1
|
Shi Y, Li X, Li Z, Sun J, Gao T, Wei G, Guo Q. Nano-formulations in disease therapy: designs, advances, challenges, and future directions. J Nanobiotechnology 2025; 23:396. [PMID: 40448105 DOI: 10.1186/s12951-025-03442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 05/05/2025] [Indexed: 06/02/2025] Open
Abstract
Nano-formulations, as an innovative drug delivery system, offer distinct advantages in enhancing drug administration methods, improving bioavailability, promoting biodegradability, and enabling targeted delivery. By exploiting the unique size advantages of nano-formulations, therapeutic agents, including drugs, genes, and proteins, can be precisely reorganized at the microscale level. This modification not only facilitates the precise release of these agents but also significantly enhances their efficacy while minimizing adverse effects, thereby creating novel opportunities for treatment of a wide range of diseases. In this review, we discuss recent advancements, challenges, and future perspectives in nano-formulations for therapeutic applications. For this aim, we firstly introduce the development, design, synthesis, and action mechanisms of nano-formulations. Then, we summarize their applications in disease diagnosis and treatment, especially in fields of oncology, pulmonology, cardiology, endocrinology, dermatology, and ophthalmology. Furthermore, we address the challenges associated with the medical applications of nanomaterials, and provide an outlook on future directions based on these considerations. This review offers a comprehensive examination of the current applications and potential significance of nano-formulations in disease diagnosis and treatment, thereby contributing to the advancement of modern medical therapies.
Collapse
Affiliation(s)
- YunYan Shi
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Xiao Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Zhiyuan Li
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Jialin Sun
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Tong Gao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China.
| | - Qie Guo
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Qiu Y, Zhu Q, Cui K, Wang H, Zhang W, Li X, Yu J, Li Y, Luo Y, Wang Y, Xie W, Xia Q, Xiao Z. Polymer-Based Raman/PET Dual-Modal Probe for Preoperative Tumor Diagnosis and Intraoperative Image-Guided Surgery and Phototherapy. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40359337 DOI: 10.1021/acsami.5c03752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Integration of Raman imaging and positron emission tomography (PET) holds great promise for providing complementary information for precise cancer diagnosis and imaging-guided therapy. However, current existing Raman/PET dual-modal probes primarily rely on surface-enhanced Raman scattering, raising clinical concerns about the biosafety of the substrates. Herein, we developed a novel substrate-free Raman/PET probe-[18F]-AS-DPPT-TT NPs, which integrates a biocompatible polymer DPPT-TT that possesses strong Raman signals and photothermal effects, along with radiolabeling by short-lived 18F radionuclide and functionalization with tumor-targeting AS1411 aptamer. The [18F]-AS-DPPT-TT NPs generate ultrasensitive resonance Raman signals under 785 nm excitation, due to their absorption peak closely matching the excitation light, and exhibit significant photothermal effects for tumor cell ablation under 808 nm excitation. In the orthotopic colon cancer mouse models, [18F]-AS-DPPT-TT NPs enabled preoperative PET imaging for high-contrast whole-body tumor localization and simultaneously provided intraoperative Raman imaging for accurate tumor boundary delineation and micrometastasis detection (as small as 0.58 mm × 0.32 mm). Moreover, Raman imaging-guided surgery combined with photothermal therapy achieved complete elimination of primary and metastatic tumors, significantly decreasing the recurrence rates. This Raman/PET dual-modal probe effectively combines the strengths of Raman and PET imaging, providing a robust platform for comprehensive tumor management from preoperative planning to intraoperative intervention.
Collapse
Affiliation(s)
- Yuanyuan Qiu
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qi Zhu
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes,Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Kai Cui
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haoze Wang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Wenxian Zhang
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinyi Li
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiapei Yu
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yumeng Li
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yating Luo
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yiyuan Wang
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenhui Xie
- Department of Nuclear Medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qian Xia
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes,Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zeyu Xiao
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
3
|
Li Z, Bian X, Wu H, He L, Zeng Z, Zhong L, Liu Y, Li Y, Hu G, Mi F, Liu Z, Zhu J. Dopamine and Mn(II) Chelate Covalent-Doping Coated Ti(IV)-Nanotheranostics for Magnetic Resonance Imaging Guided Phototherapy in Oral Cancer. Int J Nanomedicine 2025; 20:6043-6057. [PMID: 40385496 PMCID: PMC12083491 DOI: 10.2147/ijn.s512565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/16/2025] [Indexed: 05/20/2025] Open
Abstract
Purpose Phototherapy have gained significant traction in the treatment of tumors. However, the successful implementation of these therapies relies on photosensitizers with superior properties and precise guidance mechanisms. Methods In this study, we introduce an innovative method for the surface modification of titanium dioxide (TiO2) nanoparticles through HRP-catalyzed covalent incorporation of Mn(II) chelate (Mn-Dopa) and dopamine. Results This modification extends TiO2 nanoparticels' light absorption from ultraviolet to the near-infrared (NIR) range, endowing the nanoparticles with MRI-guided phototherapy capabilities. The resulting nanotheranostics system, TiO2@PDA-MnDopa, demonstrated over 5-fold enhanced relaxivity compared to the monomeric MnDopa and exhibited synergistic phototherapy effects upon 808 nm laser excitation, with a photothermal conversion efficiency of 15.91%. In vitro and in vivo pharmacodynamics studies showed that the TiO2@PDA-MnDopa demonstrated good safety in the HSC3 cell line and corresponding tumor-bearing mice, while effectively inhibiting tumor growth under 808 nm laser excitation. Conclusion This multifunctional nanotheranostic, integrating high relaxivity with synergistic PTT/PDT for MR imaging-guided phototherapy, holds great potential for applications in the early diagnosis, noninvasive treatment, and prognostic evaluation of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Zhenghui Li
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
- Beijing Anzhen Nanchong Hospital, Capital Medical University & Nanchong Central Hospital, Nanchong, Sichuan, People’s Republic of China
| | - Xufei Bian
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Huiyu Wu
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Ling He
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Zuhua Zeng
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Lei Zhong
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Yao Liu
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Yu Li
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Guihao Hu
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Fanglin Mi
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Zhen Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Jiang Zhu
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| |
Collapse
|
4
|
Poonia N, Kumar V, Subudhi RN, Dalabehera M, Setia A, Bora KS, Arora V. Iron oxide nanoparticles: a versatile nanoplatform for the treatment and diagnosis of ovarian cancer. Ther Deliv 2025; 16:379-392. [PMID: 39722582 PMCID: PMC11970791 DOI: 10.1080/20415990.2024.2442301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Ovarian cancer remains one of the main causes of human mortality, accounting for millions of deaths every year. Despite of several clinical options such as chemotherapy, photodynamic therapy (PDT), hormonal treatment, radiation therapy, and surgery to manage this disease, the mortality rate is still very high. This alarming statistic highlights the urgent need for innovative approaches to improve both diagnosis and treatment. Success stories of iron oxide nanoparticles, i.e. Ferucarbotran (Resovist®) and Ferrixan (Cliavist®) for liver imaging, CNS (Central nervous system) imaging, cell labeling, etc. have motivated researchers to explore these nanocarriers for treatment and diagnosis of different diseases. Iron oxide nanoparticles have improved the therapeutic efficacy of anticancer drugs through targeted delivery, heat/ROS (reactive oxygen species) generation on application of external energy and have also shown great potential as contrast agents for magnetic resonance imaging (MRI). Their unique magnetic properties enable sensitive imaging, and surface modification allows the attachment of specific biomolecules for targeted detection of ovarian cancer cells. Their unique properties, viz. magnetic responsiveness and surface functionalization, make them versatile tools for enhancing both imaging and therapeutic outcomes. Present article reviews the literature on the synthesis, functionalization, and applications of iron oxide nanoparticles in management of ovarian cancer.
