1
|
Musumeci F, Fasce A, Falesiedi M, Oleari F, Grossi G, Carbone A, Schenone S. Approaching Gallium-68 radiopharmaceuticals for tumor diagnosis: a Medicinal Chemist's perspective. Eur J Med Chem 2025; 294:117760. [PMID: 40393260 DOI: 10.1016/j.ejmech.2025.117760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/22/2025]
Abstract
Nuclear medicine has revolutionized disease diagnosis and treatment, particularly in oncology, by enabling precise imaging and targeted therapies using radiopharmaceuticals. Recently, Gallium-68 (68Ga) has emerged as a powerful positron emission tomography (PET) imaging agent, with a growing role in theranostics when paired with 177Lu for cancer treatment. The ability to obtain 68Ga from 68Ge/68Ga generators, along with its favorable radiochemical and pharmacokinetic properties, has driven an increasing number of clinical applications, which culminated with the approvals of 68Ga-DOTA-TOC and 68Ga-DOTA-TATE for the treatment of neuroendocrine tumors, and 68Ga-PSMA-11 for prostate cancer over the past decade. This review provides a comprehensive overview of 68Ga radiochemistry, chelators, and key compounds in clinical trials, highlighting the potential of this radionuclide in precision oncology.
Collapse
Affiliation(s)
- Francesca Musumeci
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy.
| | - Alessandro Fasce
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Marta Falesiedi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Federica Oleari
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Giancarlo Grossi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Anna Carbone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Silvia Schenone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| |
Collapse
|
2
|
Meng L, Lin R, Zhang J, Li H, Xia D, Zhao Z, Zhuang R, Huang L, Zhang X, Fang J, Miao W, Guo Z. Modification of Asp-Peptide Adapters: Giving the FAP-Targeted Radioligand a "Squirrel Tail". J Med Chem 2025; 68:6576-6587. [PMID: 40102034 DOI: 10.1021/acs.jmedchem.4c03133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Fibroblast activation protein (FAP) is a promising target for cancer theranostics, but most FAP-targeted radioprobes showed relatively insufficient tumor uptake and retention, which seriously hampered their further application. Inspired by the squirrel tail, this study developed a novel FAP-targeted molecule, FSND3, which is modified with three Asp-peptide adapters to enable both 68Ga ([68Ga]Ga-FSND3) and 18F ([18F]AlF-FSND3) PET imaging. Compared to [68Ga]Ga-FAPI-04, [68Ga]Ga-FAPI-42, and [18F]AlF-FAPI-42, [18F]AlF-FSND3 and [68Ga]Ga-FSND3 showed enhanced tumor uptake and prolonged residence in HT-1080-FAP and pancreatic tumor models, demonstrating the effectiveness of Asp-peptide adapters in pharmacomodulating FAP-targeted radioligands. The first-in-human pilot study revealed that [18F]AlF- and [68Ga]Ga-FSND3 exhibited comparable uptake in the primary lesion, higher-contrast images, and higher uptake in some metastases like in bone and brain, to 2-[18F] FDG PET/CT imaging. As a proof of concept, these results offer a significant enhancement to the diversity of the FAP-targeted tracer arsenal.
Collapse
Affiliation(s)
- Lingxin Meng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Rong Lin
- Department of Nuclear Medicine, the First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou 350005, China
| | - Jingru Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Huifeng Li
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Dongsheng Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Zuoquan Zhao
- Theranostics and Translational Research Center, Institute of Clinical Medicine, Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Rongqiang Zhuang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Lumei Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xianzhong Zhang
- Theranostics and Translational Research Center, Institute of Clinical Medicine, Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Jianyang Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Weibing Miao
- Department of Nuclear Medicine, the First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou 350005, China
| | - Zhide Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| |
Collapse
|
3
|
Xiong Y, Jian H, Han X, Li L, Zhou L. A decade of incremental advances in radiopharmaceuticals: a promising future ahead. J Transl Med 2024; 22:1105. [PMID: 39633445 PMCID: PMC11616306 DOI: 10.1186/s12967-024-05891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Affiliation(s)
- Yu Xiong
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - Hui Jian
- Office of the Ethics Committee, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - Xiaowen Han
- NHC Key Laboratory of Nuclear Surgery Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - Lizhi Li
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - Liangxue Zhou
- NHC Key Laboratory of Nuclear Surgery Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China.
- Department of Neurosurgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China.
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Hou R, Liu N, Li F. Nanoradiopharmaceuticals: An Attractive Concept in Oncotherapy. ChemMedChem 2024; 19:e202400423. [PMID: 39140435 DOI: 10.1002/cmdc.202400423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024]
Abstract
Radiopharmaceuticals are of significant importance in the fields of tumor imaging and therapy. In recent decades, the increasing role of nanotechnology has led to the attractive concept of nanoradiopharmaceuticals. Consequently, it is imperative to provide a concise summary of the necessary guidelines to facilitate the translation of nanoradiopharmaceuticals. In this work, we have presented the contents of radiolabeling strategies and some applications of nanoradiopharmaceuticals. Such a framework can assist researchers in identifying more pertinent insights or making more informed decisions in the study of nanoradiopharmaceuticals.
Collapse
Affiliation(s)
- Ruitong Hou
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| |
Collapse
|
5
|
Hierlmeier I, Marino N, Schreck MV, Schneider L, Maus S, Barrett K, Kretowicz M, Engle JW, Pierri G, Ezziddin S, Bartholomä MD. Radiochemistry and Complex Formation of the Cyclen-Derived Chelator DOTI-Me with Mn 2+, Cu 2+, Zn 2+, Ga 3+, In 3+, Tb 3+, and Lu 3. Inorg Chem 2024; 63:19468-19481. [PMID: 39352711 DOI: 10.1021/acs.inorgchem.4c03571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
In this work, we describe the complex formation and radiochemistry of the cyclen-based chelator DOTI-Me bearing four methylimidazole arms. Radiolabeling properties were evaluated for 52gMn, 64Cu, 68Ga, 111In, 161Tb, and 177Lu, and DOTI-Me showed distinct differences to the structurally related H4DOTA. While radiochemical conversions (RCCs) for 52gMn and 111In were comparable to those of H4DOTA, DOTI-Me was not suited for 68Ga. Conversely, quantitative RCCs were achieved for 64Cu at ambient temperature, while elevated temperatures were required for complexation with H4DOTA. For 161Tb and 177Lu, good but not quantitative RCCs were obtained with DOTI-Me. With the exemption of 68Ga3+, radiolabeled complexes showed high stability in ligand challenge experiments and in human serum. X-ray analysis of the nonradioactive complexes revealed the formation of 8-coordinate Mn2+ and In3+ DOTI-Me complexes. Cu2+ adopted a unique distorted square-pyramidal 2 + 3 with the neutral DOTI-Me ligand and a Jahn-Teller distorted 4 + 2 coordination geometry for the diprotonated H2DOTI-Me2+ cation, respectively. For Zn2+, the complex with HDOTI-Me+ showed a distorted 4 + 3 pentagonal bipyramidal geometry. Summarizing, the ligand DOTI-Me may be an interesting alternative to H4DOTA for 52gMn, 64Cu, 111In, 161Tb, and 177Lu, covering diagnostic as well as therapeutic radionuclides. Further studies of targeted radiopharmaceuticals based on the DOTI-Me scaffold in combination with the set of radiometals presented herein are thus warranted.
Collapse
Affiliation(s)
- Ina Hierlmeier
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrbergerstrasse, D-66421 Homburg, Germany
| | - Nadia Marino
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Moritz-Valentin Schreck
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrbergerstrasse, D-66421 Homburg, Germany
| | - Lukas Schneider
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrbergerstrasse, D-66421 Homburg, Germany
| | - Stephan Maus
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrbergerstrasse, D-66421 Homburg, Germany
| | - Kendall Barrett
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Margarita Kretowicz
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Giovanni Pierri
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Samer Ezziddin
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrbergerstrasse, D-66421 Homburg, Germany
| | - Mark D Bartholomä
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrbergerstrasse, D-66421 Homburg, Germany
| |
Collapse
|
6
|
Najdian A, Beiki D, Abbasi M, Gholamrezanezhad A, Ahmadzadehfar H, Amani AM, Ardestani MS, Assadi M. Exploring innovative strides in radiolabeled nanoparticle progress for multimodality cancer imaging and theranostic applications. Cancer Imaging 2024; 24:127. [PMID: 39304961 DOI: 10.1186/s40644-024-00762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/13/2024] [Indexed: 09/22/2024] Open
Abstract
Multimodal imaging unfolds as an innovative approach that synergistically employs a spectrum of imaging techniques either simultaneously or sequentially. The integration of computed tomography (CT), magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), positron emission tomography (PET), and optical imaging (OI) results in a comprehensive and complementary understanding of complex biological processes. This innovative approach combines the strengths of each method and overcoming their individual limitations. By harmoniously blending data from these modalities, it significantly improves the accuracy of cancer diagnosis and aids in treatment decision-making processes. Nanoparticles possess a high potential for facile functionalization with radioactive isotopes and a wide array of contrast agents. This strategic modification serves to augment signal amplification, significantly enhance image sensitivity, and elevate contrast indices. Such tailored nanoparticles constructs exhibit a promising avenue for advancing imaging modalities in both preclinical and clinical setting. Furthermore, nanoparticles function as a unified nanoplatform for the co-localization of imaging agents and therapeutic payloads, thereby optimizing the efficiency of cancer management strategies. Consequently, radiolabeled nanoparticles exhibit substantial potential in driving forward the realms of multimodal imaging and theranostic applications. This review discusses the potential applications of molecular imaging in cancer diagnosis, the utilization of nanotechnology-based radiolabeled materials in multimodal imaging and theranostic applications, as well as recent advancements in this field. It also highlights challenges including cytotoxicity and regulatory compliance, essential considerations for effective clinical translation of nanoradiopharmaceuticals in multimodal imaging and theranostic applications.
Collapse
Affiliation(s)
- Atena Najdian
- The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Davood Beiki
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), 1441 Eastlake Ave Ste 2315, Los Angeles, CA, 90089, USA
| | - Hojjat Ahmadzadehfar
- Department of Nuclear Medicine, Klinikum Westfalen, Dortmund, Germany
- Department of Nuclear Medicine, Institute of Radiology, Neuroradiology and Nuclear Medicine, University Hospital Knappschaftskrankenhaus, Bochum, Germany
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
7
|
Jiao X, Hong H, Cai W. Nanoscale Radiotheranostics for Cancer Treatment: From Bench to Bedside. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2006. [PMID: 39407431 PMCID: PMC11486289 DOI: 10.1002/wnan.2006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/31/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
In recent years, the application of radionuclides-containing nanomaterials in cancer treatment has garnered widespread attention. The diversity of nanomaterials allows researchers to selectively combine them with appropriate radionuclides for biomedical purposes, addressing challenges faced by peptides, small molecules, or antibodies used for radionuclide labeling. However, with advantages come challenges, and nanoradionuclides still encounter significant issues during clinical translation. This review summarized the recent progress of nanosized radionuclides for cancer treatment or diagnosis. The discussion began with representative radionuclides and the methods of incorporating them into nanomaterial structures. Subsequently, new combinations of nanomaterials and radionuclides, along with their applications, were introduced to demonstrate their future trends. The benefits of nanoradionuclides included optimized pharmacokinetic properties, enhanced disease-targeting efficacy, and synergistic application with other treatment techniques. Besides, the basic rule of this section was to summarize how these nanoradionuclides can truly impact the diagnosis and therapy of various cancer types. In the last part, the focus was devoted to the nanoradionuclides currently applicable in clinics and how to address the existing issues and problems based on our knowledge.
