in the antibacterial process. Proteomic analysis reveals that the contributions of cytoskeleton and membrane-enclosed lumen in differentially expressed proteins have been increased for the S. aureus antibacterial process, confirming the promoted puncture capacity with alkyl-chain grafting. Theoretical calculations indicate that the positive charge of N sites can be enhanced through alkyl-chain grafting, and the possible distortion of the brush structure in application can further increase the positive charge of N sites. Uncovering the regulation mechanism is considered to be important guidance to develop novel and practical antibacterial materials.
Collapse
Affiliation(s)
- Jie Li
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China; Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu 610031, China
| | - Xin Wang
- Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu 610031, China.
| | - Hui Wang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Pan Ran
- School of Bioscience and Technology, Chengdu Medical College, Chengdu 610500, China
| | - Yazhou Liu
- School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiahao Wang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaoling Xu
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Zuowan Zhou
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
24
|
Dong J, Wang Q, Gu T, Liu G, Petrov YV, Baulin VE, Yu Tsivadze A, Jia D, Zhou Y, Yuan H, Li B. Rapamycin functionalized carbon Dots: Target-oriented synthesis and suppression of vascular cell senescence. J Colloid Interface Sci 2024; 660:534-544. [PMID: 38266335 DOI: 10.1016/j.jcis.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024]
Abstract
Suppression of vascular cell senescence is of great significance in preventing cardiovascular diseases such as hypertension and atherosclerosis. The oxidative stress damage caused by reactive oxygen species (ROS) can lead to cellular senescence. Rapamycin (Rapa) is well known to suppress cell senescence via mammalian target of rapamycin (mTOR) pathway. However, poor water solubility and lack of ROS scavenging ability limit the further development of Rapa. To improve the solubility of Rapa and endow with ROS scavenging ability, Rapa functionalized carbon dots (Rapa-CDs) are target-oriented synthesized via free radical polymerization combination with hydrothermal carbonization. Rapa-CDs improve the solubility of Rapa and show ROS scavenging abilities. The solubility of Rapa-CDs with 9.41 g is improved 3.6 × 104 times higher than that of Rapa (2.6 × 10-4 g). The half maximal inhibitory concentration (IC50) of Rapa-CDs toward hydroxyl radical (•OH) and 2,2-Diphenyl-1-picrylhydrazyl free radical (DPPH•) are 0.18 and 0.17 mg/mL, respectively. Rapa-CDs show anti-oxidative stress effect in HEVECs (Human Umbilical Vein Endothelial Cells) via reducing ROS levels by 87 %. Rapa-CDs alleviate HUVECs senescence by suppressing mTOR overactivation, attenuate the expression of P53, P21 and P16. The study demonstrates the target-oriented synthesis of drugs functionalized CDs with anti-senescence via dual-pathway of anti-oxidative stress and mTOR.
Collapse
Affiliation(s)
- Jiaxin Dong
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China
| | - Qi Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Tingting Gu
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China
| | - Guanxiong Liu
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yuri V Petrov
- Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, St. Petersburg, 199034, Russia
| | - Vladimir E Baulin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia; Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Aslan Yu Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Dechang Jia
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yu Zhou
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China
| | - Huiping Yuan
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China.
| | - Baoqiang Li
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China; Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, St. Petersburg, 199034, Russia.
| |
Collapse
|
25
|
Bai X, Zhang X, Xiao J, Lin X, Lin R, Zhang R, Deng X, Zhang M, Wei W, Lan B, Weng S, Chen M. Endowing Polyetheretherketone with Anti-Infection and Immunomodulatory Properties through Guanidination Carbon Dots Modification to Promote Osseointegration in Diabetes with MRSA Infection. Adv Healthc Mater 2024; 13:e2302873. [PMID: 38041688 DOI: 10.1002/adhm.202302873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/17/2023] [Indexed: 12/03/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infection and compromised immunity are the severe complications associated with implantation surgery in diabetes mellitus. Enhancing the antibacterial and immunomodulatory properties of implants represents an effective approach to improve the osseointegration of implant in diabetes mellitus. Herein, guanidination carbon dots (GCDs) with antibacterial and immunoregulatory functions are synthesized. The GCDs demonstrate killing effect on MRSA without detectable induced resistance. Additionally, they promote the polarization of macrophages from the M1 to M2 subtype, with the inhibiting pro-inflammatory cytokines and promoting anti-inflammatory factors. Correspondingly, GCDs are immobilized onto sulfonated polyether ether ketone (SP@GCDs) using a polyvinyl butyraldehyde (PVB) coating layer through soaking-drying technique. SP@GCDs maintain stable antibacterial efficacy against MRSA for six consecutive days and retain the immunomodulatory function, while also possessing the long-term storage stability and biocompatibility of more than 6 months. Moreover, SP@GCDs significantly promote the proliferation and mineralization of osteoblasts. SP@GCDs facilitate osteogenesis through immunoregulatory. Additionally, SP@GCDs exert stable antibacterial and immune regulatory functions in implantation site of a diabetes rat, effectively promoting implant osseointegration regardless of the MRSA infection. These findings provide valuable insights into implant modification through designing nanomaterials with multifunction for enhancing osseointegration of diabetes mellitus, suggesting the promising clinical application prospects.
Collapse
Affiliation(s)
- Xinxin Bai
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, P. R. China
| | - Xintian Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Jiecheng Xiao
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, P. R. China
| | - Xingyu Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, P. R. China
| | - Rongjie Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, P. R. China
| | - Rui Zhang
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, P. R. China
| | - Xiaoqin Deng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Menghan Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Wenqin Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, P. R. China
| | - Bin Lan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, P. R. China
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Min Chen
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, P. R. China
| |
Collapse
|
26
|
Du X, Zhang M, Ma Y, Zhang Y, Li W, Hu T, Liu Y, Huang H, Kang Z. Carbon dots derived from metformin by electrochemical synthesis with broad-spectrum antibacterial properties. J Mater Chem B 2024; 12:2346-2353. [PMID: 38344921 DOI: 10.1039/d3tb02442c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Due to the advantages of good aqueous dispersion and biocompatibility, carbon dots (CDs) are promising candidates for a wide range of applications in the biological field. Notably, CDs derived from biosafe organic precursors will contribute both new types of CDs and new bioactivities. Herein, metformin (MET), a first-line drug for the treatment of type II diabetes, was selected as an organic precursor to fabricate a new type of CDs, namely, semi-carbonized MET (MCDs). These MCDs derived from MET possess a completely new antibacterial activity against Staphylococcus aureus (SA) and Escherichia coli (E. coli) compared with that of MET and achieve complete antibacterial activity at 200 μg mL-1. The broad-spectrum antibacterial mechanism of MCDs involves two aspects. For the Gram-positive bacteria SA, MCDs mainly affect the transport of nutrients by adsorbing onto the surface of bacteria, thereby inhibiting bacterial growth. For the Gram-negative bacteria E. coli, MCDs can easily pass through their thin cell walls and stimulate the bacteria to produce excess ROS, eventually leading to the death of the bacteria. This work may open a new way for the future design and development of CDs prepared from biosafe organic precursors with specific functions.