Collapse
Affiliation(s)
- Neelam Poonia
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| | - Vipan Kumar
- Department of Pharmaceutical Chemistry, Swami Vivekanand College of Pharmacy, Rajpura, India
| | | | - Manoj Dalabehera
- University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| | - Anupama Setia
- Department of Pharmaceutics, JCDM College of Pharmacy, Sirsa, India
| | - Kundan Singh Bora
- Department of Pharmacognosy, University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| | - Vimal Arora
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| |
Collapse
|
5
|
Liu T, Liang X, Liu W, Yang S, Cui T, Yan F, Li Z. iRGD-Targeted Biosynthetic Nanobubbles for Ultrasound Molecular Imaging of Osteosarcoma. Int J Nanomedicine 2025; 20:791-805. [PMID: 39867315 PMCID: PMC11760272 DOI: 10.2147/ijn.s494151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/04/2025] [Indexed: 01/28/2025] Open
Abstract
Purpose Osteosarcoma is the most common primary malignant tumor of the bone. However, there is a lack of effective means for early diagnosis due to the heterogeneity of tumors and the complexity of tumor microenvironment. αvβ3 integrin, a crucial role in the growth and spread of tumors, is not only an effective biomarker for cancer angiogenesis, but also highly expressed in many tumor cells. Here, we selected it as the imaging target and fabricated iRGD-sGVs acoustic probe for the early-stage diagnosis of osteosarcoma. Materials and Methods Biological nanoscale gas vesicles (sGVs) were extracted from Serratia 39006. Their morphology was analyzed with phase contrast and transmission electron microscopes. Particle size and zeta potential were measured by a Zetasizer. iRGD-targeted molecular probes (iRGD-sGVs) were prepared by coupling iRGD to sGVs via Mal-PEG2000-NHS. Targeting efficiency of iRGD-sGVs was evaluated using flow cytometry and confocal microscopy on endothelial and K7M2 osteosarcoma cells. In vivo contrast-enhanced ultrasound imaging of iRGD-sGVs was performed in osteosarcoma-bearing mice, and the expression of avβ3 in osteosarcoma was detected through immunofluorescence staining assay. Biocompatibility of sGVs was assessed by hemolysis tests, CCK8 cytotoxicity assays, blood biochemical tests, and HE staining. Results sGVs from Serratia.39006 have smaller particle size (about 160 nm). Our in vitro and in vivo experiments showed the specifically binding ability of iRGD-sGVs to both vascular endothelial cells and tumor cells, producing the stronger and longer acoustic signals in tumors in comparison with the control probe. Immunofluorescence staining results indicated iRGD-sGVs were co-localized with highly expressed αvβ3 in tumor vasculature and osteosarcoma cells. Biocompatibility analysis showed no significant cytotoxicity of iRGD-sGVs to mice. Conclusion Our study provides a new strategy for early diagnosis of osteosarcoma.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Ultrasound, The second People’s Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518061, People’s Republic of China
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 530200, People’s Republic of China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People’s Republic of China
| | - Xiaoxin Liang
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Wei Liu
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People’s Republic of China
| | - Shuai Yang
- Department of Clinical and Research, Shenzhen Mindray Bio-Medical Electronics Co, Ltd, Shenzhen, 518055, People’s Republic of China
| | - Tao Cui
- Medical Imaging center, Shenzhen Yunshan Yunli Hospital, Shenzhen, 518055, People’s Republic of China
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People’s Republic of China
| | - Zhenzhou Li
- Department of Ultrasound, The second People’s Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518061, People’s Republic of China
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 530200, People’s Republic of China
| |
Collapse
|
6
|
Kong D, Zheng X, Ding K, Zhong R, Zhang Z, Wang Q, Dong C, Zheng Z, Li X, Weng J, Zhou S. Multi-Chambered Core/Shell Supraparticles for Real-Time, Full-Time Diagnosis and Treatment Integration of Tumors. Adv Healthc Mater 2025; 14:e2401749. [PMID: 39291882 DOI: 10.1002/adhm.202401749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/03/2024] [Indexed: 09/19/2024]
Abstract
To a certain extent, theranostic nanoplatforms promote tumor treatment efficiency. However, timely monitoring of the critical stages and signal sustainability of the entire process is challenging. In this study, multi-chambered core/shell magnetic nanoparticles (MC-MNPs) as drug and imaging agent multi-loaded nanocarriers with a synergistic release function are reported. Supraparticles with stable chambers are formed by the supercooling self-assembly of several core/shell magnetic nanoparticles composed of amphiphilic copolymers as the core and hydrophilic magnetic iron oxide nanoparticles as the shell. Desalinized doxorubicin and coumarin 6 are stored in different cavities of nanocarriers, and chitosan is used as an outer encapsulation layer. Based on their construction properties, MC-MNPs can exhibit gradient-degraded and steady-released controllability in the tumor environment. Furthermore, real-time accumulation situations and full-time diagnostic signals of nanocarriers are thoroughly demonstrated using fluorescence imaging and T2-weighted magnetic resonance imaging before and after magnetic hyperthermia in targeted tumors under an alternating magnetic field. Thus, MC-MNPs as theranostic nanocarriers exhibit great potential for the timely monitoring and full-time guidance of tumor treatment.
