1
|
Asadi Tokmedash M, Kim C, Chavda AP, Li A, Robins J, Min J. Engineering multifunctional surface topography to regulate multiple biological responses. Biomaterials 2025; 319:123136. [PMID: 39978049 DOI: 10.1016/j.biomaterials.2025.123136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/04/2025] [Accepted: 01/23/2025] [Indexed: 02/22/2025]
Abstract
Surface topography or curvature plays a crucial role in regulating cell behavior, influencing processes such as adhesion, proliferation, and gene expression. Recent advancements in nano- and micro-fabrication techniques have enabled the development of biomimetic systems that mimic native extracellular matrix (ECM) structures, providing new insights into cell-adhesion mechanisms, mechanotransduction, and cell-environment interactions. This review examines the diverse applications of engineered topographies across multiple domains, including antibacterial surfaces, immunomodulatory devices, tissue engineering scaffolds, and cancer therapies. It highlights how nanoscale features like nanopillars and nanospikes exhibit bactericidal properties, while many microscale patterns can direct stem cell differentiation and modulate immune cell responses. Furthermore, we discuss the interdisciplinary use of topography for combined applications, such as the simultaneous regulation of immune and tissue cells in 2D and 3D environments. Despite significant advances, key knowledge gaps remain, particularly regarding the effects of topographical cues on multicellular interactions and dynamic 3D contexts. This review summarizes current fabrication methods, explores specific and interdisciplinary applications, and proposes future research directions to enhance the design and utility of topographically patterned biomaterials in clinical and experimental settings.
Collapse
Affiliation(s)
| | - Changheon Kim
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ajay P Chavda
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Adrian Li
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacob Robins
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jouha Min
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Li Z, Ren K, Chen J, Zhuang Y, Dong S, Wang J, Liu H, Ding J. Bioactive hydrogel formulations for regeneration of pathological bone defects. J Control Release 2025; 380:686-714. [PMID: 39880040 DOI: 10.1016/j.jconrel.2025.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Bone defects caused by osteoporosis, infection, diabetes, post-tumor resection, and nonunion often cause severe pain and markedly increase morbidity and mortality, which remain a significant challenge for orthopedic surgeons. The precise local treatments for these pathological complications are essential to avoid poor or failed bone repair. Hydrogel formulations serve as injectable innovative platforms that overcome microenvironmental obstacles and as delivery systems for controlled release of various bioactive substances to bone defects in a targeted manner. Additionally, hydrogel formulations can be tailored for specific mechanical strengths and degradation profiles by adjusting their physical and chemical properties, which are crucial for prolonged drug retention and effective bone repair. This review summarizes recent advances in bioactive hydrogel formulations as three-dimensional scaffolds that support cell proliferation and differentiation. It also highlights their role as smart drug-delivery systems with capable of continuously releasing antibacterial agents, anti-inflammatory drugs, chemotherapeutic agents, and osteogenesis-related factors to enhance bone regeneration in pathological areas. Furthermore, the limitations of hydrogel formulations in pathological bone repair are discussed, and future development directions are proposed, which is expected to pave the way for the repair of pathological bone defects.
Collapse
Affiliation(s)
- Zuhao Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, China
| | - Kaixuan Ren
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China; Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jiajia Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China; The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 6822 Jinhu Road, Changchun 130021, China
| | - Yaling Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Shujun Dong
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 6822 Jinhu Road, Changchun 130021, China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
3
|
Li H, Zhang Z, Liu J, Wang H. Antioxidant scaffolds for enhanced bone regeneration: recent advances and challenges. Biomed Eng Online 2025; 24:41. [PMID: 40200302 PMCID: PMC11980302 DOI: 10.1186/s12938-025-01370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/24/2025] [Indexed: 04/10/2025] Open
Abstract
Bone regeneration is integral to maintaining bone function and integrity in the body, as well as treating bone diseases, such as osteoporosis and defects. However, oxidative stress often poses a significant obstacle during bone regeneration, leading to cell damage, inflammatory responses, and subsequent impediment of normal bone tissue formation. Therefore, to maintain bone regeneration, antioxidant therapy is essential. Bone scaffolds, serving as a temporary support for bone tissue, can provide an ideal microenvironment for cell proliferation and differentiation, effectively promoting bone tissue formation. In recent years, with in-depth research on antioxidants and their mechanisms of action, the development and application of antioxidant bone scaffolds have shown tremendous potential. These antioxidant bone scaffolds not only promote osteogenic differentiation and angiogenesis, but also effectively inhibit the inflammatory response and osteoclast formation, significantly improving the efficiency of bone regeneration. Notably, with the rapid development of nanotechnology, nanozymes with multi-enzyme-like activities have been successfully constructed and encapsulated within bone scaffolds, leading to the proposal of multifunctional antioxidant strategies. Therefore, this review summarizes recent research progress, categorically introducing types of bone scaffolds and antioxidants, elucidating therapeutic strategies of antioxidant bone scaffolds, and identifying current challenges, aiming to provide valuable guidance for subsequent research.
Collapse
Affiliation(s)
- Hui Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zhenhe Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jing Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Huiwen Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
4
|
Hoveidaei AH, Sadat-Shojai M, Nabavizadeh SS, Niakan R, Shirinezhad A, MosalamiAghili S, Tabaie S. Clinical challenges in bone tissue engineering - A narrative review. Bone 2025; 192:117363. [PMID: 39638083 DOI: 10.1016/j.bone.2024.117363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Bone tissue engineering (BTE) has emerged as a promising approach to address large bone defects caused by trauma, infections, congenital malformations, and tumors. This review focuses on scaffold design, cell sources, growth factors, and vascularization strategies, highlighting their roles in developing effective treatments. We explore the complexities of balancing mechanical properties, porosity, and biocompatibility in scaffold materials, alongside optimizing mesenchymal stem cell delivery methods. The critical role of growth factors in bone regeneration and the need for controlled release systems are discussed. Vascularization remains a significant hurdle, with strategies such as angiogenic factors, co-culture systems, and bioprinting under investigation. Mechanical challenges, tissue responses, and inflammation management are examined, alongside gene therapy's potential for enhancing osteogenesis and angiogenesis via both viral and non-viral delivery methods. The review emphasizes the impact of patient-specific factors on bone healing outcomes and the importance of personalized approaches. Future directions are described, emphasizing the necessity of interdisciplinary cooperation to advance the field of BTE and convert laboratory results into clinically feasible solutions.
Collapse
Affiliation(s)
- Amir Human Hoveidaei
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA.
| | - Mehdi Sadat-Shojai
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran.
| | - Sara S Nabavizadeh
- Otolaryngology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Niakan
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Sean Tabaie
- Department of Orthopaedic Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
5
|
Liang W, Zhou C, Liu X, Xie Q, Xia L, Liu L, Bao W, Lin H, Xiong X, Zhang H, Zheng Z, Zhao J. Current status of nano-embedded growth factors and stem cells delivery to bone for targeted repair and regeneration. J Orthop Translat 2025; 50:257-273. [PMID: 39902262 PMCID: PMC11788687 DOI: 10.1016/j.jot.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/01/2024] [Accepted: 12/09/2024] [Indexed: 02/05/2025] Open
Abstract
Bone-related diseases like osteoarthritis and osteoporosis impact millions globally, affecting quality of life. Osteoporosis considerably enhances the probability of bone fractures of the wrist, hip, and spine. Enhancement and acceleration of functional bone development can be achieved through the sustained delivery of growth factors (GFs) and cells in biomaterial carriers. The delivery of bioactive compounds in a targeted, spatiotemporal way that most closely resembles the natural defect repair process can be achieved by designing the carrier system with established release kinetics. Furthermore, the carrier can serve as a substrate that mimics the extracellular matrix, facilitating osteoprogenitor cell infiltration and growth for integrative tissue healing. In this report, we explore the significance of GFs within the realm of bone and cartilage tissue engineering, encompassing their encapsulation and delivery methodologies, the kinetics of release, and their amalgamation with biomaterials and stem cells (SCs) to facilitate the mending of bone fractures. Moreover, the significance of GFs in evaluating the microenvironment of bone tissue through reciprocal signaling with cells and biomaterial scaffolds is emphasized which will serve as the foundation for prospective advances in bone and cartilage tissue engineering as well as therapeutic equipment. Nanoparticles are being used in regenerative medicine to promote bone regeneration and repair by delivering osteoinductive growth factors like BMP-2, VEGF, TGF-β. These nanocarriers allow controlled release, minimizing adverse effects and ensuring growth factors are concentrated at the injury site. They are also mixed with mesenchymal stem cells (MSCs) to improve their engraftment, differentiation, and survival. This approach is a key step in developing multi-model systems that more efficiently facilitate bone regeneration. Researchers are exploring smart nanoparticles with immunomodulatory qualities to improve bonre regeneration and reduce inflammation in injury site. Despite promising preclinical results, challenges include cost management, regulatory approval, and long term safety. However, incorporating stem cell transport and growth factors in nanoparticles could revolutionize bone regeneration and offer more personalized therapies for complex bone disorders and accidents. The translational potential of this article Stem cell transport and growth factors encapsulated in nanoparticles are becoming revolutionary methods for bone regeneration and repair. By encouraging stem cells to develop into osteoblasts, osteoinductive GFs like BMP-2, VEGF, and TGF-β can be delivered under control due to nanomaterials like nanoparticles, nanofibers, and nanotubes. By ensuring sustained release, these nanocarriers lessen adverse effects and enhance therapeutic results. In order to prove their survival and development, MCSs, which are essential for bone regeneration, are mixed with nanoparticles, frequently using scaffolds that resemble the ECM of bone. Furthermore, by adjusting to the injured environment and lowering inflammation, immunomodulatory nanostructures and stimuli-responsive nanomaterials can further maximize. While there are still shotcomings to overcome, including managing expenses, negotiating regulatory processes, and guaranteeing long-term safety, this method promises to outperform traditional bone grafting by providing quicker, more individualized, and more efficient treatments. Nano-embedded growth factors and stem cell technologies have the potential to revolutionize orthopedic therapy and significantly enhance patient outcomes with further research.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, 316000, China
| | - Xiankun Liu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Qiong Xie
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Linying Xia
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Lu Liu
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Wenwen Bao
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Hongming Lin
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Xiaochun Xiong
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Hao Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Zeping Zheng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| |
Collapse
|
6
|
Liang W, Long H, Zhang H, Bai J, Jiang B, Wang J, Fu L, Ming W, Zhao J, Zeng B. Bone scaffolds-based localized drugs delivery for osteosarcoma: current status and future perspective. Drug Deliv 2024; 31:2391001. [PMID: 39239763 PMCID: PMC11382735 DOI: 10.1080/10717544.2024.2391001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
A common malignant bone neoplasm in teenagers is Osteosarcoma. Chemotherapy, surgical therapy, and radiation therapy together comprise the usual clinical course of treatment for Osteosarcoma. While Osteosarcoma and other bone tumors are typically treated surgically, however, surgical resection frequently fails to completely eradicate tumors, and in turn becomes the primary reason for postoperative recurrence and metastasis, ultimately leading to a high rate of mortality. Patients still require radiation and/or chemotherapy after surgery to stop the spread of the tumor and its metastases, and both treatments have an adverse influence on the body's organ systems. In the postoperative management of osteosarcoma, bone scaffolds can load cargos (growth factors or drugs) and function as drug delivery systems (DDSs). This review describes the different kinds of bone scaffolds that are currently available and highlights key studies that use scaffolds as DDSs for the treatment of osteosarcomas. The discussion also includes difficulties and perspectives regarding the use of scaffold-based DDSs. The study may serve as a source for outlining efficient and secure postoperative osteosarcoma treatment plans.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hongwei Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Juqin Bai
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bo Jiang
- Rehabilitation Department, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiangwei Wang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Lifeng Fu
- Department of Orthopedics, Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, China
| | - Wenyi Ming
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bin Zeng
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
7
|
Moghaddam MM, Jooybar E, Imani R, Ehrbar M. Development of injectable microgel-based scaffolds via enzymatic cross-linking of hyaluronic acid-tyramine/gelatin-tyramine for potential bone tissue engineering. Int J Biol Macromol 2024; 279:135176. [PMID: 39214205 DOI: 10.1016/j.ijbiomac.2024.135176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Currently, the healing of large bone defects relies on invasive surgeries and the transplantation of autologous bone. As a less invasive treatment option, the provision of microenvironments that promote the regeneration of defective bones holds great promise. Here, we developed hyaluronic acid (HA)/gelatin (Ge) microgel-based scaffolds to guide bone regeneration. To enable the formation of microgels by enzymatic cross-linking in the presence of horseradish peroxidase (HRP) and hydrogen peroxide (H2O2), we modified the polymers with tyramine (TA). Spectrophotometry and proton nuclear magnetic resonance (1H NMR) spectroscopy analysis confirmed successful tyramine substitution on polymer backbones. To enable the formation of microgels by a water-in-oil emulsion approach, the HRP and H2O2 concentrations were tuned to achieve the gelation in a few seconds. By varying the stirring speed from 600 to 1000 rpm, spherical microgels were produced with an average size of 116 ± 8.7 and 68 ± 4.7 μm, respectively. The results showed that microgels were injectable through needles and showed good biocompatibility with the cultured human osteosarcoma cell line (MG-63). HA/Ge-TA microgels served as a promising substrate for MG-63 cells since they improved the alkaline phosphatase activity and level of calcium deposition. In summary, the developed HA/Ge-TA microgels are promising injectable microgel-based scaffolds in bone tissue engineering.
