1
|
Pessoa RT, Santos da Silva LY, Alcântara IS, Silva TM, Silva EDS, da Costa RHS, da Silva AB, Ribeiro-Filho J, Pereira Bezerra Martins AOB, Coutinho HDM, Sousa JCP, Chaves AR, Marreto RN, de Menezes IRA. Antinociceptive Potential of Ximenia americana L. Bark Extract and Caffeic Acid: Insights into Pain Modulation Pathways. Pharmaceuticals (Basel) 2024; 17:1671. [PMID: 39770512 PMCID: PMC11677608 DOI: 10.3390/ph17121671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/28/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: This study evaluated the antinociceptive effect of the Ximenia americana L. bark extract (HEXA) and its primary component, caffeic acid (CA), through in vivo assays. Methods: The antinociceptive properties were assessed using abdominal writhing, hot plate, and Von Frey tests. Additionally, the study investigated the modulation of various pain signaling pathways using a pharmacological approach. Results: The results demonstrated that all doses of the HEXA significantly increased latency in the hot plate test, decreased the number of abdominal contortions, reduced hyperalgesia in the Von Frey test, and reduced both phases of the formalin test. Caffeic acid reduced licking time in the first phase of the formalin test at all doses, with the highest dose showing significant effects in the second phase. The HEXA potentially modulated α2-adrenergic (52.99%), nitric oxide (57.77%), glutamatergic (33.66%), vanilloid (39.84%), cyclic guanosine monophosphate (56.11%), and K+ATP channel-dependent pathways (38.70%). Conversely, CA influenced the opioid, glutamatergic (53.60%), and vanilloid (34.42%) pathways while inhibiting nitric oxide (52.99%) and cyclic guanosine monophosphate (38.98%). Conclusions: HEXA and CA exhibit significant antinociceptive effects due to their potential interference in multiple pain signaling pathways. While the molecular targets remain to be fully investigated, HEXA and CA demonstrate significant potential for the development of new analgesic drugs.
Collapse
Affiliation(s)
- Renata Torres Pessoa
- Laboratory of Pharmacology and Molecular Chemistry, Department of Chemical Biology, Regional University of Cariri (URCA), Rua Coronel Antônio Luis 1161, Pimenta, Crato 63105-000, Ceará, Brazil; (R.T.P.); (L.Y.S.d.S.); (I.S.A.); (T.M.S.); (E.d.S.S.); (R.H.S.d.C.); (A.B.d.S.); (J.R.-F.); (A.O.B.P.B.M.)
| | - Lucas Yure Santos da Silva
- Laboratory of Pharmacology and Molecular Chemistry, Department of Chemical Biology, Regional University of Cariri (URCA), Rua Coronel Antônio Luis 1161, Pimenta, Crato 63105-000, Ceará, Brazil; (R.T.P.); (L.Y.S.d.S.); (I.S.A.); (T.M.S.); (E.d.S.S.); (R.H.S.d.C.); (A.B.d.S.); (J.R.-F.); (A.O.B.P.B.M.)
| | - Isabel Sousa Alcântara
- Laboratory of Pharmacology and Molecular Chemistry, Department of Chemical Biology, Regional University of Cariri (URCA), Rua Coronel Antônio Luis 1161, Pimenta, Crato 63105-000, Ceará, Brazil; (R.T.P.); (L.Y.S.d.S.); (I.S.A.); (T.M.S.); (E.d.S.S.); (R.H.S.d.C.); (A.B.d.S.); (J.R.-F.); (A.O.B.P.B.M.)
| | - Tarcísio Mendes Silva
- Laboratory of Pharmacology and Molecular Chemistry, Department of Chemical Biology, Regional University of Cariri (URCA), Rua Coronel Antônio Luis 1161, Pimenta, Crato 63105-000, Ceará, Brazil; (R.T.P.); (L.Y.S.d.S.); (I.S.A.); (T.M.S.); (E.d.S.S.); (R.H.S.d.C.); (A.B.d.S.); (J.R.-F.); (A.O.B.P.B.M.)
