1
|
Duan Y, Hao Y, Feng H, Shu J, He Y. Research progress on Haemophilus parasuis vaccines. Front Vet Sci 2025; 12:1492144. [PMID: 40007746 PMCID: PMC11851532 DOI: 10.3389/fvets.2025.1492144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Haemophilus parasuis (HPS) is the causative agent of porcine Glässer's disease, which has become prevalent in China in recent years. It is characterized by fibrinous polyserositis, arthritis, and meningitis, but often shows mixed infection with other upper respiratory tract pathogens, causing heavy economic losses to the pig industry. Vaccination is an important means to prevent and control HPS infection, and the currently available vaccines are mainly the inactivated type or subunit vaccines containing immunogenic HPS proteins. This study reviews recent advances in HPS vaccines, analyzes the relative effectiveness of the components of subunit vaccines and discusses the advantages and disadvantages of each vaccine type. The goal is to provide insights for the development of more effective vaccines against Haemophilus parasuis infections in pigs.
Collapse
|
2
|
Gao S, Li X, Han B. Bacterial and bacterial derivatives-based drug delivery systems: a novel approach for treating central nervous system disorders. Expert Opin Drug Deliv 2025; 22:163-180. [PMID: 39688950 DOI: 10.1080/17425247.2024.2444364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/19/2024]
Abstract
INTRODUCTION Bacteria and their derivatives show great potential as drug delivery systems due to their unique chemotaxis, biocompatibility, and targeting abilities. In CNS disease treatment, bacterial carriers can cross the blood-brain barrier (BBB) and deliver drugs precisely, overcoming limitations of traditional methods. Advances in genetic engineering, synthetic biology, and nanotechnology have transformed these systems into multifunctional platforms for personalized CNS treatment. AREAS COVERED This review examines the latest research on bacterial carriers for treating ischemic brain injury, neurodegenerative diseases, and gliomas. Bacteria efficiently cross the blood-brain barrier via active targeting, endocytosis, paracellular transport, and the nose-to-brain route for precise drug delivery. Various bacterial drug delivery systems, such as OMVs and bacterial ghosts, are explored for their design and application. Databases were searched in Google Scholar for the period up to December 2024. EXPERT OPINION Future developments in bacterial drug delivery will rely on AI-driven design and high-throughput engineering, enhancing treatment precision. Personalized medicine will further optimize bacterial carriers for individual patients, but challenges such as biosafety, immune rejection, and scalability must be addressed. As multimodal diagnostic and therapeutic strategies advance, bacterial carriers are expected to play a central role in CNS disease treatment, offering novel precision medicine solutions.
Collapse
Affiliation(s)
- Shizhu Gao
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, PR China
| | - Xin Li
- Orthopedic Medical Center, 2nd hospital of Jilin University, Changchun, PR China
| | - Bing Han
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, PR China
| |
Collapse
|
3
|
Parab L, Romeyer Dherbey J, Rivera N, Schwarz M, Gallie J, Bertels F. Chloramphenicol and gentamicin reduce the evolution of resistance to phage ΦX174 by suppressing a subset of E. coli LPS mutants. PLoS Biol 2025; 23:e3002952. [PMID: 39841243 PMCID: PMC11753469 DOI: 10.1371/journal.pbio.3002952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/25/2024] [Indexed: 01/23/2025] Open
Abstract
Bacteriophages infect gram-negative bacteria by attaching to molecules present on the bacterial surface, often lipopolysaccharides (LPS). Modification of LPS can lead to resistance to phage infection. In addition, LPS modifications can impact antibiotic susceptibility, allowing for phage-antibiotic synergism. The evolutionary mechanism(s) behind such synergistic interactions remain largely unclear. Here, we show that the presence of antibiotics can affect the evolution of resistance to phage infection, using phage ΦX174 and Escherichia coli C. We use a collection of 34 E. coli C LPS strains, each of which is resistant to ΦX174, and has either a "rough" or "deep rough" LPS phenotype. Growth of the bacterial strains with the deep rough phenotype is inhibited at low concentrations of chloramphenicol and, to a much lesser degree, gentamicin. Treating E. coli C wild type with ΦX174 and chloramphenicol eliminates the emergence of mutants with the deep rough phenotype, and thereby slows the evolution of resistance to phage infection. At slightly lower chloramphenicol concentrations, phage resistance rates are similar to those observed at high concentrations; yet, we show that the diversity of possible mutants is much larger than at higher chloramphenicol concentrations. These data suggest that specific antibiotic concentrations can lead to synergistic phage-antibiotic interactions that disappear at higher antibiotic concentrations. Overall, we show that the change in survival of various ΦX174-resistant E. coli C mutants in the presence of antibiotics can explain the observed phage-antibiotic synergism.
Collapse
Affiliation(s)
- Lavisha Parab
- Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jordan Romeyer Dherbey
- Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Norma Rivera
- Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Michael Schwarz
- Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jenna Gallie
- Microbial Evolutionary Dynamics Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Frederic Bertels
- Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
4
|
Lloren KKS, Senevirathne A, Lee JH. Advancing vaccine technology through the manipulation of pathogenic and commensal bacteria. Mater Today Bio 2024; 29:101349. [PMID: 39850273 PMCID: PMC11754135 DOI: 10.1016/j.mtbio.2024.101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/30/2024] [Accepted: 11/15/2024] [Indexed: 01/25/2025] Open
Abstract
Advancements in vaccine technology are increasingly focused on leveraging the unique properties of both pathogenic and commensal bacteria. This revolutionary approach harnesses the diverse immune modulatory mechanisms and bacterial biology inherent in different bacterial species enhancing vaccine efficacy and safety. Pathogenic bacteria, known for their ability to induce robust immune responses, are being studied for their potential to be engineered into safe, attenuated vectors that can target specific diseases with high precision. Concurrently, commensal bacteria, which coexist harmlessly with their hosts and contribute to immune system regulation, are also being explored as novel delivery systems and in microbiome-based therapy. These bacteria can modulate immune responses, offering a promising avenue for developing effective and personalized vaccines. Integrating the distinctive characteristics of pathogenic and commensal bacteria with advanced bacterial engineering techniques paves the way for innovative vaccine and therapeutic platforms that could address a wide range of infectious diseases and potentially non-infectious conditions. This holistic approach signifies a paradigm shift in vaccine development and immunotherapy, emphasizing the intricate interplay between the bacteria and the immune systems to achieve optimal immunological outcomes.
Collapse
Affiliation(s)
- Khristine Kaith S. Lloren
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do, 54596, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do, 54596, Republic of Korea
| |
Collapse
|
5
|
Alexander LM, Khalid S, Gallego-Lopez GM, Astmann TJ, Oh JH, Heggen M, Huss P, Fisher R, Mukherjee A, Raman S, Choi IY, Smith MN, Rogers CJ, Epperly MW, Knoll LJ, Greenberger JS, van Pijkeren JP. Development of a Limosilactobacillus reuteri therapeutic delivery platform with reduced colonization potential. Appl Environ Microbiol 2024; 90:e0031224. [PMID: 39480094 DOI: 10.1128/aem.00312-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/09/2024] [Indexed: 11/02/2024] Open
Abstract
Bacterial biotherapeutic delivery vehicles have the potential to treat a variety of diseases. This approach obviates the need to purify the recombinant effector molecule, allows delivery of therapeutics in situ via oral or intranasal administration, and protects the effector molecule during gastrointestinal transit. Lactic acid bacteria have been broadly developed as therapeutic delivery vehicles though risks associated with the colonization of a genetically modified microorganism have so-far not been addressed. Here, we present an engineered Limosilactobacillus reuteri strain with reduced colonization potential. We applied a dual-recombineering scheme for efficient barcoding and generated mutants in genes encoding five previously characterized and four uncharacterized putative adhesins. Compared with the wild type, none of the mutants were reduced in their ability to survive gastrointestinal transit in mice. CmbA was identified as a key protein in L. reuteri adhesion to HT-29 and enteroid cells. The nonuple mutant, a single strain with all nine genes encoding adhesins inactivated, had reduced capacity to adhere to enteroid monolayers. The nonuple mutant producing murine IFN-β was equally effective as its wild-type counterpart in mitigating radiation toxicity in mice. Thus, this work established a novel therapeutic delivery platform that lays a foundation for its application in other microbial therapeutic delivery candidates and furthers the progress of the L. reuteri delivery system towards human use.IMPORTANCEOne major advantage to leverage gut microbes that have co-evolved with the vertebrate host is that evolution already has taken care of the difficult task to optimize survival within a complex ecosystem. The availability of the ecological niche will support colonization. However, long-term colonization of a recombinant microbe may not be desirable. Therefore, strategies need to be developed to overcome this potential safety concern. In this work, we developed a single strain in which we inactivated the encoding sortase, and eight genes encoding characterized/putative adhesins. Each individual mutant was characterized for growth and adhesion to epithelial cells. On enteroid cells, the nonuple mutant has a reduced adhesion potential compared with the wild-type strain. In a model of total-body irradiation, the nonuple strain engineered to release murine interferon-β performed comparable to a derivative of the wild-type strain that releases interferon-β. This work is an important step toward the application of recombinant L. reuteri in humans.
Collapse
Affiliation(s)
- Laura M Alexander
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Saima Khalid
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gina M Gallego-Lopez
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Theresa J Astmann
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jee-Hwan Oh
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark Heggen
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Phil Huss
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Amitava Mukherjee
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - In Young Choi
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Morgan N Smith
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Michael W Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Laura J Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joel S Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
6
|
Zhang H, Li Z, Li W, Jin Y, Li Y, Xiao Q, Tong D, Zhou J. Comparison of the immune effects of the Chlamydia abortus MOMP antigen displayed in different parts of bacterial ghosts. Front Microbiol 2024; 15:1349746. [PMID: 38389524 PMCID: PMC10883653 DOI: 10.3389/fmicb.2024.1349746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Bacterial ghosts (BGs) are promising vaccine platforms owing to their high adjuvant properties and delivery efficiency. Heterologous antigens can be anchored to different parts of BGs using genetic engineering strategies to prepare vaccines. However, several key issues need to be resolved, including the efficient preparation of BGs and determining the optimal anchoring position of exogenous antigens in the BGs. Here, we prepared an efficient temperature-controlled lysis system using lysis gene E of phage PhiX174 and used the major outer membrane protein (MOMP) of Chlamydia abortus (C. abortus) as a model antigen to explore the optimal display location of exogenous antigens in BGs. We demonstrated that the constructed recombinant temperature-controlled lysis plasmid can still stably inhibit E gene expression at 37°C, and the lysis efficiency of E. coli can reach above 99.9%. Four recombinant MOMP Escherichia coli (E. coli) ghost vaccines were constructed using different anchor sequences. These vaccines all induced strong specific antibody responses and secrete high levels of IFN-γ in immunized mice and significantly increased the clearance of C. abortus in a mouse infection model. Notably, the strongest immune effect was observed when MOMP was displayed on the surface of E. coli ghosts (rECG-InpN-M), which resulted in the clearance of C. abortus in mice 6 days earlier than that with the recombinant MOMP vaccine. Altogether, we constructed an efficient BG temperature-controlled lysis system and provided a feasible strategy for developing a BG delivery platform with enhanced immune effects.