Collapse
Affiliation(s)
- Melika Mansouri Moghaddam
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Elaheh Jooybar
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Martin Ehrbar
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Marschall JS, Davis SS, Jones L, Kushner GM. Are Cellular Bone Matrix Allografts a Viable Option for Mandibular Tissue Engineering and Reconstruction? J Oral Maxillofac Surg 2024; 82:1163-1175. [PMID: 38909627 DOI: 10.1016/j.joms.2024.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Traditional mandibular reconstruction has relied on the use of vascularized and non-vascularized autografts. The use of allografts and tissue engineering modalities has risen as an alternative. PURPOSE The purpose of this study was to determine the success of a cellular bone matrix (CBM) allograft composed of lineage committed bone forming cells for mandibular tissue engineering and reconstruction. STUDY DESIGN, SETTING, SAMPLE A retrospective cohort study was implemented using data from subjects treated with a CBM at the University of Louisville from 2019 to 2023. Subjects were excluded if they were not treated with a CBM, data were not complete, or postoperative follow-up time was less than 3 months. PREDICTOR VARIABLES The predictor variables were composed of heterogenous variables grouped into the following categories: demographics (age, sex), medical history (history of penicillin [PCN] allergy, history of diabetes mellitus [DM] and tobacco use), etiology (benign tumor, ballistic trauma, nonballistic trauma, odontogenic cyst, osteomyelitis/ medication-related osteonecrosis of the jaw), mandibular resection length (cm) and type (marginal, segmental), delayed versus immediate reconstruction, and whether an autograft (proximal tibia) with platelet-rich fibrin was used in combination with the CBM. MAIN OUTCOME VARIABLE The primary outcome variable was graft success (yes or no). Success was defined as bony union and defect fill (demonstrated on panoramic radiograph) and mandibular stability (based on postoperative clinical examination at 3 months). COVARIATES Not applicable. ANALYSES Descriptive statistics were calculated for each variable. To measure the associations between the risk factors and graft success, Fisher's exact test for categorical variables and the Wilcoxon rank sum test for numeric data were used. A P value of <.05 was considered significant. RESULTS The sample included 38 subjects. The median age of all subjects was 46 (interquartile range 32.6) years. Overall, 28 (73.7%) cases were successful. Subjects with a reported PCN allergy or a history of DM had significantly lower success (2, 7.1% with PCN allergy or DM) compared to those who did not (P = .008, PCN allergy; P = .03, DM). CONCLUSIONS AND RELEVANCE This is the largest case series of CBM based mandibular reconstruction relative to the available maxillofacial surgery literature. The clinician should consider confirmation of PCN allergy so PCN-type antibiotics can be used. CBMs may be an alternative to autografts.
Collapse
Affiliation(s)
- Jeffrey S Marschall
- Assistant Professor, Department of Oral and Maxillofacial Surgery, University of Iowa Hospital and Clinics, Iowa City, IA.
| | - Stephen S Davis
- Resident, Department of Oral and Maxillofacial Surgery, University of Louisville, Louisville, KY
| | | | - George M Kushner
- Professor and Chairman, Department of Oral and Maxillofacial Surgery, University of Louisville, Louisville, KY
| |
Collapse
|
9
|
Liu S, Wang W, Chen Z, Wu P, Pu W, Li G, Song J, Zhang J. An Osteoimmunomodulatory Biopatch Potentiates Stem Cell Therapies for Bone Regeneration by Simultaneously Regulating IL-17/Ferroptosis Signaling Pathways. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401882. [PMID: 39024121 PMCID: PMC11425236 DOI: 10.1002/advs.202401882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/19/2024] [Indexed: 07/20/2024]
Abstract
Currently, there are still great challenges in promoting bone defect healing, a common health problem affecting millions of people. Herein an osteoimmunity-regulating biopatch capable of promoting stem cell-based therapies for bone regeneration is developed. A totally biodegradable conjugate is first synthesized, which can self-assemble into bioactive nano micelles (PPT NMs). This nanotherapy effectively improves the osteogenesis of periodontal ligament stem cells (PDLSCs) under pathological conditions, by simultaneously regulating IL-17 signaling and ferroptosis pathways. Incorporation of PPT NMs into biodegradable electrospun nanofibers affords a bioactive patch, which notably improves bone formation in two rat bone defect models. A Janus bio patch is then engineered by integrating the bioactive patch with a stem cell sheet of PDLSCs. The obtained biopatch shows additionally potentiated bone regeneration capacity, by synergistically regulating osteoimmune microenvironment and facilitating stem cell differentiation. Further surface functionalization of the biopatch with tannic acid considerably increases its adhesion to the bone defect, prolongs local retention, and sustains bioactivities, thereby offering much better repair effects in rats with mandibular or cranial bone defects. Moreover, the engineered bioactive patches display good safety. Besides bone defects, this osteoimmunity-regulating biopatch strategy can be applied to promote stem cell therapies for spinal cord injury, wound healing, and skin burns.
Collapse
Affiliation(s)
- Shan Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationStomatological Hospital of Chongqing Medical UniversityChongqing Medical UniversityChongqing401147P. R. China
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
| | - Wenle Wang
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationStomatological Hospital of Chongqing Medical UniversityChongqing Medical UniversityChongqing401147P. R. China
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- Department of Orthodontics IIAffiliated Stomatological Hospital of Zunyi Medical UniversityZunyi563000P. R. China
| | - Zhiyu Chen
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- Department of OrthopedicsThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016P. R. China
| | - Peng Wu
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- College of Pharmacy and Medical TechnologyVocational and Technical CollegeHanzhongShaanxi723000P. R. China
| | - Wendan Pu
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
| | - Gang Li
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- Department of StomatologySouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038P. R. China
| | - Jinlin Song
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationStomatological Hospital of Chongqing Medical UniversityChongqing Medical UniversityChongqing401147P. R. China
| | - Jianxiang Zhang
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- State Key Laboratory of Trauma and Chemical PoisoningThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- Yu‐Yue Pathology Scientific Research Center313 Gaoteng Avenue, JiulongpoChongqing400039P. R. China
| |
Collapse
|
10
|
Vallmajo-Martin Q, Millan C, Müller R, Weber FE, Ehrbar M, Ghayor C. Enhanced bone regeneration in rat calvarial defects through BMP2 release from engineered poly(ethylene glycol) hydrogels. Sci Rep 2024; 14:4916. [PMID: 38418564 PMCID: PMC10901800 DOI: 10.1038/s41598-024-55411-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/23/2024] [Indexed: 03/01/2024] Open
Abstract
The clinical standard therapy for large bone defects, typically addressed through autograft or allograft donor tissue, faces significant limitations. Tissue engineering offers a promising alternative strategy for the regeneration of substantial bone lesions. In this study, we harnessed poly(ethylene glycol) (PEG)-based hydrogels, optimizing critical parameters including stiffness, incorporation of arginine-glycine-aspartic acid (RGD) cell adhesion motifs, degradability, and the release of BMP2 to promote bone formation. In vitro we demonstrated that human bone marrow derived stromal cell (hBMSC) proliferation and spreading strongly correlates with hydrogel stiffness and adhesion to RGD peptide motifs. Moreover, the incorporation of the osteogenic growth factor BMP2 into the hydrogels enabled sustained release, effectively inducing bone regeneration in encapsulated progenitor cells. When used in vivo to treat calvarial defects in rats, we showed that hydrogels of low and intermediate stiffness optimally facilitated cell migration, proliferation, and differentiation promoting the efficient repair of bone defects. Our comprehensive in vitro and in vivo findings collectively suggest that the developed hydrogels hold significant promise for clinical translation for bone repair and regeneration by delivering sustained and controlled stimuli from active signaling molecules.