Collapse
Affiliation(s)
- Degang Kong
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xiaotong Zheng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Kai Ding
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Run Zhong
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhao Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qingyi Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Chunxiu Dong
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhiwen Zheng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xiaohong Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jie Weng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
7
|
Zhang Z, Lu Y, Liu W, Huang Y. Nanomaterial-assisted delivery of CpG oligodeoxynucleotides for boosting cancer immunotherapy. J Control Release 2024; 376:184-199. [PMID: 39368710 DOI: 10.1016/j.jconrel.2024.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/03/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Cancer immunotherapy aims to improve immunity to not only eliminate the primary tumor but also inhibit metastasis and recurrence. It is considered an extremely promising therapeutic approach that breaks free from the traditional paradigm of oncological treatment. As the medical community learns more about the immune system's mechanisms that "turn off the brake" and "step on the throttle", there is increasingly successful research on immunomodulators. However, there are still more restrictions than countermeasures with immunotherapy related to immunomodulators, such as low responsiveness and immune-related adverse events that cause multiple adverse reactions. Therefore, medical experts and materials scientists attempted to the efficacy of immunomodulatory treatments through various methods, especially nanomaterial-assisted strategies. CpG oligodeoxynucleotides (CpG) not only act as an adjuvant to promote immune responses, but also induce autophagy. In this review, the enhancement of immunotherapy using nanomaterial-based CpG formulations is systematically elaborated, with a focus on the delivery, protection, synergistic promotion of CpG efficacy by nanomaterials, and selection of the timing of treatment. In addition, we also discuss and prospect the existing problems and future directions of research on nanomaterials in auxiliary CpG therapy.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yu Lu
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| | - Wenjing Liu
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
8
|
Liu X, Liu S, Jin X, Liu H, Sun K, Wang X, Li M, Wang P, Chang Y, Wang T, Wang B, Yu XA. An encounter between metal ions and natural products: natural products-coordinated metal ions for the diagnosis and treatment of tumors. J Nanobiotechnology 2024; 22:726. [PMID: 39574109 PMCID: PMC11580416 DOI: 10.1186/s12951-024-02981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/04/2024] [Indexed: 11/25/2024] Open
Abstract
Natural products-coordinated metal ions to form the nanomedicines are in the spotlight for cancer therapy. Some natural products could be coordinated with metal ions forming nanomedicines via simple and green environmental self-assembly, which not only improved the bioavailability of natural products, but also conferred multiple therapeutic modalities and multimodal imaging. On the one hand, in the weak acidity, glutathione (GSH) and hydrogen peroxide (H2O2) overexpression of tumor microenvironment (TME), such carrier-free nanomedicines could be further enhanced the therapeutic effect via optimizing the species of metal ions. On the other hand, nanomedicines could exert the precise treatment of tumor under the guidance of multiple imaging. Hence, this review summarized the research progress in recent years on the application of natural product-coordinated metal ions in cancer therapy. In addition, the prospects and challenges for the application of natural product-coordinated metal ions were discussed, especially how to improve targeting ability and stability and assess the safety of metal ions, so as to facilitate the clinical translation and application of natural product-coordinated metal ions nanomedicines.
Collapse
Affiliation(s)
- Xinyue Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Suyi Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingyue Jin
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haifan Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Kunhui Sun
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiongqin Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Meifang Li
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Ping Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Yanxu Chang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tiejie Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| | - Xie-An Yu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| |
Collapse
|
9
|
Villacorta AM, Mielcarek A, Martinez MG, Jorge H, Henschke A, Coy E, Gomez-Vallejo V, Llop J, Moya SE. The In Vivo Biological Fate of Protein Corona: A Comparative PET Study of the Fate of Soft and Hard Protein Corona in Healthy Animal Models. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309616. [PMID: 38564782 DOI: 10.1002/smll.202309616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Radiolabeling and nuclear imaging techniques are used to investigate the biodistribution patterns of the soft and hard protein corona around poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) after administration to healthy mice. Soft and hard protein coronas of 131I-labeled BSA or 131I-labeled serum are formed on PLGA NPs functionalized with either polyehtylenimine (PEI) or bovine serum albumin (BSA). The exchangeability of hard and soft corona is assessed in vitro by gamma counting exposing PLGA NPs with corona to non-labeled BSA, serum, or simulated body fluid. PEI PLGA NPs form larger and more stable coronas than BSA PLGA NPs. Soft coronas are more exchangeable than hard ones. The in vivo fate of PEI PLGA NPs coated with preformed 18F-labeled BSA hard and soft coronas is assessed by positron emission tomography (PET) following intravenous administration. While the soft corona shows a biodistribution similar to free 18F BSA with high activity in blood and kidney, the hard corona follows patterns characteristic of nanoparticles, accumulating in the lungs, liver, and spleen. These results show that in vivo fates of soft and hard corona are different, and that soft corona is more easily exchanged with proteins from the body, while hard corona is largely retained on the nanoparticle surface.
Collapse
Affiliation(s)
- Angel Martinez Villacorta
- Radiochemistry and Nuclear Imaging Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, Donostia-San Sebastián, 20014, Spain
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, Donostia-San Sebastián, 20014, Spain
| | - Angelika Mielcarek
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, Poznan, 61-614, Poland
| | - María Gómez Martinez
- Radiochemistry and Nuclear Imaging Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, Donostia-San Sebastián, 20014, Spain
- Universidad del País Vasco/Euskal Herriko Unibertsitatea, Dpto Química Orgánica II/ Facultad de Ciencia y Tecnología, Barrio Sarriena s/n, Leioa, Bizkaia, 48940, Basque
| | - Helena Jorge
- Radiochemistry and Nuclear Imaging Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, Donostia-San Sebastián, 20014, Spain
| | - Agata Henschke
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, Poznan, 61-614, Poland
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, Poznan, 61-614, Poland
| | - Vanessa Gomez-Vallejo
- Radiochemistry and Nuclear Imaging Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, Donostia-San Sebastián, 20014, Spain
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, Donostia-San Sebastián, 20014, Spain
| | - Sergio E Moya
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, Donostia-San Sebastián, 20014, Spain
| |
Collapse
|
10
|
Zhang Z, Liu C, Lu Y, Zhao W, Zhu Q, He H, Chen Z, Wu W. In vivo fluorescence imaging of nanocarriers in near-infrared window II based on aggregation-caused quenching. J Nanobiotechnology 2024; 22:488. [PMID: 39143492 PMCID: PMC11323397 DOI: 10.1186/s12951-024-02761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
Accurate fluorescence imaging of nanocarriers in vivo remains a challenge owing to interference derived mainly from biological tissues and free probes. To address both issues, the current study explored fluorophores in the near-infrared (NIR)-II window with aggregation-caused quenching (ACQ) properties to improve imaging accuracy. Candidate fluorophores with NIR-II emission, ACQ984 (λem = 984 nm) and IR-1060 (λem = 1060 nm), from the aza-BODIPY and cyanine families, respectively, were compared with the commercial fluorophore ICG with NIR-II tail emission and the NIR-I fluorophore P2 from the aza-BODIPY family. ACQ984 demonstrates high water sensitivity with complete fluorescence quenching at a water fraction greater than 50%. Physically embedding the fluorophores illuminates various nanocarriers, while free fluorophores cause negligible interference owing to the ACQ effect. Imaging based on ACQ984 revealed fine structures in the vascular system at high resolution. Moreover, good in vivo and ex vivo correlations in the monitoring of blood nanocarriers can be established, enabling real-time noninvasive in situ investigation of blood pharmacokinetics and dynamic distribution in various tissues. IR-1060 also has a good ACQ effect, but the lack of sufficient photostability and steady post-labeling fluorescence undermines its potential for nanocarrier bioimaging. P2 has an excellent ACQ effect, but its NIR-I emission only provides nondiscriminative ambiguous images. The failure of the non-ACQ probe ICG to display the biodistribution details serves as counterevidence for the improved imaging accuracy by NIR-II ACQ probes. Taken together, it is concluded that fluorescence imaging of nanocarriers based on NIR-II ACQ probes enables accurate in vivo bioimaging and real-time in situ pharmacokinetic analysis.
Collapse
Affiliation(s)
- Zichen Zhang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, China
| | - Chang Liu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, China
| | - Yi Lu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
| | - Weili Zhao
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Haisheng He
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| | - Wei Wu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, China.
