1
|
Zhang Y, Wang Y, Lu Y, Quan H, Wang Y, Song S, Guo H. Advanced oral drug delivery systems for gastrointestinal targeted delivery: the design principles and foundations. J Nanobiotechnology 2025; 23:400. [PMID: 40448152 DOI: 10.1186/s12951-025-03479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 05/20/2025] [Indexed: 06/02/2025] Open
Abstract
Oral administration has long been considered the most convenient method of drug delivery, requiring minimal expertise and invasiveness. Unlike injections, it avoids discomfort, wound infections, and complications, leading to higher patient compliance. However, the effectiveness of oral delivery is often hindered by the harsh biological barriers of the gastrointestinal tract, which limit the bioaccessibility and bioavailability of drugs. The development of oral drug delivery systems (ODDSs) represents a critical area for the advancement of pharmacotherapy. This review highlights the characteristics and precise targeting mechanisms of ODDSs. It first examines the unique properties of each gastrointestinal compartment, including the stomach, small intestine, intestinal mucus, intestinal epithelial barrier, and colon. Based on these features, it outlines the targeting strategies and design principles for ODDSs aimed at overcoming gastrointestinal barriers to enhance disease treatment. Lastly, the review discusses the challenges and potential future directions for ODDS development, emphasizing their importance for advancing drug delivery technologies and accelerating their future growth.
Collapse
Affiliation(s)
- Yafei Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yiran Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yao Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Heng Quan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| | - Yuqi Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Sijia Song
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| | - Huiyuan Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China.
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
2
|
Ma WJ, Wang C, Kothandapani J, Luzentales-Simpson M, Menzies SC, Bescucci DM, Lange ME, Fraser ASC, Gusse JF, House KE, Moote PE, Xing X, Grondin JM, Hui BWQ, Clarke ST, Shelton TG, Haskey N, Gibson DL, Martens EC, Abbott DW, Inglis GD, Sly LM, Brumer H. Bespoke plant glycoconjugates for gut microbiota-mediated drug targeting. Science 2025:eadk7633. [PMID: 40310938 DOI: 10.1126/science.adk7633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/10/2024] [Accepted: 03/05/2025] [Indexed: 05/03/2025]
Abstract
The gut microbiota of mammals possess unique metabolic pathways with untapped therapeutic potential. Using molecular insights into dietary fiber metabolism by the human gut microbiota, we designed a targeted drug delivery system based on bespoke glycoconjugates of a complex plant oligosaccharide called GlycoCaging. GlycoCaging of exemplar anti-inflammatory drugs enabled release of active molecules triggered by unique glycosidases of autochthonous gut bacteria. GlycoCaging ensured drug efficacy was potentiated, and off-target effects were eliminated in murine models of inflammatory bowel disease. Biochemical and metagenomic analyses of gut microbiota of individual humans confirmed the broad applicability of this strategy.
Collapse
Affiliation(s)
- Wei Jen Ma
- Department of Pediatrics and BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Changqing Wang
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Jagatheeswaran Kothandapani
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Matthew Luzentales-Simpson
- Department of Pediatrics and BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Susan C Menzies
- Department of Pediatrics and BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Danisa M Bescucci
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Máximo E Lange
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Alexander S C Fraser
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Jenny F Gusse
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Kathaleen E House
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Paul E Moote
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Julie M Grondin
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Benjamin Wei-Qiang Hui
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Sandra T Clarke
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Tara G Shelton
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Natasha Haskey
- Department of Biology, University of British Columbia-Okanagan Campus, Kelowna, BC, Canada
| | - Deanna L Gibson
- Department of Biology, University of British Columbia-Okanagan Campus, Kelowna, BC, Canada
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - G Douglas Inglis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Laura M Sly
- Department of Pediatrics and BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Harry Brumer
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Ouyang J, den Mooter GV. Unraveling the role of pectin biodegradability and blend composition on the permeability of ethylcellulose-based blend films designed for colon targeting. Int J Pharm 2025; 675:125538. [PMID: 40187699 DOI: 10.1016/j.ijpharm.2025.125538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Polysaccharides have often been used as the biodegradable compound in coated colon specific drug delivery systems. The selection of a specific polysaccharide is critical, as they are degraded by gut bacteria, leading to the site specific release of drugs in the colon. However, it is still not completely understood how bacterial enzymes act on the polysaccharides when they are incorporated in a coating that is primarlily made up of a hydrophobic polymer. Here, we explored to what extent pectinase degrades pectin in isolated pectin-ethylcellulose blend films by studying the film permeability. Comparison of the permeability coefficient of caffeine and the amount of pectin leakage from the blend film in the presence and absence of pectinase revealed that pectinase can still degrade the pectin in the film, on the condition that the polysaccharide is not completely encapsulated by ethylcellulose. This is different from the degradation of inulin by inulinase in the blend film of inulin in Eudragit RS as shown in our previous study (Ouyang et al., 2023). Pectin can provide a transmembrane channel for drugs due to its dissolution in water and degradation by pectinase. Pectins from apples and citrus with similar esterification degrees applied in this work had basically the same effect on film permeability and can serve as interchangeable materials for colon targeting coatings. Compatibility studies revealed a phase-separated structure of pectin-ethylcellulose films. As the proportion of pectin in the film increased, the blend film changed from a discontinuous structure to a bicontinuous structure, and the film permeability increased. Combined with the film structural characterization, the results show that the proportion of the blended components and the degradation of pectin in the film by pectinase are the determining factors affecting the permeability and microstructure of pectin-ethylcellulose blend films.
Collapse
Affiliation(s)
- Jiabi Ouyang
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium
| | - Guy Van den Mooter
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium.
| |
Collapse
|
4
|
Patil R, Bule P, Chella N. Exploration of Conventional and FDM-Mediated 3D Printed Tablets Fabricated Using HME-Based Filaments for pH-Dependent Drug Delivery. AAPS PharmSciTech 2025; 26:96. [PMID: 40148671 DOI: 10.1208/s12249-025-03088-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Hot melt extrusion (HME) helps to improve the solubility of BCS class II and IV molecules. The downstream processing of the resulting filaments was crucial in developing the final dosage form. The present work investigates advantages of combining HME with fused deposition modelling (FDM) 3-Dimensional (3D) printing in delivering the naringenin to the colon to treat inflammatory bowel disease. HME filaments were made using a pH-sensitive polymer hydroxypropyl methylcellulose acetate succinate for the localized delivery of naringenin at the colonic pH. Polyethylene glycol (PEG - 4000) and Aerosil 200 were incorporated as plasticizer and flow modulator respectively, to facilitate the extrusion process. Naringenin was converted to amorphous form as confirmed by differential scanning calorimetry and powder x-ray diffraction. The optimized filament showed 0.03, 11.52 and 77.80% drug release at pH 1.2, 6.8 and 7.4 respectively. The tablets produced with the optimized filament by compression and 3D printing also confirmed the presence of naringenin in amorphous form and demonstrated pH-dependent release followed by zero-order release independent of the concentration. The dissolution profiles of FDM 3D printed (3DP) tablets with varying dimensions and infill densities suggested that both significantly influenced drug release from the tablets without altering the composition of tablets, indicating the potential application of 3D printing technology in developing personalized medicine according to patient requirements. These promising results may be valuable in evaluating the potential of naringenin in animal models, which may further facilitate clinical applications.
Collapse
Affiliation(s)
- Ruchira Patil
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Sila Village, Changsari, Kamrup District, Guwahati, Assam, India, 781101
| | - Prajakta Bule
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Sila Village, Changsari, Kamrup District, Guwahati, Assam, India, 781101
| | - Naveen Chella
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Sila Village, Changsari, Kamrup District, Guwahati, Assam, India, 781101.
| |
Collapse
|
5
|
Gkaragkounis A, Chachlioutaki K, Katsamenis OL, Alvarez-Borges F, Koltsakidis S, Partheniadis I, Bouropoulos N, Vizirianakis IS, Tzetzis D, Nikolakakis I, Verhoeven CHJ, Fatouros DG, van Bommel KJC. Spiked Systems for Colonic Drug Delivery: Architectural Opportunities and Quality Assurance of Selective Laser Sintering. ACS Biomater Sci Eng 2025; 11:1818-1833. [PMID: 39912506 PMCID: PMC11897947 DOI: 10.1021/acsbiomaterials.4c02038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
Additive manufacturing has been a breakthrough therapy for the pharmaceutical industry raising opportunities for long-quested properties, such as controlled drug-delivery. The aim of this study was to explore the geometrical capabilities of selective laser sintering (SLS) by creating spiked (tapered-edged) drug-loaded specimens for administration in colon. Poly(vinyl alcohol) (PVA) was used as the binding material and loperamide hydrochloride was incorporated as the active ingredient. Printing was feasible without the addition of a sintering agent or other additives. Innovative printing protocols were developed to help improve the quality of the obtained products. Intentional vibrations were applied on the powder bed through rapid movements of the printing platform in order to facilitate rigidity and consistency of the printed objects. The drug-loaded products had physicochemical properties that met the pharmacopoeia standards and exhibited good biocompatibility. The behavior of spiked balls (spherical objects with prominent spikes) and their retention time in the colon was assessed using a custom ex vivo intestinal setup. The spiked balls showed favorable mucoadhesive properties over the unspiked ones. No movement on the tissue was recorded for the spiked balls, and specimens with more spikes exhibited longer retention times and potentially, enhanced bioavailability. Our results suggest that SLS 3D printing is a versatile technology that holds the potential to revolutionize drug delivery systems by enabling the creation of complex geometries and medications with tunable properties.
Collapse
Affiliation(s)
- Angelos Gkaragkounis
- Laboratory
of Pharmaceutical Technology, Department of Pharmacy, School of Health
Sciences, Aristotle University of Thessaloniki, Thessaloniki GR 54124, Greece
- The
Netherlands Organization for Applied Scientific Research (TNO), Eindhoven 5656 AE, The Netherlands
| | - Konstantina Chachlioutaki
- Laboratory
of Pharmaceutical Technology, Department of Pharmacy, School of Health
Sciences, Aristotle University of Thessaloniki, Thessaloniki GR 54124, Greece
- Center
for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 54124, Greece
| | - Orestis L. Katsamenis
- μ-VIS
X-Ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
- Institute
for Life Sciences, University of Southampton, University Road, Highfield, Southampton SO17 1BJ, U.K.