Collapse
Affiliation(s)
- Xin Du
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Mengling Zhang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, China
| | - Yurong Ma
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Yan Zhang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Wenwen Li
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Tao Hu
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Yang Liu
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Hui Huang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, China
| |
Collapse
|
27
|
Najmalden Ghaibullah Ghaibullah Y, Foto E, Ozdemir N, Zilifdar Foto F, Arslan G, Sargin I. Antibacterial potentials of carbon dots immobilized on chitosan and glass surfaces. Int J Biol Macromol 2024; 257:128586. [PMID: 38056753 DOI: 10.1016/j.ijbiomac.2023.128586] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Due to their antibacterial activity, chitosan‑carbon dot composites possess great potential for pharmaceuticals, medicine, and food preservation. Conducting a comprehensive study of the interactions between chitosan, carbon dots, and bacteria is crucial to understanding the processes behind applying these composites. This study aimed to immobilize carbon dots (C-dots) synthesized from Elaeagnus angustifolia fruits on chitosan and glass microbeads' surfaces, to characterize the test materials obtained after synthesis and immobilization, and to investigate their antibacterial potentials. C-dot synthesis was carried out from water extract in an acidic medium with the help of microwave irradiation, and their structural and optical properties were characterized by TEM, XRD, FT-IR, UV-vis, Zeta potential, and fluorescence methods. The surface of the glass microbeads was first activated and functionalized with surface amine groups with a silaning agent. C-dots were immobilized on both glass and chitosan microbeads using a crosslinking agent. Antibacterial potentials of nine different test materials, obtained before or after immobilization, were evaluated both qualitatively (MIC and MBC) and quantitatively (GI50) on E. coli, S. typhimurium, B. subtilis, and S. aureus, with the standard broth microdilution method. FT-IR and SEM-EDX analyses showed that C-dots were immobilized on chitosan (˂1 mm) and glass (˂100 μm) microbead surfaces. C-dots reduced the cell viability by ~25 % on S. typhimurium and B. subtilis (MIC = 25 mg/mL). It was also found that the highest antibacterial effect was recorded for C-dots-glass microbeads, which had a toxic effect of 43 % on S. aureus. In addition, binding C-dots to glass microbeads increased the antibacterial effect selectively in Gram-positive bacteria, while binding to chitosan microbeads was effective in all bacteria. The study showed that the antibacterial potential of C-dots-chitosan microbeads is more effective than C-dots-glass microbeads. C-dots could be used as carbon-based nanomaterials in antibacterial surface preparation once immobilized.
Collapse
Affiliation(s)
| | - Egemen Foto
- Department of Biotechnology, Faculty of Science, Necmettin Erbakan University, Konya, Turkey.
| | - Naciye Ozdemir
- Department of Biochemistry, Faculty of Science, Selcuk University, Konya, Turkey
| | - Fatma Zilifdar Foto
- Department of Biochemistry, Faculty of Science, Selcuk University, Konya, Turkey
| | - Gulsin Arslan
- Department of Biochemistry, Faculty of Science, Selcuk University, Konya, Turkey
| | - Idris Sargin
- Department of Biochemistry, Faculty of Science, Selcuk University, Konya, Turkey.
| |
Collapse
|
28
|
Das S, Mondal S, Ghosh D. Carbon quantum dots in bioimaging and biomedicines. Front Bioeng Biotechnol 2024; 11:1333752. [PMID: 38318419 PMCID: PMC10841552 DOI: 10.3389/fbioe.2023.1333752] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Carbon quantum dots (CQDs) are gaining a lot more attention than traditional semiconductor quantum dots owing to their intrinsic fluorescence property, chemical inertness, biocompatibility, non-toxicity, and simple and inexpensive synthetic route of preparation. These properties allow CQDs to be utilized for a broad range of applications in various fields of scientific research including biomedical sciences, particularly in bioimaging and biomedicines. CQDs are a promising choice for advanced nanomaterials research for bioimaging and biomedicines owing to their unique chemical, physical, and optical properties. CQDs doped with hetero atom, or polymer composite materials are extremely advantageous for biochemical, biological, and biomedical applications since they are easy to prepare, biocompatible, and have beneficial properties. This type of CQD is highly useful in phototherapy, gene therapy, medication delivery, and bioimaging. This review explores the applications of CQDs in bioimaging and biomedicine, highlighting recent advancements and future possibilities to increase interest in their numerous advantages for therapeutic applications.
Collapse
Affiliation(s)
- Surya Das
- Department of Chemistry, University of Kalyani, Kalyani, India
| | - Somnath Mondal
- Department of Chemistry, Pennsylvania State University, State College, PA, United States
| | - Dhiman Ghosh
- Department of Chemistry and Applied Biosciences, Zurich, Switzerland
| |
Collapse
|
29
|
Ichimaru H, Kikuchi S. Near-Infrared Fluorescent Silica Nanoparticles Based on Gold-Silver Alloy Nanoclusters for Clinical Diagnosis. Chem Pharm Bull (Tokyo) 2024; 72:121-126. [PMID: 38296514 DOI: 10.1248/cpb.c23-00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
In clinical diagnosis, fluorescent particles are applied to detect analytes in biofluids, such as blood and saliva. However, current fluorescence detection methods have not been optimized to account for the overlapping autofluorescence peaks of biological substances. Gold and silver nanoclusters are known to the novel fluorescent materials and their emission wavelengths depend on cluster size. In this study, we developed fluorescent silica nanoparticles using gold-silver alloy nanoclusters and chitosan (CS) (NH2-SiO2@Au@CS@AuAg) by the layer-by-layer method. Under UV-light irradiation at 365 nm, the emission wavelength of NH2-SiO2@Au@CS@AuAg reached 750 nm in the near-IR region. Scanning electron microscopy images revealed that the shape of NH2-SiO2@Au@CS@AuAg was uniform and spherical. The fluorescence spectrum of horse blood obtained in the presence of NH2-SiO2@Au@CS@AuAg contained a specific fluorescence peak attributed to NH2-SiO2@Au@CS@AuAg, which was distinguishable from the autofluorescence peaks. These results showed that NH2-SiO2@Au@CS@AuAg has advantageous fluorescence properties for clinical diagnostic applications.
