1
|
Gelli HP, Hedin KA, Laursen MF, Uribe RV, Sommer MOA. Enhancing intestinal absorption of a macromolecule through engineered probiotic yeast in the murine gastrointestinal tract. Trends Biotechnol 2025; 43:715-731. [PMID: 39658447 DOI: 10.1016/j.tibtech.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 12/12/2024]
Abstract
Oral administration of therapeutic peptides is limited by poor intestinal absorption. Use of engineered microorganisms as drug delivery vehicles can overcome the challenges faced by conventional delivery methods. The potential of engineered microorganisms to act synergistically with the therapeutics they deliver opens new horizons for noninvasive treatment modalities. This study engineered a probiotic yeast, Saccharomyces boulardii, to produce cell-penetrating peptides (CPPs) in situ for enhanced intestinal permeability. Four CPPs were integrated into the yeast chromosome: RRL helix, Shuffle, Penetramax, and PN159. In vitro tests on a Caco-2 cell model showed that three CPP-producing strains increased permeability without causing permanent damage. In vivo experiments on mice revealed that Sb PN159 administration over 10 days significantly increased FITC-dextran translocation into the bloodstream without causing inflammation. This study demonstrates, for the first time, the ability of an engineered microorganism to modulate host permeability for improved intestinal absorption of a macromolecule.
Collapse
Affiliation(s)
- Hitesh P Gelli
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Karl Alex Hedin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Martin F Laursen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ruben-Vazquez Uribe
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark; Center for Microbiology, VIB, Leuven, Belgium
| | | |
Collapse
|
2
|
Luo Z, Klein Cerrejon D, Römer S, Zoratto N, Leroux JC. Boosting systemic absorption of peptides with a bioinspired buccal-stretching patch. Sci Transl Med 2023; 15:eabq1887. [PMID: 37756378 DOI: 10.1126/scitranslmed.abq1887] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/29/2022] [Accepted: 06/28/2023] [Indexed: 09/29/2023]
Abstract
Biopharmaceuticals, including proteins and peptides, have revolutionized the treatment of a wide range of diseases, from diabetes and cardiovascular disorders to virus infections and cancer. Despite their efficacy, most of these macromolecular drugs require parenteral administration because of their high molecular weight and relative instability. Over the past 40 years, only a few oral peptide drugs have entered clinical trials, even when formulated with substantial amounts of permeation enhancers. To overcome the epithelial barrier, devices that inject drugs directly into the gastrointestinal mucosa have been proposed recently. However, the robustness and safety of those complex systems are yet to be assessed. In this study, we introduced an innovative technology to boost drug absorption by synergistically combining noninvasive stretching of the buccal mucosa with permeation enhancers. Inspired by the unique structural features of octopus suckers, a self-applicable suction patch was engineered, enabling strong adhesion to and effective mechanical deformation of the mucosal tissue. In dogs, this suction patch achieved bioavailability up to two orders of magnitude higher than those of the commercial tablet formulation of desmopressin, a peptide drug known for its poor oral absorption. Moreover, systemic exposure comparable to that of the approved oral semaglutide tablet was achieved without further optimization. Last, a first-in-human study involving 40 healthy participants confirmed the dosage form's acceptability, thereby supporting the clinical translatability of this simple yet effective platform technology.
Collapse
Affiliation(s)
- Zhi Luo
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - David Klein Cerrejon
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Simon Römer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Nicole Zoratto
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
3
|
Lomartire S, Gonçalves AMM. Algal Phycocolloids: Bioactivities and Pharmaceutical Applications. Mar Drugs 2023; 21:384. [PMID: 37504914 PMCID: PMC10381318 DOI: 10.3390/md21070384] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Seaweeds are abundant sources of diverse bioactive compounds with various properties and mechanisms of action. These compounds offer protective effects, high nutritional value, and numerous health benefits. Seaweeds are versatile natural sources of metabolites applicable in the production of healthy food, pharmaceuticals, cosmetics, and fertilizers. Their biological compounds make them promising sources for biotechnological applications. In nature, hydrocolloids are substances which form a gel in the presence of water. They are employed as gelling agents in food, coatings and dressings in pharmaceuticals, stabilizers in biotechnology, and ingredients in cosmetics. Seaweed hydrocolloids are identified in carrageenan, alginate, and agar. Carrageenan has gained significant attention in pharmaceutical formulations and exhibits diverse pharmaceutical properties. Incorporating carrageenan and natural polymers such as chitosan, starch, cellulose, chitin, and alginate. It holds promise for creating biodegradable materials with biomedical applications. Alginate, a natural polysaccharide, is highly valued for wound dressings due to its unique characteristics, including low toxicity, biodegradability, hydrogel formation, prevention of bacterial infections, and maintenance of a moist environment. Agar is widely used in the biomedical field. This review focuses on analysing the therapeutic applications of carrageenan, alginate, and agar based on research highlighting their potential in developing innovative drug delivery systems using seaweed phycocolloids.
Collapse
Affiliation(s)
- Silvia Lomartire
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana M M Gonçalves
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Raghav N, Vashisth C, Mor N, Arya P, Sharma MR, Kaur R, Bhatti SP, Kennedy JF. Recent advances in cellulose, pectin, carrageenan and alginate-based oral drug delivery systems. Int J Biol Macromol 2023:125357. [PMID: 37327920 DOI: 10.1016/j.ijbiomac.2023.125357] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023]
Abstract
Polymers-based drug delivery systems constitute one of the highly explored thrust areas in the field of the medicinal and pharmaceutical industries. In the past years, the properties of polymers have been modified in context to their solubility, release kinetics, targeted action site, absorption, and therapeutic efficacy. Despite the availability of diverse synthetic polymers for the bioavailability enhancement of drugs, the use of natural polymers is still highly recommended due to their easy availability, accessibility, and non-toxicity. The aim of the review is to provide the available literature of the last five years on oral drug delivery systems based on four natural polymers i.e., cellulose, pectin, carrageenan, and alginate in a concise and tabulated manner. In this review, most of the information is in tabulated form to provide easy accessibility to the reader. The data related to active pharmaceutical ingredients and supported components in different formulations of the mentioned polymers have been made available.
Collapse
Affiliation(s)
- Neera Raghav
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India.
| | - Chanchal Vashisth
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Nitika Mor
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Priyanka Arya
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Manishita R Sharma
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Ravinder Kaur
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | | | - John F Kennedy
- Chembiotech laboratories Ltd, Tenbury Wells, WR15 8FF, United Kingdom.
| |
Collapse
|
5
|
Xie Y, Jin Z, Ma D, Yin TH, Zhao K. Palmitic acid- and cysteine-functionalized nanoparticles overcome mucus and epithelial barrier for oral delivery of drug. Bioeng Transl Med 2023; 8:e10510. [PMID: 37206211 PMCID: PMC10189451 DOI: 10.1002/btm2.10510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/20/2023] [Accepted: 03/08/2023] [Indexed: 05/21/2023] Open
Abstract
Nanoparticles (NPs) used for oral administration have greatly improved drug bioavailability and therapeutic efficacy. Nevertheless, NPs are limited by biological barriers, such as gastrointestinal degradation, mucus barrier, and epithelial barrier. To solve these problems, we developed the PA-N-2-HACC-Cys NPs loaded with anti-inflammatory hydrophobic drug curcumin (CUR) (CUR@PA-N-2-HACC-Cys NPs) by self-assembled amphiphilic polymer, composed of the N-2-Hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC), hydrophobic palmitic acid (PA), and cysteine (Cys). After oral administration, the CUR@PA-N-2-HACC-Cys NPs had good stability and sustained release under gastrointestinal conditions, followed by adhering to the intestine to achieve drug mucosal delivery. Additionally, the NPs could penetrate mucus and epithelial barriers to promote cellular uptake. The CUR@PA-N-2-HACC-Cys NPs could open tight junctions between cells for transepithelial transport while striking a balance between mucus interaction and diffusion through mucus. Notably, the CUR@PA-N-2-HACC-Cys NPs improved the oral bioavailability of CUR, which remarkably relieved colitis symptoms and promoted mucosal epithelial repair. Our findings proved that the CUR@PA-N-2-HACC-Cys NPs had excellent biocompatibility, could overcome mucus and epithelial barriers, and had significant application prospects for oral delivery of the hydrophobic drugs.