Collapse
Affiliation(s)
- Queralt Vallmajo-Martin
- Department of Obstetrics, University Hospital Zürich, University of Zürich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
- School of Life Sciences and School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Station 15, 1015, Lausanne, Switzerland
| | - Christopher Millan
- Department of Urology, University Hospital Zürich, University of Zürich, Wagistrasse 21, 8952, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Leopold-Ruzicka-Weg 8093, 8049, Zurich, Switzerland
| | - Franz E Weber
- Center of Dental Medicine, Oral Biotechnology & Bioengineering, University of Zürich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | - Martin Ehrbar
- Department of Obstetrics, University Hospital Zürich, University of Zürich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland.
| | - Chafik Ghayor
- Center of Dental Medicine, Oral Biotechnology & Bioengineering, University of Zürich, Plattenstrasse 11, 8032, Zurich, Switzerland.
| |
Collapse
|
11
|
Zhang P, Qi J, Zhang R, Zhao Y, Yan J, Gong Y, Liu X, Zhang B, Wu X, Wu X, Zhang C, Zhao B, Li B. Recent advances in composite hydrogels: synthesis, classification, and application in the treatment of bone defects. Biomater Sci 2024; 12:308-329. [PMID: 38108454 DOI: 10.1039/d3bm01795h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Bone defects are often difficult to treat due to their complexity and specificity, and therefore pose a serious threat to human life and health. Currently, the clinical treatment of bone defects is mainly surgical. However, this treatment is often more harmful to patients and there is a potential risk of rejection and infection. Hydrogels have a unique three-dimensional structure that can accommodate a variety of materials, including particles, polymers and small molecules, making them ideal for treating bone defects. Therefore, emerging composite hydrogels are considered one of the most promising candidates for the treatment of bone defects. This review describes the use of different types of composite hydrogel in the treatment of bone defects. We present the basic concepts of hydrogels, different preparation techniques (including chemical and physical crosslinking), and the clinical requirements for hydrogels used to treat bone defects. In addition, a review of numerous promising designs of different types of hydrogel doped with different materials (e.g., nanoparticles, polymers, carbon materials, drugs, and active factors) is also highlighted. Finally, the current challenges and prospects of composite hydrogels for the treatment of bone defects are presented. This review will stimulate research efforts in this field and promote the application of new methods and innovative ideas in the clinical field of composite hydrogels.
Collapse
Affiliation(s)
- Pengfei Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Jin Qi
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Ran Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Yifan Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Jingyu Yan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Yajuan Gong
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Xiaoming Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Binbin Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Xiao Wu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Xiuping Wu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Bing Zhao
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar 161006, China
| | - Bing Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| |
Collapse
|
12
|
Qi J, Wu H, Liu G. Novel Strategies for Spatiotemporal and Controlled BMP-2 Delivery in Bone Tissue Engineering. Cell Transplant 2024; 33:9636897241276733. [PMID: 39305020 PMCID: PMC11418245 DOI: 10.1177/09636897241276733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 09/25/2024] Open
Abstract
Bone morphogenetic protein-2 (BMP-2) has been commercially approved by the Food and Drug Administration for use in bone defects and diseases. BMP-2 promotes osteogenic differentiation of mesenchymal stem cells. In bone tissue engineering, BMP-2 incorporated into scaffolds can be used for stimulating bone regeneration in organoid construction, drug testing platforms, and bone transplants. However, the high dosage and uncontrollable release rate of BMP-2 challenge its clinical application, mainly due to the short circulation half-life of BMP-2, microbial contamination in bone extracellular matrix hydrogel, and the delivery method. Moreover, in clinical translation, the requirement of high doses of BMP-2 for efficacy poses challenges in cost and safety. Based on these, novel strategies should ensure that BMP-2 is delivered precisely to the desired location within the body, regulating the timing of BMP-2 release to coincide with the bone healing process, as well as release BMP-2 in a controlled manner to optimize its therapeutic effect and minimize side effects. This review highlights improvements in bone tissue engineering applying spatiotemporal and controlled BMP-2 delivery, including molecular engineering, biomaterial modification, and synergistic therapy, aiming to provide references for future research and clinical trials.
Collapse
Affiliation(s)
- Jingqi Qi
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, China
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Hongwei Wu
- Department of Orthopedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Gengyan Liu
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
13
|
Alarçin E, Yaşayan G, Bal-Öztürk A, Cecen B. Hydrogel Biomaterial in Bone Tissue Engineering. BIOMATERIAL-BASED HYDROGELS 2024:387-427. [DOI: 10.1007/978-981-99-8826-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Kaur K, Sannoufi R, Butler JS, Murphy CM. Biomimetic Inspired Hydrogels for Regenerative Vertebral Body Stenting. Curr Osteoporos Rep 2023; 21:806-814. [PMID: 38001387 DOI: 10.1007/s11914-023-00839-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
PURPOSE OF REVIEW This review aims to explore the potential of biomimetic hydrogels as an alternative to bone cement in vertebral body stenting (VBS), a minimally invasive treatment for vertebral compression fractures. RECENT FINDINGS The use of bone cement in VBS procedures can lead to complications such as incomplete fracture reduction and cement leakage. Biomimetic hydrogels have gained significant attention as potential biomaterial alternatives for VBS due to their unique properties, including tuneable therapeutic and mechanical properties. Over the past decade, there has been significant advancements in the development of biomimetic hydrogels for bone regeneration, employing a wide range of approaches to enhance the structural and functional properties of hydrogels. Biomimetic hydrogels hold significant promise as safer and reparative alternatives to bone cement for VBS procedures. However, further research and development in this field are necessary to explore the full potential of hydrogel-based systems for vertebral bone repair.
Collapse
Affiliation(s)
- Kulwinder Kaur
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin, Ireland
- School of Pharmacy and Biomolecular Science, RCSI, Dublin, Ireland
| | - Ruby Sannoufi
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin, Ireland
| | - Joseph S Butler
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland
- School of Medicine, University of College Dublin, Belfield, Dublin, Ireland
| | - Ciara M Murphy
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin, Ireland.
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.
| |
Collapse
|
15
|
Melville JC, Rethman B, Kaleem A, Patel N, Marx RE, Tursun R, Shum J, Wong ME, Young S. Tissue Engineering for Mandibular Reconstruction. Atlas Oral Maxillofac Surg Clin North Am 2023; 31:165-176. [PMID: 37500200 DOI: 10.1016/j.cxom.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Affiliation(s)
- James C Melville
- Bernard & Gloria Pepper Katz Department of Oral & Maxillofacial Surgery, Oral & Head and Neck Oncology and Microvascular Reconstructive Surgery, University of Texas School of Dentistry Houston, Houston, TX, USA.
| | - Brian Rethman
- Bernard & Gloria Pepper Katz Department of Oral & Maxillofacial Surgery, University of Texas School of Dentistry Houston, Houston, TX, USA
| | - Arshad Kaleem
- El Paso Head & Neck and Microvascular Surgery, El Paso, TX, USA
| | - Neel Patel
- HCA Florida Head and Neck Oncology & Reconstructive Surgery, Coconut Grove, FL, USA
| | - Robert E Marx
- Department of Oral and Maxillofacial Surgery, University of Miami School of Medicine, Miami, FL, USA
| | | | - Jonathan Shum
- Bernard & Gloria Pepper Katz Department of Oral & Maxillofacial Surgery, Oral & Head and Neck Oncology and Microvascular Reconstructive Surgery, University of Texas School of Dentistry Houston, Houston, TX, USA
| | - Mark E Wong
- Bernard & Gloria Pepper Katz Department of Oral & Maxillofacial Surgery, University of Texas School of Dentistry Houston, Houston, TX, USA
| | - Simon Young
- Bernard & Gloria Pepper Katz Department of Oral & Maxillofacial Surgery, University of Texas School of Dentistry Houston, Houston, TX, USA
| |
Collapse
|
16
|
Shi M, McHugh KJ. Strategies for overcoming protein and peptide instability in biodegradable drug delivery systems. Adv Drug Deliv Rev 2023; 199:114904. [PMID: 37263542 PMCID: PMC10526705 DOI: 10.1016/j.addr.2023.114904] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
The global pharmaceutical market has recently shifted its focus from small molecule drugs to peptide, protein, and nucleic acid drugs, which now comprise a majority of the top-selling pharmaceutical products on the market. Although these biologics often offer improved drug specificity, new mechanisms of action, and/or enhanced efficacy, they also present new challenges, including an increased potential for degradation and a need for frequent administration via more invasive administration routes, which can limit patient access, patient adherence, and ultimately the clinical impact of these drugs. Controlled-release systems have the potential to mitigate these challenges by offering superior control over in vivo drug levels, localizing these drugs to tissues of interest (e.g., tumors), and reducing administration frequency. Unfortunately, adapting controlled-release devices to release biologics has proven difficult due to the poor stability of biologics. In this review, we summarize the current state of controlled-release peptides and proteins, discuss existing techniques used to stabilize these drugs through encapsulation, storage, and in vivo release, and provide perspective on the most promising opportunities for the clinical translation of controlled-release peptides and proteins.
Collapse
Affiliation(s)
- Miusi Shi
- Department of Bioengineering, Rice University, Houston, TX 77030, USA; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, Houston, TX 77030, USA; Department of Chemistry, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
17
|
Lyu Y, Liu Y, He H, Wang H. Application of Silk-Fibroin-Based Hydrogels in Tissue Engineering. Gels 2023; 9:gels9050431. [PMID: 37233022 DOI: 10.3390/gels9050431] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Silk fibroin (SF) is an excellent protein-based biomaterial produced by the degumming and purification of silk from cocoons of the Bombyx mori through alkali or enzymatic treatments. SF exhibits excellent biological properties, such as mechanical properties, biocompatibility, biodegradability, bioabsorbability, low immunogenicity, and tunability, making it a versatile material widely applied in biological fields, particularly in tissue engineering. In tissue engineering, SF is often fabricated into hydrogel form, with the advantages of added materials. SF hydrogels have mostly been studied for their use in tissue regeneration by enhancing cell activity at the tissue defect site or counteracting tissue-damage-related factors. This review focuses on SF hydrogels, firstly summarizing the fabrication and properties of SF and SF hydrogels and then detailing the regenerative effects of SF hydrogels as scaffolds in cartilage, bone, skin, cornea, teeth, and eardrum in recent years.
