1
|
Gong Z, Zhou D, Wu D, Han Y, Yu H, Shen H, Feng W, Hou L, Chen Y, Xu T. Challenges and material innovations in drug delivery to central nervous system tumors. Biomaterials 2025; 319:123180. [PMID: 39985979 DOI: 10.1016/j.biomaterials.2025.123180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 01/28/2025] [Accepted: 02/08/2025] [Indexed: 02/24/2025]
Abstract
Central nervous system (CNS) tumors, encompassing a diverse array of neoplasms in the brain and spinal cord, pose significant therapeutic challenges due to their intricate anatomy and the protective presence of the blood-brain barrier (BBB). The primary treatment obstacle is the effective delivery of therapeutics to the tumor site, which is hindered by multiple physiological, biological, and technical barriers, including the BBB. This comprehensive review highlights recent advancements in material science and nanotechnology aimed at surmounting these delivery challenges, with a focus on the development and application of nanomaterials. Nanomaterials emerge as potent tools in designing innovative drug delivery systems that demonstrate the potential to overcome the limitations posed by CNS tumors. The review delves into various strategies, including the use of lipid nanoparticles, polymeric nanoparticles, and inorganic nanoparticles, all of which are engineered to enhance drug stability, BBB penetration, and targeted tumor delivery. Additionally, this review highlights the burgeoning role of theranostic nanoparticles, integrating therapeutic and diagnostic functionalities to optimize treatment efficacy. The exploration extends to biocompatible materials like biodegradable polymers, liposomes, and advanced material-integrated delivery systems such as implantable drug-eluting devices and microfabricated devices. Despite promising preclinical results, the translation of these material-based strategies into clinical practice necessitates further research and optimization.
Collapse
Affiliation(s)
- Zhenyu Gong
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China; Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany
| | - Dairan Zhou
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Dejun Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230601, PR China
| | - Yaguang Han
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Hao Yu
- National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, PR China
| | - Haotian Shen
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Lijun Hou
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Tao Xu
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China.
| |
Collapse
|
2
|
Masters H, Wang S, Tu C, Nguyen Q, Sha Y, Karikomi MK, Fung PSR, Tran B, Martel C, Kwang N, Neel M, Jaime OG, Espericueta V, Johnson BA, Kessenbrock K, Nie Q, Monuki ES. Sequential emergence and contraction of epithelial subtypes in the prenatal human choroid plexus revealed by a stem cell model. Nat Commun 2025; 16:5149. [PMID: 40461502 PMCID: PMC12134268 DOI: 10.1038/s41467-025-60361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 05/21/2025] [Indexed: 06/11/2025] Open
Abstract
Despite the major roles of choroid plexus epithelial cells (CPECs) in brain homeostasis and repair, their developmental lineage and diversity remain undefined. In simplified differentiations from human pluripotent stem cells, derived CPECs (dCPECs) display canonical properties and dynamic motile multiciliated phenotypes that interact with Aβ uptake. Single dCPEC transcriptomes over time correlate well with human organoid and fetal CPECs, while pseudotemporal and cell cycle analyses highlight the direct CPEC origin from neuroepithelial cells. In addition, time series analyses define metabolic (type 1) and ciliogenic dCPECs (type 2) at early timepoints, followed by type 1 diversification into anabolic-secretory (type 1a) and catabolic-absorptive subtypes (type 1b) as type 2 cells contract. These temporal patterns are then confirmed in independent derivations and mapped to prenatal stages using human tissues. In addition to defining the prenatal lineage of human CPECs, these findings suggest dynamic models of ChP support for the developing human brain.
Collapse
Affiliation(s)
- Haley Masters
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA
- Department of Developmental & Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Shuxiong Wang
- Department of Mathematics, University of California Irvine, Irvine, CA, USA
| | - Christina Tu
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, USA
| | - Quy Nguyen
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Yutong Sha
- Department of Developmental & Cell Biology, University of California Irvine, Irvine, CA, USA
- Department of Mathematics, University of California Irvine, Irvine, CA, USA
| | - Matthew K Karikomi
- Department of Mathematics, University of California Irvine, Irvine, CA, USA
| | - Pamela Shi Ru Fung
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Benjamin Tran
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Cristina Martel
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Nellie Kwang
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Michael Neel
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Olga G Jaime
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Victoria Espericueta
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Brett A Johnson
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Qing Nie
- Department of Developmental & Cell Biology, University of California Irvine, Irvine, CA, USA
- Department of Mathematics, University of California Irvine, Irvine, CA, USA
| | - Edwin S Monuki
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA.
- Department of Developmental & Cell Biology, University of California Irvine, Irvine, CA, USA.
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
3
|
Liu Z, Zhang Y, Li H, Guo K, Tian M, Cao D, Kang DD, Xue Y, Hou X, Wang C, Wang S, Zhong Y, Yu C, Deng B, McComb DW, Dong Y. Furan-Derived Lipid Nanoparticles for Transporting mRNA to the Central Nervous System. J Am Chem Soc 2025; 147:16007-16017. [PMID: 40305652 DOI: 10.1021/jacs.4c16326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Delivery of mRNA (mRNA) to the central nervous system (CNS) remains a significant challenge. Herein, we design a library of furan-derived lipids and, to our knowledge, for the first time, leverage the meningeal lymphatic vessels (MLVs) route to achieve efficient delivery of mRNA to the brain. These furan-derived lipids were engineered with different furan cores, functional groups, and tails. We found that tetrahydrofuran (THF)-derived lipid nanoparticles (LNPs) generally displayed exceptional mRNA delivery compared to their furan-based counterparts. Specifically, LNPs formulated with four-acetal-tail mono-THF-derived lipid F10T5 and four-acetal-tail di-THF-derived lipid F11T6 demonstrated significantly higher mRNA delivery efficiency to the brain compared with FDA-approved SM102 LNPs. The data revealed that these LNPs bypassed the blood-brain barrier (BBB) via the lymphatic pathway, traveling from deep cervical lymph nodes (dCLNs) to the meninges and subsequently entering brain cells. Collectively, this work provides valuable insights into engineering LNPs and exploring alternative approaches for the delivery of mRNA to the brain.
Collapse
Affiliation(s)
- Zhengwei Liu
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Biomedical Engineering and Imaging Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Haoyuan Li
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Biomedical Engineering and Imaging Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Kaiyuan Guo
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Biomedical Engineering and Imaging Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Meng Tian
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Biomedical Engineering and Imaging Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Dinglingge Cao
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Biomedical Engineering and Imaging Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Diana D Kang
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Biomedical Engineering and Imaging Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yonger Xue
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Biomedical Engineering and Imaging Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Xucheng Hou
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Biomedical Engineering and Imaging Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Chang Wang
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Biomedical Engineering and Imaging Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Siyu Wang
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Biomedical Engineering and Imaging Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Yichen Zhong
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Biomedical Engineering and Imaging Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Changyue Yu
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Biomedical Engineering and Imaging Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Binbin Deng
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, Ohio 43210, United States
| | - David W McComb
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yizhou Dong
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Biomedical Engineering and Imaging Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
4
|
Wang L, Ma L, Gao Z, Wang Y, Qiu J. Significance of gene therapy in neurodegenerative diseases. Front Neurosci 2025; 19:1515255. [PMID: 40406043 PMCID: PMC12095248 DOI: 10.3389/fnins.2025.1515255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/10/2025] [Indexed: 05/26/2025] Open
Abstract
Gene therapy is an approach that employs vectors to deliver genetic material to target cells, aiming to correct genes with pathogenic mutations and modulate one or more genes responsible for disease progression. It holds significant value for clinical applications and offers broad market potential due to the large patient population affected by various conditions. For instance, in 2023, the Food and Drug Administration (FDA) approved 55 new drugs, including five specifically for gene therapy targeting hematologic and rare diseases. Recently, with advancements in understanding the pathogenesis and development of neurodegenerative diseases (NDDs), gene therapy has emerged as a promising avenue for treating Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy (SMA), particularly in personalized medicine. Notably, the FDA has approved three clinical applications for combating SMA, utilizing viral vectors delivered via intravenous and intrathecal injections. However, gene therapy for other NDDs remains in clinical trials, necessitating improvements in viral vectors, exploration of new vectors, optimization of delivery routes, and further investigation into pathogenesis to identify novel targets. This review discusses recent advancements in gene therapy for NDDs, offering insights into developing new therapeutic strategies.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Neurology, Yantai Shan Hospital, Yantai, China
| | - Lin Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao, China
| | - Zihan Gao
- Department of Internal Medicine of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Wang
- Department of Neurology, Yantai Shan Hospital, Yantai, China
| | - Jiaoxue Qiu
- Department of Neurology, Yantai Shan Hospital, Yantai, China
| |
Collapse
|
5
|
Schmitz N, Abdelmageed MM, Monine M, Xu Y. Trends in First-in-Human Studies for Intrathecal Antisense Oligonucleotides: Insights From 2010 to 2024. J Clin Pharmacol 2025. [PMID: 40254975 DOI: 10.1002/jcph.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/31/2025] [Indexed: 04/22/2025]
Abstract
Advancements in antisense oligonucleotide (ASO) therapies have expanded their application to neurological disorders through intrathecal (ASO-IT) delivery into cerebrospinal fluid (CSF). To examine study designs and practices in ASO-IT first-in-human (FIH) trials, we analyzed 29 trials between 2010 and 2024 via a comprehensive review. Most trials targeted rare neurological disorders, with increasing numbers of ASO-ITs advancing to clinical testing over time. Patient populations were predominantly used over healthy participants, with over 50% trials employing randomized controlled designs (3:1 active-to-placebo) while others were open label. Trials commonly start in adults or older children before expanding to younger cohorts. Recent trends reveal increased uses of direct-to-multiple ascending dose strategies and single-patient trials, particularly for rare diseases. Dose escalations typically spanned four cohorts over a 10× dose range, with early escalations up to 4× between adjacent cohorts and smaller increments (1.25-1.5×) in later cohorts. Human dose selection often integrates translational modeling and human equivalent dose approach, scaled by CSF or central nervous system (CNS) tissue volumes. Starting doses prioritized robust safety margins (median 30×) with limited pharmacological activity, while top doses aimed therapeutic benefit with high activity and safety margins ≥1×, with the goal to achieve ≥70%-80% target engagement (e.g., mRNA knockdown) during dose escalation. Dosing intervals, typically 2-4 weeks (up to 12 weeks), reflected ASO-ITs' prolonged CNS half-life. Adaptive designs enabled real-time dose adjustments upon emerging safety and pharmacokinetics/pharmacodynamic data. This analysis highlights the importance of flexible, personalized, innovative FIH designs, such as single-patient studies, and model-informed strategies to advance ASO-IT development for rare neurological diseases.
Collapse
Affiliation(s)
- Natalie Schmitz
- Clinical Pharmacology and Pharmacometrics, Biogen, Cambridge, MA, USA
| | - Mai M Abdelmageed
- Clinical Pharmacology and Pharmacometrics, Biogen, Cambridge, MA, USA
- Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Michael Monine
- Clinical Pharmacology and Pharmacometrics, Biogen, Cambridge, MA, USA
| | - Yan Xu
- Clinical Pharmacology and Pharmacometrics, Biogen, Cambridge, MA, USA
| |
Collapse
|
6
|
Lee GY, Glicksman MA, Patel R, Malhotra S, Moelis N, Vanjani NN, Kumthekar P. Retrospective Review of Intra-Cerebrospinal Fluid (CSF) Drug Delivery in CNS Malignancies: Safety, Clinical Efficacy and Pharmacokinetic Profiles of Intracerebroventricular (ICV), Lumbar Intrathecal (LIT), and Intra-Cisterna Magna (ICM) Injections. Cancers (Basel) 2025; 17:1263. [PMID: 40282439 PMCID: PMC12025772 DOI: 10.3390/cancers17081263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: The blood-brain barrier and blood-CSF barrier limit the uptake of CNS-targeted therapeutics, warranting utilization of intra-cerebrospinal fluid (CSF) drug delivery. Here we review and compare the safety and distribution of different intra-CSF delivery methods reported in clinical literature. Methods: A retrospective literature review of three common CSF access methods was performed. A search consisting of clinical trials published on PubMed from 2000-2024 using the following search terms-intracerebroventricular/intraventricular/ICV, intrathecal/IT, intralumbar/lumbar puncture, cisterna magna/ICM/IT-CM, drug delivery, drug administration, and CSF-yielded 38 intracerebroventricular (ICV), 110 lumbar intrathecal (LIT), and six intra-cisterna magna (ICM) studies. Results: After final exclusion criteria were applied, there were 12 ICV, two LIT, and zero ICM publications remaining for analysis. ICV-specific safety was addressed in 11 ICV publications, with headache, nausea, and vomiting being among the most frequently mentioned procedure-associated adverse events (AEs). LIT-specific safety was provided in only one of the two studies, reporting mostly grade 1/2 AEs but also an instance of grade 4 myelosuppression. For clinical efficacy, progression-free survival (PFS), overall survival (OS), and disease progression rates were largely variable across studies. Pharmacokinetics were analyzed in four ICV studies. Conclusions: The safety profiles of both ICV and LIT injections are acceptable, showing mostly mild to moderate procedure-associated AEs and less common treatment-related AEs than systemically administered therapies. Additionally, ICV achieves therapeutic goals more consistently than the other intra-CSF delivery methods. To date, there are insufficient data to show dose-related response with intra-CSF delivery. Novel tools are being developed to improve upon intra-CSF delivery that will ideally lead to improved patient outcomes in the near future.
