1
|
Lin P, Liu S, Cao Z, Zeng Y, Zhao Y, Li T, Lin C, Gu B, Hu B. An experimental study on the lytic bacteriophage MSP15 with wide-spectrum targeting methicillin-resistant Staphylococcus aureus. Virology 2025; 605:110452. [PMID: 39986260 DOI: 10.1016/j.virol.2025.110452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 01/19/2025] [Accepted: 02/12/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) is identified as one of the main drug-resistant pathogens, increasing the risk of no antibiotic availability in clinical settings and necessitating the urgent search for alternative antibacterial treatments. Phage therapy has been proposed as a therapeutic approach for bacterial infections, offering numerous advantages and broad application prospects. However, the efficacy of phage therapy in treating drug-resistant infections in humans remains uncertain. Given the current advances in phage therapy and the grim situation posed by MRSA infections, the application of lytic bacteriophages with wide-spectrum activity to treat difficult MRSA infections is proposed. OBJECTIVE The objective is to isolate, purify, and screen lytic bacteriophages targeting MRSA from the environment and to assess their efficacy and safety through in vitro and in vivo experiments, with the aim of providing another therapy for MRSA infection. METHODS Firstly, representative MRSA strains were selected, and their corresponding phages were isolated and purified from hospital sewage. Secondly, the isolated phages were screened to identify lytic bacteriophages with broad-spectrum activity, and their biological characteristics were analyzed. Thirdly, a systemic infection mouse model was established to evaluate the efficacy and safety of phage MSP15 against MRSA infection. RESULTS In this study, Staphylococcus aureus Phage MSP15, a lytic bacteriophage with broad-spectrum activity targeting MRSA, was successfully isolated, purified and screened. Furthermore, in the systemic infection mouse model, administration of phage MSP15 led to prolonged survival time of MRSA-infected mice. A 100% survival rate was observed in infected mice with both immediate and delayed administration of high doses of phage MSP15 (MOI = 1), although efficacy may potentially be reduced with delayed treatment compared to immediate treatment. Additionally, an immune response was induced by phage MSP15, resulting in the production of IgG against phage MSP15, while no adverse events such as changes in core body temperature, allergic reactions, or other adverse effects were observed in mice. CONCLUSION Lytic bacteriophages with a wide spectrum can become an auxiliary approach for treating MRSA infection.
Collapse
Affiliation(s)
- Peijun Lin
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Suling Liu
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhi Cao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital(Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Zeng
- Department of Emergency Medicine, Guangdong Provincial People's Hospital(Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yuechu Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ting Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital(Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China; School of Medicine South China University of Technology, Guangzhou, Guangdong, China
| | - Chuangqiang Lin
- Department of Emergency Medicine, Jieyang People's Hospital, Jieyang, Guangdong, China
| | - Bing Gu
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| | - Bei Hu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China; Department of Emergency Medicine, Guangdong Provincial People's Hospital(Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China; School of Medicine South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Ghanem R, Youf R, Haute T, Buin X, Riool M, Pourchez J, Montier T. The (re)emergence of aerosol delivery: Treatment of pulmonary diseases and its clinical challenges. J Control Release 2025; 379:421-439. [PMID: 39800241 DOI: 10.1016/j.jconrel.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Aerosol delivery represents a rapid and non-invasive way to directly reach the lungs while escaping the hepatic first-pass effect. The development of pulmonary drugs for respiratory diseases such as cystic fibrosis, lung infections, pulmonary fibrosis or lung cancer requires an enhanced understanding of the relationships between the natural physiology of the respiratory system and the pathophysiology of these conditions. This knowledge is crucial to better predict and thereby control drug deposition. Moreover, aerosol administration faces several challenges, including the pulmonary tract, immune system, mucociliary clearance, the presence of fluid on the airway surfaces, and, in some cases, bacterial colonisation. Each of them directly influences on the bioavailability of the active molecule. In addition to these challenges, particle size and the device used to administer the treatment are critical factors that can significantly impact the biodistribution of the drugs. Nanoparticles are very promising in the development of new formulations for aerosol drug delivery, as they can be fine-tuned to reach the entire pulmonary tract and overcome the difficulties encountered along the way. However, to properly assess drug delivery, preclinical studies need to be more thorough to efficiently enhance drug delivery.
Collapse
Affiliation(s)
- Rosy Ghanem
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, F-29200 Brest, France
| | - Raphaëlle Youf
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Tanguy Haute
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Xavier Buin
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Martijn Riool
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023 Saint-Etienne, France
| | - Tristan Montier
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, F-29200 Brest, France.
| |
Collapse
|
3
|
Selim HMRM, Gomaa FAM, Alshahrani MY, Morgan RN, Aboshanab KM. Phage therapeutic delivery methods and clinical trials for combating clinically relevant pathogens. Ther Deliv 2025; 16:247-269. [PMID: 39545771 PMCID: PMC11875505 DOI: 10.1080/20415990.2024.2426824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
The ongoing global health crisis caused by multidrug-resistant (MDR) bacteria necessitates quick interventions to introduce new management strategies for MDR-associated infections and antimicrobial agents' resistance. Phage therapy emerges as an antibiotic substitute for its high specificity, efficacy, and safety profiles in treating MDR-associated infections. Various in vitro and in vivo studies denoted their eminent bactericidal and anti-biofilm potential. This review addresses the latest developments in phage therapy regarding their attack strategies, formulations, and administration routes. It additionally discusses and elaborates on the status of phage therapy undergoing clinical trials, and the challenges encountered in their usage, and explores prospects in phage therapy research and application.
Collapse
Affiliation(s)
- Heba Mohammed Refat M. Selim
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo, Egypt
| | - Fatma Alzahraa M. Gomaa
- Department of Pharmacognosy and Medicinal Herbs, Faculty of Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Radwa N. Morgan
- National Centre for Radiation Research and Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University Technology MARA (UiTM), Bandar Puncak Alam, Malaysia
| |
Collapse
|
4
|
Wagh RV, Priyadarshi R, Khan A, Riahi Z, Packialakshmi JS, Kumar P, Rindhe SN, Rhim JW. The Role of Active Packaging in the Defense Against Foodborne Pathogens with Particular Attention to Bacteriophages. Microorganisms 2025; 13:401. [PMID: 40005767 PMCID: PMC11858251 DOI: 10.3390/microorganisms13020401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
The increasing demand for food safety and the need to combat emerging foodborne pathogens have driven the development of innovative packaging solutions. Active packaging, particularly those incorporating antimicrobial agents, has emerged as a promising approach to enhance food preservation and safety. Among these agents, bacteriophages (phages) have gained significant attention due to their specificity, efficacy, and natural origin. This manuscript explores the role of active packaging in protecting against foodborne pathogens, with a particular focus on bacteriophages. The review overviews recent advances in antimicrobials in food packaging, followed by a detailed discussion of bacteriophages, including their classification, mode of action, multidisciplinary applications, and their use as antimicrobial agents in active food packaging. The manuscript also highlights commercially available bacteriophage-based products and addresses the challenges and limitations associated with their integration into packaging materials. Despite their potential, issues such as stability, regulatory hurdles, and consumer acceptance remain critical considerations. In conclusion, bacteriophages represent a promising tool in active packaging for enhancing food safety, but further research and innovation are needed to overcome existing barriers and fully realize their potential in the food industry.
Collapse
Affiliation(s)
- Rajesh V. Wagh
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India;
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; (R.P.); (A.K.); (Z.R.); (J.S.P.)
| | - Ruchir Priyadarshi
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; (R.P.); (A.K.); (Z.R.); (J.S.P.)
| | - Ajahar Khan
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; (R.P.); (A.K.); (Z.R.); (J.S.P.)
| | - Zohreh Riahi
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; (R.P.); (A.K.); (Z.R.); (J.S.P.)
| | - Jeyakumar Saranya Packialakshmi
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; (R.P.); (A.K.); (Z.R.); (J.S.P.)
| | - Pavan Kumar
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India;
| | - Sandeep N. Rindhe
- Department of Livestock Products Technology, College of Veterinary and Animal Sciences, Maharashtra Animal and Fishery Sciences University, Parbhani 431402, Maharashtra, India;
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; (R.P.); (A.K.); (Z.R.); (J.S.P.)
| |
Collapse
|
5
|
Sarkodie-Addo P, Osman AH, Aglomasa BC, Donkor ES. Phage therapy in the management of respiratory and pulmonary infections: a systematic review. Ther Adv Infect Dis 2025; 12:20499361241307841. [PMID: 39866829 PMCID: PMC11760135 DOI: 10.1177/20499361241307841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/27/2024] [Indexed: 01/28/2025] Open
Abstract
Background Lower respiratory tract infections (LRTIs) pose a significant threat to global health, causing more than 2 million deaths worldwide. This menace is intensified by the alarming increase in drug resistance, which limits the availability of effective antibiotics for bacterial respiratory infections. Consequently, there is an urgent demand for alternative therapeutic options. Phage therapy (PT) has re-emerged as a promising therapeutic approach and as an adjunct to antibiotic treatment. Objective This systematic review synthesises the application of PT for LRTIs in humans, providing unified and updated data on the evaluation of the safety and efficacy of PT for LRTIs. Design Systematic review. Data sources and methods Following the PRISMA guidelines, a comprehensive search strategy was carried out (spanning January 2000 - February 2024) in four databases: PubMed, Scopus, ScienceDirect and Web of Science to retrieve published records of PT for LRTIs in humans only. The reference list of each included study was evaluated for possible inclusion of other relevant articles. Results Among the 18 records that fulfilled the inclusion criteria, 70 patients were administered PT. Microbiologically, 71.42% (n = 50/70) of the patients improved; with either the eradication of the pathogen or a decrease in bacterial load, whilst 15.71% (n = 11/70) did not record any improvement. About 5.71% (n = 4/70) recorded a partial/incomplete improvement, whilst 7.14% (n = 5/70) of the patients microbiological outcomes were unspecified. Clinically, up to 74.29% (n = 52/70) of the patients improved, whilst 10.00% (n = 7/70) of the patients showed no improvement. Another 2.86% (n = 2/70) recorded partial/incomplete improvement, whilst 12.86% (n = 9/70) were uncategorized. Phage titres that yielded positive outcomes ranged from 105 to 1012 PFU/mL. Studies that achieved a substantial phage titre at the site of infection frequently observed notable improvements. Regarding the safety of PT, 77.78% (N = 14/18) of the studies did not record any adverse effects after PT was administered, whilst 16.66% (n = 3/18) of the studies reported adverse effects. Conclusion Based on recently published data originating mainly from observational studies, PT has shown considerable efficacy and safety in the treatment of LRTIs. However, there is a lack of uniform methodologies and protocols across different PT cases in the management of LRTIs. Consequently, there is a need for additional clinical studies to establish standardised pharmacokinetic elements and an overall protocol for PT. By doing so, we can fully unlock the potential of PT in effectively managing clinical bacterial infections, including LRTIs.