| | - Fernando Alvarez-Borges
- μ-VIS
X-Ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Savvas Koltsakidis
- Digital Manufacturing
and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, Thessaloniki 57001, Greece
| | - Ioannis Partheniadis
- Laboratory
of Pharmaceutical Technology, Department of Pharmacy, School of Health
Sciences, Aristotle University of Thessaloniki, Thessaloniki GR 54124, Greece
| | - Nikolaos Bouropoulos
- Department
of Materials Science, University of Patras, Patras 26504, Rio, Greece
- Institute
of Chemical Engineering and High Temperature Chemical Processes, Foundation for Research and Technology Hellas, Patras 26504, Greece
| | - Ioannis S. Vizirianakis
- Laboratory
of Pharmacology, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki GR 54124, Greece
| | - Dimitrios Tzetzis
- Digital Manufacturing
and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, Thessaloniki 57001, Greece
| | - Ioannis Nikolakakis
- Laboratory
of Pharmaceutical Technology, Department of Pharmacy, School of Health
Sciences, Aristotle University of Thessaloniki, Thessaloniki GR 54124, Greece
| | - Chris H. J. Verhoeven
- The
Netherlands Organization for Applied Scientific Research (TNO), Eindhoven 5656 AE, The Netherlands
| | - Dimitrios G. Fatouros
- Laboratory
of Pharmaceutical Technology, Department of Pharmacy, School of Health
Sciences, Aristotle University of Thessaloniki, Thessaloniki GR 54124, Greece
- Center
for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 54124, Greece
| | - Kjeld J. C. van Bommel
- The
Netherlands Organization for Applied Scientific Research (TNO), Eindhoven 5656 AE, The Netherlands
| |
Collapse
|
6
|
Schanne G, Vincent A, Chain F, Ruffié P, Carbonne C, Quévrain E, Mathieu E, Balfourier A, Bermúdez-Humarán LG, Langella P, Thenet S, Carrière V, Hammoudi N, Svrcek M, Demignot S, Seksik P, Policar C, Delsuc N. SOD mimics delivered to the gut using lactic acid bacteria mitigate the colitis symptoms in a mouse model of inflammatory bowel diseases. Free Radic Res 2025; 59:262-273. [PMID: 40079422 DOI: 10.1080/10715762.2025.2478121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/06/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
Inflammatory bowel diseases (IBD), which include Crohn's disease and ulcerative colitis, represent a global health issue as a prevalence of 1% is expected in the western world by the end of this decade. These diseases are associated with a high oxidative stress that induces inflammatory pathways and severely damages gut tissues. IBD patients suffer from antioxidant defenses weakening, through, for instance, an impaired activity of superoxide dismutases (SOD)-that catalyze the dismutation of superoxide-or other endogenous antioxidant enzymes including catalase and glutathione peroxidase. Manganese complexes mimicking SOD activity have shown beneficial effects on cells and murine models of IBD. However, efficient SOD mimics are often manganese complexes that can suffer from decoordination and thus inactivation in acidic stomachal pH. To improve their delivery in the gut after oral administration, two SOD mimics Mn1 and Mn1C were loaded into lactic acid bacteria that serve as delivery vectors. When orally administrated to mice suffering from a colitis, these chemically modified bacteria (CMB) showed protective effects on the global health status of mice. In addition, they have shown beneficial effects on lipocalin-2 content and intestinal permeability. Interestingly, mRNA SOD2 content in colon homogenates was significantly decreased upon mice feeding with CMB loaded with Mn1C, suggesting that the beneficial effects observed may be due to the release of the SOD mimic in the gut that complement for this enzyme. These CMB represent new efficient chemically modified antioxidant probiotics for IBD treatment.
Collapse
Affiliation(s)
- Gabrielle Schanne
- Laboratoire Chimie Pysique et Chimie du Vivant, CPCV UMR8228, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
- Centre de Recherche Saint Antoine, INSERM, UMRS 938, Microbiota, Intestine and Inflammation Team, Paris, France
| | - Amandine Vincent
- Laboratoire Chimie Pysique et Chimie du Vivant, CPCV UMR8228, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Florian Chain
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Pauline Ruffié
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Célia Carbonne
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Elodie Quévrain
- Laboratoire Chimie Pysique et Chimie du Vivant, CPCV UMR8228, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
- Centre de Recherche Saint Antoine, INSERM, UMRS 938, Microbiota, Intestine and Inflammation Team, Paris, France
| | - Emilie Mathieu
- Laboratoire Chimie Pysique et Chimie du Vivant, CPCV UMR8228, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Alice Balfourier
- Laboratoire Chimie Pysique et Chimie du Vivant, CPCV UMR8228, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | | | - Philippe Langella
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Sophie Thenet
- Centre de Recherche Saint Antoine, INSERM, UMRS 938, Microbiota, Intestine and Inflammation Team, Paris, France
- EPHE, PSL University, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, Paris, France
| | - Véronique Carrière
- Centre de Recherche Saint Antoine, INSERM, UMRS 938, Microbiota, Intestine and Inflammation Team, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, Paris, France
| | - Nassim Hammoudi
- Department of Gastroenterology, Hôpital Saint-Louis, AP-HP, INSERM U1160, Paris, France
| | - Magali Svrcek
- Centre de Recherche Saint Antoine, INSERM, UMRS 938, Microbiota, Intestine and Inflammation Team, Paris, France
| | - Sylvie Demignot
- Centre de Recherche Saint Antoine, INSERM, UMRS 938, Microbiota, Intestine and Inflammation Team, Paris, France
- EPHE, PSL University, Paris, France
| | - Philippe Seksik
- Centre de Recherche Saint Antoine, INSERM, UMRS 938, Microbiota, Intestine and Inflammation Team, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, Paris, France
- Gastroenterology Department, Saint-Antoine Hospital, Sorbonne Université, APHP, Paris, France
| | - Clotilde Policar
- Laboratoire Chimie Pysique et Chimie du Vivant, CPCV UMR8228, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Nicolas Delsuc
- Laboratoire Chimie Pysique et Chimie du Vivant, CPCV UMR8228, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| |
Collapse
|
7
|
Gvozdeva Y, Staynova R. pH-Dependent Drug Delivery Systems for Ulcerative Colitis Treatment. Pharmaceutics 2025; 17:226. [PMID: 40006593 PMCID: PMC11858926 DOI: 10.3390/pharmaceutics17020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Inflammatory bowel diseases (IBDs), such as ulcerative colitis (UC) or Crohn's disease, are becoming a growing global problem due to the limitations of current treatments, which fail to address the needs of patients effectively. UC is characterized by the widespread inflammation of the mucosal lining, affecting both the rectum and the entire length of the colon. Over the past forty years, traditional treatments for IBDs have primarily relied on anti-inflammatory drugs and immunosuppressive medications. Treatment could be more effective if drugs could be specifically targeted to act directly on the colon. Conventional drug delivery systems for IBDs encounter numerous challenges on their way to the colon, such as physiological barriers and disease severity. To address these issues, pH-dependent carriers have emerged as a promising advancement, offering a more effective and tolerable treatment for UC. These carriers enable localized, targeted action, reducing side effects and preventing the premature clearance of drugs from inflamed colon tissues. pH-responsive systems are a leading approach for targeted drug release in colitis treatment as they take advantage of the varying pH levels throughout the gastrointestinal tract (GIT). By incorporating pH-sensitive polymers, they ensure drug protection and controlled release in the lower GIT. This review will discuss the advantages and limitations of pH-dependent drug delivery systems for colon-targeted drug delivery.
Collapse
Affiliation(s)
- Yana Gvozdeva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Radiana Staynova
- Department of Organisation and Economics of Pharmacy, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| |
Collapse
|
8
|
Favaron A, Abdalla Y, Basit A, Orlu M. Ai's role in colon-targeted drug delivery. Expert Opin Drug Deliv 2025. [PMID: 39921918 DOI: 10.1080/17425247.2025.2465769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/16/2025] [Accepted: 02/06/2025] [Indexed: 02/10/2025]
|
9
|
Gazzaniga A, Moutaharrik S, Cerea M, Maroni A. What is the future potential of microbially degradable systems in oral drug delivery to the colon? Expert Opin Drug Deliv 2025:1-4. [PMID: 39886915 DOI: 10.1080/17425247.2025.2462166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/26/2025] [Accepted: 01/30/2025] [Indexed: 02/01/2025]
Affiliation(s)
- Andrea Gazzaniga
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche 'Maria Edvige Sangalli', GazzaLab, Università degli Studi di Milano, Milano, Italy
| | - Saliha Moutaharrik
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche 'Maria Edvige Sangalli', GazzaLab, Università degli Studi di Milano, Milano, Italy
| | - Matteo Cerea
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche 'Maria Edvige Sangalli', GazzaLab, Università degli Studi di Milano, Milano, Italy
| | - Alessandra Maroni
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche 'Maria Edvige Sangalli', GazzaLab, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
10
|
Gökalp Y, Eti S, Dinçer H, Yüksel S. A novel approach to prioritizing health technology investments using integrated AI-based ranking model. J Health Organ Manag 2025. [PMID: 39789721 DOI: 10.1108/jhom-05-2024-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
PURPOSE Health technologies are an issue that directly affects the sustainability and quality of health services. Due to budget constraints, it is not financially possible for businesses to apply comprehensive improvement strategies to all these criteria. In this case, it is possible for businesses to implement more priority strategies. Accordingly, the main purpose of this study is to evaluate the important performance indicators of health technology investments. DESIGN/METHODOLOGY/APPROACH Firstly, with the help of the artificial intelligence system, a decision matrix is established. Secondly, spherical fuzzy total order of preference decision-making trial and evaluation laboratory methodology is taken into consideration for weighting the criteria. Thirdly, emerging seven countries are ranked by using spherical fuzzy MultiAtributive Ideal-Real Comparative Analysis (MAIRCA). FINDINGS The findings demonstrate that the criteria of health policies and research and development are defined as the most significant factor in this regard. China and Turkey are also found to be the most successful emerging countries with respect to the performance of health technology investments. ORIGINALITY/VALUE The main contribution of this study is that a novel decision-making model is generated by integrating artificial methodology into the spherical fuzzy sets.
Collapse
Affiliation(s)
- Yaşar Gökalp
- Faculty of Health Science, Istanbul Medipol University, Istanbul, Turkey
| | - Serkan Eti
- IMU Vocational School, Istanbul Medipol University, Istanbul, Turkey
| | - Hasan Dinçer
- The School of Business, Istanbul Medipol University, Istanbul, Turkey
- Research Center for Sustainable Economic Development, Khazar University, Baku, Azerbaijan
| | - Serhat Yüksel
- The School of Business, Istanbul Medipol University, Istanbul, Turkey
- Research Center for Sustainable Economic Development, Khazar University, Baku, Azerbaijan
| |
Collapse
|
11
|
Yeung C, McCoubrey LE, Basit AW. Advances in colon-targeted drug technologies. Curr Opin Gastroenterol 2025; 41:9-15. [PMID: 39633585 PMCID: PMC11623378 DOI: 10.1097/mog.0000000000001064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
PURPOSE OF REVIEW Herein, we present an overview of innovative oral technologies utilized in colonic drug delivery systems that have made significant translational and clinical advancements to treat inflammatory bowel disease (IBD) in recent years. RECENT FINDINGS The colon is home to distinct physiological conditions, such as pH and microbiota, that have been exploited in the development of colonic drug delivery systems for the treatment of local and systemic diseases. However, given the intra and interindividual variability in the gastrointestinal tract of both healthy and diseased states, various systems have shown inconsistencies in targeted drug release to the colon. Recent breakthroughs have led to systems that incorporate multiple independent trigger mechanisms, ensuring drug release even if one mechanism fails due to physiological variability. Such advanced platforms have bolstered the development of oral biologics delivery, an especially promising direction given the lack of commercially available oral antibody medications for IBD. These concepts can be further enhanced by employing 3D printing which enables the personalisation of medicines. SUMMARY Leveraging these novel technologies can accurately deliver therapeutics to the colon, allowing for treatments beyond gastrointestinal tract diseases. To realize the full potential of colonic drug delivery, it is paramount that research focuses on the clinical translatability and scalability of novel concepts.
Collapse
Affiliation(s)
| | - Laura E. McCoubrey
- University College London, School of Pharmacy, London
- Drug Product Development, GSK R&D, Ware, UK
| | | |
Collapse
|
12
|
McCoubrey LE, Shen C, Mwasambu S, Favaron A, Sangfuang N, Thomaidou S, Orlu M, Globisch D, Basit AW. Characterising and preventing the gut microbiota's inactivation of trifluridine, a colorectal cancer drug. Eur J Pharm Sci 2024; 203:106922. [PMID: 39368784 DOI: 10.1016/j.ejps.2024.106922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
The gut microbiome can metabolise hundreds of drugs, potentially affecting their bioavailability and pharmacological effect. As most gut bacteria reside in the colon, drugs that reach the colon in significant proportions may be most impacted by microbiome metabolism. In this study the anti-colorectal cancer drug trifluridine was used as a model drug for characterising metabolism by the colonic microbiota, identifying correlations between bacterial species and individuals' rates of microbiome drug inactivation, and developing strategies to prevent drug inactivation following targeted colonic delivery. High performance liquid chromatography and ultra-high performance liquid chromatography coupled with high resolution tandem mass spectrometry demonstrated trifluridine's variable and multi-route metabolism by the faecal microbiota sourced from six healthy humans. Here, four drug metabolites were linked to the microbiome for the first time. Metagenomic sequencing of the human microbiota samples revealed their composition, which facilitated prediction of individual donors' microbial trifluridine inactivation. Notably, the abundance of Clostridium perfringens strongly correlated with the extent of trifluridine inactivation by microbiota samples after 2 hours (R2 = 0.8966). Finally, several strategies were trialled for the prevention of microbial trifluridine metabolism. It was shown that uridine, a safe and well-tolerated molecule, significantly reduced the microbiota's metabolism of trifluridine by acting as a competitive enzyme inhibitor. Further, uridine was found to provide prebiotic effects. The findings in this study greatly expand knowledge on trifluridine's interactions with the gut microbiome and provide valuable insights for investigating the microbiome metabolism of other drugs. The results demonstrate how protection strategies could enhance the colonic stability of microbiome-sensitive drugs.