| | - Eduardo dos Santos Silva
- Laboratory of Pharmacology and Molecular Chemistry, Department of Chemical Biology, Regional University of Cariri (URCA), Rua Coronel Antônio Luis 1161, Pimenta, Crato 63105-000, Ceará, Brazil; (R.T.P.); (L.Y.S.d.S.); (I.S.A.); (T.M.S.); (E.d.S.S.); (R.H.S.d.C.); (A.B.d.S.); (J.R.-F.); (A.O.B.P.B.M.)
| | - Roger Henrique Sousa da Costa
- Laboratory of Pharmacology and Molecular Chemistry, Department of Chemical Biology, Regional University of Cariri (URCA), Rua Coronel Antônio Luis 1161, Pimenta, Crato 63105-000, Ceará, Brazil; (R.T.P.); (L.Y.S.d.S.); (I.S.A.); (T.M.S.); (E.d.S.S.); (R.H.S.d.C.); (A.B.d.S.); (J.R.-F.); (A.O.B.P.B.M.)
| | - Aparecida Barros da Silva
- Laboratory of Pharmacology and Molecular Chemistry, Department of Chemical Biology, Regional University of Cariri (URCA), Rua Coronel Antônio Luis 1161, Pimenta, Crato 63105-000, Ceará, Brazil; (R.T.P.); (L.Y.S.d.S.); (I.S.A.); (T.M.S.); (E.d.S.S.); (R.H.S.d.C.); (A.B.d.S.); (J.R.-F.); (A.O.B.P.B.M.)
| | - Jaime Ribeiro-Filho
- Laboratory of Pharmacology and Molecular Chemistry, Department of Chemical Biology, Regional University of Cariri (URCA), Rua Coronel Antônio Luis 1161, Pimenta, Crato 63105-000, Ceará, Brazil; (R.T.P.); (L.Y.S.d.S.); (I.S.A.); (T.M.S.); (E.d.S.S.); (R.H.S.d.C.); (A.B.d.S.); (J.R.-F.); (A.O.B.P.B.M.)
- Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Ceará, R. São José, S/N—Precabura, Eusébio 61773-270, Ceará, Brazil
| | - Anita Oliveira Brito Pereira Bezerra Martins
- Laboratory of Pharmacology and Molecular Chemistry, Department of Chemical Biology, Regional University of Cariri (URCA), Rua Coronel Antônio Luis 1161, Pimenta, Crato 63105-000, Ceará, Brazil; (R.T.P.); (L.Y.S.d.S.); (I.S.A.); (T.M.S.); (E.d.S.S.); (R.H.S.d.C.); (A.B.d.S.); (J.R.-F.); (A.O.B.P.B.M.)
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil;
| | - Jean Carlos Pereira Sousa
- Institute of Chemistry, Federal University of Goiás, Goiânia 74001-970, Goiás, Brazil; (J.C.P.S.); (A.R.C.)
| | - Andréa Rodrigues Chaves
- Institute of Chemistry, Federal University of Goiás, Goiânia 74001-970, Goiás, Brazil; (J.C.P.S.); (A.R.C.)
| | | | - Irwin Rose Alencar de Menezes
- Laboratory of Pharmacology and Molecular Chemistry, Department of Chemical Biology, Regional University of Cariri (URCA), Rua Coronel Antônio Luis 1161, Pimenta, Crato 63105-000, Ceará, Brazil; (R.T.P.); (L.Y.S.d.S.); (I.S.A.); (T.M.S.); (E.d.S.S.); (R.H.S.d.C.); (A.B.d.S.); (J.R.-F.); (A.O.B.P.B.M.)