Collapse
Affiliation(s)
- Yinzhuo Xie
- Institute of Nanobiomaterials and Immunology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou UniversityTaizhou318000China
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang UniversityHarbin150080China
| | - Zheng Jin
- Institute of Nanobiomaterials and Immunology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou UniversityTaizhou318000China
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang UniversityHarbin150080China
| | - Da Ma
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou UniversityTaizhou318000China
| | - Tan Hui Yin
- Tunku Abdul Rahman University of Management and TechnologyJalan Genting KelangKuala Lumpur53300Malaysia
| | - Kai Zhao
- Institute of Nanobiomaterials and Immunology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou UniversityTaizhou318000China
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang UniversityHarbin150080China
| |
Collapse
|
6
|
Kommineni N, Sainaga Jyothi VGS, Butreddy A, Raju S, Shapira T, Khan W, Angsantikul P, Domb AJ. SNAC for Enhanced Oral Bioavailability: An Updated Review. Pharm Res 2023; 40:633-650. [PMID: 36539668 DOI: 10.1007/s11095-022-03459-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
The delivery of proteins and peptides via an oral route poses numerous challenges to improve the oral bioavailability and patient compliance. To overcome these challenges, as well as to improve the permeation of proteins and peptides via intestinal mucosa, several chemicals have been studied such as surfactants, fatty acids, bile salts, pH modifiers, and chelating agents, amongst these medium chain fatty acid like C10 (sodium caprate) and Sodium N-[8-(2-hydroxybenzoyl) amino] caprylate (SNAC) and its derivatives that have been well studied from a clinical perspective. This current review enumerates the challenges involved in protein and peptide delivery via the oral route, i.e., non-invasive routes of protein and peptide administration. This review also covers the chemistry behind SNAC and toxicity as well as mechanisms to enhance the oral delivery of clinically proven molecules like simaglutide and other small molecules under clinical development, as well as other permeation enhancers for efficient delivery of proteins and peptides.
Collapse
Affiliation(s)
- Nagavendra Kommineni
- Center for Biomedical Research, Population Council, New York, NY, 10065, USA.
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| | - Vaskuri G S Sainaga Jyothi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Arun Butreddy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS, 38677, USA
| | - Saka Raju
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Tovi Shapira
- School of Pharmacy and Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Medical Center, Ein Kerem Campus, 91120, Jerusalem, Israel
| | - Wahid Khan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
- Natco Research Centre, NATCO Pharma Limited, Hyderabad, 500018, India
| | - Pavimol Angsantikul
- Center for Biomedical Research, Population Council, New York, NY, 10065, USA
| | - Abraham J Domb
- School of Pharmacy and Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Medical Center, Ein Kerem Campus, 91120, Jerusalem, Israel.
| |
Collapse
|
7
|
Noh G, Keum T, Raj V, Kim J, Thapa C, Shakhakarmi K, Kang MJ, Goo YT, Choi YW, Lee S. Assessment of hydrophobic-ion paired insulin incorporated SMEDDS for the treatment of diabetes mellitus. Int J Biol Macromol 2023; 225:911-922. [PMID: 36403777 DOI: 10.1016/j.ijbiomac.2022.11.155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
To overcome the low oral bioavailability of insulin, we hypothesized that the insulin-hydrophobic ion pairing (HIP) complex incorporated self-microemulsifying drug delivery system (SMEDDS) would be beneficial. In the present study, an oral insulin delivery system was developed and estimated using the HIP technique and SMEDDS. Further insulin-HIP complexes were characterized using various spectroscopical techniques. Additionally, insulin-HIP complexes were subjected to analysis of complexes' conformational stability in the real physiological solution using computational approaches. On the other hand, in vitro, and in vivo studies were carried out to investigate the permeability and hypoglycemic effect. Subsequently, in an in vitro non-everted gut sac study, the apparent permeability coefficient (Papp) was approximately 8-fold higher in the colon than in the jejunum, and the HIP-incorporated SMEDDS showed an approximately 3-fold higher Papp value than the insulin solution. The hypoglycemic effect after in situ colon instillation, the HIP complex between insulin and sodium docusate-incorporated SMEDDS showed a pharmacological availability of 2.52 ± 0.33 % compared to the subcutaneously administered insulin solution. Thus, based on these outcomes, it can be concluded that the selection of appropriate counterions is important in developing HIP-incorporated SMEDDS, wherein this system shows promise as a tool for oral peptide delivery systems.
Collapse
Affiliation(s)
- Gyubin Noh
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Taekwang Keum
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Vinit Raj
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Jeonghwan Kim
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Chhitij Thapa
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Kanchan Shakhakarmi
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Myung Joo Kang
- College of Pharmacy, Dankook University, Chungnam 330-714, Republic of Korea
| | - Yoon Tae Goo
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
| | - Young Wook Choi
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea.
| |
Collapse
|
8
|
Durník R, Šindlerová L, Babica P, Jurček O. Bile Acids Transporters of Enterohepatic Circulation for Targeted Drug Delivery. Molecules 2022; 27:molecules27092961. [PMID: 35566302 PMCID: PMC9103499 DOI: 10.3390/molecules27092961] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 12/29/2022] Open
Abstract
Bile acids (BAs) are important steroidal molecules with a rapidly growing span of applications across a variety of fields such as supramolecular chemistry, pharmacy, and biomedicine. This work provides a systematic review on their transport processes within the enterohepatic circulation and related processes. The focus is laid on the description of specific or less-specific BA transport proteins and their localization. Initially, the reader is provided with essential information about BAs′ properties, their systemic flow, metabolism, and functions. Later, the transport processes are described in detail and schematically illustrated, moving step by step from the liver via bile ducts to the gallbladder, small intestine, and colon; this description is accompanied by descriptions of major proteins known to be involved in BA transport. Spillage of BAs into systemic circulation and urine excretion are also discussed. Finally, the review also points out some of the less-studied areas of the enterohepatic circulation, which can be crucial for the development of BA-related drugs, prodrugs, and drug carrier systems.
Collapse
Affiliation(s)
- Robin Durník
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic;
| | - Lenka Šindlerová
- Department of Biophysics of Immune System, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic;
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic;
| | - Ondřej Jurček
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- CEITEC—Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 61200 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
9
|
Choi JU, Zhang X, Hasan MM, Karim M, Chung SW, Alam F, Alqahtani F, Reddy SY, Kim IS, Al-Hilal TA, Byun Y. Targeting angiogenic growth factors using therapeutic glycosaminoglycans on doppel-expressing endothelial cells for blocking angiogenic signaling in cancer. Biomaterials 2022; 283:121423. [DOI: 10.1016/j.biomaterials.2022.121423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 01/31/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023]
|
10
|
Deshayes C, Arafath MN, Apaire-Marchais V, Roger E. Drug Delivery Systems for the Oral Administration of Antimicrobial Peptides: Promising Tools to Treat Infectious Diseases. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:778645. [PMID: 35146486 PMCID: PMC8821882 DOI: 10.3389/fmedt.2021.778645] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) have a great potential to face the global expansion of antimicrobial resistance (AMR) associated to the development of multidrug-resistant (MDR) pathogens. AMPs are usually composed of 10–50 amino acids with a broad structural diversity and present a range of antimicrobial activities. Unfortunately, even if the oral route is the most convenient one, currently approved therapeutic AMPs are mostly administrated by the intravenous route. Thus, the development of novel drug delivery systems (DDSs) represents a promising opportunity to protect AMPs from chemical and enzymatic degradation through the gastrointestinal tract and to increase intestinal permeability leading to high bioavailability. In this review, the classification and properties as well as mechanisms of the AMPs used in infectiology are first described. Then, the different pharmaceutical forms existing in the market for oral administration are presented. Finally, the formulation technologies, including microparticle- and nanoparticle-based DDSs, used to improve the oral bioavailability of AMPs are reviewed.
