1
|
Elsayed SA, Badr HE, di Biase A, El-Hendawy AM. Synthesis, characterization of ruthenium(II), nickel(II), palladium(II), and platinum(II) triphenylphosphine-based complexes bearing an ONS-donor chelating agent: Interaction with biomolecules, antioxidant, in vitro cytotoxic, apoptotic activity and cell cycle analysis. J Inorg Biochem 2021; 223:111549. [PMID: 34315119 DOI: 10.1016/j.jinorgbio.2021.111549] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/16/2023]
Abstract
Four new transition metal complexes, [M(PPh3)(L)].CH3OH (M = Ni(II) (1), Pd(II) (2)) [Pt (PPh3)2(HL)]Cl (3) and [Ru(CO)(PPh3)2(L)] (4) (H2L = 2,4-dihydroxybenzaldehyde-S-methyldithiocarbazate, PPh3 = triphenylphosphine) have been synthesized and characterized by elemental analyses (C, H, N), FTIR, NMR (1H, 31P), ESI-MS and UV-visible spectroscopy. The molecular structure of (1) and (2) complexes was confirmed by single-crystal X-ray crystallography. It showed a distorted square planar geometry for both complexes around the metal center, and the H2L adopt a bi-negative tridentate chelating mode. The interaction with biomolecules viz., calf thymus DNA (ct DNA), yeast RNA (tRNA), and BSA (bovine serum albumin) was examined by both UV-visible and fluorescence spectroscopies. The antioxidant activity of all compounds is discussed on basis of DPPH• (2,2-diphenyl-1-picrylhydrazyl) scavenging activity and showed better antioxidant activity for complexes compared to the ligand. The in vitro cytotoxicity of the compounds was tested on human (breast cancer (MCF7), colon cancer (HCT116), liver cancer (HepG2), and normal lung fibroblast (WI38)) cell lines, showing that complex (1) the most potent against MCF7 and complex (4) against HCT116 cell lines based on IC50 and selective indices (SI) values. So, both complexes were chosen for further studies such as DNA fragmentation, cell apoptosis, and cell cycle analyses. Complex (1) induced MCF7 cell death by cellular apoptosis and arrest cells at S phase. Complex (4) induced HCT116 cell death predominantly by cellular necrosis and arrested cell division at G2/M phase due to DNA damage.
Collapse
Affiliation(s)
- Shadia A Elsayed
- Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt.
| | - Hagar E Badr
- Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | - Armando di Biase
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| | - Ahmed M El-Hendawy
- Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt.
| |
Collapse
|
2
|
Study of adduct compounds between oxovanadium complexes VO(IV) and some biological relevance using FTIR technique. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00949-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
Tripathi M, Khilari R, Thakur Y, Verma B, Pardhi M, Pande R. Oxovanadium complex as potential nucleic acid binder. JOURNAL OF MACROMOLECULAR SCIENCE, PART A 2017; 54:85-90. [DOI: 10.1080/10601325.2017.1261620] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mamta Tripathi
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Rubi Khilari
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Yamini Thakur
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Bharati Verma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Manish Pardhi
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Rama Pande
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| |
Collapse
|
4
|
ElHefnawi M, Kim T, Kamar MA, Min S, Hassan NM, El-Ahwany E, Kim H, Zada S, Amer M, Windisch MP. In Silico Design and Experimental Validation of siRNAs Targeting Conserved Regions of Multiple Hepatitis C Virus Genotypes. PLoS One 2016; 11:e0159211. [PMID: 27441640 PMCID: PMC4956106 DOI: 10.1371/journal.pone.0159211] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/28/2016] [Indexed: 12/16/2022] Open
Abstract
RNA interference (RNAi) is a post-transcriptional gene silencing mechanism that mediates the sequence-specific degradation of targeted RNA and thus provides a tremendous opportunity for development of oligonucleotide-based drugs. Here, we report on the design and validation of small interfering RNAs (siRNAs) targeting highly conserved regions of the hepatitis C virus (HCV) genome. To aim for therapeutic applications by optimizing the RNAi efficacy and reducing potential side effects, we considered different factors such as target RNA variations, thermodynamics and accessibility of the siRNA and target RNA, and off-target effects. This aim was achieved using an in silico design and selection protocol complemented by an automated MysiRNA-Designer pipeline. The protocol included the design and filtration of siRNAs targeting highly conserved and accessible regions within the HCV internal ribosome entry site, and adjacent core sequences of the viral genome with high-ranking efficacy scores. Off-target analysis excluded siRNAs with potential binding to human mRNAs. Under this strict selection process, two siRNAs (HCV353 and HCV258) were selected based on their predicted high specificity and potency. These siRNAs were tested for antiviral efficacy in HCV genotype 1 and 2 replicon cell lines. Both in silico-designed siRNAs efficiently inhibited HCV RNA replication, even at low concentrations and for short exposure times (24h); they also exceeded the antiviral potencies of reference siRNAs targeting HCV. Furthermore, HCV353 and HCV258 siRNAs also inhibited replication of patient-derived HCV genotype 4 isolates in infected Huh-7 cells. Prolonged treatment of HCV replicon cells with HCV353 did not result in the appearance of escape mutant viruses. Taken together, these results reveal the accuracy and strength of our integrated siRNA design and selection protocols. These protocols could be used to design highly potent and specific RNAi-based therapeutic oligonucleotide interventions.