Collapse
Affiliation(s)
| | - Abdul-Halim Osman
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Bill Clinton Aglomasa
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Eric S. Donkor
- Department of Medical Microbiology, University of Ghana Medical School, P.O. Box KB 4236, Accra, Ghana
| |
Collapse
|
6
|
Rahman MA, Verma KK, Posa MK. Phage Therapy in Bacterial Pneumonia Models: A Systematic Review and Meta-Analysis. Comb Chem High Throughput Screen 2025; 28:447-452. [PMID: 38357944 DOI: 10.2174/0113862073267755240126111628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Phage therapy could play an important role in the bacterial pneumonia. However, the exact role of phage therapy in bacterial pneumonia is unclear to date. AIM The current study aims to find out the role of phage therapy in preclinical models of bacterial pneumonia. METHODS The studies were searched in databases with proper MeSH terms along with Boolean operators and selected based on eligibility criteria as per the PRISMA guidelines. The Odd Ratio (OR) was calculated with a 95% confidence interval and the heterogeneity was also calculated. The funnel plot was used to conduct a qualitative examination of publication bias. RESULTS The OR was observed to be 0.11 (0.04, 0.27)] after 24 hrs, 0.11 [0.03, 0.34] after 7 days and 0.04 [0.01, 0.15] after 10 days that showed a significant role of phage therapy in reduction of deaths in the bacterial pneumonia models as compared to the placebo group. However, after 48hrs, a non-significant reduction was observed. CONCLUSION There was a significant role of phage therapy in the reduction of deaths in the bacterial pneumonia models.
Collapse
Affiliation(s)
- Mohammad Akhlaquer Rahman
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, 21944, Kingdom of Saudi Arabia
| | | | - Mahesh Kumar Posa
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, Rajasthan, 302017, India
| |
Collapse
|
7
|
Ahmad TA, Houjeiry SE, Kanj SS, Matar GM, Saba ES. From forgotten cure to modern medicine: The resurgence of bacteriophage therapy. J Glob Antimicrob Resist 2024; 39:231-239. [PMID: 39486687 DOI: 10.1016/j.jgar.2024.10.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
OBJECTIVES The unregulated use of antibiotics has led to the rise of antibiotic-resistant bacterial strains. This study explores bacteriophage therapy as an alternative treatment, highlighting its history, significance, and advancements in Europe, the United States, and the Middle East. METHODS A comprehensive literature review on bacteriophage therapy was conducted, focusing on its development, clinical trials, and patient treatment applications. The study also examined challenges, limitations, criteria for ideal phage selection, and manipulation techniques. RESULTS The United States and several European countries have advanced in phage therapy, progressing from clinical trials to patient treatment, whereas Middle Eastern countries are still in the early stages. Bacteriophages offer specificity, abundance, and minimal side effects, but challenges like safety concerns and potential resistance limit their widespread use. CONCLUSION Bacteriophage therapy shows promise as an antibiotic alternative but faces safety and resistance challenges. Continued research and better regulatory frameworks, especially in the Middle East, are needed to realize its potential.
Collapse
Affiliation(s)
- Tasnime Abdo Ahmad
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Samar El Houjeiry
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Souha S Kanj
- Division of Infectious Diseases, Department of Internal Medicine, Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ghassan M Matar
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Esber S Saba
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
8
|
Alizadeh H, Khoshhal P, Mirmoeini MS, Gilani K. Evaluating the effect of sodium alginate and sodium carboxymethylcellulose on pulmonary delivery of levofloxacin spray-dried microparticles. Daru 2024; 32:557-571. [PMID: 38955893 PMCID: PMC11554959 DOI: 10.1007/s40199-024-00526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Patients with cystic fibrosis commonly suffer from lung infections caused by Pseudomonas aeruginosa. Recently, the Levofloxacin (LVF) nebulizing solution (Quinsair®) has been prescribed for the antimicrobial management. The sustained-release (SR) dry powder formulation of LVF is a convenient alternative to Quinsair®. It has the potential to enhance patient convenience and decrease the likelihood of drug resistance over time. OBJECTIVE In this paper, we set forth to formulate and evaluate the potential application of sodium alginate (SA) and sodium carboxymethylcellulose (SCMC) for sustained pulmonary delivery of LVF. METHODS The spray-dried (SD) LVF microparticles were formulated using SCMC and SA along with L-leucine (Leu). The microparticles were analyzed in terms of particle size, morphology, x-ray diffraction (XRD), in-vitro drug release, and aerodynamic properties. Selected formulations were further proceeded to short-term stability test. RESULTS The polymer-containing samples displayed process yield of 33.31%-39.67%, mean entrapment efficiency of 89% and volume size within the range of 2-5 μm. All the hydrogel microparticles were amorphous and exhibited rounded morphology with surface indentations. Formulations with a drug-to-excipient ratio of 50:50 and higher, showed a 24-h SR. The aerodynamic parameters were fine particle fraction and emitted dose percentage ranging between 46.21%-60.6% and 66.67%-87.75%, respectively. The short-term stability test revealed that the formulation with a 50:50 drug-to-excipient ratio, containing SA, demonstrated better physical stability. CONCLUSION The selected formulation containing SA has the potential to extend the release duration. However, further enhancements are required to optimize its performance.
Collapse
Affiliation(s)
- Hanieh Alizadeh
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyman Khoshhal
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadat Mirmoeini
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilani
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Thompson DL, Semersky Z, Feinn R, Huang P, Turner PE, Chan BK, Koff JL, Murray TS. Particle size distribution of viable nebulized bacteriophage for the treatment of multi-drug resistant Pseudomonas aeruginosa. Respir Med Res 2024; 86:101133. [PMID: 39121591 DOI: 10.1016/j.resmer.2024.101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/05/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Affiliation(s)
| | | | - Richard Feinn
- Department of Biomedical Sciences, Frank Netter School of Medicine, Quinnipiac University, North Haven, CT, United States
| | - Pamela Huang
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, United States
| | - Paul E Turner
- Program in Microbiology, Yale School of Medicine, New Haven, CT, United States; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States; Center for Phage Biology & Therapy, Yale University, New Haven, CT, United States
| | - Ben K Chan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States; Center for Phage Biology & Therapy, Yale University, New Haven, CT, United States
| | - Jonathan L Koff
- Center for Phage Biology & Therapy, Yale University, New Haven, CT, United States; Department of Internal Medicine Yale School of Medicine, New Haven, CT, United States
| | - Thomas S Murray
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, United States.
| |
Collapse
|
10
|
Pal N, Sharma P, Kumawat M, Singh S, Verma V, Tiwari RR, Sarma DK, Nagpal R, Kumar M. Phage therapy: an alternative treatment modality for MDR bacterial infections. Infect Dis (Lond) 2024; 56:785-817. [PMID: 39017931 DOI: 10.1080/23744235.2024.2379492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
The increasing global incidence of multidrug-resistant (MDR) bacterial infections threatens public health and compromises various aspects of modern medicine. Recognising the urgency of this issue, the World Health Organisation has prioritised the development of novel antimicrobials to combat ESKAPEE pathogens. Comprising Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli, such pathogens represent a spectrum of high to critical drug resistance, accounting for a significant proportion of hospital-acquired infections worldwide. In response to the waning efficacy of antibiotics against these resilient pathogens, phage therapy (PT) has emerged as a promising therapeutic strategy. This review provides a comprehensive summary of clinical research on PT and explores the translational journey of phages from laboratory settings to clinical applications. It examines recent advancements in pre-clinical and clinical developments, highlighting the potential of phages and their proteins, alone or in combination with antibiotics. Furthermore, this review underlines the importance of establishing safe and approved routes of phage administration to patients. In conclusion, the evolving landscape of phage therapy offers a beacon of hope in the fight against MDR bacterial infections, emphasising the imperative for continued research, innovation and regulatory diligence to realise its full potential in clinical practice.
Collapse
Affiliation(s)
- Namrata Pal
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
- Department of Microbiology, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Poonam Sharma
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Manoj Kumawat
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Samradhi Singh
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Rajnarayan R Tiwari
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Devojit Kumar Sarma
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, USA
| | - Manoj Kumar
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| |
Collapse
|
11
|
Kapoor A, Mudaliar SB, Bhat VG, Chakraborty I, Prasad ASB, Mazumder N. Phage therapy: A novel approach against multidrug-resistant pathogens. 3 Biotech 2024; 14:256. [PMID: 39355200 PMCID: PMC11442959 DOI: 10.1007/s13205-024-04101-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
The rapid rise of multidrug-resistant (MDR) organisms has created a critical need for alternative treatment options. Phage therapy is gaining attention as an effective way to fight bacterial infections by using lytic bacteriophages to specifically target and kill harmful bacteria. This review discusses several phage therapeutic options and emphasizes new developments in phage biology. Phage treatment has proven to be successful against MDR bacteria, as evidenced by multiple human clinical trials that indicate favorable results in treating a range of diseases caused by these pathogens. Despite these promising results, challenges such as phage resistance, regulatory hurdles, and the need for standardized treatment protocols remain. To effectively combat MDR bacterial infections, future research must focus on enhancing phage effectiveness, guaranteeing safety for human usage and incorporating phage therapy into clinical practice.
Collapse
Affiliation(s)
- Arushi Kapoor
- Robert R Mcormick School of Engineering and Applied Science, Northwestern University, Illinois, USA
| | - Samriti Balaji Mudaliar
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Vyasraj G. Bhat
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Ishita Chakraborty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Alevoor Srinivas Bharath Prasad
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
12
|
Winkelmayer L, Rathammer K, Richter S, Requat T, Matt M, Ljuhar D, Jäger P, Kernmauner F, Naemi S, Mansfeld MD, Duscher GG. Aerosolic Application of Phages Against S. infantis on Plates and Chicken Skin. PHAGE (NEW ROCHELLE, N.Y.) 2024; 5:126-129. [PMID: 39372362 PMCID: PMC11447383 DOI: 10.1089/phage.2023.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Phages are known as a promising method to combat antimicrobial resistance (AMR) in the human and veterinary sector. Use of phage aerosols enormously increases the application field, although the impact on the infectivity of phages during nebulization needs to be evaluated. In this study S. infantis was treated on plates and chicken skin with nebulized phage particles of the Myoviridae type, identified by transmission electron microscopy, using a commercial nebulizer primarily used for H2O2 disinfection. The reduction of bacterial number by aerosol applied phage particles was evaluated. It could clearly be shown that the phage particles were able to infect Salmonella after being nebulized using ultrasound technology. Further studies on other types of phages as well as other conditions must be performed to standardize the aerosolic application of phages.
Collapse
Affiliation(s)
| | | | | | - Theres Requat
- Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Monika Matt
- Austrian Agency for Health and Food Safety, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
13
|
Gao M, Wang Y, Zhuang H, Zhu Y, Chen N, Teng T. Insights into the Preparation of and Evaluation of the Bactericidal Effects of Phage-Based Hydrogels. Int J Mol Sci 2024; 25:9472. [PMID: 39273419 PMCID: PMC11394800 DOI: 10.3390/ijms25179472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The rise of antibiotic-resistant strains demands new alternatives in antibacterial treatment. Bacteriophages, with their precise host specificity and ability to target and eliminate bacteria safely, present a valuable option. Meanwhile, hydrogels, known for their excellent biodegradability and biocompatibility, serve as ideal carriers for bacteriophages. The combination of bacteriophages and hydrogels ensures heightened phage activity, concentration, controlled release, and strong antibacterial properties, making it a promising avenue for antibacterial treatment. This article provides a comprehensive review of different crosslinking methods for phage hydrogels, focusing on their application in treating infections caused by various drug-resistant bacteria and highlighting their effective antibacterial properties and controlled release capabilities.