Collapse
Affiliation(s)
- Huaiyu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhaocai Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wei Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Youshun Jin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yunhui Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qian Xiao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jizhang Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
7
|
Lee J, Lee KS, Lee J, Lee KS, Park SY. Weissella koreensis and Pediococcus pentosaceus bacterial ghosts induce inflammatory responses as immunostimulants. Biochem Biophys Res Commun 2023; 676:213-219. [PMID: 37597299 DOI: 10.1016/j.bbrc.2023.07.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 08/21/2023]
Abstract
In this study, bacterial ghosts (BGs) were generated from Weissella koreensis LKS42 (WKorGs) and Pediococcus pentosacues KA94 (PPGs) by chemically inducing lysis using substances such as hydrochloric acid (HCl), sulfuric acid (H2SO4), nitric acid (HNO3), acetic acid (CH3COOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), sodium carbonate (Na2CO3), n-butanol, and C6H8O7. HCl-induced WKorGs and PPGs exhibited complete removal of DNA and displayed transverse membrane dissolution tunnel structures under scanning electron microscopy (SEM). Cell viability assays showed high viability of RAW 264.7 cells exposed to HCl-induced WKorGs and PPGs. Additionally, treatment with HCl-induced WKorGs and PPGs elevated mRNA levels of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, iNOS) and the anti-inflammatory cytokine IL-10 in RAW 264.7 cells. These findings suggest that HCl-induced WKorGs and PPGs have the potential to be used as inactivated bacterial immunostimulants, highlighting their promising applications in immunization and immunotherapy.
Collapse
Affiliation(s)
- Jieun Lee
- Diagnostic Research Group, BIONEER Corporation, Daejeon, Republic of Korea
| | - Kwang-Su Lee
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon, Republic of Korea
| | - Junwon Lee
- Department of Life Science and Genetic Engineering, Graduate School of Pai Chai University, Daejeon, Republic of Korea
| | - Ki-Sung Lee
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon, Republic of Korea.
| | - Shin-Young Park
- Division of Software Engineering, Pai Chai University, Daejeon, Republic of Korea.
| |
Collapse
|
8
|
Faghihkhorasani A, Ahmed HH, Mashool NM, Alwan M, Assefi M, Adab AH, Yasamineh S, Gholizadeh O, Baghani M. The potential use of bacteria and bacterial derivatives as drug delivery systems for viral infection. Virol J 2023; 20:222. [PMID: 37789431 PMCID: PMC10548687 DOI: 10.1186/s12985-023-02183-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023] Open
Abstract
Viral infections in humans are responsible for fatalities worldwide and contribute to the incidence of various human ailments. Controllable targeted medicine delivery against many illnesses, including viral infection, may be significantly aided by using bacteria and bacteria-derived products. They may accumulate in diseased tissues despite physical obstacles, where they can launch antiviral immunity. The ability to genetically and chemically modify them means that vaccinations against viral infections may be manufactured and delivered to affected tissues more safely and effectively. The objective of this study is to provide an overview of the latest advancements in the field of utilizing bacteria and bacterial derivatives as carriers for administering medication to treat viral diseases such as SARS-CoV-2, hepatitis B virus, hepatitis C virus, human immunodeficiency virus, human papillomavirus, influenza, and Ebola virus.
Collapse
Affiliation(s)
| | | | | | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Marjan Assefi
- University of North Carolina at Greensboro, Greensboro, USA
| | - Aya Hussein Adab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Omid Gholizadeh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| | - Moein Baghani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Orta AK, Riera N, Li YE, Tanaka S, Yun HG, Klaic L, Clemons WM. The mechanism of the phage-encoded protein antibiotic from ΦX174. Science 2023; 381:eadg9091. [PMID: 37440661 DOI: 10.1126/science.adg9091] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/23/2023] [Indexed: 07/15/2023]
Abstract
The historically important phage ΦX174 kills its host bacteria by encoding a 91-residue protein antibiotic called protein E. Using single-particle electron cryo-microscopy, we demonstrate that protein E bridges two bacterial proteins to form the transmembrane YES complex [MraY, protein E, sensitivity to lysis D (SlyD)]. Protein E inhibits peptidoglycan biosynthesis by obstructing the MraY active site leading to loss of lipid I production. We experimentally validate this result for two different viral species, providing a clear model for bacterial lysis and unifying previous experimental data. Additionally, we characterize the Escherichia coli MraY structure-revealing features of this essential enzyme-and the structure of the chaperone SlyD bound to a protein. Our structures provide insights into the mechanism of phage-mediated lysis and for structure-based design of phage therapeutics.
Collapse
Affiliation(s)
- Anna K Orta
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nadia Riera
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yancheng E Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shiho Tanaka
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hyun Gi Yun
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lada Klaic
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - William M Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
10
|
Feng C, Tan P, Nie G, Zhu M. Biomimetic and bioinspired nano-platforms for cancer vaccine development. EXPLORATION (BEIJING, CHINA) 2023; 3:20210263. [PMID: 37933383 PMCID: PMC10624393 DOI: 10.1002/exp.20210263] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2023]
Abstract
The advent of immunotherapy has revolutionized the treating modalities of cancer. Cancer vaccine, aiming to harness the host immune system to induce a tumor-specific killing effect, holds great promises for its broad patient coverage, high safety, and combination potentials. Despite promising, the clinical translation of cancer vaccines faces obstacles including the lack of potency, limited options of tumor antigens and adjuvants, and immunosuppressive tumor microenvironment. Biomimetic and bioinspired nanotechnology provides new impetus for the designing concepts of cancer vaccines. Through mimicking the stealth coating, pathogen recognition pattern, tissue tropism of pathogen, and other irreplaceable properties from nature, biomimetic and bioinspired cancer vaccines could gain functions such as longstanding, targeting, self-adjuvanting, and on-demand cargo release. The specific behavior and endogenous molecules of each type of living entity (cell or microorganism) offer unique features to cancer vaccines to address specific needs for immunotherapy. In this review, the strategies inspired by eukaryotic cells, bacteria, and viruses will be overviewed for advancing cancer vaccine development. Our insights into the future cancer vaccine development will be shared at the end for expediting the clinical translation.
Collapse
Affiliation(s)
- Chenchao Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingChina
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
| | - Peng Tan
- Klarman Cell ObservatoryBroad Institute of MIT and HarvardCambridgeUSA
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingChina
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
- GBA Research Innovation Institute for NanotechnologyGuangzhouChina
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingChina
| |
Collapse
|
11
|
Fan S, Han H, Yan Z, Lu Y, He B, Zhang Q. Lipid-based nanoparticles for cancer immunotherapy. MEDICAL REVIEW (2021) 2023; 3:230-269. [PMID: 37789955 PMCID: PMC10542882 DOI: 10.1515/mr-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/07/2023] [Indexed: 10/05/2023]
Abstract
As the fourth most important cancer management strategy except surgery, chemotherapy and radiotherapy, cancer immunotherapy has been confirmed to elicit durable antitumor effects in the clinic by leveraging the patient's own immune system to eradicate the cancer cells. However, the limited population of patients who benefit from the current immunotherapies and the immune related adverse events hinder its development. The immunosuppressive microenvironment is the main cause of the failure, which leads to cancer immune evasion and immunity cycle blockade. Encouragingly, nanotechnology has been engineered to enhance the efficacy and reduce off-target toxicity of their therapeutic cargos by spatiotemporally controlling the biodistribution and release kinetics. Among them, lipid-based nanoparticles are the first nanomedicines to make clinical translation, which are now established platforms for diverse areas. In this perspective, we discuss the available lipid-based nanoparticles in research and market here, then describe their application in cancer immunotherapy, with special emphasis on the T cells-activated and macrophages-targeted delivery system. Through perpetuating each step of cancer immunity cycle, lipid-based nanoparticles can reduce immunosuppression and promote drug delivery to trigger robust antitumor response.
Collapse
Affiliation(s)
- Shumin Fan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Huize Han
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhicheng Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yao Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, Zhejiang Province, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, Zhejiang Province, China
| |
Collapse
|
12
|
Wang Y, Li Z, Mo F, Chen-Mayfield TJ, Saini A, LaMere AM, Hu Q. Chemically engineering cells for precision medicine. Chem Soc Rev 2023; 52:1068-1102. [PMID: 36633324 DOI: 10.1039/d2cs00142j] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cell-based therapy holds great potential to address unmet medical needs and revolutionize the healthcare industry, as demonstrated by several therapeutics such as CAR-T cell therapy and stem cell transplantation that have achieved great success clinically. Nevertheless, natural cells are often restricted by their unsatisfactory in vivo trafficking and lack of therapeutic payloads. Chemical engineering offers a cost-effective, easy-to-implement engineering tool that allows for strengthening the inherent favorable features of cells and confers them new functionalities. Moreover, in accordance with the trend of precision medicine, leveraging chemical engineering tools to tailor cells to accommodate patients individual needs has become important for the development of cell-based treatment modalities. This review presents a comprehensive summary of the currently available chemically engineered tools, introduces their application in advanced diagnosis and precision therapy, and discusses the current challenges and future opportunities.
Collapse
Affiliation(s)
- Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Fanyi Mo
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Ting-Jing Chen-Mayfield
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Aryan Saini
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Afton Martin LaMere
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
13
|
Sodium hydroxide-induced Weissella kimchii ghosts (WKGs) as immunostimulant. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Ma Y, Zhu W, Zhu G, Xu Y, Li S, Chen R, Chen L, Wang J. Efficient Robust Yield Method for Preparing Bacterial Ghosts by Escherichia coli Phage ID52 Lysis Protein E. Bioengineering (Basel) 2022; 9:300. [PMID: 35877351 PMCID: PMC9311611 DOI: 10.3390/bioengineering9070300] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial ghosts (BGs) are nonliving empty bacterial shells without cytoplasm retaining original morphology and identical antigenicity of natural bacteria, making them high potential and promising vaccine candidates and delivery vehicles. However, the low yield of commonly used BGs preparation methods limits its mass production and widely application. In order to improve BGs production, E. coli phage ID52 lysis protein E was introduced to generating BGs for the first time. Above all, we compared the lysis activity of lysis protein of E. coli phage φX174 and E. coli phage ID52 as well as the effects of promoters on the lysis activity of ID52-E, which shown that the lysis activity and BGs formation rate of protein ID52-E was significantly higher than protein φX174-E. Further, the lysis activity of ID52-E was significantly improved under the control of L-arabinose inducible promoter which initial induction OD600 reached as high as 2.0. The applicability of lysis protein ID52-E induced by L-arabinose was proved by preparing probiotic E. coli Nissle 1917 BGs and pathogenic Salmonella typhimurium BGs in mass production. This paper introduced a novel and highly efficient method for BGs preparation depending on recombinant expression of E. coli phage ID52-E under eco-friendly and reasonable price inducer L-arabinose.