Collapse
|
30
|
Wang J, Fu Y, Gu Z, Pan H, Zhou P, Gan Q, Yuan Y, Liu C. Multifunctional Carbon Dots for Biomedical Applications: Diagnosis, Therapy, and Theranostic. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303773. [PMID: 37702145 DOI: 10.1002/smll.202303773] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/27/2023] [Indexed: 09/14/2023]
Abstract
Designing suitable nanomaterials is an ideal strategy to enable early diagnosis and effective treatment of diseases. Carbon dots (CDs) are luminescent carbonaceous nanoparticles that have attracted considerable attention. Through facile synthesis, they process properties including tunable light emission, low toxicity, and light energy transformation, leading to diverse applications as optically functional materials in biomedical fields. Recently, their potentials have been further explored, such as enzyme-like activity and ability to promote osteogenic differentiation. Through refined synthesizing strategies carbon dots, a rich treasure trove for new discoveries, stand a chance to guide significant development in biomedical applications. In this review, the authors start with a brief introduction to CDs. By presenting mechanisms and examples, the authors focus on how they can be used in diagnosing and treating diseases, including bioimaging failure of tissues and cells, biosensing various pathogenic factors and biomarkers, tissue defect repair, anti-inflammation, antibacterial and antiviral, and novel oncology treatment. The introduction of the application of integrated diagnosis and treatment follows closely behind. Furthermore, the challenges and future directions of CDs are discussed. The authors hope this review will provide critical perspectives to inspire new discoveries on CDs and prompt their advances in biomedical applications.
Collapse
Affiliation(s)
- Jiayi Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yu Fu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Zhangwu Road 100, Shanghai, 200092, P. R. China
| | - Zhanghao Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Hao Pan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Panyu Zhou
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, P. R. China
| | - Qi Gan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
31
|
Cai H, Yang Y, Li Y, Li Z, Tedesco AC, Bi H. A standard procedure for rapid toxicity evaluation of carbon dots both in vitro and in vivo. Biochem Biophys Res Commun 2024; 690:149311. [PMID: 38016246 DOI: 10.1016/j.bbrc.2023.149311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
Carbon dots (CDs) are an emerging class of fluorescent quantum dot nanomaterials that have attracted considerable scientific attention for biomedical or bioimaging applications due to their physicochemical and biochemical properties. With the emergence of massive novel synthetic CDs applying to biomedical fields of science, evaluating their biosafety before any biological application is essential. However, there is no universal protocol or routine procedures for toxicity detection and biosafety assessment of CDs in general biological environments. Herein, we provide an ideal and fast operating system to detect the biotoxicity of CDs, which has been preliminary practiced. Briefly, the obtained CDs will be evaluated by in vitro cytotoxicity assay using cell counting kit-8, lactate dehydrogenase assay kit, and flow cytometry. Meanwhile, the model creature zebrafish is employed to perform in vivo evaluation by measuring body length, hatching rate, heart rate, and morphological observation. Our operating procedure condenses previous scattered biosafety detection methods into a rapid standard evaluation protocol that can be applied to early biotoxicity screening of CDs. This protocol will accelerate CDs biological exploitation and guide future industrialized biosafety assessment in large-scale applications.
Collapse
Affiliation(s)
- Hao Cai
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Yuxiang Yang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Yan Li
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Zijian Li
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Antonio Claudio Tedesco
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, China; Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Hong Bi
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China.
| |
Collapse
|
32
|
Zong M, Zhang Z, Ning X, Cheng H, Zhao Y, Ren J, Liu Y, Zhang R, Cui J, Hou Y, Li B, Wu X. Synthesis of multicolor luminescent carbon dots based on carboxymethyl chitosan for cell imaging and wound healing application: In vitro and in vivo studies. Int J Biol Macromol 2023; 253:127405. [PMID: 37832617 DOI: 10.1016/j.ijbiomac.2023.127405] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The construction of biomaterials that can facilitate wound healing is significantly challenging in the medical field, and bacterial infections increase this complexity. In this study, we selected the biomacromolecule carboxymethyl chitosan as a carbon source and citric acid as an auxiliary carbon source. We prepared carbon quantum dots with multicolor luminescence properties and higher quantum yields (QYs) using a facile one-pot hydrothermal method. We characterized them to select carbon dots (CDs) suitable for cell growth. Subsequently, their biocompatibility with L929 cells, antibacterial properties against Staphylococcus aureus, and efficiency in promoting wound healing in vivo were investigated. Our experimental results showed that CDs at an appropriate concentration had excellent bioimaging ability, were suitable for cell growth, and accelerated the healing of infected wounds. We believe these bioactive CDs have great potential in promoting wound healing.
Collapse
Affiliation(s)
- Mingrui Zong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Zheyuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Xiao Ning
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Huaiyi Cheng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Yifan Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Jianing Ren
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Ran Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Jiayu Cui
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Yuxi Hou
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China.
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China.
| |
Collapse
|
33
|
Parambil AM, Prasad A, Tomar AK, Ghosh I, Rajamani P. Biogenic carbon dots: a novel mechanistic approach to combat multidrug-resistant critical pathogens on the global priority list. J Mater Chem B 2023; 12:202-221. [PMID: 38073612 DOI: 10.1039/d3tb02374e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
This study delves into investigating alternative methodologies for anti-microbial therapy by focusing on the mechanistic assessment of carbon dots (CDs) synthesized from F. benghalensis L. extracts. These biogenic CDs have shown remarkable broad-spectrum anti-bacterial activity even against multi-drug resistant (MDR) bacterial strains, prompting a deeper examination of their potential as novel anti-microbial agents. The study highlights the significant detrimental impact of CDs on bacterial cells through oxidative damage, which disrupts the delicate balance of ROS control within the cells. Notably, even at low doses, the anti-bacterial activity of CDs against MDR strains of P. aeruginosa and E. cloacae is highly effective, demonstrating their promise as potent antimicrobial agents. The research sheds light on the capacity of CDs to generate ROS, leading to membrane lipid peroxidation, loss of membrane potential, and rupture of bacterial cell membranes, resulting in cytoplasmic leakage. SEM and TEM analysis revealed time-dependent cell surface, morphological, and ultrastructural changes such as elongation of the cells, irregular surface protrusion, cell wall and cell membrane disintegration, internalization, and aggregations of CDs. These mechanisms offer a comprehensive explanation of how CDs exert their anti-bacterial effects. We also determined the status of plasma membrane integrity and evaluated live (viable) and dead cells upon CD exposure by flow cytometry. Furthermore, comet assay, biochemical assays, and SDS PAGE identify DNA damage, carbohydrate and protein leakage, and distinct differences in protein expression, adding another layer of understanding to the mechanisms behind CDs' anti-bacterial activity. These findings pave the way for future research on managing ROS levels and developing CDs with enhanced anti-bacterial properties, presenting a breakthrough in anti-microbial therapy.
Collapse
Affiliation(s)
- Ajith Manayil Parambil
- School of Environmental Sciences, Jawaharlal Nehru University (JNU), New Delhi 110067, India.
| | - Abhinav Prasad
- School of Environmental Sciences, Jawaharlal Nehru University (JNU), New Delhi 110067, India.
| | - Anuj Kumar Tomar
- School of Environmental Sciences, Jawaharlal Nehru University (JNU), New Delhi 110067, India.
| | - Ilora Ghosh
- School of Environmental Sciences, Jawaharlal Nehru University (JNU), New Delhi 110067, India.