Collapse
Affiliation(s)
- Mengyuan Gao
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yuhan Wang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Hanyue Zhuang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yanxia Zhu
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Na Chen
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Tieshan Teng
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
14
|
Li X, Xu J, Wang Y, Gomaa SE, Zhao H, Teng T. The Biological Characteristics of Mycobacterium Phage Henu3 and the Fitness Cost Associated with Its Resistant Strains. Int J Mol Sci 2024; 25:9301. [PMID: 39273250 PMCID: PMC11394830 DOI: 10.3390/ijms25179301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, is an infectious disease that seriously affects human life and health. Despite centuries of efforts to control it, in recent years, the emergence of multidrug-resistant bacterial pathogens of M. tuberculosis due to various factors has exacerbated the disease, posing a serious threat to global health. Therefore, a new method to control M. tuberculosis is urgently needed. Phages, viruses that specifically infect bacteria, have emerged as potential biocontrol agents for bacterial pathogens due to their host specificity. In this study, a mycobacterium phage, Henu3, was isolated from soil around a hospital. The particle morphology, biological characteristics, genomics and phylogeny of Henu3 were characterized. Additionally, to explore the balance between phage resistance and stress response, phage Henu3-resistant strains 0G10 and 2E1 were screened by sequence passage and bidirectional validation methods, which significantly improved the sensitivity of phage to antibiotics (cefotaxime and kanamycin). By whole-genome re-sequencing of strains 0G10 and 2E1, 12 genes involved in cell-wall synthesis, transporter-encoded genes, two-component regulatory proteins and transcriptional regulatory factor-encoded genes were found to have mutations. These results suggest that phage Henu3 has the potential to control M. tuberculosis pathogens, and phage Henu3 has the potential to be a new potential solution for the treatment of M. tuberculosis infection.
Collapse
Affiliation(s)
- Xinyu Li
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Junge Xu
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yuhan Wang
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Salwa E Gomaa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Huijie Zhao
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Tieshan Teng
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
15
|
Panickar A, Manoharan A, Anbarasu A, Ramaiah S. Respiratory tract infections: an update on the complexity of bacterial diversity, therapeutic interventions and breakthroughs. Arch Microbiol 2024; 206:382. [PMID: 39153075 DOI: 10.1007/s00203-024-04107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Respiratory tract infections (RTIs) have a significant impact on global health, especially among children and the elderly. The key bacterial pathogens Streptococcus pneumoniae, Haemophilus influenzae, Klebsiella pneumoniae, Staphylococcus aureus and non-fermenting Gram Negative bacteria such as Acinetobacter baumannii and Pseudomonas aeruginosa are most commonly associated with RTIs. These bacterial pathogens have evolved a diverse array of resistance mechanisms through horizontal gene transfer, often mediated by mobile genetic elements and environmental acquisition. Treatment failures are primarily due to antimicrobial resistance and inadequate bacterial engagement, which necessitates the development of alternative treatment strategies. To overcome this, our review mainly focuses on different virulence mechanisms and their resulting pathogenicity, highlighting different therapeutic interventions to combat resistance. To prevent the antimicrobial resistance crisis, we also focused on leveraging the application of artificial intelligence and machine learning to manage RTIs. Integrative approaches combining mechanistic insights are crucial for addressing the global challenge of antimicrobial resistance in respiratory infections.
Collapse
Affiliation(s)
- Avani Panickar
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anand Manoharan
- Infectious Diseases Medical and Scientific Affairs, GlaxoSmithKline (GSK), Worli, Maharashtra, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
16
|
Bin Yahia NM, Shan M, Zhu Y, Yang Y, Zhang S, Yang Y. From crisis to cure: harnessing the potential of mycobacteriophages in the battle against tuberculosis. J Appl Microbiol 2024; 135:lxae208. [PMID: 39134510 DOI: 10.1093/jambio/lxae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/26/2024] [Accepted: 08/10/2024] [Indexed: 08/30/2024]
Abstract
Tuberculosis (TB) is a serious and fatal disease caused by Mycobacterium tuberculosis (Mtb). The World Health Organization reported an estimated 1.30 million TB-related deaths in 2022. The escalating prevalence of Mtb strains classified as being multi-, extensively, extremely, or totally drug resistant, coupled with the decreasing efficacies of conventional therapies, necessitates the development of novel treatments. As viruses that infect Mycobacterium spp., mycobacteriophages may represent a strategy to combat and eradicate drug-resistant TB. More exploration is needed to provide a comprehensive understanding of mycobacteriophages and their genome structure, which could pave the way toward a definitive treatment for TB. This review focuses on the properties of mycobacteriophages, their potential in diagnosing and treating TB, the benefits and drawbacks of their application, and their use in human health. Specifically, we summarize recent research on mycobacteriophages targeted against Mtb infection and newly developed mycobacteriophage-based tools to diagnose and treat diseases caused by Mycobacterium spp. We underscore the urgent need for innovative approaches and highlight the potential of mycobacteriophages as a promising avenue for developing effective diagnosis and treatment to combat drug-resistant Mycobacterium strains.
Collapse
Affiliation(s)
- Noura M Bin Yahia
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 P.R. China
| | - Minghai Shan
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 P.R. China
- General Hospital of Ningxia Medical University, Yinchuan, 750004 P.R. China
| | - Yue Zhu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 P.R. China
| | - Yuma Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 P.R. China
| | - Sihan Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 P.R. China
| | - Yanhui Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 P.R. China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, 750004 P.R. China
| |
Collapse
|
17
|
Bozidis P, Markou E, Gouni A, Gartzonika K. Does Phage Therapy Need a Pan-Phage? Pathogens 2024; 13:522. [PMID: 38921819 PMCID: PMC11206709 DOI: 10.3390/pathogens13060522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
The emergence of multidrug-resistant bacteria is undoubtedly one of the most serious global health threats. One response to this threat that has been gaining momentum over the past decade is 'phage therapy'. According to this, lytic bacteriophages are used for the treatment of bacterial infections, either alone or in combination with antimicrobial agents. However, to ensure the efficacy and broad applicability of phage therapy, several challenges must be overcome. These challenges encompass the development of methods and strategies for the host range manipulation and bypass of the resistance mechanisms developed by pathogenic bacteria, as has been the case since the advent of antibiotics. As our knowledge and understanding of the interactions between phages and their hosts evolves, the key issue is to define the host range for each application. In this article, we discuss the factors that affect host range and how this determines the classification of phages into different categories of action. For each host range group, recent representative examples are provided, together with suggestions on how the different groups can be used to combat certain types of bacterial infections. The available methodologies for host range expansion, either through sequential adaptation to a new pathogen or through genetic engineering techniques, are also reviewed.
Collapse
Affiliation(s)
- Petros Bozidis
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| | - Eleftheria Markou
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| | - Athanasia Gouni
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| | - Konstantina Gartzonika
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| |
Collapse
|
18
|
Tang M, Yao Z, Liu Y, Ma Z, Zhao D, Mao Z, Wang Y, Chen L, Zhou T. Host immunity involvement in the outcome of phage therapy against hypervirulent Klebsiella pneumoniae infections. Antimicrob Agents Chemother 2024; 68:e0142923. [PMID: 38742895 PMCID: PMC11620495 DOI: 10.1128/aac.01429-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/13/2024] [Indexed: 05/16/2024] Open
Abstract
Highly encapsulated hypervirulent Klebsiella pneumoniae (hvKp) causes severe infections. Bacteriophage therapy, an antibiotic alternative, effectively treats bacterial infections. Phage φFK1979 encoding polysaccharide depolymerases can target and disarm the capsule of hvKp FK1979, showing promise against FK1979 infection. Resistant strains induced by φFK1979 are possibly eliminated by host immunity and new phage phiR3 targeting them. We constructed varied immunocompromised FK1979 infection mouse models to assess the therapy efficacy of φFK1979 alone or in combination with phiR3. Survival rates, bacterial loads, histopathology, inflammation, and immune cell distribution of mice were studied. Prompt and adequate administration of φFK1979, rather than phiR3, significantly improved survival rates in mice with different immune statuses. However, immunocompromised mice showed lower efficacy due to reduced tolerance to low-virulence φFK1979-resistant bacteria compared to immunocompetent mice. Adding phiR3 sequentially greatly enhanced therapy efficacy for them, leading to increased survival rates and notable improvements in pathology and inflammation. Immunocompetent mice exhibited the most favorable response to φFK1979 monotherapy, as their immune system cleared φFK1979-resistant bacteria while avoiding a robust response to phiR3 combating φFK1979-resistant bacteria. This study revealed host immunity involvement in the outcome of phage therapy against infections and introduced, for the first time, personalized phage therapy strategies for hvKp-infected mice with varying immune statuses.IMPORTANCEHypervirulent Klebsiella pneumoniae (hvKp), with high capsular polysaccharide production, can cause severe invasive infections. Capsule-targeting phage poses the potential to fight against hvKp. We previously elucidated that the capsule-targeting phage induces resistance in hvKp, while phage-resistant strains exhibit sensitivity to host innate immunity and new phages targeting them. This indicated that phage-resistant strains can be eliminated by the immune system in immunocompetent patients, whereas they may require treatment with phages targeting resistant bacteria in immunocompromised patients. HvKp can infect individuals with varying immune statuses, including both immunocompetent and immunocompromised/deficient patients. This study, for the first time, developed personalized phage therapy strategies for hvKp-infected mice with different immune statuses, optimizing phage therapy against hvKp infections. This research is expected to provide a theoretical foundation and novel insights for clinical phage therapy against hvKp infections, offering significant societal benefits and clinical value.