Collapse
Affiliation(s)
- Xiaodan Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Hao Hong
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, USA
| |
Collapse
|
8
|
Wang Y, Yang F, Li H. Development of a Novel, Easy-to-Prepare, and Potentially Valuable Peptide Coupling Technology Utilizing Amide Acid as a Linker. Pharmaceuticals (Basel) 2024; 17:981. [PMID: 39204086 PMCID: PMC11356999 DOI: 10.3390/ph17080981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/16/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
The process of synthesizing radionuclide-coupled drugs, especially shutdown technology that links bipotent chelators with biomolecules, utilizes traditional coupling reactions, including emerging click chemistry; these reactions involve different drawbacks, such as complex and cumbersome reaction steps, long reaction times, and the use of catalysts at various pH values, which can negatively impact the effects of the chelating agent. To address the above problems in this study, This research designed a novel bipotent chelator coupled with peptides. In the present study, dichloromethane was used as a solvent, and the reaction was conducted at room temperature for 12 h. A one-step ring-opening method was employed to introduce the coupling functional group of tridentate amide acid. The coupling materials consisted of the amino active site of the peptide and diethylene glycol anhydride. In this paper, this study explored the reactions between different equivalents of acid anhydride coupled to the peptide (peptide sequence: HLRKLRKR) and determined that the maximum conversion of the peptide feedstock was 87%. To determine the selectivity of the reaction sites in this polypeptide, This study identified the peptide sequence at the reaction site using nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry (LC-MS). For the selected peptide, the first reactive site was on the terminal amino group, followed by the amino group on the tetra- and hepta-lysine side chains. The tridentate amic acid framework functions as a chelating agent, capable of binding a range of lanthanide ions. This significantly reduces and optimizes the time and cost associated with synthesizing radionuclide-coupled drugs.
Collapse
Affiliation(s)
- Yaling Wang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China;
- Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Fan Yang
- Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- Xiamen Key-Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen 361021, China
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, China Rare Earth Group Research Institute, Ganzhou 341000, China
- Fujian Province Joint Innovation Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hongyan Li
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
9
|
Badier L, Quelven I. Zirconium 89 and Copper 64 for ImmunoPET: From Antibody Bioconjugation and Radiolabeling to Molecular Imaging. Pharmaceutics 2024; 16:882. [PMID: 39065579 PMCID: PMC11279968 DOI: 10.3390/pharmaceutics16070882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Immunotherapy has transformed cancer treatment. Nevertheless, given the heterogeneity of clinical efficacy, the multiplicity of treatment options available and the possibility of serious adverse effects, selecting the most effective treatment has become the greatest challenge. Molecular imaging offers an attractive way for this purpose. ImmunoPET provides specific imaging with positron emission tomography (PET) using monoclonal antibodies (mAb) or its fragments as vector. By combining the high targeting specificity of mAb and the sensitivity of PET technique, immunoPET could noninvasively and dynamically reveal tumor antigens expression and provide theranostic tools of several types of malignancies. Because of their slow kinetics, mAbs require radioelements defined by a consistent half-life. Zirconium 89 (89Zr) and Copper 64 (64Cu) are radiometals with half-lives suitable for mAb labeling. Radiolabeling with a radiometal requires the prior use of a bifunctional chelate agent (BFCA) to functionalize mAb for radiometal chelation, in a second step. There are a number of BFCA available and much research is focused on antibody functionalization techniques or on developing the optimum chelating agent depending the selected radiometal. In this manuscript, we present a critical account of radiochemical techniques with radionuclides 89Zr and 64Cu and their applications in preclinical and clinical immuno-PET imaging.
Collapse
Affiliation(s)
| | - Isabelle Quelven
- Toulouse NeuroImaging Center (ToNIC), INSERM/UPS UMR 1214, University Hospital of Toulouse-Purpan, CEDEX 3, 31024 Toulouse, France;
| |
Collapse
|
10
|
Ioannidis I, Lefkaritis G, Georgiades SN, Pashalidis I, Kontoghiorghes GJ. Towards Clinical Development of Scandium Radioisotope Complexes for Use in Nuclear Medicine: Encouraging Prospects with the Chelator 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic Acid (DOTA) and Its Analogues. Int J Mol Sci 2024; 25:5954. [PMID: 38892142 PMCID: PMC11173192 DOI: 10.3390/ijms25115954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Scandium (Sc) isotopes have recently attracted significant attention in the search for new radionuclides with potential uses in personalized medicine, especially in the treatment of specific cancer patient categories. In particular, Sc-43 and Sc-44, as positron emitters with a satisfactory half-life (3.9 and 4.0 h, respectively), are ideal for cancer diagnosis via Positron Emission Tomography (PET). On the other hand, Sc-47, as an emitter of beta particles and low gamma radiation, may be used as a therapeutic radionuclide, which also allows Single-Photon Emission Computed Tomography (SPECT) imaging. As these scandium isotopes follow the same biological pathway and chemical reactivity, they appear to fit perfectly into the "theranostic pair" concept. A step-by-step description, initiating from the moment of scandium isotope production and leading up to their preclinical and clinical trial applications, is presented. Recent developments related to the nuclear reactions selected and employed to produce the radionuclides Sc-43, Sc-44, and Sc-47, the chemical processing of these isotopes and the main target recovery methods are also included. Furthermore, the radiolabeling of the leading chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and its structural analogues with scandium is also discussed and the advantages and disadvantages of scandium complexation are evaluated. Finally, a review of the preclinical studies and clinical trials involving scandium, as well as future challenges for its clinical uses and applications, are presented.
Collapse
Affiliation(s)
- Ioannis Ioannidis
- Department of Chemistry, University of Cyprus, 2109 Nicosia, Cyprus; (I.I.); (G.L.); (S.N.G.); (I.P.)
| | - George Lefkaritis
- Department of Chemistry, University of Cyprus, 2109 Nicosia, Cyprus; (I.I.); (G.L.); (S.N.G.); (I.P.)
| | - Savvas N. Georgiades
- Department of Chemistry, University of Cyprus, 2109 Nicosia, Cyprus; (I.I.); (G.L.); (S.N.G.); (I.P.)
| | - Ioannis Pashalidis
- Department of Chemistry, University of Cyprus, 2109 Nicosia, Cyprus; (I.I.); (G.L.); (S.N.G.); (I.P.)
| | - George J. Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, 3021 Limassol, Cyprus
| |
Collapse
|
11
|
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
12
|
Albanese V, Roccatello C, Pacifico S, Guerrini R, Preti D, Gentili S, Tegoni M, Remelli M, Bellotti D, Amico J, Gorgoni G, Cazzola E. Bifunctional octadentate pseudopeptides as Zirconium-89 chelators for immuno-PET applications. EJNMMI Radiopharm Chem 2024; 9:38. [PMID: 38705946 PMCID: PMC11070408 DOI: 10.1186/s41181-024-00263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Positron emission tomography (PET) is a highly sensitive method that provides fine resolution images, useful in the field of clinical diagnostics. In this context, Zirconium-89 (89Zr)-based imaging agents have represented a great challenge in molecular imaging with immuno-PET, which employs antibodies (mAbs) as biological vectors. Indeed, immuno-PET requires radionuclides that can be attached to the mAb to provide stable in vivo conjugates, and for this purpose, the radioactive element should have a decay half-life compatible with the time needed for the biodistribution of the immunoglobulin. In this regard, 89Zr is an ideal radioisotope for immuno-PET because its half-life perfectly matches the in vivo pharmacokinetics of mAbs. RESULTS The main objective of this work was the design and synthesis of a series of bifunctional octadentate pseudopeptides able to generate stable 89Zr complexes. To achieve this, here we investigated hydroxamate, N-methylhydroxamate and catecholate chelating moieties in complexing radioactive zirconium. N-methylhydroxamate proved to be the most effective 89Zr-chelating group. Furthermore, the increased flexibility and hydrophilicity obtained by using polyoxyethylene groups spacing the hydroxamate units led to chelators capable of rapidly forming (15 min) stable and water-soluble complexes with 89Zr under mild reaction conditions (aqueous environment, room temperature, and physiological pH) that are mandatory for complexation reactions involving biomolecules. Additionally, we report challenge experiments with the competitor ligand EDTA and metal ions such as Fe3+, Zn2+ and Cu2+. In all examined conditions, the chelators demonstrated stability against transmetallation. Finally, a maleimide moiety was introduced to apply one of the most promising ligands in bioconjugation reactions through Thiol-Michael chemistry. CONCLUSION Combining solid phase and solution synthesis techniques, we identified novel 89Zr-chelating molecules with a peptide scaffold. The adopted chemical design allowed modulation of molecular flexibility, hydrophilicity, as well as the decoration with different zirconium chelating groups. Best results in terms of 89Zr-chelating properties were achieved with the N-methyl hydroxamate moiety. The Zirconium complexes obtained with the most effective compounds were water-soluble, stable to transmetallation, and resistant to peptidases for at least 6 days. Further studies are needed to assess the potential of this novel class of molecules as Zirconium-chelating agents for in vivo applications.
Collapse
Affiliation(s)
- Valentina Albanese
- Department of Environmental and Prevention Sciences, University of Ferrara, Palazzo Turchi di Bagno, C.So Ercole I d'Este 32, 44121, Ferrara, Italy.
| | - Chiara Roccatello
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Salvatore Pacifico
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Remo Guerrini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Delia Preti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Silvia Gentili
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11/A, 43124, Parma, Italy
| | - Matteo Tegoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11/A, 43124, Parma, Italy
| | - Maurizio Remelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Denise Bellotti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Jonathan Amico
- Department of Radiopharmaceutical, IRCCS Sacro Cuore Don Calabria Hospital, Via Don A. Sempreboni 5, 37024, Negrar di Valpolicella, Verona, Italy
| | - Giancarlo Gorgoni
- Department of Radiopharmaceutical, IRCCS Sacro Cuore Don Calabria Hospital, Via Don A. Sempreboni 5, 37024, Negrar di Valpolicella, Verona, Italy
| | - Emiliano Cazzola
- Department of Radiopharmaceutical, IRCCS Sacro Cuore Don Calabria Hospital, Via Don A. Sempreboni 5, 37024, Negrar di Valpolicella, Verona, Italy
| |
Collapse
|
13
|
Binmujlli MA. Radiological and Molecular Analysis of Radioiodinated Anastrozole and Epirubicin as Innovative Radiopharmaceuticals Targeting Methylenetetrahydrofolate Dehydrogenase 2 in Solid Tumors. Pharmaceutics 2024; 16:616. [PMID: 38794278 PMCID: PMC11126143 DOI: 10.3390/pharmaceutics16050616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
In the dynamic field of radiopharmaceuticals, innovating targeted agents for cancer diagnosis and therapy is crucial. Our study enriches this evolving landscape by evaluating the potential of radioiodinated anastrozole ([125I]anastrozole) and radioiodinated epirubicin ([125I]epirubicin) as targeting agents against MTHFD2-driven tumors. MTHFD2, which is pivotal in one-carbon metabolism, is notably upregulated in various cancers, presenting a novel target for radiopharmaceutical application. Through molecular docking and 200 ns molecular dynamics (MD) simulations, we assess the binding efficiency and stability of [125I]anastrozole and [125I]epirubicin with MTHFD2. Molecular docking illustrates that [125I]epirubicin has a superior binding free energy (∆Gbind) of -41.25 kJ/mol compared to -39.07 kJ/mol for [125I]anastrozole and -38.53 kJ/mol for the control ligand, suggesting that it has a higher affinity for MTHFD2. MD simulations reinforce this, showing stable binding, as evidenced by root mean square deviation (RMSD) values within a narrow range, underscoring the structural integrity of the enzyme-ligand complexes. The root mean square fluctuation (RMSF) analysis indicates consistent dynamic behavior of the MTHFD2 complex upon binding with [125I]anastrozole and [125I]epirubicin akin to the control. The radius of gyration (RG) measurements of 16.90 Å for MTHFD2-[125I]anastrozole and 16.84 Å for MTHFD2-[125I]epirubicin confirm minimal structural disruption upon binding. The hydrogen bond analysis reveals averages of two and three stable hydrogen bonds for [125I]anastrozole and [125I]epirubicin complexes, respectively, highlighting crucial stabilizing interactions. The MM-PBSA calculations further endorse the thermodynamic favorability of these interactions, with binding free energies of -48.49 ± 0.11 kJ/mol for [125I]anastrozole and -43.8 kJ/mol for MTHFD2-. The significant contribution of Van der Waals and electrostatic interactions to the binding affinities of [125I]anastrozole and [125I]epirubicin, respectively, underscores their potential efficacy for targeted tumor imaging and therapy. These computational findings lay the groundwork for the future experimental validation of [125I]anastrozole and [125I]epirubicin as MTHFD2 inhibitors, heralding a notable advancement in precision oncology tools. The data necessitate subsequent in vitro and in vivo assays to corroborate these results.