Collapse
Affiliation(s)
- Mahmoud ElHefnawi
- Informatics and Systems Department, Biomedical Informatics and Chemo-Informatics Group, Centre of Excellence for Advanced Sciences (CEAS), Division of Engineering Research, National Research Centre, Cairo, Egypt
- Centre for Informatics, Nile University, Shiekh Zayed City, Egypt
- Yousef-Jameel Science and Technology Research Centre, American University in Cairo, New Cairo, Egypt
- * E-mail: (MEH); (MPW)
| | - TaeKyu Kim
- Hepatitis Research Laboratory, Institut Pasteur Korea, 696 Sampyung-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Mona A. Kamar
- Yousef-Jameel Science and Technology Research Centre, American University in Cairo, New Cairo, Egypt
| | - Saehong Min
- Hepatitis Research Laboratory, Institut Pasteur Korea, 696 Sampyung-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Nafisa M. Hassan
- Yousef-Jameel Science and Technology Research Centre, American University in Cairo, New Cairo, Egypt
| | - Eman El-Ahwany
- Biology Department, American University in Cairo, New Cairo, Egypt
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Heeyoung Kim
- Hepatitis Research Laboratory, Institut Pasteur Korea, 696 Sampyung-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Suher Zada
- Yousef-Jameel Science and Technology Research Centre, American University in Cairo, New Cairo, Egypt
- Biology Department, American University in Cairo, New Cairo, Egypt
| | - Marwa Amer
- Biology Department, American University in Cairo, New Cairo, Egypt
- Faculty of Biotechnology, Misr University for Science and Technology, 6 of October City, Egypt
| | - Marc P. Windisch
- Hepatitis Research Laboratory, Institut Pasteur Korea, 696 Sampyung-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
- * E-mail: (MEH); (MPW)
| |
Collapse
|
5
|
Shah FA, Sabir S, Fatima K, Ali S, Qadri I, Rizzoli C. Organotin(IV) based anti-HCV drugs: synthesis, characterization and biochemical activity. Dalton Trans 2015; 44:10467-10478. [PMID: 25978123 DOI: 10.1039/c5dt00862j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Three new organotin(iv) carboxylates () of 3,5-dimethylbenzoate, have been synthesized and characterized by elemental analysis, FT-IR, multinuclear NMR ((1)H, (13)C and (119)Sn), mass spectrometry and single crystal X-ray structural analysis. Crystallographic data show that in compounds and , the geometry at the central Sn atom is skew-trapezoidal bipyramidal while compound displays a distorted trigonal bipyramidal coordination geometry. In the case of compounds and , the asymmetric chelating mode of the carboxylate groups is reflected in the unequal C-O bond distances, those observed for the O1 and O3 oxygen atoms being significantly longer than those found in the O2 and O4 atoms. In the case of compound , the carboxylate groups bridge asymmetrically adjacent tin atoms in an anti-syn mode generating polymeric zigzag chains running parallel to the crystallographic c-axis. The compounds were screened for anti-HCV (hepatitis C virus) potency by the Gaussia luciferase assay using infected Huh 7.5 cells (human hepatocellular cell). Structure-activity relationship studies led to the identification of dibutyltin(iv)bis(3,5-dimethylbenzoic acid) (compound ) as a potent HCV inhibitor, with log IC50 values equal to 0.69 nM in the cell-based assay. Compound was further subjected to quantitative analysis using real-time PCR assays and viral RNA count vs. drug concentration confirmed the Gaussia luciferase assay results. The HCV RNA targeting mode of the compounds () was confirmed by a compound-DNA interaction study. The compounds ()-DNA interactions were investigated by UV-vis spectroscopy and viscometry. The hypochromic effect in spectroscopy evidenced an intercalative mode of interaction with the binding affinity in the order of > > .
Collapse
Affiliation(s)
- Farooq Ali Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | | | | | | | | |
Collapse
|
6
|
Kong WH, Park K, Lee MY, Lee H, Sung DK, Hahn SK. Cationic solid lipid nanoparticles derived from apolipoprotein-free LDLs for target specific systemic treatment of liver fibrosis. Biomaterials 2013; 34:542-51. [DOI: 10.1016/j.biomaterials.2012.09.067] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 09/26/2012] [Indexed: 02/05/2023]
|
7
|
Motavaf M, Safari S, Alavian SM. Therapeutic potential of RNA interference: a new molecular approach to antiviral treatment for hepatitis C. J Viral Hepat 2012; 19:757-65. [PMID: 23043382 DOI: 10.1111/jvh.12006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hepatitis C virus (HCV) infection remains a major cause of chronic liver disease with an estimated 170 million carriers worldwide. Current treatments have significant side effects and have met with only partial success. Therefore, alternative antiviral drugs that efficiently block virus production are needed. During recent decades, RNA interference (RNAi) technology has not only become a powerful tool for functional genomics but also represents a new therapeutic approach for treating human diseases including viral infections. RNAi is a sequence-specific and post-transcriptional gene silencing process mediated by double-stranded RNA (dsRNA). As the HCV genome is a single-stranded RNA that functions as both a messenger RNA (mRNA) and replication template, it is an attractive target for the study of RNAi-based viral therapies. In this review, we will give a brief overview about the history and current status of RNAi and focus on its potential application as a therapeutic option for treatment for HCV infection.
