1
|
Xie Y, Mi X, Xing Y, Dai Z, Pu Q. Past, present, and future of exosomes research in cancer: A bibliometric and visualization analysis. Hum Vaccin Immunother 2025; 21:2488551. [PMID: 40207548 PMCID: PMC11988232 DOI: 10.1080/21645515.2025.2488551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/12/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
Cancer seriously threatens the lives and health of people worldwide, and exosomes seem to play an important role in managing cancer effectively, which has attracted extensive attention from researchers in recent years. This study aimed to scientifically visualize exosomes research in cancer (ERC) through bibliometric analysis, reviewing the past, summarizing the present, and predicting the future, with a view to providing valuable insights for scholars and policy makers. Researches search and data collection from Web of Science Core Collection and clinical trial.gov. Calculations and visualizations were performed using Microsoft Excel, VOSviewer, Bibliometrix R-package, and CiteSpace. As of December 1, 2024, and March 8, 2025, we identified 8,001 ERC-related publications and 107 ERC-related clinical trials, with an increasing trend in annual publications. Our findings supported that China, Nanjing Medical University, and International Journal of Molecular Sciences were the most productive countries, institutions, and journals, respectively. Whiteside, Theresa L. had the most publications, while Théry, C was the most co-cited scholar. In addition, Cancer Research was the most co-cited journal. Spatial and temporal distribution of clinical trials was the same as for publications. High-frequency keywords were "extracellular vesicle," "microRNA" and "biomarker." Additional, "surface functionalization," "plant," "machine learning," "nanomaterials," "promotes metastasis," "engineered exosomes," and "macrophage-derived exosomes" were promising research topics. Our study comprehensively and visually summarized the structure, hotspots, and evolutionary trends of ERC. It would inspire subsequent studies from a macroscopic perspective and provide a basis for rational allocation of resources and identification of collaborations among researchers.
Collapse
Affiliation(s)
- Yafei Xie
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Xingqi Mi
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yikai Xing
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zhangyi Dai
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Pu
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Zhou C, Qiu Q, Liu X, Zhang T, Liang L, Yuan Y, Chen Y, Sun W. Novel exosome-associated LncRNA model predicts colorectal cancer prognosis and drug response. Hereditas 2025; 162:79. [PMID: 40380258 DOI: 10.1186/s41065-025-00445-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 05/03/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND Exosomes are extracellular vesicles that carry various biological substances and have potential as functional mediators in cancers. However, little is known about special molecules in colorectal cancer (CRC) exosomes and their immunological functions. AIMS Using genomic data from the TCGA-CRC cohort, we constructed a prognostic model based on exosome-related lncRNA for the first time, and the biological role of MIR4713HG in CRC was deeply analyzed. METHOD In this study, we downloaded the gene expression data and clinical data of CRC from the TCGA database. The limma package, SVM-REF and univariate Cox analysis were used to screen out core ERG (CERG) in CRC. LASSO and multivariate Cox regression analyses were used to filter out CERG-related LncRNA and construct a risk score. We explored the distribution and expression levels of ERG in immune cell types by scRNA-seq data. xCell was used to calculate the infiltration levels of stromal cells and immune cells in CRC. KM plotter was used for immunotherapy evaluation of core ERG. Next, we further provide colony formation assay, Transwell assay and xenograft models to understand the carcinogenic effect of MIR4713HG. RESULT First, 43 differentially expressed ERG and 7 CERG were obtained. We explored the expression and distribution levels of CERG in 9 types of cells by scRNA-seq data. In addition, two key exosome-associated LncRNA (MIR4713HG and ZEB1-AS1) were obtained, and a risk score (EALncRI) was constructed. EALncRI could accurately predict the prognosis of CRC. Based on the EALncRI, we constructed a nomogram that is easy to use in clinical practice, which can more accurately and stably predict the prognosis of CRC patients. Furthermore, EALncRI was significantly correlated with the expression of 5 HLA molecules and 13 immune checkpoint molecules. MIR4713HG showed a good predictive effect in the overall survival of patients with immunotherapy evaluation. Knocking down the expression of MIR4713HG significantly inhibited proliferation and migration, and also impaired subcutaneous tumor growth in nude mice. CONCLUSION In this study, a variety of machine learning algorithms were used to construct the EALncRI based on ERG, which can effectively predict the prognosis and distinguish the immune landscape of CRC. More importantly, we conducted an in-depth study on MIR4713HG, which may become an important therapeutic target in CRC.
Collapse
Affiliation(s)
- Chi Zhou
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Qian Qiu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xinyu Liu
- Bengbu Medical University, Bengbu, China
| | - Tiantian Zhang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Leilei Liang
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yihang Yuan
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School Nanjing University, Nanjing, China
| | - Yufo Chen
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical University, Bengbu, China.
| | - Weijie Sun
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical University, Bengbu, China.
| |
Collapse
|
3
|
Lin J, Yang L, Liu T, Zhao H, Liu Y, Shu F, Huang H, Liu W, Zhang W, Jiang L, Xiao S, Zheng Y, Xia Z. Mannose-modified exosomes loaded with MiR-23b-3p target alveolar macrophages to alleviate acute lung injury in Sepsis. J Control Release 2025; 379:832-847. [PMID: 39870316 DOI: 10.1016/j.jconrel.2025.01.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
The anti-inflammatory role of miR-23b-3p (miR-23b) is known in autoimmune diseases like multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis. However, its role in sepsis-related acute lung injury (ALI) and its effect on macrophages in ALI remain unexplored. This investigation aimed to evaluate miR-23b's therapeutic potential in macrophages in the context of ALI. The study found reduced miR-23b expression in macrophages within ALI tissue. Intratracheal delivery of miR-23b mimics alleviated ALI by partially inhibiting M1 macrophage activation through the Lpar1-NF-κB pathway. Effective delivery systems are crucial for prolonging miR-23b activity in the lungs, reducing dosage, and minimizing side effects by specifically targeting macrophages. However, current vector systems for nucleic acid delivery, including viral, lipid-based, polymer-based, and peptide-based vectors, face limitations due to eliciting immune responses. Exosomes have garnered significant attention as a leading gene delivery system due to the safety, effectivity and low immunogenicity. We further isolated exosomes from bone marrow-derived mesenchymal stem cells, modified exosomes with mannosylated ligands to enhance the targeted delivery of miR-23b to macrophage. This approach represents a promising novel therapeutic strategy for treating sepsis-induced ALI.
Collapse
Affiliation(s)
- Jiezhi Lin
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Department of Burn Surgery, the 963rd Hospital of Joint Logistics Support Force of PLA, Jiamusi, Heilongjiang 154007, China
| | - Lu Yang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Tianyi Liu
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Hui Zhao
- Department of Burn Surgery, the 963rd Hospital of Joint Logistics Support Force of PLA, Jiamusi, Heilongjiang 154007, China
| | - Yingying Liu
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Futing Shu
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Hongchao Huang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Wenzhang Liu
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Wei Zhang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Luofeng Jiang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Shichu Xiao
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China.
| | - Yongjun Zheng
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China.
| | - Zhaofan Xia
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
4
|
Li L, Wang F, Zhu D, Hu S, Cheng K, Li Z. Engineering exosomes and exosome-like nanovesicles for improving tissue targeting and retention. FUNDAMENTAL RESEARCH 2025; 5:851-867. [PMID: 40242543 PMCID: PMC11997600 DOI: 10.1016/j.fmre.2024.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/18/2025] Open
Abstract
Exosomes are natural nano-size particles secreted by human cells, containing numerous bioactive cargos. Serving as crucial mediators of intercellular communication, exosomes are involved in many physiological and pathological processes, such as inflammation, tissue injury, cardiovascular diseases, tumorigenesis and tumor development. Exosomes have exhibited promising results in the diagnosis and treatment of cancer, cardiovascular diseases and others. They are a rapidly growing class of drug delivery vehicles with many advantages over conventional synthetic carriers. Exosomes used in therapeutic applications encounter several challenges, such as the lack of tissue targeting capabilities and short residence time. In this review, we discuss recent advances in exosome engineering to improve tissue targeting and describe the current types of engineered exosome-like nanovesicles, and summarize their preclinical applications in the treatment of diseases. Further, we also highlight the latest engineering strategies developed to extend exosomes retention time in vivo and exosome-like nanovesicles.
Collapse
Affiliation(s)
- Lanya Li
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangdong 510515, China
| | - Fei Wang
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangdong 510515, China
| | - Dashuai Zhu
- Department of Biomedical Engineering, Columbia University, New York 10032, USA
| | - Shiqi Hu
- Department of Biomedical Engineering, Columbia University, New York 10032, USA
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York 10032, USA
| | - Zhenhua Li
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangdong 510515, China
| |
Collapse
|
5
|
Zhand S, Goss DM, Cheng YY, Warkiani ME. Recent Advances in Microfluidics for Nucleic Acid Analysis of Small Extracellular Vesicles in Cancer. Adv Healthc Mater 2025; 14:e2401295. [PMID: 39707658 DOI: 10.1002/adhm.202401295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/28/2024] [Indexed: 12/23/2024]
Abstract
Small extracellular vesicles (sEVs) are membranous vesicles released from cellular structures through plasma membrane budding. These vesicles contain cellular components such as proteins, lipids, mRNAs, microRNAs, long-noncoding RNA, circular RNA, and double-stranded DNA, originating from the cells they are shed from. Ranging in size from ≈25 to 300 nm and play critical roles in facilitating cell-to-cell communication by transporting signaling molecules. The discovery of sEVs in bodily fluids and their involvement in intercellular communication has revolutionized the fields of diagnosis, prognosis, and treatment, particularly in diseases like cancer. Conventional methods for isolating and analyzing sEVs, particularly their nucleic acid content face challenges including high costs, low purity, time-consuming processes, limited standardization, and inconsistent yield. The development of microfluidic devices, enables improved precision in sorting, isolating, and molecular-level separation using small sample volumes, and offers significant potential for the enhanced detection and monitoring of sEVs associated with cancer. These advanced techniques hold great promise for creating next-generation diagnostic and prognostic tools given their possibility of being cost-effective, simple to operate, etc. This comprehensive review explores the current state of research on microfluidic devices for the detection of sEV-derived nucleic acids as biomarkers and their translation into practical point-of-care and clinical applications.
Collapse
Affiliation(s)
- Sareh Zhand
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dale Mark Goss
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute of Molecular Theranostics, Sechenov First Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
6
|
Liu Z, Pang B, Wang Y, Zheng J, Li Y, Jiang J. Advances of New Extracellular Vesicle Isolation and Detection Technologies in Cancer Diagnosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405872. [PMID: 39676429 DOI: 10.1002/smll.202405872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/25/2024] [Indexed: 12/17/2024]
Abstract
Cancer is a global health issue threatening people's lives. Currently, cancer detection methods still have a lot of room for improvement in both efficiency and accuracy. The development and application of new technologies are urgently required for early cancer diagnosis and prognosis. Extracellular vesicles (EVs) are a type of phospholipid bilayer vesicle secreted by cells and play an important role in cancer development and metastasis. These small vesicles participate in cancer information transmission, antigen presentation, angiogenesis, immune response, tumor invasion, and mediate signaling pathways in the tumor microenvironment. Liquid biopsy of EV cargo contents is a fast-developing research area, holding promise for early cancer diagnosis and monitoring cancer progression in real-time. However, current EV detection technologies for clinical translation are still facing many challenges. Recent advancements in developing techniques for EV isolation and detection have made significant progress and are paving the way toward clinical application. Here, the advantages and limitations of traditional EV detection and isolation technologies in cancer diagnosis and prognosis are reviewed. The review also focuses on emerging EV detection and isolation technologies in cancer, discusses the challenges faced by current methods, and explores the perspective of new EV detection techniques for future cancer diagnosis.
Collapse
Affiliation(s)
- Zhihan Liu
- The First Affiliated Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Bairen Pang
- The First Affiliated Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Zhejiang Engineering Research Center of Innovative Technologies and Diagnostic and Therapeutic Equipment for Urinary System Diseases, Ningbo, Zhejiang, 315010, China
| | - Yuhui Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese, Chinese Academy of Sciences, Ningbo, 315000, China
| | - Jianping Zheng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese, Chinese Academy of Sciences, Ningbo, 315000, China
| | - Yong Li
- Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Junhui Jiang
- The First Affiliated Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Zhejiang Engineering Research Center of Innovative Technologies and Diagnostic and Therapeutic Equipment for Urinary System Diseases, Ningbo, Zhejiang, 315010, China
| |
Collapse
|
7
|
Klyachko NL, Haney MJ, Lopukhov AV, Le-Deygen IM. Cationized extracellular vesicles for gene delivery. Sci Rep 2024; 14:25818. [PMID: 39468145 PMCID: PMC11519934 DOI: 10.1038/s41598-024-75985-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Last decade, extracellular vesicles (EVs) attracted a lot of attention as potent versatile drug delivery vehicles. We reported earlier the development of EV-based delivery systems for therapeutic proteins and small molecule chemotherapeutics. In this work, we first time engineered EVs with multivalent cationic lipids for the delivery of nucleic acids. Stable, small size cationized EVs were loaded with plasmid DNA (pDNA), or mRNA, or siRNA. Nucleic acid loaded EVs were efficiently taken up by target cells as demonstrated by confocal microscopy and delivered their cargo to the nuclei in triple negative breast cancer (TNBC) cells and macrophages. Efficient transfection was achieved by engineered cationized EVs formulations of pDNA- and mRNA in vitro. Furthermore, siRNA loaded into cationized EVs showed significant knockdown of the reporter gene in Luc-expressing cells. Overall, multivalent cationized EVs represent a promising strategy for gene delivery.