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
- Fudan Zhangjiang Institute, Shanghai, 201203, China.
| |
Collapse
|
11
|
Liu T, Wang J, Liu C, Wang Y, Li Z, Yan F. Characterization and Comparison of Contrast Imaging Properties of Naturally Isolated and Heterologously Expressed Gas Vesicles. Pharmaceuticals (Basel) 2024; 17:755. [PMID: 38931421 PMCID: PMC11207003 DOI: 10.3390/ph17060755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Nanoscale ultrasound contrast agents have attracted considerable interest in the medical imaging field for their ability to penetrate tumor vasculature and enable targeted imaging of cancer cells by attaching to tumor-specific ligands. Despite their potential, traditional chemically synthesized contrast agents face challenges related to complex synthesis, poor biocompatibility, and inconsistent imaging due to non-uniform particle sizes. To address these limitations, bio-synthesized nanoscale ultrasound contrast agents have been proposed as a viable alternative, offering advantages such as enhanced biocompatibility, consistent particle size for reliable imaging, and the potential for precise functionalization to improve tumor targeting. In this study, we successfully isolated cylindrical gas vesicles (GVs) from Serratia. 39006 and subsequently introduced the GVs-encoding gene cluster into Escherichia coli using genetic engineering techniques. We then characterized the contrast imaging properties of two kinds of purified GVs, using in vitro and in vivo methods. Our results demonstrated that naturally isolated GVs could produce stable ultrasound contrast signals in murine livers and tumors using clinical diagnostic ultrasound equipment. Additionally, heterologously expressed GVs from gene-engineered bacteria also exhibited good ultrasound contrast performance. Thus, our study presents favorable support for the application of genetic engineering techniques in the modification of gas vesicles for future biomedical practice.
Collapse
Affiliation(s)
- Tingting Liu
- Ultrasonic Medicine, Graduate School, Guangxi University of Chinese Medicine, Nanning 530200, China;
- Department of Ultrasound, The Second People’s Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen 518061, China
| | - Jieqiong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 201206, China;
| | - Chenxing Liu
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (C.L.); (Y.W.)
| | - Yuanyuan Wang
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (C.L.); (Y.W.)
| | - Zhenzhou Li
- Ultrasonic Medicine, Graduate School, Guangxi University of Chinese Medicine, Nanning 530200, China;
- Department of Ultrasound, The Second People’s Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen 518061, China
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (C.L.); (Y.W.)
| |
Collapse
|
12
|
Wang M, Wang Y, Fu Q. Magneto-optical nanosystems for tumor multimodal imaging and therapy in-vivo. Mater Today Bio 2024; 26:101027. [PMID: 38525310 PMCID: PMC10959709 DOI: 10.1016/j.mtbio.2024.101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Multimodal imaging, which combines the strengths of two or more imaging modalities to provide complementary anatomical and molecular information, has emerged as a robust technology for enhancing diagnostic sensitivity and accuracy, as well as improving treatment monitoring. Moreover, the application of multimodal imaging in guiding precision tumor treatment can prevent under- or over-treatment, thereby maximizing the benefits for tumor patients. In recent years, several intriguing magneto-optical nanosystems with both magnetic and optical properties have been developed, leading to significant breakthroughs in the field of multimodal imaging and image-guided tumor therapy. These advancements pave the way for precise tumor medicine. This review summarizes various types of magneto-optical nanosystems developed recently and describes their applications as probes for multimodal imaging and agents for image-guided therapeutic interventions. Finally, future research and development prospects of magneto-optical nanosystems are discussed along with an outlook on their further applications in the biomedical field.
Collapse
Affiliation(s)
- Mengzhen Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yin Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Qingdao University, Jinan, 250014, China
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Qinrui Fu
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Qingdao University, Jinan, 250014, China
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
13
|
Yang Y, Wang Y, Zeng F, Chen Y, Chen Z, Yan F. Ultrasound-visible engineered bacteria for tumor chemo-immunotherapy. Cell Rep Med 2024; 5:101512. [PMID: 38640931 PMCID: PMC11148858 DOI: 10.1016/j.xcrm.2024.101512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/04/2024] [Accepted: 03/20/2024] [Indexed: 04/21/2024]
Abstract
Our previous work developed acoustic response bacteria, which enable the precise tuning of transgene expression through ultrasound. However, it is still difficult to visualize these bacteria in order to guide the sound wave to precisely irradiate them. Here, we develop ultrasound-visible engineered bacteria and chemically modify them with doxorubicin (DOX) on their surfaces. These engineered bacteria (Ec@DIG-GVs) can produce gas vesicles (GVs), providing a real-time imaging guide for remote hyperthermia high-intensity focused ultrasound (hHIFU) to induce the expression of the interferon (IFN)-γ gene. The production of IFN-γ can kill tumor cells, induce macrophage polarization from the M2 to the M1 phenotype, and promote the maturation of dendritic cells. DOX can be released in the acidic tumor microenvironment, resulting in immunogenic cell death of tumor cells. The concurrent effects of IFN-γ and DOX activate a tumor-specific T cell response, producing the synergistic anti-tumor efficacy. Our study provides a promising strategy for bacteria-mediated tumor chemo-immunotherapy.
Collapse
Affiliation(s)
- Yaozhang Yang
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, University of South China, College of Hunan Province, Changsha, Hunan 410028, China; Institution of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuanyuan Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fengyi Zeng
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, University of South China, College of Hunan Province, Changsha, Hunan 410028, China; Institution of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuhao Chen
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Zhiyi Chen
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, University of South China, College of Hunan Province, Changsha, Hunan 410028, China; Institution of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan 410028, China.
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
14
|
Sofias AM, Guo B, Xu J, Lammers T. Image-guided drug delivery: Biomedical and imaging advances. Adv Drug Deliv Rev 2024; 206:115187. [PMID: 38272184 DOI: 10.1016/j.addr.2024.115187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Affiliation(s)
- Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen, Germany.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Jian Xu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
15
|
Su Y, Lv M, Huang Z, An N, Chen Y, Wang H, Li Z, Wu S, Ye F, Shen J, Li A. Defect engineering to tailor structure-activity relationship in biodegradable nanozymes for tumor therapy by dual-channel death strategies. J Control Release 2024; 367:557-571. [PMID: 38301929 DOI: 10.1016/j.jconrel.2024.01.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Pursuing biodegradable nanozymes capable of equipping structure-activity relationship provides new perspectives for tumor-specific therapy. A rapidly degradable nanozymes can address biosecurity concerns. However, it may also reduce the functional stability required for sustaining therapeutic activity. Herein, the defect engineering strategy is employed to fabricate Pt-doping MoOx (PMO) redox nanozymes with rapidly degradable characteristics, and then the PLGA-assembled PMO (PLGA@PMO) by microfluidics chip can settle the conflict between sustaining therapeutic activity and rapid degradability. Density functional theory describes that Pt-doping enables PMO nanozymes to exhibit an excellent multienzyme-mimicking catalytic activity originating from synergistic catalysis center construction with the interaction of Pt substitution and oxygen vacancy defects. The peroxidase- (POD), oxidase- (OXD), glutathione peroxidase- (GSH-Px), and catalase- (CAT) mimicking activities can induce robust ROS output and endogenous glutathione depletion under tumor microenvironment (TME) response, thereby causing ferroptosis in tumor cells by the accumulation of lipid peroxide and inactivation of glutathione peroxidase 4. Due to the activated surface plasmon resonance effect, the PMO nanozymes can cause hyperthermia-induced apoptosis through 1064 nm laser irradiation, and augment multienzyme-mimicking catalytic activity. This work represents a potential biological application for the development of therapeutic strategy for dual-channel death via hyperthermia-augmented enzyme-mimicking nanocatalytic therapy.