Collapse
|
8
|
Chandra PK, Kundu AK, Hazari S, Chandra S, Bao L, Ooms T, Morris GF, Wu T, Mandal TK, Dash S. Inhibition of hepatitis C virus replication by intracellular delivery of multiple siRNAs by nanosomes. Mol Ther 2012; 20:1724-1736. [PMID: 22617108 PMCID: PMC3437587 DOI: 10.1038/mt.2012.107] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 04/23/2012] [Indexed: 02/07/2023] Open
Abstract
Sustained antiviral responses of chronic hepatitis C virus (HCV) infection have improved recently by the use of direct-acting antiviral agents along with interferon (IFN)-α and ribavirin. However, the emergence of drug-resistant variants is expected to be a major problem. We describe here a novel combinatorial small interfering RNA (siRNA) nanosome-based antiviral approach to clear HCV infection. Multiple siRNAs targeted to the highly conserved 5'-untranslated region (UTR) of the HCV genome were synthesized and encapsulated into lipid nanoparticles called nanosomes. We show that siRNA can be repeatedly delivered to 100% of cells in culture using nanosomes without toxicity. Six siRNAs dramatically reduced HCV replication in both the replicon and infectious cell culture model. Repeated treatments with two siRNAs were better than a single siRNA treatment in minimizing the development of an escape mutant, resulting in rapid inhibition of viral replication. Systemic administration of combinatorial siRNA-nanosomes is well tolerated in BALB/c mice without liver injury or histological toxicity. As a proof-of-principle, we showed that systemic injections of siRNA nanosomes significantly reduced HCV replication in a liver tumor-xenotransplant mouse model of HCV. Our results indicate that systemic delivery of combinatorial siRNA nanosomes can be used to minimize the development of escape mutants and inhibition of HCV infection.
Collapse
Affiliation(s)
- Partha K Chandra
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Anup K Kundu
- Center for Nanomedicine and Drug Delivery, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, USA
| | - Sidhartha Hazari
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Sruti Chandra
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Lili Bao
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Tara Ooms
- Department of Comparative Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Gilbert F Morris
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Tarun K Mandal
- Center for Nanomedicine and Drug Delivery, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, USA
| | - Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA.
| |
Collapse
|
9
|
Johnston BH, Ge Q. Design of Synthetic shRNAs for Targeting Hepatitis C: A New Approach to Antiviral Therapeutics. FROM NUCLEIC ACIDS SEQUENCES TO MOLECULAR MEDICINE 2012. [PMCID: PMC7138429 DOI: 10.1007/978-3-642-27426-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Small hairpin RNAs (shRNAs) are widely used as gene silencing tools and typically consist of a duplex stem of 19–29 bp, a loop, and often a dinucleotide overhang at the 3′ end. Like siRNAs, shRNAs show promise as potential therapeutic agents due to their high level of specificity and potency, although effective delivery to target tissues remains a challenge. Algorithms used to predict siRNA performance are frequently used to design shRNAs as well. However, the differences between these two kinds of RNAi mediators indicate that the factors affecting target gene silencing will not be the same for siRNAs and shRNAs. Stem and loop lengths, structures of the termini, the identity of nucleotides adjacent to and near the loop, and the position of the guide (antisense) strand all affect the efficacy of shRNAs. In addition, shRNAs with 19-bp or shorter stem lengths are processed and function differently than those with longer stems. In this review, we describe studies of targeting the hepatitis C virus that have provided guidelines for an optimal design for short (19 bp) shRNAs (sshRNAs) that are highly potent, stable in biological fluids, and have minimal immunostimulatory properties.
Collapse
|
10
|
Kundu AK, Chandra PK, Hazari S, Pramar YV, Dash S, Mandal TK. Development and optimization of nanosomal formulations for siRNA delivery to the liver. Eur J Pharm Biopharm 2011; 80:257-67. [PMID: 22119665 DOI: 10.1016/j.ejpb.2011.10.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/29/2011] [Accepted: 10/27/2011] [Indexed: 12/25/2022]
Abstract
The objective of this study is to develop an effective siRNA delivery system for successful delivery to the liver for the treatment of HCV. Nanosize liposomes (nanosomes) have been prepared using a mixture of cholesterol and DOTAP. A functional siRNA was encapsulated into nanosomes following condensation with protamine sulfate. The delivery of siRNA was optimized in an in vitro cell culture system. The efficacy of the formulations was evaluated by measuring functional gene silencing and cytotoxicity. Encapsulation of siRNA ≥ 7.4 nM resulted in successful delivery of siRNA to nearly 100% of cells. The formulations containing lipid-to-siRNA ratio ≥ 10.56:1 instantly cleared approximately 85% of HCV while maintaining cell viability at about 90%. The formulations were sonicated to further reduce the particle size. The size of these formulations was decreased up to 100 nm. However, there were no significant changes observed in zeta potential, or in siRNA encapsulation and integrity following sonication. The sonicated formulations also showed higher liver hepatocytes deposition and gene silencing properties. This study therefore provides a novel approach of siRNA delivery to liver hepatocytes, which can also be applied to treat HCV in chronic liver diseases.
Collapse
Affiliation(s)
- Anup K Kundu
- Center for Nanomedicine and Drug Delivery, Xavier University College of Pharmacy, New Orleans 70125-1098, USA
| | | | | | | | | | | |
Collapse
|
11
|
Colas J, Faure G, Saussereau E, Trudel S, Rabeh WM, Bitam S, Guerrera IC, Fritsch J, Sermet-Gaudelus I, Davezac N, Brouillard F, Lukacs GL, Herrmann H, Ollero M, Edelman A. Disruption of cytokeratin-8 interaction with F508del-CFTR corrects its functional defect. Hum Mol Genet 2011; 21:623-34. [PMID: 22038833 DOI: 10.1093/hmg/ddr496] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have previously reported an increased expression of cytokeratins 8/18 (K8/K18) in cells expressing the F508del mutation of cystic fibrosis transmembrane conductance regulator (CFTR). This is associated with increased colocalization of CFTR and K18 in the vicinity of the endoplasmic reticulum, although this is reversed by treating cells with curcumin, resulting in the rescue of F508del-CFTR. In the present work, we hypothesized that (i) the K8/K18 network may interact physically with CFTR, and that (ii) this interaction may modify CFTR function. CFTR was immunoprecipitated from HeLa cells transfected with either wild-type (WT) CFTR or F508del-CFTR. Precipitates were subjected to 2D-gel electrophoresis and differential spots identified by mass spectrometry. K8 and K18 were found significantly increased in F508del-CFTR precipitates. Using surface plasmon resonance, we demonstrate that K8, but not K18, binds directly and preferentially to the F508del over the WT human NBD1 (nucleotide-binding domain-1). In vivo K8 interaction with F508del-CFTR was confirmed by proximity ligation assay in HeLa cells and in primary cultures of human respiratory epithelial cells. Ablation of K8 expression by siRNA in F508del-expressing HeLa cells led to the recovery of CFTR-dependent iodide efflux. Moreover, F508del-expressing mice topically treated with K8-siRNA showed restored nasal potential difference, equivalent to that of WT mice. These results show that disruption of F508del-CFTR and K8 interaction leads to the correction of the F508del-CFTR processing defect, suggesting a novel potential therapeutic target in CF.