Collapse
Affiliation(s)
- Laura E McCoubrey
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Chenghao Shen
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Sydney Mwasambu
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University, 75124 Uppsala, Sweden
| | - Alessia Favaron
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Nannapat Sangfuang
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Stavrina Thomaidou
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Mine Orlu
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Daniel Globisch
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University, 75124 Uppsala, Sweden
| | - Abdul W Basit
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom.
| |
Collapse
|
13
|
Maryam S, Krukiewicz K. Sweeten the pill: Multi-faceted polysaccharide-based carriers for colorectal cancer treatment. Int J Biol Macromol 2024; 282:136696. [PMID: 39437958 DOI: 10.1016/j.ijbiomac.2024.136696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Colorectal cancer (CRC) ranks as the second deadliest cancer globally and the third most common malignant tumor. While surgery remains the primary treatment for CRC, alternative therapies such as chemotherapy, molecular targeted therapy, and immunotherapy are also commonly used. The significant side effects and toxicity of conventional drugs drive the search for novel targeted therapies, including the design of advanced drug delivery systems. Polysaccharide-based biopolymers, with their low toxicity, non-immunogenic behavior, synergistic interactions with other biopolymers, and tissue and cell compatibility, emerge as excellent drug carriers for this application. This review aims to provide an in-depth overview of recent advancements in developing polysaccharide-based biopolymeric carriers for anticancer compounds in the treatment of CRC. We highlight the multifunctional nature of polysaccharides, showcasing their potential as standalone drug carriers or as integral components of intelligent robotic devices for biomedical therapeutic applications. In addition to exploring the opportunities for using carbohydrate polymers in CRC treatment, we address the challenges and failures that may limit their applicability in biomedical research, as well as summarize the recent preclinical and clinical trials, resulting in several commercialization attempts. This comprehensive overview critically summarizes the potential of polysaccharide-based biomaterials in CRC treatment.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Gliwice, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Gliwice, Poland.
| |
Collapse
|
14
|
Chen K, Wang H, Yang X, Tang C, Hu G, Gao Z. Targeting gut microbiota as a therapeutic target in T2DM: A review of multi-target interactions of probiotics, prebiotics, postbiotics, and synbiotics with the intestinal barrier. Pharmacol Res 2024; 210:107483. [PMID: 39521027 DOI: 10.1016/j.phrs.2024.107483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The global epidemic of type 2 diabetes mellitus (T2DM) imposes a substantial burden on public health and healthcare expenditures, thereby driving the pursuit of cost-effective preventive and therapeutic strategies. Emerging evidence suggests a potential association between dysbiosis of gut microbiota and its metabolites with T2DM, indicating that targeted interventions aimed at modulating gut microbiota may represent a promising therapeutic approach for the management of T2DM. In this review, we concentrated on the multifaceted interactions between the gut microbiota and the intestinal barrier in the context of T2DM. We systematically summarized that the imbalance of beneficial gut microbiota and its metabolites may constitute a viable therapeutic approach for the management of T2DM. Meanwhile, the mechanisms by which gut microbiota interventions, such as probiotics, prebiotics, postbiotics, and synbiotics, synergistically improve insulin resistance in T2DM are summarized. These mechanisms include the restoration of gut microbiota structure, upregulation of intestinal epithelial cell proliferation and differentiation, enhancement of tight junction protein expression, promotion of mucin secretion by goblet cells, and the immunosuppressive functions of regulatory T cells (Treg) and M2 macrophages. Collectively, these actions contribute to the amelioration of the body's metabolic inflammatory status. Our objective is to furnish evidence that supports the clinical application of probiotics, prebiotics, and postbiotics in the management of T2DM.
Collapse
Affiliation(s)
- Keyu Chen
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Department of Endocrinology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Han Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaofei Yang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cheng Tang
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Guojie Hu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Zezheng Gao
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
15
|
Ke Z, Ma Q, Ye X, Wang Y, Jin Y, Zhao X, Su Z. Peptide GLP-1 receptor agonists: From injection to oral delivery strategies. Biochem Pharmacol 2024; 229:116471. [PMID: 39127152 DOI: 10.1016/j.bcp.2024.116471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/20/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Peptide glucagon-like peptide-1 receptor agonists (GLP-1RAs) are effective drugs for treating type 2 diabetes (T2DM) and have been proven to benefit the heart and kidney. Apart from oral semaglutide, which does not require injection, other peptide GLP-1RAs need to be subcutaneously administered. However, oral semaglutide also faces significant challenges, such as low bioavailability and frequent gastrointestinal discomfort. Thus, it is imperative that advanced oral strategies for peptide GLP-1RAs need to be explored. This review mainly compares the current advantages and disadvantages of various oral delivery strategies for peptide GLP-1RAs in the developmental stage and discusses the latest research progress of peptide GLP-1RAs, providing a useful guide for the development of new oral peptide GLP-1RA drugs.
Collapse
Affiliation(s)
- Zhiqiang Ke
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Diabetes and Angiopathy, National Demonstration Center for Experimental General Medicine Education, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Qianqian Ma
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China; School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Xiaonan Ye
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China
| | - Yanlin Wang
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China
| | - Yan Jin
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China
| | - Xinyuan Zhao
- Hubei Key Laboratory of Diabetes and Angiopathy, National Demonstration Center for Experimental General Medicine Education, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, China.
| | - Zhengding Su
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China; School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China.
| |
Collapse
|
16
|
Liu J, He C, Tan W, Zheng JH. Path to bacteriotherapy: From bacterial engineering to therapeutic perspectives. Life Sci 2024; 352:122897. [PMID: 38971366 DOI: 10.1016/j.lfs.2024.122897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The major reason for the failure of conventional therapies is the heterogeneity and complexity of tumor microenvironments (TMEs). Many malignant tumors reprogram their surface antigens to evade the immune surveillance, leading to reduced antigen-presenting cells and hindered T-cell activation. Bacteria-mediated cancer immunotherapy has been extensively investigated in recent years. Scientists have ingeniously modified bacteria using synthetic biology and nanotechnology to enhance their biosafety with high tumor specificity, resulting in robust anticancer immune responses. To enhance the antitumor efficacy, therapeutic proteins, cytokines, nanoparticles, and chemotherapeutic drugs have been efficiently delivered using engineered bacteria. This review provides a comprehensive understanding of oncolytic bacterial therapies, covering bacterial design and the intricate interactions within TMEs. Additionally, it offers an in-depth comparison of the current techniques used for bacterial modification, both internally and externally, to maximize their therapeutic effectiveness. Finally, we outlined the challenges and opportunities ahead in the clinical application of oncolytic bacterial therapies.
Collapse
Affiliation(s)
- Jinling Liu
- The Affiliated Xiangtan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, China; College of Biology, Hunan University, Changsha 410082, China
| | - Chongsheng He
- College of Biology, Hunan University, Changsha 410082, China
| | - Wenzhi Tan
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China.
| | - Jin Hai Zheng
- The Affiliated Xiangtan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, China.
| |
Collapse
|
17
|
Abdalla Y, McCoubrey LE, Ferraro F, Sonnleitner LM, Guinet Y, Siepmann F, Hédoux A, Siepmann J, Basit AW, Orlu M, Shorthouse D. Machine learning of Raman spectra predicts drug release from polysaccharide coatings for targeted colonic delivery. J Control Release 2024; 374:103-111. [PMID: 39127449 DOI: 10.1016/j.jconrel.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Colonic drug delivery offers numerous pharmaceutical opportunities, including direct access to local therapeutic targets and drug bioavailability benefits arising from the colonic epithelium's reduced abundance of cytochrome P450 enzymes and particular efflux transporters. Current workflows for developing colonic drug delivery systems involve time-consuming, low throughput in vitro and in vivo screening methods, which hinder the identification of suitable enabling materials. Polysaccharides are useful materials for colonic targeting, as they can be utilised as dosage form coatings that are selectively digested by the colonic microbiota. However, polysaccharides are a heterogeneous family of molecules with varying suitability for this purpose. To address the need for high-throughput material selection tools for colonic drug delivery, we leveraged machine learning (ML) and publicly accessible experimental data to predict the release of the drug 5-aminosalicylic acid from polysaccharide-based coatings in simulated human, rat, and dog colonic environments. For the first time, Raman spectra alone were used to characterise polysaccharides for input as ML features. Models were validated on 8 unseen drug release profiles from new polysaccharide coatings, demonstrating the generalisability and reliability of the method. Further, model analysis facilitated an understanding of the chemical features that influence a polysaccharide's suitability for colonic drug delivery. This work represents a major step in employing spectral data for forecasting drug release from pharmaceutical formulations and marks a significant advancement in the field of colonic drug delivery. It offers a powerful tool for the efficient, sustainable, and successful development and pre-ranking of colon-targeted formulation coatings, paving the way for future more effective and targeted drug delivery strategies.
Collapse
Affiliation(s)
- Youssef Abdalla
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Laura E McCoubrey
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Fabiana Ferraro
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | | | - Yannick Guinet
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | | | - Alain Hédoux
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | | | - Abdul W Basit
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Mine Orlu
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - David Shorthouse
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
18
|
Gong T, Liu X, Wang X, Lu Y, Wang X. Applications of polysaccharides in enzyme-triggered oral colon-specific drug delivery systems: A review. Int J Biol Macromol 2024; 275:133623. [PMID: 38969037 DOI: 10.1016/j.ijbiomac.2024.133623] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Enzyme-triggered oral colon-specific drug delivery system (EtOCDDS1) can withstand the harsh stomach and small intestine environments, releasing encapsulated drugs selectively in the colon in response to colonic microflora, exerting local or systematic therapeutic effects. EtOCDDS boasts high colon targetability, enhanced drug bioavailability, and reduced systemic side effects. Polysaccharides are extensively used in enzyme-triggered oral colon-specific drug delivery systems, and its colon targetability has been widely confirmed, as their properties meet the demand of EtOCDDS. Polysaccharides, known for their high safety and excellent biocompatibility, feature modifiable structures. Some remain undigested in the stomach and small intestine, whether in their natural state or after modifications, and are exclusively broken down by colon-resident microbiota. Such characteristics make them ideal materials for EtOCDDS. This article reviews the design principles of EtOCDDS as well as commonly used polysaccharides and their characteristics, modifications, applications and specific mechanism for colon targeting. The article concludes by summarizing the limitations and potential of ETOCDDS to stimulate the development of innovative design approaches.