Collapse
Affiliation(s)
- Natalia L Klyachko
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7362, USA.
- Deparment of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia.
| | - Matthew J Haney
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7362, USA
- Center for Nanotechnology in Drug Delivery, Carolina Institute for Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anton V Lopukhov
- Deparment of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Irina M Le-Deygen
- Deparment of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
8
|
Miyamoto N, Sakuragi M, Kitade Y. Advanced Nanotechnology-Based Nucleic Acid Medicines. Pharmaceutics 2024; 16:1367. [PMID: 39598491 PMCID: PMC11597528 DOI: 10.3390/pharmaceutics16111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Nucleic acid medicines are a highly attractive modality that act in a sequence-specific manner on target molecules. To date, 21 such products have been approved by the Food and Drug Administration. However, the development of nucleic acid medicines continues to face various challenges, including tissue and cell targeting as well as intracellular delivery. Numerous research groups are addressing these issues by advancing the development of nucleic acid medicines through nanotechnology. In countries other than Japan (including Europe and the USA), >40 nanotechnology-based nucleic acid medicines have been tested in clinical trials, and 15 clinical trials are ongoing. In Japan, three phase I trials are ongoing, and future results are awaited. The review summarizes the latest research in the nanotechnology of nucleic acid medicines and statuses of clinical trials in Japan, with expectations of further evolutions.
Collapse
Affiliation(s)
- Noriko Miyamoto
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
- Department of Materials Chemistry, Graduate School of Engineering, Aichi Institute of Technology, 1247 Yachigusa, Yakusacho, Toyota 470-0392, Japan
| | - Mina Sakuragi
- Department of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1, Ikeda, Nishi, Kumamoto 860-0082, Japan
| | - Yukio Kitade
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
- Department of Materials Chemistry, Graduate School of Engineering, Aichi Institute of Technology, 1247 Yachigusa, Yakusacho, Toyota 470-0392, Japan
- e-NA Biotec Inc., 3-1-2 Inabadori, Gifu 500-8043, Japan
| |
Collapse
|
9
|
Selvadoss A, Baby HM, Zhang H, Bajpayee AG. Harnessing exosomes for advanced osteoarthritis therapy. NANOSCALE 2024; 16:19174-19191. [PMID: 39323205 PMCID: PMC11799831 DOI: 10.1039/d4nr02792b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
Exosomes are nanosized, lipid membrane vesicles secreted by cells, facilitating intercellular communication by transferring cargo from parent to recipient cells. This capability enables biological crosstalk across multiple tissues and cells. Extensive research has been conducted on their role in the pathogenesis of degenerative musculoskeletal diseases such as osteoarthritis (OA), a chronic and painful joint disease that particularly affects cartilage. Currently, no effective treatment exists for OA. Given that exosomes naturally modulate synovial joint inflammation and facilitate cartilage matrix synthesis, they are promising candidates as next generation nanocarriers for OA therapy. Recent advancements have focused on engineering exosomes through endogenous and exogenous approaches to enhance their joint retention, cartilage and chondrocyte targeting properties, and therapeutic content enrichment, further increasing their potential for OA drug delivery. Notably, charge-reversed exosomes that utilize electrostatic binding interactions with cartilage anionic aggrecan glycosaminoglycans have demonstrated the ability to penetrate the full thickness of early-stage arthritic cartilage tissue following intra-articular administration, maximizing their therapeutic potential. These exosomes offer a non-viral, naturally derived, cell-free carrier for OA drug and gene delivery applications. Efforts to standardize exosome harvest, engineering, and property characterization methods, along with scaling up production, will facilitate more efficient and rapid clinical translation. This article reviews the current state-of-the-art, explores opportunities for exosomes as OA therapeutics, and identifies potential challenges in their clinical translation.
Collapse
Affiliation(s)
- Andrew Selvadoss
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| | - Helna M Baby
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Hengli Zhang
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Ambika G Bajpayee
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
10
|
Qian Y, Li C, Gao J, Wang S, Wu X, Wei L, Zha M, Shi Y, Kang T, Li K. Autologous exosomes loaded with a rationally designed photosensitizer for enhanced photodynamic therapy. Chem Commun (Camb) 2024; 60:10180-10183. [PMID: 39190479 DOI: 10.1039/d4cc02168a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
We present generalizing statistical surrogate models to select an optimized photosensitizer, TPP, which is subsequently loaded into autologous exosomes by ultrasonic mixing to achieve tumor targeting with enhanced therapeutic efficacy by photodynamic therapy (PDT). This work contributes to the exploration of PDT enhancement strategies, and provides new prospects for using autologous exosomes as a delivery system.
Collapse
Affiliation(s)
- Yuhan Qian
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Chong Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Ji Gao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Shuxian Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xue Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Luyao Wei
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Menglei Zha
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yuxin Shi
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Tianyi Kang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Kai Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
11
|
Wang B, Mao J, Wang L, Zhao Y, Wang B, Yang H. Exosome-mediated transfer of lncRNA RP3-340B19.3 promotes the progression of breast cancer by sponging miR-4510/MORC4 axis. Cancer Cell Int 2024; 24:312. [PMID: 39256868 PMCID: PMC11389435 DOI: 10.1186/s12935-024-03490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/24/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND This study aims to explore the molecular mechanism of lncRNA RP3-340B19.3 on breast cancer cell proliferation and metastasis and clinical significance of lncRNA RP3-340B19.3 for breast cancer. METHODS The subcellular localization of lncRNA RP3-340B19.3 was identified using RNA fluorescence in situ hybridization (FISH). The expression of lncRNA RP3-340B19.3 in breast cancer cells, breast cancer tissues, as well as the serum and serum exosomes of breast cancer patients, was measured through quantitative RT-PCR. In the in vitro setting, we conducted experiments to observe the effects of RP3-340B19.3 on both cell migration and proliferation. This was achieved through the utilization of transwell migration assays as well as clone formation assays. Meanwhile, transwell migration assays and clone formation assays were used to observe the effects of MDA-MB-231-exosomes enriched in RP3-340B19.3 on breast cancer microenvironment cells MCF7 and BMMSCs. Additionally, western blotting techniques were used to assess the expression levels of proteins associated with essential cellular processes such as proliferation, apoptosis, and metastasis. In vivo, the impact of RP3-340B19.3 knockdown on tumour weight and volume was observed within a nude mice model. We aimed to delve into the intricate molecular mechanisms involving RP3-340B19.3 by using bioinformatics analysis, dual luciferase reporter gene experiments and western blotting. Moreover, the potential correlations between RP3-340B19.3 expression and various clinical pathological characteristics were analyzed. RESULTS Our investigation revealed that RP3-340B19.3 was expressed in both the cytoplasm and nucleus, with a noteworthy increase in breast cancer cells. Notably, we found that RP3-340B19.3 exerted a promoting influence on the proliferation and migration of breast cancer cells, both in vitro and in vivo. MDA-MB-231-exosomes enriched in RP3-340B19.3 promoted the proliferation and migration of MCF7 and BMMSCs in vitro. Mechanistically, RP3-340B19.3 demonstrated the capability to modulate the expression of MORC4 by forming a complex with miR-4510. This interaction subsequently triggered the activation of the NF-κB and Wnt-β-catenin signaling pathways. Furthermore, our study highlighted the potential diagnostic utility of RP3-340B19.3. We discovered its presence in the serum and exosomes of breast cancer patients, showing promising efficacy as a diagnostic marker. Notably, the diagnostic potential of RP3-340B19.3 was particularly significant in relation to distinguishing between different pathological types of breast cancer and correlating with tumour diameter. CONCLUSION Our findings establish that RP3-340B19.3 plays a pivotal role in driving the proliferation and metastasis of breast cancer. Additionally, exosomes enriched in RP3-340B19.3 could influence MCF7 and BMMSCs in tumour microenvironment, promoting the progression of breast cancer. This discovery positions RP3-340B19.3 as a prospective novel candidate for a tumour marker, offering substantial potential in the realms of breast cancer diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Bo Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiahui Mao
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Linxia Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuexin Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Bingying Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Huan Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
12
|
Soltanmohammadi F, Gharehbaba AM, Zangi AR, Adibkia K, Javadzadeh Y. Current knowledge of hybrid nanoplatforms composed of exosomes and organic/inorganic nanoparticles for disease treatment and cell/tissue imaging. Biomed Pharmacother 2024; 178:117248. [PMID: 39098179 DOI: 10.1016/j.biopha.2024.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
Exosome-nanoparticle hybrid nanoplatforms, can be prepared by combining exosomes with different types of nanoparticles. The main purpose of combining exosomes with nanoparticles is to overcome the limitations of using each of them as drug delivery systems. Using nanoparticles for drug delivery has some limitations, such as high immunogenicity, poor cellular uptake, low biocompatibility, cytotoxicity, low stability, and rapid clearance by immune cells. However, using exosomes as drug delivery systems also has its own drawbacks, such as poor encapsulation efficiency, low production yield, and the inability to load large molecules. These limitations can be addressed by utilizing hybrid nanoplatforms. Additionally, the use of exosomes allows for targeted delivery within the hybrid system. Exosome-inorganic/organic hybrid nanoparticles may be used for both therapy and diagnosis in the future. This may lead to the development of personalized medicine using hybrid nanoparticles. However, there are a few challenges associated with this. Surface modifications, adding functional groups, surface charge adjustments, and preparing nanoparticles with the desired size are crucial to the possibility of preparing exosome-nanoparticle hybrids. Additional challenges for the successful implementation of hybrid platforms in medical treatments and diagnostics include scaling up the manufacturing process and ensuring consistent quality and reproducibility across various batches. This review focuses on various types of exosome-nanoparticle hybrid systems and also discusses the preparation and loading methods for these hybrid nanoplatforms. Furthermore, the potential applications of these hybrid nanocarriers in drug/gene delivery, disease treatment and diagnosis, and cell/tissue imaging are explained.
Collapse
Affiliation(s)
- Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mahmoudi Gharehbaba
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rajabi Zangi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Xie M, Wu Y, Zhang Y, Lu R, Zhai Z, Huang Y, Wang F, Xin C, Rong G, Zhao C, Jiang K, Zhou X, Zhou X, Zhu X, Hong J, Zhang C. Membrane Fusion-Mediated Loading of Therapeutic siRNA into Exosome for Tissue-Specific Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403935. [PMID: 38889294 DOI: 10.1002/adma.202403935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Tissue-specific delivery of oligonucleotide therapeutics beyond the liver remains a key challenge in nucleic acid drug development. To address this issue, exploiting exosomes as a novel carrier has emerged as a promising approach for efficient nucleic acid drug delivery. However, current exosome-based delivery systems still face multiple hurdles in their clinical applications. Herein, this work presents a strategy for constructing a hybrid exosome vehicle (HEV) through a DNA zipper-mediated membrane fusion approach for tissue-specific siRNA delivery. As a proof-of-concept, this work successfully fuses a liposome encapsulating anti-NFKBIZ siRNAs with corneal epithelium cell (CEC)-derived exosomes to form a HEV construct for the treatment of dry eye disease (DED). With homing characteristics inherited from exosomes, the siRNA-bearing HEV can target its parent cells and efficiently deliver the siRNA payloads to the cornea. Subsequently, the NFKBIZ gene silencing significantly reduces pro-inflammatory cytokine secretions from the ocular surface, reshapes its inflammatory microenvironment, and ultimately achieves an excellent therapeutic outcome in a DED mouse model. As a versatile platform, this hybrid exosome with targeting capability and designed therapeutic siRNAs may hold great potential in various disease treatments.