Collapse
Affiliation(s)
- Julien Colas
- Faculté de Médecine Paris-Descartes, INSERM, U845, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wu Z, Xue Y, Wang B, Du J, Jin Q. Broad-spectrum antiviral activity of RNA interference against four genotypes of Japanese encephalitis virus based on single microRNA polycistrons. PLoS One 2011; 6:e26304. [PMID: 22028851 PMCID: PMC3196537 DOI: 10.1371/journal.pone.0026304] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/23/2011] [Indexed: 11/30/2022] Open
Abstract
Japanese encephalitis virus (JEV), a neurotropic mosquito-borne flavivirus, causes acute viral encephalitis and neurologic disease with a high fatality rate in humans and a range of animals. Small interfering RNA (siRNA) is a powerful antiviral agent able to inhibit JEV replication. However, the high rate of genetic variability between JEV strains (of four confirmed genotypes, genotypes I, II, III and IV) hampers the broad-spectrum application of siRNAs, and mutations within the targeted sequences could facilitate JEV escape from RNA interference (RNAi)-mediated antiviral therapy. To improve the broad-spectrum application of siRNAs and prevent the generation of escape mutants, multiple siRNAs targeting conserved viral sequences need to be combined. In this study, using a siRNA expression vector based on the miR-155 backbone and promoted by RNA polymerase II, we initially identified nine siRNAs targeting highly conserved regions of seven JEV genes among strains of the four genotypes of JEV to effectively block the replication of the JEV vaccine strain SA14-14-2. Then, we constructed single microRNA-like polycistrons to simultaneously express these effective siRNAs under a single RNA polymerase II promoter. Finally, these single siRNAs or multiple siRNAs from the microRNA-like polycistrons showed effective anti-virus activity in genotype I and genotype III JEV wild type strains, which are the predominant genotypes of JEV in mainland China. The anti-JEV effect of these microRNA-like polycistrons was also predicted in other genotypes of JEV (genotypes II and IV), The inhibitory efficacy indicated that siRNAs×9 could theoretically inhibit the replication of JEV genotypes II and IV.
Collapse
Affiliation(s)
- Zhiqiang Wu
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ying Xue
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Bei Wang
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jiang Du
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qi Jin
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
13
|
Eskander EF, Abd-Rabou AA, Yahya SMM, Shaker OG, Mohamed MS. Does interferon and ribavirin combination therapy ameliorate growth hormone deficiency in HCV genotype-4 infected patients? Clin Biochem 2011; 45:3-6. [PMID: 21933670 DOI: 10.1016/j.clinbiochem.2011.08.1145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/07/2011] [Accepted: 08/29/2011] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To explore the impact of response to interferon and ribavirin antiviral therapy on human growth hormone (hGH) levels in Egyptian chronic hepatitis C genotype-4 infected patients. DESIGN AND METHODS We studied eighty Egyptian HCV infected patients visiting outpatient clinics of Tropical Medicine and Hepatology Department, El-Kasr El-Aini Hospital, Cairo University, Egypt. HCV patients received treatment of interferon and ribavirin combination therapy for 24 weeks. Clinical, virological, histological characteristics, and biochemical tests including; liver function tests (ALT and AST), prothrombin time (PT), alpha fetoprotein (AFP), complete blood picture (CBC), and hGH were monitored in hepatitis C genotype-4 infected patients before and after interferon therapy, and healthy controls. RESULTS Chronic HCV genotype-4 infected patients have high significant decrease of hGH as compared to healthy control individuals. In addition to, there was high significant increase of hGH in responders as compared to non-responders after treatment. CONCLUSION We concluded that Egyptian HCV genotype-4 infected patients have growth hormone insufficiency. Besides, we found that response to interferon/ribavirin treatment has an impact on growth hormone levels.
Collapse
Affiliation(s)
- Emad F Eskander
- Hormones Department, Medical Research Division, National Research Centre, Cairo, Egypt.