Collapse
Affiliation(s)
- Yutian Su
- School of Chemistry and Chemical Engineering, MOE Key Laboratory of High Performance Polymer Materials and Technology, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou 510120, China
| | - Mengdi Lv
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210046, China
| | - Zheng Huang
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Nannan An
- School of Chemistry and Chemical Engineering, MOE Key Laboratory of High Performance Polymer Materials and Technology, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Yi Chen
- School of Chemistry and Chemical Engineering, MOE Key Laboratory of High Performance Polymer Materials and Technology, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Haoru Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou 510120, China
| | - Zhengtu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou 510120, China
| | - Shishan Wu
- School of Chemistry and Chemical Engineering, MOE Key Laboratory of High Performance Polymer Materials and Technology, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China.
| | - Feng Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou 510120, China
| | - Jian Shen
- School of Chemistry and Chemical Engineering, MOE Key Laboratory of High Performance Polymer Materials and Technology, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China; National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210046, China
| | - Ao Li
- Department of Ultrasound, Jiangsu Province People's Hospital, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, China
| |
Collapse
|
16
|
Xiao H, Wu GL, Tan S, Tan X, Yang Q. Recent Progress on Tumor Microenvironment-Activated NIR-II Phototheranostic Agents with Simultaneous Activation for Diagnosis and Treatment. Chem Asian J 2024; 19:e202301036. [PMID: 38230541 DOI: 10.1002/asia.202301036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/18/2024]
Abstract
Malignant tumors seriously threaten human life and well-being. Emerging Near-infrared II (NIR-II, 1000-1700 nm) phototheranostic nanotechnology integrates diagnostic and treatment modalities, offering merits including improved tissue penetration and enhanced spatiotemporal resolution. This remarkable progress has opened promising avenues for advancing tumor theranostic research. The tumor microenvironment (TME) differs from normal tissues, exhibiting distinct attributes such as hypoxia, acidosis, overexpressed hydrogen peroxide, excess glutathione, and other factors. Capitalizing on these attributes, researchers have developed TME-activatable NIR-II phototheranostic agents with diagnostic and therapeutic attributes concurrently. Therefore, developing TME-activatable NIR-II phototheranostic agents with diagnostic and therapeutic activation holds significant research importance. Currently, research on TME-activatable NIR-II phototheranostic agents is still in its preliminary stages. This review examines the recent advances in developing dual-functional NIR-II activatable phototheranostic agents over the past years. It systematically presents NIR-II phototheranostic agents activated by various TME factors such as acidity (pH), hydrogen peroxide (H2 O2 ), glutathione (GSH), hydrogen sulfide (H2 S), enzymes, and their hybrid. This encompasses NIR-II fluorescence and photoacoustic imaging diagnostics, along with therapeutic modalities, including photothermal, photodynamic, chemodynamic, and gas therapies triggered by these TME factors. Lastly, the difficulties and opportunities confronting NIR-II activatable phototheranostic agents in the simultaneous diagnosis and treatment field are highlighted.
Collapse
Affiliation(s)
- Hao Xiao
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Gui-Long Wu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Senyou Tan
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Xiaofeng Tan
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, 53 Xiangchun Road, Changsha City, Hunan Province, 410008, China
| | - Qinglai Yang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, 53 Xiangchun Road, Changsha City, Hunan Province, 410008, China
| |
Collapse
|
17
|
Qin M, Xia H, Xu W, Chen B, Wang Y. The spatiotemporal journey of nanomedicines in solid tumors on their therapeutic efficacy. Adv Drug Deliv Rev 2023; 203:115137. [PMID: 37949414 DOI: 10.1016/j.addr.2023.115137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
The rapid development of nanomedicines is revolutionizing the landscape of cancer treatment, while effectively delivering them into solid tumors remains a formidable challenge. Currently, there is a huge disconnect on therapeutic response between regulatory approved nanomedicines and laboratory reported nanoparticles. The discrepancy is mainly resulted from the failure of using the classic overall pharmacokinetics behaviors of nanomedicines in tumors to predict the antitumor efficacy. Increasing evidence has revealed that the therapeutic efficacy predominantly relies on the intratumoral spatiotemporal distribution of nanomedicines. This review focuses on the spatiotemporal distribution of systemically administered chemotherapeutic nanomedicines in solid tumor. Firstly, the intratumoral biological barriers that regulate the spatiotemporal distribution of nanomedicines are described in detail. Next, the influences on antitumor efficacy caused by the spatial distribution and temporal drug release of nanomedicines are emphatically analyzed. Then, current methodologies for evaluating the spatiotemporal distribution of nanomedicines are summarized. Finally, the advanced strategies to positively modulate the spatiotemporal distribution of nanomedicines for an optimal tumor therapy are comprehensively reviewed.
Collapse
Affiliation(s)
- Mengmeng Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Heming Xia
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Wenhao Xu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Binlong Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Yiguang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China; Chemical Biology Center, Peking University, Beijing, China.
| |
Collapse
|
18
|
Li X, He S, Luo B, Li P, Chen X, Wu M, Song C, Liu C, Yang T, Zhang X, Yang X, Hu J. Engineered Extracellular Vesicles to Enhance Antigen Presentation for Boosting Light-Driven Tumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303541. [PMID: 37608451 DOI: 10.1002/smll.202303541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/26/2023] [Indexed: 08/24/2023]
Abstract
Extracellular vesicles (EVs) have emerged as potential tools for tumor-target therapy accompanied with activating anticancer immune responses by serving as an integrated platform, but usually suffered from the limited cross presentation of tumor-associated antigen by dendritic cells (DCs). Here, a straightforward engineering strategy to construct heat shock proteins 70 (HSP70) highly expressed EVs incapsulated with Te nanoparticles (Te@EVsHSP70 ) for tumor photothermal therapy triggering improved immunotherapy is proposed. Tumor cells are firstly used as bioreactors for intracellular synthesis of Te nanoparticles, and NIR irradiation is subsequently introduced to upregulate the expression of HSP70 to give engineered Te@EVsHSP70 through exocytosis. Te@EVsHSP70 exhibits excellent photothermal performance and enhanced tumor antigen capture capability, which induces significant immunogenic death of tumor cells and improves DCs maturation both in vitro and in vivo. Thus, the engineered EVs demonstrate superior antitumor efficacy through photothermal effect and following provoked antitumor immune responses. This work provides a facile method to fabricate multifunctional EVs-based drug delivery system for improving photothermal-triggered tumor immunotherapy.