Collapse
Affiliation(s)
- Miao Xie
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuqing Wu
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, P. R. China
| | - Yilun Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ruiyang Lu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zimeng Zhai
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, P. R. China
| | - Yangyang Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Fujun Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Changchang Xin
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, P. R. China
| | - Guangyu Rong
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, P. R. China
| | - Chen Zhao
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, P. R. China
| | - Kai Jiang
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, P. R. China
| | - Xujiao Zhou
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, P. R. China
| | - Xingtao Zhou
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiaxu Hong
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, P. R. China
- Department of Ophthalmology, Children's Hospital of Fudan University, Shanghai, 201102, P. R. China
- Key Laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, 200031, P. R. China
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, 200032, P. R. China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
14
|
Kotsiou OS, Katsanaki K, Tsiggene A, Papathanasiou S, Rouka E, Antonopoulos D, Gerogianni I, Balatsos NAA, Gourgoulianis KI, Tsilioni I. Detection and Characterization of Extracellular Vesicles in Sputum Samples of COPD Patients. J Pers Med 2024; 14:820. [PMID: 39202011 PMCID: PMC11355697 DOI: 10.3390/jpm14080820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Only one study has reported the presence of extracellular vesicles (EVs) in COPD patients' sputum. Thus, we aimed to isolate and characterize EVs from COPD and healthy individuals' sputum. METHODS A total of 20 spontaneous sputum samples from COPD patients (m/f: 19/1) and induced sputum samples from healthy controls (m/f: 8/2) were used for EV isolation. The sputum supernatants were resuspended in PBS, precleared by centrifugation at 800× g for 10 min at 4 °C, and passed through a 0.22 μm filter (Millipore, Burlington, MA, USA). EVs were isolated by a standard membrane affinity spin column method (exoEasy maxi kit, Qiagen, Hilden, Germany). The EVs were then characterized by assessing their morphology and size using Transmission Electron Microscopy (TEM) and determining the CD9 and CD81 EV-markers with Western blot analysis. RESULTS The EVs had a spherical shape and their mean diameter in the COPD patients was significantly greater than in the controls. Enrichment of the EV markers, CD9 and CD81, were detected in both the healthy and COPD individuals. Total EV-associated protein was significantly increased in the COPD patients compared to the controls. ROC analysis showed that total EV-associated protein in the sputum could be used to differentiate between the controls and COPD patients, with a sensitivity of 80% and a specificity of 70% at a cut-off point of 55.59 μg/mL (AUC = 0.8150). CONCLUSIONS EVs were detectable in both the COPD and healthy individuals' sputum. The ratio of EVs in the 150-200 nm range was twice as high in the COPD patients than in the controls. The COPD patients' sputum contained increased total EV-associated protein as compared to controls, highlighting their value as a new source of specific exoproteins.
Collapse
Affiliation(s)
- Ourania S. Kotsiou
- Laboratory of Human Pathophysiology, Faculty of Nursing, University of Thessaly, 415 00 Larissa, Greece
| | - Katerina Katsanaki
- Department of Biochemistry, University of Thessaly, 415 00 Larissa, Greece; (K.K.); (A.T.); (D.A.); (N.A.A.B.)
| | - Aikaterini Tsiggene
- Department of Biochemistry, University of Thessaly, 415 00 Larissa, Greece; (K.K.); (A.T.); (D.A.); (N.A.A.B.)
| | - Sophia Papathanasiou
- Department of Respiratory Medicine, University of Thessaly, 415 00 Larissa, Greece; (S.P.); (I.G.); (K.I.G.)
| | - Erasmia Rouka
- Faculty of Nursing, University of Thessaly, 415 00 Larissa, Greece;
| | - Dionysios Antonopoulos
- Department of Biochemistry, University of Thessaly, 415 00 Larissa, Greece; (K.K.); (A.T.); (D.A.); (N.A.A.B.)
| | - Irene Gerogianni
- Department of Respiratory Medicine, University of Thessaly, 415 00 Larissa, Greece; (S.P.); (I.G.); (K.I.G.)
| | - Nikolaos A. A. Balatsos
- Department of Biochemistry, University of Thessaly, 415 00 Larissa, Greece; (K.K.); (A.T.); (D.A.); (N.A.A.B.)
| | | | - Irene Tsilioni
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
15
|
Kim J, Xu S, Jung S, Nguyen A, Cheng Y, Zhao M, Fujimoto BS, Nelson W, Schiro P, Franklin JL, Higginbotham JN, Coffey RJ, Shi M, Vojtech LN, Hladik F, Tewari M, Tigges J, Ghiran I, Jovanovic‐Talisman T, Laurent LC, Das S, Gololobova O, Witwer KW, Xu T, Charest A, Jensen KVK, Raffai RL, Jones JC, Welsh JA, Nolan JP, Chiu DT. Comparison of EV characterization by commercial high-sensitivity flow cytometers and a custom single-molecule flow cytometer. J Extracell Vesicles 2024; 13:e12498. [PMID: 39140467 PMCID: PMC11322860 DOI: 10.1002/jev2.12498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
High-sensitivity flow cytometers have been developed for multi-parameter characterization of single extracellular vesicles (EVs), but performance varies among instruments and calibration methods. Here we compare the characterization of identical (split) EV samples derived from human colorectal cancer (DiFi) cells by three high-sensitivity flow cytometers, two commercial instruments, CytoFLEX/CellStream, and a custom single-molecule flow cytometer (SMFC). DiFi EVs were stained with the membrane dye di-8-ANEPPS and with PE-conjugated anti-EGFR or anti-tetraspanin (CD9/CD63/CD81) antibodies for estimation of EV size and surface protein copy numbers. The limits of detection (LODs) for immunofluorescence and vesicle size based on calibration using cross-calibrated, hard-dyed beads were ∼10 PE/∼80 nm EV diameter for CytoFLEX and ∼10 PEs/∼67 nm for CellStream. For the SMFC, the LOD for immunofluorescence was 1 PE and ≤ 35 nm for size. The population of EVs detected by each system (di-8-ANEPPS+/PE+ particles) differed widely depending on the LOD of the system; for example, CellStream/CytoFLEX detected only 5.7% and 1.5% of the tetraspanin-labelled EVs detected by SMFC, respectively, and median EV diameter and antibody copy numbers were much larger for CellStream/CytoFLEX than for SMFC as measured and validated using super-resolution/single-molecule TIRF microscopy. To obtain a dataset representing a common EV population analysed by all three platforms, we filtered out SMFC and CellStream measurements for EVs below the CytoFLEX LODs as determined by bead calibration (10 PE/80 nm). The inter-platform agreement using this filtered dataset was significantly better than for the unfiltered dataset, but even better concordance between results was obtained by applying higher cutoffs (21 PE/120 nm) determined by threshold analysis using the SMFC data. The results demonstrate the impact of specifying LODs to define the EV population analysed on inter-instrument reproducibility in EV flow cytometry studies, and the utility of threshold analysis of SMFC data for providing semi-quantitative LOD values for other flow cytometers.
Collapse
Affiliation(s)
- James Kim
- Department of ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Shihan Xu
- Department of ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | | | - Alya Nguyen
- Department of ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Yuanhua Cheng
- Department of ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Mengxia Zhao
- Department of ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | | | - Wyatt Nelson
- Department of ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | | | - Jeffrey L. Franklin
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | | | - Robert J. Coffey
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Cell BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Min Shi
- Department of PathologyUniversity of WashingtonSeattleWashingtonUSA
| | - Lucia N. Vojtech
- Department of Obstetrics and GynecologyUniversity of WashingtonSeattleWashingtonUSA
| | - Florian Hladik
- Department of Obstetrics and GynecologyUniversity of WashingtonSeattleWashingtonUSA
- Division of Allergy and Infectious Diseases, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Muneesh Tewari
- Division of Hematology/OncologyDepartment of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
- Rogel Comprehensive Cancer CenterUniversity of MichiganAnn ArborMichiganUSA
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Center for Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMichiganUSA
- VA Ann Arbor Healthcare SystemAnn ArborMichiganUSA
| | - John Tigges
- Department of MedicineBeth Israel Deaconess Medical CenterBoston and CambridgeMassachusettsUSA
| | - Ionita Ghiran
- Department of MedicineBeth Israel Deaconess Medical CenterBoston and CambridgeMassachusettsUSA
| | - Tijana Jovanovic‐Talisman
- Department of Molecular MedicineBeckman Research Institute of the City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Louise C. Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Sanford Consortium for Regenerative MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General HospitalHarvard Medical schoolBostonMassachusettsUSA
| | - Olesia Gololobova
- Department of Molecular and Comparative PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Tuoye Xu
- Cancer Research InstituteBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Al Charest
- Cancer Research InstituteBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Robert L. Raffai
- Department of Veterans AffairsSurgical Service (112G), San Francisco VA Medical CenterSan FranciscoCaliforniaUSA
| | - Jennifer C. Jones
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | | | - Daniel T. Chiu
- Department of ChemistryUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
16
|
da Silva Lira Filho A, Lafleur A, Alvarez F, Piccirillo CA, Olivier M. Implication of the Annexin 1/FPR axis in leishmanial exosome-mediated Leishmania major skin hyperpathogenesis. Front Immunol 2024; 15:1436151. [PMID: 39076982 PMCID: PMC11284082 DOI: 10.3389/fimmu.2024.1436151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Exosomes produced by the protozoan parasite Leishmania (LeishEXO) are well-established drivers of virulence, though mechanisms underlying their exacerbation of experimental leishmaniasis remain elusive. Expression of Annexin A1 (ANXA1), a protein implicated in exosome-mediated pathologies and viral internalization, has been shown to correlate with cutaneous leishmaniasis severity. Given ANXA1's regulation of myeloid cells - the canonical hosts for Leishmania - we studied the potential role of ANXA1 and its receptors FPR1/2 in exerting LeishEXO's effects. Methods Murine and in vitro ANXA1-/- models were used to study the generation of protective TH1 responses during experimental L. major infection with and without LeishEXO. Recruitment of inflammatory cells was assessed using a peritoneal cell recruitment assay and immunophenotyping, and production of inflammatory mediators was measured using a cytokine and chemokine array. Treatment of experimental models with FPR2 antagonist WRW4 and FPR1/2 agonist WKYMVm was used to delineate the role of the FPR/ANXA1 axis in LeishEXO-mediated hyperpathogenesis. Results We established that ANXA1 deficiency prohibits LeishEXO-mediated pathogenesis and myeloid cell infection, with minimal alterations to adaptive and innate immune phenotypes. FPR2 blockade with WRW4 similarly inhibited leishmanial hyperpathogenesis, while direct activation of FPRs with WKYMVm enhanced infection and recapitulated the LeishEXO-mediated phenotype. This research describes LeishEXO's utilization of the ANXA1/FPR axis to facilitate parasitic internalization and pathogenesis, which may be leveraged in the development of therapeutics for leishmaniasis.
Collapse
Affiliation(s)
- Alonso da Silva Lira Filho
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Andrea Lafleur
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
17
|
Meng WT, Zhu J, Wang YC, Shao CL, Li XY, Lu PP, Huang MY, Mou FF, Guo HD, Ji G. Targeting delivery of miR-146a via IMTP modified milk exosomes exerted cardioprotective effects by inhibiting NF-κB signaling pathway after myocardial ischemia-reperfusion injury. J Nanobiotechnology 2024; 22:382. [PMID: 38951872 PMCID: PMC11218161 DOI: 10.1186/s12951-024-02631-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024] Open
Abstract
Reperfusion therapy is critical for saving heart muscle after myocardial infarction, but the process of restoring blood flow can itself exacerbate injury to the myocardium. This phenomenon is known as myocardial ischemia-reperfusion injury (MIRI), which includes oxidative stress, inflammation, and further cell death. microRNA-146a (miR-146a) is known to play a significant role in regulating the immune response and inflammation, and has been studied for its potential impact on the improvement of heart function after myocardial injury. However, the delivery of miR-146a to the heart in a specific and efficient manner remains a challenge as extracellular RNAs are unstable and rapidly degraded. Milk exosomes (MEs) have been proposed as ideal delivery platform for miRNA-based therapy as they can protect miRNAs from RNase degradation. In this study, the effects of miR-146a containing MEs (MEs-miR-146a) on improvement of cardiac function were examined in a rat model of MIRI. To enhance the targeting delivery of MEs-miR-146a to the site of myocardial injury, the ischemic myocardium-targeted peptide IMTP was modified onto the surfaces, and whether the modified MEs-miR-146a could exert a better therapeutic role was examined by echocardiography, myocardial injury indicators and the levels of inflammatory factors. Furthermore, the expressions of miR-146a mediated NF-κB signaling pathway-related proteins were detected by western blotting and qRT-PCR to further elucidate its mechanisms. MiR-146 mimics were successfully loaded into the MEs by electroporation at a square wave 1000 V voltage and 0.1 ms pulse duration. MEs-miR-146a can be up-taken by cardiomyocytes and protected the cells from oxygen glucose deprivation/reperfusion induced damage in vitro. Oral administration of MEs-miR-146a decreased myocardial tissue apoptosis and the expression of inflammatory factors and improved cardiac function after MIRI. The miR-146a level in myocardium tissues was significantly increased after the administration IMTP modified MEs-miR-146a, which was higher than that of the MEs-miR-146a group. In addition, intravenous injection of IMTP modified MEs-miR-146a enhanced the targeting to heart, improved cardiac function, reduced myocardial tissue apoptosis and suppressed inflammation after MIRI, which was more effective than the MEs-miR-146a treatment. Moreover, IMTP modified MEs-miR-146a reduced the protein levels of IRAK1, TRAF6 and p-p65. Therefore, IMTP modified MEs-miR-146a exerted their anti-inflammatory effect by inhibiting the IRAK1/TRAF6/NF-κB signaling pathway. Taken together, our findings suggested miR-146a containing MEs may be a promising strategy for the treatment of MIRI with better outcome after modification with ischemic myocardium-targeted peptide, which was expected to be applied in clinical practice in future.