Collapse
Affiliation(s)
- Miran Tang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhuocheng Yao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhexiao Ma
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Deyi Zhao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenzhi Mao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yue Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
19
|
Xu Y, Luo W, Deng H, Hu X, Zhang J, Wang Y. Robust antibacterial activity of rare-earth ions on planktonic and biofilm bacteria. Biomed Mater 2024; 19:045014. [PMID: 38740038 DOI: 10.1088/1748-605x/ad4aa9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Bacterial infections pose a serious threat to human health, with emerging antibiotic resistance, necessitating the development of new antibacterial agents. Cu2+and Ag+are widely recognized antibacterial agents with a low propensity for inducing bacterial resistance; however, their considerable cytotoxicity constrains their clinical applications. Rare-earth ions, owing to their unique electronic layer structure, hold promise as promising alternatives. However, their antibacterial efficacy and biocompatibility relative to conventional antibacterial agents remain underexplored, and the variations in activity across different rare-earth ions remain unclear. Here, we systematically evaluate the antibacterial activity of five rare-earth ions (Yb3+, Gd3+, Sm3+, Tb3+, and La3+) againstStaphylococcus aureusandPseudomonas aeruginosa, benchmarked against well-established antibacterial agents (Cu2+, Ag+) and the antibiotic norfloxacin. Cytotoxicity is also assessed via live/dead staining of fibroblasts after 24 h rare-earth ion exposure. Our findings reveal that rare-earth ions require higher concentrations to match the antibacterial effects of traditional agents but offer the advantage of significantly lower cytotoxicity. In particular, Gd3+demonstrates potent bactericidal efficacy against both planktonic and biofilm bacteria, while maintaining the lowest cytotoxicity toward mammalian cells. Moreover, the tested rare-earth ions also exhibited excellent antifungal activity againstCandida albicans. This study provides a critical empirical framework to guide the selection of rare-earth ions for biomedical applications, offering a strategic direction for the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Yuanyuan Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Wei Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Hui Deng
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Xuefeng Hu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| |
Collapse
|
20
|
Rastegar S, Sabouri S, Tadjrobehkar O, Samareh A, Niaz H, Sanjari N, Hosseini-Nave H, Skurnik M. Characterization of bacteriophage vB_AbaS_SA1 and its synergistic effects with antibiotics against clinical multidrug-resistant Acinetobacter baumannii isolates. Pathog Dis 2024; 82:ftae028. [PMID: 39435653 PMCID: PMC11536755 DOI: 10.1093/femspd/ftae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/26/2024] [Accepted: 10/19/2024] [Indexed: 10/23/2024] Open
Abstract
Acinetobacter baumannii is a major cause of nosocomial infections globally. The increasing prevalence of multidrug-resistant (MDR) A. baumannii has become an important public health concern. To combat drug resistance, alternative methods such as phage therapy have been suggested. In total, 30 MDR A. baumannii strains were isolated from clinical specimens, and their antibiotic susceptibilities were determined. The Acinetobacter phage vB_AbaS_SA1, isolated from hospital sewage, was characterized. In addition to its plaque size, particle morphology, and host range, its genome sequence was determined and annotated. Finally, the antibacterial effects of phage alone, antibiotics alone, and phage/antibiotic combinations were assessed against the A. baumannii strains. Phage vB_AbaS_SA1 had siphovirus morphology, showed a latent period of 20 min, and a 250 PFU/cell (plaque forming unit/cell) burst size. When combined with antibiotics, vB_AbaS_SA1 (SA1) showed a significant phage-antibiotic synergy effect and reduced the overall effective concentration of antibiotics in time-kill assessments. The genome of SA1 is a linear double-stranded DNA of 50 108 bp in size with a guanine-cytosine (GC) content of 39.15%. Despite the potent antibacterial effect of SA1, it is necessary to perform additional research to completely elucidate the mechanisms of action and potential constraints associated with utilizing this bacteriophage.
Collapse
Affiliation(s)
- Sanaz Rastegar
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran
| | - Salehe Sabouri
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Omid Tadjrobehkar
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran
| | - Ali Samareh
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hira Niaz
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nafise Sanjari
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Hosseini-Nave
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Aljabali AAA, Aljbaly MBM, Obeid MA, Shahcheraghi SH, Tambuwala MM. The Next Generation of Drug Delivery: Harnessing the Power of Bacteriophages. Methods Mol Biol 2024; 2738:279-315. [PMID: 37966606 DOI: 10.1007/978-1-0716-3549-0_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The use of biomaterials, such as bacteriophages, as drug delivery vehicles (DDVs) has gained increasing interest in recent years due to their potential to address the limitations of conventional drug delivery systems. Bacteriophages offer several advantages as drug carriers, such as high specificity for targeting bacterial cells, low toxicity, and the ability to be engineered to express specific proteins or peptides for enhanced targeting and drug delivery. In addition, bacteriophages have been shown to reduce the development of antibiotic resistance, which is a major concern in the field of antimicrobial therapy. Many initiatives have been taken to take up various payloads selectively and precisely by surface functionalization of the outside or interior of self-assembling viral protein capsids. Bacteriophages have emerged as a promising platform for the targeted delivery of therapeutic agents, including drugs, genes, and imaging agents. They possess several properties that make them attractive as drug delivery vehicles, including their ability to specifically target bacterial cells, their structural diversity, their ease of genetic manipulation, and their biocompatibility. Despite the potential advantages of using bacteriophages as drug carriers, several challenges and limitations need to be addressed. One of the main challenges is the limited host range of bacteriophages, which restricts their use to specific bacterial strains. However, this can also be considered as an advantage, as it allows for precise and targeted drug delivery to the desired bacterial cells. The use of biomaterials, including bacteriophages, as drug delivery vehicles has shown promising potential to address the limitations of conventional drug delivery systems. Further research is needed to fully understand the potential of these biomaterials and address the challenges and limitations associated with their use.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan.
| | | | - Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Seyed Hossein Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln, UK.
| |
Collapse
|
22
|
Cao Y, Khanal D, Kim J, Chang RYK, Byun AS, Morales S, Banaszak Holl MM, Chan HK. Stability of bacteriophages in organic solvents for formulations. Int J Pharm 2023; 646:123505. [PMID: 37832702 DOI: 10.1016/j.ijpharm.2023.123505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Bacteriophages or phages used as an alternative therapy for treating multi-drug resistant infections require formulation consideration. Current strategies to produce phage formulations involving organic solvents are based on empirical practices without a good understanding of phage stability during formulation development. In this study, we investigated the effect of common formulation organic solvents (ethanol, isopropyl alcohol, tetrahydrofuran (THF) and dimethyl sulfoxide (DMSO)) on the stability of Pseudomonas aeruginosa-specific myovirus (PEV1, PEV20) and podovirus (PEV31) phages using biological assay, transmission electron microscopy (TEM) and scattering near field optical microscopy (SNOM). The three phages were mixed with the solvents at different concentrations (25%, 50%, and 75% (v/v)) for 20 min. All phages were fully viable in the organic solvents at 25% (v/v) showing negligible titre changes. At the higher solvent concentration of 50% (v/v), the myoviruses PEV1 and PEV20 remained relatively stable (titre loss 0.4-1.3 log10), whereas the podovirus PEV31 became less stable (titre loss 0.25-3.8 log10), depending on the solvent used. Increasing the solvent level to 75% (v/v) caused increased morphological changes in TEM and decreased viability as indicated by the titre loss (0.32-7.4 log10), with DMSO being the most phage-destabilising solvent. SNOM spectra showed differences in the signal intensity and peak positions in the amide I and amide II regions, revealing altered phage proteins by the solvents. In conclusion, the choice of the solvents for phage formulation depends on both the phages and solvent types. Our results showed (1) the phages are more stable in the alcohols than DMSO and THF, and (2) the myoviruses tend to be more stable than the podovirus in the solvents. Overall, a low to moderate (25-50 % v/v) level of organic solvents (except 50% THF) can be used in formulation of the phages without a substantial titre loss.
Collapse
Affiliation(s)
- Yue Cao
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, NSW 2006, Australia
| | - Dipesh Khanal
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, NSW 2006, Australia
| | - Jinhee Kim
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, NSW 2006, Australia
| | - Alex Seungyeon Byun
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, NSW 2006, Australia
| | - Sandra Morales
- Phage Consulting, Sydney, New South Wales, NSW 2100, Australia
| | - Mark M Banaszak Holl
- Department of Mechanical and Materials Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Division of Pulmonology, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, NSW 2006, Australia.
| |
Collapse
|
23
|
Li Z, Lei Z, Cai Y, Cheng DB, Sun T. MicroRNA therapeutics and nucleic acid nano-delivery systems in bacterial infection: a review. J Mater Chem B 2023; 11:7804-7833. [PMID: 37539650 DOI: 10.1039/d3tb00694h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Bacteria that have worked with humans for thousands of years pose a major threat to human health even today, as drug resistance has become a prominent problem. Compared to conventional drug therapy, nucleic acid-based therapies are a promising and potential therapeutic strategy for diseases in which nucleic acids are delivered through a nucleic acid delivery system to regulate gene expression in specific cells, offering the possibility of curing intractable diseases that are difficult to treat at this stage. Among the many nucleic acid therapeutic ideas, microRNA, a class of small nucleic acids with special properties, has made great strides in biology and medicine in just over two decades, showing promise in preclinical drug development. In this review, we introduce recent advances in nucleic acid delivery systems and their clinical applications, highlighting the potential of nucleic acid therapies, especially miRNAs extracted from traditional herbs, in combination with the existing set of nucleic acid therapeutic systems, to potentially open up a new line of thought in the treatment of cancer, viruses, and especially bacterial infectious diseases.
Collapse
Affiliation(s)
- Ze Li
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Yilun Cai
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
24
|
Osman AH, Kotey FCN, Odoom A, Darkwah S, Yeboah RK, Dayie NTKD, Donkor ES. The Potential of Bacteriophage-Antibiotic Combination Therapy in Treating Infections with Multidrug-Resistant Bacteria. Antibiotics (Basel) 2023; 12:1329. [PMID: 37627749 PMCID: PMC10451467 DOI: 10.3390/antibiotics12081329] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The growing threat of antibiotic resistance is a significant global health challenge that has intensified in recent years. The burden of antibiotic resistance on public health is augmented due to its multifaceted nature, as well as the slow-paced and limited development of new antibiotics. The threat posed by resistance is now existential in phage therapy, which had long been touted as a promising replacement for antibiotics. Consequently, it is imperative to explore the potential of combination therapies involving antibiotics and phages as a feasible alternative for treating infections with multidrug-resistant bacteria. Although either bacteriophage or antibiotics can potentially treat bacterial infections, they are each fraught with resistance. Combination therapies, however, yielded positive outcomes in most cases; nonetheless, a few combinations did not show any benefit. Combination therapies comprising the synergistic activity of phages and antibiotics and combinations of phages with other treatments such as probiotics hold promise in the treatment of drug-resistant bacterial infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eric S. Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra P.O. Box KB 4236, Ghana; (A.-H.O.); (F.C.N.K.); (A.O.); (S.D.); (R.K.Y.); (N.T.K.D.D.)
| |
Collapse
|
25
|
Kumar A, Yadav A. Synthetic phage and its application in phage therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:61-89. [PMID: 37739560 DOI: 10.1016/bs.pmbts.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Synthetic phage analysis has been implemented in progressive various areas of biology, such as genetics, molecular biology, and synthetic biology. Many phage-derived technologies have been altered for developing gene circuits to program biological systems. Due to their extremely potent potency, phages also provide greater medical availability against bacterial agents and bacterial diagnostic agents. Its host specificity and our growing ability to manipulate, them further expand its possibility. New Phages also genetically redesign programmable biomaterials with highly tunable properties. Moreover, new phages are central to powerful directed evolution platforms. It is used to enhance existing biological, functions to create new phages. In other sites, the mining of antibiotics, and the emergence and dissemination of more than one type of drug-resistant microbe, a human health concerns. The major point in controlling and treating microbial infections. At present, genetic modifications and biochemical treatments are used to modify phages. Among these, genetic engineering involves the identification of defective proteins, modification of host bodies, recognized receptors, and disruption of bacterial phage resistance signaling gateways.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India.
| | - Anuj Yadav
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India
| |
Collapse
|
26
|
Samaee HR, Eslami G, Rahimzadeh G, Saeedi M, Davoudi Badabi A, Asare-Addo K, Nokhodchi A, Roozbeh F, Moosazadeh M, Ghasemian R, Alikhani A, Rezai MS. Inhalation phage therapy as a new approach to preventing secondary bacterial pneumonia in patients with moderate to severe COVID-19: A double-blind clinical trial study. J Drug Deliv Sci Technol 2023; 84:104486. [PMID: 37123173 PMCID: PMC10116154 DOI: 10.1016/j.jddst.2023.104486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
Inhalation phage therapy is proposed as a replacement approach for antibiotics in the treatment of pulmonary bacterial infections. This study investigates phage therapy on bacterial pneumonia in patients with moderate to severe COVID-19 via the inhalation route. In this double-blind clinical trial, 60 patients with positive COVID-19 hospitalized in three central Mazandaran hospitals were chosen and randomly divided into two intervention and control groups. Standard country protocol drugs plus 10 mL of phage suspension every 12 h with a mesh nebulizer was prescribed for 7 days in the intervention group. The two groups were compared in terms of O2Sat, survival rate, severe secondary pulmonary bacterial infection and duration of hospitalization. Comparing the results between the intervention and control group, in terms of the trend of O2Sat change, negative sputum culture, no fever, no dyspnea, duration of hospitalization, duration of intubation and under ventilation, showed that the difference between these two groups was statistically different (P value < 0.05). In conclusion, inhalation phage therapy may have a potential effect on secondary infection and in the outcome of COVID-19 patients. However, more clinical trials with control confounding factors are needed to further support this concept.