Collapse
Affiliation(s)
- Mazen Abdulrahman Binmujlli
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
| |
Collapse
|
14
|
Kazim M, Yoo E. Recent Advances in the Development of Non-Invasive Imaging Probes for Cancer Immunotherapy. Angew Chem Int Ed Engl 2024; 63:e202310694. [PMID: 37843426 DOI: 10.1002/anie.202310694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/17/2023]
Abstract
The last two decades have witnessed a major revolution in the field of tumor immunology including clinical progress using various immunotherapy strategies. These advances have highlighted the potential for approaches that harness the power of the immune system to fight against cancer. While cancer immunotherapies have shown significant clinical successes, patient responses vary widely due to the complex and heterogeneous nature of tumors and immune responses, calling for reliable biomarkers and therapeutic strategies to maximize the benefits of immunotherapy. Especially, stratifying responding individuals from non-responders during the early stages of treatment could help avoid long-term damage and tailor personalized treatments. In efforts to develop non-invasive means for accurately evaluating and predicting tumor response to immunotherapy, multiple affinity-based agents targeting immune cell markers and checkpoint molecules have been developed and advanced to clinical trials. In addition, researchers have recently turned their attention to substrate and activity-based imaging probes that can provide real-time, functional assessment of immune response to treatment. Here, we highlight some of those recently designed probes that image functional proteases as biomarkers of cancer immunotherapy with a focus on their chemical design and detection modalities and discuss challenges and opportunities for the development of imaging tools utilized in cancer immunotherapy.
Collapse
Affiliation(s)
- Muhammad Kazim
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Euna Yoo
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
15
|
Pijeira MSO, Nunes PSG, Chaviano SL, Diaz AMA, DaSilva JN, Ricci-Junior E, Alencar LMR, Chen X, Santos-Oliveira R. Medicinal (Radio) Chemistry: Building Radiopharmaceuticals for the Future. Curr Med Chem 2024; 31:5481-5534. [PMID: 37594105 DOI: 10.2174/0929867331666230818092634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/30/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Radiopharmaceuticals are increasingly playing a leading role in diagnosing, monitoring, and treating disease. In comparison with conventional pharmaceuticals, the development of radiopharmaceuticals does follow the principles of medicinal chemistry in the context of imaging-altered physiological processes. The design of a novel radiopharmaceutical has several steps similar to conventional drug discovery and some particularity. In the present work, we revisited the insights of medicinal chemistry in the current radiopharmaceutical development giving examples in oncology, neurology, and cardiology. In this regard, we overviewed the literature on radiopharmaceutical development to study overexpressed targets such as prostate-specific membrane antigen and fibroblast activation protein in cancer; β-amyloid plaques and tau protein in brain disorders; and angiotensin II type 1 receptor in cardiac disease. The work addresses concepts in the field of radiopharmacy with a special focus on the potential use of radiopharmaceuticals for nuclear imaging and theranostics.
Collapse
Affiliation(s)
- Martha Sahylí Ortega Pijeira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
| | - Paulo Sérgio Gonçalves Nunes
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas SP13083-970, Brazil
| | - Samila Leon Chaviano
- Laboratoire de Biomatériaux pour l'Imagerie Médicale, Axe Médicine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, QC, Canada
| | - Aida M Abreu Diaz
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Jean N DaSilva
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Eduardo Ricci-Junior
- Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Federal University of Maranhão, Av. dos Portugueses, 1966, Vila Bacanga, São Luís MA65080-805, Brazil
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore 117597, Singapore
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro State University, Rio de Janeiro 23070200, Brazil
| |
Collapse
|
16
|
Zhong X, Yan J, Ding X, Su C, Xu Y, Yang M. Recent Advances in Bioorthogonal Click Chemistry for Enhanced PET and SPECT Radiochemistry. Bioconjug Chem 2023; 34:457-476. [PMID: 36811499 DOI: 10.1021/acs.bioconjchem.2c00583] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Due to their high reaction rate and reliable selectivity, bioorthogonal click reactions have been extensively investigated in numerous research fields, such as nanotechnology, drug delivery, molecular imaging, and targeted therapy. Previous reviews on bioorthogonal click chemistry for radiochemistry mainly focus on 18F-labeling protocols employed to produce radiotracers and radiopharmaceuticals. In fact, besides fluorine-18, other radionuclides such as gallium-68, iodine-125, and technetium-99m are also used in the field of bioorthogonal click chemistry. Herein, to provide a more comprehensive perspective, we provide a summary of recent advances in radiotracers prepared using bioorthogonal click reactions, including small molecules, peptides, proteins, antibodies, and nucleic acids as well as nanoparticles based on these radionuclides. The combination of pretargeting with imaging modalities or nanoparticles, as well as the clinical translations study, are also discussed to illustrate the effects and potential of bioorthogonal click chemistry for radiopharmaceuticals.
Collapse
Affiliation(s)
- Xinlin Zhong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Junjie Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Xiang Ding
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Chen Su
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214002, P. R. China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Min Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
17
|
Patra S, Kancharlapalli S, Chakraborty A, Singh K, Kumar C, Guleria A, Rakshit S, Damle A, Chakravarty R, Chakraborty S. Chelator-Free Radiolabeling with Theoretical Insights and Preclinical Evaluation of Citrate-Functionalized Hydroxyapatite Nanospheres for Potential Use as Radionanomedicine. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Sourav Patra
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | | | - Avik Chakraborty
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Khajan Singh
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Chandan Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Apurav Guleria
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Sutapa Rakshit
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
| | - Archana Damle
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
| | - Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
18
|
Sidorenko GV, Miroslavov AE, Tyupina MY. Technetium(I) carbonyl complexes for nuclear medicine: Coordination-chemical aspect. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Cardoso ME, Decuadra P, Zeni M, Delfino A, Tejería E, Coppe F, Mesa JM, Daher G, Giglio J, Carrau G, Gamenara D, Alonso O, Terán M, Rey A. Development and Evaluation of 99mTc Tricarbonyl Complexes Derived from Flutamide with Affinity for Androgen Receptor. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020820. [PMID: 36677878 PMCID: PMC9863320 DOI: 10.3390/molecules28020820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
With the objective to develop a potential 99mTc radiopharmaceutical for imaging the androgen receptor (AR) in prostate cancer, four ligands bearing the same pharmacophore derived from the AR antagonist flutamide were prepared, labeled with 99mTc, and their structures corroborated via comparison with the corresponding stable rhenium analogs. All complexes were obtained with high radiochemical purity. Three of the complexes were highly stable, and, due to their favorable physicochemical properties, were further evaluated using AR-positive and AR-negative cells in culture. All complexes exhibited considerable uptake in AR-positive cells, which could be blocked by an excess of flutamide. The efflux from the cells was moderate. They also showed significantly lower uptakes in AR-negative cells, indicating interactions with the AR receptor. However, the binding affinities were considerably reduced by the coordination to 99mTc, and the complex that exhibited the best biological behavior did not show sufficient specificity towards AR-positive cells.
Collapse
Affiliation(s)
- María Elena Cardoso
- Radiochemistry Area, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo CP11800, Uruguay
| | - Paula Decuadra
- Radiochemistry Area, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo CP11800, Uruguay
| | - Maia Zeni
- Radiochemistry Area, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo CP11800, Uruguay
| | - Agustín Delfino
- Organic Chemistry Department, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo CP11800, Uruguay
| | - Emilia Tejería
- Radiochemistry Area, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo CP11800, Uruguay
| | - Fátima Coppe
- Centro de Medicina Nuclear e Imagenología Molecular-Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Av.Italia s/n, Montevideo CP11400, Uruguay
| | - Juan Manuel Mesa
- Organic Chemistry Department, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo CP11800, Uruguay
| | - Grysette Daher
- Organic Chemistry Department, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo CP11800, Uruguay
| | - Javier Giglio
- Radiochemistry Area, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo CP11800, Uruguay
| | - Gonzalo Carrau
- Organic Chemistry Department, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo CP11800, Uruguay
| | - Daniela Gamenara
- Organic Chemistry Department, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo CP11800, Uruguay
| | - Omar Alonso
- Centro de Medicina Nuclear e Imagenología Molecular-Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Av.Italia s/n, Montevideo CP11400, Uruguay
| | - Mariella Terán
- Radiochemistry Area, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo CP11800, Uruguay
| | - Ana Rey
- Radiochemistry Area, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo CP11800, Uruguay
- Correspondence: ; Tel.: +598-2924-8571
| |
Collapse
|
20
|
Eom S, Kim MH, Yoo R, Choi G, Kang JH, Lee YJ, Choy JH. Dilute lattice doping of 64Cu into 2D-nanoplates: its impact on radio-labeling efficiency and stability for target selective PET imaging. J Mater Chem B 2022; 10:9389-9399. [PMID: 35929536 DOI: 10.1039/d2tb01165d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A quintinite nanoplate (64Cu-QT-NP) isomorphically substituted with 64Cu, as the positron emission tomography (PET) imaging material, was prepared via two-step processes. A 64Cu labeling efficiency of 99% was realized, for the first time, by immobilizing the 64Cu radioisotope directly in the octahedral site of the 2-dimensional (2D) quintinite lattice. Furthermore, the 64Cu labeling stability of 64Cu-QT-NPs was also achieved to be more than ∼99% in various solutions such as saline, phosphate-buffered saline (PBS), and other biological media (mouse and human serums). In an in vivo xenograft mouse model, the passive targeting behavior of 64Cu-QT-NPs into tumor tissue based on the enhanced permeability and retention (EPR) effect was also demonstrated by parenteral administration, and successfully visualized using a PET scanner. For enhancing the tumor tissue selectivity, bovine serum albumin (BSA) was coated on 64Cu-QT-NPs to form 64Cu-QT-NPs/BSA, resulting in better colloidal stability and longer blood circulation time, which was eventually evidenced by the 2-fold higher tumor uptake rate when intravenousely injected in an animal model. It is, therefore, concluded that the present 64Cu-QT-NPs/BSA with tumor tissue selectivity could be an advanced nano-device for radio-imaging and diagnosis as well.
Collapse
Affiliation(s)
- Sairan Eom
- Center for Intelligent Nano-Bio Materials (CINBM), Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.,Division of Applied-RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Min Hwan Kim
- Division of Applied-RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Ranji Yoo
- Division of Applied-RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea. .,College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Joo Hyun Kang
- Division of Applied-RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Yong Jin Lee
- Division of Applied-RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea. .,Department of Pre-medical Course, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea.,International Research Frontier Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
21
|
Varani M, Bentivoglio V, Lauri C, Ranieri D, Signore A. Methods for Radiolabelling Nanoparticles: SPECT Use (Part 1). Biomolecules 2022; 12:biom12101522. [PMID: 36291729 PMCID: PMC9599158 DOI: 10.3390/biom12101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/19/2022] Open
Abstract
The use of nanoparticles (NPs) is rapidly increasing in nuclear medicine (NM) for diagnostic and therapeutic purposes. Their wide use is due to their chemical–physical characteristics and possibility to deliver several molecules. NPs can be synthetised by organic and/or inorganic materials and they can have different size, shape, chemical composition, and charge. These factors influence their biodistribution, clearance, and targeting ability in vivo. NPs can be designed to encapsulate inside the core or bind to the surface several molecules, including radionuclides, for different clinical applications. Either diagnostic or therapeutic radioactive NPs can be synthetised, making a so-called theragnostic tool. To date, there are several methods for radiolabelling NPs that vary depending on both the physical and chemical properties of the NPs and on the isotope used. In this review, we analysed and compared different methods for radiolabelling NPs for single-photon emission computed tomography (SPECT) use.