Collapse
Affiliation(s)
- Wan-Ting Meng
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Zhu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ya-Chao Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chang-le Shao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiu-Ya Li
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ping-Ping Lu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Meng-Ying Huang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fang-Fang Mou
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hai-Dong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
18
|
Tan M, Liu Y, Xu Y, Yan G, Zhou N, Chen H, Jiang Z, Peng L. Plant-Derived Exosomes as Novel Nanotherapeutics Contrive Glycolysis Reprogramming-Mediated Angiogenesis for Diabetic Ulcer Healing. Biomater Res 2024; 28:0035. [PMID: 38840655 PMCID: PMC11151174 DOI: 10.34133/bmr.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
Reversal of endothelial cell (EC) dysfunction under high-glucose (HG) conditions to achieve angiogenesis has remained a big challenge in diabetic ulcers. Herein, exosomes derived from medicinal plant ginseng (GExos) were shown as excellent nanotherapeutics with biomimetic cell membrane-like structures to be able to efficiently transfer the encapsulated active substances to ECs, resulting in a marked reprogramming of glycolysis by up-regulating anaerobic glycolysis and down-regulating oxidative stress, which further restore the proliferation, migration, and tubule formation abilities of ECs under HG conditions. In vivo, GExos enhance the angiogenesis and nascent vessel network reconstruction in full-thickness diabetic complicated skin ulcer wounds in mice with high biosafety. GExos were shown as promising nanotherapeutics in stimulating glycolysis reprogramming-mediated angiogenesis in diabetic ulcers, possessing wide application potential for reversing hyperglycemic dysangiogenesis and stimulating vascular regeneration.
Collapse
Affiliation(s)
- Minhong Tan
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, PR China
- School of Materials Science and Engineering,
Zhejiang University, Hangzhou 310058, PR China
| | - Yuda Liu
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, PR China
| | - Yang Xu
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, PR China
| | - Ge Yan
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, PR China
| | - Nan Zhou
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, PR China
| | - Haoran Chen
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, PR China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine,
Macau University of Science and Technology, Macau, PR China
| | - Lihua Peng
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, PR China
- State Key Laboratory of Quality Research in Chinese Medicine,
Macau University of Science and Technology, Macau, PR China
| |
Collapse
|
19
|
Chapagain P, Ali A, Kidane DT, Farone M, Salem M. Characterisation of sRNAs enriched in outer membrane vesicles of pathogenic Flavobacterium psychrophilum causing Bacterial Cold Water Disease in rainbow trout. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e161. [PMID: 38947174 PMCID: PMC11212332 DOI: 10.1002/jex2.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/15/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024]
Abstract
Flavobacterium psychrophilum (Fp) causes Bacterial Cold Water Disease in salmonids. During host-pathogen interactions, gram-negative bacteria, such as Fp, release external membrane vesicles (OMVs) harbouring cargos, such as DNA, RNA and virulence factors. This study aimed to characterise the potential role of the OMVs' small RNAs (sRNAs) in the Fp-rainbow trout host-pathogen interactions. sRNAs carried within OMVs were isolated from Fp. RNA-Seq datasets from whole-cell Fp and their isolated OMVs indicated substantial enrichment of specific sRNAs in the OMVs compared to the parent cell. Many of the OMV-packaged sRNAs were located in the pathogenicity islands of Fp. Conservation of sRNAs in 65 strains with variable degrees of virulence was reported. Dual RNA-Seq of host and pathogen transcriptomes on day 5 post-infection of Fp -resistant and -susceptible rainbow trout genetic lines revealed correlated expression of OMV-packaged sRNAs and their predicted host's immune gene targets. In vitro, treatment of the rainbow trout epithelial cell line RTgill-W1 with OMVs showed signs of cytotoxicity accompanied by dynamic changes in the expression of host genes when profiled 24 h following treatment. The OMV-treated cells, similar to the Fp -resistant fish, showed downregulated expression of the suppressor of cytokine signalling 1 (SOCS1) gene, suggesting induction of phagosomal maturation. Other signs of modulating the host gene expression following OMV-treatment include favouring elements from the phagocytic, endocytic and antigen presentation pathways in addition to HSP70, HSP90 and cochaperone proteins, which provide evidence for a potential role of OMVs in boosting the host immune response. In conclusion, the study identified novel microbial targets and inherent characteristics of OMVs that could open up new avenues of treatment and prevention of fish infections.
Collapse
Affiliation(s)
- Pratima Chapagain
- Department of Medicine, Division of Diabetes, Endocrinology and MetabolismVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Ali Ali
- Department of Animal and Avian SciencesUniversity of MarylandCollege ParkMarylandUSA
| | - Destaalem T. Kidane
- Department of Biology and Molecular Bioscience ProgramMiddle Tennessee State UniversityMurfreesboroTennesseeUSA
| | - Mary Farone
- Department of Biology and Molecular Bioscience ProgramMiddle Tennessee State UniversityMurfreesboroTennesseeUSA
| | - Mohamed Salem
- Department of Animal and Avian SciencesUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
20
|
Mohammadi A, Shabani R, Bashiri Z, Rafiei S, Asgari H, Koruji M. Therapeutic potential of exosomes in spermatogenesis regulation and male infertility. Biol Cell 2024; 116:e2300127. [PMID: 38593304 DOI: 10.1111/boc.202300127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Spermatogenesis is a fundamental process crucial for male reproductive health and fertility. Exosomes, small membranous vesicles released by various cell types, have recently garnered attention for their role in intercellular communication. OBJECTIVE This review aims to comprehensively explore the role of exosomes in regulating spermatogenesis, focusing on their involvement in testicular development and cell-to-cell communication. METHODS A systematic examination of literature was conducted to gather relevant studies elucidating the biogenesis, composition, and functions of exosomes in the context of spermatogenesis. RESULTS Exosomes play a pivotal role in orchestrating the complex signaling networks required for proper spermatogenesis. They facilitate the transfer of key regulatory molecules between different cell populations within the testes, including Sertoli cells, Leydig cells, and germ cells. CONCLUSION The emerging understanding of exosome-mediated communication sheds light on novel mechanisms underlying spermatogenesis regulation. Further research in this area holds promise for insights into male reproductive health and potential therapeutic interventions.
Collapse
Affiliation(s)
- Amirhossein Mohammadi
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Bashiri
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Omid Fertility & Infertility Clinic, Hamedan, Iran
| | - Sara Rafiei
- Department of Botany and Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Hamidreza Asgari
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Sarkar R, Biswas S, Ghosh R, Samanta P, Pakhira S, Mondal M, Dutta Gupta Y, Bhandary S, Saha P, Bhowmik A, Hajra S. Exosome-sheathed porous silica nanoparticle-mediated co-delivery of 3,3'-diindolylmethane and doxorubicin attenuates cancer stem cell-driven EMT in triple negative breast cancer. J Nanobiotechnology 2024; 22:285. [PMID: 38796426 PMCID: PMC11127288 DOI: 10.1186/s12951-024-02518-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/01/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Therapeutic management of locally advanced and metastatic triple negative breast cancer (TNBC) is often limited due to resistance to conventional chemotherapy. Metastasis is responsible for more than 90% of breast cancer-associated mortality; therefore, the clinical need to prevent or target metastasis is immense. The epithelial to mesenchymal transition (EMT) of cancer stem cells (CSCs) is a crucial determinant in metastasis. Doxorubicin (DOX) is the frequently used chemotherapeutic drug against TNBC that may increase the risk of metastasis in patients. After cancer treatment, CSCs with the EMT characteristic persist, which contributes to advanced malignancy and cancer recurrence. The latest developments in nanotechnology for medicinal applications have raised the possibility of using nanomedicines to target these CSCs. Hence, we present a novel approach of combinatorial treatment of DOX with dietary indole 3,3'-diindolylmethane (DIM) which is an intriguing field of research that may target CSC mediated EMT induction in TNBC. For efficient delivery of both the compounds to the tumor niche, advance method of drug delivery based on exosomes sheathed with mesoporous silica nanoparticles may provide an attractive strategy. RESULTS DOX, according to our findings, was able to induce EMT in CSCs, making the breast cancer cells more aggressive and metastatic. In CSCs produced from spheres of MDAMB-231 and 4T1, overexpression of N-cadherin, Snail, Slug, and Vimentin as well as downregulation of E-cadherin by DOX treatment not only demonstrated EMT induction but also underscored the pressing need for a novel chemotherapeutic combination to counteract this detrimental effect of DOX. To reach this goal, DIM was combined with DOX and delivered to the CSCs concomitantly by loading them in mesoporous silica nanoparticles encapsulated in exosomes (e-DDMSNP). These exosomes improved the specificity, stability and better homing ability of DIM and DOX in the in vitro and in vivo CSC niche. Furthermore, after treating the CSC-enriched TNBC cell population with e-DDMSNP, a notable decrease in DOX mediated EMT induction was observed. CONCLUSION Our research seeks to propose a new notion for treating TNBC by introducing this unique exosomal nano-preparation against CSC induced EMT.
Collapse
Affiliation(s)
- Rupali Sarkar
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700 026, India
| | - Souradeep Biswas
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700 026, India
| | - Rituparna Ghosh
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700 026, India
| | - Priya Samanta
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700 026, India
| | - Shampa Pakhira
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700 026, India
| | - Mrinmoyee Mondal
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700 026, India
| | - Yashaswi Dutta Gupta
- Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Kolkata, 700126, West Bengal, India
| | - Suman Bhandary
- Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Kolkata, 700126, West Bengal, India
| | - Prosenjit Saha
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700 026, India
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700 026, India.
| | - Subhadip Hajra
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700 026, India.
| |
Collapse
|
22
|
Shamshiripour P, Rahnama M, Nikoobakht M, Rad VF, Moradi AR, Ahmadvand D. Extracellular vesicles derived from dendritic cells loaded with VEGF-A siRNA and doxorubicin reduce glioma angiogenesis in vitro. J Control Release 2024; 369:128-145. [PMID: 38522817 DOI: 10.1016/j.jconrel.2024.03.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Numerous attempts have been devoted to designing anti-angiogenic agents as a strategy to slow tumor growth and progression. Clinical applications of conventional anti-angiogenic agents face some challenges, e.g., off-target effects for TKIs and also low solid tumor penetration for mAbs. Furthermore, although anti-angiogenic therapy provides a normalization window for better chemo-RT response, in long-term treatments, tumor hypoxia as a result of total removal of VEGF-A by mAbs from the TME or complete blockade of TK receptors induces over-activation of compensatory angiogenic pathways, causing escape. Herein, we investigate the efficacy of si-DOX-DC-EVs to reduce glioma angiogenesis and invasiveness. METHODS Mature DCs were generated from PBMC and EVs were isolated from the DCs culture media. siRNA and Doxorubicin were loaded into EVs by EP and incubation. Afterward, the uptake of DC-EVs was assessed by flow cytometry, and the subcellular localization of EVs was tested by confocal imaging. Tube formation assay was performed to assess the efficacy of si-DOX-DC-EVs to reduce tumor angiogenesis which was analyzed by DHM. Morphometric analysis of apoptotic cells was performed by DHM and confocal imaging and further, ELISA was performed for hypoxia-related and angiogenic cytokines. The impact of our theranostic system "si-DOX-DC-MVs" on the formation of vascular mimics, colonies, and invasion of C6 cells was checked in vitro. Afterward, orthotropic rat models of glioma were generated and the optimal administration route was selected by in vivo fluorescent analysis. Then, the microvessel density, vimentin expression, and accumulation of immune cells in tumoral tissues were assessed by IHC. Finally, necropsy and autopsy analyses were performed to check the safety of our theranostic agent. RESULTS DC-EVs loaded with si-DOX-DC-EVs were successfully uptaken by cells with different subcellular trafficking for MVs and exosomes, reduced tumor angiogenesis in DHM analysis, and induced apoptosis in tumoral cells. Moreover, using DHM, we performed a detailed label-free analysis of tip cells which suggested that the tip cells in si-DC-MV treatments lost their geometrical migration capacity to form tube-like structures. Furthermore, the ELISAs performed highlighted that there is a mild overactivation of compensatory Tie2/Ang2 pathway after VEGF-A blockade which confers with severe hypoxia and sustains normal angiogenesis which is the optimal goal of anti-angiogenesis therapy for cancer to avoid resistance.The results of our VM analyses indicated that si-DOX-DC-MVs completely inhibited VM process. Moreover, the invasion, migration, and colony formation of the C6 cells treated with si-DOX-MVs were the least among all treatments. IN was the optimal route of administration. The MVD analyses indicated that si-DOX-DC-MVs reduced the number of tumoral microvessels and normalized vessel morphology. Intense CD8+ T cells were observed near the tumoral vessels in the si-DOX-DC-MVs group and with minimal activation of MT (low Vimentin expression). Necropsy and toxicology results proved that the theranostic system proposed is safe. CONCLUSIONS DC-EVs loaded with VEGF-A siRNA and Doxorubicin were more potent than BV alone as a multi-disciplinary strategy that combats glioma growth by cytotoxic impacts of DOX and inhibits angiogenesis by VEGF-A siRNAs with excess immunologic benefits from DC-EVs. This next-generation anti-angiogenic agent normalizes tumor vessel density rather than extensively eliminating tumor vessels causing hypoxia and mesenchymal transition.