Collapse
Affiliation(s)
- Hamid Reza Samaee
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Gohar Eslami
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Golnar Rahimzadeh
- Pediatric Infectious Diseases Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Davoudi Badabi
- Antimicrobial Resistance Research Center and Communicable Diseases Institute, Department of Infectious Diseases, Ghaem Shahr Razi Hospital, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Ali Nokhodchi
- Pharmaceutics Research Lab, School of Life Sciences, University of Sussex, Brighton, UK
| | - Fatemeh Roozbeh
- Department of Infectious Diseases, Boo Ali Sina Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmood Moosazadeh
- Gastrointestinal Cancer Research Center, Non-communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Roya Ghasemian
- Antimicrobial Resistance Research Center, Department of Infectious Diseases, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Alikhani
- Antimicrobial Resistance Research Center and Communicable Diseases Institute, Department of Infectious Diseases, Ghaem Shahr Razi Hospital, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Sadegh Rezai
- Pediatric Infectious Diseases Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
27
|
Gao D, Ji H, Li X, Ke X, Li X, Chen P, Qian P. Host receptor identification of a polyvalent lytic phage GSP044, and preliminary assessment of its efficacy in the clearance of Salmonella. Microbiol Res 2023; 273:127412. [PMID: 37243984 DOI: 10.1016/j.micres.2023.127412] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Salmonella and pathogenic Escherichia coli are important foodborne pathogens. Phages are being recognized as potential antibacterial agents to control foodborne pathogens. In the current study, a polyvalent broad-spectrum phage, GSP044, was isolated from pig farm sewage. It can simultaneously lyse many different serotypes of Salmonella and E. coli, exhibiting a broad host range. Using S. Enteritidis SE006 as the host bacterium, phage GSP044 was further characterized. GSP044 has a short latent period (10 min), high stability at different temperatures and pH, and good tolerance to chloroform. Genome sequencing analysis revealed that GSP044 has a double-stranded DNA (dsDNA) genome consisting of 110,563 bp with G + C content of 39%, and phylogenetic analysis of the terminase large subunit confirmed that GSP044 belonged to the Demerecviridae family, Epseptimavirus genus. In addition, the genomic sequence did not contain any lysogenicity-related, virulence-related, or antibiotic resistance-related genes. Analysis of phage-targeted host receptors revealed that the outer membrane protein (OMP) BtuB was identified as a required receptor for phage infection of host bacteria. The initial application capability of phage GSP044 was assessed using S. Enteritidis SE006. Phage GSP044 could effectively reduce biofilm formation and degrade the mature biofilm in vitro. Moreover, GSP044 significantly decreased the viable counts of artificially contaminated S. Enteritidis in chicken feed and drinking water. In vivo tests, a mouse model of intestinal infection demonstrated that phage GSP044 was able to reduce the number of colonized S. Enteritidis in the intestine. These results suggest that phage GSP044 may be a promising candidate biologic agent for controlling Salmonella infections.
Collapse
Affiliation(s)
- Dongyang Gao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China
| | - Hongyue Ji
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China
| | - Xin Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China
| | - Xiquan Ke
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China
| | - Pin Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China.
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, People's Republic of China.
| |
Collapse
|
28
|
Samir S. Phages for treatment of Staphylococcus aureus infection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:275-302. [PMID: 37739558 DOI: 10.1016/bs.pmbts.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Combating multi-drug resistant bacterial infections should be a universal urgency. The gram- positive Staphylococcus aureus (S. aureus) bacteria are generally harmless; healthy people frequently have them on their skin and nose. These bacteria, for the most part, produce no difficulties or only minor skin diseases. Antibiotics and cleansing of the affected region are usually the treatments of choice. S. aureus can become virulent causing serious infections that may lead to pustules to sepsis or death. Normally, it is thought that antibiotics may solve problems concerning bacterial infection; but unfortunately, Staphylococci have evolved mechanisms to resist drugs. Methicillin-Resistant Staphylococcus aureus (MRSA); both in hospitals and in the community, infections are evolving into dangerous pathogens. Health care practitioners may need to use antibiotics with more adverse effects to treat antibiotic-resistant S. aureus infections. Amid existing efforts to resolve this problem, phage therapy proposes a hopeful alternate to face Staphylococcal infections. When the majority of antibiotics have failed to treat infections caused by multidrug-resistant bacteria, such as methicillin- and vancomycin-resistant S. aureus, phage therapy may be an option. Here, we appraise the potential efficacy, current knowledge on bacteriophages for S. aureus, experimental research and information on their clinical application, and limitations of phage therapy for S. aureus infections.
Collapse
Affiliation(s)
- Safia Samir
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Giza, Egypt.
| |
Collapse
|
29
|
Singh J, Fitzgerald DA, Jaffe A, Hunt S, Barr JJ, Iredell J, Selvadurai H. Single-arm, open-labelled, safety and tolerability of intrabronchial and nebulised bacteriophage treatment in children with cystic fibrosis and Pseudomonas aeruginosa. BMJ Open Respir Res 2023; 10:e001360. [PMID: 37160359 PMCID: PMC10173968 DOI: 10.1136/bmjresp-2022-001360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
INTRODUCTION Cystic fibrosis (CF) is a multisystem condition that is complicated by recurrent pulmonary infections requiring aggressive antibiotic treatment. This predisposes the patient to complications such as sensorineural hearing loss, renal impairment, hypersensitivity and the development of antibiotic resistance. Pseudomonas aeruginosa is one of the more common organisms which cause recurrent infections and result in greater morbidity and mortality in people living with CF. Bacteriophages have been identified as a potential alternative or adjunct to antibiotics. We hypothesise that bacteriophage therapy is a safe and well-tolerated treatment in children with CF infected with P. aeruginosa infection in their airways. METHODS This single-arm, open-labelled, non-randomised trial will run for a maximum period of 36 months with up to 10 participants. Adolescents (≥12 years and <18 years of age) who continue to shed P.aeruginosa (within 3 months of enrolment) despite undergoing eradication therapy previously, will be considered for this trial. Non-genetically modified bacteriophages that have demonstrated obligate lytic activity against each of the study participants' P. aeruginosa strains will be selected and prepared according to a combination of established protocols (isolation, purification, sterility testing and packaging) to achieve close to good manufacturing practice recommendations. The selected bacteriophage will be administered endo-bronchially first under direct vision, followed by two times a day nebulisation for 7 days in addition to standard CF treatment (intravenous antibiotics, physiotherapy to be completed as inpatient for 10-14 days). Safety and tolerability will be defined as the absence of (1) fever above 38.5°C occurring within 1 hour of the administration of the nebulised bacteriophage, (2) a 10% decline in spirometry (forced expiratory volume in 1 s %) measured preadministration and postadministration of the first dose of nebulised bacteriophage. Clinical reviews including repeat sputum cultures and spirometry will be performed at 3, 6, 9 and 12 months following bacteriophage treatment. ETHICS AND DISSEMINATION Our clinical trial is conducted in accordance with (1) good clinical practice, (2) Australian legislation, (3) National Health and Medical Research Council guidelines for the ethical conduct of research. TRIAL REGISTRATION NUMBER Australia and New Zealand Clinical Trial Registry (ACTRN12622000767707).
Collapse
Affiliation(s)
- Jagdev Singh
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Dominic A Fitzgerald
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Adam Jaffe
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Sharon Hunt
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | | | - Jonathan Iredell
- Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Department of Infectious Diseases, Westmead Hospital, Westmead, New South Wales, Australia
| | - Hiran Selvadurai
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
30
|
Jia PP, Yang YF, Junaid M, Jia HJ, Li WG, Pei DS. Bacteriophage-based techniques for elucidating the function of zebrafish gut microbiota. Appl Microbiol Biotechnol 2023; 107:2039-2059. [PMID: 36847856 DOI: 10.1007/s00253-023-12439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 03/01/2023]
Abstract
Bacteriophages (or phages) are unique viruses that can specifically infect bacteria. Since their discovery by Twort and d'Herelle, phages with bacterial specificity have played important roles in microbial regulation. The intestinal microbiota and host health are intimately linked with nutrient, metabolism, development, and immunity aspects. However, the mechanism of interactions between the composition of the microbiota and their functions in maintaining host health still needs to be further explored. To address the lack of methodology and functions of intestinal microbiota in the host, we first proposed that, with the regulations of special intestinal microbiota and applications of germ-free (GF) zebrafish model, phages would be used to infect and reduce/eliminate the defined gut bacteria in the conventionally raised (CR) zebrafish and compared with the GF zebrafish colonized with defined bacterial strains. Thus, this review highlighted the background and roles of phages and their functional characteristics, and we also summarized the phage-specific infection of target microorganisms, methods to improve the phage specificity, and their regulation within the zebrafish model and gut microbial functional study. Moreover, the primary protocol of phage therapy to control the intestinal microbiota in zebrafish models from larvae to adults was recommended including phage screening from natural sources, identification of host ranges, and experimental design in the animal. A well understanding of the interaction and mechanism between phages and gut bacteria in the host can potentially provide powerful strategies or techniques for preventing bacteria-related human diseases by precisely regulating in vitro and in vivo, which will provide novel insights for phages' application and combined research in the future. KEY POINTS: • Zebrafish models for clarifying the microbial and phages' functions were discussed • Phages infect host bacteria with exquisite specificity and efficacy • Phages can reduce/eliminate the defined gut bacteria to clarify their function.