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University (JNU), New Delhi 110067, India.
| |
Collapse
|
34
|
Li M, Liu Y, Gong Y, Yan X, Wang L, Zheng W, Ai H, Zhao Y. Recent advances in nanoantibiotics against multidrug-resistant bacteria. NANOSCALE ADVANCES 2023; 5:6278-6317. [PMID: 38024316 PMCID: PMC10662204 DOI: 10.1039/d3na00530e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023]
Abstract
Multidrug-resistant (MDR) bacteria-caused infections have been a major threat to human health. The abuse of conventional antibiotics accelerates the generation of MDR bacteria and makes the situation worse. The emergence of nanomaterials holds great promise for solving this tricky problem due to their multiple antibacterial mechanisms, tunable antibacterial spectra, and low probabilities of inducing drug resistance. In this review, we summarize the mechanism of the generation of drug resistance, and introduce the recently developed nanomaterials for dealing with MDR bacteria via various antibacterial mechanisms. Considering that biosafety and mass production are the major bottlenecks hurdling the commercialization of nanoantibiotics, we introduce the related development in these two aspects. We discuss urgent challenges in this field and future perspectives to promote the development and translation of nanoantibiotics as alternatives against MDR pathogens to traditional antibiotics-based approaches.
Collapse
Affiliation(s)
- Mulan Li
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Ying Liu
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Youhuan Gong
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Xiaojie Yan
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Le Wang
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Wenfu Zheng
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- Cannano Tefei Technology, Co. LTD Room 1013, Building D, No. 136 Kaiyuan Avenue, Huangpu District Guangzhou Guangdong Province 510535 P. R. China
| | - Hao Ai
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Yuliang Zhao
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences 19B Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| |
Collapse
|
35
|
Shahid K, Alshareef M, Ali M, Yousaf MI, Alsowayigh MM, Khan IA. Direct Growth of Nitrogen-Doped Carbon Quantum Dots on Co 9S 8 Passivated on Cotton Fabric as an Efficient Photoelectrode for Water Treatment. ACS OMEGA 2023; 8:41064-41076. [PMID: 37970001 PMCID: PMC10633820 DOI: 10.1021/acsomega.3c03407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/26/2023] [Indexed: 11/17/2023]
Abstract
Heterogeneous growth of photocatalysts on different porous substrates is a solution to avoid secondary pollution caused by composite photocatalysts themselves. However, the heterogeneous growth of composite photocatalysts with nitrogen-doped carbon quantum dots (NCQDs) inclusions-introduced during synthesis-impedes the direct growth on the substrate. To overcome this problem, NCQDs were grown on a Co9S8 (NCQDs-G@Co9S8) layer, decorated on cotton fabric. This optimal coupling mode of NCQDs and Co9S8 showed 54% degradation, compared to 33% dye degradation via NCQDs-doped Co9S8 (NCQDs-D@Co9S8). The change in the crystal structure and its lower loading on fabric results in significantly lower performance of NCQDs-D@Co9S8. Even with the combination of both surface growth and doping (NCQDs-DG@Co9S8), the performance was still limited to 42%. In addition, the optimum growth concentration of NCQDs on Co9S8 was observed for 7.5 w/w %, resulting in 92% photocatalytic activity (PCA) in 80 min. Comparing different surface states formed in NCQDs using different solvents, water-based surface states (oxygen-rich surface) are most suitable for the dye degradation. NCQDs-G@Co9S8 also offers 67% Cr-VI reduction to Cr-III, showing its suitability for both inorganic and organic compounds. Better electrode performance was related to suitable charge separation of the composite, where -OH groups mainly contribute in the photocatalytic dye degradation..
Collapse
Affiliation(s)
- Kinza Shahid
- Department
of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| | - Mubark Alshareef
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
| | - Mumtaz Ali
- Department
of Textile Engineering, National Textile
University, Faisalabad 37610, Pakistan
| | - Muhammad Imran Yousaf
- Department
of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| | - Marwah M. Alsowayigh
- Chemistry
Department, College of Science, King Faisal
University, P.O. 380, Al-Ahsa 31982, Kingdom
of Saudia Arabia
| | - Imtiaz Afzal Khan
- Interdisciplinary
Research Center for Membranes and Water Security, King Fahad University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
36
|
Ferreira RL, Jr WM, Souza LEA, Navarro HMC, de Mello LR, Mastelaro VR, Sales TO, Barbosa CDAES, Ribeiro AS, da Silva ER, Landell MF, de Oliveira IN. Harnessing Efficient ROS Generation in Carbon Dots Derived from Methyl Red for Antimicrobial Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2023; 6:4345-4357. [PMID: 37791902 DOI: 10.1021/acsabm.3c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The emergence of drug-resistant pathogenic microorganisms has become a public health concern, with demand for strategies to suppress their proliferation in healthcare facilities. The present study investigates the physicochemical and antimicrobial properties of carbon dots (CD-MR) derived from the methyl red azo dye. The morphological and structural analyses reveal that such carbon dots present a significant fraction of graphitic nitrogen in their structures, providing a wide emission range. Based on their low cytotoxicity against mammalian cells and tunable photoluminescence, these carbon dots are applied to bioimaging in vitro living cells. The possibility of using CD-MR to generate reactive oxygen species (ROS) is also analyzed, and a high singlet oxygen quantum efficiency is verified. Moreover, the antimicrobial activity of CD-MR is analyzed against pathogenic microorganisms Staphylococcus aureus, Candida albicans, and Cryptococcus neoformans. Kirby-Bauer susceptibility tests show that carbon dots synthesized from methyl red possess antimicrobial activity upon photoexcitation at 532 nm. The growth inhibition of C. neoformans from CD-MR photosensitization is investigated. Our results show that N-doped carbon dots synthesized from methyl red efficiently generate ROS and possess a strong antimicrobial activity against healthcare-relevant pathogens.