Collapse
Affiliation(s)
| | | | | | - Emilie Roger
- University of Angers, INSERM, CNRS, MINT, SFR ICAT, Angers, France
- *Correspondence: Emilie Roger
| |
Collapse
|
11
|
Noh G, Keum T, Bashyal S, Seo JE, Shrawani L, Kim JH, Lee S. Recent progress in hydrophobic ion-pairing and lipid-based drug delivery systems for enhanced oral delivery of biopharmaceuticals. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00549-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Mao X, Long L, Shen J, Lin K, Yin L, Yi J, Zhang LM, Deng DYB, Yang L. Nanoparticles composed of the tea polysaccharide-complexed cationic vitamin B 12-conjugated glycogen derivative. Food Funct 2021; 12:8522-8534. [PMID: 34312648 DOI: 10.1039/d1fo00487e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tea polysaccharides exhibit multiple important bioactivities, but very few of them can be absorbed through the small intestine. To enhance the absorption efficacy of tea polysaccharides, a cationic vitamin B12-conjugated glycogen derivative bearing the diethylenetriamine residues (VB12-DETA-Gly) was synthesized and characterized using FTIR, 1H NMR, and UV-vis spectroscopy. An acidic tea polysaccharide (TPSA) was isolated from green tea. The TPSA/VB12-DETA-Gly complexed nanoparticles were prepared, which showed positive zeta potentials and were irregular spherical nanoparticles in the sizes of 50-100 nm. To enable the fluorescence and UV-vis absorption properties of TPSA, a Congo red residue-conjugated TPSA derivative (CR-TPSA) was synthesized. The interactions and complexation mechanism between the CR-TPSA and the VB12-DETA-Gly derivatives were investigated using fluorescence spectroscopy, resonance light scattering spectroscopy, and UV-vis spectroscopy. The results indicated that the electrostatic interaction could play a major role during the CR-TPSA and VB12-DETA-Gly-II complexation processes. The TPSA/VB12-DETA-Gly nanoparticles were nontoxic and exhibited targeted endocytosis for the Caco-2 cells, and showed high permeation through intestinal enterocytes using the Caco-2 cell model. Therefore, they exhibit potential for enhancing the absorption efficacy of tea polysaccharides through the small intestinal mucosa.
Collapse
Affiliation(s)
- Xuhong Mao
- School of Materials Science and Engineering, School of Chemistry, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-sen University, Guangzhou 510275, China.
| | - Lingli Long
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Juncheng Shen
- School of Materials Science and Engineering, School of Chemistry, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-sen University, Guangzhou 510275, China.
| | - Kunhua Lin
- School of Materials Science and Engineering, School of Chemistry, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-sen University, Guangzhou 510275, China.
| | - Lin Yin
- School of Materials Science and Engineering, School of Chemistry, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-sen University, Guangzhou 510275, China.
| | - Juzhen Yi
- School of Materials Science and Engineering, School of Chemistry, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-sen University, Guangzhou 510275, China.
| | - Li-Ming Zhang
- School of Materials Science and Engineering, School of Chemistry, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-sen University, Guangzhou 510275, China.
| | - David Y B Deng
- Scientific Research Center and Department of Orthopedic, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China and Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Liqun Yang
- School of Materials Science and Engineering, School of Chemistry, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
13
|
Potential Applications of Chitosan-Based Nanomaterials to Surpass the Gastrointestinal Physiological Obstacles and Enhance the Intestinal Drug Absorption. Pharmaceutics 2021; 13:pharmaceutics13060887. [PMID: 34203816 PMCID: PMC8232820 DOI: 10.3390/pharmaceutics13060887] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/06/2021] [Accepted: 06/11/2021] [Indexed: 12/29/2022] Open
Abstract
The small intestine provides the major site for the absorption of numerous orally administered drugs. However, before reaching to the systemic circulation to exert beneficial pharmacological activities, the oral drug delivery is hindered by poor absorption/metabolic instability of the drugs in gastrointestinal (GI) tract and the presence of the mucus layer overlying intestinal epithelium. Therefore, a polymeric drug delivery system has emerged as a robust approach to enhance oral drug bioavailability and intestinal drug absorption. Chitosan, a cationic polymer derived from chitin, and its derivatives have received remarkable attention to serve as a promising drug carrier, chiefly owing to their versatile, biocompatible, biodegradable, and non-toxic properties. Several types of chitosan-based drug delivery systems have been developed, including chemical modification, conjugates, capsules, and hybrids. They have been shown to be effective in improving intestinal assimilation of several types of drugs, e.g., antidiabetic, anticancer, antimicrobial, and anti-inflammatory drugs. In this review, the physiological challenges affecting intestinal drug absorption and the effects of chitosan on those parameters impacting on oral bioavailability are summarized. More appreciably, types of chitosan-based nanomaterials enhancing intestinal drug absorption and their mechanisms, as well as potential applications in diabetes, cancers, infections, and inflammation, are highlighted. The future perspective of chitosan applications is also discussed.
Collapse
|
14
|
Light stimulus responsive nanomedicine in the treatment of oral squamous cell carcinoma. Eur J Med Chem 2020; 199:112394. [DOI: 10.1016/j.ejmech.2020.112394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/13/2022]
|
15
|
Abstract
The effect of antipsychotic medication is poor in 30-40% of patients with schizophrenia; treatment resistance is usually met with shifts to new drugs or drug augmentation strategies or a trial of clozapine. The purpose of this review was to examine the potential role of intestinal bacteria in the bioavailability of antipsychotic medication and the possibility that parenterally administered antipsychotics might be able to overcome treatment resistance. Databases were searched with appropriate terms to locate relevant papers dealing with the effect of antipsychotic drugs on the gut microbiome and the effect of bacterial metabolizing enzymes on antipsychotic drugs. Also searched were papers addressing the various current parenteral formulations of antipsychotic drugs. Sixty-five recent pertinent papers were reviewed and the results are suggestive of the premise that there is a drug refractory form of psychosis for which the composition of gut bacteria is responsible, and that parenteral drug administration could overcome the problem.
Collapse
Affiliation(s)
- Mary V Seeman
- Department of Psychiatry, University of Toronto, 260 Heath St. West Suite #605, Toronto, Ontario, M5P 3L6, Canada.
| |
Collapse
|
16
|
Du X, Yin S, Xu L, Ma J, Yu H, Wang G, Li J. Polylysine and cysteine functionalized chitosan nanoparticle as an efficient platform for oral delivery of paclitaxel. Carbohydr Polym 2020; 229:115484. [DOI: 10.1016/j.carbpol.2019.115484] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 07/18/2019] [Accepted: 10/15/2019] [Indexed: 01/11/2023]
|
17
|
Melnyk T, Đorđević S, Conejos-Sánchez I, Vicent MJ. Therapeutic potential of polypeptide-based conjugates: Rational design and analytical tools that can boost clinical translation. Adv Drug Deliv Rev 2020; 160:136-169. [PMID: 33091502 DOI: 10.1016/j.addr.2020.10.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022]
Abstract
The clinical success of polypeptides as polymeric drugs, covered by the umbrella term "polymer therapeutics," combined with related scientific and technological breakthroughs, explain their exponential growth in the development of polypeptide-drug conjugates as therapeutic agents. A deeper understanding of the biology at relevant pathological sites and the critical biological barriers faced, combined with advances regarding controlled polymerization techniques, material bioresponsiveness, analytical methods, and scale up-manufacture processes, have fostered the development of these nature-mimicking entities. Now, engineered polypeptides have the potential to combat current challenges in the advanced drug delivery field. In this review, we will discuss examples of polypeptide-drug conjugates as single or combination therapies in both preclinical and clinical studies as therapeutics and molecular imaging tools. Importantly, we will critically discuss relevant examples to highlight those parameters relevant to their rational design, such as linking chemistry, the analytical strategies employed, and their physicochemical and biological characterization, that will foster their rapid clinical translation.
Collapse
Affiliation(s)
- Tetiana Melnyk
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Snežana Đorđević
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inmaculada Conejos-Sánchez
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|
18
|
Cao SJ, Xu S, Wang HM, Ling Y, Dong J, Xia RD, Sun XH. Nanoparticles: Oral Delivery for Protein and Peptide Drugs. AAPS PharmSciTech 2019; 20:190. [PMID: 31111296 PMCID: PMC6527526 DOI: 10.1208/s12249-019-1325-z] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/31/2019] [Indexed: 12/31/2022] Open
Abstract
Protein and peptide drugs have many advantages, such as high bioactivity and specificity, strong solubility, and low toxicity. Therefore, the strategies for improving the bioavailability of protein peptides are reviewed, including chemical modification of nanocarriers, absorption enhancers, and mucous adhesion systems. The status, advantages, and disadvantages of various strategies are systematically analyzed. The systematic and personalized design of various factors affecting the release and absorption of drugs based on nanoparticles is pointed out. It is expected to design a protein peptide oral delivery system that can be applied in the clinic.