Collapse
Affiliation(s)
- Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Yi-Fan Yang
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region On Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Huang-Jie Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Wei-Guo Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW The incidence of bacterial respiratory tract infections is growing. In a context of increasing antibiotic resistance and lack of new classes of antibiotics, inhaled antibiotics emerge as a promising therapeutic strategy. Although they are generally used for cystic fibrosis, their use in other conditions is becoming more frequent, including no-cystic fibrosis bronchiectasis, pneumonia and mycobacterial infections. RECENT FINDINGS Inhaled antibiotics exert beneficial microbiological effects in bronchiectasis and chronic bronchial infection. In nosocomial and ventilator-associated pneumonia, aerosolized antibiotics improve cure rates and bacterial eradication. In refractory Mycobacterium avium complex infections, amikacin liposome inhalation suspension is more effective in achieving long-lasting sputum conversion. In relation to biological inhaled antibiotics (antimicrobial peptides, interfering RNA and bacteriophages), currently in development, there is no still enough evidence that support their use in clinical practice. SUMMARY The effective antimicrobiological activity of inhaled antibiotics, added to their potential to overcoming resistances to systemic antibiotics, make inhaled antibiotics a plausible alternative.
Collapse
|
32
|
Tu Q, Pu M, Li Y, Wang Y, Li M, Song L, Li M, An X, Fan H, Tong Y. Acinetobacter Baumannii Phages: Past, Present and Future. Viruses 2023; 15:v15030673. [PMID: 36992382 PMCID: PMC10057898 DOI: 10.3390/v15030673] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is one of the most common clinical pathogens and a typical multi-drug resistant (MDR) bacterium. With the increase of drug-resistant A. baumannii infections, it is urgent to find some new treatment strategies, such as phage therapy. In this paper, we described the different drug resistances of A. baumannii and some basic properties of A. baumannii phages, analyzed the interaction between phages and their hosts, and focused on A. baumannii phage therapies. Finally, we discussed the chance and challenge of phage therapy. This paper aims to provide a more comprehensive understanding of A. baumannii phages and theoretical support for the clinical application of A. baumannii phages.
Collapse
Affiliation(s)
- Qihang Tu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingfang Pu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yahao Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuer Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengzhe Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (H.F.); (Y.T.)
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (H.F.); (Y.T.)
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW With the improvement in device technology and delivery methods of inhaled medications, along with development of novel compounds and recognition of the importance of personalized approach in the management of chronic airway diseases, nebulizers have not only maintained their place in the treatment hierarchy of airway disease but have also proven a vital platform for the development of new classes of drugs. RECENT FINDINGS This short review explores recent advances in nebulized drug delivery in chronic obstructive pulmonary disease and other chronic airway diseases, emphasizing the progress in nebulizer technology, physiologic advantages of nebulized drug delivery and the high versatility of currently available and developing nebulizer-delivered pharmacotherapies. SUMMARY Versatility and efficiency of nebulizers allows for a broad spectrum of existing and novel therapies to be clinically studied, facilitating the progress in phenotype-targeted pharmacotherapies in the management of chronic airway diseases.
Collapse
|
34
|
Nang SC, Lin YW, Petrovic Fabijan A, Chang RYK, Rao GG, Iredell J, Chan HK, Li J. Pharmacokinetics/pharmacodynamics of phage therapy: a major hurdle to clinical translation. Clin Microbiol Infect 2023:S1198-743X(23)00046-0. [PMID: 36736661 DOI: 10.1016/j.cmi.2023.01.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/05/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND The increasing emergence of antimicrobial resistance worldwide has led to renewed interest in phage therapy. Unlike antibiotics, the lack of pharmacokinetics/pharmacodynamics (PK/PD) information represents a major challenge for phage therapy. As therapeutic phages are biological entities with the ability to self-replicate in the presence of susceptible bacteria, their PK/PD is far more complicated than that of antibiotics. OBJECTIVES This narrative review examines the current literature on phage pharmacology and highlights major pharmacological challenges for phage therapy. SOURCES Included articles were identified by searching PubMed and Google Scholar till June 2022. The search terms were 'bacteriophage', 'antimicrobial', 'pharmacokinetics' and 'pharmacodynamics'. Additional relevant references were obtained from articles retrieved from the primary search. CONTENT In this review, phage PK is first discussed, focusing on absorption, distribution, metabolism, and elimination. Key factors affecting phage antimicrobial activities are reviewed, including multiplicity of infection, passive and active phage therapy, and the involvement of the human immune system. Importantly, we emphasize the impact of phage self-replication on the PK/PD and the fundamental phage characteristics that are required for PK/PD modelling and clinical translation. IMPLICATIONS Recent progress in phage pharmacology has shown that we are in a far better position now to treat infections with phage therapy than a century ago. However, phage therapy is still in its infancy when compared to antibiotics due to the scarce pharmacological knowledge (e.g. PK/PD). Optimization of phage PK/PD is key for translation of phage therapy in patients.
Collapse
Affiliation(s)
- Sue C Nang
- Biomedicine Discovery Institute, Infection Program, Department of Microbiology, Monash University, Victoria, Australia
| | - Yu-Wei Lin
- Biomedicine Discovery Institute, Infection Program, Department of Microbiology, Monash University, Victoria, Australia
| | - Aleksandra Petrovic Fabijan
- Westmead Hospital, Western Sydney Local Health District, Westmead, New South Wales, Australia; Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia; School of Medicine, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Rachel Y K Chang
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia; AcuraBio Pty Ltd, Darra, Queensland, Australia
| | - Gauri G Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, North Carolina, USA
| | - Jonathan Iredell
- Westmead Hospital, Western Sydney Local Health District, Westmead, New South Wales, Australia; Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia; School of Medicine, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Jian Li
- Biomedicine Discovery Institute, Infection Program, Department of Microbiology, Monash University, Victoria, Australia.
| |
Collapse
|
35
|
MacLoughlin R, Martin-Loeches I. Not all nebulizers are created equal: Considerations in choosing a nebulizer for aerosol delivery during mechanical ventilation. Expert Rev Respir Med 2023; 17:131-142. [PMID: 36803134 DOI: 10.1080/17476348.2023.2183194] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
INTRODUCTION Aerosol therapy is commonly prescribed in the mechanically ventilated patient. Jet nebulizers (JN) and vibrating mesh nebulizers (VMN) are the most common nebulizer types, however, despite VMN's well established superior performance, JN use remains the most commonly used of the two. In this review, we describe the key differentiators between nebulizer types and how considered selection of nebulizer type may enable successful therapy and the optimization of drug/device combination products. AREAS COVERED Following a review of the published literature up to February 2023, the current state of the art in relation to JN and VMN is discussed under the headings of in vitro performance of nebulizers during mechanical ventilation, respective compatibility with formulations for inhalation, clinical trials making use of VMN during mechanical ventilation, distribution of nebulized aerosol throughout the lung, measuring the respective performance of nebulizers in the patient and non-drug delivery considerations in nebulizer choice. EXPERT OPINION Whether for standard care, or the development of drug/device combination products, the choice of nebulizer type should not be made without consideration of the unique needs of the combination of each of drug, disease and patient types, as well as target site for deposition, and healthcare professional and patient safety.
Collapse
Affiliation(s)
- Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Ltd, Dangan, Ireland.,School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland.,School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), Dublin, Ireland
| |
Collapse
|
36
|
Zhang B, Wang Y, Wang F, Zhang Y, Hao H, Lv X, Hao L, Shi Y. Microencapsulated phage composites with increased gastrointestinal stability for the oral treatment of Salmonella colonization in chicken. Front Vet Sci 2023; 9:1101872. [PMID: 36713855 PMCID: PMC9875011 DOI: 10.3389/fvets.2022.1101872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Salmonella infection, one of the common epidemics in the livestock and poultry breeding industry, causes great economic losses worldwide. At present, antibiotics are the most commonly used treatment for Salmonella infection, but the widespread use of antibiotics has increased drug resistance to Salmonella. Phage therapy has gradually become an alternative method to control Salmonella infection. However, phage, a specific virus that can infect bacteria, has poor stability and is prone to inactivation during treatment. Microencapsulated phage microspheres can effectively solve this problem. Accordingly, in this study, Salmonella phages were microencapsulated, using the xanthan gum/sodium alginate/CaCl2/chitooligosaccharides method, to improve their gastrointestinal stability. Furthermore, microencapsulated phages were evaluated for in vitro temperature and storage stability and in vivo therapeutic effect. Phage microspheres prepared with 1 g/100 mL xanthan gum, 2 g/100 mL sodium alginate, 2 g/100 mL CaCl2, and 0.6 g/100 mL chitooligosaccharides were regular in shape and stable in the temperature range of 10-30°C. Also, microencapsulated phages showed significantly improved stability in the simulated gastric juice environment than the free phages (p < 0.05). In the simulated intestinal fluid, microencapsulated phages were completely released after 4 h. Moreover, microencapsulated phages showed good storage stability at 4°C. In the in vivo experiments detecting Salmonella colonization in the intestinal tract of chicks, microencapsulated phages showed a better therapeutic effect than the free phages. In conclusion, microencapsulated phages exhibited significantly improved stability, gastric acid resistance, and thereby efficacy than the free phages. Microencapsulated phages can be potentially used as biological control agents against bacterial infections.
Collapse
Affiliation(s)
- Bo Zhang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Yongxia Wang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Fangfang Wang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Yongying Zhang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - He Hao
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Xingbang Lv
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Liuhang Hao
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Yuxiang Shi
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei, China,Engineering Research Center for Poultry Diseases of Hebei Province, Handan, Hebei, China,*Correspondence: Yuxiang Shi ✉
| |
Collapse
|
37
|
Orozco-Ochoa AK, González-Gómez JP, Castro-Del Campo N, Lira-Morales JD, Martínez-Rodríguez CI, Gomez-Gil B, Chaidez C. Characterization and genome analysis of six novel Vibrio parahaemolyticus phages associated with acute hepatopancreatic necrosis disease (AHPND). Virus Res 2023; 323:198973. [PMID: 36272541 PMCID: PMC10194199 DOI: 10.1016/j.virusres.2022.198973] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
Abstract
Vibrio parahaemolyticus causes acute hepatopancreatic necrosis disease (AHPND) in farmed shrimp. Due to its damage potential, which could be as high as a 100% mortality rate, bacteriophages have emerged as a promising natural control intervention other than antibiotics, yet multiple roadblocks need to be overcome. In this study, six bacteriophages isolated from seafood samples, seawater, and estuary water in Sinaloa, Mexico, demonstrated a narrow host range among Mexican AHPND-causing V. parahaemolyticus. All bacteriophages are composed of a double-stranded DNA genome with lengths ranging between 43,268 and 57,805 bp. All six phages exhibited latency periods of 10-30 min and burst sizes of 34-168 viral particles per infected cell. The optimal MOI for bacteriophage propagation was 0.01-1. No transfer RNA (tRNA), virulence, or resistance genes were found in either genome, and the life cycle of these phages was classified as virulent by the PhageAI platform. Phylogenetic and comparative genomics analyzes assigned phages M3, C2, M9, and M83 as new species not yet reported within the genus Maculvirus, Autographiviridae family. ALK and CHI phages were assigned as new members of a new genus not yet classified within the subfamily Queuovirinae. The findings highlight the potential of CHI, ALK, M3, C2, M9, and M83 as promising alternatives against AHPND-causing V. parahaemolyticus from Mexico.