Collapse
Affiliation(s)
- Xuyu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shuaicheng He
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ban Luo
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Ophthalmology, Wenchang People's Hospital, Haikou, 571321, China
| | - Puze Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xue Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Meichan Wu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Cheng Song
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tian Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojuan Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Jiangxia Laboratory, Wuhan, 430200, China
| |
Collapse
|
19
|
Liu Y, Qin L, Tan G, Guo Y, Fan Y, Song N, Zhou P, Yan CH, Tang Y. Titanium-Based Superlattice with Fe(III)-Regulable Bandgap and Performance for Optimal and Synergistic Sonodynamic-Chemotherapy Guided by Magnetic Resonance Imaging. Angew Chem Int Ed Engl 2023; 62:e202313165. [PMID: 37828621 DOI: 10.1002/anie.202313165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/14/2023]
Abstract
Superlattices have considerable potential as sonosensitizers for cancer therapy because of their flexible and tunable band gaps, although they have not yet been reported. In this study, a Ti-based organic-inorganic superlattice with good electron-hole separation was synthesized, which consisted of orderly layered superlattices of 2,2'-bipyridine-5,5'-dicarboxylic acid (BPDC) and Ti-O layers. In addition, the superlattice was coordinated with Fe(III) and encapsulated doxorubicin (DOX) to prepare Ti-BPDC@Fe@DOX@PEG (TFDP) after biocompatibility modification. TFDP can realize the simultaneous generation of reactive oxygen species and release of DOX under ultrasound irradiation. Moreover, adjusting the Fe(III) content can effectively modulate the band gap of the superlattice and increase the efficiency of sonodynamic therapy (SDT). The mechanisms underlying this modulation were explored. TFDP with Fe(III) can also be used as a contrast agent for magnetic resonance imaging (MRI). Both in vitro and in vivo experiments demonstrated the ability of TFDP to precisely treat cancer using MRI-guided SDT/chemotherapy. This study expands the applications of superlattices as sonosensitizers with flexible and tailored modifications and indicates that superlattices are promising for precise and customized treatments.
Collapse
Affiliation(s)
- Yanjun Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Liying Qin
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Guoying Tan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yanan Guo
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yifan Fan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Nan Song
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Ping Zhou
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030, P. R. China
| |
Collapse
|
20
|
Zhang C, Cai Y, Pengrui D, Wang J, Wang L, Xu J, Wu Y, Liu W, Chen L, Luo Z, Deng F. Hollow mesoporous organosilica nanoparticles reduced graphene oxide based nanosystem for multimodal image-guided photothermal/photodynamic/chemo combinational therapy triggered by near-infrared. Cell Prolif 2023; 56:e13443. [PMID: 36941019 PMCID: PMC10542620 DOI: 10.1111/cpr.13443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/22/2023] Open
Abstract
Developing a nanosystem that can perform multimodal imaging-guided combination therapy is highly desirable but challenging. In this study, we introduced multifunctional nanoparticles (NPs) consisting of graphene oxide-grafted hollow mesoporous organosilica loaded with the drug doxorubicin (DOX) and photosensitizers tetraphenylporphyrin (TPP). These NPs were encapsulated by thermosensitive liposomes that release their contents once the temperature exceeds a certain threshold. Metal oxide NPs grown on the graphene oxide (GO) surface served multiple roles, including enhancing photothermal efficiency, acting as contrast agents to improve magnetic resonance imaging, increasing the sensitivity and specificity of photoacoustic imaging, and catalysing hydrogen peroxide for the generation of reactive oxygen species (ROS). When locally injected, the HMONs-rNGO@Fe3 O4 /MnOx@FA/DOX/TPP NPs effectively enriched in subcutaneous Hela cell tumour of mice. The photothermal/photodynamic/chemo combination therapy triggered by near-infrared (NIR) successfully suppressed the tumour without noticeable side effects. This study presented a unique approach to develop multimodal imaging-guided combination therapy for cancer.
Collapse
Affiliation(s)
- Chenguang Zhang
- Hospital of Stomatology, Sun Yat‐sen University, Guangdong Provincial Key Laboratory of StomatologyGuangzhouChina
- Guanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouChina
| | - Yuting Cai
- Department of Chemical and Biological EngineeringHong Kong University of Science and TechnologyHong KongChina
| | - Dang Pengrui
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of StomatologyChina Medical UniversityShenyangChina
| | - Jiechen Wang
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- School of Stomatology, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Lu Wang
- Hospital of Stomatology, Sun Yat‐sen University, Guangdong Provincial Key Laboratory of StomatologyGuangzhouChina
- Guanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouChina
| | - Jiayun Xu
- Hospital of Stomatology, Sun Yat‐sen University, Guangdong Provincial Key Laboratory of StomatologyGuangzhouChina
- Guanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouChina
| | - Yuhan Wu
- Hospital of Stomatology, Sun Yat‐sen University, Guangdong Provincial Key Laboratory of StomatologyGuangzhouChina
- Guanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouChina
| | - Wenwen Liu
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijingChina
| | - Lili Chen
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- School of Stomatology, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Zhengtang Luo
- Department of Chemical and Biological EngineeringHong Kong University of Science and TechnologyHong KongChina
| | - Feilong Deng
- Hospital of Stomatology, Sun Yat‐sen University, Guangdong Provincial Key Laboratory of StomatologyGuangzhouChina
- Guanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
21
|
Wang J, Zhao Y, Nie G. Intelligent nanomaterials for cancer therapy: recent progresses and future possibilities. MEDICAL REVIEW (2021) 2023; 3:321-342. [PMID: 38235406 PMCID: PMC10790212 DOI: 10.1515/mr-2023-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/15/2023] [Indexed: 01/19/2024]
Abstract
Intelligent nanomedicine is currently one of the most active frontiers in cancer therapy development. Empowered by the recent progresses of nanobiotechnology, a new generation of multifunctional nanotherapeutics and imaging platforms has remarkably improved our capability to cope with the highly heterogeneous and complicated nature of cancer. With rationally designed multifunctionality and programmable assembly of functional subunits, the in vivo behaviors of intelligent nanosystems have become increasingly tunable, making them more efficient in performing sophisticated actions in physiological and pathological microenvironments. In recent years, intelligent nanomaterial-based theranostic platforms have showed great potential in tumor-targeted delivery, biological barrier circumvention, multi-responsive tumor sensing and drug release, as well as convergence with precise medication approaches such as personalized tumor vaccines. On the other hand, the increasing system complexity of anti-cancer nanomedicines also pose significant challenges in characterization, monitoring and clinical use, requesting a more comprehensive and dynamic understanding of nano-bio interactions. This review aims to briefly summarize the recent progresses achieved by intelligent nanomaterials in tumor-targeted drug delivery, tumor immunotherapy and temporospatially specific tumor imaging, as well as important advances of our knowledge on their interaction with biological systems. In the perspective of clinical translation, we have further discussed the major possibilities provided by disease-oriented development of anti-cancer nanomaterials, highlighting the critical importance clinically-oriented system design.
Collapse
Affiliation(s)
- Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- GBA Research Innovation Institute for Nanotechnology, Guangzhou, Guangdong Province, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
- GBA Research Innovation Institute for Nanotechnology, Guangzhou, Guangdong Province, China
| |
Collapse
|
22
|
Tang P, Shen T, Wang H, Zhang R, Zhang X, Li X, Xiao W. Challenges and opportunities for improving the druggability of natural product: Why need drug delivery system? Biomed Pharmacother 2023; 164:114955. [PMID: 37269810 DOI: 10.1016/j.biopha.2023.114955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
Bioactive natural products (BNPs) are the marrow of medicinal plants, which are the secondary metabolites of organisms and have been the most famous drug discovery database. Bioactive natural products are famous for their enormous number and great safety in medical applications. However, BNPs are troubled by their poor druggability compared with synthesis drugs and are challenged as medicine (only a few BNPs are applied in clinical settings). In order to find a reasonable solution to improving the druggability of BNPs, this review summarizes their bioactive nature based on the enormous pharmacological research and tries to explain the reasons for the poor druggability of BNPs. And then focused on the boosting research on BNPs loaded drug delivery systems, this review further concludes the advantages of drug delivery systems on the druggability improvement of BNPs from the perspective of their bioactive nature, discusses why BNPs need drug delivery systems, and predicts the next direction.