Collapse
Affiliation(s)
- Shu-Jun Cao
- Pharmacy College of Qingdao University, Qingdao, 266021, China
| | - Shuo Xu
- Stomatology College of Qingdao University, Qingdao, 266021, China
| | - Hui-Ming Wang
- Affiliated Hospital of Qingdao University, Qingdao, 266555, China
| | - Yong Ling
- Affiliated Hospital of Qingdao University, Qingdao, 266555, China
| | - Jiahua Dong
- Affiliated Hospital of Qingdao University, Qingdao, 266555, China
| | - Rui-Dong Xia
- Pharmacy College of Qingdao University, Qingdao, 266021, China
| | - Xiang-Hong Sun
- Affiliated Hospital of Qingdao University, Qingdao, 266555, China.
| |
Collapse
|
19
|
Yang G, Wu F, Chen M, Jin J, Wang R, Yuan Y. Formulation design, characterization, and in vitro and in vivo evaluation of nanostructured lipid carriers containing a bile salt for oral delivery of gypenosides. Int J Nanomedicine 2019; 14:2267-2280. [PMID: 31015758 PMCID: PMC6448534 DOI: 10.2147/ijn.s194934] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Gypenosides (GPS) have been used as traditional medicine for centuries with various pharmacological effects. However, its therapeutic effects were restricted owing to the poor lipid and water solubility and low absorption. This study aimed to develop nanostructured lipid carriers (NLCs) containing a bile salt formulation (sodium glycocholate, SGC) for GPS, and to evaluate the potential of the GPS-SGC-NLCs as an oral delivery system. Methods The preparation of GPS-SGC-NLCs was investigated using a single-factor test and a central composite design of response surface methodology. In vitro release and pharmacokinetics studies were used to evaluate the dissolution and bioavailability of GPS. Furthermore, In vivo imaging and in situ intestinal perfusion studies were performed to investigate the absorption of the preparations in the gastrointestinal tract. Results The optimised formulation yielded nanoparticles with an approximate diameter of 146.7 nm, polydispersity of 0.137, zeta potential of -56.0 mV, entrapment efficiency of 74.22% and drug loading of 4.89%. An in vitro dissolution analysis revealed the sustained release of contents from GPS-SGC-NLCs over 48 h with 56.4% of the drug released. A pharmacokinetic analysis revealed an 8.5-fold increase of bioavailability of the GPS-SGC-NLCs compared with GPS powder. In vivo imaging and in situ intestinal perfusion studies showed that SGC-NLCs could significantly increase the absorption of GPS in intestinal tract. In vitro cytotoxicity evaluated using Caco-2 cells demonstrated that GPS-SGC-NLCs decrease the cytotoxicity of the drug. Conclusion The SGC-NLC formulation can significantly improve the absorption of GPS, which provides an effective approach for enhancing the oral absorption of drugs.
Collapse
Affiliation(s)
- Gang Yang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China,
| | - Feihua Wu
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China,
| | - Minyan Chen
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China,
| | - Jian Jin
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China,
| | - Rong Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China,
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China,
| |
Collapse
|
20
|
Jourova L, Anzenbacher P, Matuskova Z, Vecera R, Strojil J, Kolar M, Nobilis M, Hermanova P, Hudcovic T, Kozakova H, Kverka M, Anzenbacherova E. Gut microbiota metabolizes nabumetone in vitro: Consequences for its bioavailability in vivo in the rodents with altered gut microbiome. Xenobiotica 2019; 49:1296-1302. [PMID: 30794062 DOI: 10.1080/00498254.2018.1558310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1. The underlying microbial metabolic activity toward xenobiotics is among the least explored factors contributing to the inter-individual variability in drug response. 2. Here, we analyzed the effect of microbiota on a non-steroidal anti-inflammatory drug nabumetone. 3. First, we cultivated the drug with the selected gut commensal and probiotic bacteria under both aerobic and anaerobic conditions and analyzed its metabolites by high-performance liquid chromatography (HPLC) with UV detection. To analyze the effect of microbiota on nabumetone pharmacokinetics in vivo, we administered a single oral dose of nabumetone to rodents with intentionally altered gut microbiome - either rats treated for three days with the antibiotic imipenem or to germ-free mice. Plasma levels of its main active metabolite 6 methoxy-2-naphthylacetic acid (6-MNA) were analyzed at pre-specified time intervals using HPLC with UV/fluorescence detection. 4. We found that nabumetone is metabolized by bacteria to its non-active metabolites and that this effect is stronger under anaerobic conditions. Although in vivo, none of the pharmacokinetic parameters of 6-MNA was significantly altered, there was a clear trend towards an increase of the AUC, Cmax and t1/2 in rats with reduced microbiota and germ-free mice.
Collapse
Affiliation(s)
- Lenka Jourova
- a Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc , Czech Republic
| | - Pavel Anzenbacher
- b Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc , Czech Republic
| | - Zuzana Matuskova
- b Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc , Czech Republic
| | - Rostislav Vecera
- b Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc , Czech Republic
| | - Jan Strojil
- b Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc , Czech Republic
| | - Milan Kolar
- c Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University Olomouc , Czech Republic
| | - Milan Nobilis
- d Department of Pharmaceutical Chemistry and Drug Control, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague , Hradec Kralove , Czech Republic
| | - Petra Hermanova
- e The Czech Academy of Sciences, Institute of Microbiology , Novy Hradek , Czech Republic
| | - Tomas Hudcovic
- e The Czech Academy of Sciences, Institute of Microbiology , Novy Hradek , Czech Republic
| | - Hana Kozakova
- e The Czech Academy of Sciences, Institute of Microbiology , Novy Hradek , Czech Republic
| | - Miloslav Kverka
- f The Czech Academy of Sciences, Institute of Microbiology and Institute of Experimental Medicine , Prague , Czech Republic
| | - Eva Anzenbacherova
- a Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc , Czech Republic
| |
Collapse
|
21
|
Whang A, Nagpal R, Yadav H. Bi-directional drug-microbiome interactions of anti-diabetics. EBioMedicine 2019; 39:591-602. [PMID: 30553752 PMCID: PMC6354569 DOI: 10.1016/j.ebiom.2018.11.046] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/13/2018] [Accepted: 11/21/2018] [Indexed: 12/18/2022] Open
Abstract
Type 2 diabetes (T2D) has become a global epidemic. Although several drugs are available to manage T2D, problems associated with person-to-person variability in drug efficacy and potential side-effects remain unresolved. Owing to the emerging role of the gut microbiome in obesity and T2D, the interaction between gut microbes and anti-diabetic drugs and its influence on drugs' functions remains of immediate research interest. On one hand, drugs can manipulate gut microbiome composition and metabolic capacity. Conversely, the metabolic activities of the microbiome and its metabolites can also influence drug metabolism and effects. Hence, understanding this bi-directional drug-microbiome interaction and how it influences the clinical outcomes of antidiabetic drugs can pave the way to develop next-generation strategies to ameliorate diabetes. This review presents evidences demonstrating the putative interactions between anti-diabetic drugs and the gut microbiome, and discusses the potential of microbiome modulators to manipulate drug-microbiome interactions and the drug metabolism.
Collapse
Affiliation(s)
- Andrew Whang
- Department of Internal Medicine- Molecular Medicine, Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ravinder Nagpal
- Department of Internal Medicine- Molecular Medicine, Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hariom Yadav
- Department of Internal Medicine- Molecular Medicine, Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
22
|
Primavera R, Palumbo P, Celia C, Cinque B, Carata E, Carafa M, Paolino D, Cifone MG, Di Marzio L, Cilurzo F. An insight of in vitro transport of PEGylated non-ionic surfactant vesicles (NSVs) across the intestinal polarized enterocyte monolayers. Eur J Pharm Biopharm 2018; 127:432-442. [PMID: 29605467 DOI: 10.1016/j.ejpb.2018.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/16/2018] [Accepted: 03/28/2018] [Indexed: 12/11/2022]
Abstract
PEGylated non-ionic surfactant-based vesicles (NSVs) are promising drug delivery systems for the local, oral and systemic administrations of therapeutics. The aim of this study was to test the cellular biocompatibility and transport of Nile Red-loaded NSVs (NR-NSVs) across the Caco-2-cell monolayers, which represent an in vitro model of human intestinal epithelium. The NR-NSVs assumed a spherical shape with a mean size of 140 nm, and a narrow size distribution. The NR-NSVs did not modify Caco-2 cell viability, which remained unaltered in vitro up to a concentration of 1 mM. The transport studies demonstrated that the NR-NSVs moved across the Caco-2 monolayers without affecting the transepithelial electrical resistance. These results were supported by flow cytometry analysis, which demonstrated that NR-NSVs were internalized inside the Caco-2 cells. Nanoparticle tracking and Transmission Electron Microscopy (TEM) analysis showed the presence of NR-NSVs in the basolateral side of the Caco-2 monolayers. TEM images also showed that NSVs were transported intact across the Caco-2 monolayers, thus demonstrating a predominant transcytosis mechanism of transport through endocytosis. The NSVs did not affect the integrity of the membrane barrier in vitro, and can potentially be used in clinics to increase the oral bioavailability and delivery of therapeutics.