Collapse
Affiliation(s)
- Grace Y. Lee
- Feinberg School of Medicine, Northwestern University Feinberg, Chicago, IL 60611, USA; (G.Y.L.); (S.M.); (N.N.V.)
| | | | - Rajan Patel
- EnClear Therapies, Newburyport, MA 01950, USA; (M.A.G.); (R.P.); (N.M.)
| | - Saaz Malhotra
- Feinberg School of Medicine, Northwestern University Feinberg, Chicago, IL 60611, USA; (G.Y.L.); (S.M.); (N.N.V.)
| | - Nathan Moelis
- EnClear Therapies, Newburyport, MA 01950, USA; (M.A.G.); (R.P.); (N.M.)
| | - Nisheka N. Vanjani
- Feinberg School of Medicine, Northwestern University Feinberg, Chicago, IL 60611, USA; (G.Y.L.); (S.M.); (N.N.V.)
| | - Priya Kumthekar
- Department of Neurology, Northwestern Memorial Hospital, Chicago, IL 60611, USA
| |
Collapse
|
7
|
Hu W, Sun H, Qi H, Jiang L, Zhang K, Jia X, Wang Y, Xiang Y, Liang Q. Elevated interstitial flow in the cerebrospinal fluid microenvironment accelerates glioblastoma cell migration on a microfluidic chip. LAB ON A CHIP 2025; 25:2085-2097. [PMID: 40109161 DOI: 10.1039/d5lc00015g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Glioblastoma is one of the most malignant tumors in the world, but the development of its therapies remains limited. Herein, a microfluidic chip that mimics the cerebrospinal fluid (CSF) circulation microenvironment is proposed to study the migration characteristics of glioblastoma U87-MG cells and U251 cells in complex environments where glioblastoma coexists with diseases that elevate CSF levels. In the presence of interstitial flow (IF), changing both cell densities and the cellular environment results in increased cell motility, including an increase in the number of migrating cells, the mean displacement of the top 30% fastest-moving cells, and the overall mean displacement. Then, through dynamic migration characterization analysis, it was found that IF enhances cell velocity and speed. Importantly, cells exposed to IF tend to migrate in directions with smaller angles of deviation from the opposite direction of IF. Finally, cytoskeleton inhibitors and decreased expressions of focal adhesion proteins, such as cytochalasin D, FAK inhibitors (VS-6063 and PF-573228), and FAK siRNA, were both proved to decrease the cells' response to IF. This work not only demonstrates the effect of IF on glioblastoma cell migration, but also indicates the reliability of microfluidic chips for modeling complex physiological environments, which is expected to be further developed for drug screening.
Collapse
Affiliation(s)
- Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Hua Sun
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Huibo Qi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Linkai Jiang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Kaining Zhang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P.R. China
| | - Xiaomeng Jia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Yu Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Yu Xiang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P.R. China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| |
Collapse
|
8
|
Li J, Wickramasinghe C, Jiang J, Wu A, Jiang Y, Tovmasyan A, Kim S, Sanai N. Mechanistic Modeling of Spatial Heterogeneity of Drug Penetration and Exposure in the Human Central Nervous System and Brain Tumors. Clin Pharmacol Ther 2025; 117:690-703. [PMID: 39575553 PMCID: PMC11835533 DOI: 10.1002/cpt.3505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/08/2024] [Indexed: 02/20/2025]
Abstract
Direct measurement of spatial-temporal drug penetration and exposure in the human central nervous system (CNS) and brain tumors is difficult or infeasible. This study aimed to develop an innovative mechanistic modeling platform for quantitative prediction of spatial pharmacokinetics of systemically administered drugs in the human CNS and brain tumors. A nine-compartment CNS (9-CNS) physiologically-based pharmacokinetic model was developed to account for general anatomical structure and pathophysiological heterogeneity of the human CNS and brain tumors. Drug distribution into and within the CNS and tumors is driven by plasma concentration-time profiles and governed by drug properties and CNS pathophysiology. The model was validated by comparisons of model predictions and clinically observed data of six drugs (abemaciclib, ribociclib, pamiparib, olaparib, temuterkib, and ceritinib) in glioblastoma patients. As rigorously validated, the 9-CNS model allows reliable prediction of spatial pharmacokinetics in different regions of the brain parenchyma (i.e., parenchyma adjacent to CSF and deep parenchyma), tumors (i.e., tumor rim, bulk tumor, and tumor core), and CSF (i.e., ventricular CSF, cranial and spinal subarachnoid CSF). By considering inter-individual plasma pharmacokinetic variability and CNS/tumor heterogeneity, the model well predicts the inter-individual variability and spatial heterogeneity of drug exposure in the CNS and tumors as observed for all six drugs in glioblastoma patients. The 9-CNS model is a first-of-its kind, mechanism-based computational modeling platform that enables early reliable prediction of spatial CNS and tumor pharmacokinetics based on plasma concentration-time profiles. It provides a valuable tool to assist rational drug development and treatment for brain cancer.
Collapse
Affiliation(s)
- Jing Li
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201
| | | | - Jun Jiang
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201
| | - Andrew Wu
- Northville High School, 45700 Six Mile Rd, Northville, MI 48168
| | - Yuanyuan Jiang
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201
| | - Artak Tovmasyan
- Barrow Neurological Institute, St. Joseph’s Hospital & Medical Center, Phoenix, AZ 85013
| | - Seongho Kim
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201
| | - Nader Sanai
- Barrow Neurological Institute, St. Joseph’s Hospital & Medical Center, Phoenix, AZ 85013
| |
Collapse
|
9
|
Taha B, McGovern R, Lam C. A synthesized view of the CSF-blood barrier and its surgical implications for aging disorders. Front Aging Neurosci 2025; 16:1492449. [PMID: 39981073 PMCID: PMC11841429 DOI: 10.3389/fnagi.2024.1492449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/30/2024] [Indexed: 02/22/2025] Open
Abstract
In this review, we explore the mechanisms of the blood-cerebrospinal fluid (CSF) barrier and CSF transport. We briefly review the mathematical framework for CSF transport as described by a set of well-studied partial differential equations. Moreover, we describe the major contributors of CSF flow through both diffusive and convective forces beginning at the molecular level and extending into macroscopic clinical observations. In addition, we review neurosurgical perspectives in understanding CSF outflow pathways. Finally, we discuss the implications of flow dysregulation in the context of neurodegenerative diseases and discuss the rising role of perivascular drainage pathways including glymphatics.
Collapse
Affiliation(s)
- Birra Taha
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Robert McGovern
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Cornelius Lam
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
- Minneapolis VA Health Care System, Veterans Health Administration, United States Department of Veterans Affairs, Minneapolis, MN, United States
| |
Collapse
|
10
|
Borzage MT, Peterson BS. A Scoping Review of the Mechanisms Underlying Developmental Anesthetic Neurotoxicity. Anesth Analg 2025; 140:409-426. [PMID: 38536739 PMCID: PMC11427602 DOI: 10.1213/ane.0000000000006897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 09/28/2024]
Abstract
Although anesthesia makes painful or uncomfortable diagnostic and interventional health care procedures tolerable, it may also disrupt key cellular processes in neurons and glia, harm the developing brain, and thereby impair cognition and behavior in children. Many years of studies using in vitro, animal behavioral, retrospective database studies in humans, and several prospective clinical trials in humans have been invaluable in discerning the potential toxicity of anesthetics. The objective of this scoping review was to synthetize the evidence from preclinical studies for various mechanisms of toxicity across diverse experimental designs and relate their findings to those of recent clinical trials in real-world settings.
Collapse
Affiliation(s)
- Matthew Thomas Borzage
- From the Fetal and Neonatal Institute, Division of Neonatology, Children’s Hospital Los Angeles, Los Angeles, California
| | - Bradley S. Peterson
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
- Institute for the Developing Mind, Children’s Hospital Los Angeles, Los Angeles, California
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, California
| |
Collapse
|
11
|
Bessen MA, Gayen CD, Doig RLO, Dorrian RM, Quarrington RD, Mulaibrahimovic A, Kurtcuoglu V, Walls AC, Leonard AV, Jones CF. Cerebrospinal fluid dynamics and subarachnoid space occlusion following traumatic spinal cord injury in the pig: an investigation using magnetic resonance imaging. Fluids Barriers CNS 2025; 22:6. [PMID: 39810197 PMCID: PMC11730158 DOI: 10.1186/s12987-024-00595-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/06/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) causes spinal cord swelling and occlusion of the subarachnoid space (SAS). SAS occlusion can change pulsatile cerebrospinal fluid (CSF) dynamics, which could have acute clinical management implications. This study aimed to characterise SAS occlusion and investigate CSF dynamics over 14 days post-SCI in the pig. METHODS A thoracic contusion SCI was induced in female domestic pigs (22-29 kg) via a weight drop apparatus (N = 5, 10 cm; N = 5, 20 cm). Magnetic resonance imaging (MRI) was performed pre-SCI and 3, 7 and 14 days post-SCI. SAS occlusion length (cranial-caudal), and injury site SAS area (cross-sectional), were measured on T2-weighted MRI. CSF dynamics, specifically peak cranial/caudal mean velocity (cm/s), and the corresponding time to peak (% of cardiac cycle), were measured on cardiac gated, axial phase-contrast MRI obtained at C2/C3, T8/T9, T11/T12 and L1/L2. Linear-mixed effects models, with a significance level of α = 0.05, were developed to assess the effect of: (1) injury group and time point on SAS occlusion measures; and (2), time point and spinal level, adjusted by injury group, on CSF dynamics. RESULTS For both injury groups, SAS occlusion length decreased from 3 to 7 days post-SCI, and 7 to 14 days post-SCI. The cross-sectional SAS area decreased after SCI, and increased to 14 days post-SCI, in both groups. At all spinal levels, peak cranial/caudal mean velocity and the time to peak caudal mean velocity decreased at day 3 post-SCI. From 3 to 14 days post-SCI, peak caudal mean velocity and the time to peak caudal mean velocity increased towards baseline values, at all spinal levels. CONCLUSIONS Spinal-level specific changes to CSF dynamics, with concurrent changes to SAS occlusion, occurred after SCI in the pig, suggesting that CSF pulsatility and craniospinal compliance were altered in the sub-acute post-traumatic period. These results suggest that PC-MRI derived CSF dynamics may provide a non-invasive method to investigate functional alterations to the spinal intrathecal space following traumatic SCI.
Collapse
Affiliation(s)
- Madeleine Amy Bessen
- Adelaide Spinal Research Group & Centre for Orthopaedics and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, North Terrace, Adelaide, SA, 5005, Australia
- Adelaide Medical School, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Christine Diana Gayen
- Adelaide Spinal Research Group & Centre for Orthopaedics and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, North Terrace, Adelaide, SA, 5005, Australia
- Translational Neuropathology Laboratory, School of Biomedicine, The University of Adelaide, Level 2, Helen Mayo North Building, Frome Rd, Adelaide, SA, 5005, Australia
| | - Ryan L O'Hare Doig
- Adelaide Medical School, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, Level 7, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5005, Australia
| | - Ryan Michael Dorrian
- Translational Neuropathology Laboratory, School of Biomedicine, The University of Adelaide, Level 2, Helen Mayo North Building, Frome Rd, Adelaide, SA, 5005, Australia
| | - Ryan David Quarrington
- Adelaide Spinal Research Group & Centre for Orthopaedics and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, North Terrace, Adelaide, SA, 5005, Australia
- Adelaide Medical School, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Adnan Mulaibrahimovic
- Adelaide Spinal Research Group & Centre for Orthopaedics and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, North Terrace, Adelaide, SA, 5005, Australia
- Adelaide Medical School, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Vartan Kurtcuoglu
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
- Zurich Center of Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
- Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Angela Catherine Walls
- Clinical and Research Imaging Centre, South Australian Health and Medical Research Institute, National Imaging Facility, Northern Pod, SAHMRI, North Terrace, Adelaide, SA, 5005, Australia
| | - Anna Victoria Leonard
- Translational Neuropathology Laboratory, School of Biomedicine, The University of Adelaide, Level 2, Helen Mayo North Building, Frome Rd, Adelaide, SA, 5005, Australia
| | - Claire Frances Jones
- Adelaide Spinal Research Group & Centre for Orthopaedics and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, North Terrace, Adelaide, SA, 5005, Australia.
- School of Electrical and Mechanical Engineering, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, Adelaide, SA, 5005, Australia.
| |
Collapse
|
12
|
Kusaka S, Voulgaris N, Onishi K, Ueda J, Saito S, Tamaki S, Murata I, Takata T, Suzuki M. Therapeutic Effect of Boron Neutron Capture Therapy on Boronophenylalanine Administration via Cerebrospinal Fluid Circulation in Glioma Rat Models. Cells 2024; 13:1610. [PMID: 39404374 PMCID: PMC11475075 DOI: 10.3390/cells13191610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
In recent years, various drug delivery systems circumventing the blood-brain barrier have emerged for treating brain tumors. This study aimed to improve the efficacy of brain tumor treatment in boron neutron capture therapy (BNCT) using cerebrospinal fluid (CSF) circulation to deliver boronophenylalanine (BPA) to targeted tumors. Previous experiments have demonstrated that boron accumulation in the brain cells of normal rats remains comparable to that after intravenous (IV) administration, despite BPA being administered via CSF at significantly lower doses (approximately 1/90 of IV doses). Based on these findings, BNCT was conducted on glioma model rats at the Kyoto University Research Reactor Institute (KUR), with BPA administered via CSF. This method involved implanting C6 cells into the brains of 8-week-old Wistar rats, followed by administering BPA and neutron irradiation after a 10-day period. In this study, the rats were divided into four groups: one receiving CSF administration, another receiving IV administration, and two control groups without BPA administration, with one subjected to neutron irradiation and the other not. In the CSF administration group, BPA was infused from the cisterna magna at 8 mg/kg/h for 2 h, while in the IV administration group, BPA was intravenously administered at 350 mg/kg via the tail vein over 1.5 h. Thermal neutron irradiation (5 MW) for 20 min, with an average fluence of 3.8 × 1012/cm2, was conducted at KUR's heavy water neutron irradiation facility. Subsequently, all of the rats were monitored under identical conditions for 7 days, with pre- and post-irradiation tumor size assessed through MRI and pathological examination. The results indicate a remarkable therapeutic efficacy in both BPA-administered groups (CSF and IV). Notably, the rats treated with CSF administration exhibited diminished BPA accumulation in normal tissue compared to those treated with IV administration, alongside maintaining excellent overall health. Thus, CSF-based BPA administration holds promise as a novel drug delivery mechanism in BNCT.