| | | | | | | | | |
Collapse
|
14
|
Flusin O, Vigne S, Peyrefitte CN, Bouloy M, Crance JM, Iseni F. Inhibition of Hazara nairovirus replication by small interfering RNAs and their combination with ribavirin. Virol J 2011; 8:249. [PMID: 21600011 PMCID: PMC3120786 DOI: 10.1186/1743-422x-8-249] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 05/21/2011] [Indexed: 01/25/2023] Open
Abstract
Background The genus Nairovirus in the family Bunyaviridae contains 34 tick-borne viruses classified into seven serogroups. Hazara virus (HAZV) belongs to the Crimean-Congo hemorrhagic fever (CCHF) serogroup that also includes CCHF virus (CCHFV) a major pathogen for humans. HAZV is an interesting model to study CCHFV due to a close serological and phylogenetical relationship and a classification which allows handling in a BSL2 laboratory. Nairoviruses are characterized by a tripartite negative-sense single stranded RNA genome (named L, M and S segments) that encode the RNA polymerase, the Gn-Gc glycoproteins and the nucleoprotein (NP), respectively. Currently, there are neither vaccines nor effective therapies for the treatment of any bunyavirus infection in humans. In this study we report, for the first time, the use of RNA interference (RNAi) as an approach to inhibit nairovirus replication. Results Chemically synthesized siRNAs were designed to target the mRNA produced by the three genomic segments. We first demonstrated that the siRNAs targeting the NP mRNA displayed a stronger antiviral effect than those complementary to the L and M transcripts in A549 cells. We further characterized the two most efficient siRNAs showing, that the induced inhibition is specific and associated with a decrease in NP synthesis during HAZV infection. Furthermore, both siRNAs depicted an antiviral activity when used before and after HAZV infection. We next showed that HAZV was sensitive to ribavirin which is also known to inhibit CCHFV. Finally, we demonstrated the additive or synergistic antiviral effect of siRNAs used in combination with ribavirin. Conclusions Our study highlights the interest of using RNAi (alone or in combination with ribavirin) to treat nairovirus infection. This approach has to be considered for the development of future antiviral compounds targeting CCHFV, the most pathogenic nairovirus.
Collapse
Affiliation(s)
- Olivier Flusin
- Unité de virologie, Institut de Recherche Biomédicale des Armées, 24 avenue des Maquis du Grésivaudan, La Tronche, France.
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Retroviruses integrate into the host cell's chromosome. Accordingly, many aspects of the life cycle of retroviruses like HIV-1 are intimately linked to the functions of cellular proteins and RNAs. In this review, we discuss in brief recent genomewide screens for the identification of cellular proteins that assist HIV-1 replication in human cells. We also review findings for other cellular moieties that help or restrict the viral life cycle.
Collapse
Affiliation(s)
- Andrew ML Lever
- Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK CB2 0QQ; the National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, Maryland, USA 20892-0460
| | - Kuan-Teh Jeang
- Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK CB2 0QQ; the National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, Maryland, USA 20892-0460
| |
Collapse
|
16
|
Shaker OG, Eskander EF, Yahya SMM, Mohamed MS, Abd-Rabou AA. Genetic variation in BCL-2 and response to interferon in hepatitis C virus type 4 patients. Clin Chim Acta 2010; 412:593-8. [PMID: 21159314 DOI: 10.1016/j.cca.2010.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/07/2010] [Accepted: 12/07/2010] [Indexed: 02/07/2023]
Abstract
The prevalence of hepatitis C virus (HCV) infection varies across the world, with the highest number of infections reported in Egypt. BCL-2 gene polymorphism at codon 43 (127G/A) has been found to be a reliable and sensitive marker for the prediction of response to interferon therapy during viral infections. This study examined the correlation of BCL-2 gene polymorphism with the response to treatment with pegylated-IFN-alfa2b and ribavirin. Eighty patients with type 4 HCV and 40 healthy volunteers as controls were enrolled in a prospective study. Quantification of HCV-RNA by real-time PCR was performed for every patient, and gene polymorphism of BCL-2 (ala 43 Thr) was performed for all patients and controls. There was a statistically significant difference between non-responder patients and control group as regards the 43 Thr genotype and allele (P<0.05). Also, there was a statistically significant difference between responders and non-responders (P<0.05) as regards 43 Thr genotype and alleles. We conclude that BCL-2 gene polymorphism at codon 43 (127G/A) is a new biological marker to potentially identify responders and non-responders of HCV genotype 4 patients to achieving a sustained virological response to treatment with IFN in combination with ribavirin.
Collapse
Affiliation(s)
- Olfat G Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Egypt.
| | | | | | | | | |
Collapse
|
17
|
Bergé M, Bonnin P, Sulpice E, Vilar J, Allanic D, Silvestre JS, Lévy BI, Tucker GC, Tobelem G, Merkulova-Rainon T. Small interfering RNAs induce target-independent inhibition of tumor growth and vasculature remodeling in a mouse model of hepatocellular carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:3192-201. [PMID: 20971743 DOI: 10.2353/ajpath.2010.100157] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RNA interference mediated by small interfering RNAs (siRNAs) has emerged as a potential therapeutic approach to treat various diseases, including cancer. Recent studies with several animal models of posttraumatic revascularization demonstrated that synthetic siRNAs may produce therapeutic effects in a target-independent manner through the stimulation of the toll-like receptor-3 (TLR3)/interferon pathway and suppression of angiogenesis. To analyze the impact of siRNAs on tumor angiogenesis, we injected transgenic mice developing hepatocellular carcinoma (HCC) with either control siRNAs or siRNA targeting neuropilin-1. We found that treatment with these siRNAs led to a comparable reduction in tumor liver volume and to inhibition of tumor vasculature remodeling. We further determined that TLR3, which recognizes double-stranded siRNA, was up-regulated in mouse HCC. Treatment of HCC mice with polyinosinic-polycytidylic acid [poly(I:C)], a TLR3 agonist, led to both a reduction of tumor liver enlargement and a decrease in hepatic arterial blood flow, indicating that TLR3 is functional and may mediate both anti-angiogenic and anti-tumor responses. We also demonstrated that siRNAs increased interferon-γ levels in the liver. In vitro, interferon-γ inhibited proliferation of endothelial cells. In addition, we found that siRNAs inhibited endothelial cell proliferation and morphogenesis in an interferon-γ-independent manner. Our results suggest that synthetic siRNAs inhibit target-independently HCC growth and angiogenesis through the activation of the innate interferon response and by directly inhibiting endothelial cell function.