Collapse
Affiliation(s)
- Rosita Primavera
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Paola Palumbo
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Christian Celia
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy; Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Benedetta Cinque
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Elisabetta Carata
- Department of Biological and Environmental Science and Technology (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Maria Carafa
- Department of Drug Chemistry and Technology, University of Rome "Sapienza", Rome, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Catanzaro, Italy; IRC FSH-Interregional Research Center for Food Safety & Health, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Maria Grazia Cifone
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Luisa Di Marzio
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy.
| | | |
Collapse
|
23
|
Kim JK, Choi MS, Jeong JJ, Lim SM, Kim IS, Yoo HH, Kim DH. Effect of Probiotics on Pharmacokinetics of Orally Administered Acetaminophen in Mice. Drug Metab Dispos 2018; 46:122-130. [PMID: 29212822 DOI: 10.1124/dmd.117.077222] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/29/2017] [Indexed: 02/13/2025] Open
Abstract
Orally administered probiotics change gut microbiota composition and enzyme activities. Thus, coadministration of probiotics with drugs may lead to changes in the pharmacokinetic parameters of the drugs. In this study, we investigated the pharmacokinetics of acetaminophen in mice treated with probiotics. Oral administration of probiotics changed the gut microbiota composition in the mice. Of these probiotics, Lactobacillus reuteri K8 increased the numbers of clostridia, bifidobacteria, and enterococci, and Lactobacillus rhamnosus K9 decreased the number of bifidobacteria, determined by culturing in selective media. Next, we performed a pharmacokinetic study of acetaminophen in mice orally treated with K8 and K9 for 3 days. Treatment with K8 reduced the area under the curve (AUC) of orally administered acetaminophen to 68.4% compared with normal control mice, whereas K9 did not affect the AUC of acetaminophen. Oral administration to mice of K8, which degraded acetaminophen, increased the degradation of acetaminophen by gut microbiota, whereas K9 treatment did not affect it. Treatment with K8 increased the number of L. reuteri adhered in the upper small intestine, whereas the number of L. rhamnosus was not affected by treatment with K8 or K9. K8 increased the number of cyanobacteria, whereas K9 increased the number of deferribacteres. These results suggest that the intake of probiotics may make the absorption of orally administered drugs fluctuate through the disturbance of gut microbiota-mediated drug metabolism and that the subsequent impact on microbiota metabolism could result in altered systemic concentrations of the intact drug.
Collapse
Affiliation(s)
- Jeon-Kyung Kim
- Departments of Life and Nanopharmaceutical Sciences and Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea (J.-K.K., J.-J.J., S.-M.L., D.-H.K.); and Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea (M.S.C., I.S.K., H.H.Y.)
| | - Min Sun Choi
- Departments of Life and Nanopharmaceutical Sciences and Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea (J.-K.K., J.-J.J., S.-M.L., D.-H.K.); and Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea (M.S.C., I.S.K., H.H.Y.)
| | - Jin-Ju Jeong
- Departments of Life and Nanopharmaceutical Sciences and Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea (J.-K.K., J.-J.J., S.-M.L., D.-H.K.); and Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea (M.S.C., I.S.K., H.H.Y.)
| | - Su-Min Lim
- Departments of Life and Nanopharmaceutical Sciences and Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea (J.-K.K., J.-J.J., S.-M.L., D.-H.K.); and Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea (M.S.C., I.S.K., H.H.Y.)
| | - In Sook Kim
- Departments of Life and Nanopharmaceutical Sciences and Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea (J.-K.K., J.-J.J., S.-M.L., D.-H.K.); and Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea (M.S.C., I.S.K., H.H.Y.)
| | - Hye Hyun Yoo
- Departments of Life and Nanopharmaceutical Sciences and Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea (J.-K.K., J.-J.J., S.-M.L., D.-H.K.); and Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea (M.S.C., I.S.K., H.H.Y.)
| | - Dong-Hyun Kim
- Departments of Life and Nanopharmaceutical Sciences and Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea (J.-K.K., J.-J.J., S.-M.L., D.-H.K.); and Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea (M.S.C., I.S.K., H.H.Y.)
| |
Collapse
|
24
|
Park J, Choi JU, Kim K, Byun Y. Bile acid transporter mediated endocytosis of oral bile acid conjugated nanocomplex. Biomaterials 2017; 147:145-154. [DOI: 10.1016/j.biomaterials.2017.09.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 02/06/2023]
|
25
|
Oral delivery of a therapeutic gene encoding glucagon-like peptide 1 to treat high fat diet-induced diabetes. J Control Release 2017; 268:305-313. [DOI: 10.1016/j.jconrel.2017.08.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/01/2017] [Accepted: 08/26/2017] [Indexed: 12/22/2022]
|
26
|
Wang L, Zhou Y, Wu M, Wu M, Li X, Gong X, Chang J, Zhang X. Functional nanocarrier for drug and gene delivery via local administration in mucosal tissues. Nanomedicine (Lond) 2017; 13:69-88. [PMID: 29173025 DOI: 10.2217/nnm-2017-0143] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Local administration has many advantages for treating diseases. However, the surface mucus layer becomes a major obstacle that easily traps and fast removes local administrated drugs and genes in mucosal tissues. Fortunately, the rapidly developing nanocarriers with special physical and chemical properties may help to refine the treatment of mucosal tissues via delivering drugs and genes to the target tissue, and prolong the drug action time. Therefore, this review focuses on the strategies to apply different nanocarriers for drug-delivery in mucosal tissues, including mucoadhesive and mucus-penetrating types. Delivering drugs and genes to anatomical sites with high mucus turnover becomes more feasible and effective, and maintains sufficient local drug concentration to improve treatment efficacy.