Collapse
Affiliation(s)
- Sachie Kusaka
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Japan; (N.V.); (S.T.); (I.M.)
| | - Nikolaos Voulgaris
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Japan; (N.V.); (S.T.); (I.M.)
| | - Kazuki Onishi
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 2-1, Suita 565-0871, Japan; (K.O.); (J.U.); (S.S.)
| | - Junpei Ueda
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 2-1, Suita 565-0871, Japan; (K.O.); (J.U.); (S.S.)
| | - Shigeyoshi Saito
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 2-1, Suita 565-0871, Japan; (K.O.); (J.U.); (S.S.)
| | - Shingo Tamaki
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Japan; (N.V.); (S.T.); (I.M.)
| | - Isao Murata
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Japan; (N.V.); (S.T.); (I.M.)
| | - Takushi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun 590-0494, Japan; (T.T.); (M.S.)
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun 590-0494, Japan; (T.T.); (M.S.)
| |
Collapse
|
13
|
Zhong Y, Zhang J, Fang L, Cheang UK. MOF-Modified Microrollers for Bioimaging and Sustained Antibiotic Delivery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47163-47177. [PMID: 39196769 DOI: 10.1021/acsami.4c08535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Central nervous system (CNS) infections caused by neurosurgery or intrathecal injection of contaminated cerebrospinal fluid are a common and difficult complication. Drug-delivery microrobots are among the latest solutions proposed for antibacterial applications. However, there is a lack of research into developing microrobots with the ability to sustain antibody delivery while can move efficiently in the CNS. Here, biocompatible antibacterial metal-organic framework (MOF)-modified microrollers (MMRs) to combat CNS infections are proposed. The MMRs are iron-based metal-organic framework (NH2-MIL-101(Fe)) modified for enhanced adsorption and Fe/Al coated for magnetic actuation and biocompatibility. The MMRs have demonstrated a faster and unhindered magnetically actuated motion on the uneven biological tissue surface in an organ-on-a-chip that mimicked the CNS compared to it on smooth surface. CFD results consistently align with the experimental findings. The MMRs can be loaded with rhodamine 6G for bioimaging, allowing them to be imaged through sections of the main human tissues by fluorescence microscopy, or tetracycline hydrochloride for antibiotic delivery, allowing them to inhibit the growth of Staphylococcus aureus biofilms by sustained release of antibiotics for 9 days. This study provides a strategy to integrate high-capacity adsorption material with magnetically actuated locomotion for long-term targeted antibacterial applications in biological environments.
Collapse
Affiliation(s)
- Yukun Zhong
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junkai Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lijun Fang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - U Kei Cheang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
14
|
Gao J, Gunasekar S, Xia ZJ, Shalin K, Jiang C, Chen H, Lee D, Lee S, Pisal ND, Luo JN, Griciuc A, Karp JM, Tanzi R, Joshi N. Gene therapy for CNS disorders: modalities, delivery and translational challenges. Nat Rev Neurosci 2024; 25:553-572. [PMID: 38898231 DOI: 10.1038/s41583-024-00829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Gene therapy is emerging as a powerful tool to modulate abnormal gene expression, a hallmark of most CNS disorders. The transformative potentials of recently approved gene therapies for the treatment of spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS) and active cerebral adrenoleukodystrophy are encouraging further development of this approach. However, most attempts to translate gene therapy to the clinic have failed to make it to market. There is an urgent need not only to tailor the genes that are targeted to the pathology of interest but to also address delivery challenges and thereby maximize the utility of genetic tools. In this Review, we provide an overview of gene therapy modalities for CNS diseases, emphasizing the interconnectedness of different delivery strategies and routes of administration. Important gaps in understanding that could accelerate the clinical translatability of CNS genetic interventions are addressed, and we present lessons learned from failed clinical trials that may guide the future development of gene therapies for the treatment and management of CNS disorders.
Collapse
Affiliation(s)
- Jingjing Gao
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA.
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA.
| | - Swetharajan Gunasekar
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ziting Judy Xia
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Kiruba Shalin
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Christopher Jiang
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Hao Chen
- Marine College, Shandong University, Weihai, China
| | - Dongtak Lee
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sohyung Lee
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nishkal D Pisal
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - James N Luo
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Ana Griciuc
- Harvard Medical School, Boston, MA, USA.
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Jeffrey M Karp
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Rudolph Tanzi
- Harvard Medical School, Boston, MA, USA.
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Nitin Joshi
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Hu Y, Wang X, Niu Y, He K, Tang M. Application of quantum dots in brain diseases and their neurotoxic mechanism. NANOSCALE ADVANCES 2024; 6:3733-3746. [PMID: 39050959 PMCID: PMC11265591 DOI: 10.1039/d4na00028e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/01/2024] [Indexed: 07/27/2024]
Abstract
The early-stage diagnosis and therapy of brain diseases pose a persistent challenge in the field of biomedicine. Quantum dots (QDs), nano-luminescent materials known for their small size and fluorescence imaging capabilities, present promising capabilities for diagnosing, monitoring, and treating brain diseases. Although some investigations about QDs have been conducted in clinical trials, the concerns about the toxicity of QDs have continued. In addition, the lack of effective toxicity evaluation methods and systems and the difference between in vivo and in vitro toxicity evaluation hinder QDs application. The primary objective of this paper is to introduce the neurotoxic effects and mechanisms attributable to QDs. First, we elucidate the utilization of QDs in brain disorders. Second, we sketch out three pathways through which QDs traverse into brain tissue. Ultimately, expound upon the adverse consequences of QDs on the brain and the mechanism of neurotoxicity in depth. Finally, we provide a comprehensive summary and outlook on the potential development of quantum dots in neurotoxicity and the difficulties to be overcome.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| | - Xiaoli Wang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| | - Yiru Niu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| | - Keyu He
- Blood Transfusion Department, Clinical Laboratory, Zhongda Hospital, Southeast University Nanjing Jiangsu 210009 China
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| |
Collapse
|
16
|
Masters H, Wang S, Tu C, Nguyen Q, Sha Y, Karikomi MK, Fung PSR, Tran B, Martel C, Kwang N, Neel M, Jaime OG, Espericueta V, Johnson BA, Kessenbrock K, Nie Q, Monuki ES. Sequential emergence and contraction of epithelial subtypes in the prenatal human choroid plexus revealed by a stem cell model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598747. [PMID: 38948782 PMCID: PMC11212933 DOI: 10.1101/2024.06.12.598747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Despite the major roles of choroid plexus epithelial cells (CPECs) in brain homeostasis and repair, their developmental lineage and diversity remain undefined. In simplified differentiations from human pluripotent stem cells, derived CPECs (dCPECs) displayed canonical properties and dynamic multiciliated phenotypes that interacted with Aβ uptake. Single dCPEC transcriptomes over time correlated well with human organoid and fetal CPECs, while pseudotemporal and cell cycle analyses highlighted the direct CPEC origin from neuroepithelial cells. In addition, time series analyses defined metabolic (type 1) and ciliogenic dCPECs (type 2) at early timepoints, followed by type 1 diversification into anabolic-secretory (type 1a) and catabolic-absorptive subtypes (type 1b) as type 2 cells contracted. These temporal patterns were then confirmed in independent derivations and mapped to prenatal stages using human tissues. In addition to defining the prenatal lineage of human CPECs, these findings suggest new dynamic models of ChP support for the developing human brain.
Collapse
|
17
|
Kahle KT, Klinge PM, Koschnitzky JE, Kulkarni AV, MacAulay N, Robinson S, Schiff SJ, Strahle JM. Paediatric hydrocephalus. Nat Rev Dis Primers 2024; 10:35. [PMID: 38755194 DOI: 10.1038/s41572-024-00519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/18/2024]
Abstract
Hydrocephalus is classically considered as a failure of cerebrospinal fluid (CSF) homeostasis that results in the active expansion of the cerebral ventricles. Infants with hydrocephalus can present with progressive increases in head circumference whereas older children often present with signs and symptoms of elevated intracranial pressure. Congenital hydrocephalus is present at or near birth and some cases have been linked to gene mutations that disrupt brain morphogenesis and alter the biomechanics of the CSF-brain interface. Acquired hydrocephalus can develop at any time after birth, is often caused by central nervous system infection or haemorrhage and has been associated with blockage of CSF pathways and inflammation-dependent dysregulation of CSF secretion and clearance. Treatments for hydrocephalus mainly include surgical CSF shunting or endoscopic third ventriculostomy with or without choroid plexus cauterization. In utero treatment of fetal hydrocephalus is possible via surgical closure of associated neural tube defects. Long-term outcomes for children with hydrocephalus vary widely and depend on intrinsic (genetic) and extrinsic factors. Advances in genomics, brain imaging and other technologies are beginning to refine the definition of hydrocephalus, increase precision of prognostication and identify nonsurgical treatment strategies.
Collapse
Affiliation(s)
- Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Neurosurgery and Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
| | - Petra M Klinge
- Department of Neurosurgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Jenna E Koschnitzky
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Abhaya V Kulkarni
- Division of Paediatric Neurosurgery, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Shenandoah Robinson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Paediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven J Schiff
- Department of Neurosurgery, Yale University, New Haven, CT, USA
- Department of Epidemiology of Microbial Diseases, Yale University, New Haven, CT, USA
| | - Jennifer M Strahle
- Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
18
|
Madadi AK, Sohn MJ. Comprehensive Therapeutic Approaches to Tuberculous Meningitis: Pharmacokinetics, Combined Dosing, and Advanced Intrathecal Therapies. Pharmaceutics 2024; 16:540. [PMID: 38675201 PMCID: PMC11054600 DOI: 10.3390/pharmaceutics16040540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Tuberculous meningitis (TBM) presents a critical neurologic emergency characterized by high mortality and morbidity rates, necessitating immediate therapeutic intervention, often ahead of definitive microbiological and molecular diagnoses. The primary hurdle in effective TBM treatment is the blood-brain barrier (BBB), which significantly restricts the delivery of anti-tuberculous medications to the central nervous system (CNS), leading to subtherapeutic drug levels and poor treatment outcomes. The standard regimen for initial TBM treatment frequently falls short, followed by adverse side effects, vasculitis, and hydrocephalus, driving the condition toward a refractory state. To overcome this obstacle, intrathecal (IT) sustained release of anti-TB medication emerges as a promising approach. This method enables a steady, uninterrupted, and prolonged release of medication directly into the cerebrospinal fluid (CSF), thus preventing systemic side effects by limiting drug exposure to the rest of the body. Our review diligently investigates the existing literature and treatment methodologies, aiming to highlight their shortcomings. As part of our enhanced strategy for sustained IT anti-TB delivery, we particularly seek to explore the utilization of nanoparticle-infused hydrogels containing isoniazid (INH) and rifampicin (RIF), alongside osmotic pump usage, as innovative treatments for TBM. This comprehensive review delineates an optimized framework for the management of TBM, including an integrated approach that combines pharmacokinetic insights, concomitant drug administration strategies, and the latest advancements in IT and intraventricular (IVT) therapy for CNS infections. By proposing a multifaceted treatment strategy, this analysis aims to enhance the clinical outcomes for TBM patients, highlighting the critical role of targeted drug delivery in overcoming the formidable challenges presented by the blood-brain barrier and the complex pathophysiology of TBM.