Collapse
Affiliation(s)
- Mathieu Bergé
- Institut des Vaisseaux et du Sang, INSERM U965 Equipe Labellisée LIGUE 2009, Université Paris 7, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ho T, Wang L, Huang L, Li Z, Pallett DW, Dalmay T, Ohshima K, Walsh JA, Wang H. Nucleotide bias of DCL and AGO in plant anti-virus gene silencing. Protein Cell 2010; 1:847-58. [PMID: 21203927 PMCID: PMC4875223 DOI: 10.1007/s13238-010-0100-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 07/30/2010] [Indexed: 12/31/2022] Open
Abstract
Plant Dicer-like (DCL) and Argonaute (AGO) are the key enzymes involved in anti-virus post-transcriptional gene silencing (AV-PTGS). Here we show that AV-PTGS exhibited nucleotide preference by calculating a relative AV-PTGS efficiency on processing viral RNA substrates. In comparison with genome sequences of dicot-infecting Turnip mosaic virus (TuMV) and monocot-infecting Cocksfoot streak virus (CSV), viral-derived small interfering RNAs (vsiRNAs) displayed positive correlations between AV-PTGS efficiency and G+C content (GC%). Further investigations on nucleotide contents revealed that the vsiRNA populations had G-biases. This finding was further supported by our analyses of previously reported vsiRNA populations in diverse plant-virus associations, and AGO associated Arabidopsis endogenous siRNA populations, indicating that plant AGOs operated with G-preference. We further propose a hypothesis that AV-PTGS imposes selection pressure(s) on the evolution of plant viruses. This hypothesis was supported when potyvirus genomes were analysed for evidence of GC elimination, suggesting that plant virus evolution to have low GC% genomes would have a unique function, which is to reduce the host AV-PTGS attack during infections.
Collapse
MESH Headings
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Arabidopsis/virology
- Base Composition
- Dactylis/enzymology
- Dactylis/genetics
- Dactylis/virology
- Genes, Plant
- Genes, Viral
- Models, Genetic
- Mustard Plant/enzymology
- Mustard Plant/genetics
- Mustard Plant/virology
- Plant Diseases/genetics
- Plant Diseases/virology
- Plant Proteins/metabolism
- Plant Viruses/genetics
- Plant Viruses/pathogenicity
- Plants/enzymology
- Plants/genetics
- Plants/virology
- Potyvirus/genetics
- Potyvirus/pathogenicity
- RNA Interference
- RNA, Plant/genetics
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- RNA-Induced Silencing Complex/metabolism
- Ribonuclease III/metabolism
- Selection, Genetic
- Substrate Specificity
Collapse
Affiliation(s)
- Thien Ho
- NERC/Centre for Ecology and Hydrology (CEH) Wallingford, Maclean Building, Benson Lane, Wallingford, Oxfordshire OX10 8BB UK
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Liang Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Linfeng Huang
- NERC/Centre for Ecology and Hydrology (CEH) Wallingford, Maclean Building, Benson Lane, Wallingford, Oxfordshire OX10 8BB UK
| | - Zhigang Li
- NERC/Centre for Ecology and Hydrology (CEH) Wallingford, Maclean Building, Benson Lane, Wallingford, Oxfordshire OX10 8BB UK
| | - Denise W. Pallett
- NERC/Centre for Ecology and Hydrology (CEH) Wallingford, Maclean Building, Benson Lane, Wallingford, Oxfordshire OX10 8BB UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ UK
| | - Kazusato Ohshima
- Laboratory of Plant Virology, Faculty of Agriculture, Saga University, 1-banchi, Honjo-machi, Saga, 840-8502 Japan
| | - John A. Walsh
- Plant-Virus Interactions Group, Warwick HRI, Warwick University, Wellesbourne, Warwick CV35 9EF UK
| | - Hui Wang
- NERC/Centre for Ecology and Hydrology (CEH) Wallingford, Maclean Building, Benson Lane, Wallingford, Oxfordshire OX10 8BB UK
| |
Collapse
|
19
|
Chandra PK, Hazari S, Poat B, Gunduz F, Prabhu R, Liu G, Burioni R, Clementi M, Garry RF, Dash S. Intracytoplasmic stable expression of IgG1 antibody targeting NS3 helicase inhibits replication of highly efficient hepatitis C Virus 2a clone. Virol J 2010; 7:118. [PMID: 20529250 PMCID: PMC2903558 DOI: 10.1186/1743-422x-7-118] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 06/07/2010] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) infection is a major public health problem with more than 170 million cases of chronic infections worldwide. There is no protective vaccine currently available for HCV, therefore the development of novel strategy to prevent chronic infection is important. We reported earlier that a recombinant human antibody clone blocks viral NS3 helicase activity and inhibits replication of HCV 1b virus. This study was performed further to explore the mechanism of action of this recombinant antibody and to determine whether or not this antibody inhibits replication and infectivity of a highly efficient JFH1 HCV 2a virus clone. RESULTS The antiviral effect of intracellular expressed antibody against the HCV 2a virus strain was examined using a full-length green fluorescence protein (GFP) labeled infectious cell culture system. For this purpose, a Huh-7.5 cell line stably expressing the NS3 helicase gene specific IgG1 antibody was prepared. Replication of full-length HCV-GFP chimera RNA and negative-strand RNA was strongly inhibited in Huh-7.5 cells stably expressing NS3 antibody but not in the cells expressing an unrelated control antibody. Huh-7.5 cells stably expressing NS3 helicase antibody effectively suppressed infectious virus production after natural infection and the level of HCV in the cell free supernatant remained undetectable after first passage. In contrast, Huh-7.5 cells stably expressing an control antibody against influenza virus had no effect on virus production and high-levels of infectious HCV were detected in culture supernatants over four rounds of infectivity assay. A recombinant adenovirus based expression system was used to demonstrate that Huh-7.5 replicon cell line expressing the intracellular antibody strongly inhibited the replication of HCV-GFP RNA. CONCLUSION Recombinant human anti-HCV NS3 antibody clone inhibits replication of HCV 2a virus and infectious virus production. Intracellular expression of this recombinant antibody offers a potential antiviral strategy to inhibit intracellular HCV replication and production.