Collapse
Affiliation(s)
- Lingwei Wang
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Yurui Zhou
- School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials & Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin, PR China
| | - Menglin Wu
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Minghao Wu
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Xue Li
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Xiaoqun Gong
- School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials & Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin, PR China
| | - Jin Chang
- School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials & Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin, PR China
| | - Xuening Zhang
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| |
Collapse
|
27
|
Nagano M, Carrillo N, Otsubo N, Hakamata W, Ban H, Fuller RP, Bashiruddin NK, Barbas CF. In vivo programming of endogenous antibodies via oral administration of adaptor ligands. Bioorg Med Chem 2017; 25:5952-5961. [DOI: 10.1016/j.bmc.2017.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/24/2017] [Accepted: 09/08/2017] [Indexed: 01/03/2023]
|
28
|
Quintanilha NP, dos Santos Miranda Costa I, Freiman de Souza Ramos M, Campos de Oliveira Miguel N, Riemma Pierre MB. α-Bisabolol improves 5-aminolevulinic acid retention in buccal tissues: Potential application in the photodynamic therapy of oral cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 174:298-305. [DOI: 10.1016/j.jphotobiol.2017.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/13/2017] [Accepted: 08/07/2017] [Indexed: 11/29/2022]
|
29
|
Lai M, Wang J, Tan J, Luo J, Zhang LM, Deng DY, Yang L. Preparation, complexation mechanism and properties of nano-complexes of Astragalus polysaccharide and amphiphilic chitosan derivatives. Carbohydr Polym 2017; 161:261-269. [DOI: 10.1016/j.carbpol.2016.12.068] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/03/2016] [Accepted: 12/28/2016] [Indexed: 12/26/2022]
|
30
|
Zia KM, Tabasum S, Nasif M, Sultan N, Aslam N, Noreen A, Zuber M. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int J Biol Macromol 2017; 96:282-301. [DOI: 10.1016/j.ijbiomac.2016.11.095] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/10/2016] [Accepted: 11/23/2016] [Indexed: 01/05/2023]
|
31
|
Wang J, Tan J, Luo J, Huang P, Zhou W, Chen L, Long L, Zhang LM, Zhu B, Yang L, Deng DYB. Enhancement of scutellarin oral delivery efficacy by vitamin B12-modified amphiphilic chitosan derivatives to treat type II diabetes induced-retinopathy. J Nanobiotechnology 2017; 15:18. [PMID: 28249594 PMCID: PMC5333415 DOI: 10.1186/s12951-017-0251-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/10/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Diabetic retinopathy is the most common complication in diabetic patients relates to high expression of VEGF and microaneurysms. Scutellarin (Scu) turned out to be effective against diabetes related vascular endothelial cell dysfunction. However, its clinical applications have been limited by its low bioavailability. In this study, we formulated and characterized a novel intestinal target nanoparticle carrier based on amphiphilic chitosan derivatives (Chit-DC-VB12) loaded with scutellarin to enhance its bioavailability and then evaluated its therapeutic effect in experimental diabetic retinopathy model. RESULTS Chit-DC-VB12 nanoparticles showed low toxicity toward the human colon adenocarcinoma (Caco-2) cells and zebra fish within concentration of 250 μg/ml, owing to good biocompatibility of chitosan. The scutellarin-loaded Chit-DC-VB12 nanoparticles (Chit-DC-VB12-Scu) were then prepared by self-assembly in aqueous solution. Scanning electron microscopy and dynamic light scattering analysis indicated that the Chit-DC-VB12-Scu nanoparticles were spherical particles in the sizes ranging from 150 to 250 nm. The Chit-DC-VB12-Scu nanoparticles exhibited high permeation in Caco-2 cell, indicated it could be beneficial to be absorbed in humans. We also found that Chit-DC-VB12 nanoparticles had a high cellular uptake. Bioavailability studies were performed in Sprague-Dawley rats, which present the area under the curve of scutellarin of Chit-DC-VB12-Scu was two to threefolds greater than that of free scutellarin alone. Further to assess the therapeutic efficacy of diabetic retinopathy, we showed Chit-DC-VB12-Scu down-regulated central retinal artery resistivity index and the expression of angiogenesis proteins (VEGF, VEGFR2, and vWF) of retinas in type II diabetic rats. CONCLUSIONS Chit-DC-VB12 nanoparticles loaded with scutellarin have better bioavailability and cellular uptake efficiency than Scu, while Chit-DC-VB12-Scu nanoparticles alleviated the structural disorder of intraretinal neovessels in the retina induced by diabetes, and it also inhibited the retinal neovascularization via down-regulated the expression of angiogenesis proteins. In conclusion, the Chit-DC-VB12 nanoparticles enhanced scutellarin oral delivery efficacy and exhibited potential as small intestinal target promising nano-carriers for treatment of type II diabetes induced-retinopathy.
Collapse
Affiliation(s)
- Jingnan Wang
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiayun Tan
- Department of Polymer and Material Science, School of Chemistry, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiahao Luo
- Department of Polymer and Material Science, School of Chemistry, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-sen University, Guangzhou, 510275, China
| | - Peilin Huang
- Institute of Biomaterial, Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Wuyi Zhou
- Institute of Biomaterial, Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | | | - Lingli Long
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Ming Zhang
- Department of Polymer and Material Science, School of Chemistry, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-sen University, Guangzhou, 510275, China
| | - Banghao Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liqun Yang
- Department of Polymer and Material Science, School of Chemistry, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-sen University, Guangzhou, 510275, China.
| | - David Y B Deng
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
32
|
Sánchez-Navarro M, Garcia J, Giralt E, Teixidó M. Using peptides to increase transport across the intestinal barrier. Adv Drug Deliv Rev 2016; 106:355-366. [PMID: 27155131 DOI: 10.1016/j.addr.2016.04.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/24/2016] [Accepted: 04/29/2016] [Indexed: 02/05/2023]
Abstract
The oral route is the preferred for the administration of drugs; however, it has some serious limitations. One of the main disadvantages is poor permeability across the intestinal barrier. Various approaches are currently being adopted to overcome this issue. In this review, we describe the alternatives that use peptides to enhance intestinal absorption. First, we define the various sources of peptide enhancers followed by the analysis of the absorption mechanism used. We then comment on the possible toxic effects derived from their use as permeation enhancers, as well as potential formulation strategies. Finally, the advantages and drawbacks of peptides as intestinal enhancers are examined.
Collapse
|
33
|
Balasopoulou A, Patrinos GP, Katsila T. Pharmacometabolomics Informs Viromics toward Precision Medicine. Front Pharmacol 2016; 7:411. [PMID: 27833560 PMCID: PMC5081366 DOI: 10.3389/fphar.2016.00411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/17/2016] [Indexed: 12/18/2022] Open
Abstract
Nowadays, we are experiencing the big data era with the emerging challenge of single data interpretation. Although the advent of high-throughput technologies as well as chemo- and bio-informatics tools presents pan-omics data as the way forward to precision medicine, personalized health care and tailored-made therapeutics can be only envisaged when interindividual variability in response to/toxicity of xenobiotics can be interpreted and thus, predicted. We know that such variability is the net outcome of genetics (host and microbiota) and environmental factors (diet, lifestyle, polypharmacy, and microbiota) and for this, tremendous efforts have been made to clarify key-molecules from correlation to causality to clinical significance. Herein, we focus on the host–microbiome interplay and its direct and indirect impact on efficacy and toxicity of xenobiotics and we inevitably wonder about the role of viruses, as the least acknowledged ones. We present the emerging discipline of pharmacometabolomics-informed viromics, in which pre-dose metabotypes can assist modeling and prediction of interindividual response to/toxicity of xenobiotics. Such features, either alone or in combination with host genetics, can power biomarker discovery so long as the features are variable among patients, stable enough to be of predictive value, and better than pre-existing tools for predicting therapeutic efficacy/toxicity.
Collapse
Affiliation(s)
- Angeliki Balasopoulou
- Department of Pharmacy, School of Health Sciences, University of Patras Patras, Greece
| | - George P Patrinos
- Department of Pharmacy, School of Health Sciences, University of PatrasPatras, Greece; Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Theodora Katsila
- Department of Pharmacy, School of Health Sciences, University of Patras Patras, Greece
| |
Collapse
|
34
|
Nonparenteral Routes for Drug Delivery and Targeting. Drug Deliv 2016. [DOI: 10.1201/9781315382579-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
35
|
Jourova L, Anzenbacher P, Anzenbacherova E. Human gut microbiota plays a role in the metabolism of drugs. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160:317-26. [PMID: 27485182 DOI: 10.5507/bp.2016.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIMS The gut microbiome, an aggregate genome of trillions of microorganisms residing in the human gastrointestinal tract, is now known to play a critical role in human health and predisposition to disease. It is also involved in the biotransformation of xenobiotics and several recent studies have shown that the gut microbiota can affect the pharmacokinetics of orally taken drugs with implications for their oral bioavailability. METHODS Review of Pubmed, Web of Science and Science Direct databases for the years 1957-2016. RESULTS AND CONCLUSIONS Recent studies make it clear that the human gut microbiota can play a major role in the metabolism of xenobiotics and, the stability and oral bioavailability of drugs. Over the past 50 years, more than 30 drugs have been identified as a substrate for intestinal bacteria. Questions concerning the impact of the gut microbiota on drug metabolism, remain unanswered or only partially answered, namely (i) what are the molecular mechanisms and which bacterial species are involved? (ii) What is the impact of host genotype and environmental factors on the composition and function of the gut microbiota, (iii) To what extent is the composition of the intestinal microbiome stable, transmissible, and resilient to perturbation? (iv) Has past exposure to a given drug any impact on future microbial response, and, if so, for how long? Answering such questions should be an integral part of pharmaceutical research and personalised health care.