Collapse
Affiliation(s)
- Ahmad Khalid Madadi
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjin-gu, Busan 47392, Republic of Korea;
| | - Moon-Jun Sohn
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjin-gu, Busan 47392, Republic of Korea;
- Department of Neurosurgery, Neuroscience & Radiosurgery Hybrid Research Center, College of Medicine, Inje University Ilsan Paik Hospital, 170, Juhwa-ro, Ilsanseo-gu, Goyang City 10380, Republic of Korea
| |
Collapse
|
19
|
Li J, Wu A, Kim S. Mechanistic Modeling of Intrathecal Chemotherapy Pharmacokinetics in the Human Central Nervous System. Clin Cancer Res 2024; 30:1397-1408. [PMID: 38289997 PMCID: PMC10984761 DOI: 10.1158/1078-0432.ccr-23-3062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/05/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
PURPOSE The pharmacokinetics of intrathecally administered antibody or small-molecule drugs in the human central nervous system (CNS) remains poorly understood. This study aimed to provide mechanistic and quantitative perspectives on the CNS pharmacokinetics of intrathecal chemotherapy, by using a physiologically based pharmacokinetic (PBPK) modeling approach. EXPERIMENTAL DESIGN A novel CNS PBPK model platform was developed and verified, which accounted for the human CNS general anatomy and physiologic processes governing drug distribution and disposition. The model was used to predict CNS pharmacokinetics of antibody (trastuzumab) and small-molecule drugs (methotrexate, abemaciclib, tucatinib) following intraventricular injection or intraventricular 24-hour infusion, and to assess the key determinants of drug penetration into the deep brain parenchyma. RESULTS Intraventricularly administered antibody and small-molecule drugs exhibited distinct temporal and spatial distribution and disposition in human CNS. Both antibody and small-molecule drugs achieved supratherapeutic or therapeutic concentrations in the cerebrospinal fluid (CSF) compartments and adjacent brain tissue. While intrathecal small-molecule drugs penetrated the deep brain parenchyma to a negligible extent, intrathecal antibodies may achieve therapeutic concentrations in the deep brain parenchyma. Intraventricular 24-hour infusion enabled prolonged CNS exposure to therapeutically relevant concentrations while avoiding excessively high and potentially neurotoxic drug concentrations. CONCLUSIONS CNS PBPK modeling, in line with available clinical efficacy data, confirms the therapeutic value of intrathecal chemotherapy with antibody or small-molecule drugs for treating neoplastic meningitis and warrants further clinical investigation of intrathecal antibody drugs to treat brain parenchyma tumors. Compared with intraventricular injection, intraventricular 24-hour infusion may mitigate neurotoxicity while retaining potential efficacy.
Collapse
Affiliation(s)
- Jing Li
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 482012
| | - Andrew Wu
- Northville High School, 45700 Six Mile Rd, Northville, MI 48168
| | - Seongho Kim
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 482012
| |
Collapse
|
20
|
Wu S, Chang HY, Chowdhury EA, Huang HW, Shah DK. Investigation of Antibody Pharmacokinetics in the Brain Following Intra-CNS Administration and Development of PBPK Model to Characterize the Data. AAPS J 2024; 26:29. [PMID: 38443635 DOI: 10.1208/s12248-024-00898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/12/2024] [Indexed: 03/07/2024] Open
Abstract
Despite the promising potential of direct central nervous system (CNS) antibody administration to enhance brain exposure, there remains a significant gap in understanding the disposition of antibodies following different intra-CNS injection routes. To bridge this knowledge gap, this study quantitatively investigated the brain pharmacokinetics (PK) of antibodies following intra-CNS administration. The microdialysis samples from the striatum (ST), cerebrospinal fluid (CSF) samples through cisterna magna (CM) puncture, plasma, and brain homogenate samples were collected to characterize the pharmacokinetics (PK) profiles of a non-targeting antibody, trastuzumab, following intracerebroventricular (ICV), intracisternal (ICM), and intrastriatal (IST) administration. For a comprehensive analysis, these intra-CNS injection datasets were juxtaposed against our previously acquired intravenous (IV) injection data obtained under analogous experimental conditions. Our findings highlighted that direct CSF injections, either through ICV or ICM, resulted in ~ 5-6-fold higher interstitial fluid (ISF) drug exposure than IV administration. Additionally, the low bioavailability observed following IST administration indicates the existence of a local degradation process for antibody elimination in the brain ISF along with the ISF bulk flow. The study further refined a physiologically based pharmacokinetic (PBPK) model based on new observations by adding the perivascular compartments, oscillated CSF flow, and the nonspecific uptake and degradation of antibodies by brain parenchymal cells. The updated model can well characterize the antibody PK following systemic and intra-CNS administration. Thus, our research offers quantitative insight into antibody brain disposition pathways and paves the way for determining optimal dosing and administration strategies for antibodies targeting CNS disorders.
Collapse
Affiliation(s)
- Shengjia Wu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Hsueh-Yuan Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Ekram Ahmed Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Hsien Wei Huang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
21
|
Guo H, Wang G, Zhai Z, Huang J, Huang Z, Zhou Y, Xia X, Yao Z, Huang Y, Zhao Z, Wu C, Zhang X. Rivastigmine nasal spray for the treatment of Alzheimer's Disease: Olfactory deposition and brain delivery. Int J Pharm 2024; 652:123809. [PMID: 38224760 DOI: 10.1016/j.ijpharm.2024.123809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/24/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Alzheimer's disease (AD) is characterized by a gradual decline in cognitive function and memory impairment, significantly impacting the daily lives of patients. Rivastigmine (RHT), a cholinesterase inhibitor, is used to treat mild to moderate AD via oral administration. However, oral administration is associated with slow absorption rate and severe systemic side effects. RHT nasal spray (RHT-ns), as a nose-to-brain delivery system, is more promising for AD management due to its efficient brain delivery and reduced peripheral exposure. This study constructed RHT-ns for enhancing AD treatment efficacy, and meanwhile the correlation between drug olfactory deposition and drug entering into the brain was explored. A 3D-printed nasal cast was employed to quantify the drug olfactory deposition. Brain delivery of RHT-ns was quantified using fluorescence tracking and Desorption Electrospray Ionization Mass Spectrometry (DESI-MS) analysis, which showed a good correlation to the olfactory deposition. F2 (containing 1% (w/v) viscosity modifier Avicel® RC-591) with high olfactory deposition and drug brain delivery was further investigated for pharmacodynamics study. F2 exhibited superiority in AD treatment over the commercially available oral formulation. In summary, the present study showed the successful development of RHT-ns with improved olfactory deposition and enhanced brain delivery. It might provide new insight into the design and development of nose-to-brain systems for the treatment of AD.
Collapse
Affiliation(s)
- Haihua Guo
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China; Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Guanlin Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China
| | - Zizhao Zhai
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Jiayuan Huang
- School of Medicine, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Yue Zhou
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Xiao Xia
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Zhongxuan Yao
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China.
| | - Ziyu Zhao
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China.
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China; Institute of Advanced Drug Delivery Systems, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China; Institute of Advanced Drug Delivery Systems, Jinan University, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
22
|
Ge M, Zhu Y, Wei M, Piao H, He M. Improving the efficacy of anti-EGFR drugs in GBM: Where we are going? Biochim Biophys Acta Rev Cancer 2023; 1878:188996. [PMID: 37805108 DOI: 10.1016/j.bbcan.2023.188996] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
The therapies targeting mutations of driver genes in cancer have advanced into clinical trials for a variety of tumors. In glioblastoma (GBM), epidermal growth factor receptor (EGFR) is the most commonly mutated oncogene, and targeting EGFR has been widely investigated as a promising direction. However, the results of EGFR pathway inhibitors have not been satisfactory. Limited blood-brain barrier (BBB) permeability, drug resistance, and pathway compensation mechanisms contribute to the failure of anti-EGFR therapies. This review summarizes recent research advances in EGFR-targeted therapy for GBM and provides insight into the reasons for the unsatisfactory results of EGFR-targeted therapy. By combining the results of preclinical studies with those of clinical trials, we discuss that improved drug penetration across the BBB, the use of multi-target combinations, and the development of peptidomimetic drugs under the premise of precision medicine may be promising strategies to overcome drug resistance in GBM.
Collapse
Affiliation(s)
- Manxi Ge
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China
| | - Yan Zhu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang, China.
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China.
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| |
Collapse
|
23
|
Rosenberg JB, Fung EK, Dyke JP, De BP, Lou H, Kelly JM, Reejhsinghani L, Ricart Arbona RJ, Sondhi D, Kaminsky SM, Cartier N, Hinderer C, Hordeaux J, Wilson JM, Ballon DJ, Crystal RG. Positron Emission Tomography Quantitative Assessment of Off-Target Whole-Body Biodistribution of I-124-Labeled Adeno-Associated Virus Capsids Administered to Cerebral Spinal Fluid. Hum Gene Ther 2023; 34:1095-1106. [PMID: 37624734 PMCID: PMC10659018 DOI: 10.1089/hum.2023.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/09/2023] [Indexed: 08/27/2023] Open
Abstract
Based on studies in experimental animals demonstrating that administration of adeno-associated virus (AAV) vectors to the cerebrospinal fluid (CSF) is an effective route to transfer genes to the nervous system, there are increasing number of clinical trials using the CSF route to treat nervous system disorders. With the knowledge that the CSF turns over four to five times daily, and evidence in experimental animals that at least some of CSF administered AAV vectors are distributed to systemic organs, we asked: with AAV administration to the CSF, what fraction of the total dose remains in the nervous system and what fraction goes off target and is delivered systemically? To quantify the biodistribution of AAV capsids immediately after administration, we covalently labeled AAV capsids with iodine 124 (I-124), a cyclotron generated positron emitter, enabling quantitative positron emission tomography scanning of capsid distribution for up to 96 h after AAV vector administration. We assessed the biodistribution to nonhuman primates of I-124-labeled capsids from different AAV clades, including 9 (clade F), rh.10 (E), PHP.eB (F), hu68 (F), and rh91(A). The analysis demonstrated that 60-90% of AAV vectors administered to the CSF through either the intracisternal or intrathecal (lumbar) routes distributed systemically to major organs. These observations have potentially significant clinical implications regarding accuracy of AAV vector dosing to the nervous system, evoking systemic immunity at levels similar to that with systemic administration, and potential toxicity of genes designed to treat nervous system disorders being expressed in non-nervous system organs. Based on these data, individuals in clinical trials using AAV vectors administered to the CSF should be monitored for systemic as well as nervous system adverse events and CNS dosing considerations should account for a significant AAV systemic distribution.
Collapse
Affiliation(s)
| | - Edward K. Fung
- Department of Radiology, Citigroup Biomedical Imaging Center; Weill Cornell Medicine, New York, New York, USA
| | - Jonathan P. Dyke
- Department of Radiology, Citigroup Biomedical Imaging Center; Weill Cornell Medicine, New York, New York, USA
| | | | | | - James M. Kelly
- Department of Radiology, Citigroup Biomedical Imaging Center; Weill Cornell Medicine, New York, New York, USA
| | - Layla Reejhsinghani
- Department of Radiology, Citigroup Biomedical Imaging Center; Weill Cornell Medicine, New York, New York, USA
| | - Rodolfo J. Ricart Arbona
- Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York, USA
| | | | | | - Nathalie Cartier
- Neurogencell INSERM U1127 Paris Brain Institute, Paris Sorbonne University, Paris, France; and
| | - Christian Hinderer
- Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Juliette Hordeaux
- Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - James M. Wilson
- Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Douglas J. Ballon
- Department of Genetic Medicine
- Department of Radiology, Citigroup Biomedical Imaging Center; Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
24
|
Lim J, Rhee S, Choi H, Lee J, Kuttappan S, Yves Nguyen TT, Choi S, Kim Y, Jeon NL. Engineering choroid plexus-on-a-chip with oscillatory flow for modeling brain metastasis. Mater Today Bio 2023; 22:100773. [PMID: 37664794 PMCID: PMC10474164 DOI: 10.1016/j.mtbio.2023.100773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/18/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
The human brain choroid plexus (ChP) is a highly organized secretory tissue with a complex vascular system and epithelial layers in the ventricles of the brain. The ChP is the body's principal source of cerebrospinal fluid (CSF); it also functions as a barrier to separate the blood from CSF, because the movement of CSF through the body is pulsatile in nature. Thus far, it has been challenging to recreate the specialized features and dynamics of the ChP in a physiologically relevant microenvironment. In this study, we recapitulated the ChP structure by developing a microfluidic chip in accordance with established design rules. Furthermore, we used image processing and analysis to mimic CSF flow dynamics within a rlcking system; we also used a hydrogel containing laminin to mimic brain extracellular matrix (ECM). Human ChP cells were cultured in the ChP-on-a-chip with in vivo-like CSF dynamic flow and an engineered ECM. The key ChP characteristics of capillaries, the epithelial layer, and secreted components were recreated in the adjusted microenvironment of our human ChP-on-a-chip. The drug screening capabilities of the device were observed through physiologically relevant drug responses from breast cancer cells that had spread in the ChP. ChP immune responses were also recapitulated in this device, as demonstrated by the motility and cytotoxic effects of macrophages, which are the most prevalent immune cells in the ChP. Our human ChP-on-a-chip will facilitate the elucidation of ChP pathophysiology and support the development of therapeutics to treat cancers that have metastasized into the ChP.
Collapse
Affiliation(s)
- Jungeun Lim
- School of Mechanical Engineering, Seoul National University, Seoul, 08826, South Korea
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, GA, 30332, USA
| | - Stephen Rhee
- School of Mechanical Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Hyeri Choi
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, South Korea
| | - Jungseub Lee
- School of Mechanical Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Shruthy Kuttappan
- Institute of Advanced Machinery and Design, Seoul National University, Seoul, 08826, South Korea
| | - Tri Tho Yves Nguyen
- School of Mechanical Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Sunbeen Choi
- School of Mechanical Engineering, Seoul National University, Seoul, 08826, South Korea
| | - YongTae Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Noo Li Jeon
- School of Mechanical Engineering, Seoul National University, Seoul, 08826, South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, South Korea
- Institute of Advanced Machinery and Design, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
25
|
Rajendran R, Arunachalam JP, Chidambaram S, Krishnagopal S, Krishnamurthy B, Vinayagam S, Veeravarmal V, Prasad H, Verma K, U R A. Protein Drug Delivery Using a Novel Maxillofacial Technique Targeting the Visual Pathway in the Brain, the Optic Nerve, and the Retina. ACS Chem Neurosci 2023; 14:3368-3384. [PMID: 37665674 DOI: 10.1021/acschemneuro.3c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
Abstract
Protein drugs are used for treating many diseases of the eye and the brain. The formidable blood neural barriers prevent the delivery of these drugs into the eye and the brain. Hence, there is a need for a protein drug delivery system to deliver large proteins across blood-neural barriers. Low half-life, poor penetration of epithelial barriers, low stability, and immunogenicity limit the use of non-invasive systemic routes for delivering proteins. In this pre-clinical study, the efficacy of a new maxillofacial route for administering protein drugs using a novel drug delivery system is compared with systemic administration through intra-peritoneal injection and ocular administration through topical eye drops and subconjunctival and intravitreal injections. Bevacizumab and retinoschisin proteins were administered using the maxillofacial technique along with systemic and ocular routes in wild-type male C57BL/6J mice. Liquid chromatography with tandem mass spectrometry and western blot was used to detect bevacizumab in tissue samples. Furthermore, immunohistochemistry was performed to detect the presence and localization of bevacizumab and retinoschisin in the retina and brain. The maxillofacial route of delivery could target the brain including regions involved in the visual pathway and optic nerve. The maxillofacial technique and intravitreal injection were effective in delivering the drugs into the retina. A new concept based on the glymphatic pathway, cerebrospinal fluid drug distribution, and the crossover of ipsilateral optic nerve fibers at optic chiasma is proposed to explain the presence of the drug in contralateral eye following maxillofacial administration and intravitreal injection.