Collapse
Affiliation(s)
- Yihan Lyu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yusheng Liu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Houzhe He
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
18
|
Sithole MN, Kumar P, Du Toit LC, Erlwanger KH, Ubanako PN, Choonara YE. A 3D-Printed Biomaterial Scaffold Reinforced with Inorganic Fillers for Bone Tissue Engineering: In Vitro Assessment and In Vivo Animal Studies. Int J Mol Sci 2023; 24:ijms24087611. [PMID: 37108772 PMCID: PMC10144578 DOI: 10.3390/ijms24087611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
This research aimed to substantiate the potential practicality of utilizing a matrix-like platform, a novel 3D-printed biomaterial scaffold, to enhance and guide host cells' growth for bone tissue regeneration. The 3D biomaterial scaffold was successfully printed using a 3D Bioplotter® (EnvisionTEC, GmBH) and characterized. Osteoblast-like MG63 cells were utilized to culture the novel printed scaffold over a period of 1, 3, and 7 days. Cell adhesion and surface morphology were examined using scanning electron microscopy (SEM) and optical microscopy, while cell viability was determined using MTS assay and cell proliferation was evaluated using a Leica microsystem (Leica MZ10 F). The 3D-printed biomaterial scaffold exhibited essential biomineral trace elements that are significant for biological bone (e.g., Ca-P) and were confirmed through energy-dispersive X-ray (EDX) analysis. The microscopy analyses revealed that the osteoblast-like MG63 cells were attached to the printed scaffold surface. The viability of cultured cells on the control and printed scaffold increased over time (p < 0.05); however, on respective days (1, 3, and 7 days), the viability of cultured cells between the two groups was not significantly different (p > 0.05). The protein (human BMP-7, also known as growth factor) was successfully attached to the surface of the 3D-printed biomaterial scaffold as an initiator of osteogenesis in the site of the induced bone defect. An in vivo study was conducted to substantiate if the novel printed scaffold properties were engineered adequately to mimic the bone regeneration cascade using an induced rabbit critical-sized nasal bone defect. The novel printed scaffold provided a potential pro-regenerative platform, rich in mechanical, topographical, and biological cues to guide and activate host cells toward functional regeneration. The histological studies revealed that there was progress in new bone formation, especially at week 8 of the study, in all induced bone defects. In conclusion, the protein (human BMP-7)-embedded scaffolds showed higher regenerative bone formation potential (week 8 complete) compared to the scaffolds without protein (e.g., growth factor; BMP-7) and the control (empty defect). At 8 weeks postimplantation, protein (BMP-7) significantly promoted osteogenesis as compared to other groups. The scaffold underwent gradual degradation and replacement by new bones at 8 weeks in most defects.
Collapse
Affiliation(s)
- Mduduzi N Sithole
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Lisa C Du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Kennedy H Erlwanger
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Philemon N Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
19
|
Taheri S, Ghazali HS, Ghazali ZS, Bhattacharyya A, Noh I. Progress in biomechanical stimuli on the cell-encapsulated hydrogels for cartilage tissue regeneration. Biomater Res 2023; 27:22. [PMID: 36935512 PMCID: PMC10026525 DOI: 10.1186/s40824-023-00358-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/25/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Worldwide, many people suffer from knee injuries and articular cartilage damage every year, which causes pain and reduces productivity, life quality, and daily routines. Medication is currently primarily used to relieve symptoms and not to ameliorate cartilage degeneration. As the natural healing capacity of cartilage damage is limited due to a lack of vascularization, common surgical methods are used to repair cartilage tissue, but they cannot prevent massive damage followed by injury. MAIN BODY Functional tissue engineering has recently attracted attention for the repair of cartilage damage using a combination of cells, scaffolds (constructs), biochemical factors, and biomechanical stimuli. As cyclic biomechanical loading is the key factor in maintaining the chondrocyte phenotype, many studies have evaluated the effect of biomechanical stimulation on chondrogenesis. The characteristics of hydrogels, such as their mechanical properties, water content, and cell encapsulation, make them ideal for tissue-engineered scaffolds. Induced cell signaling (biochemical and biomechanical factors) and encapsulation of cells in hydrogels as a construct are discussed for biomechanical stimulation-based tissue regeneration, and several notable studies on the effect of biomechanical stimulation on encapsulated cells within hydrogels are discussed for cartilage regeneration. CONCLUSION Induction of biochemical and biomechanical signaling on the encapsulated cells in hydrogels are important factors for biomechanical stimulation-based cartilage regeneration.
Collapse
Affiliation(s)
- Shiva Taheri
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Hanieh Sadat Ghazali
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Zahra Sadat Ghazali
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, 158754413, Iran
| | - Amitava Bhattacharyya
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
- Functional, Innovative, and Smart Textiles, PSG Institute of Advanced Studies, Coimbatore, 641004, India
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Insup Noh
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
| |
Collapse
|
20
|
Liu J, Yang L, Liu K, Gao F. Hydrogel scaffolds in bone regeneration: Their promising roles in angiogenesis. Front Pharmacol 2023; 14:1050954. [PMID: 36860296 PMCID: PMC9968752 DOI: 10.3389/fphar.2023.1050954] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Bone tissue engineering (BTE) has become a hopeful potential treatment strategy for large bone defects, including bone tumors, trauma, and extensive fractures, where the self-healing property of bone cannot repair the defect. Bone tissue engineering is composed of three main elements: progenitor/stem cells, scaffold, and growth factors/biochemical cues. Among the various biomaterial scaffolds, hydrogels are broadly used in bone tissue engineering owing to their biocompatibility, controllable mechanical characteristics, osteoconductive, and osteoinductive properties. During bone tissue engineering, angiogenesis plays a central role in the failure or success of bone reconstruction via discarding wastes and providing oxygen, minerals, nutrients, and growth factors to the injured microenvironment. This review presents an overview of bone tissue engineering and its requirements, hydrogel structure and characterization, the applications of hydrogels in bone regeneration, and the promising roles of hydrogels in bone angiogenesis during bone tissue engineering.
Collapse
Affiliation(s)
- Jun Liu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Lili Yang
- Department of Spinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Kexin Liu
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Feng Gao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China,*Correspondence: Feng Gao,
| |
Collapse
|
21
|
Kim J, Kim Y, Song S. One-Step Preparation of an Injectable Hydrogel Scaffold System Capable of Sequential Dual-Growth Factor Release to Maximize Bone Regeneration. Adv Healthc Mater 2023; 12:e2202401. [PMID: 36453668 PMCID: PMC11468681 DOI: 10.1002/adhm.202202401] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/28/2022] [Indexed: 12/02/2022]
Abstract
Numerous growth factors are involved in the natural bone healing process, which is precisely controlled in a time- and concentration-dependent manner. Mimicking the secretion pattern of growth factors could be an effective means to maximize the bone regeneration effect. However, achieving the sequential delivery of various growth factors without the use of multiple materials or complex scaffold designs is challenging. Herein, an injectable poly(organophosphazene) hydrogel scaffold (IPS) encapsulating bone morphogenetic protein (BMP)-2 and TGFβ-1 (IPS_BT) is studied to mimic the sequential secretion of growth factors involved in natural bone healing. The IPS_BT system is designed to release TGFβ-1 slowly while retaining BMP-2 for a longer period of time. When IPS_BT is injected in vivo, the hydrogel is replaced by bone tissue. In addition, angiogenic (CD31 and alpha-smooth muscle actin (α-SMA)) and stemness (Nanog and SOX2) markers are highly upregulated in the early stages of bone regeneration. The IPS system developed here has promising applications in tissue engineering because 1) various amounts of the growth factors can be loaded in one step, 2) the release pattern of each growth factor can be controlled via differences in their molecular interactions, and 3) the injected IPS can be degraded and replaced with regenerated bone tissue.
Collapse
Affiliation(s)
- Jun Kim
- Center for BiomaterialsBiomedical Research InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolKorea University of Science and TechnologySeoul02792Republic of Korea
| | - Young‐Min Kim
- Center for BiomaterialsBiomedical Research InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolKorea University of Science and TechnologySeoul02792Republic of Korea
| | - Soo‐Chang Song
- Center for BiomaterialsBiomedical Research InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolKorea University of Science and TechnologySeoul02792Republic of Korea
- Nexgel Biotech, Co., Ltd.Seoul02792Republic of Korea
| |
Collapse
|
22
|
Aliakbar Ahovan Z, Esmaeili Z, Eftekhari BS, Khosravimelal S, Alehosseini M, Orive G, Dolatshahi-Pirouz A, Pal Singh Chauhan N, Janmey PA, Hashemi A, Kundu SC, Gholipourmalekabadi M. Antibacterial smart hydrogels: New hope for infectious wound management. Mater Today Bio 2022; 17:100499. [PMID: 36466959 PMCID: PMC9709163 DOI: 10.1016/j.mtbio.2022.100499] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022] Open
Abstract
Millions of people die annually due to uncured wound infections. Healthcare systems incur high costs to treat wound infections. Tt is predicted to become more challenging due to the rise of multidrug-resistant conditions. During the last decades, smart antibacterial hydrogels could attract attention as a promising solution, especially for skin wound infections. These antibacterial hydrogels are termed 'smart' due to their response to specific physical and chemical environmental stimuli. To deliver different drugs to particular sites in a controlled manner, various types of crosslinking strategies are used in the manufacturing process. Smart hydrogels are designed to provide antimicrobial agents to the infected sites or are built from polymers with inherent disinfectant properties. This paper aims to critically review recent pre-clinical and clinical advances in using smart hydrogels against skin wound infections and propose the next best thing for future trends. For this purpose, an introduction to skin wound healing and disease is presented and intelligent hydrogels responding to different stimuli are introduced. Finally, the most promising investigations are discussed in their related sections. These studies can pave the way for producing new biomaterials with clinical applications.
Collapse
Affiliation(s)
- Zahra Aliakbar Ahovan
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Esmaeili
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Sadjad Khosravimelal
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Alehosseini
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua). Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore
| | | | | | - Paul A. Janmey
- Bioengineering Department, University of Pennsylvania, Philadelphia, USA
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Subhas C. Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Guimaraes, Portugal
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Engineering bone-forming biohybrid sheets through the integration of melt electrowritten membranes and cartilaginous microspheroids. Acta Biomater 2022:S1742-7061(22)00693-6. [DOI: 10.1016/j.actbio.2022.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022]
|
24
|
Biomimetic glycopeptide hydrogel coated PCL/nHA scaffold for enhanced cranial bone regeneration via macrophage M2 polarization-induced osteo-immunomodulation. Biomaterials 2022; 285:121538. [DOI: 10.1016/j.biomaterials.2022.121538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/29/2022] [Accepted: 04/20/2022] [Indexed: 01/11/2023]
|
25
|
Shakoor S, Kibble E, El-Jawhari JJ. Bioengineering Approaches for Delivering Growth Factors: A Focus on Bone and Cartilage Regeneration. Bioengineering (Basel) 2022; 9:bioengineering9050223. [PMID: 35621501 PMCID: PMC9137461 DOI: 10.3390/bioengineering9050223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/08/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Growth factors are bio-factors that target reparatory cells during bone regeneration. These growth factors are needed in complicated conditions of bone and joint damage to enhance tissue repair. The delivery of these growth factors is key to ensuring the effectiveness of regenerative therapy. This review discusses the roles of various growth factors in bone and cartilage regeneration. The methods of delivery of natural or recombinant growth factors are reviewed. Different types of scaffolds, encapsulation, Layer-by-layer assembly, and hydrogels are tools for growth factor delivery. Considering the advantages and limitations of these methods is essential to developing regenerative therapies. Further research can accordingly be planned to have new or combined technologies serving this purpose.