Collapse
Affiliation(s)
- Parisa Shamshiripour
- Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Molecular Imaging Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mehrana Rahnama
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Mehdi Nikoobakht
- Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Neurosurgery, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Vahideh Farzam Rad
- Department of Physics, Institute for Advanced Studies in Basic Sciences, (IASBS), Zanjan, Iran
| | - Ali-Reza Moradi
- Department of Physics, Institute for Advanced Studies in Basic Sciences, (IASBS), Zanjan, Iran; School of NanoScience, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Davoud Ahmadvand
- Department of Molecular Imaging Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
23
|
Madhan S, Dhar R, Devi A. Plant-derived exosomes: a green approach for cancer drug delivery. J Mater Chem B 2024; 12:2236-2252. [PMID: 38351750 DOI: 10.1039/d3tb02752j] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Plant-derived exosomes (PDEs) are natural extracellular vesicles (EVs). In the current decade, they have been highlighted for cancer therapeutic development. Cancer is a global health crisis and it requires an effective, affordable, and less side effect-based treatment. Emerging research based on PDEs suggests that they have immense potential to be considered as a therapeutic option. Research evidences indicate that PDEs' internal molecular cargos show impressive cancer prevention activity with less toxicity. PDEs-based drug delivery systems overcome several limitations of traditional drug delivery tools. Extraction of PDEs from plant sources employ diverse methodologies, encompassing ultracentrifugation, immunoaffinity, size-based isolation, and precipitation, each with distinct advantages and limitations. The core constituents of PDEs comprise of lipids, proteins, DNA, and RNA. Worldwide, a few clinical trials on plant-derived exosomes are underway, and regulatory affairs for their use as therapeutic agents are still not understood with clarity. This review aims to comprehensively analyze the current state of research on plant-derived exosomes as a promising avenue for drug delivery, highlighting anticancer activity, challenges, and future orientation in effective cancer therapeutic development.
Collapse
Affiliation(s)
- Shrishti Madhan
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District - 603 203, Tamil Nadu, India.
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District - 603 203, Tamil Nadu, India.
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District - 603 203, Tamil Nadu, India.
| |
Collapse
|
24
|
Zhao G, Zhang Y, Xu CF, Wang J. In vivo production of CAR-T cells using virus-mimetic fusogenic nanovesicles. Sci Bull (Beijing) 2024; 69:354-366. [PMID: 38072706 DOI: 10.1016/j.scib.2023.11.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/20/2023] [Accepted: 11/27/2023] [Indexed: 01/24/2024]
Abstract
Engineered T cells expressing chimeric antigen receptor (CAR) exhibit high response rates in B-cell malignancy treatments and possess therapeutic potentials against various diseases. However, the complicated ex vivo production process of CAR-T cells limits their application. Herein, we use virus-mimetic fusogenic nanovesicles (FuNVs) to produce CAR-T cells in vivo via membrane fusion-mediated CAR protein delivery. Briefly, the FuNVs are modified using T-cell fusogen, adapted from measles virus or reovirus fusogens via displaying anti-CD3 single-chain variable fragment. The FuNVs can efficiently fuse with the T-cell membrane in vivo, thereby delivering the loaded anti-CD19 (αCD19) CAR protein onto T-cells to produce αCD19 CAR-T cells. These αCD19 CAR-T cells alone or in combination with anti-OX40 antibodies can treat B-cell lymphoma without inducing cytokine release syndrome. Thus, our strategy provides a novel method for engineering T cells into CAR-T cells in vivo and can further be employed to deliver other therapeutic membrane proteins.
Collapse
Affiliation(s)
- Gui Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yue Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Cong-Fei Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
25
|
Zhang J, Gao Y, Yan J. Roles of Myokines and Muscle-Derived Extracellular Vesicles in Musculoskeletal Deterioration under Disuse Conditions. Metabolites 2024; 14:88. [PMID: 38392980 PMCID: PMC10891558 DOI: 10.3390/metabo14020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Prolonged inactivity and disuse conditions, such as those experienced during spaceflight and prolonged bedrest, are frequently accompanied by detrimental effects on the motor system, including skeletal muscle atrophy and bone loss, which greatly increase the risk of osteoporosis and fractures. Moreover, the decrease in glucose and lipid utilization in skeletal muscles, a consequence of muscle atrophy, also contributes to the development of metabolic syndrome. Clarifying the mechanisms involved in disuse-induced musculoskeletal deterioration is important, providing therapeutic targets and a scientific foundation for the treatment of musculoskeletal disorders under disuse conditions. Skeletal muscle, as a powerful endocrine organ, participates in the regulation of physiological and biochemical functions of local or distal tissues and organs, including itself, in endocrine, autocrine, or paracrine manners. As a motor organ adjacent to muscle, bone tissue exhibits a relative lag in degenerative changes compared to skeletal muscle under disuse conditions. Based on this phenomenon, roles and mechanisms involved in the communication between skeletal muscle and bone, especially from muscle to bone, under disuse conditions have attracted widespread attention. In this review, we summarize the roles and regulatory mechanisms of muscle-derived myokines and extracellular vesicles (EVs) in the occurrence of muscle atrophy and bone loss under disuse conditions, as well as discuss future perspectives based on existing research.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Special Medicine, Shanxi Medical University, Jinzhong 030619, China;
| | - Yunfang Gao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jiangwei Yan
- Institute of Special Medicine, Shanxi Medical University, Jinzhong 030619, China;
| |
Collapse
|
26
|
Gurunathan S, Thangaraj P, Wang L, Cao Q, Kim JH. Nanovaccines: An effective therapeutic approach for cancer therapy. Biomed Pharmacother 2024; 170:115992. [PMID: 38070247 DOI: 10.1016/j.biopha.2023.115992] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Cancer vaccines hold considerable promise for the immunotherapy of solid tumors. Nanomedicine offers several strategies for enhancing vaccine effectiveness. In particular, molecular or (sub) cellular vaccines can be delivered to the target lymphoid tissues and cells by nanocarriers and nanoplatforms to increase the potency and durability of antitumor immunity and minimize negative side effects. Nanovaccines use nanoparticles (NPs) as carriers and/or adjuvants, offering the advantages of optimal nanoscale size, high stability, ample antigen loading, high immunogenicity, tunable antigen presentation, increased retention in lymph nodes, and immunity promotion. To induce antitumor immunity, cancer vaccines rely on tumor antigens, which are administered in the form of entire cells, peptides, nucleic acids, extracellular vesicles (EVs), or cell membrane-encapsulated NPs. Ideal cancer vaccines stimulate both humoral and cellular immunity while overcoming tumor-induced immune suppression. Herein, we review the key properties of nanovaccines for cancer immunotherapy and highlight the recent advances in their development based on the structure and composition of various (including synthetic and semi (biogenic) nanocarriers. Moreover, we discuss tumor cell-derived vaccines (including those based on whole-tumor-cell components, EVs, cell membrane-encapsulated NPs, and hybrid membrane-coated NPs), nanovaccine action mechanisms, and the challenges of immunocancer therapy and their translation to clinical applications.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641 021, Tamil Nadu, India.
| | - Pratheep Thangaraj
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641 021, Tamil Nadu, India
| | - Lin Wang
- Research and Development Department, Qingdao Haier Biotech Co., Ltd., Qingdao, China
| | - Qilong Cao
- Research and Development Department, Qingdao Haier Biotech Co., Ltd., Qingdao, China
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
27
|
Guo Z, Wang G, Yun Z, Li Y, Huang B, Jin Q, Chen Y, Xu L, Lv W. Global research trends in tumor stem cell-derived exosomes and tumor microenvironment: visualization biology analysis. J Cancer Res Clin Oncol 2023; 149:17581-17595. [PMID: 37914951 PMCID: PMC10657319 DOI: 10.1007/s00432-023-05450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
BANKGROUND The tumor microenvironment (TME) is an internal environment composed of various cells and an extracellular matrix. Cancer stem cell-derived exosomes (CSC-Exos), as essential messengers involved in various tumor processes, are important carriers for bidirectional communication between the tumor microenvironment and tumor cells and play an important role in the tumor microenvironment. Nevertheless, few bibliometric analyses have been systematically studied in this field. METHODS Therefore, we aimed to visualize the research hotspots and trends in this field through bibliometrics to comprehend the future evolution of fundamental and clinical research, as well as to offer insightful information and fresh viewpoints. The Scopus database was used to search the research literature related to exosomes and tumor microenvironments after the establishment of this repository. CiteSpace (version 5.8.R3) and VOSviewer (version 1.6.16) were used for visualization and analysis. RESULTS In this study, a total of 2077 articles and reviews were included, with the number of articles on exosomes and tumor microenvironments significantly increasing yearly. Recent trends showed that the potential value of exosomes as "tumor diagnostics" and "the application prospect of exosomes as therapeutic agents and drug delivery carriers" will receive more attention in the future. CONCLUSIONS We revealed the current status and hotspots of tumor stem cell-derived exosomes and tumor microenvironments globally through bibliometrics. The prospect of the regulatory role of CSC-Exos in TME, the potential value of diagnosis, and the application of drug delivery vectors will all remain cutting-edge research areas in the field of tumor therapy. Meanwhile, this study provided a functional literature analysis for related researchers.
Collapse
Affiliation(s)
- Ziwei Guo
- Department of Infection, China Academy of Chinese Medical Sciences, Guang' anmen Hospital, Beijing, China
| | - Gang Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhangjun Yun
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanbo Li
- Department of Infection, China Academy of Chinese Medical Sciences, Guang' anmen Hospital, Beijing, China
| | - Bohao Huang
- Guang' anmen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Jin
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Luchun Xu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenliang Lv
- Department of Infection, China Academy of Chinese Medical Sciences, Guang' anmen Hospital, Beijing, China.
| |
Collapse
|
28
|
Heidegger S, Stritzke F, Dahl S, Daßler-Plenker J, Joachim L, Buschmann D, Fan K, Sauer CM, Ludwig N, Winter C, Enssle S, Li S, Perl M, Görgens A, Haas T, Orberg ET, Göttert S, Wölfel C, Engleitner T, Cortés-Ciriano I, Rad R, Herr W, Giebel B, Ruland J, Bassermann F, Coch C, Hartmann G, Poeck H. Targeting nucleic acid sensors in tumor cells to reprogram biogenesis and RNA cargo of extracellular vesicles for T cell-mediated cancer immunotherapy. Cell Rep Med 2023; 4:101171. [PMID: 37657445 PMCID: PMC10518594 DOI: 10.1016/j.xcrm.2023.101171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/04/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023]
Abstract
Tumor-derived extracellular vesicles (EVs) have been associated with immune evasion and tumor progression. We show that the RNA-sensing receptor RIG-I within tumor cells governs biogenesis and immunomodulatory function of EVs. Cancer-intrinsic RIG-I activation releases EVs, which mediate dendritic cell maturation and T cell antitumor immunity, synergizing with immune checkpoint blockade. Intact RIG-I, autocrine interferon signaling, and the GTPase Rab27a in tumor cells are required for biogenesis of immunostimulatory EVs. Active intrinsic RIG-I signaling governs composition of the tumor EV RNA cargo including small non-coding stimulatory RNAs. High transcriptional activity of EV pathway genes and RIG-I in melanoma samples associate with prolonged patient survival and beneficial response to immunotherapy. EVs generated from human melanoma after RIG-I stimulation induce potent antigen-specific T cell responses. We thus define a molecular pathway that can be targeted in tumors to favorably alter EV immunomodulatory function. We propose "reprogramming" of tumor EVs as a personalized strategy for T cell-mediated cancer immunotherapy.