Collapse
Affiliation(s)
- Raul L Ferreira
- Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió-AL, Brazil
| | - Walter Muniz Jr
- Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió-AL, Brazil
| | - Louise E A Souza
- Departmento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04023-062 São Paulo, SP, Brazil
| | - Hector M C Navarro
- Setor de Genética/ICBS, Universidade Federal de Alagoas, 57072-970 Maceió, AL, Brazil
| | - Lucas R de Mello
- Departmento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04023-062 São Paulo, SP, Brazil
| | - Valmor R Mastelaro
- Instituto de Física de So Carlos, Universidade de São Paulo, 13565-905 São Carlos, SP, Brazil
| | - Tasso O Sales
- Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió-AL, Brazil
| | - Cintya D A E S Barbosa
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, 57072-970 Maceió, AL, Brazil
| | - Adriana S Ribeiro
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, 57072-970 Maceió, AL, Brazil
| | - Emerson R da Silva
- Departmento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04023-062 São Paulo, SP, Brazil
| | - Melissa F Landell
- Setor de Genética/ICBS, Universidade Federal de Alagoas, 57072-970 Maceió, AL, Brazil
| | - Italo N de Oliveira
- Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió-AL, Brazil
| |
Collapse
|
37
|
Zhu Y, Luo X, Yu Z, Wen S, Bao G, Zhang L, Zhang C, Xian Y. Dye-sensitized rare-earth-doped nanoprobe for simultaneously enhanced NIR-II imaging and precise treatment of bacterial infection. Acta Biomater 2023; 170:532-542. [PMID: 37669712 DOI: 10.1016/j.actbio.2023.08.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/07/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for causing life-threatening infections that result in high morbidity and mortality rates. The development of advanced imaging and therapeutic methods for in vivo diagnosis and treatment of MRSA infections remains challenging. Here, we develop a hybrid nanoplatform based on rare-earth-doped nanoparticles (RENPs) sensitized by a moiety-engineered near-infrared (NIR) TPEO-820 dye and with a ZIF-8 layer that incorporates CysNO, a photochemically triggered nitric oxide donor. We then use the hybrid for both NIR-II bioimaging and photoactivatable treatment of MRSA-infected wounds. We show that the NIR dye sensitization leads to an 8.5-fold enhancement of the downshifting emission and facilitates deep-tissue NIR-II imaging of bacterial infections. Moreover, the sensitization strategy enhances the UV emission of RENPs by two orders of magnitude, leading to the efficiently controllable release of nitric oxide for effective disinfection of MRSA in vitro and in vivo. The hybrid nanoplatform thus offers promising opportunities for simultaneous localization and controllable treatment of MRSA. STATEMENT OF SIGNIFICANCE: Early detection and treatment of MRSA infections are crucial for reducing public health risks. It is a significant challenge that develops sensitive in vivo diagnosis and complete elimination of drug-resistant bacterial infections. Herein, a nanoplatform has been developed for photoactivatable therapy of MRSA infections and deep tissue NIR-II imaging. This platform utilizes lanthanide-doped rare earth nanoparticles (RENPs) that are sensitized by a moiety-engineered near-infrared (NIR) dye TPEO-820. The TPEO-820 sensitized RENPs exhibit 5 times increase in the release of NO concentration for MRSA treatment compared to unsensitized RENPs, enabling precise therapy of MRSA infection both in vitro and in vivo. Moreover, the platform demonstrates NIR-II luminescence in vivo, allowing for sensitive imaging in deep tissue for MRSA infection.
Collapse
Affiliation(s)
- Yingxin Zhu
- The Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xianzhu Luo
- The Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Zihang Yu
- The Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Shihui Wen
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Guochen Bao
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Le Zhang
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Cuiling Zhang
- The Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yuezhong Xian
- The Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
38
|
Fang M, Lin L, Zheng M, Liu W, Lin R. Antibacterial functionalized carbon dots and their application in bacterial infections and inflammation. J Mater Chem B 2023; 11:9386-9403. [PMID: 37720998 DOI: 10.1039/d3tb01543b] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Bacterial infections and inflammation pose a severe threat to human health and the social economy. The existence of super-bacteria and the increasingly severe phenomenon of antibiotic resistance highlight the development of new antibacterial agents. Due to low cytotoxicity, high biocompatibility, and different antibacterial mechanisms from those for antibiotics, functionalized carbon dots (FCDs) promise a new platform for the treatment of bacterial infectious diseases. However, few articles have systematically sorted out the available antibacterial mechanisms for FCDs and their application in the treatment of bacterial inflammation. This review focuses on the available antibacterial mechanisms for FCDs, including covalent and non-covalent interactions, reactive oxygen species, photothermal therapy, and size effect. Meanwhile, the design of antibacterial FCDs is introduced, including surface modification, doping, and combination with other nanomaterials. Furthermore, this review specifically concentrates on the research advances of antibacterial FCDs in the treatment of bacterial inflammation. Finally, the advantages and challenges of applying FCDs in practical antimicrobial applications are discussed.
Collapse
Affiliation(s)
- Meng Fang
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Liping Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Muyue Zheng
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wei Liu
- Department of Bioinformatics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongguang Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
39
|
Wu W, Duan M, Shao S, Meng F, Qin Y, Zhang M. Recent advances in nanomaterial-mediated bacterial molecular action and their applications in wound therapy. Biomater Sci 2023; 11:6748-6769. [PMID: 37665317 DOI: 10.1039/d3bm00663h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Because of the multi-pathway antibacterial mechanisms of nanomaterials, they have received widespread attention in wound therapy. However, owing to the complexities of bacterial responses toward nanomaterials, antibacterial molecular mechanisms remain unclear, making it difficult to rationally design highly efficient antibacterial nanomaterials. Fortunately, molecular dynamics simulations and omics techniques have been used as effective methods to further investigate the action targets of nanomaterials. Therefore, the review comprehensively analyzes the antibacterial mechanisms of nanomaterials from the morphology-dependent antibacterial activity and physicochemical/optical properties-dependent antibacterial activity, which provided guidance for constructing excellently efficient and broad-spectrum antibacterial nanomaterials for wound therapy. More importantly, the main molecular action targets of nanomaterials from the membranes, DNA, energy metabolism pathways, oxidative stress defense systems, ribosomes, and biofilms are elaborated in detail. Furthermore, nanomaterials used in wound therapy are reviewed and discussed. Finally, future directions of nanomaterials from mechanisms to nanomedicine are further proposed.
Collapse
Affiliation(s)
- Wanfeng Wu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China.
| | - Mengjiao Duan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China.
| | - Shuxuan Shao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China.
| | - Fanxing Meng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China.
| | - Yanan Qin
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China.
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
40
|
Qi F, Li H, Chen G, Peng S, Luo X, Xiong S, Zhu H, Shuai C. A CuS@g-C 3N 4 heterojunction endows scaffold with synergetic antibacterial effect. Colloids Surf B Biointerfaces 2023; 230:113512. [PMID: 37595378 DOI: 10.1016/j.colsurfb.2023.113512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/26/2023] [Accepted: 08/07/2023] [Indexed: 08/20/2023]
Abstract
Graphitic carbon nitride (g-C3N4) had aroused tremendous attention in photodynamic antibacterial therapy due to its excellent energy band structure and appealing optical performance. Nevertheless, the superfast electron-hole recombination and dense biofilm formation abated its photodynamic antibacterial effect. To this end, a nanoheterojunction was synthesized via in-situ growing copper sulfide (CuS) on g-C3N4 (CuS@g-C3N4). On the one hand, CuS could form Fermi level difference with g-C3N4 to accelerate carrier transfer and thus facilitate electron-hole separation. On the other hand, CuS could respond near-infrared light to generate localized thermal to disrupt biofilm. Then the CuS@g-C3N4 nanoparticle was introduced into the poly-l-lactide (PLLA) scaffold. The photoelectrochemistry results demonstrated that the electron-hole separation efficiency was apparently enhanced and thereby brought an approximate sevenfold increase in reactive oxygen species (ROS) production. The thermal imaging indicated that the scaffold possesses a superior photothermal effect, which effectively eradicated the biofilm by disrupting its extracellular DNA and thereby facilitated to the entry of ROS. The entered ROS could effectively kill the bacteria by causing protein, K+, and nucleic acid leakage and glutathione consumption. As a consequence, the scaffold displayed an antibacterial rate of 97.2% and 98.5% against E. coli and S. aureus, respectively.