Collapse
Affiliation(s)
- Rahini Rajendran
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth [Deemed to be University], SBV-Mahatma Gandhi Medical College & Research Institute Campus, Puducherry 607402, India
| | - Jayamuruga Pandian Arunachalam
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth [Deemed to be University], SBV-Mahatma Gandhi Medical College & Research Institute Campus, Puducherry 607402, India
| | - Subbulakshmi Chidambaram
- Sensory Neural Engineering and Cell Therapeutics Lab, Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605014, India
| | - Srikanth Krishnagopal
- Department of Ophthalmology, Sri Balaji Vidyapeeth [Deemed to be University], Mahatma Gandhi Medical College & Research Institute, Puducherry 607402, India
| | - Bhavani Krishnamurthy
- Department of Pathology, Sri Balaji Vidyapeeth [Deemed to be University], Mahatma Gandhi Medical College & Research Institute, Puducherry 607402, India
| | - Subha Vinayagam
- Department of Pharmacology, Sri Balaji Vidyapeeth [Deemed to be University], Mahatma Gandhi Medical College & Research Institute, Puducherry 607402, India
| | - Veeran Veeravarmal
- Department of Oral & Maxillofacial Pathology and Oral Microbiology, Government Dental College, Cuddalore, Annamalai Nagar, Chidambaram 608002, Tamil Nadu, India
| | - Harikrishnan Prasad
- Department of Oral Pathology and Microbiology, KSR Institute of Dental Science and Research, Tiruchengode 637215, Tamil Nadu, India
| | - Kavita Verma
- UR Anoop Research Group, Puducherry 605008, India
| | - Anoop U R
- UR Anoop Research Group, Puducherry 605008, India
| |
Collapse
|
26
|
Wyart C, Carbo-Tano M, Cantaut-Belarif Y, Orts-Del'Immagine A, Böhm UL. Cerebrospinal fluid-contacting neurons: multimodal cells with diverse roles in the CNS. Nat Rev Neurosci 2023; 24:540-556. [PMID: 37558908 DOI: 10.1038/s41583-023-00723-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 08/11/2023]
Abstract
The cerebrospinal fluid (CSF) is a complex solution that circulates around the CNS, and whose composition changes as a function of an animal's physiological state. Ciliated neurons that are bathed in the CSF - and thus referred to as CSF-contacting neurons (CSF-cNs) - are unusual polymodal interoceptive neurons. As chemoreceptors, CSF-cNs respond to variations in pH and osmolarity and to bacterial metabolites in the CSF. Their activation during infections of the CNS results in secretion of compounds to enhance host survival. As mechanosensory neurons, CSF-cNs operate together with an extracellular proteinaceous polymer known as the Reissner fibre to detect compression during spinal curvature. Once activated, CSF-cNs inhibit motor neurons, premotor excitatory neurons and command neurons to enhance movement speed and stabilize posture. At longer timescales, CSF-cNs instruct morphogenesis throughout life via the release of neuropeptides that act over long distances on skeletal muscle. Finally, recent evidence suggests that mouse CSF-cNs may act as neural stem cells in the spinal cord, inspiring new paths of investigation for repair after injury.
Collapse
Affiliation(s)
- Claire Wyart
- Institut du Cerveau (ICM), INSERM U1127, UMR CNRS 7225 Paris, Sorbonne Université, Paris, France.
| | - Martin Carbo-Tano
- Institut du Cerveau (ICM), INSERM U1127, UMR CNRS 7225 Paris, Sorbonne Université, Paris, France
| | - Yasmine Cantaut-Belarif
- Institut du Cerveau (ICM), INSERM U1127, UMR CNRS 7225 Paris, Sorbonne Université, Paris, France
| | | | - Urs L Böhm
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
27
|
De BP, Rosenberg JB, Selvan N, Wilson I, Yusufzai N, Greco A, Kaminsky SM, Heier LA, Ricart Arbona RJ, Miranda IC, Monette S, Nair A, Khanna R, Crystal RG, Sondhi D. Assessment of Safety and Biodistribution of AAVrh.10hCLN2 Following Intracisternal Administration in Nonhuman Primates for the Treatment of CLN2 Batten Disease. Hum Gene Ther 2023; 34:905-916. [PMID: 37624739 PMCID: PMC10517331 DOI: 10.1089/hum.2023.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/10/2023] [Indexed: 08/27/2023] Open
Abstract
CLN2 disease is a fatal, childhood autosomal recessive disorder caused by mutations in ceroid lipofuscinosis type 2 (CLN2) gene, encoding tripeptidyl peptidase 1 (TPP-1). Loss of TPP-1 activity leads to accumulation of storage material in lysosomes and resultant neuronal cell death with neurodegeneration. Genotype/phenotype comparisons suggest that the phenotype should be ameliorated with increase of TPP-1 levels to 5-10% of normal with wide central nervous system (CNS) distribution. Our previous clinical study showed that intraparenchymal (IPC) administration of AAVrh.10hCLN2, an adeno-associated vector serotype rh.10 encoding human CLN2, slowed, but did not stop disease progression, suggesting that this may be insufficient to distribute the therapy throughout the CNS (Sondhi 2020). In this study, we assessed whether the less invasive intracisternal delivery route would be safe and provide a wider distribution of TPP-1. A study was conducted in nonhuman primates (NHPs) with intracisternal delivery to cerebrospinal fluid (CSF) of AAVrh.10hCLN2 (5 × 1013 genome copies) or phosphate buffered saline (PBS). No abnormal behavior was noted. CNS magnetic resonance imaging and clinical chemistry data were all unremarkable. Histopathology of major organs had no abnormal finding attributable to the intervention or the vector, except that in one out of two animals treated with AAVrh.10hCLN2, dorsal root ganglia showed mild-to-moderate mononuclear cell infiltrates and neuronal degeneration. In contrast to our previous NHP study (Sondhi 2012) with IPC administration where TPP-1 activity was >2 × above controls in 30% of treated brains, in the two intracisternal treated NHPs, the TPP-1 activity was >2 × above controls in 50% and 41% of treated brains, and 52% and 84% of brain had >1,000 vector genomes/μg DNA, compared to 0% in the two PBS NHP. CSF TPP1 levels in treated animals were 43-62% of normal human levels. Collectively, these data indicate that AAVrh.10hCLN2 delivered by intracisternal route is safe and widely distributes TPP-1 in brain and CSF at levels that are potentially therapeutic. Clinical Trial Registration: NCT02893826, NCT04669535, NCT04273269, NCT03580083, NCT04408625, NCT04127578, and NCT04792944.
Collapse
Affiliation(s)
- Bishnu P. De
- Department of Genetic Medicine, New York, New York, USA
| | | | | | | | | | | | | | - Linda A. Heier
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Rodolfo J. Ricart Arbona
- Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Ileana C. Miranda
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, New York, USA
| | - Sebastien Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, New York, USA
| | - Anju Nair
- LEXEO Therapeutics, New York, New York, USA
| | | | | | - Dolan Sondhi
- Department of Genetic Medicine, New York, New York, USA
| |
Collapse
|
28
|
Ajeeb R, Clegg JR. Intrathecal delivery of Macromolecules: Clinical status and emerging technologies. Adv Drug Deliv Rev 2023; 199:114949. [PMID: 37286086 DOI: 10.1016/j.addr.2023.114949] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
The proximity and association of cerebrospinal fluid (CSF) and the intrathecal (IT) space with deep targets in the central nervous system (CNS) parenchyma makes IT injection an attractive route of administration for brain drug delivery. However, the extent to which intrathecally administered macromolecules are effective in treating neurological diseases is a question of both clinical debate and technological interest. We present the biological, chemical, and physical properties of the intrathecal space that are relevant to drug absorption, distribution, metabolism, and elimination from CSF. We then analyze the evolution of IT drug delivery in clinical trials over the last 20 years. Our analysis revealed that the percentage of clinical trials assessing IT delivery for the delivery of biologics (i.e., macromolecules, cells) for treatment of chronic conditions (e.g., neurodegeneration, cancer, and metabolic diseases) has steadily increased. Clinical trials exploring cell or macromolecular delivery within the IT space have not evaluated engineering technologies, such as depots, particles, or other delivery systems. Recent pre-clinical studies have evaluated IT macromolecule delivery in small animals, postulating that delivery efficacy can be assisted by external medical devices, micro- or nanoparticles, bulk biomaterials, and viral vectors. Further studies are necessary to evaluate the extent to which engineering technologies and IT administration improve CNS targeting and therapeutic outcome.
Collapse
Affiliation(s)
- Rana Ajeeb
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK, United States
| | - John R Clegg
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK, United States; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Institute for Biomedical Engineering, Science, and Technology, University of Oklahoma, Norman, OK, United States.
| |
Collapse
|
29
|
Czarniak N, Kamińska J, Matowicka-Karna J, Koper-Lenkiewicz OM. Cerebrospinal Fluid-Basic Concepts Review. Biomedicines 2023; 11:biomedicines11051461. [PMID: 37239132 DOI: 10.3390/biomedicines11051461] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Cerebrospinal fluid plays a crucial role in protecting the central nervous system (CNS) by providing mechanical support, acting as a shock absorber, and transporting nutrients and waste products. It is produced in the ventricles of the brain and circulates through the brain and spinal cord in a continuous flow. In the current review, we presented basic concepts related to cerebrospinal fluid history, cerebrospinal fluid production, circulation, and its main components, the role of the blood-brain barrier and the blood-cerebrospinal fluid barrier in the maintenance of cerebrospinal fluid homeostasis, and the utility of Albumin Quotient (QAlb) evaluation in the diagnosis of CNS diseases. We also discussed the collection of cerebrospinal fluid (type, number of tubes, and volume), time of transport to the laboratory, and storage conditions. Finally, we briefly presented the role of cerebrospinal fluid examination in CNS disease diagnosis of various etiologies and highlighted that research on identifying cerebrospinal fluid biomarkers indicating disease presence or severity, evaluating treatment effectiveness, and enabling understanding of pathogenesis and disease mechanisms is of great importance. Thus, in our opinion, research on cerebrospinal fluid is still necessary for both the improvement of CNS disease management and the discovery of new treatment options.
Collapse
Affiliation(s)
- Natalia Czarniak
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | | |
Collapse
|
30
|
Meyer AH, Feldsien TM, Mezler M, Untucht C, Venugopalan R, Lefebvre DR. Novel Developments to Enable Treatment of CNS Diseases with Targeted Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15041100. [PMID: 37111587 PMCID: PMC10145602 DOI: 10.3390/pharmaceutics15041100] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
The blood-brain barrier (BBB) is a major hurdle for the development of systemically delivered drugs against diseases of the central nervous system (CNS). Because of this barrier there is still a huge unmet need for the treatment of these diseases, despite years of research efforts across the pharmaceutical industry. Novel therapeutic entities, such as gene therapy and degradomers, have become increasingly popular in recent years, but have not been the focus for CNS indications so far. To unfold their full potential for the treatment of CNS diseases, these therapeutic entities will most likely have to rely on innovative delivery technologies. Here we will describe and assess approaches, both invasive and non-invasive, that can enable, or at least increase, the probability of a successful drug development of such novel therapeutics for CNS indications.
Collapse
Affiliation(s)
- Axel H Meyer
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen, Germany
| | - Thomas M Feldsien
- Drug Delivery and Combination Products, Development Sciences, AbbVie Inc., 1 N Waukegan Road, North Chicago, IL 60064, USA
| | - Mario Mezler
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen, Germany
| | - Christopher Untucht
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen, Germany
| | - Ramakrishna Venugopalan
- Drug Delivery and Combination Products, Development Sciences, AbbVie Inc., 1 N Waukegan Road, North Chicago, IL 60064, USA
| | - Didier R Lefebvre
- Drug Delivery and Combination Products, Development Sciences, AbbVie Inc., 1 N Waukegan Road, North Chicago, IL 60064, USA
| |
Collapse
|
31
|
Cox B, Nicolaï J, Williamson B. The role of the efflux transporter, P-glycoprotein, at the blood-brain barrier in drug discovery. Biopharm Drug Dispos 2023; 44:113-126. [PMID: 36198662 DOI: 10.1002/bdd.2331] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/08/2022]
Abstract
The blood-brain barrier (BBB) expresses a high abundance of transporters, particularly P-glycoprotein (P-gp), that regulate endogenous and exogenous molecule uptake and removal of waste. This review discusses key drug metabolism and pharmacokinetic considerations for the efflux transporter P-gp at the BBB in drug discovery and development. We highlight the differences in P-gp expression and protein levels across species but the limited observations of species-specific substrates. Given the impact of age and disease on BBB biology, we summarise the modulation of P-gp for several neurological disorders and ageing and exemplify several disease-specific hurdles or opportunities for drug exposure in the brain. Furthermore, the review includes observations of CNS-related drug-drug interactions due to the inhibition or induction of P-gp at the BBB in animal studies and humans and the need for continued evaluation especially for compounds with a narrow therapeutic window. This review focusses primarily on small molecules but also considers the impact of new chemical entities, particularly beyond Ro5 molecules and their potential to be recognised as P-gp substrates as well as advanced drug delivery systems which offer an alternative approach to achieve and sustain central nervous system exposure.