Collapse
Affiliation(s)
- Tingting Gong
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xinxin Liu
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xi Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Yunqian Lu
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
19
|
Doggwiler V, Lanz M, Lipps G, Imanidis G. Mechanistic Investigation of Enzyme Triggered Release from a Xyloglucan Matrix Tablet for Controlled Colonic Drug Delivery. J Pharm Sci 2024; 113:2524-2541. [PMID: 38796155 DOI: 10.1016/j.xphs.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/28/2024]
Abstract
The objective of this study was to investigate the mechanisms underlying drug release from a controlled colonic release (CCR) tablet formulation based on a xyloglucan polysaccharide matrix and identify the factors that control the rate of release for the purpose of fundamentally substantiating the concept and demonstrating its robustness for colonic drug delivery. Previous work demonstrated in vitro limited release of 5-aminosalicylic acid (5-ASA) and caffeine from these tablets in small intestinal environment and significant acceleration of release by xyloglucanase, an enzyme of the colonic microbiome. Targeted colonic drug delivery was verified in an animal study in vivo. In the present work, interaction of the xyloglucan matrix tablets with aqueous dissolution media containing xyloglucanase was found to lead to the spontaneous formation of a hydrated highly viscous gummy layer at the surface of the matrix which had a reduced drug content compared to the underlying regions and persisted with a nearly constant thickness that was inversely correlated to the enzyme concentration throughout the duration of the release process. Enzymatic hydrolysis of xyloglucan was determined to take place at the surface of the matrix leading to matrix erosion and a relation for the rate of enzymatic reaction as a function of bulk enzyme concentration and the concentration of dissolved xyloglucan in the gummy layer was derived. A mathematical model was developed encompassing aqueous medium ingress, matrix metamorphosis due to xyloglucan dissolution and matrix swelling, enzymatic hydrolysis of the polysaccharide and concomitant drug release due to matrix erosion and simultaneous drug diffusion. The model was fitted to data of reducing sugar equivalents in the medium reflecting matrix erosion and released drug amount. Enzymatic reaction parameters and reasonable values of medium ingress velocity, xyloglucan dissolution rate constant and drug diffusion coefficient were deduced that provided an adequate approximation of the data. Erosion was shown to be the overwhelmingly dominant drug release mechanism while the role of diffusion marginally increased at low enzyme concentration and high drug solubility. Changing enzyme concentration had a rather weak effect on matrix erosion and drug release rate as demonstrated by model simulations supported by experimental data, while xyloglucan dissolution was slow and had a stronger effect on the rate of the process. Therefore, reproducible colonic drug delivery not critically influenced by inter- and intra-individual variation of microbial enzyme activity may be projected.
Collapse
Affiliation(s)
- Viviane Doggwiler
- School of Life Sciences, University of Applied Sciences Northwest Switzerland, Hofackerstrasse 30, 4132 Muttenz, Switzerland; Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Michael Lanz
- School of Life Sciences, University of Applied Sciences Northwest Switzerland, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | - Georg Lipps
- School of Life Sciences, University of Applied Sciences Northwest Switzerland, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | - Georgios Imanidis
- School of Life Sciences, University of Applied Sciences Northwest Switzerland, Hofackerstrasse 30, 4132 Muttenz, Switzerland; Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
20
|
Zheng B, Wang L, Yi Y, Yin J, Liang A. Design strategies, advances and future perspectives of colon-targeted delivery systems for the treatment of inflammatory bowel disease. Asian J Pharm Sci 2024; 19:100943. [PMID: 39246510 PMCID: PMC11375318 DOI: 10.1016/j.ajps.2024.100943] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 09/10/2024] Open
Abstract
Inflammatory bowel diseases (IBD) significantly contribute to high mortality globally and negatively affect patients' qualifications of life. The gastrointestinal tract has unique anatomical characteristics and physiological environment limitations. Moreover, certain natural or synthetic anti-inflammatory drugs are associated with poor targeting, low drug accumulation at the lesion site, and other side effects, hindering them from exerting their therapeutic effects. Colon-targeted drug delivery systems represent attractive alternatives as novel carriers for IBD treatment. This review mainly discusses the treatment status of IBD, obstacles to drug delivery, design strategies of colon-targeted delivery systems, and perspectives on the existing complementary therapies. Moreover, based on recent reports, we summarized the therapeutic mechanism of colon-targeted drug delivery. Finally, we addressed the challenges and future directions to facilitate the exploitation of advanced nanomedicine for IBD therapy.
Collapse
Affiliation(s)
- Baoxin Zheng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liping Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Yi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jun Yin
- School of Traditional Chinese Material, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Aihua Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
21
|
Huang L, Hu W, Huang LQ, Zhou QX, Song ZY, Tao HY, Xu B, Zhang CY, Wang Y, Xing XH. "Two-birds-one-stone" oral nanotherapeutic designed to target intestinal integrins and regulate redox homeostasis for UC treatment. SCIENCE ADVANCES 2024; 10:eado7438. [PMID: 39047093 PMCID: PMC11268407 DOI: 10.1126/sciadv.ado7438] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Designing highly efficient orally administrated nanotherapeutics with specific inflammatory site-targeting functions in the gastrointestinal tract for ulcerative colitis (UC) management is a noteworthy challenge. Here, we focused on exploring a specific targeting oral nanotherapy, serving as "one stone," for the directed localization of inflammation and the regulation of redox homeostasis, thereby achieving effects against "two birds" for UC treatment. Our designed nanotherapeutic agent OPNs@LMWH (oxidation-sensitive ε-polylysine nanoparticles at low-molecular weight heparin) exhibited specific active targeting effects and therapeutic efficacy simultaneously. Our results indicate that OPNs@LMWH had high integrin αM-mediated immune cellular uptake efficiency and preferentially accumulated in inflamed tissues. We also confirmed its effectiveness in the treatment experiment of colitis in mice by ameliorating oxidative stress and inhibiting the activation of inflammation-associated signaling pathways while simultaneously bolstering the protective mechanisms of the colonic epithelium. Overall, these findings underscore the compelling dual functionalities of OPNs@LMWH, which enable effective oral delivery to inflamed sites, thereby facilitating precise UC management.
Collapse
Affiliation(s)
- Long Huang
- Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Wei Hu
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Long Qun Huang
- Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qin Xuan Zhou
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zheng Yang Song
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Heng Yu Tao
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bing Xu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Can Yang Zhang
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yi Wang
- Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xin-Hui Xing
- Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518118, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Fu H, Zheng X, Xu K, Zhang Y, Wu M, Xu M. Self-assembled nanoparticles of costunolide and glycyrrhizic acid for enhanced ulcerative colitis treatment. BMC Gastroenterol 2024; 24:223. [PMID: 38992591 PMCID: PMC11241987 DOI: 10.1186/s12876-024-03313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Ulcerative colitis (UC) is a persistent inflammatory condition that specifically targets the colon and rectum. Existing therapies fail to adequately address the clinical requirements of people suffering from this ailment. Despite the acknowledged potential of nanomedicines in the field of anti-inflammatory treatment, their widespread use in clinical settings is impeded by their expensive nature and the uncertainty surrounding their safety profiles. This study illustrates that two naturally occurring phytochemicals, Costunolide (COS) and Glycyrrhizic acid (GA), form carrier-free, multifunctional spherical nanoparticles (NPs) through noncovalent interactions, such as π-π stacking and hydrogen bonding. The COS-GA NPs displayed a synergistic anti-inflammatory effect, providing much more evidently improved therapeutic benefits for dextran sodium sulfate (DSS)-induced UC mice due to more effective reduction in inflammation and oxidative stress than did equal dosages of COS or GA used alone. In addition, COS-GA NPs have biocompatibility and biosafety properties unique to them. This study will serve as affirmation of the potential of COS-GA NPs as innovative natural anti-inflammatory and antioxidant activities and also such agents as drug discovery in UC, leading possibly to better outcomes in people living with this disabling condition.
Collapse
Affiliation(s)
- Hao Fu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiao Zheng
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Xu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuge Zhang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengxia Wu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Xu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
23
|
Deljavan Ghodrati A, Comoglu T. An overview on recent approaches for colonic drug delivery systems. Pharm Dev Technol 2024; 29:566-581. [PMID: 38813948 DOI: 10.1080/10837450.2024.2362353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
Colon-targeted drug delivery systems have garnered significant interest as potential solutions for delivering various medications susceptible to acidic and catalytic degradation in the gastrointestinal (GI) tract or as a means of treating colonic diseases naturally with fewer overall side effects. The increasing demand for patient-friendly drug administration underscores the importance of colonic drug delivery, particularly through noninvasive methods like nanoparticulate drug delivery technologies. Such systems offer improved patient compliance, cost reduction, and therapeutic advantages. This study places particular emphasis on formulations and discusses recent advancements in various methods for designing colon-targeted drug delivery systems and their medicinal applications.
Collapse
Affiliation(s)
- Aylin Deljavan Ghodrati
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Tansel Comoglu
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
| |
Collapse
|
24
|
Li Y, Lu SM, Wang JL, Yao HP, Liang LG. Progress in SARS-CoV-2, diagnostic and clinical treatment of COVID-19. Heliyon 2024; 10:e33179. [PMID: 39021908 PMCID: PMC11253070 DOI: 10.1016/j.heliyon.2024.e33179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024] Open
Abstract
Background Corona Virus Disease 2019(COVID-19)is a global pandemic novel coronavirus infection disease caused by Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Although rapid, large-scale testing plays an important role in patient management and slowing the spread of the disease. However, there has been no good and widely used drug treatment for infection and transmission of SARS-CoV-2. Key findings Therefore, this review updates the body of knowledge on viral structure, infection routes, detection methods, and clinical treatment, with the aim of responding to the large-section caused by SARS-CoV-2. This paper focuses on the structure of SARS-CoV-2 viral protease, RNA polymerase, serine protease and main proteinase-like protease as well as targeted antiviral drugs. Conclusion In vitro or clinical trials have been carried out to provide deeper thinking for the pathogenesis, clinical diagnosis, vaccine development and treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Si-Ming Lu
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Clinical in Vitro Diagnostic Techniques, Hangzhou, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| | - Jia-Long Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li-Guo Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Centre for Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
25
|
Jiang L, Li J, Yang R, Chen S, Wu Y, Jin Y, Wang J, Weng Q, Wang J. Effect of hydrogel drug delivery system for treating ulcerative colitis: A preclinical meta-analysis. Int J Pharm 2024; 659:124281. [PMID: 38802026 DOI: 10.1016/j.ijpharm.2024.124281] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Hydrogel drug delivery systems (DDSs) for treating ulcerative colitis (UC) have garnered attention. However, there is a lack of meta-analysis summarizing their effectiveness. Therefore, this study aimed to conduct a meta-analysis of pre-clinical evidence comparing hydrogel DDSs with free drug administration. Subgroup analyses were performed based on hydrogel materials (polysaccharide versus non-polysaccharide) and administration routes of the hydrogel DDSs (rectal versus oral). The outcome indicators included colon length, histological scores, tumor necrosis factor-α (TNF-α), zonula occludens protein 1(ZO-1), and area under the curve (AUC). The results confirmed the therapeutic enhancement of the hydrogel DDSs for UC compared with the free drug group. Notably, no significant differences were found between polysaccharide and non-polysaccharide materials, however, oral administration was found superior regarding TNF-α and AUC. In conclusion, oral hydrogel DDSs can serve as potential excellent dosage forms in oral colon -targeting DDSs, and in the design of colon hydrogel delivery systems, polysaccharides do not show advantages compared with other materials.
Collapse
Affiliation(s)
- Lan Jiang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China; Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China
| | - Jia Li
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Runkun Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Shunpeng Chen
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Yongjun Wu
- Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China; State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Yuanyuan Jin
- Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China; Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; ZJU-Xinchang Joint Innovation Center (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang 312500, China.