Collapse
Affiliation(s)
- Michela Varani
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00189 Roma, Italy
- Correspondence:
| | - Valeria Bentivoglio
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00189 Roma, Italy
| | - Chiara Lauri
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00189 Roma, Italy
| | - Danilo Ranieri
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00189 Roma, Italy
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00189 Roma, Italy
| |
Collapse
|
22
|
Aranda-Lara L, Isaac-Olivé K, Ocampo-García B, Ferro-Flores G, González-Romero C, Mercado-López A, García-Marín R, Santos-Cuevas C, Estrada JA, Morales-Avila E. Engineered rHDL Nanoparticles as a Suitable Platform for Theranostic Applications. Molecules 2022; 27:7046. [PMID: 36296638 PMCID: PMC9610567 DOI: 10.3390/molecules27207046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 08/27/2023] Open
Abstract
Reconstituted high-density lipoproteins (rHDLs) can transport and specifically release drugs and imaging agents, mediated by the Scavenger Receptor Type B1 (SR-B1) present in a wide variety of tumor cells, providing convenient platforms for developing theranostic systems. Usually, phospholipids or Apo-A1 lipoproteins on the particle surfaces are the motifs used to conjugate molecules for the multifunctional purposes of the rHDL nanoparticles. Cholesterol has been less addressed as a region to bind molecules or functional groups to the rHDL surface. To maximize the efficacy and improve the radiolabeling of rHDL theranostic systems, we synthesized compounds with bifunctional agents covalently linked to cholesterol. This strategy means that the radionuclide was bound to the surface, while the therapeutic agent was encapsulated in the lipophilic core. In this research, HYNIC-S-(CH2)3-S-Cholesterol and DOTA-benzene-p-SC-NH-(CH2)2-NH-Cholesterol derivatives were synthesized to prepare nanoparticles (NPs) of HYNIC-rHDL and DOTA-rHDL, which can subsequently be linked to radionuclides for SPECT/PET imaging or targeted radiotherapy. HYNIC is used to complexing 99mTc and DOTA for labeling molecules with 111, 113mIn, 67, 68Ga, 177Lu, 161Tb, 225Ac, and 64Cu, among others. In vitro studies showed that the NPs of HYNIC-rHDL and DOTA-rHDL maintain specific recognition by SR-B1 and the ability to internalize and release, in the cytosol of cancer cells, the molecules carried in their core. The biodistribution in mice showed a similar behavior between rHDL (without surface modification) and HYNIC-rHDL, while DOTA-rHDL exhibited a different biodistribution pattern due to the significant reduction in the lipophilicity of the modified cholesterol molecule. Both systems demonstrated characteristics for the development of suitable theranostic platforms for personalized cancer treatment.
Collapse
Affiliation(s)
- Liliana Aranda-Lara
- Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca 50180, Estado de México, Mexico
| | - Keila Isaac-Olivé
- Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca 50180, Estado de México, Mexico
| | - Blanca Ocampo-García
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Estado de México, Mexico
| | - Guillermina Ferro-Flores
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Estado de México, Mexico
| | - Carlos González-Romero
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Estado de México, Mexico
| | - Alfredo Mercado-López
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Estado de México, Mexico
| | - Rodrigo García-Marín
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Estado de México, Mexico
| | - Clara Santos-Cuevas
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Estado de México, Mexico
| | - José A. Estrada
- Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca 50180, Estado de México, Mexico
| | - Enrique Morales-Avila
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Estado de México, Mexico
| |
Collapse
|
23
|
Lugat A, Bailly C, Chérel M, Rousseau C, Kraeber-Bodéré F, Bodet-Milin C, Bourgeois M. Immuno-PET: Design options and clinical proof-of-concept. Front Med (Lausanne) 2022; 9:1026083. [PMID: 36314010 PMCID: PMC9613928 DOI: 10.3389/fmed.2022.1026083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022] Open
Abstract
Radioimmunoconjugates have been used for over 30 years in nuclear medicine applications. In the last few years, advances in cancer biology knowledge have led to the identification of new molecular targets specific to certain patient subgroups. The use of these targets in targeted therapies approaches has allowed the developments of specifically tailored therapeutics for patients. As consequence of the PET-imaging progresses, nuclear medicine has developed powerful imaging tools, based on monoclonal antibodies, to in vivo characterization of these tumor biomarkers. This imaging modality known as immuno-positron emission tomography (immuno-PET) is currently in fastest-growing and its medical value lies in its ability to give a non-invasive method to assess the in vivo target expression and distribution and provide key-information on the tumor targeting. Currently, immuno-PET presents promising probes for different nuclear medicine topics as staging/stratification tool, theranostic approaches or predictive/prognostic biomarkers. To develop a radiopharmaceutical drug that can be used in immuno-PET approach, it is necessary to find the best compromise between the isotope choice and the immunologic structure (full monoclonal antibody or derivatives). Through some clinical applications, this paper review aims to discuss the most important aspects of the isotope choice and the usable proteic structure that can be used to meet the clinical needs.
Collapse
Affiliation(s)
- Alexandre Lugat
- Nantes-Angers Cancer Research Center CRCI2NA, University of Nantes, INSERM UMR1307, CNRS-ERL6075, Nantes, France
| | - Clément Bailly
- Nantes-Angers Cancer Research Center CRCI2NA, University of Nantes, INSERM UMR1307, CNRS-ERL6075, Nantes, France,Nuclear Medicine Department, University Hospital, Nantes, France
| | - Michel Chérel
- Nantes-Angers Cancer Research Center CRCI2NA, University of Nantes, INSERM UMR1307, CNRS-ERL6075, Nantes, France,Department of Nuclear Medicine, Institut de Cancérologie de l'Ouest (ICO) – Site Gauducheau, Saint-Herblain, France
| | - Caroline Rousseau
- Nantes-Angers Cancer Research Center CRCI2NA, University of Nantes, INSERM UMR1307, CNRS-ERL6075, Nantes, France,Department of Nuclear Medicine, Institut de Cancérologie de l'Ouest (ICO) – Site Gauducheau, Saint-Herblain, France
| | - Françoise Kraeber-Bodéré
- Nantes-Angers Cancer Research Center CRCI2NA, University of Nantes, INSERM UMR1307, CNRS-ERL6075, Nantes, France,Nuclear Medicine Department, University Hospital, Nantes, France
| | - Caroline Bodet-Milin
- Nantes-Angers Cancer Research Center CRCI2NA, University of Nantes, INSERM UMR1307, CNRS-ERL6075, Nantes, France,Nuclear Medicine Department, University Hospital, Nantes, France
| | - Mickaël Bourgeois
- Nantes-Angers Cancer Research Center CRCI2NA, University of Nantes, INSERM UMR1307, CNRS-ERL6075, Nantes, France,Nuclear Medicine Department, University Hospital, Nantes, France,ARRONAX Cyclotron, Saint-Herblain, France,*Correspondence: Mickaël Bourgeois
| |
Collapse
|
24
|
Hull A, Li Y, Bartholomeusz D, Hsieh W, Tieu W, Pukala TL, Staudacher AH, Bezak E. Preliminary Development and Testing of C595 Radioimmunoconjugates for Targeting MUC1 Cancer Epitopes in Pancreatic Ductal Adenocarcinoma. Cells 2022; 11:cells11192983. [PMID: 36230945 PMCID: PMC9563759 DOI: 10.3390/cells11192983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Mucin 1 is a transmembrane glycoprotein which overexpresses cancer-specific epitopes (MUC1-CE) on pancreatic ductal adenocarcinoma (PDAC) cells. As PDAC is a low survival and highly aggressive malignancy, developing radioimmunoconjugates capable of targeting MUC1-CE could lead to improvements in PDAC outcomes. The aim of this study was to develop and perform preliminary testing of diagnostic and therapeutic radioimmunoconjugates for PDAC using an anti-MUC1 antibody, C595. Firstly, p-SCN-Bn-DOTA was conjugated to the C595 antibody to form a DOTA-C595 immunoconjugate. The stability and binding affinity of the DOTA-C595 conjugate was evaluated using mass spectrometry and ELISA. DOTA-C595 was radiolabelled to Copper-64, Lutetium-177, Gallium-68 and Technetium-99m to form novel radioimmunoconjugates. Cell binding assays were performed in PANC-1 (strong MUC1-CE expression) and AsPC-1 (weak MUC1-CE expression) cell lines using 64Cu-DOTA-C595 and 177Lu-DOTA-C595. An optimal molar ratio of 4:1 DOTA groups per C595 molecule was obtained from the conjugation process. DOTA-C595 labelled to Copper-64, Lutetium-177, and Technetium-99m with high efficiency, although the Gallium-68 labelling was low. 177Lu-DOTA-C595 demonstrated high cellular binding to the PANC-1 cell lines which was significantly greater than AsPC-1 binding at concentrations exceeding 100 nM (p < 0.05). 64Cu-DOTA-C595 showed similar binding to the PANC-1 and AsPC-1 cells with no significant differences observed between cell lines (p > 0.05). The high cellular binding of 177Lu-DOTA-C595 to MUC1-CE positive cell lines suggests promise as a therapeutic radioimmunoconjugate against PDAC while further work is required to harness the potential of 64Cu-DOTA-C595 as a diagnostic radioimmunoconjugate.
Collapse
Affiliation(s)
- Ashleigh Hull
- Allied Health and Human Performance Academic Unit, Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
- Department of PET, Nuclear Medicine & Bone Densitometry, Royal Adelaide Hospital, SA Medical Imaging, Adelaide, SA 5000, Australia
- Correspondence:
| | - Yanrui Li
- Allied Health and Human Performance Academic Unit, Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Dylan Bartholomeusz
- Department of PET, Nuclear Medicine & Bone Densitometry, Royal Adelaide Hospital, SA Medical Imaging, Adelaide, SA 5000, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - William Hsieh
- Allied Health and Human Performance Academic Unit, Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
- Department of PET, Nuclear Medicine & Bone Densitometry, Royal Adelaide Hospital, SA Medical Imaging, Adelaide, SA 5000, Australia
| | - William Tieu
- Molecular Imaging and Therapy Research Unit, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- School of Physical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Tara L. Pukala
- School of Physical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Alexander H. Staudacher
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Eva Bezak
- Allied Health and Human Performance Academic Unit, Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
- School of Physical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
25
|
Bhise A, Park H, Lee W, Sarkar S, Ha YS, Rajkumar S, Nam B, Lim JE, Huynh PT, Lee K, Son JY, Kim JY, Lee KC, Yoo J. Preclinical Evaluation of hnRNPA2B1 Antibody in Human Triple-Negative Breast Cancer MDA-MB-231 Cells via PET Imaging. Pharmaceutics 2022; 14:pharmaceutics14081677. [PMID: 36015303 PMCID: PMC9415040 DOI: 10.3390/pharmaceutics14081677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022] Open
Abstract
Triple-negative breast cancer (TNBC) does not express estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Because TNBC lacks the expression of commonly targeted receptors, it is challenging to develop a new imaging agent for this cancer subtype. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are RNA–protein complexes that have been linked to tumor development and progression. Considering the high expression of hnRNPA2B1, an hnRNP subtype, in TNBC MDA-MB-231 cells, this study aimed to develop a novel hnRNPA2B1 antibody-based nuclear imaging agent. The hnRNPA2B1-specific antibody was radiolabeled with 64Cu and evaluated in vitro and in vivo. The trans-cyclooctene (TCO) was functionalized on the antibody to obtain hnRNP-PEG4-TCO and reactive tetrazine (Tz) on the ultrastable bifunctional chelator PCB-TE2A-alkyne to yield PCB-TE2A-Tz for the inverse electron demand Diels–Alder reaction. The 64Cu-radiolabeled antibody was administered and imaged at 1–18 h time points for conventional imaging. Alternatively, the unlabeled antibody conjugate was administered, and 48 h later radiolabeled 64Cu-PCB-TE2A-Tz was administered to the same mice for the pretargeting strategy and imaged at the same time intervals for direct comparison. The tumor was successfully visualized in both strategies, and comparatively, pretargeting showed superior results. The 64Cu-PCB-TE2A-Tz was successfully clicked at the tumor site with hnRNP-PEG4-TCO and the non-clicked were concurrently eliminated. This led to increase the tumor uptake with extremely high tumor-to-background ratio manifested by positron emission tomography (PET) imaging and biodistribution studies.