Collapse
Affiliation(s)
- Benoit Cox
- DMPK, Development Sciences, UCB Biopharma, Braine-l'Alleud, Belgium
| | - Johan Nicolaï
- DMPK, Janssen Pharmaceutical Companies of Johnson & Johnson, Janssen Research & Development, Beerse, Belgium
| | | |
Collapse
|
32
|
Bessen MA, Gayen CD, Quarrington RD, Walls AC, Leonard AV, Kurtcuoglu V, Jones CF. Characterising spinal cerebrospinal fluid flow in the pig with phase-contrast magnetic resonance imaging. Fluids Barriers CNS 2023; 20:5. [PMID: 36653870 PMCID: PMC9850564 DOI: 10.1186/s12987-022-00401-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Detecting changes in pulsatile cerebrospinal fluid (CSF) flow may assist clinical management decisions, but spinal CSF flow is relatively understudied. Traumatic spinal cord injuries (SCI) often cause spinal cord swelling and subarachnoid space (SAS) obstruction, potentially causing pulsatile CSF flow changes. Pigs are emerging as a favoured large animal SCI model; therefore, the aim of this study was to characterise CSF flow along the healthy pig spine. METHODS Phase-contrast magnetic resonance images (PC-MRI), retrospectively cardiac gated, were acquired for fourteen laterally recumbent, anaesthetised and ventilated, female domestic pigs (22-29 kg). Axial images were obtained at C2/C3, T8/T9, T11/T12 and L1/L2. Dorsal and ventral SAS regions of interest (ROI) were manually segmented. CSF flow and velocity were determined throughout a cardiac cycle. Linear mixed-effects models, with post-hoc comparisons, were used to identify differences in peak systolic/diastolic flow, and maximum velocity (cranial/caudal), across spinal levels and dorsal/ventral SAS. Velocity wave speed from C2/C3 to L1/L2 was calculated. RESULTS PC-MRI data were obtained for 11/14 animals. Pulsatile CSF flow was observed at all spinal levels. Peak systolic flow was greater at C2/C3 (dorsal: - 0.32 ± 0.14 mL/s, ventral: - 0.15 ± 0.13 mL/s) than T8/T9 dorsally (- 0.04 ± 0.03 mL/s; p < 0.001), but not different ventrally (- 0.08 ± 0.08 mL/s; p = 0.275), and no difference between thoracolumbar levels (p > 0.05). Peak diastolic flow was greater at C2/C3 (0.29 ± 0.08 mL/s) compared to T8/T9 (0.03 ± 0.03 mL/s, p < 0.001) dorsally, but not different ventrally (p = 1.000). Cranial and caudal maximum velocity at C2/C3 were greater than thoracolumbar levels dorsally (p < 0.001), and T8/T9 and L1/L2 ventrally (p = 0.022). Diastolic velocity wave speed was 1.41 ± 0.39 m/s dorsally and 1.22 ± 0.21 m/s ventrally, and systolic velocity wave speed was 1.02 ± 0.25 m/s dorsally and 0.91 ± 0.22 m/s ventrally. CONCLUSIONS In anaesthetised and ventilated domestic pigs, spinal CSF has lower pulsatile flow and slower velocity wave propagation, compared to humans. This study provides baseline CSF flow at spinal levels relevant for future SCI research in this animal model.
Collapse
Affiliation(s)
- Madeleine Amy Bessen
- grid.1010.00000 0004 1936 7304Adelaide Spinal Research Group and Centre for Orthopaedics and Trauma Research, Adelaide Medical School, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA 5005 Australia
| | - Christine Diana Gayen
- grid.1010.00000 0004 1936 7304Adelaide Spinal Research Group and Centre for Orthopaedics and Trauma Research, Adelaide Medical School, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA 5005 Australia ,grid.1010.00000 0004 1936 7304Translational Neuropathology Laboratory, School of Biomedicine, The University of Adelaide, Level 2, Helen Mayo North Building, The University of Adelaide, Frome Road, Adelaide, SA 5005 Australia
| | - Ryan David Quarrington
- grid.1010.00000 0004 1936 7304Adelaide Spinal Research Group and Centre for Orthopaedics and Trauma Research, Adelaide Medical School, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA 5005 Australia ,grid.1010.00000 0004 1936 7304School of Electrical and Mechanical Engineering, The University of Adelaide, North Terrace, Adelaide, SA 5005 Australia
| | - Angela Catherine Walls
- grid.430453.50000 0004 0565 2606Clinical and Research Imaging Centre, South Australian Health and Medical Research Institute, National Imaging Facility, Northern Pod, SAHMRI, North Terrace, Adelaide, SA 5000 Australia
| | - Anna Victoria Leonard
- grid.1010.00000 0004 1936 7304Translational Neuropathology Laboratory, School of Biomedicine, The University of Adelaide, Level 2, Helen Mayo North Building, The University of Adelaide, Frome Road, Adelaide, SA 5005 Australia
| | - Vartan Kurtcuoglu
- grid.7400.30000 0004 1937 0650Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland ,grid.7400.30000 0004 1937 0650Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland ,grid.7400.30000 0004 1937 0650Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Claire Frances Jones
- grid.1010.00000 0004 1936 7304Adelaide Spinal Research Group and Centre for Orthopaedics and Trauma Research, Adelaide Medical School, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA 5005 Australia ,grid.1010.00000 0004 1936 7304School of Electrical and Mechanical Engineering, The University of Adelaide, North Terrace, Adelaide, SA 5005 Australia ,grid.416075.10000 0004 0367 1221Department of Orthopaedics, Royal Adelaide Hospital, Adelaide, SA 5000 Australia
| |
Collapse
|
33
|
Rabanel JM, Mirbagheri M, Olszewski M, Xie G, Le Goas M, Latreille PL, Counil H, Hervé V, Silva RO, Zaouter C, Adibnia V, Acevedo M, Servant MJ, Martinez VA, Patten SA, Matyjaszewski K, Ramassamy C, Banquy X. Deep Tissue Penetration of Bottle-Brush Polymers via Cell Capture Evasion and Fast Diffusion. ACS NANO 2022; 16:21583-21599. [PMID: 36516979 DOI: 10.1021/acsnano.2c10554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Drug nanocarriers (NCs) capable of crossing the vascular endothelium and deeply penetrating into dense tissues of the CNS could potentially transform the management of neurological diseases. In the present study, we investigated the interaction of bottle-brush (BB) polymers with different biological barriers in vitro and in vivo and compared it to nanospheres of similar composition. In vitro internalization and permeability assays revealed that BB polymers are not internalized by brain-associated cell lines and translocate much faster across a blood-brain barrier model compared to nanospheres of similar hydrodynamic diameter. These observations performed under static, no-flow conditions were complemented by dynamic assays performed in microvessel arrays on chip and confirmed that BB polymers can escape the vasculature compartment via a paracellular route. BB polymers injected in mice and zebrafish larvae exhibit higher penetration in brain tissues and faster extravasation of microvessels located in the brain compared to nanospheres of similar sizes. The superior diffusivity of BBs in extracellular matrix-like gels combined with their ability to efficiently cross endothelial barriers via a paracellular route position them as promising drug carriers to translocate across the blood-brain barrier and penetrate dense tissue such as the brain, two unmet challenges and ultimate frontiers in nanomedicine.
Collapse
Affiliation(s)
- Jean-Michel Rabanel
- INRS Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, Canada H7V 1B7
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Marziye Mirbagheri
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Mateusz Olszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, United States 15213-3815
| | - Guojun Xie
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, United States 15213-3815
| | - Marine Le Goas
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Pierre-Luc Latreille
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Hermine Counil
- INRS Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, Canada H7V 1B7
| | - Vincent Hervé
- INRS Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, Canada H7V 1B7
| | - Rummenigge Oliveira Silva
- INRS Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, Canada H7V 1B7
| | - Charlotte Zaouter
- INRS Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, Canada H7V 1B7
| | - Vahid Adibnia
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Mariana Acevedo
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Marc J Servant
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Vincent A Martinez
- School of Physics and Astronomy, University of Edinburgh, King's Buildings, Peter Guthrie Tait Road, Edinburgh, United Kingdom EH9 3FD
| | - Shunmoogum A Patten
- INRS Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, Canada H7V 1B7
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, United States 15213-3815
| | - Charles Ramassamy
- INRS Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, Canada H7V 1B7
| | - Xavier Banquy
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| |
Collapse
|
34
|
Thastrup M, Duguid A, Mirian C, Schmiegelow K, Halsey C. Central nervous system involvement in childhood acute lymphoblastic leukemia: challenges and solutions. Leukemia 2022; 36:2751-2768. [PMID: 36266325 PMCID: PMC9712093 DOI: 10.1038/s41375-022-01714-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/10/2022]
Abstract
Delivery of effective anti-leukemic agents to the central nervous system (CNS) is considered essential for cure of childhood acute lymphoblastic leukemia. Current CNS-directed therapy comprises systemic therapy with good CNS-penetration accompanied by repeated intrathecal treatments up to 26 times over 2-3 years. This approach prevents most CNS relapses, but is associated with significant short and long term neurotoxicity. Despite this burdensome therapy, there have been no new drugs licensed for CNS-leukemia since the 1960s, when very limited anti-leukemic agents were available and there was no mechanistic understanding of leukemia survival in the CNS. Another major barrier to improved treatment is that we cannot accurately identify children at risk of CNS relapse, or monitor response to treatment, due to a lack of sensitive biomarkers. A paradigm shift in treating the CNS is needed. The challenges are clear - we cannot measure CNS leukemic load, trials have been unable to establish the most effective CNS treatment regimens, and non-toxic approaches for relapsed, refractory, or intolerant patients are lacking. In this review we discuss these challenges and highlight research advances aiming to provide solutions. Unlocking the potential of risk-adapted non-toxic CNS-directed therapy requires; (1) discovery of robust diagnostic, prognostic and response biomarkers for CNS-leukemia, (2) identification of novel therapeutic targets combined with associated investment in drug development and early-phase trials and (3) engineering of immunotherapies to overcome the unique challenges of the CNS microenvironment. Fortunately, research into CNS-ALL is now making progress in addressing these unmet needs: biomarkers, such as CSF-flow cytometry, are now being tested in prospective trials, novel drugs are being tested in Phase I/II trials, and immunotherapies are increasingly available to patients with CNS relapses. The future is hopeful for improved management of the CNS over the next decade.
Collapse
Affiliation(s)
- Maria Thastrup
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Alasdair Duguid
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Christian Mirian
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Halsey
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
35
|
Kusaka S, Miyake Y, Tokumaru Y, Morizane Y, Tamaki S, Akiyama Y, Sato F, Murata I. Boron Delivery to Brain Cells via Cerebrospinal Fluid (CSF) Circulation in BNCT of Brain-Tumor-Model Rats-Ex Vivo Imaging of BPA Using MALDI Mass Spectrometry Imaging. Life (Basel) 2022; 12:1786. [PMID: 36362940 PMCID: PMC9695333 DOI: 10.3390/life12111786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 09/10/2024] Open
Abstract
The blood-brain barrier (BBB) is likely to be intact during the early stages of brain metastatic melanoma development, and thereby inhibits sufficient drug delivery into the metastatic lesions. Our laboratory has been developing a system for boron drug delivery to brain cells via cerebrospinal fluid (CSF) as a viable pathway to circumvent the BBB in boron neutron capture therapy (BNCT). BNCT is a cell-selective cancer treatment based on the use of boron-containing drugs and neutron irradiation. Selective tumor targeting by boron with minimal normal tissue toxicity is required for effective BNCT. Boronophenylalanine (BPA) is widely used as a boron drug for BNCT. In our previous study, we demonstrated that application of the CSF administration method results in high BPA accumulation in the brain tumor even with a low dose of BPA. In this study, we evaluate BPA biodistribution in the brain following application of the CSF method in brain-tumor-model rats (melanoma) utilizing matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI). We observed increased BPA penetration to the tumor tissue, where the color contrast on mass images indicates the border of BPA accumulation between tumor and normal cells. Our approach could be useful as drug delivery to different types of brain tumor, including brain metastases of melanoma.