Collapse
Affiliation(s)
- Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (W.Z.); (G.Z.); (Y.X.); (S.L.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wenjun Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (W.Z.); (G.Z.); (Y.X.); (S.L.)
| | - Guanshu Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (W.Z.); (G.Z.); (Y.X.); (S.L.)
| | - Yue Xu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (W.Z.); (G.Z.); (Y.X.); (S.L.)
| | - Shuyu Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (W.Z.); (G.Z.); (Y.X.); (S.L.)
| | - Rui Chen
- Bionavi Life Sciences Co., Ltd., Shenzhen 518118, China;
| | - Lidan Chen
- Department of Laboratory Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China;
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (W.Z.); (G.Z.); (Y.X.); (S.L.)
| |
Collapse
|
15
|
Xu X, Li T, Jin K. Bioinspired and Biomimetic Nanomedicines for Targeted Cancer Therapy. Pharmaceutics 2022; 14:1109. [PMID: 35631695 PMCID: PMC9147382 DOI: 10.3390/pharmaceutics14051109] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
Undesirable side effects and multidrug resistance are the major obstacles in conventional chemotherapy towards cancers. Nanomedicines provide alternative strategies for tumor-targeted therapy due to their inherent properties, such as nanoscale size and tunable surface features. However, the applications of nanomedicines are hampered in vivo due to intrinsic disadvantages, such as poor abilities to cross biological barriers and unexpected off-target effects. Fortunately, biomimetic nanomedicines are emerging as promising therapeutics to maximize anti-tumor efficacy with minimal adverse effects due to their good biocompatibility and high accumulation abilities. These bioengineered agents incorporate both the physicochemical properties of diverse functional materials and the advantages of biological materials to achieve desired purposes, such as prolonged circulation time, specific targeting of tumor cells, and immune modulation. Among biological materials, mammalian cells (such as red blood cells, macrophages, monocytes, and neutrophils) and pathogens (such as viruses, bacteria, and fungi) are the functional components most often used to confer synthetic nanoparticles with the complex functionalities necessary for effective nano-biointeractions. In this review, we focus on recent advances in the development of bioinspired and biomimetic nanomedicines (such as mammalian cell-based drug delivery systems and pathogen-based nanoparticles) for targeted cancer therapy. We also discuss the biological influences and limitations of synthetic materials on the therapeutic effects and targeted efficacies of various nanomedicines.
Collapse
Affiliation(s)
- Xiaoqiu Xu
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China; (X.X.); (T.L.)
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tong Li
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China; (X.X.); (T.L.)
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ke Jin
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China; (X.X.); (T.L.)
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Pandey M, Choudhury H, Vijayagomaran PA, Lian PNP, Ning TJ, Wai NZ, Xian-Zhuang N, Le Er C, Rahmah NSN, Kamaruzzaman NDB, Mayuren J, Candasamy M, Gorain B, Chawla PA, Amin MCIM. Recent Update on Bacteria as a Delivery Carrier in Cancer Therapy: From Evil to Allies. Pharm Res 2022; 39:1115-1134. [PMID: 35386012 PMCID: PMC8985562 DOI: 10.1007/s11095-022-03240-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/18/2022] [Indexed: 01/19/2023]
Abstract
Cancer is associated with a comprehensive burden that significantly affects patient’s quality of life. Even though patients’ disease condition is improving following conventional therapies, researchers are studying alternative tools that can penetrate solid tumours to deliver the therapeutics due to issues of developing resistance by the cancer cells. Treating cancer is not the only the goal in cancer therapy; it also includes protecting non-cancerous cells from the toxic effects of anti-cancer agents. Thus, various advanced techniques, such as cell-based drug delivery, bacteria-mediated therapy, and nanoparticles, are devised for site-specific delivery of drugs. One of the novel methods that can be targeted to deliver anti-cancer agents is by utilising genetically modified non-pathogenic bacterial species. This is due to the ability of bacterial species to multiply selectively or non-selectively on tumour cells, resulting in biofilms that leads to disruption of metastasis process. In preclinical studies, this technology has shown significant results in terms of efficacy, and some are currently under investigation. Therefore, researchers have conducted studies on bacteria transporting the anti-cancer drug to targeted tumours. Alternatively, bacterial ghosts and bacterial spores are utilised to deliver anti-cancer drugs. Although in vivo studies of bacteria-mediated cancer therapy have shown successful outcome, further research on bacteria, specifically their targeting mechanism, is required to establish a complete clinical approach in cancer treatment. This review has focused on the up-to-date understanding of bacteria as a therapeutic carrier in the treatment of cancer as an emerging field.
Collapse
Affiliation(s)
- Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia.
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | | | - Pauline Ng Poh Lian
- School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Tan Jing Ning
- School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Ng Zing Wai
- School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Ng Xian-Zhuang
- School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Chong Le Er
- School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | | | | | - Jayashree Mayuren
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga, Ghall Kalan, Punjab, India
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Bacteria and bacterial derivatives as delivery carriers for immunotherapy. Adv Drug Deliv Rev 2022; 181:114085. [PMID: 34933064 DOI: 10.1016/j.addr.2021.114085] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
There is growing interest in the role of microorganisms in human health and disease, with evidence showing that new types of biotherapy using engineered bacterial therapeutics, including bacterial derivatives, can address specific mechanisms of disease. The complex interactions between microorganisms and metabolic/immunologic pathways underlie many diseases with unmet medical needs, suggesting that targeting these interactions may improve patient treatment. Using tools from synthetic biology and chemical engineering, non-pathogenic bacteria or bacterial products can be programmed and designed to sense and respond to environmental signals to deliver therapeutic effectors. This review describes current progress in biotherapy using live bacteria and their derivatives to achieve therapeutic benefits against various diseases.
Collapse
|
18
|
Hydrochloric acid-treated Bacillus subtilis ghosts induce IL-1 beta, IL-6, and TNF-alpha in murine macrophage. Mol Cell Toxicol 2022; 18:267-276. [PMID: 35069752 PMCID: PMC8764320 DOI: 10.1007/s13273-022-00221-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 12/27/2022]
Abstract
Background Bacterial ghosts (BGs) are empty cell envelopes commonly generated using Gram-negative bacteria; they represent a potential platform for efficient adjuvant and vaccine delivery systems. However, the efficient production of BGs from bacteria in a short period of time is challenging.
Objective The purpose of this study was to investigate the possibility of producing BGs in the Gram-positive Bacillus subtilis using various chemicals, and the potential application of BGs as a novel immunomodulatory agent. Results In this study, Bacillus subtilis ghosts (BSGs) were generated, for the first time to the best of our knowledge, using the minimum inhibitory concentration (MIC) of hydrochloric acid (HCl; 6.25 mg/mL), sulfuric acid (H2SO4; 3.125 mg/mL), and nitric acid (HNO3; 6.25 mg/mL). Among the BSGs generated using these chemicals, HCl-induced BSGs were completely DNA-free as confirmed by real-time polymerase chain reaction. Scanning electron microscopy showed the formation of transmembrane lysis tunnel structures in HCl-induced BSGs. Murine macrophages exposed to the HCl-induced BSGs at a concentration of 1 × 105 CFU/mL showed a cell viability of 97.8%. Additionally, HCl-induced BSGs upregulated the expression of pro-inflammatory cytokines including interleukin (IL)-1β, tumor necrosis factor alpha, and IL-6. Furthermore, we found differences in the protein expression profiles between intact live bacteria and BSGs using two-dimensional electrophoresis coupled with peptide mass fingerprinting/matrix-assisted laser desorption/ionization-time of flight mass spectrometry analysis.
Conclusion These data suggest that the HCl-induced BSGs may be potentially safe and effective candidates for inactivated bacterial vaccines and/or immunostimulants. Supplementary Information The online version contains supplementary material available at 10.1007/s13273-022-00221-5.
Collapse
|
19
|
Soleymani S, Tavassoli A, Housaindokht MR. An overview of progress from empirical to rational design in modern vaccine development, with an emphasis on computational tools and immunoinformatics approaches. Comput Biol Med 2022; 140:105057. [PMID: 34839187 DOI: 10.1016/j.compbiomed.2021.105057] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/03/2021] [Accepted: 11/20/2021] [Indexed: 12/15/2022]
Abstract
Vaccination remains the most effective strategy for preventing and controlling infectious diseases. Numerous conventional vaccines, especially live attenuated, inactivated (killed) microorganisms and subunit vaccines, lead to an effective induction of protective immune responses, mainly antibody-mediated responses against pathogens. However, it has become known that a wide range of highly dangerous pathogens are uncontrollable via conventional vaccination strategies. Recent advances in molecular biology, immunology, genetics, biochemistry, and bioinformatics have provided new prospects for vaccine development. As a result of these advances, several new strategies for vaccine design, development, and production have appeared. These strategies show advantages over conventional vaccines. In this review, we discuss some of the major novel approaches, including recombinant protein vaccines, live recombinant viral and bacterial vectors, DNA and RNA vaccines, reverse vaccinology and reverse genetics approaches. Moreover, we have described the recent progresses on computational tools and immunoinformatics approaches for identifying, designing, and developing new candidate vaccines.
Collapse
Affiliation(s)
- Safoura Soleymani
- Research and Technology Center of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Amin Tavassoli
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mohammad Reza Housaindokht
- Research and Technology Center of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
20
|
Miao YB, Lin YJ, Chen KH, Luo PK, Chuang SH, Yu YT, Tai HM, Chen CT, Lin KJ, Sung HW. Engineering Nano- and Microparticles as Oral Delivery Vehicles to Promote Intestinal Lymphatic Drug Transport. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104139. [PMID: 34596293 DOI: 10.1002/adma.202104139] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Targeted oral delivery of a drug via the intestinal lymphatic system (ILS) has the advantages of protecting against hepatic first-pass metabolism of the drug and improving its pharmacokinetic performance. It is also a promising route for the oral delivery of vaccines and therapeutic agents to induce mucosal immune responses and treat lymphatic diseases, respectively. This article describes the anatomical structures and physiological characteristics of the ILS, with an emphasis on enterocytes and microfold (M) cells, which are the main gateways for the transport of particulate delivery vehicles across the intestinal epithelium into the lymphatics. A comprehensive overview of recent advances in the rational engineering of particulate vehicles, along with the challenges and opportunities that they present for improving ILS drug delivery, is provided, and the mechanisms by which such vehicles target and transport through enterocytes or M cells are discussed. The use of naturally sourced materials, such as yeast microcapsules and their derived polymeric β-glucans, as novel ILS-targeting delivery vehicles is also reviewed. Such use is the focus of an emerging field of research. Their potential use in the oral delivery of nucleic acids, such as mRNA vaccines, is proposed.