Collapse
Affiliation(s)
- Fangwei Qi
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Huixing Li
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Gang Chen
- School of Materials Science and Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Xingrui Luo
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Shiyu Xiong
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Hua Zhu
- School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Cijun Shuai
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China; State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; College of Mechanical Engineering, Xinjiang University, Urumqi 830017, China.
| |
Collapse
|
41
|
Jiang Y, Yin C, Mo J, Wang X, Wang T, Li G, Zhou Q. Recent progress in carbon dots for anti-pathogen applications in oral cavity. Front Cell Infect Microbiol 2023; 13:1251309. [PMID: 37780847 PMCID: PMC10540312 DOI: 10.3389/fcimb.2023.1251309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Background Oral microbial infections are one of the most common diseases. Their progress not only results in the irreversible destruction of teeth and other oral tissues but also closely links to oral cancers and systemic diseases. However, traditional treatment against oral infections by antibiotics is not effective enough due to microbial resistance and drug blocking by oral biofilms, along with the passive dilution of the drug on the infection site in the oral environment. Aim of review Besides the traditional antibiotic treatment, carbon dots (CDs) recently became an emerging antimicrobial and microbial imaging agent because of their excellent (bio)physicochemical performance. Their application in treating oral infections has received widespread attention, as witnessed by increasing publication in this field. However, to date, there is no comprehensive review available yet to analyze their effectiveness and mechanism. Herein, as a step toward addressing the present gap, this review aims to discuss the recent advances in CDs against diverse oral pathogens and thus propose novel strategies in the treatment of oral microbial infections. Key scientific concepts of review In this manuscript, the recent progress of CDs against oral pathogens is summarized for the first time. We highlighted the antimicrobial abilities of CDs in terms of oral planktonic bacteria, intracellular bacteria, oral pathogenic biofilms, and fungi. Next, we introduced their microbial imaging and detection capabilities and proposed the prospects of CDs in early diagnosis of oral infection and pathogen microbiological examination. Lastly, we discussed the perspectives on clinical transformation and the current limitations of CDs in the treatment of oral microbial infections.
Collapse
Affiliation(s)
- Yuying Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Chuqiang Yin
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jianning Mo
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xiaoyu Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Ting Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Guotai Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Qihui Zhou
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
42
|
Zhao WB, Liu KK, Wang Y, Li FK, Guo R, Song SY, Shan CX. Antibacterial Carbon Dots: Mechanisms, Design, and Applications. Adv Healthc Mater 2023; 12:e2300324. [PMID: 37178318 DOI: 10.1002/adhm.202300324] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/15/2023] [Indexed: 05/15/2023]
Abstract
The increase in antibiotic resistance promotes the situation of developing new antibiotics at the forefront, while the development of non-antibiotic pharmaceuticals is equally significant. In the post-antibiotic era, nanomaterials with high antibacterial efficiency and no drug resistance make them attractive candidates for antibacterial materials. Carbon dots (CDs), as a kind of carbon-based zero-dimensional nanomaterial, are attracting much attention for their multifunctional properties. The abundant surface states, tunable photoexcited states, and excellent photo-electron transfer properties make sterilization of CDs feasible and are gradually emerging in the antibacterial field. This review provides comprehensive insights into the recent development of CDs in the antibacterial field. The topics include mechanisms, design, and optimization processes, and their potential practical applications are also highlighted, such as treatment of bacterial infections, against bacterial biofilms, antibacterial surfaces, food preservation, and bacteria imaging and detection. Meanwhile, the challenges and outlook of CDs in the antibacterial field are discussed and proposed.
Collapse
Affiliation(s)
- Wen-Bo Zhao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yong Wang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Fu-Kui Li
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Rui Guo
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Shi-Yu Song
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
43
|
Ma H, Xing F, Zhou Y, Yu P, Luo R, Xu J, Xiang Z, Rommens PM, Duan X, Ritz U. Design and fabrication of intracellular therapeutic cargo delivery systems based on nanomaterials: current status and future perspectives. J Mater Chem B 2023; 11:7873-7912. [PMID: 37551112 DOI: 10.1039/d3tb01008b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Intracellular cargo delivery, the introduction of small molecules, proteins, and nucleic acids into a specific targeted site in a biological system, is an important strategy for deciphering cell function, directing cell fate, and reprogramming cell behavior. With the advancement of nanotechnology, many researchers use nanoparticles (NPs) to break through biological barriers to achieving efficient targeted delivery in biological systems, bringing a new way to realize efficient targeted drug delivery in biological systems. With a similar size to many biomolecules, NPs possess excellent physical and chemical properties and a certain targeting ability after functional modification on the surface of NPs. Currently, intracellular cargo delivery based on NPs has emerged as an important strategy for genome editing regimens and cell therapy. Although researchers can successfully deliver NPs into biological systems, many of them are delivered very inefficiently and are not specifically targeted. Hence, the development of efficient, target-capable, and safe nanoscale drug delivery systems to deliver therapeutic substances to cells or organs is a major challenge today. In this review, on the basis of describing the research overview and classification of NPs, we focused on the current research status of intracellular cargo delivery based on NPs in biological systems, and discuss the current problems and challenges in the delivery process of NPs in biological systems.
Collapse
Affiliation(s)
- Hong Ma
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Fei Xing
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Ludwigstraße 23, 35392 Giessen, Germany
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Rong Luo
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Jiawei Xu
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Zhou Xiang
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Pol Maria Rommens
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Xin Duan
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
- Department of Orthopedic Surgery, The Fifth People's Hospital of Sichuan Province, Chengdu, China
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
44
|
Fu X, Ni Y, Wang G, Nie R, Wang Y, Yao R, Yan D, Guo M, Li N. Synergistic and Long-Lasting Wound Dressings Promote Multidrug-Resistant Staphylococcus Aureus-Infected Wound Healing. Int J Nanomedicine 2023; 18:4663-4679. [PMID: 37605733 PMCID: PMC10440117 DOI: 10.2147/ijn.s418671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
Background Multidrug-resistant staphylococcus aureus infected wounds can lead to nonhealing, systemic infections, and even death. Although advanced dressings are effective in protecting, disinfecting, and maintaining moist microenvironments, they often have limitations such as single functionality, inadequate drug release, poor biosafety, or high rates of drug resistance. Methods Here, a novel wound dressing comprising glycyrrhizic acid (GA) and tryptophan-sorbitol carbon quantum dots (WS-CQDs) was developed, which exhibit synergistic and long-lasting antibacterial and anti-inflammatory effects. We investigated the characterization, mechanical properties, synergistic antibacterial effects, sustained-release properties, and cytotoxicity of GA/WS-CQDs hydrogels in vitro. Additionally, we performed transcriptome sequence analysis to elucidate the antibacterial mechanism. Furthermore, we evaluated the biosafety, anti-inflammatory effects, and wound healing ability of GA/WS-CQDs dressings using an in vivo mouse model of methicillin-resistant staphylococcus aureus (MRSA)-infected wounds. Results The prepared GA/WS-CQDs hydrogels demonstrated superior anti-MRSA effects compared to common antibiotics in vitro. Furthermore, the sustained release of WS-CQDs from GA/WS-CQDs hydrogels lasted for up to 60 h, with a cumulative release of exceeding 90%. The sustained-released WS-CQDs exhibited excellent anti-MRSA effects, with low drug resistance attributed to DNA damage and inhibition of bacterial biofilm formation. Notably, in vivo experiments showed that GA/WS-CQDs dressings reduced the expression of inflammatory factors (TNF-α, IL-1β, and IL-6) and significantly promoted the healing of MRSA-infected wounds with almost no systemic toxicity. Importantly, the dressings did not require replacement during the treatment process. Conclusion These findings emphasize the high suitability of GA/WS-CQDs dressings for MRSA-infected wound healing and their potential for clinical translation.