Collapse
Affiliation(s)
- Peng Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Tianze Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Hairong Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xingjie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
23
|
Li Q, Qin S, Tian H, Liu R, Qiao L, Liu S, Li B, Yang M, Shi J, Nice EC, Li J, Lang T, Huang C. Nano-Econazole Enhanced PD-L1 Checkpoint Blockade for Synergistic Antitumor Immunotherapy against Pancreatic Ductal Adenocarcinoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207201. [PMID: 36899444 DOI: 10.1002/smll.202207201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/04/2023] [Indexed: 06/08/2023]
Abstract
Insufficienct T lymphocyte infiltration and unresponsiveness to immune checkpoint blockade therapy are still major difficulties for the clinical treatment of pancreatic ductal adenocarcinoma (PDAC). Although econazole has shown promise in inhibiting PDAC growth, its poor bioavailability and water solubility limit its potential as a clinical therapy for PDAC. Furthermore, the synergistic role of econazole and biliverdin in immune checkpoint blockade therapy in PDAC remains elusive and challenging. Herein, a chemo-phototherapy nanoplatform is designed by which econazole and biliverdin can be co-assembled (defined as FBE NPs), which significantly improve the poor water solubility of econazole and enhance the efficacy of PD-L1 checkpoint blockade therapy against PDAC. Mechanistically, econazole and biliverdin are directly released into the acidic cancer microenvironment, to activate immunogenic cell death via biliverdin-induced PTT/PDT and boost the immunotherapeutic response of PD-L1 blockade. In addition, econazole simultaneously enhances PD-L1 expression to sensitize anti-PD-L1 therapy, leading to suppression of distant tumors, long-term immune memory effects, improved dendritic cell maturation, and tumor infiltration of CD8+ T lymphocytes. The combined FBE NPs and α-PDL1 show synergistic antitumor efficacy. Collectively, FBE NPs show excellent biosafety and antitumor efficacy by combining chemo-phototherapy with PD-L1 blockade, which has promising potential in a precision medicine approach as a PDAC treatment strategy.
Collapse
Affiliation(s)
- Qiong Li
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Siyuan Qin
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Hailong Tian
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Ruolan Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Ling Qiao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Shanshan Liu
- School of Pharmacy, Zunyi Medical University, Zunyi, 563006, P. R. China
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Mei Yang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Jiayan Shi
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Jingquan Li
- Department of Gastrointestinal Oncology Surgery, the First Affiliated Hospital of Hainan Medical University, Hainan Province, Haikou, 570216, P. R. China
| | - Tingyuan Lang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, Chongqing, 400030, P. R. China
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, Chongqing, 400042, P. R. China
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| |
Collapse
|
24
|
Roy S, Bag N, Bardhan S, Hasan I, Guo B. Recent Progress in NIR-II Fluorescence Imaging-guided Drug Delivery for Cancer Theranostics. Adv Drug Deliv Rev 2023; 197:114821. [PMID: 37037263 DOI: 10.1016/j.addr.2023.114821] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
Fluorescence imaging in the second near-infrared window (NIR-II) has become a prevalent choice owing to its appealing advantages like deep penetration depth, low autofluorescence, decent spatiotemporal resolution, and a high signal-to-background ratio. This would expedite the innovation of NIR-II imaging-guided drug delivery (IGDD) paradigms for the improvement of the prognosis of patients with tumors. This work systematically reviews the recent progress of such NIR-II IGDD-mediated cancer therapeutics and collectively brings its essence to the readers. Special care has been taken to assess their performances based on their design approach, such as enhancing their drug loading and triggering release, designing intrinsic and extrinsic fluorophores, and/ or overcoming biological barriers. Besides, the state-of-the-art NIR-II IGDD platforms for different therapies like chemo-, photodynamic, photothermal, chemodynamic, immuno-, ion channel, gas-therapies, and multiple functions such as stimulus-responsive imaging and therapy, and monitoring of drug release and therapeutic response, have been updated. In addition, for boosting theranostic outcomes and clinical translation, the innovation directions of NIR-II IGDD platforms are summarized, including renal-clearable, biodegradable, sub-cellular targeting, and/or afterglow, chemiluminescence, X-ray excitable NIR-IGDD, and even cell therapy. This review will propel new directions for safe and efficient NIR-II fluorescence-mediated anticancer drug delivery.
Collapse
Affiliation(s)
- Shubham Roy
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen-518055, China
| | - Neelanjana Bag
- Department of Physics, Jadavpur University, Kolkata-700032, India
| | - Souravi Bardhan
- Department of Physics, Jadavpur University, Kolkata-700032, India
| | - Ikram Hasan
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Bing Guo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen-518055, China.
| |
Collapse
|
25
|
Cheng P, Liang N, Zhao W, Gong X, Wang W, Sun S. Chitosan-based near-infrared fluorescent micelles for controlled drug delivery and bioimaging in cancer therapy. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
26
|
Zhu J, He G, Chen PH, Zhang Y, Zhang Y, Lei S, Zhang Y, Li M, Huang P, Lin J. Terpyridine-Grafted Nitrogen-Terminal Endowing Cyanine with Metal-Ion-Regulated Photophysical Properties for Cancer Theranostics. RESEARCH (WASHINGTON, D.C.) 2023; 6:0061. [PMID: 36930757 PMCID: PMC10013959 DOI: 10.34133/research.0061] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
Heptamethine cyanines (Cy7) are one of the most important dyes in bioimaging and phototherapy, but they often suffer from poor photostability or limited photothermal conversion efficiency. Here, a facile molecular engineering approach to regulating the photophysical properties of Cy7 by metal ions is demonstrated. By innovatively modifying the nitrogen with functional groups, a novel terpyridine-grafted nitrogen-terminated Cy7 scaffold (denoted as CydtPy) was synthesized and exhibited tunable photophysical properties when chelating with various metal ions (Mn2+, Fe2+, etc.). In comparison with metal-ion-free PEGylated CydtPy (LET-11), Mn2+-chelated LET-11 (namely, LET-11-Mn) exhibited the increased fluorescence emission intensity, and Fe2+-chelated LET-11 (namely, LET-11-Fe) showed the enhanced photostability with ~2-fold increase in photothermal conversion efficiency. By simply switching the chelated metal ion species, LET-11-Mn or LET-11-Fe could be used for near-infrared fluorescence imaging, magnetic resonance imaging, or photoacoustic imaging. Furthermore, LET-11-Fe displayed superior synergistic efficacy of photothermal therapy and chemodynamic therapy both in vitro and in vivo. This work not only provides a new strategy for regulating the photophysical properties of cyanine dyes but also establishes a versatile nanoplatform for cancer theranostics.