Collapse
|
26
|
BMP-2 Enhances Osteogenic Differentiation of Human Adipose-Derived and Dental Pulp Stem Cells in 2D and 3D In Vitro Models. Stem Cells Int 2022; 2022:4910399. [PMID: 35283997 PMCID: PMC8916887 DOI: 10.1155/2022/4910399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/02/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
Bone tissue provides support and protection to different organs and tissues. Aging and different diseases can cause a decrease in the rate of bone regeneration or incomplete healing; thus, tissue-engineered substitutes can be an acceptable alternative to traditional therapies. In the present work, we have developed an in vitro osteogenic differentiation model based on mesenchymal stem cells (MSCs), to first analyse the influence of the culture media and the origin of the cells on the efficiency of this process and secondly to extrapolate it to a 3D environment to evaluate its possible application in bone regeneration therapies. Two osteogenic culture media were used (one commercial from Stemcell Technologies and a second supplemented with dexamethasone, ascorbic acid, glycerol-2-phosphate, and BMP-2), with human cells of a mesenchymal phenotype from two different origins: adipose tissue (hADSCs) and dental pulp (hDPSCs). The expression of osteogenic markers in 2D cultures was evaluated in several culture periods by means of the immunofluorescence technique and real-time gene expression analysis, taking as reference MG-63 cells of osteogenic origin. The same strategy was extrapolated to a 3D environment of polylactic acid (PLA), with a 3% alginate hydrogel. The expression of osteogenic markers was detected in both hADSCs and hDPSCs, cultured in either 2D or 3D environments. However, the osteogenic differentiation of MSCs was obtained based on the culture medium and the cell origin used, since higher osteogenic marker levels were found when hADSCs were cultured with medium supplemented with BMP-2. Furthermore, the 3D culture used was suitable for cell survival and osteogenic induction.
Collapse
|
27
|
Hayaei Tehrani RS, Hajari MA, Ghorbaninejad Z, Esfandiari F. Droplet microfluidic devices for organized stem cell differentiation into germ cells: capabilities and challenges. Biophys Rev 2021; 13:1245-1271. [PMID: 35059040 PMCID: PMC8724463 DOI: 10.1007/s12551-021-00907-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/01/2021] [Indexed: 12/28/2022] Open
Abstract
Demystifying the mechanisms that underlie germline development and gamete production is critical for expanding advanced therapies for infertile couples who cannot benefit from current infertility treatments. However, the low number of germ cells, particularly in the early stages of development, represents a serious challenge in obtaining sufficient materials required for research purposes. In this regard, pluripotent stem cells (PSCs) have provided an opportunity for producing an unlimited source of germ cells in vitro. Achieving this ambition is highly dependent on accurate stem cell niche reconstitution which is achievable through applying advanced cell engineering approaches. Recently, hydrogel microparticles (HMPs), as either microcarriers or microcapsules, have shown promising potential in providing an excellent 3-dimensional (3D) biomimetic microenvironment alongside the systematic bioactive agent delivery. In this review, recent studies of utilizing various HMP-based cell engineering strategies for appropriate niche reconstitution and efficient in vitro differentiation are highlighted with a special focus on the capabilities of droplet-based microfluidic (DBM) technology. We believe that a deep understanding of the current limitations and potentials of the DBM systems in integration with stem cell biology provides a bright future for germ cell research. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12551-021-00907-5.
Collapse
Affiliation(s)
- Reyhaneh Sadat Hayaei Tehrani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| | - Mohammad Amin Hajari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zeynab Ghorbaninejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| |
Collapse
|
28
|
Vadaye Kheiry E, Fazly Bazzaz BS, Kerachian MA. Implantation of stem cells on synthetic or biological scaffolds: an overview of bone regeneration. Biotechnol Genet Eng Rev 2021; 37:238-268. [PMID: 34789069 DOI: 10.1080/02648725.2021.2003590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Humans are exposed to a wide range of bone tissue injuries. In severe cases, bone damages could be only treated with transplantation of autologous or allogeneic grafting.In recent years, tissue engineering has become a promising strategy for repairing damaged organs and tissues, providing a great opportunity to cure several diseases. Bone tissue engineering consists of three components: scaffold, cells, and growth factors. Current bone tissue engineering strategies combine the use of stem cells with biologically active materials and gene therapy to mimic the natural microenvironment of bone. The combination of the scaffold with growth factors and extracellular matrix protein molecules can promote cell attachment, proliferation, and induce osteogenesis, which could provide signals for cell migration to begin the healing process during repair and bone formation.This article reviews the principles of bone regeneration and the most current developments of bone tissue engineering related to bone growth factors, the biologically active materials, such as bacterial cellulose, and stem cells.
Collapse
Affiliation(s)
- Elahe Vadaye Kheiry
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Pharmaceutical Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Kamboj N, Ressler A, Hussainova I. Bioactive Ceramic Scaffolds for Bone Tissue Engineering by Powder Bed Selective Laser Processing: A Review. MATERIALS 2021; 14:ma14185338. [PMID: 34576562 PMCID: PMC8469313 DOI: 10.3390/ma14185338] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/02/2021] [Accepted: 09/12/2021] [Indexed: 02/07/2023]
Abstract
The implementation of a powder bed selective laser processing (PBSLP) technique for bioactive ceramics, including selective laser sintering and melting (SLM/SLS), a laser powder bed fusion (L-PBF) approach is far more challenging when compared to its metallic and polymeric counterparts for the fabrication of biomedical materials. Direct PBSLP can offer binder-free fabrication of bioactive scaffolds without involving postprocessing techniques. This review explicitly focuses on the PBSLP technique for bioactive ceramics and encompasses a detailed overview of the PBSLP process and the general requirements and properties of the bioactive scaffolds for bone tissue growth. The bioactive ceramics enclosing calcium phosphate (CaP) and calcium silicates (CS) and their respective composite scaffolds processed through PBSLP are also extensively discussed. This review paper also categorizes the bone regeneration strategies of the bioactive scaffolds processed through PBSLP with the various modes of functionalization through the incorporation of drugs, stem cells, and growth factors to ameliorate critical-sized bone defects based on the fracture site length for personalized medicine.
Collapse
Affiliation(s)
- Nikhil Kamboj
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia;
| | - Antonia Ressler
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, p.p.177, HR-10001 Zagreb, Croatia;
| | - Irina Hussainova
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia;
- Correspondence:
| |
Collapse
|
30
|
|
31
|
Strategies for inclusion of growth factors into 3D printed bone grafts. Essays Biochem 2021; 65:569-585. [PMID: 34156062 DOI: 10.1042/ebc20200130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/25/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
There remains a critical need to develop new technologies and materials that can meet the demands of treating large bone defects. The advancement of 3-dimensional (3D) printing technologies has allowed the creation of personalized and customized bone grafts, with specific control in both macro- and micro-architecture, and desired mechanical properties. Nevertheless, the biomaterials used for the production of these bone grafts often possess poor biological properties. The incorporation of growth factors (GFs), which are the natural orchestrators of the physiological healing process, into 3D printed bone grafts, represents a promising strategy to achieve the bioactivity required to enhance bone regeneration. In this review, the possible strategies used to incorporate GFs to 3D printed constructs are presented with a specific focus on bone regeneration. In particular, the strengths and limitations of different methods, such as physical and chemical cross-linking, which are currently used to incorporate GFs to the engineered constructs are critically reviewed. Different strategies used to present one or more GFs to achieve simultaneous angiogenesis and vasculogenesis for enhanced bone regeneration are also covered in this review. In addition, the possibility of combining several manufacturing approaches to fabricate hybrid constructs, which better mimic the complexity of biological niches, is presented. Finally, the clinical relevance of these approaches and the future steps that should be taken are discussed.
Collapse
|
32
|
Bozorgi A, Khazaei M, Soleimani M, Jamalpoor Z. Application of nanoparticles in bone tissue engineering; a review on the molecular mechanisms driving osteogenesis. Biomater Sci 2021; 9:4541-4567. [PMID: 34075945 DOI: 10.1039/d1bm00504a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The introduction of nanoparticles into bone tissue engineering strategies is beneficial to govern cell fate into osteogenesis and the regeneration of large bone defects. The present study explored the role of nanoparticles to advance osteogenesis with a focus on the cellular and molecular pathways involved. Pubmed, Pubmed Central, Embase, Scopus, and Science Direct databases were explored for those published articles relevant to the involvement of nanoparticles in osteogenic cellular pathways. As multifunctional compounds, nanoparticles contribute to scaffold-free and scaffold-based tissue engineering strategies to progress osteogenesis and bone regeneration. They regulate inflammatory responses and osteo/angio/osteoclastic signaling pathways to generate an osteogenic niche. Besides, nanoparticles interact with biomolecules, enhance their half-life and bioavailability. Nanoparticles are promising candidates to promote osteogenesis. However, the interaction of nanoparticles with the biological milieu is somewhat complicated, and more considerations are recommended on the employment of nanoparticles in clinical applications because of NP-induced toxicities.
Collapse
Affiliation(s)
- Azam Bozorgi
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran and Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran and Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Jamalpoor
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Farokhi M, Aleemardani M, Solouk A, Mirzadeh H, Teuschl AH, Redl H. Crosslinking strategies for silk fibroin hydrogels: promising biomedical materials. Biomed Mater 2021; 16:022004. [PMID: 33594992 DOI: 10.1088/1748-605x/abb615] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Due to their strong biomimetic potential, silk fibroin (SF) hydrogels are impressive candidates for tissue engineering, due to their tunable mechanical properties, biocompatibility, low immunotoxicity, controllable biodegradability, and a remarkable capacity for biomaterial modification and the realization of a specific molecular structure. The fundamental chemical and physical structure of SF allows its structure to be altered using various crosslinking strategies. The established crosslinking methods enable the formation of three-dimensional (3D) networks under physiological conditions. There are different chemical and physical crosslinking mechanisms available for the generation of SF hydrogels (SFHs). These methods, either chemical or physical, change the structure of SF and improve its mechanical stability, although each method has its advantages and disadvantages. While chemical crosslinking agents guarantee the mechanical strength of SFH through the generation of covalent bonds, they could cause some toxicity, and their usage is not compatible with a cell-friendly technology. On the other hand, physical crosslinking approaches have been implemented in the absence of chemical solvents by the induction of β-sheet conformation in the SF structure. Unfortunately, it is not easy to control the shape and properties of SFHs when using this method. The current review discusses the different crosslinking mechanisms of SFH in detail, in order to support the development of engineered SFHs for biomedical applications.
Collapse
Affiliation(s)
- Maryam Farokhi
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran. Maryam Farokhi and Mina Aleemardani contributed equally
| | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Papantoniou I, Nilsson Hall G, Loverdou N, Lesage R, Herpelinck T, Mendes L, Geris L. Turning Nature's own processes into design strategies for living bone implant biomanufacturing: a decade of Developmental Engineering. Adv Drug Deliv Rev 2021; 169:22-39. [PMID: 33290762 PMCID: PMC7839840 DOI: 10.1016/j.addr.2020.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 11/20/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022]
Abstract
A decade after the term developmental engineering (DE) was coined to indicate the use of developmental processes as blueprints for the design and development of engineered living implants, a myriad of proof-of-concept studies demonstrate the potential of this approach in small animal models. This review provides an overview of DE work, focusing on applications in bone regeneration. Enabling technologies allow to quantify the distance between in vitro processes and their developmental counterpart, as well as to design strategies to reduce that distance. By embedding Nature's robust mechanisms of action in engineered constructs, predictive large animal data and subsequent positive clinical outcomes can be gradually achieved. To this end, the development of next generation biofabrication technologies should provide the necessary scale and precision for robust living bone implant biomanufacturing.