Collapse
Affiliation(s)
- Xiangjie Fu
- Department of Blood Transfusion, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Yaqiong Ni
- Hunan Provincial Key Laboratory of Micro&Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People’s Republic of China
| | - Guanchen Wang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Runda Nie
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Yang Wang
- Institute of Integrative Medicine, Key Laboratory of Hunan Province for Liver Manifestation of Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Run Yao
- Department of Blood Transfusion, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Danyang Yan
- Department of Blood Transfusion, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Mingming Guo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Ning Li
- Department of Blood Transfusion, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| |
Collapse
|
45
|
Liu K, Zhang C, Chang R, He Y, Guan F, Yao M. Ultra-stretchable, tissue-adhesive, shape-adaptive, self-healing, on-demand removable hydrogel dressings with multiple functions for infected wound healing in regions of high mobility. Acta Biomater 2023; 166:224-240. [PMID: 37207743 DOI: 10.1016/j.actbio.2023.05.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Bacterial infection in the most mobile area usually leads to delayed healing and functional restriction, which has been a long-term challenge in clinic. Developing hydrogel-based dressings with mechanical flexibly, high adhesive and anti-bacterial properties, will contribute to the healing and therapeutic effects especially for this typical skin wound. In this work, composite hydrogel named PBOF through multi-reversible bonds between polyvinyl alcohol, borax, oligomeric procyanidin and ferric ion demonstrated a 100 times ultra-stretch ability, 24 kPa of highly tissue-adhesive, rapid shape-adaptability within 2 min and self-healing feature within 40 s, was designed as the multifunctional wound dressing for the Staphylococcus aureus-infected skin wound in the mice nape model. Besides, this hydrogel dressing could be easily removed on-demand within 10 min by water. The rapid disassembly of this hydrogel is related to the formation of hydrogen bonds between polyvinyl alcohol and water. Moreover, the multifunctional properties of this hydrogel include strong anti-oxidative, anti-bacteria and hemostasis derived from oligomeric procyanidin and photothermal effect of ferric ion/polyphenol chelate. The killing ratio of the hydrogel on Staphylococcus aureus in infected skin wound reached 90.6% when exposed to 808 nm irradiation for 10 min. Simultaneously, reduced oxidative stress, suppressed inflammation, and promoted angiogenesis all together accelerated wound healing. Therefore, this well-designed multifunctional PBOF hydrogel holds great promise as skin wound dressing especially in the high mobile regions of the body. STATEMENT OF SIGNIFICANCE: An ultra-stretchable, highly tissue-adhesive, and rapidly shape-adaptive, self-healing and on-demand removable hydrogel based on multi-reversible bonds among polyvinyl alcohol, borax, oligomeric procyanidin and ferric ion is designed as dressing material for infected wound healing in the movable nape. The rapid on-demand removal of the hydrogel relates to the formation of hydrogen bonds between polyvinyl alcohol and water. This hydrogel dressing shows strong antioxidant capacity, rapid hemostasis and photothermal antibacterial ability. This is derived from oligomeric procyanidin and thephotothermal effect of ferric ion/polyphenol chelate, which eliminates bacterial infection, reduces oxidative stress, regulates inflammation, promotes angiogenesis, and finally accelerates the infected wound healing in movable part.
Collapse
Affiliation(s)
- Kaiyue Liu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Chen Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Rong Chang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Yuanmeng He
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| |
Collapse
|
46
|
Han JF, Lou Q, Ding ZZ, Zheng GS, Ni QC, Song RW, Liu KK, Zang JH, Dong L, Shen CL, Shan CX. Chemiluminescent carbon nanodots for dynamic and guided antibacteria. LIGHT, SCIENCE & APPLICATIONS 2023; 12:104. [PMID: 37142602 PMCID: PMC10160024 DOI: 10.1038/s41377-023-01149-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/02/2023] [Accepted: 04/02/2023] [Indexed: 05/06/2023]
Abstract
Advanced antibacterial technologies are needed to counter the rapid emergence of drug-resistant bacteria. Image-guided therapy is one of the most promising strategies for efficiently and accurately curing bacterial infections. Herein, a chemiluminescence (CL)-dynamic/guided antibacteria (CDGA) with multiple reactive oxygen species (ROS) generation capacity and chemiexcited near-infrared emission has been designed for the precise theranostics of bacterial infection by employing near-infrared emissive carbon nanodots (CDs) and peroxalate as CL fuels. Mechanistically, hydrogen peroxide generated in the bacterial microenvironment can trigger the chemically initiated electron exchange between CDs and energy-riched intermediate originated from the oxidized peroxalate, enabling bacterial induced inflammation imaging. Meanwhile, type I/II photochemical ROS production and type III ultrafast charge transfer from CDs under the self-illumination can inhibit the bacteria proliferation efficiently. The potential clinical utility of CDGA is further demonstrated in bacteria infected mice trauma model. The self-illuminating CDGA exhibits an excellent in vivo imaging quality in early detecting wound infections and internal inflammation caused by bacteria, and further are proven as efficient broad-spectrum antibacterial nanomedicines without drug-resistance, whose sterilizing rate is up to 99.99%.
Collapse
Affiliation(s)
- Jiang-Fan Han
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Qing Lou
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhong-Zheng Ding
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Guang-Song Zheng
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Qing-Chao Ni
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Run-Wei Song
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Jin-Hao Zang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Cheng-Long Shen
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China.