Collapse
Affiliation(s)
- Simon Heidegger
- Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.
| | - Florian Stritzke
- Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sarah Dahl
- Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany
| | - Juliane Daßler-Plenker
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Laura Joachim
- Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Dominik Buschmann
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Kaiji Fan
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Carolin M Sauer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Nils Ludwig
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Christof Winter
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Stefan Enssle
- Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Suqi Li
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Markus Perl
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - André Görgens
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden; Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tobias Haas
- Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany
| | - Erik Thiele Orberg
- Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sascha Göttert
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Catherine Wölfel
- Internal Medicine III, University Cancer Center and Research Center for Immunotherapy, University Medical Center Johannes Gutenberg University and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Mainz, Germany
| | - Thomas Engleitner
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany; Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany; Department of Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jürgen Ruland
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Florian Bassermann
- Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Coch
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany; Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Hendrik Poeck
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany; Center for Immunomedicine in Transplantation and Oncology (CITO), Regensburg, Germany.
| |
Collapse
|
29
|
Tran NT, Liang H, Li J, Deng T, Bakky MAH, Zhang M, Li S. Cellular responses in crustaceans under white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108984. [PMID: 37549875 DOI: 10.1016/j.fsi.2023.108984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Innate immunity plays the most important system responsible for protecting crustaceans against invading pathogens. White spot syndrome virus (WSSV) is considered a serious pathogen in crustaceans with high cumulative mortality and morbidity in infected animals. Understanding the mechanism of the response of hosts to WSSV infection is necessary, which is useful for effective prevention in controlling infection. In this review, we summarize the participation of signaling pathways (toll, immune deficiency, JAK/STAT, endocytosis, mitogen-activated protein kinase, PI3K/Akt/mTOR, cGAS-STING, Wingless/Integrated signal transduction, and prophenoloxidase (proPO) cascade) and the activity of cells (apoptosis, autophagy, as well as, reactive oxygen species and antioxidant enzymes) in the cellular-mediated immune response of crustaceans during WSSV infection. The information presented in this current review is important for a better understanding of the mechanism of the response of hosts to pathogens. Additionally, this provides a piece of basic knowledge for discovering approaches to strengthen the immune system and resistance of cultured animals against viral infections.
Collapse
Affiliation(s)
- Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| | - Huifen Liang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Jinkun Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Taoqiu Deng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Md Akibul Hasan Bakky
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| |
Collapse
|
30
|
Li H, Zhao S, Jiang M, Zhu T, Liu J, Feng G, Lu L, Dong J, Wu X, Chen X, Zhao Y, Fan S. Biomodified Extracellular Vesicles Remodel the Intestinal Microenvironment to Overcome Radiation Enteritis. ACS NANO 2023; 17:14079-14098. [PMID: 37399352 DOI: 10.1021/acsnano.3c04578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Ionizing radiation (IR) is associated with the occurrence of enteritis, and protecting the whole intestine from radiation-induced gut injury remains an unmet clinical need. Circulating extracellular vesicles (EVs) are proven to be vital factors in the establishment of tissue and cell microenvironments. In this study, we aimed to investigate a radioprotective strategy mediated by small EVs (exosomes) in the context of irradiation-induced intestinal injury. We found that exosomes derived from donor mice exposed to total body irradiation (TBI) could protect recipient mice against TBI-induced lethality and alleviate radiation-induced gastrointestinal (GI) tract toxicity. To enhance the protective effect of EVs, profilings of mouse and human exosomal microRNAs (miRNAs) were performed to identify the functional molecule in exosomes. We found that miRNA-142-5p was highly expressed in exosomes from both donor mice exposed to TBI and patients after radiotherapy (RT). Moreover, miR-142 protected intestinal epithelial cells from irradiation-induced apoptosis and death and mediated EV protection against radiation enteritis by ameliorating the intestinal microenvironment. Then, biomodification of EVs was accomplished via enhancing miR-142 expression and intestinal specificity of exosomes, and thus improved EV-mediated protection from radiation enteritis. Our findings provide an effective approach for protecting against GI syndrome in people exposed to irradiation.
Collapse
Affiliation(s)
- Hang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Shuya Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Mian Jiang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Tong Zhu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Guoxing Feng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Lu Lu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Xin Wu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Xin Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province China
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| |
Collapse
|
31
|
Anoop TM, Basu PK, Chandramohan K, Thomas A, Manoj S. Evolving utility of exosomes in pancreatic cancer management. World J Methodol 2023; 13:46-58. [PMID: 37456979 PMCID: PMC10348087 DOI: 10.5662/wjm.v13.i3.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/02/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023] Open
Abstract
Despite the development of newer oncological treatment, the survival of patients with pancreatic cancer (PC) remains poor. Recent studies have identified exosomes as essential mediators of intercellular communications and play a vital role in tumor initiation, metastasis and chemoresistance. Thus, the utility of liquid biopsies using exosomes in PC management can be used for early detection, diagnosis, monitoring as well as drug delivery vehicles for cancer therapy. This review summarizes the function, and clinical applications of exosomes in cancers as minimally invasive liquid biomarker in diagnostic, prognostic and therapeutic roles.
Collapse
Affiliation(s)
- Thattungal Manoharan Anoop
- Department of Medical Oncology, Regional Cancer Center, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| | - Palash Kumar Basu
- Department of Avionics, Indian Institute of Space Science & Technology (IIST), Thiruvananthapuram 695547, Kerala, India
| | - K Chandramohan
- Surgical Oncology, Regional Cancer Center, Thiruvananthapuram 695011, Kerala, India
| | - Ajai Thomas
- Department of Medical Oncology, Regional Cancer Center, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| | - S Manoj
- Department of Medical Oncology, Regional Cancer Center, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| |
Collapse
|
32
|
Liu A, Hefley B, Escandon P, Nicholas SE, Karamichos D. Salivary Exosomes in Health and Disease: Future Prospects in the Eye. Int J Mol Sci 2023; 24:ijms24076363. [PMID: 37047335 PMCID: PMC10094317 DOI: 10.3390/ijms24076363] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Exosomes are a group of vesicles that package and transport DNA, RNA, proteins, and lipids to recipient cells. They can be derived from blood, saliva, urine, and/or other biological tissues. Their impact on several diseases, such as neurodegenerative, autoimmune, and ocular diseases, have been reported, but not fully unraveled. The exosomes that are derived from saliva are less studied, but offer significant advantages over exosomes from other sources, due to their accessibility and ease of collection. Thus, their role in the pathophysiology of diseases is largely unknown. In the context of ocular diseases, salivary exosomes have been under-utilized, thus creating an enormous gap in the literature. The current review discusses the state of exosomes research on systemic and ocular diseases and highlights the role and potential of salivary exosomes as future ocular therapeutic vehicles.
Collapse
Affiliation(s)
- Angela Liu
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Brenna Hefley
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Paulina Escandon
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Sarah E. Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Correspondence: ; Tel.: +1-817-735-2101
| |
Collapse
|
33
|
Venturella M, Falsini A, Coppola F, Giuntini G, Carraro F, Zocco D, Chiesi A, Naldini A. CA-IX-Expressing Small Extracellular Vesicles (sEVs) Are Released by Melanoma Cells under Hypoxia and in the Blood of Advanced Melanoma Patients. Int J Mol Sci 2023; 24:ijms24076122. [PMID: 37047096 PMCID: PMC10094632 DOI: 10.3390/ijms24076122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Cutaneous melanoma is a highly aggressive skin cancer, with poor prognosis. The tumor microenvironment is characterized by areas of hypoxia. Carbonic anhydrase IX (CA-IX) is a marker of tumor hypoxia and its expression is regulated by hypoxia-inducible factor-1 (HIF-1). CA-IX has been found to be highly expressed in invasive melanomas. In this study, we investigated the effects of hypoxia on the release of small extracellular vesicles (sEVs) in two melanoma in vitro models. We demonstrated that melanoma cells release sEVs under both normoxic and hypoxic conditions, but only hypoxia-induced sEVs express CA-IX mRNA and protein. Moreover, we optimized an ELISA assay to provide evidence for CA-IX protein expression on the membranes of the sEVs. These CA-IX-positive sEVs may be exploited as potential biomarkers for liquid biopsy.
Collapse
Affiliation(s)
- Marta Venturella
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Alessandro Falsini
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Federica Coppola
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Gaia Giuntini
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Fabio Carraro
- Cellular and Molecular Physiology Unit, Department of Medical Biotechnologies, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Davide Zocco
- Lonza Siena, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Antonio Chiesi
- Exosomics SpA, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Antonella Naldini
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
34
|
Mosley RJ, Rucci B, Byrne ME. Recent advancements in design of nucleic acid nanocarriers for controlled drug delivery. J Mater Chem B 2023; 11:2078-2094. [PMID: 36806872 DOI: 10.1039/d2tb02325c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Research of nanoscale nucleic acid carriers has garnered attention in recent years due to their distinctive and controllable properties. However, current knowledge is limited in how we can efficiently utilize these systems for clinical applications. Several researchers have pioneered new and innovative nanocarrier drug delivery systems, but understanding physiochemical properties and behavior in vivo is vital to implementing them as clinical drug delivery platforms. In this review, we outline the most significant innovations in the synthesis, physical properties, and utilization of nucleic acid nanocarriers in the past 5 years, addressing the crucial properties which improve nanocarrier characteristics, delivery, and drug release. The challenges of controlling the transport of nucleic acid nanocarriers and therapeutic release for biological applications are outlined. Barriers which inhibit effective transport into tissue are discussed with emphasis on the modifications needed to overcome such obstacles. The novel strategies discussed in this work summarize the pivotal features of modern nucleic nanocarriers and postulate where future developments could revolutionize the translation of these tools into a clinical setting.
Collapse
Affiliation(s)
- Robert J Mosley
- Biomimetic and Biohybrid Materials, Biomedical Devices, and Drug Delivery Laboratories, Department of Biomedical Engineering, 201 Mullica Hill Rd, Rowan University, Glassboro, NJ, 08028, USA.
| | - Brendan Rucci
- Biomimetic and Biohybrid Materials, Biomedical Devices, and Drug Delivery Laboratories, Department of Biomedical Engineering, 201 Mullica Hill Rd, Rowan University, Glassboro, NJ, 08028, USA.
| | - Mark E Byrne
- Biomimetic and Biohybrid Materials, Biomedical Devices, and Drug Delivery Laboratories, Department of Biomedical Engineering, 201 Mullica Hill Rd, Rowan University, Glassboro, NJ, 08028, USA. .,Department of Chemical Engineering, Rowan University, Glassboro, NJ, 08028, USA
| |
Collapse
|
35
|
Emerging RNA-Based Therapeutic and Diagnostic Options: Recent Advances and Future Challenges in Genitourinary Cancers. Int J Mol Sci 2023; 24:ijms24054601. [PMID: 36902032 PMCID: PMC10003365 DOI: 10.3390/ijms24054601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Renal cell carcinoma, bladder cancer, and prostate cancer are the most widespread genitourinary tumors. Their treatment and diagnosis have significantly evolved over recent years, due to an increasing understanding of oncogenic factors and the molecular mechanisms involved. Using sophisticated genome sequencing technologies, the non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, have all been implicated in the occurrence and progression of genitourinary cancers. Interestingly, DNA, protein, and RNA interactions with lncRNAs and other biological macromolecules drive some of these cancer phenotypes. Studies on the molecular mechanisms of lncRNAs have identified new functional markers that could be potentially useful as biomarkers for effective diagnosis and/or as targets for therapeutic intervention. This review focuses on the mechanisms underlying abnormal lncRNA expression in genitourinary tumors and discusses their role in diagnostics, prognosis, and treatment.
Collapse
|
36
|
Dwivedi M, Ghosh D, Saha A, Hasan S, Jindal D, Yadav H, Yadava A, Dwivedi M. Biochemistry of exosomes and their theranostic potential in human diseases. Life Sci 2023; 315:121369. [PMID: 36639052 DOI: 10.1016/j.lfs.2023.121369] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
Exosomes are classified as special extracellular vesicles in the eukaryotic system having diameters ranging from 30 to 120 nm. These vesicles carry various endogenous molecules including DNA, mRNA, microRNA, circular RNA, and proteins, crucial for numerous metabolic reactions and can be proposed as therapeutic or diagnostic targets for several disorders. The donor exosomes release their content to recipient cells and further establish the significant intercellular communication showing biological effects by triggering environmental alterations. Exosomes derived from mesenchymal and dendritic cells have demonstrated their therapeutic potential against organ injury. Yet, various intricacies are involved in exosomal transport and its inclusion in cancer and other disease pathogenesis needs to be explored. The exosomes represent profound potential as diagnostic biomarkers and therapeutic carriers in various pathophysiological conditions such as neurodegenerative diseases, chronic cancers, infectious diseases, female reproductive diseases and cardiovascular diseases. In the current study, we demonstrate the advancements in the implication of exosomes as one of the irrefutable prognostic biological targets in human health and diseases.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India.
| | - Diya Ghosh
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, West Bengal, India
| | - Anwesha Saha
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, West Bengal, India
| | - Saba Hasan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Divya Jindal
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Hitendra Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Anuradha Yadava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Medha Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| |
Collapse
|
37
|
Ciafrè SA, Russo M, Michienzi A, Galardi S. Long Noncoding RNAs and Cancer Stem Cells: Dangerous Liaisons Managing Cancer. Int J Mol Sci 2023; 24:ijms24031828. [PMID: 36768150 PMCID: PMC9915130 DOI: 10.3390/ijms24031828] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Decades of research have investigated the mechanisms that lead to the origin of cancer, striving to identify tumor-initiating cells. These cells, also known as cancer stem cells, are characterized by the ability to self-renew, to give rise to differentiated tumor populations, and on a larger scale, are deemed responsible not only for tumor initiation but also for recurrent tumors, often resistant to chemotherapy and radiotherapy. Long noncoding RNAs are RNA molecules longer than 200 nt, lacking the ability to code for proteins, with recognized roles as fine regulators of gene expression. They can exert these functions through a variety of mechanisms, acting at almost all steps of gene expression, from modulation of the epigenetic state of chromatin to modulation of protein stability. In all cases, lncRNAs do not work alone, but they always interact with other RNA molecules, either coding or non-coding, or with protein factors. In this review, we summarize the latest results obtained about the involvement of lncRNAs in the initiating cells of several types of tumors, and highlight the different mechanisms through which they work, while discussing how the modulation of a lncRNA can affect several aspects of tumor onset and progression.