Collapse
Affiliation(s)
- Yang-Bao Miao
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Yu-Jung Lin
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Kuan-Hung Chen
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Po-Kai Luo
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Shun-Hao Chuang
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Yu-Tzu Yu
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Hsien-Meng Tai
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan, Republic of China
| | - Kun-Ju Lin
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, and Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Hsing-Wen Sung
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| |
Collapse
|
21
|
Salem-Bekhit MM, Youssof AME, Alanazi FK, Aleanizy FS, Abdulaziz A, Taha EI, Amara AAAF. Bacteria from Infectious Particles to Cell Based Anticancer Targeted Drug Delivery Systems. Pharmaceutics 2021; 13:1984. [PMID: 34959266 PMCID: PMC8706210 DOI: 10.3390/pharmaceutics13121984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
Bacterial ghosts (BGs) are empty cell envelopes of nonliving evacuated bacterial cells. They are free from their cytoplasmic contents; however, they sustain their cellular 3D morphology and antigenic structures, counting on bioadhesive properties. Lately, they have been tested as an advanced drug delivery system (DDS) for different materials like DNA, peptides, or drugs, either single components or combinations. Different studies have revealed that, BG DDS were paid the greatest attention in recent years. The current review explores the impact of BGs on the field of drug delivery and drug targeting. BGs have a varied area of applications, including vaccine and tumor therapy. Moreover, the use of BGs, their synthesis, their uniqueness as a delivery system and application principles in cancer are discussed. Furthermore, the safety issues of BGs and stability aspects of using ghost bacteria as delivery systems are discussed. Future perspective efforts that must be followed for this important system to continue to grow are important and promising.
Collapse
Affiliation(s)
- Mounir M. Salem-Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.E.Y.); (F.K.A.); (F.S.A.); (A.A.); (E.I.T.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
- Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M. E. Youssof
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.E.Y.); (F.K.A.); (F.S.A.); (A.A.); (E.I.T.)
- Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fars K. Alanazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.E.Y.); (F.K.A.); (F.S.A.); (A.A.); (E.I.T.)
- Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fadilah Sfouq Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.E.Y.); (F.K.A.); (F.S.A.); (A.A.); (E.I.T.)
| | - Alsuwyeh Abdulaziz
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.E.Y.); (F.K.A.); (F.S.A.); (A.A.); (E.I.T.)
- Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ehab I. Taha
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.E.Y.); (F.K.A.); (F.S.A.); (A.A.); (E.I.T.)
| | - Amro Abd Al Fattah Amara
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt;
| |
Collapse
|
22
|
Li Z, Wang Y, Liu J, Rawding P, Bu J, Hong S, Hu Q. Chemically and Biologically Engineered Bacteria-Based Delivery Systems for Emerging Diagnosis and Advanced Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102580. [PMID: 34347325 DOI: 10.1002/adma.202102580] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Bacteria are one of the main groups of organisms, which dynamically and closely participate in human health and disease development. With the integration of chemical biotechnology, bacteria have been utilized as an emerging delivery system for various biomedical applications. Given the unique features of bacteria such as their intrinsic biocompatibility and motility, bacteria-based delivery systems have drawn wide interest in the diagnosis and treatment of various diseases, including cancer, infectious diseases, kidney failure, and hyperammonemia. Notably, at the interface of chemical biotechnology and bacteria, many research opportunities have been initiated, opening a promising frontier in biomedical application. Herein, the current synergy of chemical biotechnology and bacteria, the design principles for bacteria-based delivery systems, the microbial modulation, and the clinical translation are reviewed, with a special focus on the emerging advances in diagnosis and therapy.
Collapse
Affiliation(s)
- Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Jun Liu
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Piper Rawding
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Jiyoon Bu
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for NanoBioSystems, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin, 53705, USA
| |
Collapse
|
23
|
A Novel and Efficient High-Yield Method for Preparing Bacterial Ghosts. Toxins (Basel) 2021; 13:toxins13060420. [PMID: 34199218 PMCID: PMC8231862 DOI: 10.3390/toxins13060420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022] Open
Abstract
Bacterial ghosts (BGs) are empty cell envelopes possessing native extracellular structures without a cytoplasm and genetic materials. BGs are proposed to have significant prospects in biomedical research as vaccines or delivery carriers. The applications of BGs are often limited by inefficient bacterial lysis and a low yield. To solve these problems, we compared the lysis efficiency of the wild-type protein E (EW) from phage ΦX174 and the screened mutant protein E (EM) in the Escherichia coli BL21(DE3) strain. The results show that the lysis efficiency mediated by protein EM was improved. The implementation of the pLysS plasmid allowed nearly 100% lysis efficiency, with a high initial cell density as high as OD600 = 2.0, which was higher compared to the commonly used BG preparation method. The results of Western blot analysis and immunofluorescence indicate that the expression level of protein EM was significantly higher than that of the non-pLysS plasmid. High-quality BGs were observed by SEM and TEM. To verify the applicability of this method in other bacteria, the T7 RNA polymerase expression system was successfully constructed in Salmonella enterica (S. Enterica, SE). A pET vector containing EM and pLysS were introduced to obtain high-quality SE ghosts which could provide efficient protection for humans and animals. This paper describes a novel and commonly used method to produce high-quality BGs on a large scale for the first time.
Collapse
|
24
|
Qi Y, Fox CB. Development of thermostable vaccine adjuvants. Expert Rev Vaccines 2021; 20:497-517. [PMID: 33724133 PMCID: PMC8292183 DOI: 10.1080/14760584.2021.1902314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/09/2021] [Indexed: 01/15/2023]
Abstract
INTRODUCTION The importance of vaccine thermostability has been discussed in the literature. Nevertheless, the challenge of developing thermostable vaccine adjuvants has sometimes not received appropriate emphasis. Adjuvants comprise an expansive range of particulate and molecular compositions, requiring innovative thermostable formulation and process development approaches. AREAS COVERED Reports on efforts to develop thermostable adjuvant-containing vaccines have increased in recent years, and substantial progress has been made in enhancing the stability of the major classes of adjuvants. This narrative review summarizes the current status of thermostable vaccine adjuvant development and looks forward to the next potential developments in the field. EXPERT OPINION As adjuvant-containing vaccines become more widely used, the unique challenges associated with developing thermostable adjuvant formulations merit increased attention. In particular, more focused efforts are needed to translate promising proof-of-concept technologies and formulations into clinical products.
Collapse
Affiliation(s)
- Yizhi Qi
- Infectious Disease Research Institute (IDRI), 1616 Eastlake
Ave E, Seattle, WA, USA
| | - Christopher B. Fox
- Infectious Disease Research Institute (IDRI), 1616 Eastlake
Ave E, Seattle, WA, USA
- Department of Global Health, University of Washington,
Seattle, WA, USA
| |
Collapse
|
25
|
Soleymani S, Tavassoli A, Hashemi Tabar G, Kalidari GA, Dehghani H. Design, development, and evaluation of the efficacy of a nucleic acid-free version of a bacterial ghost candidate vaccine against avian pathogenic E. coli (APEC) O78:K80 serotype. Vet Res 2020; 51:144. [PMID: 33298146 PMCID: PMC7724879 DOI: 10.1186/s13567-020-00867-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/11/2020] [Indexed: 12/31/2022] Open
Abstract
One of the major bacterial infectious diseases in the poultry industry is avian pathogenic Escherichia coli (APEC), which causes colibacillosis in chickens. To develop a novel nucleic acid-free bacterial ghost (BG) vaccine against the O78:K80 serotype of APEC, in this study we constructed a plasmid that harbored E-lysis and S nuclease (SNUC). Following the expression, the O78:K80 bacteria lost all of their cytoplasmic content and nucleic acids by enzymatic digestion. The functionality of these two proteins in the production procedure of bacterial ghosts was confirmed by monitoring the number of colonies, scanning electron microscopy imaging, gel electrophoresis of genomic DNA, and qPCR on the plasmid content of bacterial ghosts. The protective efficacy of the ghost vaccine generated from O78:K80 serotype of APEC was tested in chickens by injection and inhalation routes and compared with that in chickens that received the injection of a killed vaccine. The O78:K80 BG vaccine candidate, used as injection and inhalation, in comparison with the killed vaccine, triggered higher proinflammatory cytokine expression including IL-6, IL-1β, and TNFSF15; a higher level of antibody-dependent humoral (IgY and IgA) and cellular immune responses (IFNγ and lymphocyte proliferation); and lower lesion scores. According to the results of this study, we suggest that the bacterial ghost technology has the potential to be applied for the development of novel vaccines against avian colibacillosis. This technology provides an effective and reliable approach to make multivalent vaccines for more prevalent APEC strains involved in the establishment of this infectious disease in the poultry industry.
Collapse
Affiliation(s)
- Safoura Soleymani
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amin Tavassoli
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Gholamreza Hashemi Tabar
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Gholam Ali Kalidari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Hesam Dehghani
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran. .,Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran. .,Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
26
|
Jiao H, Yang H, Zheng W, Zhang Q, Zhao D, Li G. Enhancement of immune responses by co-administration of bacterial ghosts-mediated Neisseria gonorrhoeae DNA vaccines. J Appl Microbiol 2020; 130:1770-1777. [PMID: 32770820 DOI: 10.1111/jam.14815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/20/2020] [Accepted: 08/04/2020] [Indexed: 01/09/2023]
Abstract
AIM Gonorrhoea remains a leading public health burden and the development of vaccine against gonorrhoea becomes more urgent. Here, a novel Neisseria gonorrhoeae DNA vaccine delivered by Salmonella enteritidis ghosts was developed and the immune responses of the vaccine candidate were evaluated. METHODS AND RESULTS Neisseria gonorrhoeae nspA gene was cloned into the pVAX1 vector. The constructed recombinant plasmid pVAX1-nspA was loaded into the lyophilized SE ghosts to produce SE ghosts (pVAX1-nspA). Then, the immune responses induced by SE ghosts (pVAX1-nspA) alone and co-administrated with SE ghosts (pVAX1-porB) were evaluated in mouse model. Co-administered SE ghosts (pVAX1-nspA) and SE ghosts (pVAX1-porB) could elicited significantly higher levels of specific IgG antibody responses and lymphocyte proliferative responses than the control groups. Furthermore, the group co-administered SE ghosts (pVAX1-nspA) and SE ghosts (pVAX1-porB) had the highest bactericidal antibody titres. CONCLUSIONS Co-administration of SE ghosts (pVAX1-nspA) and SE ghosts (pVAX1-porB) elicited significant specific humoral and cellular immune responses. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates the potential of co-administration of SE ghosts (pVAX1-nspA) and SE ghosts (pVAX1-porB) as an attractive vaccination regimen for gonorrhoea.