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
47
|
Qu X, Gao C, Fu L, Chu Y, Wang JH, Qiu H, Chen J. Positively Charged Carbon Dots with Antibacterial and Antioxidant Dual Activities for Promoting Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18608-18619. [PMID: 37032476 DOI: 10.1021/acsami.2c21839] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Bacterial infection and excess reactive oxygen species are key factors that lead to slow or substantially delayed wound healing. It is crucial to design and develop new nanomaterials with antibacterial and antioxidative capabilities for wound healing. Here, positively charged carbon dots (CDs) are rationally designed and synthesized from p-phenylenediamine and polyethyleneimine by a facile one-pot solvothermal method, which show good biocompatibility in in vitro cytotoxicity, hemolysis assays, and in vivo toxicity evaluation. The positively charged CDs show superior antimicrobial effect against Staphylococcus aureus (S. aureus) at very low concentrations, reducing the risk of wound infection. At the same time, CDs with surface defects and unpaired electrons can effectively scavenge excess free radicals to reduce oxidative stress damage, accelerate wound inflammation-proliferation transition, and promote wound healing. The mouse model of skin infection demonstrates that CDs can effectively promote the wound healing of skin infection without obvious side effects by simply dropping or spraying onto the wound. We believe that the prepared CDs have satisfactory biocompatibility, antioxidant capacity, and excellent antibacterial activity and have great application potential in wound healing.
Collapse
Affiliation(s)
- Xiaoqing Qu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chenxi Gao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lei Fu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Yuefeng Chu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Jian-Hua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
48
|
Zhao D, Li X, Xu M, Jiao Y, Liu H, Xiao X, Zhao H. Preparations of antibacterial yellow-green-fluorescent carbon dots and carbon dots-lysozyme complex and their applications in bacterial imaging and bacteria/biofilm inhibition/clearance. Int J Biol Macromol 2023; 231:123303. [PMID: 36657551 DOI: 10.1016/j.ijbiomac.2023.123303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
The preparation of functional long-wavelength-emitting nanomaterials and the researches on their applications in antibacterial and antibiofilm fields have important significance. This paper reports the preparation of yellow-green-fluorescent and high- quantum yield carbon dots (4-ACDs) with 4-aminosalicylic acid and polyethylene imine as raw materials through one-step route, and the impacts of raw material structure and the reaction conditions upon the optical properties of the products have been investigated. 4-ACDs exhibit excellent broad-spectrum antibacterial activity, and their good biocompatibility ensures them as ideal fluorescent nano-probe for cell imaging. However, 4-ACDs could not effectively eliminate the biofilm of Staphylococcus aureus (S. aureus). CDs-LZM complex was prepared through the coupling between 4-ACDs and lysozyme (LZM) and the complex showed strong antibacterial activity against Gram-positive bacteria, particularly with MIC against S. aureus at 5 μg mL-1. Besides, CDs-LZM showed excellent ability against the biofilm of S. aureus. At the concentration of 60 μg mL-1, its inhibition rate against the growth of biofilm was 86 %, and elimination rate against biofilm reached 76 %. CDs-LZM exhibited obvious antibiofilm ability through removing extracellular matrix of biofilm, greatly reducing the thickness of biofilm under confocal microscopy. The application of novel long-wavelength-emitting nanomaterial in eliminating pathogenic bacteria is of great significance.
Collapse
Affiliation(s)
- Dan Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China.
| | - Xiaoyun Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Mengyu Xu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Yan Jiao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Huan Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Xincai Xiao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Haiyan Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| |
Collapse
|
49
|
Yang M, Su B, Ma Z, Zheng X, Liu Y, Li Y, Ren J, Lu L, Yang B, Yu X. Renal-friendly Li +-doped carbonized polymer dots activate Schwann cell autophagy for promoting peripheral nerve regeneration. Acta Biomater 2023; 159:353-366. [PMID: 36669552 DOI: 10.1016/j.actbio.2023.01.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Activation of autophagy in Schwann cells (SCs) has emerged as a powerful trigger for peripheral nerve injury (PNI) repair. Lithium ion (Li+) is a classical autophagy activator that plays an important role in promoting axonal extension and remyelination. However, the therapeutic window of existing lithium drugs is extremely narrow, and the adverse side effects, especially nephrotoxicity, severely limit their therapeutic value. Herein, Li+-doped carbonized polymer dots (Li-CPDs) was synthesized for the first time to change the pharmacokinetics of Li+ from occupying epithelial sodium channels to lipid raft-mediated endocytosis. The in-vivo results confirmed that Li-CPDs could accelerate the removal of myelin debris and promote nerve regeneration via activating autophagy of SCs. Moreover, Li-CPDs exhibited almost no renal toxicity compared to that of raw lithium drugs. Thus, Li-CPDs could serve as a promising Li+-based nanomedicine for PNI regeneration with improved biosafety. STATEMENT OF SIGNIFICANCE: Regardless of the fact that lithium drugs have been used in treatment of mental illness such as manic depression, the systemic side effects and renal metabolic toxicity still seriously restrict their clinical application. Since Li+ and Na+ compete for ion channels of cell membrane, the cell entry efficiency is extremely low and easily affected by body fluctuations, which seems to be an unsolvable problem. Herein, we rationally exploited the endocytotic features of CPDs to develop Li-CPDs. The Li-CPDs improved the entry pathway, greatly reduced nephrotoxicity, and inherited the biological function of Li+ to activate autophagy for promoting peripheral nerve regeneration. Due to the BBB-crossing property of Li-CPDs, it also showed application prospects in future research on central nervous system diseases.
Collapse
Affiliation(s)
- Mingxi Yang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, PR China; Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Bang Su
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin 130031, PR China
| | - Xiaotian Zheng
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China
| | - Yan Liu
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China
| | - Yangfan Li
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China
| | - Jingyan Ren
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, PR China; Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Laijin Lu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, PR China; Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China.
| | - Bai Yang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, PR China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Xin Yu
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China.
| |
Collapse
|
50
|
Wen H, Wu Q, Liu L, Li Y, Sun T, Xie Z. Structural optimization of BODIPY photosensitizers for enhanced photodynamic antibacterial activities. Biomater Sci 2023; 11:2870-2876. [PMID: 36876488 DOI: 10.1039/d3bm00073g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Enhancing the interactions between photosensitizers and bacteria is key to developing effective photodynamic antibacterial agents. However, the influence of different structures on the therapeutic effects has not been systematically investigated. Herein, 4 BODIPYs with distinct functional groups, including the phenylboronic acid (PBA) group and pyridine (Py) cations, were designed to explore their photodynamic antibacterial activities. The BODIPY with the PBA group (IBDPPe-PBA) exhibits potent activity against planktonic Staphylococcus aureus (S. aureus) upon illumination, while the BODIPY with Py cations (IBDPPy-Ph) or both the PBA group and Py cations (IBDPPy-PBA) can significantly minimize the growth of both S. aureus and Escherichia coli (E. coli). In particular, IBDPPy-Ph can not only eliminate the mature S. aureus biofilm and E. coli biofilm in vitro, but also promote the healing of the infected wound. Our work provides an alternative for reasonable design of photodynamic antibacterial materials.
Collapse
Affiliation(s)
- Hui Wen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Qihang Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Liqian Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yite Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tingting Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|