Collapse
Affiliation(s)
- Partha K Chandra
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA-70112, USA
| | - Sidhartha Hazari
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA-70112, USA
| | - Bret Poat
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA-70112, USA
| | - Feyza Gunduz
- Department of Medicine, Gastroenterology, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA-70112, USA
| | - Ramesh Prabhu
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA-70112, USA
| | - Gerald Liu
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA-70112, USA
| | - Roberto Burioni
- Facoltà di Medicina e Chirurgia, Università Vita-Salute San Raffaele, Via Olgettina, 60 - DiBit2, 20132 Milano, Italy
| | - Massimo Clementi
- Facoltà di Medicina e Chirurgia, Università Vita-Salute San Raffaele, Via Olgettina, 60 - DiBit2, 20132 Milano, Italy
| | - Robert F Garry
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA-70112, USA
| | - Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA-70112, USA
- Department of Medicine, Gastroenterology, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA-70112, USA
| |
Collapse
|
20
|
Abstract
Short-interfering RNAs (siRNAs) have engendered much enthusiasm for their ability to silence the expression of specific genes. However, it is now well established that siRNAs, depending on their sequence, can be variably sensed by the innate immune system through recruitment of toll-like receptors 7 and 8 (TLR7/8). Here, we aimed to identify sequence-based modifications allowing for the design of bifunctional siRNAs with both proinflammatory and specific silencing activities, and with potentially increased therapeutic benefits. We found that the introduction of a micro-RNA (miRNA)-like nonpairing uridine-bulge in the passenger strand robustly increased immunostimulatory activity on human immune cells. This sequence modification had no effect on the silencing efficiency of the siRNA. Increased immunostimulation with the uridine-bulge design was specific to human cells, and conserved silencing efficiency required a Dicer-substrate scaffold. The increased cytokine production with the uridine-bulge design resulted in enhanced protection against Semliki Forest virus (SFV) infection, in viral assays. Thus, we characterize a design scaffold applicable to any given siRNA sequence, that results in increased innate immune activation without affecting gene silencing. Our data suggest that this sequence modification coupled with structural modification differentially recruits human TLR8 over TLR7, and could have potential application in antiviral therapies.
Collapse
|
21
|
Affiliation(s)
- Dirk Haussecker
- Department of Pediatrics and Genetics, Stanford University, Stanford, California, USA
| | | |
Collapse
|
22
|
Nguyen DN, Chen SCY, Lu J, Goldberg M, Kim P, Sprague A, Novobrantseva T, Sherman J, Shulga-Morskaya S, de Fougerolles A, Chen J, Langer R, Anderson DG. Drug delivery-mediated control of RNA immunostimulation. Mol Ther 2009; 17:1555-62. [PMID: 19584813 PMCID: PMC2835254 DOI: 10.1038/mt.2009.147] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Accepted: 06/08/2009] [Indexed: 12/23/2022] Open
Abstract
RNA interference (RNAi) has generated significant interest as a strategy to suppress viral infection, but in some cases antiviral activity of unmodified short-interfering RNA (siRNA) has been attributed to activation of innate immune responses. We hypothesized that immunostimulation by unmodified siRNA could mediate both RNAi as well as innate immune stimulation depending on the mode of drug delivery. We investigated the potential of immunostimulatory RNAs (isRNAs) to suppress influenza A virus in vivo in the mouse lung. Lipidoid 98N12-5(1) formulated with unmodified siRNA targeting the influenza nucleoprotein gene exhibited antiviral activity. Formulations were optimized to increase antiviral activity, but the antiviral activity of lipidoid-delivered siRNA did not depend on sequence homology to the influenza genome as siRNA directed against unrelated targets also suppressed influenza replication in vivo. This activity was primarily attributed to enhancement of innate immune stimulation by lipidoid-mediated delivery, which indicates increased toll-like receptor (TLR) activation by siRNA. Certain chemical modifications to the siRNA backbone, which block TLR7/8 activation but retain in vitro RNAi activity, prevented siRNA-mediated antiviral activity despite enhanced lipidoid-mediated delivery. Here, we demonstrate that innate immune activation caused by unmodified siRNA can have therapeutically relevant effects, and that these non-RNAi effects can be controlled through chemical modifications and drug delivery.
Collapse
Affiliation(s)
- David N Nguyen
- Division of Health Sciences and Technology, MIT, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The current standard of care for the treatment of hepatitis C virus infection, pegylated interferon-alpha and ribavirin, is costly, associated with significant side effects, and effective in only 50% of patients. There is therefore a need for the development of novel antiviral therapies. One such approach involves the application of gene silencing technologies, including antisense oligonucleotides, ribozymes, RNA interference, and aptamers. However, despite great scientific advances over the past decade, and promising in vitro data, several significant challenges continue to limit the translation of this technology to the clinical setting. This review provides a concise update of the current literature.