Collapse
Affiliation(s)
- Abhinav Bhise
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Hyun Park
- Division of Applied RI, Korea Institute of Radiological and Medical Science, Seoul 01812, Korea
| | - Woonghee Lee
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Swarbhanu Sarkar
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Yeong Su Ha
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Subramani Rajkumar
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Bora Nam
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Jeong Eun Lim
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Phuong Tu Huynh
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Kiwoong Lee
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Ji-Yoon Son
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Jung Young Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Science, Seoul 01812, Korea
| | - Kyo Chul Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Science, Seoul 01812, Korea
| | - Jeongsoo Yoo
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: ; Tel.: +82-53-420-4947
| |
Collapse
|
26
|
Zhou H, Bao G, Wang Z, Zhang B, Li D, Chen L, Deng X, Yu B, Zhao J, Zhu X. PET imaging of an optimized anti-PD-L1 probe 68Ga-NODAGA-BMS986192 in immunocompetent mice and non-human primates. EJNMMI Res 2022; 12:35. [PMID: 35695985 PMCID: PMC9192916 DOI: 10.1186/s13550-022-00906-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
Background Adnectin is a protein family derived from the 10th type III domain of human fibronectin (10Fn3) with high-affinity targeting capabilities. Positron emission tomography (PET) probes derived from anti-programmed death ligand-1 (PD-L1) Adnectins, including 18F- and 68Ga-labeled BMS-986192, are recently developed for the prediction of patient response to immune checkpoint blockade. The 68Ga-labeled BMS-986192, in particular, is an attractive probe for under-developed regions due to the broader availability of 68Ga. However, the pharmacokinetics and biocompatibility of 68Ga-labeled BMS-986192 are still unknown, especially in non-human primates, impeding its further clinical translation. Methods We developed a variant of 68Ga-labeled BMS-986192 using 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA) as the radionuclide–chelator. The resultant probe, 68Ga-NODAGA-BMS986192, was evaluated in terms of targeting specificity using a bilateral mouse tumor model inoculated with wild-type B16F10 and B16F10 transduced with human PD-L1 (hPD-L1-B16F10). The dynamic biodistribution and radiation dosimetry of this probe were also investigated in non-human primate cynomolgus. Results 68Ga-NODAGA-BMS986192 was prepared with a radiochemical purity above 99%. PET imaging with 68Ga-NODAGA-BMS986192 efficiently delineated the hPD-L1-B16F10 tumor at 1 h post-injection. The PD-L1-targeting capability of this probe was further confirmed using in vivo blocking assay and ex vivo biodistribution studies. PET dynamic imaging in both mouse and cynomolgus models revealed a rapid clearance of the probe via the renal route, which corresponded to the low background signals of the PET images. The probe also exhibited a favorable radiation dosimetry profile with a total-body effective dose of 6.34E-03 mSv/MBq in male cynomolgus. Conclusions 68Ga-NODAGA-BMS986192 was a feasible and safe tool for the visualization of human PD-L1. Our study also provided valuable information on the potential of targeted PET imaging using Adnectin-based probes. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-022-00906-x.
Collapse
Affiliation(s)
- Huimin Zhou
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Guangfa Bao
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Ziqiang Wang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Buchuan Zhang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Dan Li
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Lixing Chen
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Xiaoyun Deng
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Bo Yu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jun Zhao
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.,Department of Anatomy, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.,Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
27
|
El-Sharawy DM, Khater SI, El Refaye MS, Hassan HM, AboulMagd AM, Aboseada MA. Radiolabeling, biological distribution, docking and ADME studies of 99mTc-Ros as a promising natural tumor tracer. Appl Radiat Isot 2022; 184:110196. [PMID: 35390625 DOI: 10.1016/j.apradiso.2022.110196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/25/2022] [Accepted: 03/11/2022] [Indexed: 11/02/2022]
Abstract
Rosmarinic acid (Ros) is one of phenolic metabolites with powerful potency as an anticancer agent, with different mechanisms to diminish the cancer cells. This current study represents radiolabeling of Ros with 99mTc using SnCl2 in pH4 for 15 min at 60 °C, The yield up to 92.2%. Biological evaluation in normal and cancer mice revealed the localization of the tracer in tumor tissue. Furthermore, docking and ADME (Absorption, Distribution, Metabolism, and Excretion) studies were performed, The resulted data clarifies the use of Ros as a promissing natural tracer.
Collapse
Affiliation(s)
- Dina M El-Sharawy
- Labeled Compound Department,Hot Lab.Center, Egyptian Atomic Energy Authority, 13759, Cairo, Egypt; Cyclotron Project, Nuclear Research Center, Cairo Egypt, Egyptian Atomic Energy Authority (EAEA), 13759, Cairo, Egypt.
| | - S I Khater
- Cyclotron Project, Nuclear Research Center, Cairo Egypt, Egyptian Atomic Energy Authority (EAEA), 13759, Cairo, Egypt; Radioactive Isotopes and Generators Department, Hot Lab. Center, Egyptian Atomic Energy Authority (EAEA), 13759, Cairo, Egypt
| | - Marwa S El Refaye
- Cyclotron Project, Nuclear Research Center, Cairo Egypt, Egyptian Atomic Energy Authority (EAEA), 13759, Cairo, Egypt; Radioactive Isotopes and Generators Department, Hot Lab. Center, Egyptian Atomic Energy Authority (EAEA), 13759, Cairo, Egypt
| | - Hossam M Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, 62513, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Asmaa M AboulMagd
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University, Beni Suef, Egypt
| | - Mahmmoud A Aboseada
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, 62513, Egypt
| |
Collapse
|
28
|
Cooper SM, White AJP, Eykyn TR, Ma MT, Miller PW, Long NJ. N-Centered Tripodal Phosphine Re(V) and Tc(V) Oxo Complexes: Revisiting a [3 + 2] Mixed-Ligand Approach. Inorg Chem 2022; 61:8000-8014. [PMID: 35544683 PMCID: PMC9131457 DOI: 10.1021/acs.inorgchem.2c00693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
N-Triphos derivatives
(NP3R, R = alkyl, aryl)
and asymmetric variants (NP2RXR′, R′ = alkyl, aryl, X = OH, NR2, NRR′) are
an underexplored class of tuneable, tripodal ligands in relation to
the coordination chemistry of Re and Tc for biomedical applications.
Mixed-ligand approaches are a flexible synthetic route to obtain Tc
complexes of differing core structures and physicochemical properties.
Reaction of the NP3Ph ligand with the Re(V)
oxo precursor [ReOCl3(PPh3)2] generated
the bidentate complex [ReOCl3(κ2-NP2PhOHAr)], which possesses an unusual
AA’BB’XX’ spin system with a characteristic second-order
NMR lineshape that is sensitive to the bi- or tridentate nature of
the coordinating diphosphine unit. The use of the asymmetric NP2PhOHAr ligand resulted in the formation
of both bidentate and tridentate products depending on the presence
of base. The tridentate Re(V) complex [ReOCl2(κ3-NP2PhOAr)] has provided
the basis of a new reactive “metal-fragment” for further
functionalization in [3 + 2] mixed-ligand complexes. The synthesis
of [3 + 2] complexes with catechol-based π-donors could also
be achieved under one-pot, single-step conditions from Re(V) oxo precursors.
Analogous complexes can also be synthesized from suitable 99Tc(V) precursors, and these complexes have been shown to exhibit
highly similar structural properties through spectroscopic and chromatographic
analysis. However, a tendency for the {MVO}3+ core to undergo hydrolysis to the {MVO2}+ core has been observed both in the case of M = Re and markedly
for M = 99Tc complexes. It is likely that controlling this
pathway will be critical to the generation of further stable Tc(V)
derivatives. An N-centered tripodal heterofunctionalized
phosphine ligand
was used to generate a reactive “metal-fragment” based
on the {MVO}3+ (M = Re, 99Tc) core
for the formation of mixed-ligand [3 + 2] complexes. Characteristic
lineshapes arising from an AA’BB’XX’ spin system
are diagnostic of bidentate vs tridentate coordination modes of the
ligand.
Collapse
Affiliation(s)
- Saul M Cooper
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London W12 0BZ, UK.,School of Biomedical Engineering & Imaging Sciences, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Andrew J P White
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London W12 0BZ, UK
| | - Thomas R Eykyn
- School of Biomedical Engineering & Imaging Sciences, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Michelle T Ma
- School of Biomedical Engineering & Imaging Sciences, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Philip W Miller
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London W12 0BZ, UK
| | - Nicholas J Long
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London W12 0BZ, UK
| |
Collapse
|
29
|
Holik HA, Ibrahim FM, Elaine AA, Putra BD, Achmad A, Kartamihardja AHS. The Chemical Scaffold of Theranostic Radiopharmaceuticals: Radionuclide, Bifunctional Chelator, and Pharmacokinetics Modifying Linker. Molecules 2022; 27:3062. [PMID: 35630536 PMCID: PMC9143622 DOI: 10.3390/molecules27103062] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Therapeutic radiopharmaceuticals have been researched extensively in the last decade as a result of the growing research interest in personalized medicine to improve diagnostic accuracy and intensify intensive therapy while limiting side effects. Radiometal-based drugs are of substantial interest because of their greater versatility for clinical translation compared to non-metal radionuclides. This paper comprehensively discusses various components commonly used as chemical scaffolds to build radiopharmaceutical agents, i.e., radionuclides, pharmacokinetic-modifying linkers, and chelators, whose characteristics are explained and can be used as a guide for the researcher.
Collapse
Affiliation(s)
- Holis Abdul Holik
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Faisal Maulana Ibrahim
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Angela Alysia Elaine
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Bernap Dwi Putra
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Arifudin Achmad
- Department of Nuclear Medicine and Molecular Theranostics, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung 40161, Indonesia; (A.A.); (A.H.S.K.)