Collapse
Affiliation(s)
- Silvia Anna Ciafrè
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (S.A.C.); (S.G.)
| | - Monia Russo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Alessandro Michienzi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Silvia Galardi
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (S.A.C.); (S.G.)
| |
Collapse
|
38
|
Xiao Z, Feng X, Zhou Y, Li P, Luo J, Zhang W, Zhou J, Zhao J, Wang D, Wang Y, Tian Z, Zhao X. Exosomal miR-10527-5p Inhibits Migration, Invasion, Lymphangiogenesis and Lymphatic Metastasis by Affecting Wnt/β-Catenin Signaling via Rab10 in Esophageal Squamous Cell Carcinoma. Int J Nanomedicine 2023; 18:95-114. [PMID: 36636641 PMCID: PMC9831078 DOI: 10.2147/ijn.s391173] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/24/2022] [Indexed: 01/07/2023] Open
Abstract
Background Cancer cell-derived exosomal microRNAs (miRNAs) play critical role in orchestrating intercellular communication between tumor cells and tumor microenvironmental factors, including lymphatic endothelial cells (LECs). Nevertheless, the functions and underlying mechanisms of exosomal miRNAs in lymphatic metastasis and lymphangiogenesis in esophageal squamous cell carcinoma (ESCC) remain unclear. Methods Small RNA sequencing, Gene Expression Omnibus (GEO) analysis and qRT‒PCR were performed to identify the candidate exosomal miRNAs involved in ESCC metastasis. Receiver operating characteristic curve analysis was conducted to evaluate the diagnostic potential of exosomal miR-10527-5p in predicting lymph node metastasis (LNM) status. An in vitro coculture system was used to investigate the effects of exosomal miR-10527-5p on ESCC cells and human LECs (HLECs), followed by a popliteal LNM assay in vivo. The relationship between miR-10527-5p and Rab10 was identified by dual-luciferase reporter, fluorescence in situ hybridization and qRT‒PCR assays. Then, a series of rescue assays were performed to further investigate whether Rab10 is involved in exosomal miR-10527-5p mediated ESCC metastasis. Results MiR-10527-5p was found to be notably reduced in both the plasma exosomes and tumor tissues of ESCC patients with LNM, and plasma exosomal miR-10527-5p had a high sensitivity and specificity for discrimination of LNM status. Moreover, exosome-shuttled miR-10527-5p suppressed the migration, invasion and epithelial-to-mesenchymal transition (EMT) of ESCC cells as well as the migration and tube formation of HLECs via Wnt/β-catenin signaling in vitro and in vivo. Further investigation revealed that Rab10 was a direct target of miR-10527-5p, and re-expression of Rab10 neutralized the inhibitory effects of exosomal miR-10527-5p. Conclusion Our study demonstrated that exosomal miR-10527-5p had a strong capability to predict preoperative LNM status and anti-lymphangiogenic effect. Exosomal miR-10527-5p inhibited lymphangiogenesis and lymphatic metastasis of ESCC in a vascular endothelial growth factor-C (VEGF-C)-independent manner, showing potential as a therapeutic target for ESCC patients.
Collapse
Affiliation(s)
- Zhaohua Xiao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Xumei Feng
- Health Management Center, The Second Hospital of Shandong University, Jinan, People’s Republic of China
| | - Yongjia Zhou
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Peiwei Li
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, People’s Republic of China
| | - Junwen Luo
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Wenhao Zhang
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Jie Zhou
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Jiangfeng Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Dong Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People’s Republic of China
| | - Yongjie Wang
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Zhongxian Tian
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China,Key Laboratory of Chest Cancer, Shandong University, The Second Hospital of Shandong University, Jinan, People’s Republic of China,Correspondence: Zhongxian Tian; Xiaogang Zhao, Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China, Tel +86-17660082365; +86-053185875009, Email ;
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China,Key Laboratory of Chest Cancer, Shandong University, The Second Hospital of Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
39
|
Applications of exosomes in nanomedicine. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00015-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
40
|
Horbay R, Hamraghani A, Ermini L, Holcik S, Beug ST, Yeganeh B. Role of Ceramides and Lysosomes in Extracellular Vesicle Biogenesis, Cargo Sorting and Release. Int J Mol Sci 2022; 23:ijms232315317. [PMID: 36499644 PMCID: PMC9735581 DOI: 10.3390/ijms232315317] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cells have the ability to communicate with their immediate and distant neighbors through the release of extracellular vesicles (EVs). EVs facilitate intercellular signaling through the packaging of specific cargo in all type of cells, and perturbations of EV biogenesis, sorting, release and uptake is the basis of a number of disorders. In this review, we summarize recent advances of the complex roles of the sphingolipid ceramide and lysosomes in the journey of EV biogenesis to uptake.
Collapse
Affiliation(s)
- Rostyslav Horbay
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Ali Hamraghani
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Leonardo Ermini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sophie Holcik
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Shawn T. Beug
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Correspondence: (S.T.B.); or (B.Y.); Tel.: +1-613-738-4176 (B.Y.); Fax: +1-613-738-4847 (S.T.B. & B.Y.)
| | - Behzad Yeganeh
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: (S.T.B.); or (B.Y.); Tel.: +1-613-738-4176 (B.Y.); Fax: +1-613-738-4847 (S.T.B. & B.Y.)
| |
Collapse
|
41
|
Tenchov R, Sasso JM, Wang X, Liaw WS, Chen CA, Zhou QA. Exosomes─Nature's Lipid Nanoparticles, a Rising Star in Drug Delivery and Diagnostics. ACS NANO 2022; 16:17802-17846. [PMID: 36354238 PMCID: PMC9706680 DOI: 10.1021/acsnano.2c08774] [Citation(s) in RCA: 262] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/21/2022] [Indexed: 05/03/2023]
Abstract
Exosomes are a subgroup of nanosized extracellular vesicles enclosed by a lipid bilayer membrane and secreted by most eukaryotic cells. They represent a route of intercellular communication and participate in a wide variety of physiological and pathological processes. The biological roles of exosomes rely on their bioactive cargos, including proteins, nucleic acids, and lipids, which are delivered to target cells. Their distinctive properties─innate stability, low immunogenicity, biocompatibility, and good biomembrane penetration capacity─allow them to function as superior natural nanocarriers for efficient drug delivery. Another notably favorable clinical application of exosomes is in diagnostics. They hold various biomolecules from host cells, which are indicative of pathophysiological conditions; therefore, they are considered vital for biomarker discovery in clinical diagnostics. Here, we use data from the CAS Content Collection and provide a landscape overview of the current state and delineate trends in research advancement on exosome applications in therapeutics and diagnostics across time, geography, composition, cargo loading, and development pipelines. We discuss exosome composition and pathway, from their biogenesis and secretion from host cells to recipient cell uptake. We assess methods for exosome isolation and purification, their clinical applications in therapy and diagnostics, their development pipelines, the exploration goals of the companies, the assortment of diseases they aim to treat, development stages of their research, and publication trends. We hope this review will be useful for understanding the current knowledge in the field of medical applications of exosomes, in an effort to further solve the remaining challenges in fulfilling their potential.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Janet M. Sasso
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Xinmei Wang
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Wen-Shing Liaw
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Chun-An Chen
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Qiongqiong Angela Zhou
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| |
Collapse
|
42
|
Xu H, Ye BC. Integrated microfluidic platforms for tumor-derived exosome analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Fan M, Li H, Shen D, Wang Z, Liu H, Zhu D, Wang Z, Li L, Popowski KD, Ou C, Zhang K, Zhang J, Cheng K, Li Z. Decoy Exosomes Offer Protection Against Chemotherapy-Induced Toxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203505. [PMID: 36058003 PMCID: PMC9661835 DOI: 10.1002/advs.202203505] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/29/2022] [Indexed: 05/31/2023]
Abstract
Cancer patients often face severe organ toxicity caused by chemotherapy. Among these, chemotherapy-induced hepatotoxicity and cardiotoxicity are the main causes of death of cancer patients. Chemotherapy-induced cardiotoxicity even creates a new discipline termed "cardio-oncology". Therefore, relieving toxicities induced by chemotherapy has become a key issue for improving the survival and quality of life in cancer patients. In this work, mesenchymal stem cell exosomes with the "G-C" abundant tetrahedral DNA nanostructure (TDN) are modified to form a decoy exosome (Exo-TDN). Exo-TDN reduces DOX-induced hepatotoxicity as the "G-C" base pairs scavenge DOX. Furthermore, Exo-TDN with cardiomyopathic peptide (Exo-TDN-PCM) is engineered for specific targeting to cardiomyocytes. Injection of Exo-TDN-PCM significantly reduces DOX-induced cardiotoxicity. Interestingly, Exo-TDN-PCM can also promote macrophage polarization into the M2 type for tissue repair. In addition, those decoy exosomes do not affect the anticancer effects of DOX. This decoy exosome strategy serves as a promising therapy to reduce chemo-induced toxicity.
Collapse
Affiliation(s)
- Miao Fan
- Affiliated Dongguan HospitalSouthern Medical UniversityDongguan523059China
- College of Chemistry & Environmental ScienceChemical Biology Key Laboratory of Hebei ProvinceKey Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of EducationHebei UniversityBaoding071002China
| | - Hang Li
- College of Chemistry & Environmental ScienceChemical Biology Key Laboratory of Hebei ProvinceKey Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of EducationHebei UniversityBaoding071002China
| | - Deliang Shen
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
| | - Zhaoshuo Wang
- College of Chemistry & Environmental ScienceChemical Biology Key Laboratory of Hebei ProvinceKey Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of EducationHebei UniversityBaoding071002China
| | - Huifang Liu
- College of Pharmaceutical ScienceKey Laboratory of Pharmaceutical Quality Control of Hebei ProvinceHebei UniversityBaoding071002China
| | - Dashuai Zhu
- Department of Molecular Biomedical Sciences and Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27607USA
- Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityRaleighNC27695USA
| | - Zhenzhen Wang
- Department of Molecular Biomedical Sciences and Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27607USA
- Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityRaleighNC27695USA
| | - Lanya Li
- Affiliated Dongguan HospitalSouthern Medical UniversityDongguan523059China
- Guangdong Provincial Key Laboratory of Cardiac Function and MicrocirculationGuangdong510515China
| | - Kristen D. Popowski
- Department of Molecular Biomedical Sciences and Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27607USA
- Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityRaleighNC27695USA
| | - Caiwen Ou
- Affiliated Dongguan HospitalSouthern Medical UniversityDongguan523059China
| | - Kaihan Zhang
- Department of ChemistryThe University of ManchesterManchesterM13 9PLUK
| | - Jinchao Zhang
- College of Chemistry & Environmental ScienceChemical Biology Key Laboratory of Hebei ProvinceKey Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of EducationHebei UniversityBaoding071002China
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27607USA
- Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityRaleighNC27695USA
| | - Zhenhua Li
- Affiliated Dongguan HospitalSouthern Medical UniversityDongguan523059China
- Guangdong Provincial Key Laboratory of Cardiac Function and MicrocirculationGuangdong510515China
| |
Collapse
|
44
|
Crow J, Samuel G, Farrow E, Gibson M, Johnston J, Guest E, Miller N, Pei D, Koestler D, Pathak H, Liang X, Mangels C, Godwin AK. MicroRNA Content of Ewing Sarcoma Derived Extracellular Vesicles Leads to Biomarker Potential and Identification of a Previously Undocumented EWS-FLI1 Translocation. Biomark Insights 2022; 17:11772719221132693. [PMID: 36341281 PMCID: PMC9629554 DOI: 10.1177/11772719221132693] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Objective: Ewing Sarcoma Family of Tumors (ESFT) are a highly aggressive pediatric bone and soft tissue malignancy with poor outcomes in the refractory and recurrent setting. Over 90% of Ewing Sarcoma (ES) tumors are driven by the pathognomonic EWS-ETS chimeric transcripts and their corresponding oncoproteins. It has been suggested that the EWS-ETS oncogenic action can mediate microRNA (miRNA) processing. Importantly, small extracellular vesicles (sEVs), including those frequently referred to as exosomes have been shown to be highly enriched with tumor-derived small RNAs such as miRNAs. We hypothesized that ESFT-specific sEVs are enriched with certain miRNAs which could be utilized toward an exo-miRNA biomarker signature specific to this disease. Methods: We performed miRNAseq to compare both the exo-derived and cell-derived miRNA content from 8 ESFT, 2 osteosarcoma, 2 non-cancerous cell lines, and pediatric plasma samples. Results: We found that sEVs derived from ESFT cells contained nearly 2-fold more number of unique individual miRNAs as compared to non-ESFT samples. Quantitative analysis of the differential enrichment of sEV miRNAs resulted in the identification of 62 sEV-miRNAs (exo-miRNAs) with significant (P < .05) enrichment variation between ESFT and non-ESFT sEV samples. To determine if we could utilize this miRNA signature to diagnose ESFT patients via a liquid biopsy, we analyzed the RNA content of total circulating sEVs isolated from 500 µL plasma from 5 pediatric ESFT patients, 2 pediatric osteosarcoma patients, 2 pediatric rhabdomyosarcoma patients, and 4 non-cancer pediatric controls. Pearson's clustering of 60 of the 62 candidate exo-miRNAs correctly identified 80% (4 of 5) of pathology confirmed ESFT patients. Importantly, RNAseq analysis of tumor tissue from the 1 outlier, revealed a previously uncharacterized EWS-FLI1 translocation.Conclusions: Taken together, these findings support the development and validation of an exo-miRNA-based liquid biopsy to aid in the diagnosis and monitoring of ESFT.