Collapse
Affiliation(s)
- Ioannis Papantoniou
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH), Stadiou street, 26504 Patras, Greece; Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium.
| | - Gabriella Nilsson Hall
- Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium.
| | - Niki Loverdou
- Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium; GIGA in silico medicine, University of Liège, Avenue de l'Hôpital 11 (B34), 4000 Liège, Belgium; Biomechanics Section, KU Leuven, Celestijnenlaan 300C (2419), 3001 Leuven, Belgium.
| | - Raphaelle Lesage
- Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium; Biomechanics Section, KU Leuven, Celestijnenlaan 300C (2419), 3001 Leuven, Belgium.
| | - Tim Herpelinck
- Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium.
| | - Luis Mendes
- Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium.
| | - Liesbet Geris
- Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; GIGA in silico medicine, University of Liège, Avenue de l'Hôpital 11 (B34), 4000 Liège, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium; Biomechanics Section, KU Leuven, Celestijnenlaan 300C (2419), 3001 Leuven, Belgium.
| |
Collapse
|
36
|
Oliveira ÉR, Nie L, Podstawczyk D, Allahbakhsh A, Ratnayake J, Brasil DL, Shavandi A. Advances in Growth Factor Delivery for Bone Tissue Engineering. Int J Mol Sci 2021; 22:E903. [PMID: 33477502 PMCID: PMC7831065 DOI: 10.3390/ijms22020903] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
Shortcomings related to the treatment of bone diseases and consequent tissue regeneration such as transplants have been addressed to some extent by tissue engineering and regenerative medicine. Tissue engineering has promoted structures that can simulate the extracellular matrix and are capable of guiding natural bone repair using signaling molecules to promote osteoinduction and angiogenesis essential in the formation of new bone tissues. Although recent studies on developing novel growth factor delivery systems for bone repair have attracted great attention, taking into account the complexity of the extracellular matrix, scaffolding and growth factors should not be explored independently. Consequently, systems that combine both concepts have great potential to promote the effectiveness of bone regeneration methods. In this review, recent developments in bone regeneration that simultaneously consider scaffolding and growth factors are covered in detail. The main emphasis in this overview is on delivery strategies that employ polymer-based scaffolds for spatiotemporal-controlled delivery of both single and multiple growth factors in bone-regeneration approaches. From clinical applications to creating alternative structural materials, bone tissue engineering has been advancing constantly, and it is relevant to regularly update related topics.
Collapse
Affiliation(s)
- Érica Resende Oliveira
- Food Engineering Department, School of Agronomy, Universidade Federal de Goiás, Campus Samambaia, Goiânia CEP 74690-900, Goiás, Brazil;
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, 4/6 Norwida Street, 50-373 Wroclaw, Poland;
| | - Ahmad Allahbakhsh
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran;
| | - Jithendra Ratnayake
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand;
| | - Dandara Lima Brasil
- Food Science Department, Universidade Federal de Lavras, Lavras CEP 37200-900, Minas Gerais, Brazil;
| | - Amin Shavandi
- BioMatter Unit—École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50—CP 165/61, 1050 Brussels, Belgium
| |
Collapse
|
37
|
Alzanbaki H, Moretti M, Hauser CAE. Engineered Microgels-Their Manufacturing and Biomedical Applications. MICROMACHINES 2021; 12:45. [PMID: 33401474 PMCID: PMC7824414 DOI: 10.3390/mi12010045] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022]
Abstract
Microgels are hydrogel particles with diameters in the micrometer scale that can be fabricated in different shapes and sizes. Microgels are increasingly used for biomedical applications and for biofabrication due to their interesting features, such as injectability, modularity, porosity and tunability in respect to size, shape and mechanical properties. Fabrication methods of microgels are divided into two categories, following a top-down or bottom-up approach. Each approach has its own advantages and disadvantages and requires certain sets of materials and equipments. In this review, we discuss fabrication methods of both top-down and bottom-up approaches and point to their advantages as well as their limitations, with more focus on the bottom-up approaches. In addition, the use of microgels for a variety of biomedical applications will be discussed, including microgels for the delivery of therapeutic agents and microgels as cell carriers for the fabrication of 3D bioprinted cell-laden constructs. Microgels made from well-defined synthetic materials with a focus on rationally designed ultrashort peptides are also discussed, because they have been demonstrated to serve as an attractive alternative to much less defined naturally derived materials. Here, we will emphasize the potential and properties of ultrashort self-assembling peptides related to microgels.
Collapse
Affiliation(s)
| | | | - Charlotte A. E. Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, 4700 Thuwal, Jeddah 23955-6900, Saudi Arabia; (H.A.); (M.M.)
| |
Collapse
|
38
|
Liu Y, Zhou M, Zhou X, Liu Z, Chen W, Zhu X, Tian X, Chen X, Zhu J. Fabrication of Biomolecule-Loaded Composite Scaffolds Carried by Extracellular Matrix Hydrogel. Tissue Eng Part A 2020; 27:796-805. [PMID: 33023406 DOI: 10.1089/ten.tea.2020.0187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fabrication of multifunctional scaffolds with biomimicking physical and biological signals play an important role in enhancing tissue regeneration. Multifunctional features come from the composite scaffold with various bioactive molecules. However, simple, biocompatible, and controllable hybridization strategy is still lacking. In this study, we leverage naturally derived extracellular matrix (ECM) as chemically controllable hydrogel carrier to effectively load functional biomolecules. The use of ECM hydrogel takes advantage of both native functionality of ECM components and tunability of hydrogel in controlling release of loaded molecules. As a proof of concept, porous acellular bone scaffold was selected as the solid pristine scaffold to be composited with BMP-2 and VEGF, which are loaded by spinal cord-derived ECM (SC-ECM) hydrogel. Crosslinking degree of SC-ECM hydrogel is tuned by changing genipin concentration, which renders the control over release kinetics of BMP-2 and VEGF. The mechanical strength of scaffold maintained after hybridization and is not significantly decreased in wet condition. In vitro evaluations of scaffolds cocultured with osteoblasts and mesenchymal stem cells (MSCs) demonstrate the biocompatible and bioactive features resulting from the composite scaffolds. Evidenced by alkaline phosphatase test, immunofluorescence, and real-time polymerase chain reaction, differentiation of MSCs towards osteoblast lineage is significantly enhanced by composite scaffolds. Therefore, our strategy in fabricating composite scaffold enabled by biomolecule-loaded ECM hydrogel holds great promise in regenerating diverse tissue types by appropriate combinations of solid pristine scaffolds, ECM, and bioactive molecules. Impact statement We developed a bioactive molecule (e.g., growth factor, protein) loading method using extracellular matrix hydrogel as a carrier. It brings a new strategy to fabricate composite scaffolds with unique biofunctions.
Collapse
Affiliation(s)
- Yan Liu
- Affiliated Stomatology Hospital of Guangzhou Medical University and Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Miao Zhou
- Affiliated Stomatology Hospital of Guangzhou Medical University and Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xingwu Zhou
- Department of Chemical & Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Ziying Liu
- Affiliated Stomatology Hospital of Guangzhou Medical University and Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Wei Chen
- Affiliated Stomatology Hospital of Guangzhou Medical University and Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xunmin Zhu
- Affiliated Stomatology Hospital of Guangzhou Medical University and Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiumei Tian
- Affiliated Stomatology Hospital of Guangzhou Medical University and Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaoming Chen
- Affiliated Stomatology Hospital of Guangzhou Medical University and Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jixiang Zhu
- Affiliated Stomatology Hospital of Guangzhou Medical University and Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
39
|
Ogay V, Mun EA, Kudaibergen G, Baidarbekov M, Kassymbek K, Zharkinbekov Z, Saparov A. Progress and Prospects of Polymer-Based Drug Delivery Systems for Bone Tissue Regeneration. Polymers (Basel) 2020; 12:E2881. [PMID: 33271770 PMCID: PMC7760650 DOI: 10.3390/polym12122881] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the high regenerative capacity of bone tissue, there are some cases where bone repair is insufficient for a complete functional and structural recovery after damage. Current surgical techniques utilize natural and synthetic bone grafts for bone healing, as well as collagen sponges loaded with drugs. However, there are certain disadvantages associated with these techniques in clinical usage. To improve the therapeutic efficacy of bone tissue regeneration, a number of drug delivery systems based on biodegradable natural and synthetic polymers were developed and examined in in vitro and in vivo studies. Recent studies have demonstrated that biodegradable polymers play a key role in the development of innovative drug delivery systems and tissue engineered constructs, which improve the treatment and regeneration of damaged bone tissue. In this review, we discuss the most recent advances in the field of polymer-based drug delivery systems for the promotion of bone tissue regeneration and the physical-chemical modifications of polymers for controlled and sustained release of one or more drugs. In addition, special attention is given to recent developments on polymer nano- and microparticle-based drug delivery systems for bone regeneration.
Collapse
Affiliation(s)
- Vyacheslav Ogay
- Stem Cell Laboratory, National Center for Biotechnology, Nur-Sultan 010000, Kazakhstan; (V.O.); (G.K.)
| | - Ellina A. Mun
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Gulshakhar Kudaibergen
- Stem Cell Laboratory, National Center for Biotechnology, Nur-Sultan 010000, Kazakhstan; (V.O.); (G.K.)
| | - Murat Baidarbekov
- Research Institute of Traumatology and Orthopedics, Nur-Sultan 010000, Kazakhstan;
| | - Kuat Kassymbek
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.K.); (Z.Z.)
| | - Zharylkasyn Zharkinbekov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.K.); (Z.Z.)
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.K.); (Z.Z.)
| |
Collapse
|
40
|
Yang Y, Xiao Y. Biomaterials Regulating Bone Hematoma for Osteogenesis. Adv Healthc Mater 2020; 9:e2000726. [PMID: 32691989 DOI: 10.1002/adhm.202000726] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/18/2020] [Indexed: 12/11/2022]
Abstract
Blood coagulation in tissue healing not only prevents blood loss, but also forms a natural scaffold for tissue repair and regeneration. As blood clot formation is the initial and foremost phase upon bone injury, and the quality of blood clot (hematoma) orchestrates the following inflammatory and cellular processes as well as the subsequent callus formation and bone remodeling process. Inspired by the natural healing hematoma, tissue-engineered biomimic scaffold/hydrogels and blood prefabrication strategies attract significant interests in developing functional bone substitutes. The alteration of the fracture hematoma ca significantly accelerate or impair the overall bone healing process. This review summarizes the impact of biomaterials on blood coagulation and provides evidence on fibrin network structure, growth factors, and biomolecules that contribute to bone healing within the hematoma. The aim is to provide insights into the development of novel implant and bone biomaterials for enhanced osteogenesis. Advances in the understanding of biomaterial characteristics (e.g., morphology, chemistry, wettability, and protein adsorption) and their effect on hematoma properties are highlighted. Emphasizing the importance of the initial healing phase of the hematoma endows the design of advanced biomaterials with the desired regulatory properties for optimal coagulation and hematoma properties, thereby facilitating enhanced osteogenesis and ideal therapeutic effects.