- Oncology and Stem Cell Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia
| | - Achmad Hussein Sundawa Kartamihardja
- Department of Nuclear Medicine and Molecular Theranostics, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung 40161, Indonesia; (A.A.); (A.H.S.K.)
| |
Collapse
|
30
|
Parrilha GL, dos Santos RG, Beraldo H. Applications of radiocomplexes with thiosemicarbazones and bis(thiosemicarbazones) in diagnostic and therapeutic nuclear medicine. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Impact of Different [Tc(N)PNP]-Scaffolds on the Biological Properties of the Small cRGDfK Peptide: Synthesis, In Vitro and In Vivo Evaluations. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082548. [PMID: 35458745 PMCID: PMC9029856 DOI: 10.3390/molecules27082548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
Background: The [99mTc][Tc(N)(PNP)] system, where PNP is a bisphosphinoamine, is an interesting platform for the development of tumor ‘receptor-specific’ agents. Here, we compared the reactivity and impact of three [Tc(N)(PNP)] frameworks on the stability, receptor targeting properties, biodistribution, and metabolism of the corresponding [99mTc][Tc(N)(PNP)]-tagged cRGDfK peptide to determine the best performing agent and to select the framework useful for the preparation of [99mTc][Tc(N)(PNP)]-housing molecular targeting agents. Methods: cRGDfK pentapeptide was conjugated to Cys and labeled with each [Tc(N)(PNP)] framework. Radioconjugates were assessed for their lipophilicity, stability, in vitro and in vivo targeting properties, and performance. Results: All compounds were equally synthetically accessible and easy to purify (RCY ≥ 95%). The main influences of the synthon on the targeting peptide were observed in in vitro cell binding and in vivo. Conclusions: The variation in the substituents on the phosphorus atoms of the PNP enables a fine tuning of the biological features of the radioconjugates. ws[99mTc][Tc(N)(PNP3OH)]– and [99mTc][Tc(N)(PNP3)]– are better performing synthons in terms of labeling efficiency and in vivo performance than the [99mTc][Tc(N)(PNP43)] framework and are therefore more suitable for further radiopharmaceutical purposes. Furthermore, the good labeling properties of the ws[99mTc][Tc(N)(PNP3OH)]– framework can be exploited to extend this technology to the labeling of temperature-sensitive biomolecules suitable for SPECT imaging.
Collapse
|
32
|
Melis DR, Burgoyne AR, Ooms M, Gasser G. Bifunctional chelators for radiorhenium: past, present and future outlook. RSC Med Chem 2022; 13:217-245. [PMID: 35434629 PMCID: PMC8942221 DOI: 10.1039/d1md00364j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/14/2022] [Indexed: 01/16/2023] Open
Abstract
Targeted radionuclide therapy (TRNT) is an ever-expanding field of nuclear medicine that provides a personalised approach to cancer treatment while limiting toxicity to normal tissues. It involves the radiolabelling of a biological targeting vector with an appropriate therapeutic radionuclide, often facilitated by the use of a bifunctional chelator (BFC) to stably link the two entities. The radioisotopes of rhenium, 186Re (t 1/2 = 90 h, 1.07 MeV β-, 137 keV γ (9%)) and 188Re (t 1/2 = 16.9 h, 2.12 MeV β-, 155 keV γ (15%)), are particularly attractive for radiotherapy because of their convenient and high-abundance β--particle emissions as well as their imageable γ-emissions and chemical similarity to technetium. As a transition metal element with multiple oxidation states and coordination numbers accessible for complexation, there is great opportunity available when it comes to developing novel BFCs for rhenium. The purpose of this review is to provide a recap on some of the past successes and failings, as well as show some more current efforts in the design of BFCs for 186/188Re. Future use of these radionuclides for radiotherapy depends on their cost-effective availability and this will also be discussed. Finally, bioconjugation strategies for radiolabelling biomolecules with 186/188Re will be touched upon.
Collapse
Affiliation(s)
- Diana R Melis
- SCK CEN, Belgian Nuclear Research Centre Boeretang 200 BE-2400 Mol Belgium +1 865 341 1413 +32 14 33 32 83
- Chimie ParisTech, Laboratory for Inorganic Chemical Biology, PSL University F-75005 Paris France www.gassergroup.com +33 1 44 27 56 02
| | - Andrew R Burgoyne
- SCK CEN, Belgian Nuclear Research Centre Boeretang 200 BE-2400 Mol Belgium +1 865 341 1413 +32 14 33 32 83
| | - Maarten Ooms
- SCK CEN, Belgian Nuclear Research Centre Boeretang 200 BE-2400 Mol Belgium +1 865 341 1413 +32 14 33 32 83
| | - Gilles Gasser
- Chimie ParisTech, Laboratory for Inorganic Chemical Biology, PSL University F-75005 Paris France www.gassergroup.com +33 1 44 27 56 02
| |
Collapse
|
33
|
Baba K, Nagata K, Yajima T, Yoshimura T. Synthesis, Structures, and Equilibrium Reactions of La(III) and Ba(II) Complexes with Pyridine Phosphonate Pendant Arms on a Diaza-18-crown-6 Ether. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kazuaki Baba
- Radioisotope Research Center, Institute for Radiation Sciences, Osaka University, 2-4 Yamadaoka, Suita 565-0871
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043
| | - Kojiro Nagata
- Radioisotope Research Center, Institute for Radiation Sciences, Osaka University, 2-4 Yamadaoka, Suita 565-0871
| | - Tatsuo Yajima
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamatecho, Suita 564-8680
| | - Takashi Yoshimura
- Radioisotope Research Center, Institute for Radiation Sciences, Osaka University, 2-4 Yamadaoka, Suita 565-0871
| |
Collapse
|
34
|
Radiometals—Chemistry and radiolabeling. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
35
|
Chakravarty R, Chakraborty S. A review of advances in the last decade on targeted cancer therapy using 177Lu: focusing on 177Lu produced by the direct neutron activation route. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2021; 11:443-475. [PMID: 35003885 PMCID: PMC8727880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/09/2021] [Indexed: 06/14/2023]
Abstract
Lutetium-177 [T½ = 6.76 d; Eβ (max) = 0.497 MeV; maximum tissue range ~2.5 mm; 208 keV γ-ray] is one of the most important theranostic radioisotope used for the management of various oncological and non-oncological disorders. The present review chronicles the advancement in the last decade in 177Lu-radiopharmacy with a focus on 177Lu produced via direct 176Lu (n, γ) 177Lu nuclear reaction in medium flux research reactors. The specific nuances of 177Lu production by various routes are described and their pros and cons are discussed. Lutetium, is the last element in the lanthanide series. Its chemistry plays a vital role in the preparation of a wide variety of radiopharmaceuticals which demonstrate appreciable in vivo stability. Traditional bifunctional chelators (BFCs) that are used for 177Lu-labeling are discussed and the upcoming ones are highlighted. Research efforts that resulted in the growth of various 177Lu-based radiopharmaceuticals in preclinical and clinical settings are provided. This review also summarizes the results of clinical studies with potent 177Lu-based radiopharmaceuticals that have been prepared using medium specific activity 177Lu produced by direct neutron activation route in research reactors. Overall, the review amply demonstrates the practicality of the medium specific activity 177Lu towards formulation of various clinically useful radiopharmaceuticals, especially for the benefit of millions of cancer patients in developing countries with limited reactor facilities.
Collapse
Affiliation(s)
- Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre Trombay, Mumbai 400085, India
- Homi Bhabha National Institute Anushaktinagar, Mumbai 400094, India
| | - Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre Trombay, Mumbai 400085, India
- Homi Bhabha National Institute Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
36
|
Sarcan ET, Silindir-Gunay M, Ozer AY, Hartman N. 89Zr as a promising radionuclide and it’s applications for effective cancer imaging. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07928-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Daems N, Michiels C, Lucas S, Baatout S, Aerts A. Gold nanoparticles meet medical radionuclides. Nucl Med Biol 2021; 100-101:61-90. [PMID: 34237502 DOI: 10.1016/j.nucmedbio.2021.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022]
Abstract
Thanks to their unique optical and physicochemical properties, gold nanoparticles have gained increased interest as radiosensitizing, photothermal therapy and optical imaging agents to enhance the effectiveness of cancer detection and therapy. Furthermore, their ability to carry multiple medically relevant radionuclides broadens their use to nuclear medicine SPECT and PET imaging as well as targeted radionuclide therapy. In this review, we discuss the radiolabeling process of gold nanoparticles and their use in (multimodal) nuclear medicine imaging to better understand their specific distribution, uptake and retention in different in vivo cancer models. In addition, radiolabeled gold nanoparticles enable image-guided therapy is reviewed as well as the enhancement of targeted radionuclide therapy and nanobrachytherapy through an increased dose deposition and radiosensitization, as demonstrated by multiple Monte Carlo studies and experimental in vitro and in vivo studies.
Collapse
Affiliation(s)
- Noami Daems
- Radiobiology Research Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium.
| | - Carine Michiels
- Unité de Recherche en Biologie Cellulaire-NARILIS, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Stéphane Lucas
- Laboratory of Analysis by Nuclear Reaction (LARN)-NARILIS, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Sarah Baatout
- Radiobiology Research Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| | - An Aerts
- Radiobiology Research Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| |
Collapse
|
38
|
Foster A, Nigam S, Tatum DS, Raphael I, Xu J, Kumar R, Plakseychuk E, Latoche JD, Vincze S, Li B, Giri R, McCarl LH, Edinger R, Ak M, Peddagangireddy V, Foley LM, Hitchens TK, Colen RR, Pollack IF, Panigrahy A, Magda D, Anderson CJ, Edwards WB, Kohanbash G. Novel theranostic agent for PET imaging and targeted radiopharmaceutical therapy of tumour-infiltrating immune cells in glioma. EBioMedicine 2021; 71:103571. [PMID: 34530385 PMCID: PMC8446777 DOI: 10.1016/j.ebiom.2021.103571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Malignant gliomas are deadly tumours with few therapeutic options. Although immunotherapy may be a promising therapeutic strategy for treating gliomas, a significant barrier is the CD11b+ tumour-associated myeloid cells (TAMCs), a heterogeneous glioma infiltrate comprising up to 40% of a glioma's cellular mass that inhibits anti-tumour T-cell function and promotes tumour progression. A theranostic approach uses a single molecule for targeted radiopharmaceutical therapy (TRT) and diagnostic imaging; however, there are few reports of theranostics targeting the tumour microenvironment. METHODS Utilizing a newly developed bifunctional chelator, Lumi804, an anti-CD11b antibody (αCD11b) was readily labelled with either Zr-89 or Lu-177, yielding functional radiolabelled conjugates for PET, SPECT, and TRT. FINDINGS 89Zr/177Lu-labeled Lumi804-αCD11b enabled non-invasive imaging of TAMCs in murine gliomas. Additionally, 177Lu-Lumi804-αCD11b treatment reduced TAMC populations in the spleen and tumour and improved the efficacy of checkpoint immunotherapy. INTERPRETATION 89Zr- and 177Lu-labeled Lumi804-αCD11b may be a promising theranostic pair for monitoring and reducing TAMCs in gliomas to improve immunotherapy responses. FUNDING A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Alexandra Foster
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Shubhanchi Nigam
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David S Tatum
- Lumiphore, Inc., 600 Bancroft Way Berkeley, CA 94710, USA
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jide Xu
- Lumiphore, Inc., 600 Bancroft Way Berkeley, CA 94710, USA
| | - Rajeev Kumar
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Joseph D Latoche
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sarah Vincze
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bo Li
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rajan Giri
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Lauren H McCarl
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Robert Edinger
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Murat Ak
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Lesley M Foley
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - T Kevin Hitchens
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rivka R Colen
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ian F Pollack
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ashok Panigrahy
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Darren Magda
- Lumiphore, Inc., 600 Bancroft Way Berkeley, CA 94710, USA.
| | - Carolyn J Anderson
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh 15213, USA; Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Chemistry, University of Missouri, Columbia, MO, 65211 USA.
| | - W Barry Edwards
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA.