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China; Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China; Beijing Life Science Academy, Beijing 102200, China.
| |
Collapse
|
26
|
Kumar A, Vaiphei KK, Singh N, Datta Chigurupati SP, Paliwal SR, Paliwal R, Gulbake A. Nanomedicine for colon-targeted drug delivery: strategies focusing on inflammatory bowel disease and colon cancer. Nanomedicine (Lond) 2024; 19:1347-1368. [PMID: 39105753 PMCID: PMC11318742 DOI: 10.1080/17435889.2024.2350356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/29/2024] [Indexed: 08/07/2024] Open
Abstract
The nanostructured drug-delivery systems for colon-targeted drug delivery are a promising field of research for localized diseases particularly influencing the colonic region, in other words, ulcerative colitis, Crohn's disease, and colorectal cancer. There are various drug-delivery approaches designed for effective colonic disease treatment, including stimulus-based formulations (enzyme-triggered systems, pH-sensitive systems) and magnetically driven drug-delivery systems. In addition, targeted drug delivery by means of overexpressed receptors also offers site specificity and reduces drug resistance. It also covers GI tract-triggered emulsifying systems, nontoxic plant-derived nanoformulations as advanced drug-delivery techniques as well as nanotechnology-based clinical trials toward colonic diseases. This review gives insight into advancements in colon-targeted drug delivery to meet site specificity or targeted drug-delivery requirements.
Collapse
Affiliation(s)
- Ankaj Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Assam, 781101, India
| | - Klaudi K Vaiphei
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Assam, 781101, India
| | - Naveen Singh
- Nanomedicine & Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Sri Pada Datta Chigurupati
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Assam, 781101, India
| | - Shivani Rai Paliwal
- Department of Pharmacy, Guru Ghasidas Vishwavidhyalaya (A Central University), Koni Bilaspur, Chhattisgarh, 495009, India
| | - Rishi Paliwal
- Nanomedicine & Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Arvind Gulbake
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Assam, 781101, India
| |
Collapse
|
27
|
Manna S, Karmakar S, Sen O, Sinha P, Jana S, Jana S. Recent updates on guar gum derivatives in colon specific drug delivery. Carbohydr Polym 2024; 334:122009. [PMID: 38553200 DOI: 10.1016/j.carbpol.2024.122009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Colon specific delivery of therapeutics have gained much attention of pharmaceutical researchers in the recent past. Colonic specific targeting of drugs is used not only for facilitating absorption of protein or peptide drugs, but also localization of therapeutic agents in colon to treat several colonic disorders. Among various biopolymers, guar gum (GG) exhibits pH dependent swelling, which allows colon specific release of drug. GG also shows microbial degradation in the colonic environment which makes it a suitable excipient for developing colon specific drug delivery systems. The uncontrolled swelling and hydration of GG can be controlled by structural modification or by grafting with another polymeric moiety. Several graft copolymerized guar gum derivatives are investigated for colon targeting of drugs. The efficacy of various guar gum derivatives are evaluated for colon specific delivery of drugs. The reviewed literature evidenced the potentiality of guar gum in localizing drugs in the colonic environment. This review focuses on the synthesis of several guar gum derivatives and their application in developing various colon specific drug delivery systems including matrix tablets, coated formulations, nano or microparticulate delivery systems and hydrogels.
Collapse
Affiliation(s)
- Sreejan Manna
- Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata, West Bengal 700125, India
| | - Sandip Karmakar
- Department of Pharmacy, Sanaka Educational Trust's Group of Institutions, Durgapur, West Bengal 713212, India
| | - Olivia Sen
- Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata, West Bengal 700125, India
| | - Puspita Sinha
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Subrata Jana
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Sougata Jana
- Department of Health and Family Welfare, Directorate of Health Services, Kolkata-700091, West Bengal, India.
| |
Collapse
|
28
|
D'Amico V, Lopalco A, Iacobazzi RM, Vacca M, Siragusa S, De Angelis M, Lopedota AA, Denora N. Multistimuli responsive microcapsules produced by the prilling/vibration technique for targeted colonic delivery of probiotics. Int J Pharm 2024; 658:124223. [PMID: 38744413 DOI: 10.1016/j.ijpharm.2024.124223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
This study aimed to microencapsulate the probiotic strain Lactiplantibacillus plantarum 4S6R (basonym Lactobacillus plantarum) in both microcapsules and microspheres by prilling/vibration technique. A specific polymeric mixture, selected for its responsiveness to parallel colonic stimuli, was individuated as a carrier of microparticles. Although the microspheres were consistent with some critical quality parameters, they showed a low encapsulation efficiency and were discarded. The microcapsules produced demonstrated high yields (97.52%) and encapsulation efficiencies (90.06%), with dimensional analysis and SEM studies confirming the desired size morphology and structure. The results of thermal stress tests indicate the ability of the microcapsules to protect the probiotic. Stability studies showed a significant advantage of the microcapsules over non-encapsulated probiotics, with greater stability over time. The release study under simulated gastrointestinal conditions demonstrated the ability of the microcapsules to protect the probiotics from gastric acid and bile salts, ensuring their viability. Examination in a simulated faecal medium revealed the ability of the microcapsules to release the bacteria into the colon, enhancing their beneficial impact on gut health. This research suggests that the selected mixture of reactive polymers holds promise for improving the survival and efficacy of probiotics in the gastrointestinal tract, paving the way for the development of advanced probiotic products.
Collapse
Affiliation(s)
- Vita D'Amico
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 4, E. Orabona Street, 70125 Bari, Italy
| | - Antonio Lopalco
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 4, E. Orabona Street, 70125 Bari, Italy
| | - Rosa Maria Iacobazzi
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 4, E. Orabona Street, 70125 Bari, Italy
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", 165/A, G. Amendola Street, 70126 Bari, Italy
| | - Sonya Siragusa
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", 165/A, G. Amendola Street, 70126 Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", 165/A, G. Amendola Street, 70126 Bari, Italy
| | - Angela Assunta Lopedota
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 4, E. Orabona Street, 70125 Bari, Italy.
| | - Nunzio Denora
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 4, E. Orabona Street, 70125 Bari, Italy
| |
Collapse
|
29
|
Ferraro F, Sonnleitner L, Neut C, Mahieux S, Verin J, Siepmann J, Siepmann F. Colon targeting in rats, dogs and IBD patients with species-independent film coatings. Int J Pharm X 2024; 7:100233. [PMID: 38379554 PMCID: PMC10876578 DOI: 10.1016/j.ijpx.2024.100233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Polysaccharides were identified, which allow for colon targeting in human Inflammatory Bowel Disease (IBD) patients, as well as in rats and dogs (which are frequently used as animals in preclinical studies). The polysaccharides are degraded by colonic enzymes (secreted by bacteria), triggering the onset of drug release at the target site. It has to be pointed out that the microbiota in rats, dogs and humans substantially differ. Thus, the performance of this type of colon targeting system observed in animals might not be predictive for patients. The aim of this study was to limit this risk. Different polysaccharides were exposed to culture medium inoculated with fecal samples from IBD patients, healthy dogs and "IBD rats" (in which colonic inflammation was induced). Dynamic changes in the pH of the culture medium were used as an indicator for the proliferation of the bacteria and, thus, the potential of the polysaccharides to serve as their substrate. Fundamental differences were observed with respect to the extent of the pH variations as well as their species-dependency. The most promising polysaccharides were used to prepare polymeric film coatings surrounding 5-aminosaliciylic acid (5-ASA)-loaded starter cores. To limit premature polysaccharide dissolution/swelling in the upper gastro intestinal tract, ethylcellulose was also included in the film coatings. Drug release was monitored upon exposure to culture medium inoculated with fecal samples from IBD patients, healthy dogs and "IBD rats". For reasons of comparison, also 5-ASA release in pure culture medium was measured. Most film coatings showed highly species-dependent drug release kinetics or limited colon targeting capacity. Interestingly, extracts from aloe vera and reishi (a mushroom) showed a promising potential for colon targeting in all species.
Collapse
Affiliation(s)
- F. Ferraro
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | | | - C. Neut
- Univ. Lille, Inserm, CHU Lille, U1286, F-59000 Lille, France
| | - S. Mahieux
- Univ. Lille, Inserm, CHU Lille, U1286, F-59000 Lille, France
| | - J. Verin
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - J. Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - F. Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| |
Collapse
|
30
|
Erbay IH, Alexiadis A, Rochev Y. Computational insights into colonic motility: Mechanical role of mucus in homeostasis and inflammation. Comput Biol Med 2024; 176:108540. [PMID: 38728996 DOI: 10.1016/j.compbiomed.2024.108540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024]
Abstract
Colonic motility plays a vital role in maintaining proper digestive function. The rhythmic contractions and relaxations facilitate various types of motor functions that generate both propulsive and non-propulsive motility modes which in turn generate shear stresses on the epithelial surface. However, the interplay between colonic mucus, shear stress, and epithelium remains poorly characterized. Here, we present a colonic computational model that describes the potential roles of mucus and shear stress in both homeostasis and ulcerative colitis (UC). Our model integrates several key features, including the properties of the mucus bilayer and faeces, intraluminal pressure, and crypt characteristics to predict the time-space mosaic of shear stress. We show that the mucus thickness which could vary based on the severity of UC, may significantly reduce the amount of shear stress applied to the colonic crypts and effect faecal velocity. Our model also reveals an important spatial shear stress variance in homeostatic colonic crypts that suggests shear stress may have a modulatory role in epithelial cell migration, differentiation, apoptosis, and immune surveillance. Together, our study uncovers the rather neglected roles of mucus and shear stress in intestinal cellular processes during homeostasis and inflammation.
Collapse
Affiliation(s)
- I H Erbay
- School of Physics, University of Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - A Alexiadis
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Y Rochev
- School of Physics, University of Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
31
|
McCoubrey LE, Seegobin N, Sangfuang N, Moens F, Duyvejonck H, Declerck E, Dierick A, Marzorati M, Basit AW. The colon targeting efficacies of mesalazine medications and their impacts on the gut microbiome. J Control Release 2024; 369:630-641. [PMID: 38599548 DOI: 10.1016/j.jconrel.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Successful treatment of ulcerative colitis (UC) is highly dependent on several parameters, including dosing regimen and the ability to deliver drugs to the disease site. In this study two strategies for delivering mesalazine (5-aminosalicylic acid, 5-ASA) to the colon were compared in an advanced in vitro model of the human gastrointestinal (GI) tract, the SHIME® system. Herein, a prodrug strategy employing bacteria-mediated drug release (sulfasalazine, Azulfidine®) was evaluated alongside a formulation strategy that utilised pH and bacteria-mediated release (5-ASA, Octasa® 1600 mg). SHIME® experiments were performed simulating both the GI physiology and colonic microbiota under healthy and inflammatory bowel disease (IBD) conditions, to study the impact of the disease state and ileal pH variability on colonic 5-ASA delivery. In addition, the effects of the products on the colonic microbiome were investigated by monitoring bacterial growth and metabolites. Results demonstrated that both the prodrug and formulation approaches resulted in a similar percentage of 5-ASA recovery under healthy conditions. On the contrary, during experiments simulating the GI physiology and microbiome of IBD patients (the target population) the formulation strategy resulted in a higher proportion of 5-ASA delivery to the colonic region as compared to the prodrug approach (P < 0.0001). Interestingly, the two products had distinct effects on the synthesis of key bacterial metabolites, such as lactate and short chain fatty acids, which varied according to disease state and ileal pH variability. Further, both 5-ASA and sulfasalazine significantly reduced the growth of the faecal microbiota sourced from six healthy humans. The findings support that the approach selected for colonic drug delivery could significantly influence the effectiveness of UC treatment, and highlight that drugs licensed for UC may differentially impact the growth and functioning of the colonic microbiota.