Collapse
Affiliation(s)
- Sachie Kusaka
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Osaka, Japan
| | - Yumi Miyake
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Yugo Tokumaru
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Osaka, Japan
| | - Yuri Morizane
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Osaka, Japan
| | - Shingo Tamaki
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Osaka, Japan
| | - Yoko Akiyama
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Osaka, Japan
| | - Fuminobu Sato
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Osaka, Japan
| | - Isao Murata
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Osaka, Japan
| |
Collapse
|
36
|
Pauwels MJ, Xie J, Ceroi A, Balusu S, Castelein J, Van Wonterghem E, Van Imschoot G, Ward A, Menheniott TR, Gustafsson O, Combes F, El Andaloussi S, Sanders NN, Mäger I, Van Hoecke L, Vandenbroucke RE. Choroid plexus-derived extracellular vesicles exhibit brain targeting characteristics. Biomaterials 2022; 290:121830. [PMID: 36302306 DOI: 10.1016/j.biomaterials.2022.121830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022]
Abstract
The brain is protected against invading organisms and other unwanted substances by tightly regulated barriers. However, these central nervous system (CNS) barriers impede the delivery of drugs into the brain via the blood circulation and are therefore considered major hurdles in the treatment of neurological disorders. Consequently, there is a high need for efficient delivery systems that are able to cross these strict barriers. While most research focuses on the blood-brain barrier (BBB), the design of drug delivery platforms that are able to cross the blood-cerebrospinal fluid (CSF) barrier, formed by a single layer of choroid plexus epithelial cells, remains a largely unexplored domain. The discovery that extracellular vesicles (EVs) make up a natural mechanism for information transfer between cells and across cell layers, has stimulated interest in their potential use as drug delivery platform. Here, we report that choroid plexus epithelial cell-derived EVs exhibit the capacity to home to the brain after peripheral administration. Moreover, these vesicles are able to functionally deliver cargo into the brain. Our findings underline the therapeutic potential of choroid plexus-derived EVs as a brain drug delivery vehicle via targeting of the blood-CSF interface.
Collapse
Affiliation(s)
- Marie J Pauwels
- VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Junhua Xie
- VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Adam Ceroi
- VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Sriram Balusu
- VIB Center for the Biology of Disease, VIB, Herestraat 49, 3000, Leuven, Belgium
| | - Jonas Castelein
- VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Elien Van Wonterghem
- VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Griet Van Imschoot
- VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Andrew Ward
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Trevelyan R Menheniott
- Murdoch Children's Research Institute, Flemington Rd. Parkville, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Flemington Rd. Parkville, Melbourne, Victoria, Australia
| | - Oskar Gustafsson
- Department of Laboratory Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Francis Combes
- Department of Biotechnology and Nanomedicine, SINTEF AS, Sem Sælands V. 2A, N-7034 Trondheim, Norway
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Imre Mäger
- Institute of Technology, University of Tartu, 50 411, Tartu, Estonia; Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK
| | - Lien Van Hoecke
- VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.
| |
Collapse
|
37
|
Kusaka S, Morizane Y, Tokumaru Y, Tamaki S, Maemunah IR, Akiyama Y, Sato F, Murata I. Cerebrospinal fluid-based boron delivery system may help increase the uptake boron for boron neutron capture therapy in veterinary medicine: A preliminary study with normal rat brain cells. Res Vet Sci 2022; 148:1-6. [PMID: 35523003 DOI: 10.1016/j.rvsc.2022.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 01/29/2023]
Abstract
Boron neutron capture therapy (BNCT) is a non-invasive type of radiation therapy developed for humans and translated to veterinary medicine. However, clinical trials on BNCT for patients with brain tumors are on-going. To improve the therapeutic efficacy of BNCT for brain tumors, we developed a boron delivery system that involves the cerebrospinal fluid (CSF), in contrast to the conventional method that involves intravenous (IV) administration. This study aimed to investigate the time-concentration profile of boron in the CSF as well as the uptake rate of boron by the brain cells after administering L-p‑boronophenylalanine (BPA) into the lateral ventricle of normal rats. Brain cell uptake rates were compared between the CSF-based and IV administration methods. The CSF-based and IV administration methods achieved comparable brain cell uptake levels; however, the former method involved lower BPA doses than the latter method. These findings suggest that the CSF method may reduce the economic and physical burdens associated with this treatment in brain tumor patients. Future studies should validate these findings in rat models of brain tumors.
Collapse
Affiliation(s)
- Sachie Kusaka
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan.
| | - Yuri Morizane
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Yugo Tokumaru
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Shingo Tamaki
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Indah Rosidah Maemunah
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Yoko Akiyama
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Fuminobu Sato
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Isao Murata
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| |
Collapse
|
38
|
Revisiting Cerebrospinal Fluid Flow Direction and Rate in Physiologically Based Pharmacokinetic Model. Pharmaceutics 2022; 14:pharmaceutics14091764. [PMID: 36145511 PMCID: PMC9504371 DOI: 10.3390/pharmaceutics14091764] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022] Open
Abstract
The bidirectional pulsatile movement of cerebrospinal fluid (CSF), instead of the traditionally believed unidirectional and constant CSF circulation, has been demonstrated. In the present study, the structure and parameters of the CSF compartments were revisited in our comprehensive and validated central nervous system (CNS)-specific, physiologically based pharmacokinetic (PBPK) model of healthy rats (LeiCNS-PK3.0). The bidirectional and site-dependent CSF movement was incorporated into LeiCNS-PK3.0 to create the new LeiCNS-PK“3.1” model. The physiological CSF movement rates in healthy rats that are unavailable from the literature were estimated by fitting the PK data of sucrose, a CSF flow marker, after intra-CSF administration. The capability of LeiCNS-PK3.1 to describe the PK profiles of other molecules was compared with that of the original LeiCNS-PK3.0 model. LeiCNS-PK3.1 demonstrated superior description of the CSF PK profiles of a range of small molecules after intra-CSF administration over LeiCNS-PK3.0. LeiCNS-PK3.1 also retained the same level of predictability of CSF PK profiles in cisterna magna after intravenous administration. These results support the theory of bidirectional and site-dependent CSF movement across the entire CSF space over unidirectional and constant CSF circulation in healthy rats, pointing out the need to revisit the structures and parameters of CSF compartments in CNS-PBPK models.
Collapse
|
39
|
The glymphatic system: implications for drugs for central nervous system diseases. Nat Rev Drug Discov 2022; 21:763-779. [PMID: 35948785 DOI: 10.1038/s41573-022-00500-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2022] [Indexed: 12/14/2022]
Abstract
In the past decade, evidence for a fluid clearance pathway in the central nervous system known as the glymphatic system has grown. According to the glymphatic system concept, cerebrospinal fluid flows directionally through the brain and non-selectively clears the interstitium of metabolic waste. Importantly, the glymphatic system may be modulated by particular drugs such as anaesthetics, as well as by non-pharmacological factors such as sleep, and its dysfunction has been implicated in central nervous system disorders such as Alzheimer disease. Although the glymphatic system is best described in rodents, reports using multiple neuroimaging modalities indicate that a similar transport system exists in the human brain. Here, we overview the evidence for the glymphatic system and its role in disease and discuss opportunities to harness the glymphatic system therapeutically; for example, by improving the effectiveness of intrathecally delivered drugs.
Collapse
|
40
|
Sato Y, Minami K, Hirato T, Tanizawa K, Sonoda H, Schmidt M. Drug delivery for neuronopathic lysosomal storage diseases: evolving roles of the blood brain barrier and cerebrospinal fluid. Metab Brain Dis 2022; 37:1745-1756. [PMID: 35088290 PMCID: PMC9283362 DOI: 10.1007/s11011-021-00893-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022]
Abstract
Whereas significant strides have been made in the treatment of lysosomal storage diseases (LSDs), the neuronopathy associated with these diseases remains impervious mainly because of the blood-brain barrier (BBB), which prevents delivery of large molecules to the brain. However, 100 years of research on the BBB since its conceptualization have clarified many of its functional and structural characteristics, spurring recent endeavors to deliver therapeutics across it to treat central nervous system (CNS) disorders, including neuronopathic LSDs. Along with the BBB, the cerebrospinal fluid (CSF) also functions to protect the microenvironment of the CNS, and it is therefore deeply involved in CNS disorders at large. Recent research aimed at developing therapeutics for neuronopathic LSDs has uncovered a number of critical roles played by the CSF that require further clarification. This review summarizes the most up-to-date understanding of the BBB and the CSF acquired during the development of therapeutics for neuronopathic LSDs, and highlights some of the associated challenges that require further research.
Collapse
Affiliation(s)
- Yuji Sato
- Research and Development, JCR Pharmaceuticals, Ashiya, Hyogo, Japan.
| | - Kohtaro Minami
- Research and Development, JCR Pharmaceuticals, Ashiya, Hyogo, Japan
| | - Toru Hirato
- Research and Development, JCR Pharmaceuticals, Ashiya, Hyogo, Japan
| | | | - Hiroyuki Sonoda
- Research and Development, JCR Pharmaceuticals, Ashiya, Hyogo, Japan
| | - Mathias Schmidt
- Research and Development, JCR Pharmaceuticals, Ashiya, Hyogo, Japan
| |
Collapse
|
41
|
Biodistribution Analysis of an Anti-EGFR Antibody in the Rat Brain: Validation of CSF Microcirculation as a Viable Pathway to Circumvent the Blood-Brain Barrier for Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14071441. [PMID: 35890344 PMCID: PMC9324388 DOI: 10.3390/pharmaceutics14071441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 01/02/2023] Open
Abstract
Cerebrospinal fluid (CSF) microcirculation refers to CSF flow through brain or spinal parenchyma. CSF enters the tissue along the perivascular spaces of the penetrating arteries where it mixes with the interstitial fluid circulating through the extracellular space. The potential of harnessing CSF microcirculation for drug delivery to deep areas of the brain remains an area of controversy. This paper sheds additional light on this debate by showing that ABT-806, an EGFR-specific humanized IgG1 monoclonal antibody (mAb), reaches both the cortical and the deep subcortical layers of the rat brain following intra-cisterna magna (ICM) injection. This is significant because the molecular weight of this mAb (150 kDa) is highest among proteins reported to have penetrated deeply into the brain via the CSF route. This finding further confirms the potential of CSF circulation as a drug delivery system for a large subset of molecules offering promise for the treatment of various brain diseases with poor distribution across the blood-brain barrier (BBB). ABT-806 is the parent antibody of ABT-414, an antibody-drug conjugate (ADC) developed to engage EGFR-overexpressing glioblastoma (GBM) tumor cells. To pave the way for future efficacy studies for the treatment of GBM with an intra-CSF administered ADC consisting of a conjugate of ABT-806 (or of one of its close analogs), we verified in vivo the binding of ABT-414 to GBM tumor cells implanted in the cisterna magna and collected toxicity data from both the central nervous system (CNS) and peripheral tissues. The current study supports further exploration of harnessing CSF microcirculation as an alternative to systemic delivery to achieve higher brain tissue exposure, while reducing previously reported ocular toxicity with ABT-414.
Collapse
|
42
|
Khang M, Bindra RS, Mark Saltzman W. Intrathecal delivery and its applications in leptomeningeal disease. Adv Drug Deliv Rev 2022; 186:114338. [PMID: 35561835 DOI: 10.1016/j.addr.2022.114338] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 12/22/2022]
Abstract
Intrathecal delivery (IT) of opiates into the cerebrospinal fluid (CSF) for anesthesia and pain relief has been used clinically for decades, but this relatively straightforward approach of bypassing the blood-brain barrier has been underutilized for other indications because of its lack of utility in delivering small lipid-soluble drugs. However, emerging evidence suggests that IT drug delivery be an efficacious strategy for the treatment of cancers in which there is leptomeningeal spread of disease. In this review, we discuss CSF flow dynamics and CSF clearance pathways in the context of intrathecal delivery. We discuss human and animal studies of several new classes of therapeutic agents-cellular, protein, nucleic acid, and nanoparticle-based small molecules-that may benefit from IT delivery. The complexity of the CSF compartment presents several key challenges in predicting biodistribution of IT-delivered drugs. New approaches and strategies are needed that can overcome the high rates of turnover in the CSF to reach specific tissues or cellular targets.
Collapse
|
43
|
Pardridge WM. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022; 14:1283. [PMID: 35745855 PMCID: PMC9229021 DOI: 10.3390/pharmaceutics14061283] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
The history of brain drug delivery is reviewed beginning with the first demonstration, in 1914, that a drug for syphilis, salvarsan, did not enter the brain, due to the presence of a blood-brain barrier (BBB). Owing to restricted transport across the BBB, FDA-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Drugs that do not cross the BBB can be re-engineered for transport on endogenous BBB carrier-mediated transport and receptor-mediated transport systems, which were identified during the 1970s-1980s. By the 1990s, a multitude of brain drug delivery technologies emerged, including trans-cranial delivery, CSF delivery, BBB disruption, lipid carriers, prodrugs, stem cells, exosomes, nanoparticles, gene therapy, and biologics. The advantages and limitations of each of these brain drug delivery technologies are critically reviewed.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
44
|
Treatment of Neuronopathic Mucopolysaccharidoses with Blood-Brain Barrier-Crossing Enzymes: Clinical Application of Receptor-Mediated Transcytosis. Pharmaceutics 2022; 14:pharmaceutics14061240. [PMID: 35745811 PMCID: PMC9229961 DOI: 10.3390/pharmaceutics14061240] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Enzyme replacement therapy (ERT) has paved the way for treating the somatic symptoms of lysosomal storage diseases (LSDs), but the inability of intravenously administered enzymes to cross the blood-brain barrier (BBB) has left the central nervous system (CNS)-related symptoms of LSDs largely impervious to the therapeutic benefits of ERT, although ERT via intrathecal and intracerebroventricular routes can be used for some neuronopathic LSDs (in particular, mucopolysaccharidoses). However, the considerable practical issues involved make these routes unsuitable for long-term treatment. Efforts have been made to modify enzymes (e.g., by fusing them with antibodies against innate receptors on the cerebrovascular endothelium) so that they can cross the BBB via receptor-mediated transcytosis (RMT) and address neuronopathy in the CNS. This review summarizes the various scientific and technological challenges of applying RMT to the development of safe and effective enzyme therapeutics for neuronopathic mucopolysaccharidoses; it then discusses the translational and methodological issues surrounding preclinical and clinical evaluation to establish RMT-applied ERT.