Collapse
Affiliation(s)
- Jennifer Crow
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Glenson Samuel
- Children’s Mercy Kansas City, Kansas City, MO, USA
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Emily Farrow
- The Center for Pediatric Genomic Medicine at Children’s Mercy, Kansas City, MO, USA
| | - Margaret Gibson
- The Center for Pediatric Genomic Medicine at Children’s Mercy, Kansas City, MO, USA
| | - Jefferey Johnston
- The Center for Pediatric Genomic Medicine at Children’s Mercy, Kansas City, MO, USA
| | - Erin Guest
- Children’s Mercy Kansas City, Kansas City, MO, USA
- The Center for Pediatric Genomic Medicine at Children’s Mercy, Kansas City, MO, USA
| | - Neil Miller
- The Center for Pediatric Genomic Medicine at Children’s Mercy, Kansas City, MO, USA
| | - Dong Pei
- The Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Devin Koestler
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
- The Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Harsh Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Xiaobo Liang
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Cooper Mangels
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
45
|
Chen M, Zhang F, Chen B, Lau C, Xu K, Tong T, Huo C, Han Q, Su T, Kwan HY. Omics approach to reveal the effects of obesity on the protein profiles of the exosomes derived from different adipose depots. Cell Mol Life Sci 2022; 79:570. [PMID: 36306016 PMCID: PMC11803032 DOI: 10.1007/s00018-022-04597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/24/2022] [Accepted: 10/07/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Obesity affects the cargo packaging of the adipocyte-derived exosomes. Furthermore, adipocytes in different adipose tissues have different genetic makeup, the cargo contents of the exosomes derived from different adipose tissues under obesity conditions should be different, and hence their impacts on the pathophysiological conditions. METHODS AND RESULTS iTRAQ-based quantitative proteomics show that obesity has more prominent effects on the protein profiles of the exosomes derived from subcutaneous adipose tissue (SAT-Exos) in the high fat diet-induced obesity (DIO) mice than those derived from epididymal adipose tissue (EAT-Exos) and visceral adipose tissue (VAT-Exos). The differentially expressed proteins (DEPs) in SAT-Exos and VAT-Exos are mainly involved in metabolism. Subsequent untargeted metabolomic and lipidomics analyses reveal that injection of these SAT-Exos into the B6/J-Rab27a-Cas9-KO mice significantly affects the mouse metabolism such as fatty acid metabolism. Some of the DEPs in SAT-Exos are correlated with fatty acid metabolism including ADP-ribosylation factor and mitogen-activated protein kinase kinase kinase-3. Pathway analysis also shows that SAT-Exos affect adipocyte lipolysis and glycerophospholipid metabolism, which is in parallel with the enhanced plasma levels of fatty acids, diglycerides, monoglycerides and the changes in glycerophospholipid levels in DIO mice. CONCLUSION Our data provide scientific evidence to suggest SAT-Exos contribute to the changes in plasma lipid profiles under obesity conditions.
Collapse
Affiliation(s)
- Minting Chen
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Fan Zhang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Baisen Chen
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Condon Lau
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Keyang Xu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Tiejun Tong
- Department of Mathematics, Hong Kong Baptist University, Hong Kong, China
| | - Chuying Huo
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Quanbin Han
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Tao Su
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Hiu Yee Kwan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China.
| |
Collapse
|
46
|
Zhang X, Cui H, Zhang W, Li Z, Gao J. Engineered tumor cell-derived vaccines against cancer: The art of combating poison with poison. Bioact Mater 2022; 22:491-517. [PMID: 36330160 PMCID: PMC9619151 DOI: 10.1016/j.bioactmat.2022.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 12/23/2022] Open
Abstract
Tumor vaccination is a promising approach for tumor immunotherapy because it presents high specificity and few side effects. However, tumor vaccines that contain only a single tumor antigen can allow immune system evasion by tumor variants. Tumor antigens are complex and heterogeneous, and identifying a single antigen that is uniformly expressed by tumor cells is challenging. Whole tumor cells can produce comprehensive antigens that trigger extensive tumor-specific immune responses. Therefore, tumor cells are an ideal source of antigens for tumor vaccines. A better understanding of tumor cell-derived vaccines and their characteristics, along with the development of new technologies for antigen delivery, can help improve vaccine design. In this review, we summarize the recent advances in tumor cell-derived vaccines in cancer immunotherapy and highlight the different types of engineered approaches, mechanisms, administration methods, and future perspectives. We discuss tumor cell-derived vaccines, including whole tumor cell components, extracellular vesicles, and cell membrane-encapsulated nanoparticles. Tumor cell-derived vaccines contain multiple tumor antigens and can induce extensive and potent tumor immune responses. However, they should be engineered to overcome limitations such as insufficient immunogenicity and weak targeting. The genetic and chemical engineering of tumor cell-derived vaccines can greatly enhance their targeting, intelligence, and functionality, thereby realizing stronger tumor immunotherapy effects. Further advances in materials science, biomedicine, and oncology can facilitate the clinical translation of tumor cell-derived vaccines.
Collapse
Affiliation(s)
- Xinyi Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China,Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Hengqing Cui
- Department of Burns and Plastic Surgery, Shanghai Changzheng Hospital, Shanghai, 200003, China
| | - Wenjun Zhang
- Department of Burns and Plastic Surgery, Shanghai Changzheng Hospital, Shanghai, 200003, China
| | - Zhaoshen Li
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China,Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China,Corresponding author. Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China,Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China,Corresponding author. Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200444, China.
| |
Collapse
|
47
|
Yue B, Wang H, Cai X, Wang J, Chai Z, Peng W, Shu S, Fu C, Zhong J. Adipose-Secreted Exosomes and Their Pathophysiologic Effects on Skeletal Muscle. Int J Mol Sci 2022; 23:12411. [PMID: 36293266 PMCID: PMC9604254 DOI: 10.3390/ijms232012411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 04/30/2024] Open
Abstract
Due to its prominent secretory activity, adipose tissue (AT) is now considered a major player in the crosstalk between organs, especially with skeletal muscle. In which, exosomes are effective carriers for the intercellular material transfer of a wide range of molecules that can influence a series of physiological and pathological processes in recipient cells. Considering their underlying roles, the regulatory mechanisms of adipose-secreted exosomes and their cellular crosstalk with skeletal muscle have received great attention in the field. In this review, we describe what is currently known of adipose-secreted exosomes, as well as their applications in skeletal muscle pathophysiology.
Collapse
Affiliation(s)
- Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Jiabo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Wei Peng
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Shi Shu
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Changqi Fu
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| |
Collapse
|
48
|
Yan T, Tian X, Liu F, Liu Q, Sheng Q, Wu J, Jiang S. The emerging role of circular RNAs in drug resistance of non-small cell lung cancer. Front Oncol 2022; 12:1003230. [PMID: 36303840 PMCID: PMC9592927 DOI: 10.3389/fonc.2022.1003230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Due to the characteristics of aggressiveness and high risk of postoperative recurrence, non-small cell lung cancer (NSCLC) is a serious hazard to human health, accounting for 85% of all lung cancer cases. Drug therapies, including chemotherapy, targeted therapy and immunotherapy, are effective treatments for NSCLC in clinics. However, most patients ultimately develop drug resistance, which is also the leading cause of treatment failure in cancer. To date, the mechanisms of drug resistance have yet to be fully elucidated, thus original strategies are developed to overcome this issue. Emerging studies have illustrated that circular RNAs (circRNAs) participate in the generation of therapeutic resistance in NSCLC. CircRNAs mediate the modulations of immune cells, cytokines, autophagy, ferroptosis and metabolism in the tumor microenvironment (TME), which play essential roles in the generation of drug resistance of NSCLC. More importantly, circRNAs function as miRNAs sponges to affect specific signaling pathways, directly leading to the generation of drug resistance. Consequently, this review highlights the mechanisms underlying the relationship between circRNAs and drug resistance in NSCLC. Additionally, several therapeutic drugs associated with circRNAs are summarized, aiming to provide references for circRNAs serving as potential therapeutic targets in overcoming drug resistance in NSCLC.
Collapse
Affiliation(s)
- Tinghao Yan
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinchen Tian
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Qing Sheng
- School of Architecture and Fine Art, Dalian University of Technology, Dalian, China
| | - Jianlin Wu
- School of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Jianlin Wu, ; Shulong Jiang,
| | - Shulong Jiang
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
- *Correspondence: Jianlin Wu, ; Shulong Jiang,
| |
Collapse
|
49
|
Tong L, Zhang S, Huang R, Yi H, Wang JW. Extracellular vesicles as a novel photosensitive drug delivery system for enhanced photodynamic therapy. Front Bioeng Biotechnol 2022; 10:1032318. [PMID: 36237218 PMCID: PMC9550933 DOI: 10.3389/fbioe.2022.1032318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising non-invasive therapeutic approach that utilizes photosensitizers (PSs) to generate highly reactive oxygen species (ROS), including singlet oxygen, for removal of targeted cells. PDT has been proven efficacious for the treatment of several diseases, including cancer, cardiovascular disease, inflammatory bowel disease, and diabetic ocular disease. However, the therapeutic efficacy of PDT is limited and often accompanied by side effects, largely due to non-specific delivery of PSs beyond the desired lesion site. Over the past decade, despite various nanoparticular drug delivery systems developed have markedly improved the treatment efficacy while reducing the off-target effects of PSs, concerns over the safety and toxicity of synthetic nanomaterials following intravenous administration are raised. Extracellular vesicles (EVs), a type of nanoparticle released from cells, are emerging as a natural drug delivery system for PSs in light of EV's potentially low immunogenicity and biocompatibility compared with other nanoparticles. This review aims to provide an overview of the research progress in PS delivery systems and propose EVs as an alternative PS delivery system for PDT. Moreover, the challenges and future perspectives of EVs for PS delivery are discussed.
Collapse
Affiliation(s)
- Lingjun Tong
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Sitong Zhang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rong Huang
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
50
|
Zhou S, Cheing GLY, Cheung AKK. Role of exosomes and exosomal microRNA in muscle–Kidney crosstalk in chronic kidney disease. Front Cell Dev Biol 2022; 10:951837. [PMID: 36158193 PMCID: PMC9490178 DOI: 10.3389/fcell.2022.951837] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic kidney disease (CKD) is a progressive damage of kidneys that can no longer serve the blood-filtering function, and is a life-threatening condition. Skeletal muscle wasting is a common complication of CKD. Yet the relationship between kidney and skeletal muscle in CKD remains unclear. Exosomes, a type of small membrane-bound vesicles released from cells to the extracellular environment, have increasingly received attention due to their potential as mediators of crosstalk between kidneys and different organs, including skeletal muscle. This mini-review summarizes the recent findings that point to the role of exosomes in the cross-talk between kidney and skeletal muscle in CKD. Understanding of the contents and the mechanism of exosome release may prone exosomes be the potential therapeutic targets for CKD.
Collapse
Affiliation(s)
- Sijie Zhou
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong KongSAR, China
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gladys Lai Ying Cheing
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong KongSAR, China
- *Correspondence: Alex Kwok Kuen Cheung, ; Gladys Lai Ying Cheing,
| | - Alex Kwok Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong KongSAR, China
- *Correspondence: Alex Kwok Kuen Cheung, ; Gladys Lai Ying Cheing,
| |
Collapse
|