Collapse
Affiliation(s)
| | - Nidhi Seegobin
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | | - Frédéric Moens
- ProDigest BV, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium
| | - Hans Duyvejonck
- ProDigest BV, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium
| | - Eline Declerck
- ProDigest BV, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium
| | - Arno Dierick
- ProDigest BV, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium
| | - Massimo Marzorati
- ProDigest BV, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium; CMET (University of Ghent), Coupure Links 653, 9000 Ghent, Belgium
| | - Abdul W Basit
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
32
|
Moutaharrik S, Palugan L, Cerea M, Meroni G, Casagni E, Roda G, Martino PA, Gazzaniga A, Maroni A, Foppoli A. Colon Drug Delivery Systems Based on Swellable and Microbially Degradable High-Methoxyl Pectin: Coating Process and In Vitro Performance. Pharmaceutics 2024; 16:508. [PMID: 38675167 PMCID: PMC11054370 DOI: 10.3390/pharmaceutics16040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Oral colon delivery systems based on a dual targeting strategy, harnessing time- and microbiota-dependent release mechanisms, were designed in the form of a drug-containing core, a swellable/biodegradable polysaccharide inner layer and a gastroresistant outer film. High-methoxyl pectin was employed as the functional coating polymer and was applied by spray-coating or powder-layering. Stratification of pectin powder required the use of low-viscosity hydroxypropyl methylcellulose in water solution as the binder. These coatings exhibited rough surfaces and higher thicknesses than the spray-coated ones. Using a finer powder fraction improved the process outcome, coating quality and inherent barrier properties in aqueous fluids. Pulsatile release profiles and reproducible lag phases of the pursued duration were obtained from systems manufactured by both techniques. This performance was confirmed by double-coated systems, provided with a Kollicoat® MAE outer film that yielded resistance in the acidic stage of the test. Moreover, HM pectin-based coatings manufactured by powder-layering, tested in the presence of bacteria from a Crohn's disease patient, showed earlier release, supporting the role of microbial degradation as a triggering mechanism at the target site. The overall results highlighted viable coating options and in vitro release characteristics, sparking new interest in naturally occurring pectin as a coating agent for oral colon delivery.
Collapse
Affiliation(s)
- Saliha Moutaharrik
- Department of Pharmaceutical Sciences, Section of Pharmaceutical Technology and Legislation “M.E. Sangalli”, University of Milan, Via G. Colombo 71, 20133 Milan, Italy
| | - Luca Palugan
- Department of Pharmaceutical Sciences, Section of Pharmaceutical Technology and Legislation “M.E. Sangalli”, University of Milan, Via G. Colombo 71, 20133 Milan, Italy
| | - Matteo Cerea
- Department of Pharmaceutical Sciences, Section of Pharmaceutical Technology and Legislation “M.E. Sangalli”, University of Milan, Via G. Colombo 71, 20133 Milan, Italy
| | - Gabriele Meroni
- Department of Biomedical, Surgical and Dental Sciences, One Health Unit, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Eleonora Casagni
- Department of Pharmaceutical Sciences, Section of Medicinal Chemistry “P. Pratesi”, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| | - Gabriella Roda
- Department of Pharmaceutical Sciences, Section of Medicinal Chemistry “P. Pratesi”, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| | - Piera Anna Martino
- Department of Biomedical, Surgical and Dental Sciences, One Health Unit, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Andrea Gazzaniga
- Department of Pharmaceutical Sciences, Section of Pharmaceutical Technology and Legislation “M.E. Sangalli”, University of Milan, Via G. Colombo 71, 20133 Milan, Italy
| | - Alessandra Maroni
- Department of Pharmaceutical Sciences, Section of Pharmaceutical Technology and Legislation “M.E. Sangalli”, University of Milan, Via G. Colombo 71, 20133 Milan, Italy
| | - Anastasia Foppoli
- Department of Pharmaceutical Sciences, Section of Pharmaceutical Technology and Legislation “M.E. Sangalli”, University of Milan, Via G. Colombo 71, 20133 Milan, Italy
| |
Collapse
|
33
|
Abdollahy A, Salehi M, Mahami S, Bernkop-Schnürch A, Vahedi H, Gharravi AM, Mehrabi M. Therapeutic effect of 5-ASA and hesperidin-loaded chitosan/Eudragit® S100 nanoparticles as a pH-sensitive carrier for local targeted drug delivery in a rat model of ulcerative colitis. Int J Pharm 2024; 652:123838. [PMID: 38266937 DOI: 10.1016/j.ijpharm.2024.123838] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/20/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Ulcerative colitis (UC) is an idiopathic disease characterized by colonic mucosal tissue destruction secondary to an excessive immune response. We synthesized pH-sensitive cross-linked chitosan/Eudragit® S100 nanoparticles (EU S100/CS NPs) as carriers for 5-aminosalicylic acid (5-ASA) and hesperidin (HSP), then conducted in-vitro and in-vivo studies and evaluated the therapeutic effects. In-vitro analysis revealed that the 5-ASA-loaded EU S100/CS NPs and the HSP-loaded EU S100/CS NPs had smooth and curved surfaces and ranged in size between 250 and 300 nm, with a zeta potential of 32 to 34 mV. FTIR analysis demonstrated that the drugs were loaded on the nanoparticles without significant alterations. The loading capacity and encapsulation efficiency of loading 5-ASA onto EU S100/CS NPs were 25.13 % and 60.81 %, respectively. Regarding HSP, these values were 38.34 % and 77.84 %, respectively. Drug release did not occur in simulated gastric fluid (SGF), while a slow-release pattern was recorded for both drugs in simulated intestinal fluid (SIF). In-vivo macroscopic and histopathological examinations revealed that both NPs containing drugs significantly relieved the symptoms of acetic acid (AA)-induced UC in Wistar rats. We conclude that the synthesized pH-sensitive 5-ASA/EU S100/CS NPs and HSP/EU S100/CS NPs offer promise in treating UC.
Collapse
Affiliation(s)
- Armana Abdollahy
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Solmaz Mahami
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Hamid Vahedi
- Clinical Research Development Unit, Imam Hossein Hospital, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Gastroenterology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Anneh Mohammad Gharravi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
34
|
Carou-Senra P, Rodríguez-Pombo L, Awad A, Basit AW, Alvarez-Lorenzo C, Goyanes A. Inkjet Printing of Pharmaceuticals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309164. [PMID: 37946604 DOI: 10.1002/adma.202309164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Inkjet printing (IJP) is an additive manufacturing process that selectively deposits ink materials, layer-by-layer, to create 3D objects or 2D patterns with precise control over their structure and composition. This technology has emerged as an attractive and versatile approach to address the ever-evolving demands of personalized medicine in the healthcare industry. Although originally developed for nonhealthcare applications, IJP harnesses the potential of pharma-inks, which are meticulously formulated inks containing drugs and pharmaceutical excipients. Delving into the formulation and components of pharma-inks, the key to precise and adaptable material deposition enabled by IJP is unraveled. The review extends its focus to substrate materials, including paper, films, foams, lenses, and 3D-printed materials, showcasing their diverse advantages, while exploring a wide spectrum of therapeutic applications. Additionally, the potential benefits of hardware and software improvements, along with artificial intelligence integration, are discussed to enhance IJP's precision and efficiency. Embracing these advancements, IJP holds immense potential to reshape traditional medicine manufacturing processes, ushering in an era of medical precision. However, further exploration and optimization are needed to fully utilize IJP's healthcare capabilities. As researchers push the boundaries of IJP, the vision of patient-specific treatment is on the horizon of becoming a tangible reality.
Collapse
Affiliation(s)
- Paola Carou-Senra
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Atheer Awad
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent, TN24 8DH, UK
- FABRX Artificial Intelligence, Carretera de Escairón 14, Currelos (O Saviñao), CP 27543, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent, TN24 8DH, UK
- FABRX Artificial Intelligence, Carretera de Escairón 14, Currelos (O Saviñao), CP 27543, Spain
| |
Collapse
|
35
|
Wu J, Roesger S, Jones N, Hu CMJ, Li SD. Cell-penetrating peptides for transmucosal delivery of proteins. J Control Release 2024; 366:864-878. [PMID: 38272399 DOI: 10.1016/j.jconrel.2024.01.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Enabling non-invasive delivery of proteins across the mucosal barriers promises improved patient compliance and therapeutic efficacies. Cell-penetrating peptides (CPPs) are emerging as a promising and versatile tool to enhance protein and peptide permeation across various mucosal barriers. This review examines the structural and physicochemical attributes of the nasal, buccal, sublingual, and oral mucosa that hamper macromolecular delivery. Recent development of CPPs for overcoming those mucosal barriers for protein delivery is summarized and analyzed. Perspectives regarding current challenges and future research directions towards improving non-invasive transmucosal delivery of macromolecules for ultimate clinical translation are discussed.
Collapse
Affiliation(s)
- Jiamin Wu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Sophie Roesger
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Natalie Jones
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Che-Ming J Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
36
|
Guo C, Liu J, Zhang Y. Current advances in bacteria-based cancer immunotherapy. Eur J Immunol 2024; 54:e2350778. [PMID: 38105295 DOI: 10.1002/eji.202350778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
As the understanding of the tumor microenvironment has deepened, immunotherapy has become a promising strategy for cancer treatment. In contrast to traditional therapies, immunotherapy is more precise and induces fewer adverse effects. In this field, some bacteria have attracted increased attention because of their natural ability to preferentially colonize and proliferate inside tumor sites and exert antitumor effects. Moreover, bacterial components may activate innate and adaptive immunity to resist tumor progression. However, the application of bacteria-based cancer immunotherapy is hampered by potential infection-associated toxicity and unpredictable behavior in vivo. Owing to modern developments in genetic engineering, bacteria can be modified to weaken their toxicity and enhance their ability to eliminate tumor cells or activate the antitumor immune response. This review summarizes the roles of bacteria in the tumor microenvironment, current strategies for bacterial engineering, and the synergistic efficiency of bacteria with other immunotherapies. In addition, the prospects and challenges of the clinical translation of engineered bacteria are summarized.
Collapse
Affiliation(s)
- Caijuan Guo
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinyan Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & and Treatment, Zhengzhou, Henan, China
| |
Collapse
|
37
|
Kassem AM, Almukainzi M, Faris TM, Ibrahim AH, Anwar W, Elbahwy IA, El-Gamal FR, Zidan MF, Akl MA, Abd-ElGawad AM, Elshamy AI, Elmowafy M. A pH-sensitive silica nanoparticles for colon-specific delivery and controlled release of catechin: Optimization of loading efficiency and in vitro release kinetics. Eur J Pharm Sci 2024; 192:106652. [PMID: 38008226 DOI: 10.1016/j.ejps.2023.106652] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
Catechin is a naturally occurring flavonoid of the flavan-3-ol subclass with numerous biological functions; however, these benefits are diminished due to several factors, including low water solubility and degradation in the stomach's harsh environment. So, this study aimed to develop an intelligent catechin colon-targeting delivery system with a high loading capacity. This was done by coating surface-decorated mesoporous silica nanoparticles with a pH-responsive enteric polymer called Eudragit®-S100. The pristine wormlike mesoporous silica nanoparticles (< 100 nm) with high surface area and large total pore volume were effectively synthesized and modified with the NH2 group using the post-grafting strategy. Various parameters, including solvent polarity, catechin-carrier mass ratio, and adsorption time, were studied to improve the loading of catechin into the aminated silica nanoparticles. Next, the negatively charged Eudragit®-S100 was electrostatically coated onto the positively charged aminated nanocarriers to shield the loaded catechin from the acidic environment of the stomach (pH 1.9) and to facilitate site-specific delivery in the acidic environment of the colon (pH 7.4). The prepared nanomaterials were evaluated using several methods, including The Brauner-Emmett-Teller, surface area analyzer, zeta sizer, Field Emission Scanning Electron Microscope, Powder X-Ray Diffraction, Fourier Transform Infrared Spectroscopy, Energy-Dispersive X-ray Spectroscopy, and Differential Scanning Calorimetry. In vitro dissolution studies revealed that Eudragit®-S100-coated aminated nanomaterials prevented the burst release of the loaded catechin in the acidic environment, with approximately 90% of the catechin only being released at colonic pH (pH > 7) with a supercase II transport mechanism. As a result, silica nanoparticles coated with Eudragit®-S100 would provide an innovative and promising approach in targeted nanomedicine for the oral delivery of catechin and related medicines for treating diseases related to the colon, such as colorectal cancer and irritable bowel syndrome.