Collapse
Affiliation(s)
- Lenka Jourova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry and Faculty Hospital Olomouc, Palacky University Olomouc, Czech Republic
| | - Pavel Anzenbacher
- Department of Pharmacology, Faculty of Medicine and Dentistry and Faculty Hospital Olomouc, Palacky University Olomouc, Czech Republic
| | - Eva Anzenbacherova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry and Faculty Hospital Olomouc, Palacky University Olomouc, Czech Republic
| |
Collapse
|
36
|
Zhou X, Zhao Y, Chen S, Han S, Xu X, Guo J, Liu M, Che L, Li X, Zhang J. Self-Assembly of pH-Responsive Microspheres for Intestinal Delivery of Diverse Lipophilic Therapeutics. Biomacromolecules 2016; 17:2540-54. [PMID: 27398635 DOI: 10.1021/acs.biomac.6b00512] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | | | | | | | | | | | | | - Ling Che
- Department
of Pharmacy, Hospital 309 of PLA, Beijing 100091, China
| | | | | |
Collapse
|
37
|
Choonara BF, Choonara YE, Kumar P, du Toit LC, Pillay V. Design of an In Situ Cross-Linked Eutectic Tablet for Enhanced Delivery of Gastro-Sensitive Proteins and Peptides. J Pharm Sci 2016; 105:2086-98. [DOI: 10.1016/j.xphs.2016.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/11/2016] [Accepted: 04/05/2016] [Indexed: 10/21/2022]
|
38
|
Strategies to Overcome Heparins' Low Oral Bioavailability. Pharmaceuticals (Basel) 2016; 9:ph9030037. [PMID: 27367704 PMCID: PMC5039490 DOI: 10.3390/ph9030037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/15/2016] [Accepted: 06/23/2016] [Indexed: 01/10/2023] Open
Abstract
Even after a century, heparin is still the most effective anticoagulant available with few side effects. The poor oral absorption of heparins triggered the search for strategies to achieve oral bioavailability since this route has evident advantages over parenteral administration. Several approaches emerged, such as conjugation of heparins with bile acids and lipids, formulation with penetration enhancers, and encapsulation of heparins in micro and nanoparticles. Some of these strategies appear to have potential as good delivery systems to overcome heparin’s low oral bioavailability. Nevertheless, none have reached the market yet. Overall, this review aims to provide insights regarding the oral bioavailability of heparin.
Collapse
|
39
|
Gao L, Sun Q, Wang Y, Zhu W, Li X, Luo Q, Li X, Shen Z. Injectable poly(ethylene glycol) hydrogels for sustained doxorubicin release. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lilong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Qiang Sun
- Affiliated Stomatology Hospital, School of Medicine; Zhejiang University; Hangzhou 310006 China
| | - Ying Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
- Affiliated Stomatology Hospital, School of Medicine; Zhejiang University; Hangzhou 310006 China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province; Hangzhou 310027 China
| | - Xiaojun Li
- Affiliated Stomatology Hospital, School of Medicine; Zhejiang University; Hangzhou 310006 China
| | - Qiaojie Luo
- The First Affiliated Hospital, College of Medicine; Zhejiang University; Hangzhou 310003 China
| | - Xiaodong Li
- Affiliated Stomatology Hospital, School of Medicine; Zhejiang University; Hangzhou 310006 China
| | - Zhiquan Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
40
|
Fox CB, Cao Y, Nemeth CL, Chirra HD, Chevalier RW, Xu AM, Melosh NA, Desai TA. Fabrication of Sealed Nanostraw Microdevices for Oral Drug Delivery. ACS NANO 2016; 10:5873-81. [PMID: 27268699 PMCID: PMC5435488 DOI: 10.1021/acsnano.6b00809] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The oral route is preferred for systemic drug administration and provides direct access to diseased tissue of the gastrointestinal (GI) tract. However, many drugs have poor absorption upon oral administration due to damaging enzymatic and pH conditions, mucus and cellular permeation barriers, and limited time for drug dissolution. To overcome these limitations and enhance oral drug absorption, micron-scale devices with planar, asymmetric geometries, termed microdevices, have been designed to adhere to the lining of the GI tract and release drug at high concentrations directly toward GI epithelium. Here we seal microdevices with nanostraw membranes-porous nanostructured biomolecule delivery substrates-to enhance the properties of these devices. We demonstrate that the nanostraws facilitate facile drug loading and tunable drug release, limit the influx of external molecules into the sealed drug reservoir, and increase the adhesion of devices to epithelial tissue. These findings highlight the potential of nanostraw microdevices to enhance the oral absorption of a wide range of therapeutics by binding to the lining of the GI tract, providing prolonged and proximal drug release, and reducing the exposure of their payload to drug-degrading biomolecules.
Collapse
Affiliation(s)
- Cade B. Fox
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, United States
| | - Yuhong Cao
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Cameron L. Nemeth
- Graduate Program in Bioengineering, University of California at Berkeley and San Francisco, UCSF Mission Bay Campus, San Francisco, California 94158, United States
| | - Hariharasudhan D. Chirra
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, United States
| | - Rachel W. Chevalier
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, United States
- Department of Pediatrics, Division of Pediatric Gastroenterology, School of Medicine, University of California, San Francisco, California 94158, United States
| | - Alexander M. Xu
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Nicholas A. Melosh
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Tejal A. Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, United States
- Graduate Program in Bioengineering, University of California at Berkeley and San Francisco, UCSF Mission Bay Campus, San Francisco, California 94158, United States
| |
Collapse
|
41
|
Molecular insights into the formation of drug-monoacyl phosphatidylcholine solid dispersions for oral delivery. Eur J Pharm Sci 2016; 108:93-100. [PMID: 27240778 DOI: 10.1016/j.ejps.2016.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/13/2016] [Accepted: 05/25/2016] [Indexed: 11/24/2022]
Abstract
Phospholipid-based formulations provide a key technology to formulate poorly water-soluble drugs. A recent interest has been in using phospholipids with a high content of monoacyl phosphatidylcholine (monoacyl PC) due to its ability to form mixed micelles of mono- and di-acylphospholipids upon aqueous dispersion. The present work focused on binary drug- monoacyl PC systems (at about equimolar ratio) with respect to screening of solid dispersion feasibility. It was tested whether or not a molecular rule of thumb can predict the desirable absence of drug crystallinity in the products. Subsequently, molecular simulations were performed to gain a better understanding of molecular association between drugs and monoacyl PC. Finally, the glass-forming ability (GFA) of pure drugs was considered with respect to solid dispersion formation. All products were obtained from a solvent-evaporation process and subsequent analysis of potential drug crystallinity was measured with X-ray powder diffraction and differential scanning calorimetry. Molecular simulations were making use of a Monte Carlo algorithm and molecular properties relevant for GFA were calculated. As a result, the dataset of 28 drugs confirmed an earlier proposed empirical rule that enthalpy of fusion and logP were important for solid dispersion formation, while some relevance was also evidenced for drug energies of frontal orbitals. Interestingly, the Monte Carlo simulations revealed several likely associations between drug and phospholipid rather than a well-defined single complex formation. However, drug-excipient interactions were still pivotal, since GFA of pure drug could not predict solid dispersion formation. These findings led to important molecular insights into binary solid dispersions of drug and monoacyl PC, which can guide formulators in early drug product development.
Collapse
|
42
|
Yellepeddi VK, Ghandehari H. Poly(amido amine) dendrimers in oral delivery. Tissue Barriers 2016; 4:e1173773. [PMID: 27358755 DOI: 10.1080/21688370.2016.1173773] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 01/11/2023] Open
Abstract
Poly(amidoamine) (PAMAM) dendrimers have been extensively investigated for oral delivery applications due to their ability to translocate across the gastrointestinal epithelium. In this Review, we highlight recent advances in the evaluation of PAMAM dendrimers as oral drug delivery carriers. Specifically, toxicity, mechanisms of transepithelial transport, models of the intestinal epithelial barrier including isolated human intestinal tissue model, detection of dendrimers, and surface modification are discussed. We also highlight evaluation of various PAMAM dendrimer-drug conjugates for their ability to transport across gastrointestinal epithelium for improved oral bioavailability. In addition, current challenges and future trends for clinical translation of PAMAM dendrimers as carriers for oral delivery are discussed.
Collapse
Affiliation(s)
- Venkata K Yellepeddi
- College of Pharmacy, Roseman University of Health Sciences, South Jordan, UT, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
43
|
Alam F, Al-Hilal TA, Park J, Choi JU, Mahmud F, Jeong JH, Kim IS, Kim SY, Hwang SR, Byun Y. Multi-stage inhibition in breast cancer metastasis by orally active triple conjugate, LHTD4 (low molecular weight heparin-taurocholate-tetrameric deoxycholate). Biomaterials 2016; 86:56-67. [DOI: 10.1016/j.biomaterials.2016.01.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 01/27/2016] [Accepted: 01/27/2016] [Indexed: 12/29/2022]
|
44
|
Chitosan nanoparticles reduce LPS-induced inflammatory reaction via inhibition of NF-κB pathway in Caco-2 cells. Int J Biol Macromol 2016; 86:848-56. [PMID: 26854884 DOI: 10.1016/j.ijbiomac.2016.02.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/31/2016] [Accepted: 02/03/2016] [Indexed: 12/24/2022]
Abstract
Chitosan nanoparticles (CNP), an extensively oral-administered drug carrier, was investigated for the anti-inflammatory effects on LPS-inflamed Caco-2 cells and the relate mechanisms. CNP could alleviate the decrease of transepithelial electrical resistance (TEER) induced by LPS in Caco-2 monolayer, and significantly inhibit LPS-induced production of TNF-α, MIF, IL-8 and MCP-1 in a dose-dependent manner. PCR array assay revealed that CNP down-regulated the mRNA expression levels of TLR4 in LPS-inflamed Caco-2 cells. CNP was further showed to reduce cytoplasmic IκB-α degradation and nuclear NF-κB p65 levels in LPS-inflamed Caco-2 cells. These results suggested that CNP suppressed LPS-induced inflammatory response by decreasing permeability of intestinal epithelial monolayer and secretion of pro-inflammatory cytokine in Caco-2 cells, which were partially mediated by NF-κB signaling pathway.