Collapse
Affiliation(s)
- Alma Karen Orozco-Ochoa
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Carretera a Eldorado Km 5.5, Campo El Diez, Culiacán, Sinaloa 80110, México
| | - Jean Pierre González-Gómez
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Carretera a Eldorado Km 5.5, Campo El Diez, Culiacán, Sinaloa 80110, México
| | - Nohelia Castro-Del Campo
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Carretera a Eldorado Km 5.5, Campo El Diez, Culiacán, Sinaloa 80110, México
| | - Juan Daniel Lira-Morales
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Carretera a Eldorado Km 5.5, Campo El Diez, Culiacán, Sinaloa 80110, México
| | - Célida Isabel Martínez-Rodríguez
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Carretera a Eldorado Km 5.5, Campo El Diez, Culiacán, Sinaloa 80110, México
| | - Bruno Gomez-Gil
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán, Sinaloa AP 711, México
| | - Cristóbal Chaidez
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Carretera a Eldorado Km 5.5, Campo El Diez, Culiacán, Sinaloa 80110, México.
| |
Collapse
|
38
|
Tang Z, Tang N, Wang X, Ren H, Zhang C, Zou L, Han L, Guo L, Liu W. Characterization of a lytic Escherichia coli phage CE1 and its potential use in therapy against avian pathogenic Escherichia coli infections. Front Microbiol 2023; 14:1091442. [PMID: 36876110 PMCID: PMC9978775 DOI: 10.3389/fmicb.2023.1091442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
The high incidence of Avian pathogenic Escherichia coli (APEC) in poultry has resulted in significant economic losses. It has become necessary to find alternatives to antibiotics due to the alarming rise in antibiotic resistance. Phage therapy has shown promising results in numerous studies. In the current study, a lytic phage vB_EcoM_CE1 (short for CE1) against Escherichia coli (E. coli) was isolated from broiler feces, showing a relatively wide host range and lysing 56.9% (33/58) of high pathogenic strains of APEC. According to morphological observations and phylogenetic analysis, phage CE1 belongs to the Tequatrovirus genus, Straboviridae family, containing an icosahedral capsid (80 ~ 100 nm in diameter) and a retractable tail (120 nm in length). This phage was stable below 60°C for 1 h over the pH range of 4 to 10. Whole-genome sequencing revealed that phage CE1 contained a linear double-stranded DNA genome spanning 167,955 bp with a GC content of 35.4%. A total of 271 ORFs and 8 tRNAs were identified. There was no evidence of virulence genes, drug-resistance genes, or lysogeny genes in the genome. The in vitro test showed high bactericidal activity of phage CE1 against E. coli at a wide range of MOIs, and good air and water disinfectant properties. Phage CE1 showed perfect protection against broilers challenged with APEC strain in vivo. This study provides some basic information for further research into treating colibacillosis, or killing E. coli in breeding environments.
Collapse
Affiliation(s)
- Zhaohui Tang
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Ning Tang
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xinwei Wang
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Huiying Ren
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Can Zhang
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Ling Zou
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Longzong Guo
- Shandong Yisheng Livestock & Poultry Breeding Co., Ltd., Yantai, Shandong, China
| | - Wenhua Liu
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
39
|
Tan Y, Su J, Fu M, Zhang H, Zeng H. Recent Advances in Phage-Based Therapeutics for Multi-Drug Resistant Acinetobacter baumannii. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010035. [PMID: 36671607 PMCID: PMC9855029 DOI: 10.3390/bioengineering10010035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 12/29/2022]
Abstract
Acinetobacter baumannii is an important opportunistic pathogen common in clinical infections. Phage therapy become a hot research field worldwide again after the post-antibiotic era. This review summarizes the important progress of phage treatments for A. baumannii in the last five years, and focus on the new interesting advances including the combination of phage and other substances (like photosensitizer), and the phage encapsulation (by microparticle, hydrogel) in delivery. We also discuss the remaining challenges and promising directions for phage-based therapy of A. baumannii infection in the future, and the innovative combination of materials in this area may be one promising direction.
Collapse
|
40
|
Laucirica DR, Stick SM, Garratt LW, Kicic A. Bacteriophage: A new therapeutic player to combat neutrophilic inflammation in chronic airway diseases. Front Med (Lausanne) 2022; 9:1069929. [PMID: 36590945 PMCID: PMC9794625 DOI: 10.3389/fmed.2022.1069929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Persistent respiratory bacterial infections are a clinical burden in several chronic inflammatory airway diseases and are often associated with neutrophil infiltration into the lungs. Following recruitment, dysregulated neutrophil effector functions such as increased granule release and formation of neutrophil extracellular traps (NETs) result in damage to airway tissue, contributing to the progression of lung disease. Bacterial pathogens are a major driver of airway neutrophilic inflammation, but traditional management of infections with antibiotic therapy is becoming less effective as rates of antimicrobial resistance rise. Bacteriophages (phages) are now frequently identified as antimicrobial alternatives for antimicrobial resistant (AMR) airway infections. Despite growing recognition of their bactericidal function, less is known about how phages influence activity of neutrophils recruited to sites of bacterial infection in the lungs. In this review, we summarize current in vitro and in vivo findings on the effects of phage therapy on neutrophils and their inflammatory mediators, as well as mechanisms of phage-neutrophil interactions. Understanding these effects provides further validation of their safe use in humans, but also identifies phages as a targeted neutrophil-modulating therapeutic for inflammatory airway conditions.
Collapse
Affiliation(s)
- Daniel R. Laucirica
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Stephen M. Stick
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Luke W. Garratt
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Anthony Kicic
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- School of Population Health, Curtin University, Bentley, WA, Australia
| |
Collapse
|
41
|
Emerging antibiotic alternatives: From antimicrobial peptides to bacteriophage therapies. Adv Drug Deliv Rev 2022; 191:114594. [PMID: 36328108 DOI: 10.1016/j.addr.2022.114594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Jones JD, Varghese D, Pabary R, Langley RJ. The potential of bacteriophage therapy in the treatment of paediatric respiratory infections. Paediatr Respir Rev 2022; 44:70-77. [PMID: 35241371 DOI: 10.1016/j.prrv.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022]
Abstract
The looming antibiotic resistance crisis is forcing clinicians to consider alternative approaches to treating bacterial infections. As the window of use for current antimicrobial agents becomes ever narrower, we consider if looking back will now be the way forward. Conceptually, phage therapy is simple and specific; a targeted treatment to control bacterial overgrowth. In this article we discuss bacteriophage and potential use in future therapy.
Collapse
Affiliation(s)
- J D Jones
- Infection Medicine, University of Edinburgh, United Kingdom
| | - D Varghese
- Department of Paediatric Respiratory and Sleep Medicine, Royal Hospital for Children, Glasgow, United Kingdom
| | - R Pabary
- Department of Paediatric Respiratory and Sleep Medicine, Royal Brompton Hospital, London, United Kingdom
| | - R J Langley
- Department of Paediatric Respiratory and Sleep Medicine, Royal Hospital for Children, Glasgow, United Kingdom; School of Medicine, Dentistry & Nursing, University of Glasgow, United Kingdom.
| |
Collapse
|
43
|
Jaglan AB, Anand T, Verma R, Vashisth M, Virmani N, Bera BC, Vaid RK, Tripathi BN. Tracking the phage trends: A comprehensive review of applications in therapy and food production. Front Microbiol 2022; 13:993990. [PMID: 36504807 PMCID: PMC9730251 DOI: 10.3389/fmicb.2022.993990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
In the present scenario, the challenge of emerging antimicrobial resistance is affecting human health globally. The increasing incidences of multidrug-resistant infections have become harder to treat, causing high morbidity, and mortality, and are posing extensive financial loss. Limited discovery of new antibiotic molecules has further complicated the situation and has forced researchers to think and explore alternatives to antibiotics. This has led to the resurgence of the bacteriophages as an effective alternative as they have a proven history in the Eastern world where lytic bacteriophages have been used since their first implementation over a century ago. To help researchers and clinicians towards strengthening bacteriophages as a more effective, safe, and economical therapeutic alternative, the present review provides an elaborate narrative about the important aspects of bacteriophages. It abridges the prerequisite essential requirements of phage therapy, the role of phage biobank, and the details of immune responses reported while using bacteriophages in the clinical trials/compassionate grounds by examining the up-to-date case reports and their effects on the human gut microbiome. This review also discusses the potential of bacteriophages as a biocontrol agent against food-borne diseases in the food industry and aquaculture, in addition to clinical therapy. It finishes with a discussion of the major challenges, as well as phage therapy and phage-mediated biocontrols future prospects.
Collapse
Affiliation(s)
- Anu Bala Jaglan
- Department of Zoology and Aquaculture, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Taruna Anand
- ICAR – National Research Centre on Equines, Hisar, India,*Correspondence: Taruna Anand,
| | - Ravikant Verma
- Department of Zoology and Aquaculture, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Medhavi Vashisth
- Department of Molecular Biology, Biotechnology, and Bioinformatics, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Nitin Virmani
- ICAR – National Research Centre on Equines, Hisar, India
| | - B. C. Bera
- ICAR – National Research Centre on Equines, Hisar, India
| | - R. K. Vaid
- ICAR – National Research Centre on Equines, Hisar, India
| | - B. N. Tripathi
- Animal Science Division, Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, India
| |
Collapse
|
44
|
Anyaegbunam NJ, Anekpo CC, Anyaegbunam ZKG, Doowuese Y, Chinaka CB, Odo OJ, Sharndama HC, Okeke OP, Mba IE. The resurgence of phage-based therapy in the era of increasing antibiotic resistance: From research progress to challenges and prospects. Microbiol Res 2022; 264:127155. [PMID: 35969943 DOI: 10.1016/j.micres.2022.127155] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/23/2022]
Abstract
Phage therapy was implemented almost a century ago but was subsequently abandoned when antibiotics emerged. However, the rapid emergence of drug-resistant, which has brought to the limelight situation reminiscent of the pre-antibiotic era, coupled with the unavailability of new drugs, has triggered the quest for an alternative therapeutic approach, and this has led to the rebirth of phage-derived therapy. Phages are viruses that infect and replicate in bacterial cells. Phage therapy, especially phage-derived proteins, is being given considerable attention among scientists as an antimicrobial agent. They are used alone or in combination with other biomaterials for improved biological activity. Over the years, much has been learned about the genetics and diversity of bacteriophages. Phage cocktails are currently being exploited for treating several infectious diseases as preliminary studies involving animal models and clinical trials show promising therapeutic efficacy. However, despite its numerous advantages, this approach has several challenges and unaddressed limitations. Addressing these issues requires lots of creativity and innovative ideas from interdisciplinary fields. However, with all available indications, phage therapy could hold the solution in this era of increasing antibiotic resistance. This review discussed the potential use of phages and phage-derived proteins in treating drug-resistant bacterial infections. Finally, we highlight the progress, challenges, and knowledge gaps and evaluate key questions requiring prompt attention for the full clinical application of phage therapy.