Collapse
Affiliation(s)
- Abdulsalam M Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11751, Cairo, Egypt
| | - May Almukainzi
- Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Tarek M Faris
- Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed H Ibrahim
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11751, Cairo, Egypt
| | - Walid Anwar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11751, Cairo, Egypt
| | - Ibrahim A Elbahwy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11751, Cairo, Egypt
| | - Farid R El-Gamal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11751, Cairo, Egypt
| | - Mohamed F Zidan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11751, Cairo, Egypt
| | - Mohamed A Akl
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11751, Cairo, Egypt; Department of Pharmaceutics, College of Pharmacy, The Islamic University, Najaf 54001, Iraq
| | - Ahmed M Abd-ElGawad
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Abdelsamed I Elshamy
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Mohammed Elmowafy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11751, Cairo, Egypt; Department of Pharmaceutics, College of Pharmacy, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| |
Collapse
|
38
|
Zhang Q, Fu H, Zhang Y, Li L, Yan G. Rapidly degradable konjac glucomannan hydrogels cross-linked with olsalazine for colonic drug release. Biomed Mater Eng 2024; 35:125-137. [PMID: 37718772 DOI: 10.3233/bme-230066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Polysaccharide hydrogel is one of the most important materials for the colon target drug release system. However, the degradation time of polysaccharide hydrogel is much longer than the retention time in the colon. The drugs are expelled from the body before being released. OBJECTIVE In order to match the degradation of drug carriers and their retention time in the colon, a rapidly degradable konjac glucomannan (KGM) hydrogel was designed for colon target drug release. METHODS A crosslinker containing azo bond, olsalazine, was used to prepare the rapidly degradable KGM hydrogel. The degradation and drug release of the hydrogels with different crosslinking densities in the normal buffer and the human fecal medium were studied to evaluate the efficiency of colon drug release. RESULTS More than 50% of the KGM hydrogel by weight was degraded and more than 60% of the 5-fluorouracil (5-Fu) was released within 48 h in 5% w/v human fecal medium. CONCLUSION The drug was released more rapidly in a simulated colon environment than in a normal buffer. Furthermore, the drug release was controlled by the degradation of the hydrogel. The KGM hydrogel containing azo crosslinker has great potential for colon drug release.
Collapse
Affiliation(s)
- Qiao Zhang
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Huili Fu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Yunfei Zhang
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Liang Li
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Guoping Yan
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
39
|
Awad A, Hollis E, Goyanes A, Orlu M, Gaisford S, Basit AW. 3D printed multi-drug-loaded suppositories for acute severe ulcerative colitis. Int J Pharm X 2023; 5:100165. [PMID: 36876053 PMCID: PMC9982042 DOI: 10.1016/j.ijpx.2023.100165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023] Open
Abstract
Acute severe ulcerative colitis (ASUC) is a growing health burden that often requires treatment with multiple therapeutic agents. As inflammation is localised in the rectum and colon, local drug delivery using suppositories could improve therapeutic outcomes. Three-dimensional (3D) printing is a novel manufacturing tool that permits the combination of multiple drugs in personalised dosage forms, created based on each patient's disease condition. This study, for the first time, demonstrates the feasibility of producing 3D printed suppositories with two anti-inflammatory agents, budesonide and tofacitinib citrate, for the treatment of ASUC. As both drugs are poorly water-soluble, the suppositories' ability to self-emulsify was exploited to improve their performance. The suppositories were fabricated via semi-solid extrusion (SSE) 3D printing and contained tofacitinib citrate and budesonide in varying doses (10 or 5 mg; 4 or 2 mg, respectively). The suppositories displayed similar dissolution and disintegration behaviours irrespective of their drug content, demonstrating the flexibility of the technology. Overall, this study demonstrates the feasibility of using SSE 3D printing to create multi-drug suppositories for the treatment of ASUC, with the possibility of titrating the drug doses based on the disease progression.
Collapse
Affiliation(s)
- Atheer Awad
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Eleanor Hollis
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.,FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK.,Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials institute (iMATUS) and Health Research Institute (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mine Orlu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.,FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
| |
Collapse
|
40
|
Chen C, Beloqui A, Xu Y. Oral nanomedicine biointeractions in the gastrointestinal tract in health and disease. Adv Drug Deliv Rev 2023; 203:115117. [PMID: 37898337 DOI: 10.1016/j.addr.2023.115117] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Oral administration is the preferred route of administration based on the convenience for and compliance of the patient. Oral nanomedicines have been developed to overcome the limitations of free drugs and overcome gastrointestinal (GI) barriers, which are heterogeneous across healthy and diseased populations. This review aims to provide a comprehensive overview and comparison of the oral nanomedicine biointeractions in the gastrointestinal tract (GIT) in health and disease (GI and extra-GI diseases) and highlight emerging strategies that exploit these differences for oral nanomedicine-based treatment. We introduce the key GI barriers related to oral delivery and summarize their pathological changes in various diseases. We discuss nanomedicine biointeractions in the GIT in health by describing the general biointeractions based on the type of oral nanomedicine and advanced biointeractions facilitated by advanced strategies applied in this field. We then discuss nanomedicine biointeractions in different diseases and explore how pathological characteristics have been harnessed to advance the development of oral nanomedicine.
Collapse
Affiliation(s)
- Cheng Chen
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium; WEL Research Institute, avenue Pasteur, 6, 1300 Wavre, Belgium.
| | - Yining Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
41
|
Gao S, Zheng H, Xu S, Kong J, Gao F, Wang Z, Li Y, Dai Z, Jiang X, Ding X, Lei H. Novel Natural Carrier-Free Self-Assembled Nanoparticles for Treatment of Ulcerative Colitis by Balancing Immune Microenvironment and Intestinal Barrier. Adv Healthc Mater 2023; 12:e2301826. [PMID: 37681364 DOI: 10.1002/adhm.202301826] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/05/2023] [Indexed: 09/09/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory illness affecting the colon and rectum, with current treatment methods being unable to meet the clinical needs of ulcerative colitis patients. Although nanomedicines are recognized as promising anti-inflammatory medicines, their clinical application is limited by their high cost and unpredictable safety risks. This study reveals that two natural phytochemicals, berberine (BBR) and hesperetin (HST), self-assemble directly to form binary carrier-free multi-functional spherical nanoparticles (BBR-HST NPs) through noncovalent bonds involving electrostatic interactions, π-π stacking, and hydrogen bonding. Because of their synergistic anti-inflammatory activity, berberine-hesperetin nanoparticles (BBR-HST NPs) exhibit significantly better therapeutic effects on UC and inhibitory effects on inflammation than BBR and HST at the same dose by regulating the immune microenvironment and repairing the damaged intestinal barrier. Furthermore, BBR-HST NPs exhibit good biocompatibility and biosafety. Thus, this study proves the potential of novel natural anti-inflammatory nanoparticles as therapeutic agents for UC, which could promote the progress of drug development for UC and eventually benefit patients who suffering from it.
Collapse
Affiliation(s)
- Shan Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Haocheng Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shujing Xu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jingwei Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Feng Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhijia Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yuan Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ziqi Dai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xinqi Jiang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| |
Collapse
|
42
|
Chen M, Lan H, Jin K, Chen Y. Responsive nanosystems for targeted therapy of ulcerative colitis: Current practices and future perspectives. Drug Deliv 2023; 30:2219427. [PMID: 37288799 PMCID: PMC10405869 DOI: 10.1080/10717544.2023.2219427] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 06/09/2023] Open
Abstract
The pharmacological approach to treating gastrointestinal diseases is suffering from various challenges. Among such gastrointestinal diseases, ulcerative colitis manifests inflammation at the colon site specifically. Patients suffering from ulcerative colitis notably exhibit thin mucus layers that offer increased permeability for the attacking pathogens. In the majority of ulcerative colitis patients, the conventional treatment options fail in controlling the symptoms of the disease leading to distressing effects on the quality of life. Such a scenario is due to the failure of conventional therapies to target the loaded moiety into specific diseased sites in the colon. Targeted carriers are needed to address this issue and enhance the drug effects. Conventional nanocarriers are mostly readily cleared and have nonspecific targeting. To accumulate the desired concentration of the therapeutic candidates at the inflamed area of the colon, smart nanomaterials with responsive nature have been explored recently that include pH responsive, reactive oxygen species responsive (ROS), enzyme responsive and thermo - responsive smart nanocarrier systems. The formulation of such responsive smart nanocarriers from nanotechnology scaffolds has resulted in the selective release of therapeutic drugs, avoiding systemic absorption and limiting the undesired delivery of targeting drugs into healthy tissues. Recent advancements in the field of responsive nanocarrier systems have resulted in the fabrication of multi-responsive systems i.e. dual responsive nanocarriers and derivitization that has increased the biological tissues and smart nanocarrier's interaction. In addition, it has also led to efficient targeting and significant cellular uptake of the therapeutic moieties. Herein, we have highlighted the latest status of the responsive nanocarrier drug delivery system, its applications for on-demand delivery of drug candidates for ulcerative colitis, and the prospects are underpinned.
Collapse
Affiliation(s)
- Min Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yun Chen
- Department of Colorectal Surgery, Xinchang People’s Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang, China
| |
Collapse
|
43
|
Illanes-Bordomás C, Landin M, García-González CA. Aerogels as Carriers for Oral Administration of Drugs: An Approach towards Colonic Delivery. Pharmaceutics 2023; 15:2639. [PMID: 38004617 PMCID: PMC10674668 DOI: 10.3390/pharmaceutics15112639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Polysaccharide aerogels have emerged as a highly promising technology in the field of oral drug delivery. These nanoporous, ultralight materials, derived from natural polysaccharides such as cellulose, starch, or chitin, have significant potential in colonic drug delivery due to their unique properties. The particular degradability of polysaccharide-based materials by the colonic microbiota makes them attractive to produce systems to load, protect, and release drugs in a controlled manner, with the capability to precisely target the colon. This would allow the local treatment of gastrointestinal pathologies such as colon cancer or inflammatory bowel diseases. Despite their great potential, these applications of polysaccharide aerogels have not been widely explored. This review aims to consolidate the available knowledge on the use of polysaccharides for oral drug delivery and their performance, the production methods for polysaccharide-based aerogels, the drug loading possibilities, and the capacity of these nanostructured systems to target colonic regions.
Collapse
Affiliation(s)
| | - Mariana Landin
- AerogelsLab, I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain;
| | - Carlos A. García-González
- AerogelsLab, I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain;
| |
Collapse
|
44
|
Kopp KT, Saerens L, Voorspoels J, Van den Mooter G. Solidification and oral delivery of biologics to the colon- A review. Eur J Pharm Sci 2023; 190:106523. [PMID: 37429482 DOI: 10.1016/j.ejps.2023.106523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/16/2023] [Accepted: 07/08/2023] [Indexed: 07/12/2023]
Abstract
The oral delivery of biologics such as therapeutic proteins, peptides and oligonucleotides for the treatment of colon related diseases has been the focus of increasing attention over the last years. However, the major disadvantage of these macromolecules is their degradation propensity in liquid state which can lead to the undesirable and complete loss of function. Therefore, to increase the stability of the biologic and reduce their degradation propensity, formulation techniques such as solidification can be performed to obtain a stable solid dosage form for oral administration. Due to their fragility, stress exerted on the biologic during solidification has to be reduced with the incorporation of stabilizing excipients into the formulation. This review focuses on the state-of-the-art solidification techniques required to obtain a solid dosage form for the oral delivery of biologics to the colon and the use of suitable excipients for adequate stabilization upon solidification. The solidifying processes discussed within this review are spray drying, freeze drying, bead coating and also other techniques such as spray freeze drying, electro spraying, vacuum- and supercritical fluid drying. Further, the colon as site of absorption in both healthy and diseased state is critically reviewed and possible oral delivery systems for biologics are discussed.