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
39
|
Tosato M, Dalla Tiezza M, May NV, Isse AA, Nardella S, Orian L, Verona M, Vaccarin C, Alker A, Mäcke H, Pastore P, Di Marco V. Copper Coordination Chemistry of Sulfur Pendant Cyclen Derivatives: An Attempt to Hinder the Reductive-Induced Demetalation in 64/67Cu Radiopharmaceuticals. Inorg Chem 2021; 60:11530-11547. [PMID: 34279088 PMCID: PMC8389837 DOI: 10.1021/acs.inorgchem.1c01550] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Cu2+ complexes formed by a series of cyclen derivatives bearing sulfur pendant arms, 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO4S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO3S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-10-acetamido-1,4,7,10-tetraazacyclododecane (DO3SAm), and 1,7-bis[2-(methylsulfanyl)ethyl]-4,10-diacetic acid-1,4,7,10-tetraazacyclododecane (DO2A2S), were studied in aqueous solution at 25 °C from thermodynamic and structural points of view to evaluate their potential as chelators for copper radioisotopes. UV-vis spectrophotometric out-of-cell titrations under strongly acidic conditions, direct in-cell UV-vis titrations, potentiometric measurements at pH >4, and spectrophotometric Ag+-Cu2+ competition experiments were performed to evaluate the stoichiometry and stability constants of the Cu2+ complexes. A highly stable 1:1 metal-to-ligand complex (CuL) was found in solution at all pH values for all chelators, and for DO2A2S, protonated species were also detected under acidic conditions. The structures of the Cu2+ complexes in aqueous solution were investigated by UV-vis and electron paramagnetic resonance (EPR), and the results were supported by relativistic density functional theory (DFT) calculations. Isomers were detected that differed from their coordination modes. Crystals of [Cu(DO4S)(NO3)]·NO3 and [Cu(DO2A2S)] suitable for X-ray diffraction were obtained. Cyclic voltammetry (CV) experiments highlighted the remarkable stability of the copper complexes with reference to dissociation upon reduction from Cu2+ to Cu+ on the CV time scale. The Cu+ complexes were generated in situ by electrolysis and examined by NMR spectroscopy. DFT calculations gave further structural insights. These results demonstrate that the investigated sulfur-containing chelators are promising candidates for application in copper-based radiopharmaceuticals. In this connection, the high stability of both Cu2+ and Cu+ complexes can represent a key parameter for avoiding in vivo demetalation after bioinduced reduction to Cu+, often observed for other well-known chelators that can stabilize only Cu2+.
Collapse
Affiliation(s)
- Marianna Tosato
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Marco Dalla Tiezza
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Nóra V May
- Centre for Structural Science, Research Centre for Natural Sciences, Magyar tudósok Körútja 2, 1117 Budapest, Hungary
| | - Abdirisak Ahmed Isse
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Sonia Nardella
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.,Department of Pharmaceutical Sciences, University of Padova, via Marzolo 8, 35131 Padova, Italy
| | - Laura Orian
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Marco Verona
- Department of Pharmaceutical Sciences, University of Padova, via Marzolo 8, 35131 Padova, Italy
| | - Christian Vaccarin
- Department of Pharmaceutical Sciences, University of Padova, via Marzolo 8, 35131 Padova, Italy
| | - André Alker
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche, Grenzacherstrasse 124, 4058 Basel, Switzerland
| | - Helmut Mäcke
- Department of Nuclear Medicine, University Hospital Freiburg, Hugstetterstrasse 55, D-79106 Freiburg, Germany
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Valerio Di Marco
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
40
|
[ 68Ga]Ga-DFO-c(RGDyK): Synthesis and Evaluation of Its Potential for Tumor Imaging in Mice. Int J Mol Sci 2021; 22:ijms22147391. [PMID: 34299008 PMCID: PMC8306578 DOI: 10.3390/ijms22147391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022] Open
Abstract
Angiogenesis has a pivotal role in tumor growth and the metastatic process. Molecular imaging was shown to be useful for imaging of tumor-induced angiogenesis. A great variety of radiolabeled peptides have been developed to target αvβ3 integrin, a target structure involved in the tumor-induced angiogenic process. The presented study aimed to synthesize deferoxamine (DFO)-based c(RGD) peptide conjugate for radiolabeling with gallium-68 and perform its basic preclinical characterization including testing of its tumor-imaging potential. DFO-c(RGDyK) was labeled with gallium-68 with high radiochemical purity. In vitro characterization including stability, partition coefficient, protein binding determination, tumor cell uptake assays, and ex vivo biodistribution as well as PET/CT imaging was performed. [68Ga]Ga-DFO-c(RGDyK) showed hydrophilic properties, high stability in PBS and human serum, and specific uptake in U-87 MG and M21 tumor cell lines in vitro and in vivo. We have shown here that [68Ga]Ga-DFO-c(RGDyK) can be used for αvβ3 integrin targeting, allowing imaging of tumor-induced angiogenesis by positron emission tomography.
Collapse
|
41
|
Qiu L, Tan H, Lin Q, Si Z, Mao W, Wang T, Fu Z, Cheng D, Shi H. A Pretargeted Imaging Strategy for Immune Checkpoint Ligand PD-L1 Expression in Tumor Based on Bioorthogonal Diels-Alder Click Chemistry. Mol Imaging Biol 2021; 22:842-853. [PMID: 31741201 DOI: 10.1007/s11307-019-01441-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE The use of antibodies as tracers requires labeling with isotopes with long half-lives due to their slow pharmacokinetics, which creates prohibitively high radiation dose to non-target organs. Pretargeted methodology could avoid the high radiation exposure due to the slow pharmacokinetics of antibodies. In this investigation, we reported the development of a novel pretargeted single photon emission computed tomography (SPECT) imaging strategy (atezolizumab-TCO/[99mTc]HYNIC-PEG11-Tz) for evaluating immune checkpoint ligand PD-L1 expression in tumor based on bioorthogonal Diels-Alder click chemistry. PROCEDURES The radioligand [99mTc]HYNIC-PEG11-Tz was achieved by the synthesis of a 6-hydrazinonicotinc acid (HYNIC) modified 1,2,4,5-tetrazine (Tz) and subsequently radiolabeled with technetium-99m (Tc-99m). The stability of [99mTc]HYNIC-PEG11-Tz was evaluated in vitro, and its blood pharmacokinetic test was performed in vivo. Atezolizumab was modified with trans-cyclooctene (TCO). The [99mTc]HYNIC-PEG11-Tz and atezolizumab-TCO interaction was tested in vitro. Pretargeted H1975 cell immunoreactivity binding and saturation binding assays were evaluated. Pretargeted biodistribution and SPECT imaging experiments were performed in H1975 and A549 tumor-bearing modal mice to evaluate the PD-L1 expression level. RESULTS [99mTc]HYNIC-PEG11-Tz was successfully radiosynthesized with a specific activity of 9.25 MBq/μg and a radiochemical purity above 95 % as confirmed by reversed-phase HPLC (RP-HPLC). [99mTc]HYNIC-PEG11-Tz showed favorable stability in NS, PBS, and FBS and rapid blood clearance in mice. The atezolizumab was modified with TCO-NHS ester to produce a conjugate with an average 6.4 TCO moieties as confirmed by liquid chromatograph-mass spectrometer (LC-MS). Size exclusion HPLC revealed almost complete reaction between atezolizumab-TCO and [99mTc]HYNIC-PEG11-Tz in vitro, with the 1:1 Tz-to-mAb reaction providing a conversion yield of 88.65 ± 1.22 %. Pretargeted cell immunoreactivity binding and saturation binding assays showed high affinity to H1975 cells. After allowing 48 h for accumulation of atezolizumab-TCO in H1975 tumor, pretargeted in vivo biodistribution revealed high uptake of the radiotracer in the tumor with a tumor-to-muscle ratio of 27.51 and tumor-to-blood ratio of 1.91. Pretargeted SPECT imaging delineated the H1975 tumor clearly. Pretargeted biodistribution and SPECT imaging in control groups demonstrated a significantly reduced tracer accumulation in the A549 tumor. CONCLUSIONS We have developed a HYNIC-modified Tz derivative, and the HYNIC-PEG11-Tz was labeled with Tc-99m with a high specific activity and radiochemical purity. [99mTc]HYNIC-PEG11-Tz reacted rapidly and almost completely towards atezolizumab-TCO in vitro with the 1:1 Tz-to-mAb reaction. SPECT imaging using the pretargeted strategy (atezolizumab-TCO/[99mTc]HYNIC-PEG11-Tz) demonstrated high-contrast images for high PD-L1 expression H1975 tumor and a low background accumulation of the probe. The pretargeted imaging strategy is a powerful tool for evaluating PD-L1 expression in xenograft mice tumor models and a potential candidate for translational clinical application.
Collapse
Affiliation(s)
- Lin Qiu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Qingyu Lin
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhan Si
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Wujian Mao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Tingting Wang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhequan Fu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China.
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
42
|
Travagin F, Lattuada L, Giovenzana GB. AAZTA: The rise of mesocyclic chelating agents for metal coordination in medicine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
Miranda ACC, dos Santos SN, Fuscaldi LL, Balieiro LM, Bellini MH, Guimarães MICC, de Araújo EB. Radioimmunotheranostic Pair Based on the Anti-HER2 Monoclonal Antibody: Influence of Chelating Agents and Radionuclides on Biological Properties. Pharmaceutics 2021; 13:971. [PMID: 34198999 PMCID: PMC8309196 DOI: 10.3390/pharmaceutics13070971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022] Open
Abstract
The oncogene HER2 is an important molecular target in oncology because it is associated with aggressive disease and the worst prognosis. The development of non-invasive imaging techniques and target therapies using monoclonal antibodies is a rapidly developing field. Thus, this work proposes the study of the radioimmunotheranostic pair, [111In]In-DTPA-trastuzumab and [177Lu]Lu-DOTA-trastuzumab, evaluating the influence of the chelating agents and radionuclides on the biological properties of the radioimmunoconjugates (RICs). The trastuzumab was immunoconjugated with the chelators DTPA and DOTA and radiolabeled with [111In]InCl3 and [177Lu]LuCl3, respectively. The stability of the RICs was evaluated in serum, and the immunoreactive and internalization fractions were determined in SK-BR-3 breast cancer cells. The in vivo pharmacokinetics and dosimetry quantification and the ex vivo biodistribution were performed in normal and SK-BR-3 tumor-bearing mice. The data showed that there was no influence of the chelating agents and radionuclides on the immunoreactive and internalization fractions of RICs. In contrast, they influenced the stability of RICs in serum, as well as the pharmacokinetics, dosimetry and biodistribution profiles. Therefore, the results showed that the nature of the chelating agent and radionuclide could influence the biological properties of the radioimmunotheranostic pair.
Collapse
Affiliation(s)
- Ana Cláudia Camargo Miranda
- Hospital Israelita Albert Einstein, Instituto Israelita de Ensino e Pesquisa, Sao Paulo 05652-900, Brazil
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Sao Paulo 05508-000, Brazil; (S.N.d.S.); (L.M.B.); (M.H.B.); (E.B.d.A.)
| | - Sofia Nascimento dos Santos
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Sao Paulo 05508-000, Brazil; (S.N.d.S.); (L.M.B.); (M.H.B.); (E.B.d.A.)
| | - Leonardo Lima Fuscaldi
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas da Santa Casa de São Paulo, Sao Paulo 01221-020, Brazil;
| | - Luiza Mascarenhas Balieiro
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Sao Paulo 05508-000, Brazil; (S.N.d.S.); (L.M.B.); (M.H.B.); (E.B.d.A.)
| | - Maria Helena Bellini
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Sao Paulo 05508-000, Brazil; (S.N.d.S.); (L.M.B.); (M.H.B.); (E.B.d.A.)
| | - Maria Inês Calil Cury Guimarães
- Instituto de Radiologia do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 05403-911, Brazil;
| | - Elaine Bortoleti de Araújo
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Sao Paulo 05508-000, Brazil; (S.N.d.S.); (L.M.B.); (M.H.B.); (E.B.d.A.)
| |
Collapse
|
44
|
Exploring the synthesis and characterization of fac-Re(CO)3L complexes using diethylenetriamine derivative functionalized at the central nitrogen. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
The kinetic substitution reactions and structural analysis of manganese(I) acetylacetonato complexes. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Brossard C, Vlach M, Vène E, Ribault C, Dorcet V, Noiret N, Loyer P, Lepareur N, Cammas-Marion S. Synthesis of Poly(Malic Acid) Derivatives End-Functionalized with Peptides and Preparation of Biocompatible Nanoparticles to Target Hepatoma Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:958. [PMID: 33918663 PMCID: PMC8070460 DOI: 10.3390/nano11040958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
Recently, short synthetic peptides have gained interest as targeting agents in the design of site-specific nanomedicines. In this context, our work aimed at developing new tools for the diagnosis and/or therapy of hepatocellular carcinoma (HCC) by grafting the hepatotropic George Baker (GB) virus A (GBVA10-9) and Plasmodium circumsporozoite protein (CPB)-derived peptides to the biocompatible poly(benzyl malate), PMLABe. We successfully synthesized PMLABe derivatives end-functionalized with peptides GBVA10-9, CPB, and their corresponding scrambled peptides through a thiol/maleimide reaction. The corresponding nanoparticles (NPs), varying by the nature of the peptide (GBVA10-9, CPB, and their scrambled peptides) and the absence or presence of poly(ethylene glycol) were also successfully formulated using nanoprecipitation technique. NPs were further characterized by dynamic light scattering (DLS), electrophoretic light scattering (ELS) and transmission electron microscopy (TEM), highlighting a diameter lower than 150 nm, a negative surface charge, and a more or less spherical shape. Moreover, a fluorescent probe (DiD Oil) has been encapsulated during the nanoprecipitation process. Finally, preliminary in vitro internalisation assays using HepaRG hepatoma cells demonstrated that CPB peptide-functionalized PMLABe NPs were efficiently internalized by endocytosis, and that such nanoobjects may be promising drug delivery systems for the theranostics of HCC.