Collapse
Affiliation(s)
- H Jiao
- Medical College, Yangzhou University/ Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - H Yang
- Medical College, Yangzhou University/ Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, China.,The Third People's Hospital of Changzhou, Changzhou, China
| | - W Zheng
- Medical College, Yangzhou University/ Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, China
| | - Q Zhang
- Medical College, Yangzhou University/ Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, China
| | - D Zhao
- Medical College, Yangzhou University/ Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, China
| | - G Li
- Medical College, Yangzhou University/ Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, China
| |
Collapse
|
27
|
Ju Y, Guo H, Edman M, Hamm-Alvarez SF. Application of advances in endocytosis and membrane trafficking to drug delivery. Adv Drug Deliv Rev 2020; 157:118-141. [PMID: 32758615 PMCID: PMC7853512 DOI: 10.1016/j.addr.2020.07.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Multidisciplinary research efforts in the field of drug delivery have led to the development of a variety of drug delivery systems (DDS) designed for site-specific delivery of diagnostic and therapeutic agents. Since efficient uptake of drug carriers into target cells is central to effective drug delivery, a comprehensive understanding of the biological pathways for cellular internalization of DDS can facilitate the development of DDS capable of precise tissue targeting and enhanced therapeutic outcomes. Diverse methods have been applied to study the internalization mechanisms responsible for endocytotic uptake of extracellular materials, which are also the principal pathways exploited by many DDS. Chemical inhibitors remain the most commonly used method to explore endocytotic internalization mechanisms, although genetic methods are increasingly accessible and may constitute more specific approaches. This review highlights the molecular basis of internalization pathways most relevant to internalization of DDS, and the principal methods used to study each route. This review also showcases examples of DDS that are internalized by each route, and reviews the general effects of biophysical properties of DDS on the internalization efficiency. Finally, options for intracellular trafficking and targeting of internalized DDS are briefly reviewed, representing an additional opportunity for multi-level targeting to achieve further specificity and therapeutic efficacy.
Collapse
Affiliation(s)
- Yaping Ju
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA
| | - Hao Guo
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA
| | - Maria Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, USA
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA; Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, USA.
| |
Collapse
|
28
|
Abstract
INTRODUCTION Bacterial ghosts are intact bacterial cell envelopes that are emptied of their content by gentle biological or chemical poring methods. Ghost techniques increase the safety of the killed vaccines, while maintaining their antigenicity due to mild preparation procedures. Moreover, ghost-platforms may express and/or carry several antigens or plasmid-DNA encoding for protein epitopes. AREAS COVERED In this review, the development in ghost-vaccine production over the last 30 years is classified and discussed. The different applications of ghost-vaccines, how they trigger the immune system, their advantages and limitations are displayed. The phage-mediated lysis, molecular manipulation of the lysis-genes, and the biotechnological production of ghosts are described. The trials are classified according to the pattern of lysis and to the type of bacteria. Further subdivision includes chronological ordered application of the ghost as alternative-killed vaccine, recombinant antigen platform, plasmid DNA carrier, adjuvants, and dendritic cell inducer. Particular trials for specific pathogens or from distinct research schools are gathered. EXPERT OPINION Ghosts are highly qualified to act as immune-presenting platforms that express and/or carry several recombinant and DNA vaccines, as well as, being efficient alternative-killed vaccines. The coming years will show more molecular advances to develop ghost-production and to express more antigens.
Collapse
Affiliation(s)
- Ali M Batah
- Tropical Disease Research Center, University of Science and Technology , Sana'a, Yemen
| | - Tarek A Ahmad
- Morehouse School of Medicine , Atlanta, GA, USA.,Library Sector, Bibliotheca Alexandrina , Alexandria, Egypt
| |
Collapse
|
29
|
Sheweita SA, Batah AM, Ghazy AA, Hussein A, Amara AA. A new strain of Acinetobacter baumannii and characterization of its ghost as a candidate vaccine. J Infect Public Health 2019; 12:831-842. [PMID: 31230953 DOI: 10.1016/j.jiph.2019.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 04/26/2019] [Accepted: 05/12/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Human infection by Acinetobacter baumannii has been increased due to its resistance against most of the antibiotics. Therefore, the present study aimed to design a candidate vaccine against A. baumannii infection. METHODS The protein and DNA contents of A. baumannii Ali190 were extracted using different critical concentrations of hydrogen peroxide, sodium hydroxide and sodium carbonate leading to the ghost of A. baumannii Ali190. Transmission and scanning electron microscope showed that it retained the 3D structure of its cell membrane. The ghost injected to rats via different routes of administrations including oral, subcutaneous, intramuscular, intraperitoneal, subcutaneous with adjuvant, and intramuscular with adjuvant. RESULTS β-Lactamase OXA-51 gene, is a predominant gene in all Acinetobacter strains, the gene was partially sequenced. The DNA sequence of OXA-51 gene showed 98% homology with A. baumannii isolate 6077/12 and also showed less homology percentage with other strains of Acinetobacter. A new strain of Acinetobacter has been deposited in Gene Bank under accession number MG062776. All routes of ghost administration showed full protection against live bacteria except oral administration showed 67% protection. On the other hand, all non-vaccinated rats did not survive after infection with live bacteria. SDS-gel electrophoresis of protein patterns of both A. baumannii and its ghost showed common protein bands with molecular weights 70, 60, and 23 kDa which were detected using western immunoblotting after raising the primary antibodies against A. baumannii ghost. The levels of INF-γ were significantly increased in all vaccinated groups, particularly in subcutaneous and subcutaneous with adjuvant compared to the control group. CONCLUSION With the exception of oral administration, all vaccinated rats via different routes of ABG administration showed full protection (100%) against live A. baumannii. However, 100% mortality rate was observed in non-vaccinated rats. Therefore, ABG could be useful as a candidate vaccine against A. baumannii infection.
Collapse
Affiliation(s)
- S A Sheweita
- Department of Clinical Biochemistry, Faculty of Medicine, King Khalid University, Abha, KSA; Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, Alexandria, Egypt.
| | - A M Batah
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, Alexandria, Egypt; Tropical Disease Research Center, University of Science and Technology, Sana'a, Yemen
| | - A A Ghazy
- Department of Microbiology & Medical Immunology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt; Department of Pathology (Microbiology and Immunology unit), College of Medicine, Jouf University, Sakaka, KSA
| | - A Hussein
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, Alexandria, Egypt
| | - A A Amara
- Department of Protein Research, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| |
Collapse
|
30
|
Hoseini Shahidi R, Hashemi Tabar G, Bassami MR, Jamshidi A, Dehghani H. The design and application of a bacterial ghost vaccine to evaluate immune response and defense against avian pathogenic Escherichia coli O2:K1 serotype. Res Vet Sci 2019; 125:153-161. [PMID: 31228739 DOI: 10.1016/j.rvsc.2019.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 05/10/2019] [Accepted: 06/03/2019] [Indexed: 12/22/2022]
Abstract
An Escherichia coli (E. coli) O2:K1 bacterial ghost was produced by controlled expression of bacteriophage PhiX 174 lysis gene E. Temperature controlled expression of this gene caused tunnels and holes in the cell wall of E. coli O2:K1 bacterium, leading to loss of cytoplasmic contents. Formation of E. coli O2:K1 ghost was confirmed by scanning electron microscopy and determination of colony forming units. To evaluate the efficiency of this bacterial ghost vaccine to elicit cellular and humoral immune responses, 85 one day old chickens from Ross 308 breed were divided into the following 5 groups; group 1 (non-immunized control), group 2 (vaccine administered by injection of E. coli O2:K1 killed vaccine), group 3 (vaccine administered by injection of E. coli O2:K1 ghost), group 4 (vaccine administered by inhalation of E. coli O2:K1 ghost), and group 5 (neither immunized, nor challenged as negative control). The groups of 2, 3, and 4 were received vaccines at days 7, 14, and 22. Groups 1 to 4 were challenged with the wild type at day 33. Evaluation of post-mortem lesions and immune responses in all groups showed that chicken injected with the killed vaccine and the bacterial ghost had the best protection. These findings suggest that this bacterial ghost has the potential to be used as a poultry colibacillosis vaccine.
Collapse
Affiliation(s)
- Reza Hoseini Shahidi
- Biotechnology Division, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Gholamreza Hashemi Tabar
- Biotechnology Division, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mohammad Reza Bassami
- Biotechnology Division, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Division of Poultry Diseases, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abdollah Jamshidi
- Division of Food Hygiene, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hesam Dehghani
- Biotechnology Division, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Division of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
31
|
Hou R, Li M, Tang T, Wang R, Li Y, Xu Y, Tang L, Wang L, Liu M, Jiang Y, Cui W, Qiao X. Construction of Lactobacillus casei ghosts by Holin-mediated inactivation and the potential as a safe and effective vehicle for the delivery of DNA vaccines. BMC Microbiol 2018; 18:80. [PMID: 30055567 PMCID: PMC6064150 DOI: 10.1186/s12866-018-1216-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/28/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacterial ghosts (BGs) are empty bacterial cell envelopes generated by releasing the cellular contents. In this study, a phage infecting Lactobacillus casei ATCC 393 (L. casei 393) was isolated and designated Lcb. We aimed at using L. casei 393 as an antigen delivery system to express phage-derived holin for development of BGs. RESULTS A gene fragment encoding holin of Lcb (hocb) was amplified by polymerase chain reaction (PCR). We used L. casei 393 as an antigen delivery system to construct the recombinant strain pPG-2-hocb/L. casei 393. Then the recombinants were induced to express hocb. The immunoreactive band corresponding to hocb was observed by western-blotting, demonstrating the efficiency and specificity of hocb expression in recombinants. The measurements of optical density at 600 nm (OD600) after induction showed that expression of hocb can be used to convert L. casei cells into BGs. TEM showed that the cytomembrane and cell walls of hocb expressing cells were partially disrupted, accompanied by the loss of cellular contents, whereas control cells did not show any morphological changes. SEM showed that lysis pores were distributed in the middle or at the poles of the cells. To examine where the plasmid DNA was associated, we analyzed the L. casei ghosts loading SYBR Green I labeled pCI-EGFP by confocal microscopy. The result demonstrated that the DNA interacted with the inside rather than with the outside surface of the BGs. To further analyze where the DNA were loaded, we stained BGs with MitoTracker Green FM and the loaded plasmids were detected using EGFP-specific Cy-3-labeled probes. Z-scan sections through the BGs revealed that pCI-EGFP (red) was located within the BGs (green), but not on the outside. Flow cytometry and qPCR showed that the DNA was loaded onto BGs effectively and stably. CONCLUSIONS Our study constructed L. casei BGs by a novel method, which may be a promising technology for promoting the further application of DNA vaccine, providing experimental data to aid the development of other Gram-positive BGs.