Collapse
Affiliation(s)
- Junfei Zhu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Gang He
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Peng-Hang Chen
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yajie Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yafei Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Shan Lei
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yu Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Meng Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| |
Collapse
|
27
|
Jin GW, Rejinold NS, Choy JH. Multifunctional Polymeric Micelles for Cancer Therapy. Polymers (Basel) 2022; 14:polym14224839. [PMID: 36432965 PMCID: PMC9696676 DOI: 10.3390/polym14224839] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Polymeric micelles, nanosized assemblies of amphiphilic polymers with a core-shell architecture, have been used as carriers for various therapeutic compounds. They have gained attention due to specific properties such as their capacity to solubilize poorly water-soluble drugs, biocompatibility, and the ability to accumulate in tumor via enhanced permeability and retention (EPR). Moreover, additional functionality can be provided to the micelles by a further modification. For example, micelle surface modification with targeting ligands allows a specific targeting and enhanced tumor accumulation. The introduction of stimuli-sensitive groups leads to the drug's release in response to environment change. This review highlights the progress in the development of multifunctional polymeric micelles in the field of cancer therapy. This review will also cover some examples of multifunctional polymeric micelles that are applied for tumor imaging and theragnosis.
Collapse
Affiliation(s)
- Geun-Woo Jin
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- R & D Center, CnPharm Co., Ltd., Seoul 03759, Korea
| | | | - Jin-Ho Choy
- R & D Center, CnPharm Co., Ltd., Seoul 03759, Korea
- Division of Natural Sciences, The National Academy of Sciences, Seoul 06579, Korea
- Department of Pre-Medical Course, College of Medicine, Dankook University, Cheonan 31116, Korea
- International Research Frontier Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Correspondence:
| |
Collapse
|
28
|
Choi KA, Kim JH, Ryu K, Kaushik N. Current Nanomedicine for Targeted Vascular Disease Treatment: Trends and Perspectives. Int J Mol Sci 2022; 23:12397. [PMID: 36293254 PMCID: PMC9604340 DOI: 10.3390/ijms232012397] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 12/19/2022] Open
Abstract
Nanotechnology has been developed to deliver cargos effectively to the vascular system. Nanomedicine is a novel and effective approach for targeted vascular disease treatment including atherosclerosis, coronary artery disease, strokes, peripheral arterial disease, and cancer. It has been well known for some time that vascular disease patients have a higher cancer risk than the general population. During atherogenesis, the endothelial cells are activated to increase the expression of adhesion molecules such as Intercellular Adhesion Molecule 1 (ICAM-1), Vascular cell adhesion protein 1 (VCAM-1), E-selectin, and P-selectin. This biological activation of endothelial cells gives a targetability clue for nanoparticle strategies. Nanoparticle formation has a passive targeting pathway due to the increased adhesion molecule expression on the cell surface as well as increased cell activation. In addition, the VCAM-1-targeting peptide has been widely used to target the inflamed endothelial cells. Biomimetic nanoparticles using platelet and leukocyte membrane fragment strategies have been promising techniques for targeted vascular disease treatment. Cyclodextrin, a natural oligosaccharide with a hydrophobic cavity, increase the solubility of cholesterol crystals at the atherosclerotic plaque site and has been used to deliver the hydrophobic drug statin as a therapeutic in a targeted manner. In summary, nanoparticles decorated with various targeting molecules will be an effective and promising strategy for targeted vascular disease treatment.
Collapse
Affiliation(s)
- Kyung-A Choi
- National Institute of Medical Welfare, Kangnam University, Yongin 16979, Korea
| | - June Hyun Kim
- Department of Biotechnology, The University of Suwon, Suwon 18323, Korea
| | - Kitae Ryu
- Department of Biotechnology, The University of Suwon, Suwon 18323, Korea
| | - Neha Kaushik
- Department of Biotechnology, The University of Suwon, Suwon 18323, Korea
| |
Collapse
|
29
|
Bober Z, Aebisher D, Olek M, Kawczyk-Krupka A, Bartusik-Aebisher D. Multiple Cell Cultures for MRI Analysis. Int J Mol Sci 2022; 23:10109. [PMID: 36077507 PMCID: PMC9456466 DOI: 10.3390/ijms231710109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Magnetic resonance imaging (MRI) is an imaging method that enables diagnostics. In recent years, this technique has been widely used for research using cell cultures used in pharmaceutical science to understand the distribution of various drugs in a variety of biological samples, from cellular models to tissues. MRI's dynamic development in recent years, in addition to diagnostics, has allowed the method to be implemented to assess response to applied therapies. Conventional MRI imaging provides anatomical and pathological information. Due to advanced technology, MRI provides physiological information. The use of cell cultures is very important in the process of testing new synthesized drugs, cancer research, and stem cell research, among others. Two-dimensional (2D) cell cultures conducted under laboratory conditions, although they provide a lot of information, do not reflect the basic characteristics of the tumor. To replicate the tumor microenvironment in science, a three-dimensional (3D) culture of tumor cells was developed. This makes it possible to reproduce in vivo conditions where, in addition, there is a complex and dynamic process of cell-to-cell communication and cell-matrix interaction. In this work, we reviewed current research in 2D and 3D cultures and their use in MRI studies. Articles for each section were collected from PubMed, ScienceDirect, Web of Science, and Google Scholar.
Collapse
Affiliation(s)
- Zuzanna Bober
- Department of Photomedicine and Physical Chemistry, Medical College of Rzeszów University, University of Rzeszów, 35-310 Rzeszów, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of Rzeszów University, University of Rzeszów, 35-310 Rzeszów, Poland
| | - Marcin Olek
- Department of Orthodontics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Aleksandra Kawczyk-Krupka
- Center for Laser Diagnostics and Therapy, Department of Internal Medicine, Angiology and Physical Medicine, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of Rzeszów University, University of Rzeszów, 35-310 Rzeszów, Poland
| |
Collapse
|
30
|
Luo S, Qin S, Oudeng G, Zhang L. Iron-Based Hollow Nanoplatforms for Cancer Imaging and Theranostics. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3023. [PMID: 36080059 PMCID: PMC9457987 DOI: 10.3390/nano12173023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 05/27/2023]
Abstract
Over the past decade, iron (Fe)-based hollow nanoplatforms (Fe-HNPs) have attracted increasing attention for cancer theranostics, due to their high safety and superior diagnostic/therapeutic features. Specifically, Fe-involved components can serve as magnetic resonance imaging (MRI) contrast agents (CAs) and Fenton-like/photothermal/magnetic hyperthermia (MTH) therapy agents, while the cavities are able to load various small molecules (e.g., fluorescent dyes, chemotherapeutic drugs, photosensitizers, etc.) to allow multifunctional all-in-one theranostics. In this review, the recent advances of Fe-HNPs for cancer imaging and treatment are summarized. Firstly, the use of Fe-HNPs in single T1-weighted MRI and T2-weighted MRI, T1-/T2-weighted dual-modal MRI as well as other dual-modal imaging modalities are presented. Secondly, diverse Fe-HNPs, including hollow iron oxide (IO) nanoparticles (NPs), hollow matrix-supported IO NPs, hollow Fe-complex NPs and hollow Prussian blue (PB) NPs are described for MRI-guided therapies. Lastly, the potential clinical obstacles and implications for future research of these hollow Fe-based nanotheranostics are discussed.
Collapse
Affiliation(s)
- Shun Luo
- Key Laboratory for Photoelectronic Technology and Application, Guizhou University, Guiyang 550025, China
| | - Shuijie Qin
- Key Laboratory for Photoelectronic Technology and Application, Guizhou University, Guiyang 550025, China
| | - Gerile Oudeng
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Futian, Shenzhen 518038, China
| | - Li Zhang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|