Collapse
Affiliation(s)
- Katharina Tatjana Kopp
- Eurofins Amatsigroup, Industriepark-Zwijnaarde 7B, 9052 Gent, Belgium; Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49, 3000 Leuven, Belgium
| | - Lien Saerens
- Eurofins Amatsigroup, Industriepark-Zwijnaarde 7B, 9052 Gent, Belgium
| | - Jody Voorspoels
- Eurofins Amatsigroup, Industriepark-Zwijnaarde 7B, 9052 Gent, Belgium
| | - Guy Van den Mooter
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
45
|
Asadi M, Salehi Z, Akrami M, Hosseinpour M, Jockenhövel S, Ghazanfari S. 3D printed pH-responsive tablets containing N-acetylglucosamine-loaded methylcellulose hydrogel for colon drug delivery applications. Int J Pharm 2023; 645:123366. [PMID: 37669729 DOI: 10.1016/j.ijpharm.2023.123366] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023]
Abstract
The pH-responsive drug release approach in combination with three-dimensional (3D) printing for colon-specific oral drug administration can address the limitations of current treatments such as orally administered solid tablets. Such existing treatments fail to effectively deliver the right drug dosage to the colon. In order to achieve targeted drug release profiles, this work aimed at designing and producing 3D printed tablet shells using Eudragit® FS100 and polylactic acid (PLA) where the core was filled with 100 µl of N-acetylglucosamine (GlcNAc)-loaded methyl cellulose (MC) hydrogel. To meet the requirements of such tablets, the effects of polymer blending ratios and MC concentrations on physical, thermal, and material properties of various components of the tablets and most importantly in vitro drug release kinetics were investigated. The tablets with 80/20 wt% of Eudragit® FS100/PLA and the drug-loaded hydrogel with 30 mg/ml GlcNAc and 3% w/v MC showed the most promising results having the best printability, processability, and drug release kinetics besides being non-cytotoxic. Manufacturing of these tablets will be the first milestone in shifting from the conventional "one size fits all" approach to personalized medicine where different dosages and various combinations of drugs can be effectively delivered to the inflammation site.
Collapse
Affiliation(s)
- Maryam Asadi
- Department of Biochemical and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran; Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, The Netherlands
| | - Zeinab Salehi
- Department of Biochemical and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Mohammad Akrami
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Stefan Jockenhövel
- Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, The Netherlands; Department of Biohybrid & Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Forckenbeckstrabe 55, 52072 Aachen, Germany
| | - Samaneh Ghazanfari
- Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, The Netherlands; Department of Biohybrid & Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Forckenbeckstrabe 55, 52072 Aachen, Germany.
| |
Collapse
|
46
|
Gil-Pichardo A, Sánchez-Ruiz A, Colmenarejo G. Analysis of metabolites in human gut: illuminating the design of gut-targeted drugs. J Cheminform 2023; 15:96. [PMID: 37833792 PMCID: PMC10571276 DOI: 10.1186/s13321-023-00768-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Gut-targeted drugs provide a new drug modality besides that of oral, systemic molecules, that could tap into the growing knowledge of gut metabolites of bacterial or host origin and their involvement in biological processes and health through their interaction with gut targets (bacterial or host, too). Understanding the properties of gut metabolites can provide guidance for the design of gut-targeted drugs. In the present work we analyze a large set of gut metabolites, both shared with serum or present only in gut, and compare them with oral systemic drugs. We find patterns specific for these two subsets of metabolites that could be used to design drugs targeting the gut. In addition, we develop and openly share a Super Learner model to predict gut permanence, in order to aid in the design of molecules with appropriate profiles to remain in the gut, resulting in molecules with putatively reduced secondary effects and better pharmacokinetics.
Collapse
Affiliation(s)
- Alberto Gil-Pichardo
- Biostatistics and Bioinformatics Unit, IMDEA Food, CEI UAM+CSIC, 28049, Madrid, Spain
| | - Andrés Sánchez-Ruiz
- Biostatistics and Bioinformatics Unit, IMDEA Food, CEI UAM+CSIC, 28049, Madrid, Spain
| | - Gonzalo Colmenarejo
- Biostatistics and Bioinformatics Unit, IMDEA Food, CEI UAM+CSIC, 28049, Madrid, Spain.
| |
Collapse
|
47
|
Wang Y, Li Z, Bao Y, Cui H, Li J, Song B, Wang M, Li H, Cui X, Chen Y, Chen W, Yang S, Yang Y, Jin Z, Si X, Li B. Colon-targeted delivery of polyphenols: construction principles, targeting mechanisms and evaluation methods. Crit Rev Food Sci Nutr 2023; 65:64-86. [PMID: 37823723 DOI: 10.1080/10408398.2023.2266842] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Polyphenols have received considerable attention for their promotive effects on colonic health. However, polyphenols are mostly sensitive to harsh gastrointestinal environments, thus, must be protected. It is necessary to design and develop a colon-targeted delivery system to improve the stability, colon-targeting and bioavailability of polyphenols. This paper mainly introduces research on colon-targeted controlled release of polyphenols. The physiological features affecting the dissolution, release and absorption of polyphenol-loaded delivery systems in the colon are first discussed. Simultaneously, the types of colon-targeted carriers with different release mechanisms are described, and colon-targeting assessment models that have been studied so far and their advantages and limitations are summarized. Based on the current research on polyphenols colon-targeting, outlook and reflections are proposed, with the goal of inspiring strategic development of new colon-targeted therapeutics to ensure that the polyphenols reach the colon with complete bioactivity.
Collapse
Affiliation(s)
- Yidi Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zhiying Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yiwen Bao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Huijun Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jiaxin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Baoge Song
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Mengzhu Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Haikun Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xingyue Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Wei Chen
- Faculty of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd, Zhu-ji City, Zhejiang Province, China
| | - Yiyun Yang
- Zhejiang Lanmei Technology Co., Ltd, Zhu-ji City, Zhejiang Province, China
| | - Zhufeng Jin
- Zhejiang Lanmei Technology Co., Ltd, Zhu-ji City, Zhejiang Province, China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
48
|
Strich S, Azehaf H, Neut C, Lellouche-Jacob Y, Medkour N, Penning M, Karrout Y. Film Coatings Based on Aqueous Shellac Ammonium Salt "Swanlac ® ASL 10" and Inulin for Colon Targeting. AAPS PharmSciTech 2023; 24:205. [PMID: 37789211 DOI: 10.1208/s12249-023-02652-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023] Open
Abstract
Over the past decades, increasing interests took place in the realm of drug delivery systems. Beyond treating intestinal diseases such as inflammatory bowel disease, colon targeting can provide possible applications for oral administration of proteins as well as vaccines due to the lower enzymatic activity in the distal part of GIT. To date, many strategies are employed to reach the colon. This article encompasses different biomaterials tested as film coatings and highlights appropriate formulations for colonic drug delivery. A comparison of different films was made to display the most interesting drug release profiles. These films contained ethylcellulose, as a thermoplastic polymer, blended with an aqueous shellac ammonium salt solution. Different blend ratios were selected as well for thin films as for coated mini-tablets, mainly varying as follows: (80:20); (75:25); (60:40). The impact of blend ratio and coating level was examined as well as the addition of natural polysaccharide "inulin" to target the colon. In vitro drug release was measured in 0.1 M HCl for 2 h followed by phosphate buffer saline pH 6.8 to simulate gastric and intestinal fluids, respectively. Coated mini-tablets were exposed to fresh fecal samples of humans in order to simulate roughly colonic content. Several formulations were able to fully protect theophylline as a model drug up to 8 h in the upper GIT, but allowing for prolonged release kinetics in the colon. These very interesting colonic release profiles were related to the amount of the natural polysaccharide added into the system.
Collapse
Affiliation(s)
- S Strich
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000, Lille, France
| | - H Azehaf
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000, Lille, France
| | - C Neut
- Univ. Lille, Inserm, CHU Lille, U1286_INFINITE, F-59000, Lille, France
| | | | - N Medkour
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000, Lille, France
| | - M Penning
- PennConsult, Wormser Straße 28, 55276, Oppenheim, Germany
| | - Y Karrout
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000, Lille, France.
| |
Collapse
|
49
|
Visan AI, Cristescu R. Polysaccharide-Based Coatings as Drug Delivery Systems. Pharmaceutics 2023; 15:2227. [PMID: 37765196 PMCID: PMC10537422 DOI: 10.3390/pharmaceutics15092227] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Therapeutic polysaccharide-based coatings have recently emerged as versatile strategies to transform a conventional medical implant into a drug delivery system. However, the translation of these polysaccharide-based coatings into the clinic as drug delivery systems still requires a deeper understanding of their drug degradation/release profiles. This claim is supported by little or no data. In this review paper, a comprehensive description of the benefits and challenges generated by the polysaccharide-based coatings is provided. Moreover, the latest advances made towards the application of the most important representative coatings based on polysaccharide types for drug delivery are debated. Furthermore, suggestions/recommendations for future research to speed up the transition of polysaccharide-based drug delivery systems from the laboratory testing to clinical applications are given.
Collapse
Affiliation(s)
- Anita Ioana Visan
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania
| | - Rodica Cristescu
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania
| |
Collapse
|
50
|
Lei F, Zeng F, Yu X, Deng Y, Zhang Z, Xu M, Ding N, Tian J, Li C. Oral hydrogel nanoemulsion co-delivery system treats inflammatory bowel disease via anti-inflammatory and promoting intestinal mucosa repair. J Nanobiotechnology 2023; 21:275. [PMID: 37596598 PMCID: PMC10436423 DOI: 10.1186/s12951-023-02045-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Due to oral nano-delivery systems for the treatment of inflammatory bowel disease (IBD) are often failed to accumulated to the colonic site and could not achieve controlled drug release, it's urgent to develop a microenvironment responsive drug delivery to improve therapy efficacy. Inflammation at the IBD site is mainly mediated by macrophages, which are the key effector cells. Excessive inflammation leads to oxidative stress and intestinal mucosal damage. The use of curcumin (CUR) and emodin (EMO) together for the treatment of IBD is promising due to their respective anti-inflammatory and intestinal mucosal repair effects. In view of the pH gradient environment of gastrointestinal tract, here we prepared pH-responsive sodium alginate (SA) hydrogel-coated nanoemulsions to co-deliver CUR and EMO (CUR/EMO NE@SA) to achieve controlled drug release and specifically target macrophages of the colon. RESULTS In this study, a pH-responsive CUR/EMO NE@SA was successfully developed, in which the CUR/EMO NE was loaded by chitosan and further crosslinked with sodium alginate. CUR/EMO NE@SA had a pH-responsive property and could achieve controlled drug release in the colon. The preparation could significantly alleviate and improve the colon inflammatory microenvironment by decreasing TNF-α and IL-6 expression, increasing IL-10 expression, scavenging reactive oxygen species in macrophages, and by ameliorating the restoration of intestinal mucosal tight junction protein expression. Furthermore, we revealed the molecular mechanism of the preparation for IBD treatment, which might due to the CUR and EMO synergic inhibition of NF-κB to improve the pro-inflammatory microenvironment. Our study provides a new IBD therapy strategy via synergically inhibiting inflammatory, repairing mucosal and clearing ROS by pH-sensitive hydrogel-encapsulated nanoemulsion drug delivery system, which might be developed for other chronic inflammatory disease treatment. CONCLUSIONS It's suggested that pH-sensitive hydrogel-coated nanoemulsion-based codelivery systems are a promising combinatorial platform in IBD.
Collapse
Affiliation(s)
- Fenting Lei
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, 646000, Sichuan, People's Republic of China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Xin Yu
- Chinese Pharmacy Laboratory, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yiping Deng
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zongquan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, 646000, Sichuan, People's Republic of China
| | - Maochang Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, 646000, Sichuan, People's Republic of China
| | - Nianhui Ding
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Ji Tian
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, 646000, Sichuan, People's Republic of China.
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|