Collapse
Affiliation(s)
- Rui Hou
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Muzi Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Tingting Tang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Ruichong Wang
- Institute for Radiological Protection, Heilongjiang Province Center for Disease Control and Prevention, 40 Youfang Street, Harbin, 150030, China
| | - Yijing Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Yigang Xu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Lijie Tang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Li Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Min Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Yanping Jiang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Wen Cui
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Xinyuan Qiao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China.
| |
Collapse
|
32
|
Farjadian F, Moghoofei M, Mirkiani S, Ghasemi A, Rabiee N, Hadifar S, Beyzavi A, Karimi M, Hamblin MR. Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: Set the bugs to work? Biotechnol Adv 2018; 36:968-985. [PMID: 29499341 PMCID: PMC5971145 DOI: 10.1016/j.biotechadv.2018.02.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 12/28/2022]
Abstract
Drug delivery is a rapidly growing area of research motivated by the nanotechnology revolution, the ideal of personalized medicine, and the desire to reduce the side effects of toxic anti-cancer drugs. Amongst a bewildering array of different nanostructures and nanocarriers, those examples that are fundamentally bio-inspired and derived from natural sources are particularly preferred. Delivery of vaccines is also an active area of research in this field. Bacterial cells and their components that have been used for drug delivery, include the crystalline cell-surface layer known as "S-layer", bacterial ghosts, bacterial outer membrane vesicles, and bacterial products or derivatives (e.g. spores, polymers, and magnetic nanoparticles). Considering the origin of these components from potentially pathogenic microorganisms, it is not surprising that they have been applied for vaccines and immunization. The present review critically summarizes their applications focusing on their advantages for delivery of drugs, genes, and vaccines.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soroush Mirkiani
- Biomaterials Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Shima Hadifar
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Beyzavi
- Koch institute of MIT, 500 Main Street, Cambridge, MA, USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
33
|
Jiao H, Yang H, Zhao D, Chen J, Zhang Q, Liang J, Yin Y, Kong G, Li G. Design and immune characterization of a novel Neisseria gonorrhoeae DNA vaccine using bacterial ghosts as vector and adjuvant. Vaccine 2018; 36:4532-4539. [PMID: 29914847 DOI: 10.1016/j.vaccine.2018.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/29/2018] [Accepted: 06/03/2018] [Indexed: 01/31/2023]
Abstract
Gonorrhea, an important sexually transmitted disease, is becoming a growing public health problem around the globe. Vaccination is considered the best long-term approach for control of infection. In this study, we designed a novel Neisseria gonorrhoeae (N. gonorrhoeae) DNA vaccine delivered by bacterial ghosts and characterized its immune responses in vitro and in vivo. Our results demonstrate that bacterial ghosts greatly promoted BMDCs maturation and activation. Bacterial ghosts loaded with N. gonorrhoeae DNA vaccine were efficiently taken up by mouse macrophage RAW264.7 cells. Furthermore, oral immunization with the ghost vaccine candidate elicited greater CD4+ and CD8+ T cell responses and induced higher IgG responses than N. gonorrhoeae DNA vaccine alone. In addition, mice immunized with the vaccine candidate responded with a significant rise in bactericidal antibody titer. These results suggest that bacterial ghosts may function as a vaccine adjuvant by promoting BMDCs maturation, which in turn enhances the immune responses to the vaccine antigens. This study also highlights the potential of using bacterial ghosts as antigen delivery system in the development of an efficacious gonorrhea vaccine.
Collapse
Affiliation(s)
- Hongmei Jiao
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou 225001, China; Jiangsu Key Laboratory of Zoonosis/Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Hui Yang
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou 225001, China; The Third People's Hospital of Changzhou, Changzhou 213001, China
| | - Dan Zhao
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou 225001, China
| | - Jin Chen
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou 225001, China
| | - Qianyun Zhang
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou 225001, China
| | - Jiankun Liang
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou 225001, China
| | - Yinyan Yin
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou 225001, China
| | - Guimei Kong
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou 225001, China
| | - Guocai Li
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou 225001, China; Jiangsu Key Laboratory of Zoonosis/Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
34
|
Fanuel S, Tabesh S, Rajani HF, Heidari S, Sadroddiny E, Kardar GA. Decorating and loading ghosts with allergens for allergen immunotherapy. Hum Vaccin Immunother 2018; 13:2428-2433. [PMID: 28934008 DOI: 10.1080/21645515.2017.1365208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
More than 25% of the global population has IgE mediated allergic diseases. Allergen immunotherapy (AIT) is the only available form of treatment that alters the underlying mechanism of IgE-mediated allergic diseases. AIT is aimed at desensitizing allergic individuals by repeatedly administering disease-causing allergens over a long period of time. Despite its proven efficacy in numerous clinical trials, the effectiveness of AIT still suffers some drawbacks due to the quality of allergens used and in particular the unavailability of efficient allergen delivery systems. Several studies have demonstrated that bacterial ghosts (BG) systems can be used to display and deliver antigens to their targets for the management of diseases. However, there is no report documenting the use of BG systems for immunotherapy of IgE-mediated diseases so far. Thus, in this review, we intend to discuss the potentialities of BG systems for displaying and delivering allergens for future management of IgE-mediated diseases.
Collapse
Affiliation(s)
- Songwe Fanuel
- a Department of Medical Biotechnology , School of Advanced Technologies in Medicine, Tehran University of Medical Sciences-International Campus (IC-TUMS) , Tehran , Iran.,b Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences , Tehran , Iran
| | - Saeideh Tabesh
- c Department of Immunology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| | - Huda Fatima Rajani
- a Department of Medical Biotechnology , School of Advanced Technologies in Medicine, Tehran University of Medical Sciences-International Campus (IC-TUMS) , Tehran , Iran
| | - Sahel Heidari
- d Department of Immunology , School of Medicine, Iran University of Medical Sciences , Tehran , Iran
| | - Esmaeil Sadroddiny
- a Department of Medical Biotechnology , School of Advanced Technologies in Medicine, Tehran University of Medical Sciences-International Campus (IC-TUMS) , Tehran , Iran
| | - Gholam Ali Kardar
- a Department of Medical Biotechnology , School of Advanced Technologies in Medicine, Tehran University of Medical Sciences-International Campus (IC-TUMS) , Tehran , Iran.,b Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
35
|
F18+ Escherichia coli flagellin expression in Salmonella has immunoadjuvant effects in a ghost vaccine candidate containing E. coli Stx2eB, FedF and FedA against porcine edema disease. Comp Immunol Microbiol Infect Dis 2018; 58:44-51. [DOI: 10.1016/j.cimid.2018.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/03/2018] [Accepted: 08/29/2018] [Indexed: 12/22/2022]
|
36
|
Ebrahimi-Nik H, Bassami MR, Mohri M, Rad M, Khan MI. Bacterial ghost of avian pathogenic E. coli (APEC) serotype O78:K80 as a homologous vaccine against avian colibacillosis. PLoS One 2018; 13:e0194888. [PMID: 29566080 PMCID: PMC5864078 DOI: 10.1371/journal.pone.0194888] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/12/2018] [Indexed: 11/18/2022] Open
Abstract
Avian Colibacillosis is among the major causes of economic loss in the poultry industry worldwide, with a more vivid impact on developing countries. The involvement of several bacteria has made it challenging to develop effective vaccines for this disease, particularly because it is notoriously difficult to make a vaccine that contains all the contributing pathogenic bacteria. Here, we report the design and fabrication of a bacterial ghost (BG) of E. coli O78:K80, which is among the major bacterial serotypes responsible for this disease. The generated ghost is then exploited as a homologous vaccine against Avian Colibacillosis. We demonstrate that hole formation in the cell wall of E. coli O78:K80 can happen properly in optical densities as high as 0.8 compared to the 0.3–0.4 standard for bacteria like E. coli TOP10. This is especially advantageous for mass production of this ghost which is a vital factor in development of any BG-based vaccine. Compared to E. coli TOP10, we faced a great challenge in transforming the wild type bacteria with the E-lysis plasmid which was probably due to higher thickness of the cell wall in O78:K80. This, however, was addressed by treating the cell wall with a different combination of ions.The vaccine was administered to Ross 308 broiler chickens via injection as well as through their respiratory system at a dose of 1010 BGs, repeated 3 times at weekly intervals. Chickens were then challenged with the wild type O78:K80 at a dose of 1011 bacteria together with Infectious Bronchitis H120 vaccine (as immunosuppressant) one week after the last immunization. Air sac lesions were significantly reduced in BG vaccinated groups in comparison with the control group. The levels of IFNγ, IgA and IgY were measured in the serum of immunized chickens as an indication of immune response and were compared with those of the chickens vaccinated with killed bacteria. The results show that O78:K80 BG can be used as an efficient homologous vaccine against Colibacillosis disease in poultry. We expect our findings can serve as the starting point for designing more sophisticated vaccines that contain all three major pathogenic bacteria involved in avian Colibacillosis.
Collapse
Affiliation(s)
- Hakimeh Ebrahimi-Nik
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Reza Bassami
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehrdad Mohri
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- * E-mail:
| | - Mehrnaz Rad
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mazhar I. Khan
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, United States of America
| |
Collapse
|
37
|
Nejdl L, Kudr J, Moulick A, Hegerova D, Ruttkay-Nedecky B, Gumulec J, Cihalova K, Smerkova K, Dostalova S, Krizkova S, Novotna M, Kopel P, Adam V. Platinum nanoparticles induce damage to DNA and inhibit DNA replication. PLoS One 2017; 12:e0180798. [PMID: 28704436 PMCID: PMC5507526 DOI: 10.1371/journal.pone.0180798] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 06/21/2017] [Indexed: 12/13/2022] Open
Abstract
Sparsely tested group of platinum nanoparticles (PtNPs) may have a comparable effect as complex platinum compounds. The aim of this study was to observe the effect of PtNPs in in vitro amplification of DNA fragment of phage λ, on the bacterial cultures (Staphylococcus aureus), human foreskin fibroblasts and erythrocytes. In vitro synthesized PtNPs were characterized by dynamic light scattering (PtNPs size range 4.8-11.7 nm), zeta potential measurements (-15 mV at pH 7.4), X-ray fluorescence, UV/vis spectrophotometry and atomic absorption spectrometry. The PtNPs inhibited the DNA replication and affected the secondary structure of DNA at higher concentrations, which was confirmed by polymerase chain reaction, DNA sequencing and DNA denaturation experiments. Further, cisplatin (CisPt), as traditional chemotherapy agent, was used in all parallel experiments. Moreover, the encapsulation of PtNPs in liposomes (LipoPtNPs) caused an approximately 2.4x higher of DNA damage in comparison with CisPt, LipoCisPt and PtNPs. The encapsulation of PtNPs in liposomes also increased their antibacterial, cytostatic and cytotoxic effect, which was determined by the method of growth curves on S. aureus and HFF cells. In addition, both the bare and encapsulated PtNPs caused lower oxidative stress (determined by GSH/GSSG ratio) in the human erythrocytes compared to the bare and encapsulated CisPt. CisPt was used in all parallel experiments as traditional chemotherapy agent.
Collapse
Affiliation(s)
- Lukas Nejdl
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jiri Kudr
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Amitava Moulick
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Dagmar Hegerova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Branislav Ruttkay-Nedecky
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jaromir Gumulec
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kristyna Cihalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Kristyna Smerkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Simona Dostalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Marie Novotna
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
38
|
Huang G, Ng TW, An T, Li G, Wang B, Wu D, Yip HY, Zhao H, Wong PK. Interaction between bacterial cell membranes and nano-TiO 2 revealed by two-dimensional FTIR correlation spectroscopy using bacterial ghost as a model cell envelope. WATER RESEARCH 2017; 118:104-113. [PMID: 28414961 DOI: 10.1016/j.watres.2017.04.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/04/2017] [Accepted: 04/08/2017] [Indexed: 05/28/2023]
Abstract
The interaction between microorganisms and nanoparticles is a crucial step towards understanding the subsequent biological effect. In this study, the interaction between TiO2 nanoparticles and bacterial cell membrane was investigated by Two-dimensional Correlation Fourier Transformation Infrared spectroscopy (2D-FTIR-COS) using bacterial ghosts (BGs), which are non-living bacterial cell envelopes devoid of cytoplasm. The synchronous map of 2D-FTIR-COS results indicated that the functionalities in proteins of BGs preferentially interacted with TiO2 nanoparticles; whereas the interaction of TiO2 nanoparticles with characteristic functionality in polysaccharides (COH) and phospholipids (PO) were very weak or insensitive. This conclusion was further corroborated by settling of TiO2 nanoparticles in the presence of pure protein, polysaccharide and phospholipid represented by bovine serum albumin (BSA), alginate and phosphatidylethanolamine (PE). Additionally, the asynchronous map of 2D-FTIR-COS indicated a sequential order of functionalities bonded to TiO2 nanoparticles with the order of: COO- > aromatic CC stretching > NH, amide II > CO, ketone. These findings contribute to deeper understanding of the interaction between TiO2 nanoparticles and bacterial cell membrane in aquatic systems.