Collapse
Affiliation(s)
- Ying Yang
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| |
Collapse
|
41
|
Dubey S, Mishra R, Roy P, Singh RP. 3-D macro/microporous-nanofibrous bacterial cellulose scaffolds seeded with BMP-2 preconditioned mesenchymal stem cells exhibit remarkable potential for bone tissue engineering. Int J Biol Macromol 2020; 167:934-946. [PMID: 33189758 DOI: 10.1016/j.ijbiomac.2020.11.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 12/13/2022]
Abstract
Bone repair using BMP-2 is a promising therapeutic approach in clinical practices, however, high dosages required to be effective pose issues of cost and safety. The present study explores the potential of low dose BMP-2 treatment via tissue engineering approach, which amalgamates 3-D macro/microporous-nanofibrous bacterial cellulose (mNBC) scaffolds and low dose BMP-2 primed murine mesenchymal stem cells (C3H10T1/2 cells). Initial studies on cell-scaffold interaction using unprimed C3H10T1/2 cells confirmed that scaffolds provided a propitious environment for cell adhesion, growth, and infiltration, owing to its ECM-mimicking nano-micro-macro architecture. Osteogenic studies were conducted by preconditioning the cells with 50 ng/mL BMP-2 for 15 min, followed by culturing on mNBC scaffolds for up to three weeks. The results showed an early onset and significantly enhanced bone matrix secretion and maturation in the scaffolds seeded with BMP-2 primed cells compared to the unprimed ones. Moreover, mNBC scaffolds alone were able to facilitate the mineralization of cells to some extent. These findings suggest that, with the aid of 'osteoinduction' from low dose BMP-2 priming of stem cells and 'osteoconduction' from nano-macro/micro topography of mNBC scaffolds, a cost-effective bone tissue engineering strategy can be designed for quick and excellent in vivo osseointegration.
Collapse
Affiliation(s)
- Swati Dubey
- Microbial Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| | - Rutusmita Mishra
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - R P Singh
- Microbial Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
42
|
Wu CY, Guo CL, Yang YC, Huang CW, Zeng JY, Guan ZY, Chiang YC, Wang PY, Chen HY. Parylene-Based Porous Scaffold with Functionalized Encapsulation of Platelet-Rich Plasma and Living Stem Cells for Tissue Engineering Applications. ACS APPLIED BIO MATERIALS 2020; 3:7193-7201. [PMID: 35019377 DOI: 10.1021/acsabm.0c00995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A scaffold was fabricated to synergistically encapsulate living human adipose-derived stem cells (hASCs) and platelet-rich plasma (PRP) based on a vapor-phase sublimation and deposition process. During the process, ice templates were prepared using sterile water as the solvent and were used to accommodate the sensitive living cells and PRP molecules. Under controlled processing conditions, the ice templates underwent vapor sublimation to evaporate water molecules, while at the same time, vapor-phase deposition of poly-p-xylylene (Parylene, USP Class VI highly biocompatible) occurred to replace the templates, and the final construction yielded a scaffold with Parylene as the matrix, with simultaneously encapsulated living hASCs and PRP molecules. Evaluation of the fabricated synergistic scaffold for the proliferation activities toward the encapsulated hASCs indicated significant augmentation of cell proliferation contributed by the PRP ingredients. In addition, osteogenic activity in the early stage by alkaline phosphatase expression and later stage with calcium mineralization indicated significant enhancement toward osteogenetic differentiation of the encapsulated hASCs, which were guided by the PRP molecules. By contrast, examinations of adipogenic activity by lipid droplet formation revealed an inhibition of adipogenesis with decreased intracellular lipid accumulation, and a statistically significant downregulation of adipogenic differentiation was postulated for the scaffold products when compared to the osteogenetic results and the control experiments. The reported fabrication method featured a clean and simple process to construct scaffolds that combined delicate living hASCs and PRP molecules inside the structure. The resultant synergistic scaffold and the selected commercially available hASCs and PRP are emerging as tissue engineering tools that provide multifunctionality for tissue repair and regeneration.
Collapse
Affiliation(s)
- Chih-Yu Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.,Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan.,Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chin-Lin Guo
- Institute of Physics, Academia Sinica, Taipei 11579, Taiwan
| | - Yen-Ching Yang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chao-Wei Huang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Jun-Yu Zeng
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Zhen-Yu Guan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Chih Chiang
- School of Dentistry, Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei 10048, Taiwan
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,China Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Hsien-Yeh Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.,Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan.,Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
43
|
Zhang W, Huang G, Xu F. Engineering Biomaterials and Approaches for Mechanical Stretching of Cells in Three Dimensions. Front Bioeng Biotechnol 2020; 8:589590. [PMID: 33154967 PMCID: PMC7591716 DOI: 10.3389/fbioe.2020.589590] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
Mechanical stretch is widely experienced by cells of different tissues in the human body and plays critical roles in regulating their behaviors. Numerous studies have been devoted to investigating the responses of cells to mechanical stretch, providing us with fruitful findings. However, these findings have been mostly observed from two-dimensional studies and increasing evidence suggests that cells in three dimensions may behave more closely to their in vivo behaviors. While significant efforts and progresses have been made in the engineering of biomaterials and approaches for mechanical stretching of cells in three dimensions, much work remains to be done. Here, we briefly review the state-of-the-art researches in this area, with focus on discussing biomaterial considerations and stretching approaches. We envision that with the development of advanced biomaterials, actuators and microengineering technologies, more versatile and predictive three-dimensional cell stretching models would be available soon for extensive applications in such fields as mechanobiology, tissue engineering, and drug screening.
Collapse
Affiliation(s)
- Weiwei Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Guoyou Huang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing University, Chongqing, China
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center, Xi’an Jiaotong University, Xi’an, China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
44
|
Du Z, Wang C, Zhang R, Wang X, Li X. Applications of Graphene and Its Derivatives in Bone Repair: Advantages for Promoting Bone Formation and Providing Real-Time Detection, Challenges and Future Prospects. Int J Nanomedicine 2020; 15:7523-7551. [PMID: 33116486 PMCID: PMC7547809 DOI: 10.2147/ijn.s271917] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
Abstract
During continuous innovation in the preparation, characterization and application of various bone repair materials for several decades, nanomaterials have exhibited many unique advantages. As a kind of representative two-dimensional nanomaterials, graphene and its derivatives (GDs) such as graphene oxide and reduced graphene oxide have shown promising potential for the application in bone repair based on their excellent mechanical properties, electrical conductivity, large specific surface area (SSA) and atomic structure stability. Herein, we reviewed the updated application of them in bone repair in order to present, as comprehensively, as possible, their specific advantages, challenges and current solutions. Firstly, how their advantages have been utilized in bone repair materials with improved bone formation ability was discussed. Especially, the effects of further functionalization or modification were emphasized. Then, the signaling pathways involved in GDs-induced osteogenic differentiation of stem cells and immunomodulatory mechanism of GDs-induced bone regeneration were discussed. On the other hand, their applications as contrast agents in the field of bone repair were summarized. In addition, we also reviewed the progress and related principles of the effects of GDs parameters on cytotoxicity and residues. At last, the future research was prospected.
Collapse
Affiliation(s)
- Zhipo Du
- Department of Orthopedics, The Fourth Central Hospital of Baoding City, Baoding072350, Hebei Province, People’s Republic of China
| | - Cunyang Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing100083, People’s Republic of China
| | - Ruihong Zhang
- Department of Research and Teaching, The Fourth Central Hospital of Baoding City, Baoding072350, Hebei Province, People’s Republic of China
| | - Xiumei Wang
- Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing100084, People’s Republic of China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing100083, People’s Republic of China
| |
Collapse
|
45
|
Lanier OL, Ficarrotta JM, Adjei I, Wable D, Lewis C, Nacea C, Sharma B, Dobson J, McFetridge P. Magnetically Responsive Polymeric Microparticles for the Triggered Delivery of a Complex Mixture of Human Placental Proteins. Macromol Biosci 2020; 21:e2000249. [PMID: 33015960 DOI: 10.1002/mabi.202000249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/09/2020] [Indexed: 12/21/2022]
Abstract
Bone loss through traumatic injury is a significant clinical issue. Researchers have created many scaffold types to mimic an extracellular matrix to provide structural support for the formation of new bone, however functional regeneration of larger scaffolds has not been fully achieved. Newer scaffolds aim to deliver bioactive molecules to improve tissue regeneration. To achieve a more comprehensive regenerative response, a magnetically triggerable polymeric microparticle platform is developed for the on-demand release of a complex mixture of isolated human placental proteins. This system is composed of polycaprolactone (PCL) microparticles, encapsulating magnetic nanoparticles (MNPs), and placental proteins. When subjected to an alternating magnetic field (AMF), the MNPs heat and melt the PCL, enhancing the diffusion of proteins from microparticles. When the field is off, the PCL re-solidifies. This potentially allows for cyclic drug delivery. Here the design, synthesis, and proof-of-concept experiments for this system are reported. In addition, it is shown that the proteins retain function after being magnetically released. The ability to trigger the release of complex protein mixtures on-demand may provide a significant advantage with wounds where stagnation of healing processes can occur (e.g., large segmented bone defects).