Collapse
Affiliation(s)
- Alexander J V Thompson
- Division of Gastroenterology/Hepatology, Duke Clinical Research Institute, Duke University, Durham, NC 27715, USA
| | | |
Collapse
|
24
|
Cellular models for the screening and development of anti-hepatitis C virus agents. Pharmacol Ther 2009; 124:1-22. [PMID: 19555718 DOI: 10.1016/j.pharmthera.2009.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 05/19/2009] [Indexed: 12/24/2022]
Abstract
Investigations on the biology of hepatitis C virus (HCV) have been hampered by the lack of small animal models. Efforts have therefore been directed to designing practical and robust cellular models of human origin able to support HCV replication and production in a reproducible, reliable and consistent manner. Many different models based on different forms of virions and hepatoma or other cell types have been described including virus-like particles, pseudotyped particles, subgenomic and full length replicons, virion productive replicons, immortalised hepatocytes, fetal and adult primary human hepatocytes. This review focuses on these different cellular models, their advantages and disadvantages at the biological and experimental levels, and their respective use for evaluating the effect of antiviral molecules on different steps of HCV biology including virus entry, replication, particles generation and excretion, as well as on the modulation by the virus of the host cell response to infection.
Collapse
|
25
|
Webster DP, Klenerman P, Collier J, Jeffery KJM. Development of novel treatments for hepatitis C. THE LANCET. INFECTIOUS DISEASES 2009; 9:108-17. [PMID: 19179226 DOI: 10.1016/s1473-3099(09)70020-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) infection is a major and growing global health problem, affecting about 170 million people worldwide, and is a leading cause of liver cirrhosis and hepatocellular carcinoma. Currently, treatment is restricted to interferon alfa and ribavirin, which leads to a successful outcome in only about 50% of individuals. New effective treatments with tolerable side-effect profiles are needed urgently, but development has been hindered by an inability to culture HCV and a scarcity of animal models. Herein, we review progress in HCV biology, including cell culture and new animal models, and the contribution of this work to our understanding of the virus' life-cycle and pathogenesis and development of specifically targeted antiviral treatment. We also discuss changes in our understanding of HCV epidemiology, clinical manifestations, and diagnostics.
Collapse
Affiliation(s)
- Daniel P Webster
- Department of Microbiology, John Radcliffe Hospital, Oxford, UK.
| | | | | | | |
Collapse
|
26
|
Kim SI, Shin D, Lee H, Ahn BY, Yoon Y, Kim M. Targeted delivery of siRNA against hepatitis C virus by apolipoprotein A-I-bound cationic liposomes. J Hepatol 2009; 50:479-88. [PMID: 19155084 DOI: 10.1016/j.jhep.2008.10.029] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 10/20/2008] [Accepted: 10/21/2008] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Hepatitis C virus (HCV) is one of the major human hepatic RNA viruses. Recently, we developed a liver-specific siRNA delivery technology using DTC-Apo composed of cationic liposomes (DTC) and apolipoprotein A-I (apo A-I). Here, we investigated whether DTC-Apo nanoparticles can systemically deliver siRNA into mouse hepatocytes expressing HCV proteins and inhibit their expression efficiently. METHODS A transient HCV model was constructed by hydrodynamic injection of plasmid DNA expressing viral structural proteins under hepatic control region and alpha1-antitrypsin promoter elements. Using this model, DTC-Apo containing HCV-core-specific siRNA was intravenously injected to assess antiviral activity as well as the duration of silencing. RESULTS Post-administration of DTC-Apo/HCV-specific siRNA at a dose of 2mg siRNA/kg inhibited viral gene expression by 65-75% in the liver on day 2. Improved activity (95% knockdown on day 2) without immunotoxicity was obtained by 2'-OMe-modification at two U sequences on its sense strand. Notably, the gene silencing effect of the modified siRNA was still maintained at day 6, while the unmodified one lost RNAi activity after day 4. CONCLUSIONS Our results suggest that DTC-Apo liposome is a highly potential delivery vehicle to transfer therapeutic siRNA especially targeting HCV to the liver.
Collapse
Affiliation(s)
- Soo In Kim
- Virus Research Laboratory, Mogam Biotechnology Research Institute, Giheung-Gu, Gyeonggi-Do, South Korea
| | | | | | | | | | | |
Collapse
|
27
|
Ji J, Glaser A, Wernli M, Berke JM, Moradpour D, Erb P. Suppression of short interfering RNA-mediated gene silencing by the structural proteins of hepatitis C virus. J Gen Virol 2009; 89:2761-2766. [PMID: 18931073 DOI: 10.1099/vir.0.2008/002923-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Viruses have evolved strategies to overcome the antiviral effects of the host at different levels. Besides specific defence mechanisms, the host responds to viral infection via the interferon pathway and also by RNA interference (RNAi). However, several viruses have been identified that suppress RNAi. We addressed the question of whether hepatitis C virus (HCV) suppresses RNAi, using cell lines constitutively expressing green fluorescent protein (GFP) and inducibly expressing HCV proteins. It was found that short interfering RNA-mediated GFP gene silencing was inhibited when the entire HCV polyprotein was expressed. Further studies showed that HCV structural proteins, and in particular envelope protein 2 (E2), were responsible for this inhibition. Co-precipitation assays demonstrated that E2 bound to Argonaute-2 (Ago-2), a member of the RNA-induced silencing complex, RISC. Thus, HCV E2 that interacts with Ago-2 is able to suppress RNAi.
Collapse
Affiliation(s)
- Jingmin Ji
- Department of Biomedicine, Institute for Medical Microbiology, University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland
| | - Andrea Glaser
- Department of Biomedicine, Institute for Medical Microbiology, University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland
| | - Marion Wernli
- Department of Biomedicine, Institute for Medical Microbiology, University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland
| | - Jan Martin Berke
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Darius Moradpour
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Peter Erb
- Department of Biomedicine, Institute for Medical Microbiology, University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland
| |
Collapse
|
28
|
Mok H, Park TG. Self-crosslinked and reducible fusogenic peptides for intracellular delivery of siRNA. Biopolymers 2008; 89:881-8. [DOI: 10.1002/bip.21032] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|