Collapse
Affiliation(s)
- Guocheng Huang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Tsz Wai Ng
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Taicheng An
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Guiying Li
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bo Wang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Dan Wu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Ho Yin Yip
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Huijun Zhao
- Centre for Clean Environment and Energy, Griffith Scholl of Environment, Griffith University, Queensland, 4222, Australia; Laboratory of Nanomaterials and Nanostructures, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Po Keung Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| |
Collapse
|
39
|
Abstract
Bacterial ghosts (BG) are empty cell envelopes derived from Gram-negative bacteria. They contain many innate immunostimulatory agonists, and are potent activators of a broad range of cell types involved in innate and adaptive immunity. Several considerable studies have demonstrated the effectiveness of BG as adjuvants as well as their ability to induce proinflammatory cytokine production by a range of immune and non-immune cell types. These proinflammatory cytokines trigger a generalized recruitment of T and B lymphocytes to lymph nodes that maximize the chances of encounter with their cognate antigen, and subsequent elicitation of potent immune responses. The plasticity of BG has allowed for the generation of envelope-bound foreign antigens in immunologically active forms that have proven to be effective vaccines in animal models. Besides their adjuvant property, BG also effectively deliver DNA-encoded antigens to dendritic cells, thereby leading to high transfection efficiencies, which subsequently result in higher gene expressions and improved immunogenicity of DNA-based vaccines. In this review, we summarize our understanding of BG interactions with the host immune system, their exploitation as an adjuvant and a delivery system, and address important areas of future research interest.
Collapse
Affiliation(s)
- Irshad A Hajam
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Pervaiz A Dar
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Gayeon Won
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
40
|
Abstract
Vaccines are essential tools for the prevention and control of infectious diseases in animals. One of the most important steps in vaccine development is the selection of a suitable adjuvant. The focus of this review is the adjuvants used in vaccines for animals. We will discuss current commercial adjuvants and experimental formulations with attention to mineral salts, emulsions, bacterial-derived components, saponins, and several other immunoactive compounds. In addition, we will also examine the mechanisms of action for different adjuvants, examples of adjuvant combinations in one vaccine formulation, and challenges in the research and development of veterinary vaccine adjuvants.
Collapse
Affiliation(s)
- Yulia Burakova
- 1 Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas.,2 Department of Chemical Engineering, College of Engineering, Kansas State University , Manhattan, Kansas
| | - Rachel Madera
- 1 Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas
| | - Scott McVey
- 3 United States Department of Agriculture, Agricultural Research Service, Arthropod Borne Animal Disease Research Unit, Manhattan, Kansas
| | - John R Schlup
- 2 Department of Chemical Engineering, College of Engineering, Kansas State University , Manhattan, Kansas
| | - Jishu Shi
- 1 Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas
| |
Collapse
|
41
|
Guzmán-Trampe S, Ceapa CD, Manzo-Ruiz M, Sánchez S. Synthetic biology era: Improving antibiotic’s world. Biochem Pharmacol 2017; 134:99-113. [DOI: 10.1016/j.bcp.2017.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/26/2017] [Indexed: 12/12/2022]
|
42
|
Hao K, Chen XH, Qi XZ, Yu XB, Du EQ, Ling F, Zhu B, Wang GX. Protective immunity of grass carp induced by DNA vaccine encoding capsid protein gene (vp7) of grass carp reovirus using bacterial ghost as delivery vehicles. FISH & SHELLFISH IMMUNOLOGY 2017; 64:414-425. [PMID: 28300681 DOI: 10.1016/j.fsi.2017.03.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/16/2017] [Accepted: 03/10/2017] [Indexed: 06/06/2023]
Abstract
Grass carp reovirus (GCRV) is one of the most pathogenic aquareovirus and can cause lethal hemorrhagic disease in grass carp (Ctenopharyngodon idella). However, management of GCRV infection remains a challenge. Therefore, it is necessary to find effective means for the control of its infection. The uses of bacterial ghost (BG, non-living bacteria) as carriers for DNA delivery have received considerable attentions in veterinary and human vaccines studies. Nevertheless, there is still no report about intramuscular administration of bacterial ghost-based DNA vaccines in fish. In the current study, a novel vaccine based on Escherichia coli DH5α bacterial ghost (DH5α-BG), delivering a major capsid protein gene (vp7) of grass carp reovirus encoded DNA vaccine was developed to enhance the efficacy of a vp7 DNA vaccine against GCRV in grass carp. The grass carp was injected intramuscularly by different treatments -i) naked pcDNA-vp7 (containing plasmid 1, 2.5 and 5 μg, respectively), ii) DH5α-BG/pcDNA-vp7 (containing plasmid 1, 2.5 and 5 μg, respectively) and iii) naked pcDNA, DH5α-BG or phosphate buffered saline. The immune responses and disease resistance of grass carp were assessed in different groups, and results indicated that the antibody levels, serum total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity, acid phosphatase (ACP) activity and alkaline phosphatase (AKP) activity and immune-related genes were significantly enhanced in fish immunized with DH5α-BG/pcDNA-vp7 vaccine (DNA dose ranged from 2.5 to 5 μg). In addition, the relative percentage survival were significantly enhanced in fish immunized with DH5α-BG/pcDNA-vp7 vaccine and the relative percentage survival reached to 90% in DH5α-BG/pcDNA-vp7 group than that of naked pcDNA-vp7 (42.22%) at the highest DNA dose (5 μg) after 14 days of post infection. Moreover, the level of pcDNA-vp7 plasmid was higher in DH5α-BG/pcDNA-vp7 groups than naked pcDNA-vp7 groups in muscle and kidneys tissues after 21 days. Overall, those results suggested that DH5α bacterial ghost based DNA vaccine might be used as a promising vaccine for aquatic animals to fight against GCRV infection.
Collapse
Affiliation(s)
- Kai Hao
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Xiao-Hui Chen
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Xiao-Zhou Qi
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Xiao-Bo Yu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - En-Qi Du
- College of Veterinary Medicine, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China.
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China.
| |
Collapse
|
43
|
Si W, Yu S, Liu H, Wang C, Chen L, Wang G, Wu J, Liu S. A bacterial ghost improves the immunological efficacy of a Newcastle disease virus inactivated vaccine. Vet Microbiol 2017; 203:189-195. [PMID: 28619143 DOI: 10.1016/j.vetmic.2017.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 10/20/2022]
Abstract
Newcastle disease (ND) is one of the most common contagious viral infectious diseases of poultry. Vaccination is an effective way to protect chickens from Newcastle disease virus (NDV), and large efforts have been made to acquire not only new vaccines but also new adjuvants to improve the efficiency of existing inactivated vaccines. Here, we observed the adjuvanticity of the bacterial ghost (BG) on the effectiveness of inactivated NDV vaccine in a chicken model. We found that BG, as an adjuvant with inactivated NDV vaccine, substantially strengthened the ND-specific antibody response and protection against lethal challenge in a chicken model, reduced viral shedding, strengthened the time duration of antibody titers, produced an available immunization effect with a low dose of vaccine, and improved serum IL-2 and IFN-γ concentrations. Our results demonstrate that BG significantly improved the immunogenicity of an inactivated NDV vaccine and is a new immune adjuvant candidate.
Collapse
Affiliation(s)
- Wei Si
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, People's Republic of China
| | - Shenye Yu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, People's Republic of China
| | - Henggui Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, People's Republic of China
| | - Chunlai Wang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, People's Republic of China
| | - Liping Chen
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, People's Republic of China
| | - Gaoling Wang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, People's Republic of China
| | - Jianan Wu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, People's Republic of China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, People's Republic of China.
| |
Collapse
|
44
|
Kassmannhuber J, Rauscher M, Schöner L, Witte A, Lubitz W. Functional display of ice nucleation protein InaZ on the surface of bacterial ghosts. Bioengineered 2017; 8:488-500. [PMID: 28121482 DOI: 10.1080/21655979.2017.1284712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
In a concept study the ability to induce heterogeneous ice formation by Bacterial Ghosts (BGs) from Escherichia coli carrying ice nucleation protein InaZ from Pseudomonas syringae in their outer membrane was investigated by a droplet-freezing assay of ultra-pure water. As determined by the median freezing temperature and cumulative ice nucleation spectra it could be demonstrated that both the living recombinant E. coli and their corresponding BGs functionally display InaZ on their surface. Under the production conditions chosen both samples belong to type II ice-nucleation particles inducing ice formation at a temperature range of between -5.6 °C and -6.7 °C, respectively. One advantage for the application of such BGs over their living recombinant mother bacteria is that they are non-living native cell envelopes retaining the biophysical properties of ice nucleation and do no longer represent genetically modified organisms (GMOs).
Collapse
Affiliation(s)
- Johannes Kassmannhuber
- a BIRD-C GmbH ; Vienna , Austria.,b Centre of Molecular Biology ; University of Vienna ; Vienna , Austria
| | | | | | - Angela Witte
- c Department of Microbiology , Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna , Vienna , Austria
| | | |
Collapse
|
45
|
Mononuclear phagocytes as a target, not a barrier, for drug delivery. J Control Release 2017; 259:53-61. [PMID: 28108325 DOI: 10.1016/j.jconrel.2017.01.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/06/2017] [Accepted: 01/16/2017] [Indexed: 02/07/2023]
Abstract
Mononuclear phagocytes have been generally recognized as a barrier to drug delivery. Recently, a new understanding of mononuclear phagocytes (MPS) ontogeny has surfaced and their functions in disease have been unveiled, demonstrating the need for re-evaluation of perspectives on mononuclear phagocytes in drug delivery. In this review, we described mononuclear phagocyte biology and focus on their accumulation mechanisms in disease sites with explanations of monocyte heterogeneity. In the 'MPS as a barrier' section, we summarized recent studies on mechanisms to avoid phagocytosis based on two different biological principles: protein adsorption and self-recognition. In the 'MPS as a target' section, more detailed descriptions were given on mononuclear phagocyte-targeted drug delivery systems and their applications to various diseases. Collectively, we emphasize in this review that mononuclear phagocytes are potent targets for future drug delivery systems. Mononuclear phagocyte-targeted delivery systems should be created with an understanding of mononuclear phagocyte ontogeny and pathology. Each specific subset of phagocytes should be targeted differently by location and function for improved disease-drug delivery while avoiding RES clearance such as Kupffer cells and splenic macrophages.