Collapse
|
45
|
Yang W, Zhang M, He J, Gong M, Sun J, Yang X. Central nervous system injury meets nanoceria: opportunities and challenges. Regen Biomater 2022; 9:rbac037. [PMID: 35784095 PMCID: PMC9245649 DOI: 10.1093/rb/rbac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/08/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Central nervous system (CNS) injury, induced by ischemic/hemorrhagic or traumatic damage, is one of the most common causes of death and long-term disability worldwide. Reactive oxygen and nitrogen species (RONS) resulting in oxidative/nitrosative stress play a critical role in the pathological cascade of molecular events after CNS injury. Therefore, by targeting RONS, antioxidant therapies have been intensively explored in previous studies. However, traditional antioxidants have achieved limited success thus far, and the development of new antioxidants to achieve highly effective RONS modulation in CNS injury still remains a great challenge. With the rapid development of nanotechnology, novel nanomaterials provided promising opportunities to address this challenge. Within these, nanoceria has gained much attention due to its regenerative and excellent RONS elimination capability. To promote its practical application, it is important to know what has been done and what has yet to be done. This review aims to present the opportunities and challenges of nanoceria in treating CNS injury. The physicochemical properties of nanoceria and its interaction with RONS are described. The applications of nanoceria for stroke and neurotrauma treatment are summarized. The possible directions for future application of nanoceria in CNS injury treatment are proposed.
Collapse
Affiliation(s)
- Wang Yang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China
- Army Health Service Training Base, Army Medical University, Chongqing 400038, China
| | - Maoting Zhang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China
| | - Jian He
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China
| | - Mingfu Gong
- Xinqiao Hospital, Army Medical University, Chongqing 400038, China
| | - Jian Sun
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China
| | - Xiaochao Yang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China
| |
Collapse
|
46
|
Kusaka S, Morizane Y, Tokumaru Y, Tamaki S, Maemunah IR, Akiyama Y, Sato F, Murata I. Boron Delivery to Brain Cells via Cerebrospinal Fluid (CSF) Circulation for BNCT in a Rat Melanoma Model. BIOLOGY 2022; 11:biology11030397. [PMID: 35336771 PMCID: PMC8945851 DOI: 10.3390/biology11030397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 02/02/2023]
Abstract
Simple Summary The blood–brain barrier (BBB) is formed by the brain capillary endothelium and prevents almost all therapeutic agents from reaching the brain. The importance of the BBB in brain tumor treatments has not been recognized until recently, including in the case of boron neutron capture therapy (BNCT), although it affects therapeutic efficacy when treating brain tumors. Recently, some drug delivery systems to bypass the BBB have been developed for brain tumor therapy, and our laboratory has been developing a system for boron delivery to brain cells using cerebrospinal fluid (CSF) circulation, which we call the “boron CSF administration method”. In this study, we carried out experiments with brain tumor model rats to demonstrate the usefulness of the CSF administration method for BNCT. As a result, we found that boron injected using the CSF administration method accumulates to high levels in tumor cells, with a high T/N ratio. In addition, the dose required for the boron drug was much lower than that used in the intravenous (IV) administration method for equivalent effects. This approach makes it possible for clinicians to inject a lower drug dose into patient, thus reducing the potential side effects of excessive amounts of the drug and decreasing its cost. We hope our findings will inspire additional studies on boron delivery to brain tumors for BNCT. Abstract Recently, exploitation of cerebrospinal fluid (CSF) circulation has become increasingly recognized as a feasible strategy to solve the challenges involved in drug delivery for treating brain tumors. Boron neutron capture therapy (BNCT) also faces challenges associated with the development of an efficient delivery system for boron, especially to brain tumors. Our laboratory has been developing a system for boron delivery to brain cells using CSF, which we call the “boron CSF administration method”. In our previous study, we found that boron was efficiently delivered to the brain cells of normal rats in the form of small amounts of L-p-boronophenylalanine (BPA) using the CSF administration method. In the study described here, we carried out experiments with brain tumor model rats to demonstrate the usefulness of the CSF administration method for BNCT. We first investigated the boron concentration of the brain cells every 60 min after BPA administration into the lateral ventricle of normal rats. Second, we measured and compared the boron concentration in the melanoma model rats after administering boron via either the CSF administration method or the intravenous (IV) administration method, with estimation of the T/N ratio. Our results revealed that boron injected by the CSF administration method was excreted quickly from normal cells, resulting in a high T/N ratio compared to that of IV administration. In addition, the CSF administration method resulted in high boron accumulation in tumor cells. In conclusion, we found that using our developed CSF administration method results in more selective delivery of boron to the brain tumor compared with the IV administration method.
Collapse
|
47
|
Hladky SB, Barrand MA. The glymphatic hypothesis: the theory and the evidence. Fluids Barriers CNS 2022; 19:9. [PMID: 35115036 PMCID: PMC8815211 DOI: 10.1186/s12987-021-00282-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
The glymphatic hypothesis proposes a mechanism for extravascular transport into and out of the brain of hydrophilic solutes unable to cross the blood-brain barrier. It suggests that there is a circulation of fluid carrying solutes inwards via periarterial routes, through the interstitium and outwards via perivenous routes. This review critically analyses the evidence surrounding the mechanisms involved in each of these stages. There is good evidence that both influx and efflux of solutes occur along periarterial routes but no evidence that the principal route of outflow is perivenous. Furthermore, periarterial inflow of fluid is unlikely to be adequate to provide the outflow that would be needed to account for solute efflux. A tenet of the hypothesis is that flow sweeps solutes through the parenchyma. However, the velocity of any possible circulatory flow within the interstitium is too small compared to diffusion to provide effective solute movement. By comparison the earlier classical hypothesis describing extravascular transport proposed fluid entry into the parenchyma across the blood-brain barrier, solute movements within the parenchyma by diffusion, and solute efflux partly by diffusion near brain surfaces and partly carried by flow along "preferred routes" including perivascular spaces, white matter tracts and subependymal spaces. It did not suggest fluid entry via periarterial routes. Evidence is still incomplete concerning the routes and fate of solutes leaving the brain. A large proportion of the solutes eliminated from the parenchyma go to lymph nodes before reaching blood but the proportions delivered directly to lymph or indirectly via CSF which then enters lymph are as yet unclear. In addition, still not understood is why and how the absence of AQP4 which is normally highly expressed on glial endfeet lining periarterial and perivenous routes reduces rates of solute elimination from the parenchyma and of solute delivery to it from remote sites of injection. Neither the glymphatic hypothesis nor the earlier classical hypothesis adequately explain how solutes and fluid move into, through and out of the brain parenchyma. Features of a more complete description are discussed. All aspects of extravascular transport require further study.
Collapse
Affiliation(s)
- Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
48
|
Sadekar SS, Bowen M, Cai H, Jamalian S, Rafidi H, Shatz‐Binder W, Lafrance‐Vanasse J, Chan P, Meilandt WJ, Oldendorp A, Sreedhara A, Daugherty A, Crowell S, Wildsmith KR, Atwal J, Fuji RN, Horvath J. Translational approaches for brain delivery of biologics via cerebrospinal fluid. Clin Pharmacol Ther 2022; 111:826-834. [PMID: 35064573 PMCID: PMC9305158 DOI: 10.1002/cpt.2531] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/04/2022] [Indexed: 11/14/2022]
Abstract
Delivery of biologics via cerebrospinal fluid (CSF) has demonstrated potential to access the tissues of the central nervous system (CNS) by circumventing the blood‐brain barrier and blood‐CSF barrier. Developing an effective CSF drug delivery strategy requires optimization of multiple parameters, including choice of CSF access point, delivery device technology, and delivery kinetics to achieve effective therapeutic concentrations in the target brain region, whereas also considering the biologic modality, mechanism of action, disease indication, and patient population. This review discusses key preclinical and clinical examples of CSF delivery for different biologic modalities (antibodies, nucleic acid‐based therapeutics, and gene therapy) to the brain via CSF or CNS access routes (intracerebroventricular, intrathecal‐cisterna magna, intrathecal‐lumbar, intraparenchymal, and intranasal), including the use of novel device technologies. This review also discusses quantitative models of CSF flow that provide insight into the effect of fluid dynamics in CSF on drug delivery and CNS distribution. Such models can facilitate delivery device design and pharmacokinetic/pharmacodynamic translation from preclinical species to humans in order to optimize CSF drug delivery to brain regions of interest.
Collapse
Affiliation(s)
- Shraddha S Sadekar
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Mayumi Bowen
- Pharma Technical Development. Genentech, Inc, a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Hao Cai
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Samira Jamalian
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Hanine Rafidi
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Whitney Shatz‐Binder
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Julien Lafrance‐Vanasse
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Pamela Chan
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - William J. Meilandt
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Amy Oldendorp
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Alavattam Sreedhara
- Pharma Technical Development. Genentech, Inc, a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Ann Daugherty
- Pharma Technical Development. Genentech, Inc, a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Susan Crowell
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Kristin R. Wildsmith
- Clinical pharmacology and translational medicine Neurology business Eisai, Nutley NJ 07110 USA
| | - Jasvinder Atwal
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Reina N. Fuji
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Josh Horvath
- Pharma Technical Development. Genentech, Inc, a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| |
Collapse
|
49
|
Hanafy AS, Dietrich D, Fricker G, Lamprecht A. Blood-brain barrier models: Rationale for selection. Adv Drug Deliv Rev 2021; 176:113859. [PMID: 34246710 DOI: 10.1016/j.addr.2021.113859] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 01/21/2023]
Abstract
Brain delivery is a broad research area, the outcomes of which are far hindered by the limited permeability of the blood-brain barrier (BBB). Over the last century, research has been revealing the BBB complexity and the crosstalk between its cellular and molecular components. Pathologically, BBB alterations may precede as well as be concomitant or lead to brain diseases. To simulate the BBB and investigate options for drug delivery, several in vitro, in vivo, ex vivo, in situ and in silico models are used. Hundreds of drug delivery vehicles successfully pass preclinical trials but fail in clinical settings. Inadequate selection of BBB models is believed to remarkably impact the data reliability leading to unsatisfactory results in clinical trials. In this review, we suggest a rationale for BBB model selection with respect to the addressed research question and downstream applications. The essential considerations of an optimal BBB model are discussed.
Collapse
Affiliation(s)
- Amira Sayed Hanafy
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Dirk Dietrich
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls University, Heidelberg, Germany
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany.
| |
Collapse
|
50
|
Mair LO, Adam G, Chowdhury S, Davis A, Arifin DR, Vassoler FM, Engelhard HH, Li J, Tang X, Weinberg IN, Evans EE, Bulte JW, Cappelleri DJ. Soft Capsule Magnetic Millirobots for Region-Specific Drug Delivery in the Central Nervous System. Front Robot AI 2021; 8:702566. [PMID: 34368238 PMCID: PMC8340882 DOI: 10.3389/frobt.2021.702566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/06/2021] [Indexed: 01/03/2023] Open
Abstract
Small soft robotic systems are being explored for myriad applications in medicine. Specifically, magnetically actuated microrobots capable of remote manipulation hold significant potential for the targeted delivery of therapeutics and biologicals. Much of previous efforts on microrobotics have been dedicated to locomotion in aqueous environments and hard surfaces. However, our human bodies are made of dense biological tissues, requiring researchers to develop new microrobotics that can locomote atop tissue surfaces. Tumbling microrobots are a sub-category of these devices capable of walking on surfaces guided by rotating magnetic fields. Using microrobots to deliver payloads to specific regions of sensitive tissues is a primary goal of medical microrobots. Central nervous system (CNS) tissues are a prime candidate given their delicate structure and highly region-specific function. Here we demonstrate surface walking of soft alginate capsules capable of moving on top of a rat cortex and mouse spinal cord ex vivo, demonstrating multi-location small molecule delivery to up to six different locations on each type of tissue with high spatial specificity. The softness of alginate gel prevents injuries that may arise from friction with CNS tissues during millirobot locomotion. Development of this technology may be useful in clinical and preclinical applications such as drug delivery, neural stimulation, and diagnostic imaging.
Collapse
Affiliation(s)
- Lamar O. Mair
- Weinberg Medical Physics, Inc., North Bethesda, MD, United States
| | - Georges Adam
- Multi-Scale Robotics and Automation Lab, School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States
| | - Sagar Chowdhury
- Weinberg Medical Physics, Inc., North Bethesda, MD, United States
- Multi-Scale Robotics and Automation Lab, School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States
| | - Aaron Davis
- Multi-Scale Robotics and Automation Lab, School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States
| | - Dian R. Arifin
- Russel H. Morgan Department of Radiology and Radiological Science, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Fair M. Vassoler
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States
| | - Herbert H. Engelhard
- Affiliated Neurosurgery Corporation, Chicago, IL, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Jinxing Li
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Xinyao Tang
- Weinberg Medical Physics, Inc., North Bethesda, MD, United States
| | | | - Emily E. Evans
- Department of Physics, Elon University, Elon, NC, United States
| | - Jeff W.M. Bulte
- Russel H. Morgan Department of Radiology and Radiological Science, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Departments of Oncology, Biomedical Engineering and Chemical and Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David J. Cappelleri
- Multi-Scale Robotics and Automation Lab, School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|