Collapse
Affiliation(s)
| | - Chijioke Chinedu Anekpo
- Department of Ear Nose and Throat (ENT), College of Medicine, Enugu state University of Science and Technology, Enugu, Nigeria
| | - Zikora Kizito Glory Anyaegbunam
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria Nsukka, Nigeria; Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Yandev Doowuese
- Department of Microbiology, Federal University of Health Sciences, Otukpo, Nigeria
| | | | | | | | | | | |
Collapse
|
45
|
Gong C, Guan W, Liu X, Zheng Y, Li Z, Zhang Y, Zhu S, Jiang H, Cui Z, Wu S. Biomimetic Bacteriophage-Like Particles Formed from Probiotic Extracts and NO Donors for Eradicating Multidrug-Resistant Staphylococcus aureus. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206134. [PMID: 36111564 DOI: 10.1002/adma.202206134] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/27/2022] [Indexed: 05/22/2023]
Abstract
Effectively clearing multidrug-resistant bacteria through nonantibiotic treatments is crucial for the recovery of infected tissues in favorable biological environments. Herein, a thermally responsive donor of cell-messenger nitric oxide (NO) is combined with extracts of food-grade Lactobacillus casei to form biomimetic phage-like microparticles with a tailspike structure. These particles can invade bacterial membranes and release NO to disrupt nitrogen and respiratory metabolisms, which initiates the programmed death of multidrug-resistant Staphylococcus aureus (MRSA) for inducing lysis, like the bacterial virus. Experiments suggest that these microparticles can also weaken bacterial toxicity and provide favorable conditions for cell proliferation because of the continuously released NO. By encapsulating these microparticles into graphene-oxide-doped polymers, a dual-mode antibacterial hydrogel (DMAH) can be constructed. In vivo results reveal that the DMAH achieves a long-time sterilization of MRSA with 99.84 ± 0.13% antibacterial rate in the dark because of the phage-like performance of the biomimetic microparticles. In its other antibacterial mode, DMAH subjected to 20 min of near-infrared irradiation release NO, which, together with the photothermal effect, synergistically damages bacterial cell membranes to achieve very fast disinfection (97.13 ± 0.41% bactericidal rate). This multifunctional hydrogel can also significantly accelerate wound healing due to the phage-like particles.
Collapse
Affiliation(s)
- Caixin Gong
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Wei Guan
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Yi-He-Yuan Road 5#, Beijing, 100871, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Zhongshan 2nd Road 106#, Guangzhou, 510080, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Hui Jiang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Shuilin Wu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
- School of Materials Science & Engineering, Peking University, Yi-He-Yuan Road 5#, Beijing, 100871, China
| |
Collapse
|
46
|
Alexyuk P, Bogoyavlenskiy A, Alexyuk M, Akanova K, Moldakhanov Y, Berezin V. Isolation and Characterization of Lytic Bacteriophages Active against Clinical Strains of E. coli and Development of a Phage Antimicrobial Cocktail. Viruses 2022; 14:v14112381. [PMID: 36366479 PMCID: PMC9697832 DOI: 10.3390/v14112381] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 01/31/2023] Open
Abstract
Pathogenic E. coli cause urinary tract, soft tissue and central nervous system infections, sepsis, etc. Lytic bacteriophages can be used to combat such infections. We investigated six lytic E. coli bacteriophages isolated from wastewater. Transmission electron microscopy and whole genome sequencing showed that the isolated bacteriophages are tailed phages of the Caudoviricetes class. One-step growth curves revealed that their latent period of reproduction is 20-30 min, and the average value of the burst size is 117-155. During co-cultivation with various E. coli strains, the phages completely suppressed bacterial host culture growth within the first 4 h at MOIs 10-7 to 10-3. The host range lysed by each bacteriophage varied from six to two bacterial strains out of nine used in the study. The cocktail formed from the isolated bacteriophages possessed the ability to completely suppress the growth of all the E. coli strains used in the study within 6 h and maintain its lytic activity for 8 months of storage. All the isolated bacteriophages may be useful in fighting pathogenic E. coli strains and in the development of phage cocktails with a long storage period and high efficiency in the treatment of bacterial infections.
Collapse
|
47
|
Qin S, Liu Y, Chen Y, Hu J, Xiao W, Tang X, Li G, Lin P, Pu Q, Wu Q, Zhou C, Wang B, Gao P, Wang Z, Yan A, Nadeem K, Xia Z, Wu M. Engineered Bacteriophages Containing Anti-CRISPR Suppress Infection of Antibiotic-Resistant P. aeruginosa. Microbiol Spectr 2022; 10:e0160222. [PMID: 35972246 PMCID: PMC9602763 DOI: 10.1128/spectrum.01602-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/05/2022] [Indexed: 12/31/2022] Open
Abstract
The therapeutic use of bacteriophages (phages) provides great promise for treating multidrug-resistant (MDR) bacterial infections. However, an incomplete understanding of the interactions between phages and bacteria has negatively impacted the application of phage therapy. Here, we explored engineered anti-CRISPR (Acr) gene-containing phages (EATPs, eat Pseudomonas) by introducing Type I anti-CRISPR (AcrIF1, AcrIF2, and AcrIF3) genes into the P. aeruginosa bacteriophage DMS3/DMS3m to render the potential for blocking P. aeruginosa replication and infection. In order to achieve effective antibacterial activities along with high safety against clinically isolated MDR P. aeruginosa through an anti-CRISPR immunity mechanism in vitro and in vivo, the inhibitory concentration for EATPs was 1 × 108 PFU/mL with a multiplicity of infection value of 0.2. In addition, the EATPs significantly suppressed the antibiotic resistance caused by a highly antibiotic-resistant PA14 infection. Collectively, these findings provide evidence that engineered phages may be an alternative, viable approach by which to treat patients with an intractable bacterial infection, especially an infection by clinically MDR bacteria that are unresponsive to conventional antibiotic therapy. IMPORTANCE Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic Gram-negative bacterium that causes severe infection in immune-weakened individuals, especially patients with cystic fibrosis, burn wounds, cancer, or chronic obstructive pulmonary disease (COPD). Treating P. aeruginosa infection with conventional antibiotics is difficult due to its intrinsic multidrug resistance. Engineered bacteriophage therapeutics, acting as highly viable alternative treatments of multidrug-resistant (MDR) bacterial infections, have great potential to break through the evolutionary constraints of bacteriophages to create next-generation antimicrobials. Here, we found that engineered anti-CRISPR (Acr) gene-containing phages (EATPs, eat Pseudomonas) display effective antibacterial activities along with high safety against clinically isolated MDR P. aeruginosa through an anti-CRISPR immunity mechanism in vitro and in vivo. EATPs also significantly suppressed the antibiotic resistance caused by a highly antibiotic-resistant PA14 infection, which may provide novel insight toward developing bacteriophages to treat patients with intractable bacterial infections, especially infections by clinically MDR bacteria that are unresponsive to conventional antibiotic therapy.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Yongan Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jinrong Hu
- West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoshan Tang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guohong Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Lin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Qun Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Chuanmin Zhou
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Biao Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Pan Gao
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Zhihan Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Aixin Yan
- School of Biological Sciences, The University of Hong Kong, Shatin, Hong Kong SAR
| | - Khan Nadeem
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Zhenwei Xia
- Department of Pediatrics, Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
48
|
Phage Resistance Evolution Induces the Sensitivity of Specific Antibiotics in Pseudomonas aeruginosa PAO1. Microbiol Spectr 2022; 10:e0135622. [PMID: 35972274 PMCID: PMC9603957 DOI: 10.1128/spectrum.01356-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bacteria frequently encounter selection by both phages and antibiotics. However, our knowledge on the evolutionary interactions between phages and antibiotics are still limited. Here, we characterized a phage-resistant Pseudomonas aeruginosa variant PAO1-R1 that shows increased sensitivity to gentamicin and polymyxin B. Using whole genome sequencing, significant genome differences were observed between the reference P. aeruginosa PAO1 and PAO1-R1. Compared to PAO1, 64 gene-encoding proteins with nonsynonymous single nucleotide polymorphisms (SNPs) and 31 genes with insertion/deletion (indel) mutations were found in PAO1-R1. We observed a significant reduction in phage adsorption rate for both phage vB_Pae_QDWS and vB_Pae_W3 against PAO1-R1 and proposed that disruption of phage adsorption is likely the main cause for evolving resistance. Because the majority of spontaneous mutations are closely related to membrane components, alterations in the cell envelope may explain the antibiotic-sensitive phenotype of PAO1-R1. Collectively, we demonstrate that the evolution of phage resistance comes with fitness defects resulting in antibiotic sensitization. Our finding provides new insights into the evolutionary interactions between resistance to the phage and sensitivity to antibiotics, which may have implications for the future clinical use of steering in phage therapies. IMPORTANCE Bacteria frequently encounter the selection pressure from both antibiotics and lytic phages. Little is known about the evolutionary interactions between antibiotics and phages. Our study provides new insights into the trade-off mechanism between resistance to the phage and sensitivity to antibiotics. This evolutionary trade-off is not dependent on the outer membrane proteins (OMPs) of the multidrug efflux pumps. The disruption of phage adsorption that induced phage resistance and the changes in structure or composition of membranes are presumably one of the major causes for antibiotic sensitivity. Our finding may fill some gaps in the field of phage-host interplay and have implications for the future clinical use of steering in phage therapies.
Collapse
|
49
|
Pulmonary Delivery of Emerging Antibacterials for Bacterial Lung Infections Treatment. Pharm Res 2022; 40:1057-1072. [PMID: 36123511 PMCID: PMC9484715 DOI: 10.1007/s11095-022-03379-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/20/2022] [Indexed: 11/08/2022]
Abstract
Bacterial infections in the respiratory tract are considered as one of the major challenges to the public health worldwide. Pulmonary delivery is an attractive approach in the management of bacterial respiratory infections with a few inhaled antibiotics approved. However, with the rapid emergence of antibiotic-resistant bacteria, it is necessary to develop new/alternative inhaled antibacterial agents in the post-antibiotic era. A pipeline of novel biological antibacterial agents, including antimicrobial peptides, RNAi therapeutics, and bacteriophages, has emerged to combat bacterial infections with excellent performance. In this review, the causal effects of bacterial infections on the related pulmonary infectious diseases will be firstly introduced. This is followed by an overview on the development of emerging antibacterial therapeutics for managing lung bacterial infections through nebulization/inhalation of dried powders. The obstacles and underlying proposals regarding their clinical transformation are also discussed to seek insights for further development. Research on inhaled therapy of these emerging antibacterials are still in the infancy, but the promising progress warrants further attention.
Collapse
|
50
|
Wdowiak M, Paczesny J, Raza S. Enhancing the Stability of Bacteriophages Using Physical, Chemical, and Nano-Based Approaches: A Review. Pharmaceutics 2022; 14:1936. [PMID: 36145682 PMCID: PMC9502844 DOI: 10.3390/pharmaceutics14091936] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Phages are efficient in diagnosing, treating, and preventing various diseases, and as sensing elements in biosensors. Phage display alone has gained attention over the past decade, especially in pharmaceuticals. Bacteriophages have also found importance in research aiming to fight viruses and in the consequent formulation of antiviral agents and vaccines. All these applications require control over the stability of virions. Phages are considered resistant to various harsh conditions. However, stability-determining parameters are usually the only additional factors in phage-related applications. Phages face instability and activity loss when preserved for extended periods. Sudden environmental changes, including exposure to UV light, temperature, pH, and salt concentration, also lead to a phage titer fall. This review describes various formulations that impart stability to phage stocks, mainly focusing on polymer-based stabilization, encapsulation, lyophilization, and nano-assisted solutions.
Collapse
|