Collapse
|
45
|
Al-Hilal TA, Chung SW, Choi JU, Alam F, Park J, Kim SW, Kim SY, Ahsan F, Kim IS, Byun Y. Targeting prion-like protein doppel selectively suppresses tumor angiogenesis. J Clin Invest 2016; 126:1251-66. [PMID: 26950422 DOI: 10.1172/jci83427] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 01/21/2016] [Indexed: 01/06/2023] Open
Abstract
Controlled and site-specific regulation of growth factor signaling remains a major challenge for current antiangiogenic therapies, as these antiangiogenic agents target normal vasculature as well tumor vasculature. In this article, we identified the prion-like protein doppel as a potential therapeutic target for tumor angiogenesis. We investigated the interactions between doppel and VEGFR2 and evaluated whether blocking the doppel/VEGFR2 axis suppresses the process of angiogenesis. We discovered that tumor endothelial cells (TECs), but not normal ECs, express doppel; tumors from patients and mouse xenografts expressed doppel in their vasculatures. Induced doppel overexpression in ECs enhanced vascularization, whereas doppel constitutively colocalized and complexed with VEGFR2 in TECs. Doppel inhibition depleted VEGFR2 from the cell membrane, subsequently inducing the internalization and degradation of VEGFR2 and thereby attenuating VEGFR2 signaling. We also synthesized an orally active glycosaminoglycan (LHbisD4) that specifically binds with doppel. We determined that LHbisD4 concentrates over the tumor site and that genetic loss of doppel in TECs decreases LHbisD4 binding and targeting both in vitro and in vivo. Moreover, LHbisD4 eliminated VEGFR2 from the cell membrane, prevented VEGF binding in TECs, and suppressed tumor growth. Together, our results demonstrate that blocking doppel can control VEGF signaling in TECs and selectively inhibit tumor angiogenesis.
Collapse
|
46
|
Buckley ST, Hubálek F, Rahbek UL. Chemically modified peptides and proteins - critical considerations for oral delivery. Tissue Barriers 2016; 4:e1156805. [PMID: 27358754 DOI: 10.1080/21688370.2016.1156805] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 12/19/2022] Open
Abstract
Numerous approaches have been explored to date in the pursuit of delivering peptides or proteins via the oral route. One such example is chemical modification, whereby the native structure of a peptide or protein is tailored to provide a more efficient uptake across the epithelial barrier of the gastrointestinal tract via incorporation of a chemical motif or moiety. In this regard, a diverse array of concepts have been reported, ranging from the exploitation of endogenous transport mechanisms to incorporation of physicochemical modifications in the molecule, which promote more favorable interactions with the absorptive membrane at the cell surface. This review provides an overview of the modification technologies described in the literature and offers insights into some pragmatic considerations pertaining to their translation into clinically viable concepts.
Collapse
|
47
|
Influence of structural features of carrageenan on the formation of polyelectrolyte complexes with chitosan. Int J Biol Macromol 2016; 84:434-41. [DOI: 10.1016/j.ijbiomac.2015.12.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/24/2015] [Accepted: 12/11/2015] [Indexed: 11/19/2022]
|
48
|
Abstract
INTRODUCTION Anticoagulants have been prescribed to patients to prevent deep vein thrombosis or pulmonary embolism. However, because of several problems in anticoagulant therapy, much attention has been directed at developing an ideal anticoagulant, and numerous attempts have been made to develop new anticoagulant delivery systems in recent years. AREAS COVERED This review discusses the challenges associated with the recent development of anticoagulants and their delivery systems. Various delivery methods have been developed to improve the use of anticoagulants. Recent advances in anticoagulant delivery and antidote development are also discussed in the context of their current progression states. EXPERT OPINION There have been many different approaches to developing the delivery system of anticoagulants. One approach has been to expand the use of new oral agents and develop their antidotes. Reducing the size of heparins to use smaller heparins for delivery, and developing oral or topical heparins are also some of the approaches used. Various physical formulations or chemical modifications are other ways that have enhanced the therapeutic potential of anticoagulant agents. On the whole, recent advances have contributed to increasing the efficacy and safety of anticoagulant clinically and have benefited the field of anticoagulant delivery.
Collapse
Affiliation(s)
- Jooho Park
- a Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul , Republic of Korea
| | - Youngro Byun
- a Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul , Republic of Korea.,b Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Pharmacy , Seoul National University , Seoul , Republic of Korea
| |
Collapse
|
49
|
Han X, Wang Z, Wang M, Li J, Xu Y, He R, Guan H, Yue Z, Gong M. Liver-targeting self-assembled hyaluronic acid-glycyrrhetinic acid micelles enhance hepato-protective effect of silybin after oral administration. Drug Deliv 2015; 23:1818-29. [PMID: 26556526 DOI: 10.3109/10717544.2015.1108374] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In order to enhance oral bioavailability and liver targeting delivery of silybin, two amphiphilic hyaluronic acid derivatives, hyaluronic acid-deoxycholic acid (HA-adh-DOCA) and hyaluronic acid-glycyrrhetinic acid (HA-adh-GA) conjugates, were designed and synthesized. Silybin was successfully loaded in HA-adh-DOCA and HA-adh-GA micelles with high drug-loading capacities (20.3% ± 0.5% and 20.6% ± 0.6%, respectively). The silybin-loaded micelles were spherical in shape with the average size around 130 nm. In vitro release study showed that two silybin-loaded micelles displayed similar steady continued-release pattern in simulated gastrointestinal fluids and PBS. Single-pass intestinal perfusion studies indicated that silybin-loaded micelles were absorbed in the whole intestine and transported via a passive diffusion mechanism. Compared with suspension formulation, silybin-loaded HA-adh-DOCA and HA-adh-GA micelles achieved significantly higher AUC and Cmax level. Moreover, liver targeting drug delivery of micelles was confirmed by in vivo imaging analysis. In comparison between the two micellar formulations, HA-adh-GA micelles possessed higher targeting capacity than HA-adh-DOCA micelles, owing to the active hepatic targeting properties of glycyrrhetinic acid. In the treatment of acute liver injury induced by CCl4, silybin-loaded HA-adh-GA micelles displayed better effects over suspension control and silybin-loaded HA-adh-DOCA micelles. Overall, pharmaceutical and pharmacological indicators suggested that the HA-adh-GA conjugates can be successfully utilized for liver targeting of orally administered therapeutics.
Collapse
Affiliation(s)
- Xiaofeng Han
- a Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University , Beijing , P. R. China and
| | - Zhe Wang
- a Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University , Beijing , P. R. China and
| | - Manyuan Wang
- a Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University , Beijing , P. R. China and
| | - Jing Li
- a Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University , Beijing , P. R. China and
| | - Yongsong Xu
- a Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University , Beijing , P. R. China and
| | - Rui He
- a Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University , Beijing , P. R. China and
| | - Hongyu Guan
- a Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University , Beijing , P. R. China and
| | - Zhujun Yue
- b Beijing YouAn Hospital, Capital Medical University , Beijing , P. R. China
| | - Muxin Gong
- a Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University , Beijing , P. R. China and
| |
Collapse
|
50
|
Deng L, Dong H, Dong A, Zhang J. A strategy for oral chemotherapy via dual pH-sensitive polyelectrolyte complex nanoparticles to achieve gastric survivability, intestinal permeability, hemodynamic stability and intracellular activity. Eur J Pharm Biopharm 2015; 97:107-17. [DOI: 10.1016/j.ejpb.2015.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/30/2015] [Accepted: 10/21/2015] [Indexed: 10/22/2022]
|