Collapse
Affiliation(s)
- Olivia L Lanier
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Joseph M Ficarrotta
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Isaac Adjei
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Dayita Wable
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Camryn Lewis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher Nacea
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Jon Dobson
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Peter McFetridge
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
46
|
Subbiah R, Cheng A, Ruehle MA, Hettiaratchi MH, Bertassoni LE, Guldberg RE. Effects of controlled dual growth factor delivery on bone regeneration following composite bone-muscle injury. Acta Biomater 2020; 114:63-75. [PMID: 32688092 DOI: 10.1016/j.actbio.2020.07.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
The objective of this study was to investigate the controlled release of two growth factors (BMP-2 and VEGF) as a treatment strategy for bone healing in clinically challenging composite injuries, consisting of a femoral segmental bone defect and volumetric muscle loss. This is the first investigation of dual growth factor delivery in a composite injury model using an injectable delivery system consisting of heparin microparticles and alginate gel. The loading efficiency of growth factors into these biomaterials was found to be >90%, revealing a strong affinity of VEGF and BMP-2 to heparin and alginate. The system could achieve simultaneous or tunable release of VEGF and BMP-2 by varying the loading strategy. Single growth factor delivery (VEGF or BMP-2 alone) significantly enhanced vascular growth in vitro. However, no synergistic effect was observed for dual growth factor (BMP-2 + VEGF) delivery in vitro. Effective bone healing was achieved in all treatment groups (BMP-2, simultaneous or tunable delivery of BMP-2 and VEGF) in the composite injury model. The mechanics of the regenerated bone reached a maximum strength of ~52% of intact bone with tunable delivery of VEGF and BMP-2. Overall, simultaneous or tunable co-delivery of low-dose BMP-2 and VEGF failed to fully restore the mechanics of bone in this injury model. Given the severity of the composite injury, VEGF alone may not be sufficient to establish mature and stable blood vessels when compared with previous studies co-delivering BMP-2+VEGF enhanced bone tissue regeneration. Hence, future studies are warranted to develop an alternative treatment strategy focusing on better control over growth factor dose, spatiotemporal delivery, and additional growth factors to regenerate fully functional bone tissue. STATEMENT OF SIGNIFICANCE: We have developed an injectable delivery system consisting of heparin microparticles and an alginate hydrogel that is capable of delivering multiple growth factors in a tunable manner. We used this delivery system to deliver BMP-2 and VEGF in a rodent model of composite bone-muscle injury that mimics clinical type III open fractures. An advanced treatment strategy is necessary for these injuries in order to avoid the negative side effects of high doses of growth factors and because it has been shown that the addition of a muscle injury in this model attenuates the bone regenerative effect of BMP-2. This is the first study to test the effects of dual growth factor delivery (BMP-2/VEGF) on bone healing in a composite bone-muscle injury model and is expected to open up new directions in protein delivery for regenerative medicine.
Collapse
|
47
|
Vázquez-González M, Willner I. Stimuli-Responsive Biomolecule-Based Hydrogels and Their Applications. Angew Chem Int Ed Engl 2020; 59:15342-15377. [PMID: 31730715 DOI: 10.1002/anie.201907670] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/10/2019] [Indexed: 12/16/2022]
Abstract
This Review presents polysaccharides, oligosaccharides, nucleic acids, peptides, and proteins as functional stimuli-responsive polymer scaffolds that yield hydrogels with controlled stiffness. Different physical or chemical triggers can be used to structurally reconfigure the crosslinking units and control the stiffness of the hydrogels. The integration of stimuli-responsive supramolecular complexes and stimuli-responsive biomolecular units as crosslinkers leads to hybrid hydrogels undergoing reversible triggered transitions across different stiffness states. Different applications of stimuli-responsive biomolecule-based hydrogels are discussed. The assembly of stimuli-responsive biomolecule-based hydrogel films on surfaces and their applications are discussed. The coating of drug-loaded nanoparticles with stimuli-responsive hydrogels for controlled drug release is also presented.
Collapse
Affiliation(s)
| | - Itamar Willner
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
48
|
Rothe R, Hauser S, Neuber C, Laube M, Schulze S, Rammelt S, Pietzsch J. Adjuvant Drug-Assisted Bone Healing: Advances and Challenges in Drug Delivery Approaches. Pharmaceutics 2020; 12:E428. [PMID: 32384753 PMCID: PMC7284517 DOI: 10.3390/pharmaceutics12050428] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
Bone defects of critical size after compound fractures, infections, or tumor resections are a challenge in treatment. Particularly, this applies to bone defects in patients with impaired bone healing due to frequently occurring metabolic diseases (above all diabetes mellitus and osteoporosis), chronic inflammation, and cancer. Adjuvant therapeutic agents such as recombinant growth factors, lipid mediators, antibiotics, antiphlogistics, and proangiogenics as well as other promising anti-resorptive and anabolic molecules contribute to improving bone healing in these disorders, especially when they are released in a targeted and controlled manner during crucial bone healing phases. In this regard, the development of smart biocompatible and biostable polymers such as implant coatings, scaffolds, or particle-based materials for drug release is crucial. Innovative chemical, physico- and biochemical approaches for controlled tailor-made degradation or the stimulus-responsive release of substances from these materials, and more, are advantageous. In this review, we discuss current developments, progress, but also pitfalls and setbacks of such approaches in supporting or controlling bone healing. The focus is on the critical evaluation of recent preclinical studies investigating different carrier systems, dual- or co-delivery systems as well as triggered- or targeted delivery systems for release of a panoply of drugs.
Collapse
Affiliation(s)
- Rebecca Rothe
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
| | - Sabine Schulze
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (S.S.); (S.R.)
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (S.S.); (S.R.)
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Tatzberg 4, 01307 Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
49
|
Toosi S, Behravan J. Osteogenesis and bone remodeling: A focus on growth factors and bioactive peptides. Biofactors 2020; 46:326-340. [PMID: 31854489 DOI: 10.1002/biof.1598] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/30/2019] [Indexed: 12/14/2022]
Abstract
Bone is one of the most frequently transplanted tissues. The bone structure and its physiological function and stem cells biology were known to be closely related to each other for many years. Bone is considered a home to the well-known systems of postnatal mesenchymal stem cells (MSCs). These bone resident MSCs provide a range of growth factors (GF) and cytokines to support cell growth following injury. These GFs include a group of proteins and peptides produced by different cells which are regulators of important cell functions such as division, migration, and differentiation. GF signaling controls the formation and development of the MSCs condensation and plays a critical role in regulating osteogenesis, chondrogenesis, and bone/mineral homeostasis. Thus, a combination of both MSCs and GFs receives high expectations in regenerative medicine, particularly in bone repair applications. It is known that the delivery of exogenous GFs to the non-union bone fracture site remarkably improves healing results. Here we present updated information on bone tissue engineering with a specific focus on GF characteristics and their application in cellular functions and tissue healing. Moreover, the interrelation of GFs with the damaged bone microenvironment and their mechanistic functions are discussed.
Collapse
Affiliation(s)
- Shirin Toosi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical, Mashhad, Iran
- Food and Drug Administration, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical, Mashhad, Iran
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
50
|
Lienemann PS, Vallmajo‐Martin Q, Papageorgiou P, Blache U, Metzger S, Kiveliö A, Milleret V, Sala A, Hoehnel S, Roch A, Reuten R, Koch M, Naveiras O, Weber FE, Weber W, Lutolf MP, Ehrbar M. Smart Hydrogels for the Augmentation of Bone Regeneration by Endogenous Mesenchymal Progenitor Cell Recruitment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903395. [PMID: 32274319 PMCID: PMC7141038 DOI: 10.1002/advs.201903395] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/27/2019] [Indexed: 04/14/2023]
Abstract
The treatment of bone defects with recombinant bone morphogenetic protein-2 (BMP-2) requires high doses precluding broad clinical application. Here, a bioengineering approach is presented that strongly improves low-dose BMP-2-based bone regeneration by mobilizing healing-associated mesenchymal progenitor cells (MPCs). Smart synthetic hydrogels are used to trap and study endogenous MPCs trafficking to bone defects. Hydrogel-trapped and prospectively isolated MPCs differentiate into multiple lineages in vitro and form bone in vivo. In vitro screenings reveal that platelet-derived growth factor BB (PDGF-BB) strongly recruits prospective MPCs making it a promising candidate for the engineering of hydrogels that enrich endogenous MPCs in vivo. However, PDGF-BB inhibits BMP-2-mediated osteogenesis both in vitro and in vivo. In contrast, smart two-way dynamic release hydrogels with fast-release of PDGF-BB and sustained delivery of BMP-2 beneficially promote the healing of bone defects. Collectively, it is shown that modulating the dynamics of endogenous progenitor cells in vivo by smart synthetic hydrogels significantly improves bone healing and holds great potential for other advanced applications in regenerative medicine.
Collapse
Affiliation(s)
- Philipp S. Lienemann
- Department of ObstetricsUniversity Hospital ZurichUniversity of ZurichSchmelzbergstr. 12Zurich8091Switzerland
- Institute of BioengineeringSchool of Life Sciences and School of EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)Station 15Lausanne1015Switzerland
| | - Queralt Vallmajo‐Martin
- Department of ObstetricsUniversity Hospital ZurichUniversity of ZurichSchmelzbergstr. 12Zurich8091Switzerland
- Institute of BioengineeringSchool of Life Sciences and School of EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)Station 15Lausanne1015Switzerland
| | - Panagiota Papageorgiou
- Department of ObstetricsUniversity Hospital ZurichUniversity of ZurichSchmelzbergstr. 12Zurich8091Switzerland
| | - Ulrich Blache
- Department of ObstetricsUniversity Hospital ZurichUniversity of ZurichSchmelzbergstr. 12Zurich8091Switzerland
| | - Stéphanie Metzger
- Department of ObstetricsUniversity Hospital ZurichUniversity of ZurichSchmelzbergstr. 12Zurich8091Switzerland
- Institute of BioengineeringSchool of Life Sciences and School of EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)Station 15Lausanne1015Switzerland
| | - Anna‐Sofia Kiveliö
- Department of ObstetricsUniversity Hospital ZurichUniversity of ZurichSchmelzbergstr. 12Zurich8091Switzerland
- Institute of BioengineeringSchool of Life Sciences and School of EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)Station 15Lausanne1015Switzerland
| | - Vincent Milleret
- Department of ObstetricsUniversity Hospital ZurichUniversity of ZurichSchmelzbergstr. 12Zurich8091Switzerland
| | - Ana Sala
- Department of ObstetricsUniversity Hospital ZurichUniversity of ZurichSchmelzbergstr. 12Zurich8091Switzerland
| | - Sylke Hoehnel
- Institute of BioengineeringSchool of Life Sciences and School of EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)Station 15Lausanne1015Switzerland
| | - Aline Roch
- Institute of BioengineeringSchool of Life Sciences and School of EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)Station 15Lausanne1015Switzerland
| | - Raphael Reuten
- Institute for Dental Research and Oral Musculoskeletal BiologyCenter for BiochemistryUniversity of CologneCologne50931Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal BiologyCenter for BiochemistryUniversity of CologneCologne50931Germany
| | - Olaia Naveiras
- Institute of BioengineeringSchool of Life Sciences and School of EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)Station 15Lausanne1015Switzerland
| | - Franz E. Weber
- Department of Cranio‐Maxillofacial SurgeryOral Biotechnology and BioengineeringUniversity Hospital ZurichFrauenklinikstrasse 24Zurich8091Switzerland
| | - Wilfried Weber
- Faculty of Biology and BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgSchänzlestr. 18Freiburg79104Germany
| | - Matthias P. Lutolf
- Institute of BioengineeringSchool of Life Sciences and School of EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)Station 15Lausanne1015Switzerland
| | - Martin Ehrbar
- Department of ObstetricsUniversity Hospital ZurichUniversity of ZurichSchmelzbergstr. 12Zurich8091Switzerland
| |
Collapse
|