Collapse
Affiliation(s)
- Clarisse Brossard
- University Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR 6226, ScanMAT, UMS2001, F-35000 Rennes, France; (C.B.); (V.D.); (N.N.)
| | - Manuel Vlach
- INSERM, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, University Rennes, F-35000 Rennes, France; (M.V.); (E.V.); (C.R.)
| | - Elise Vène
- INSERM, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, University Rennes, F-35000 Rennes, France; (M.V.); (E.V.); (C.R.)
- Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU Rennes, F-35033 Rennes, France
| | - Catherine Ribault
- INSERM, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, University Rennes, F-35000 Rennes, France; (M.V.); (E.V.); (C.R.)
| | - Vincent Dorcet
- University Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR 6226, ScanMAT, UMS2001, F-35000 Rennes, France; (C.B.); (V.D.); (N.N.)
| | - Nicolas Noiret
- University Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR 6226, ScanMAT, UMS2001, F-35000 Rennes, France; (C.B.); (V.D.); (N.N.)
| | - Pascal Loyer
- INSERM, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, University Rennes, F-35000 Rennes, France; (M.V.); (E.V.); (C.R.)
| | - Nicolas Lepareur
- INSERM, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, University Rennes, F-35000 Rennes, France; (M.V.); (E.V.); (C.R.)
- Comprehensive Cancer Center Eugène Marquis, F-35000 Rennes, France
| | - Sandrine Cammas-Marion
- University Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR 6226, ScanMAT, UMS2001, F-35000 Rennes, France; (C.B.); (V.D.); (N.N.)
- INSERM, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, University Rennes, F-35000 Rennes, France; (M.V.); (E.V.); (C.R.)
| |
Collapse
|
47
|
Miranda VM. Medicinal inorganic chemistry: an updated review on the status of metallodrugs and prominent metallodrug candidates. REV INORG CHEM 2021. [DOI: 10.1515/revic-2020-0030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
Metallodrugs correspond to a small portion of all available drugs in the market and, yet, some of them are among the most used and important drugs in modern medicine. However, medicinal inorganic chemistry remains an underestimated area within medicinal chemistry and the main reason is the mislead association of metals to toxic agents. Thus, in this review, the potential of medicinal inorganic chemistry in drug designing is highlighted through a description of the current status of metallodrugs and metallodrug candidates in advanced clinical trials. The broad spectrum of application of metal-based drugs in medicine for both therapy and diagnosis is addressed by the extensive list of examples presented herein.
Collapse
Affiliation(s)
- Victor M. Miranda
- Instituto de Química de São Carlos, Universidade de São Paulo , São Carlos , SP , Brazil
| |
Collapse
|
48
|
Driver CHS, Ebenhan T, Szucs Z, Parker MI, Zeevaart JR, Hunter R. Towards the development of a targeted albumin-binding radioligand: Synthesis, radiolabelling and preliminary in vivo studies. Nucl Med Biol 2021; 94-95:53-66. [PMID: 33550011 DOI: 10.1016/j.nucmedbio.2021.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/14/2020] [Accepted: 01/02/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The compound named 4-[10-(4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)butanamido)decyl]-11-[10-(β,d-glucopyranos-1-yl)-1-oxodecyl]-1,4,8,11-tetraazacyclotetradecane-1,8-diacetic acid is a newly synthesised molecule capable of binding in vivo to albumin to form a bioconjugate. This compound was given the name, GluCAB(glucose-chelator-albumin-binder)-maleimide-1. Radiolabelled GluCAB-maleimide-1 and subsequent bioconjugate is proposed for prospective oncological applications and works on the theoretical dual-targeting principle of tumour localization through the "enhanced permeability and retention (EPR) effect" and glucose metabolism. METHODS The precursor, GluCAB-amine-2, and subsequent GluCAB-maleimide-1 was synthesised via sequential regioselective, distal N-functionalisation of a cyclam template with a tether containing a synthetically-derived β-glucoside followed by a second linker to incorporate a maleimide moiety for albumin-binding. GluCAB-amine-2 was radiolabelled with [64Cu]CuCl2 in 0.1 M NH4OAc (pH 3.5, 90 °C, 30 min), purified and converted post-labeling in 0.01 M PBS to [64Cu]Cu-GluCAB-maleimide-1. Serum stability and protein binding studies were completed according to described methods. Healthy BALB/c ice (three groups of n = 5) were injected intravenously with [64Cu]Cu-TETA, [64Cu]Cu-GluCAB-amine-2 or [64Cu]Cu-GluCAB-maleimide-1 and imaged using microPET/CT at 1, 2, 4, 8 and 24 h post-injection. Biodistribution of the compounds were determined ex vivo after 24 h using gamma counting. RESULTS GluCAB-maleimide-1 was synthesised in five consecutive steps with an overall yield of 11%. [64Cu]Cu-GluCAB-amine-2 (97% labelling efficiency) was converted to [64Cu]Cu-GluCAB-maleimide-1 (93% conversion; 90% radiochemical purity). Biodistribution analysis indicated that the control compounds were rapidly and almost completely excreted as compared to [64Cu]Cu-GluCAB-maleimide-1 that exhibited a prolonged biological half-life (6-8 h). Both, [64Cu]Cu-GluCAB-maleimide-1 and -amine-2 were excreted through the hepatobiliary system but a higher hepatic presence of the albumin-bound compound was noted. CONCLUSIONS, ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: This initial evaluation paves the way for further investigation into the tumour targeting potential of [64Cu]Cu-GluCAB-maleimide-1. An efficient targeted radioligand will allow for further development of a prospective theranostic agent for more personalized patient treatment which potentially improves overall patient prognosis, outcome and health care.
Collapse
Affiliation(s)
- Cathryn Helena Stanford Driver
- South African Nuclear Energy Corporation, Radiochemistry and NuMeRI PreClinical Imaging Facility, Elias Motsoaledi Street, R104 Pelindaba, North West 0240, South Africa
| | - Thomas Ebenhan
- South African Nuclear Energy Corporation, Radiochemistry and NuMeRI PreClinical Imaging Facility, Elias Motsoaledi Street, R104 Pelindaba, North West 0240, South Africa
| | | | - Mohammed Iqbal Parker
- Department of Medical Biochemistry and Institute for Infectious Disease and Molecular Medicine, University of Cape Town Medical School, University of Cape Town, Cape Town, South Africa
| | - Jan Rijn Zeevaart
- South African Nuclear Energy Corporation, Radiochemistry and NuMeRI PreClinical Imaging Facility, Elias Motsoaledi Street, R104 Pelindaba, North West 0240, South Africa; Preclinical Drug Development Platform, North West University, Potchefstroom, South Africa.
| | - Roger Hunter
- Department of Chemistry, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
49
|
Li H, Chen Y, Jin Q, Wu Y, Deng C, Gai Y, Sun Z, Li Y, Wang J, Yang Y, Lv Q, Zhang Y, An R, Lan X, Zhang L, Xie M. Noninvasive Radionuclide Molecular Imaging of the CD4-Positive T Lymphocytes in Acute Cardiac Rejection. Mol Pharm 2021; 18:1317-1326. [PMID: 33506680 DOI: 10.1021/acs.molpharmaceut.0c01155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Heart transplantation (HT) is an effective treatment for end-stage heart disease. However, acute rejection (AR) is still the main cause of death within one year after HT. AR is an acute immune response mediated by T lymphocytes, mainly CD4+ T lymphocytes. This study innovatively develops a radiolabeled probe 99mTc-HYNIC-mAbCD4 for noninvasive visualization of CD4+ T lymphocyte infiltration and detection of AR. The 99mTc-HYNIC-mAbCD4 and its isotype control 99mTc-HYNIC-IgG were successfully prepared and characterized. The specificity and affinity of the probe in vitro were assessed by cell-binding experiments. Binding of 99mTc-HYNIC-mAbCD4 to CD4+ T lymphocytes was higher than that of the macrophages and IgG probe groups, and mAbCD4 was effective in the blockade of the binding reaction. The biodistribution data confirmed the SPECT/CT images, with significantly higher levels of 99mTc-HYNIC-mAbCD4 observed in allografts compared to allograft treatment (10 mg/kg/d Cyclosporin A subcutaneously for 5 consecutive days after surgery), isografts, or in rats which received allografts injected with 99mTc-HYNIC-IgG. Histological examination confirmed more CD4+ T lymphocyte infiltration in the allograft hearts than other groups. In summary, 99mTc-HYNIC-mAbCD4 achieved high affinity and specificity of binding to CD4+ T lymphocytes and accumulation in the transplanted heart. Radionuclide molecular imaging with 99mTc-HYNIC-mAbCD4 may be a potential diagnostic method for acute cardiac rejection.
Collapse
Affiliation(s)
- Huiling Li
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yihan Chen
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiaofeng Jin
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ya Wu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cheng Deng
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongkang Gai
- Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhenxing Sun
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuman Li
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Wang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yali Yang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qing Lv
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongxue Zhang
- Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rui An
- Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoli Lan
- Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mingxing Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
50
|
Mikulová MB, Mikuš P. Advances in Development of Radiometal Labeled Amino Acid-Based Compounds for Cancer Imaging and Diagnostics. Pharmaceuticals (Basel) 2021; 14:167. [PMID: 33669938 PMCID: PMC7924883 DOI: 10.3390/ph14020167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 02/08/2023] Open
Abstract
Radiolabeled biomolecules targeted at tumor-specific enzymes, receptors, and transporters in cancer cells represent an intensively investigated and promising class of molecular tools for the cancer diagnosis and therapy. High specificity of such biomolecules is a prerequisite for the treatment with a lower burden to normal cells and for the effective and targeted imaging and diagnosis. Undoubtedly, early detection is a key factor in efficient dealing with many severe tumor types. This review provides an overview and critical evaluation of novel approaches in the designing of target-specific probes labeled with metal radionuclides for the diagnosis of most common death-causing cancers, published mainly within the last three years. Advances are discussed such traditional peptide radiolabeling approaches, and click and nanoparticle chemistry. The progress of radiolabeled peptide based ligands as potential radiopharmaceuticals is illustrated via novel structure and application studies, showing how the molecular modifications reflect their binding selectivity to significant onco-receptors, toxicity, and, by that, practical utilization. The most impressive outputs in categories of newly developed structures, as well as imaging and diagnosis approaches, and the most intensively studied oncological diseases in this context, are emphasized in order to show future perspectives of radiometal labeled amino acid-based compounds in nuclear medicine.
Collapse
Affiliation(s)
- Mária Bodnár Mikulová
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovakia;
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovakia;
- Toxicological and Antidoping Center (TAC), Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovakia
| |
Collapse
|