Collapse
|
46
|
Ou B, Yang Y, Tham WL, Chen L, Guo J, Zhu G. Genetic engineering of probiotic Escherichia coli Nissle 1917 for clinical application. Appl Microbiol Biotechnol 2016; 100:8693-9. [PMID: 27640192 DOI: 10.1007/s00253-016-7829-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/31/2016] [Accepted: 09/03/2016] [Indexed: 12/11/2022]
Abstract
Escherichia coli strain Nissle 1917 (EcN) has been used as a probiotic. Genetic engineering has enhanced the utility of EcN in several vaccine and pharmaceutical preparations. We discuss in this mini review the genetics and physical properties of EcN. We also discuss the numerous genetic engineering strategies employed for EcN-based vaccine development, including recombinant plasmid transfer, genetic engineering of cryptic plasmids or the EcN chromosome, EcN bacterial ghosts and its outer membrane vesicles. We also provide a current update on the progress and the challenges regarding the use of EcN in vaccine development.
Collapse
Affiliation(s)
- Bingming Ou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Ying Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Wai Liang Tham
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T1Z4, Canada
| | - Lin Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Jitao Guo
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
47
|
In vitro responses of chicken macrophage-like monocytes following exposure to pathogenic and non-pathogenic E. coli ghosts loaded with a rational design of conserved genetic materials of influenza and Newcastle disease viruses. Vet Immunol Immunopathol 2016; 176:5-17. [PMID: 27288852 DOI: 10.1016/j.vetimm.2016.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/30/2016] [Accepted: 05/06/2016] [Indexed: 11/21/2022]
Abstract
Avian influenza virus (AIV) and Newcastle disease virus (NDV) are two important viral diseases in the poultry industry. Therefore, new disease-fighting strategies, especially effective genetic vaccination, are in high demand. Bacterial Ghost (BG) is a promising platform for delivering genetic materials to macrophages, cells that are among the first to encounter these viruses. However, there is no investigation on the immune response of these macrophage-targeted treatments. Here, we investigated the effect of genetic materials of AIV and NDV on the gene expression profile of important pro-inflammatory cytokines, a chemokine, a transcription factor, major histocompatibility complexes, and the viability of the chicken macrophage-like monocyte cells (CMM). Our genetic construct contained the external domain of matrix protein 2 and nucleoprotein gene of AIV, and immunodominant epitopes of fusion and hemagglutinin-neuraminidase proteins of NDV (hereinafter referred to as pAIV-Vax), delivered via the pathogenic and non-pathogenic BGs (Escherichia coli O78K80 and E. coli TOP10 respectively). The results demonstrated that both types of BGs were able to efficiently deliver the construct to the CMM, although the pathogenic strain derived BG was a significantly better stimulant and delivery vehicle. Both BGs were safe regarding LPS toxicity and did not induce any cell death. Furthermore, the loaded BGs were more powerful in modulating the pro-inflammatory cytokines' responses and antigen presentation systems in comparison to the unloaded BGs. Nitric oxide production of the BG-stimulated cells was also comparable to those challenged by the live bacteria. According to the results, the combination of pAIV-Vax construct and E. coli O78K80 BG is promising in inducing a considerable innate and adaptive immune response against AIV-NDV and perhaps the pathogenic E. coli, provided that the current combination be a potential candidate for in vivo testing regarding the development of an effective trivalent DNA vaccine against avian influenza and Newcastle disease, as well as a bacterial ghost vaccine against avian pathogenic E. coli (APEC).
Collapse
|
48
|
Meitz A, Sagmeister P, Lubitz W, Herwig C, Langemann T. Fed-Batch Production of Bacterial Ghosts Using Dielectric Spectroscopy for Dynamic Process Control. Microorganisms 2016; 4:microorganisms4020018. [PMID: 27681912 PMCID: PMC5029484 DOI: 10.3390/microorganisms4020018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/11/2016] [Accepted: 03/18/2016] [Indexed: 11/17/2022] Open
Abstract
The Bacterial Ghost (BG) platform technology evolved from a microbiological expression system incorporating the ϕX174 lysis gene E. E-lysis generates empty but structurally intact cell envelopes (BGs) from Gram-negative bacteria which have been suggested as candidate vaccines, immunotherapeutic agents or drug delivery vehicles. E-lysis is a highly dynamic and complex biological process that puts exceptional demands towards process understanding and control. The development of a both economic and robust fed-batch production process for BGs required a toolset capable of dealing with rapidly changing concentrations of viable biomass during the E-lysis phase. This challenge was addressed using a transfer function combining dielectric spectroscopy and soft-sensor based biomass estimation for monitoring the rapid decline of viable biomass during the E-lysis phase. The transfer function was implemented to a feed-controller, which followed the permittivity signal closely and was capable of maintaining a constant specific substrate uptake rate during lysis phase. With the described toolset, we were able to increase the yield of BG production processes by a factor of 8–10 when compared to currently used batch procedures reaching lysis efficiencies >98%. This provides elevated potentials for commercial application of the Bacterial Ghost platform technology.
Collapse
Affiliation(s)
- Andrea Meitz
- Research Center Pharmaceutical Engineering (RCPE) GmbH, Inffeldgasse 13, Graz A-8010, Austria.
| | - Patrick Sagmeister
- Research Division Biochemical Engineering, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1A 166/4, Vienna A-1060, Austria.
| | - Werner Lubitz
- Biotech Innovation Research Development and Consulting (BIRD-C) GmbH & Co KG, Dr.-Bohr-Gasse 2-8, Vienna A-1030, Austria.
- Center of Molecular Biology, University of Vienna, Dr.-Bohr-Gasse 9, Vienna A-1030, Austria.
| | - Christoph Herwig
- Research Division Biochemical Engineering, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1A 166/4, Vienna A-1060, Austria.
| | - Timo Langemann
- Research Center Pharmaceutical Engineering (RCPE) GmbH, Inffeldgasse 13, Graz A-8010, Austria.
- Biotech Innovation Research Development and Consulting (BIRD-C) GmbH & Co KG, Dr.-Bohr-Gasse 2-8, Vienna A-1030, Austria.
| |
Collapse
|
49
|
Hajam IA, Dar PA, Appavoo E, Kishore S, Bhanuprakash V, Ganesh K. Bacterial Ghosts of Escherichia coli Drive Efficient Maturation of Bovine Monocyte-Derived Dendritic Cells. PLoS One 2015; 10:e0144397. [PMID: 26669936 PMCID: PMC4684396 DOI: 10.1371/journal.pone.0144397] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/17/2015] [Indexed: 01/28/2023] Open
Abstract
Bacterial ghosts (BGs) are empty cell envelopes derived from Gram-negative bacteria. They not only represent a potential platform for development of novel vaccines but also provide a tool for efficient adjuvant and antigen delivery system. In the present study, we investigated the interaction between BGs of Escherichia coli (E. coli) and bovine monocyte-derived dendritic cells (MoDCs). MoDCs are highly potent antigen-presenting cells and have the potential to act as a powerful tool for manipulating the immune system. We generated bovine MoDCs in vitro from blood monocytes using E. coli expressed bovine GM-CSF and IL-4 cytokines. These MoDCs displayed typical morphology and functions similar to DCs. We further investigated the E. coli BGs to induce maturation of bovine MoDCs in comparison to E. coli lipopolysaccharide (LPS). We observed the maturation marker molecules such as MHC-II, CD80 and CD86 were induced early and at higher levels in BG stimulated MoDCs as compared to the LPS stimulated MoDCs. BG mediated stimulation induced significantly higher levels of cytokine expression in bovine MoDCs than LPS. Both pro-inflammatory (IL-12 and TNF-α) and anti-inflammatory (IL-10) cytokines were induced in MoDCs after BGs stimulation. We further analysed the effects of BGs on the bovine MoDCs in an allogenic mixed lymphocyte reaction (MLR). We found the BG-treated bovine MoDCs had significantly (p<0.05) higher capacity to stimulate allogenic T cell proliferation in MLR as compared to the LPS. Taken together, these findings demonstrate the E. coli BGs induce a strong activation and maturation of bovine MoDCs.
Collapse
Affiliation(s)
- Irshad Ahmed Hajam
- FMD Research Center, Indian Veterinary Research Institute, Bangalore, India
| | - Pervaiz Ahmad Dar
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Srinagar, India
- * E-mail: (PAD); (KG)
| | - Elamurugan Appavoo
- FMD Research Center, Indian Veterinary Research Institute, Bangalore, India
| | - Subodh Kishore
- FMD Research Center, Indian Veterinary Research Institute, Bangalore, India
| | | | - Kondabattula Ganesh
- FMD Research Center, Indian Veterinary Research Institute, Bangalore, India
- * E-mail: (PAD); (KG)
| |
Collapse
|
50
|
Langemann T, Mayr UB, Meitz A, Lubitz W, Herwig C. Multi-parameter flow cytometry as a process analytical technology (PAT) approach for the assessment of bacterial ghost production. Appl Microbiol Biotechnol 2015; 100:409-18. [PMID: 26521248 DOI: 10.1007/s00253-015-7089-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/29/2015] [Accepted: 10/13/2015] [Indexed: 10/22/2022]
Abstract
Flow cytometry (FCM) is a tool for the analysis of single-cell properties in a cell suspension. In this contribution, we present an improved FCM method for the assessment of E-lysis in Enterobacteriaceae. The result of the E-lysis process is empty bacterial envelopes-called bacterial ghosts (BGs)-that constitute potential products in the pharmaceutical field. BGs have reduced light scattering properties when compared with intact cells. In combination with viability information obtained from staining samples with the membrane potential-sensitive fluorescent dye bis-(1,3-dibutylarbituric acid) trimethine oxonol (DiBAC4(3)), the presented method allows to differentiate between populations of viable cells, dead cells, and BGs. Using a second fluorescent dye RH414 as a membrane marker, non-cellular background was excluded from the data which greatly improved the quality of the results. Using true volumetric absolute counting, the FCM data correlated well with cell count data obtained from colony-forming units (CFU) for viable populations. Applicability of the method to several Enterobacteriaceae (different Escherichia coli strains, Salmonella typhimurium, Shigella flexneri 2a) could be shown. The method was validated as a resilient process analytical technology (PAT) tool for the assessment of E-lysis and for particle counting during 20-l batch processes for the production of Escherichia coli Nissle 1917 BGs.
Collapse
Affiliation(s)
- Timo Langemann
- BIRD-C GmbH & Co KG, Dr.-Bohr-Gasse 2-8, A-1030, Vienna, Austria.,RCPE-Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, A-8010, Graz, Austria
| | | | - Andrea Meitz
- RCPE-Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, A-8010, Graz, Austria
| | - Werner Lubitz
- BIRD-C GmbH & Co KG, Dr.-Bohr-Gasse 2-8, A-1030, Vienna, Austria.,Center of Molecular Biology, University of Vienna, Dr.-Bohr-Gasse 9, A-1030, Vienna, Austria
| | - Christoph Herwig
- Research Division Biochemical Engineering, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1A 166/4, A-1060, Vienna, Austria.
| |
Collapse
|