| |
Collapse
|
2
|
Chen Z, Świsłocka R, Choińska R, Marszałek K, Dąbrowska A, Lewandowski W, Lewandowska H. Exploring the Correlation Between the Molecular Structure and Biological Activities of Metal-Phenolic Compound Complexes: Research and Description of the Role of Metal Ions in Improving the Antioxidant Activities of Phenolic Compounds. Int J Mol Sci 2024; 25:11775. [PMID: 39519325 PMCID: PMC11546605 DOI: 10.3390/ijms252111775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
We discussed and summarized the latest data from the global literature on the action of polyphenolic antioxidants and their metal complexes. The review also includes a summary of the outcomes of theoretical computations and our many years of experimental experience. We employed various methods, including spectroscopy (FT-IR, FT-Raman, NMR, UV/Vis), X-ray diffraction, thermal analysis, quantum calculations, and biological assays (DPPH, ABTS, FRAP, cytotoxicity, and genotoxicity tests). According to our research, the number and position of hydroxyl groups in aromatic rings, as well as the delocalization of electron charge and conjugated double bonds, have a major impact on the antioxidant effectiveness of the studied compounds. Another important factor is metal complexation, whereby high ionic potential metals (e.g., Fe(III), Cr(III), Cu(II)) enhance antioxidant properties by stabilizing electron charge, while the low ionic potential metals (e.g., Ag(I), Hg(II), Pb(II)) reduce efficacy by disrupting electron distribution. However, we observed no simple correlation between ionic potential and antioxidant capacity. This paper gives insights that will aid in identifying new, effective antioxidants, which are vital for nutrition and the prevention of neurodegenerative illnesses. Our results outline the connections between biological activity and molecular structure, offering a foundation for the methodical design of antioxidants. Our review also shows in detail how we use various complementary methods to assess the impact of metals on the electronic systems of ligands. This approach moves beyond the traditional "trial and error" method, allowing for the more efficient and rational development of future antioxidants.
Collapse
Affiliation(s)
- Zhe Chen
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, ul. Rakowiecka 36, 02-532 Warsaw, Poland; (Z.C.); (R.Ś.); (R.C.); (K.M.)
| | - Renata Świsłocka
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, ul. Rakowiecka 36, 02-532 Warsaw, Poland; (Z.C.); (R.Ś.); (R.C.); (K.M.)
- Department of Chemistry Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland;
| | - Renata Choińska
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, ul. Rakowiecka 36, 02-532 Warsaw, Poland; (Z.C.); (R.Ś.); (R.C.); (K.M.)
| | - Krystian Marszałek
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, ul. Rakowiecka 36, 02-532 Warsaw, Poland; (Z.C.); (R.Ś.); (R.C.); (K.M.)
| | - Aleksandra Dąbrowska
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, ul. Rakowiecka 36, 02-532 Warsaw, Poland; (Z.C.); (R.Ś.); (R.C.); (K.M.)
| | - Włodzimierz Lewandowski
- Department of Chemistry Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland;
| | - Hanna Lewandowska
- School of Health & Medical Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043 Warsaw, Poland
- Centre for Radiation Research and Technology, Institute of Nuclear Chemistry and Technology 16 Dorodna St., 03-195 Warsaw, Poland
| |
Collapse
|
3
|
Hernández-Ayala LF, Guzmán-López EG, Pérez-González A, Reina M, Galano A. Molecular Insights on Coffee Components as Chemical Antioxidants. J MEX CHEM SOC 2024; 68:888-969. [DOI: 10.29356/jmcs.v68i4.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.
Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.
Collapse
|
4
|
Abdel-Aty AM, Barakat AZ, Bassuiny RI, Mohamed SA. Chia gum-gelatin-based encapsulation of chia sprouts phenolic compounds enhanced storage stability, bioavailability, antioxidant, antidiabetic, and antibacterial properties. Sci Rep 2024; 14:22023. [PMID: 39322745 PMCID: PMC11424621 DOI: 10.1038/s41598-024-71913-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
Chia seeds are currently gaining popularity as functional and healthy foods. The developed chia 7-day sprout phenolic extract (CSP) is an abundant supply of highly concentrated antioxidant phenolic compounds with health-promoting and antibacterial properties. The easy destruction against different environmental changes and low bioavailability of these phenolic compounds are the main limitations of their applications/utilization. This study aims to microencapsulate the phenolic compounds of developed CSP for use as valuable functional food additives. Three microcapsules were prepared using coating materials, chia gum (CG), gelatin (G), and their mixture (CG/G) via the freeze-drying technique. The prepared CG-, CG/G-, and G-microcapsules demonstrated high encapsulation efficiency percentages of 97.0, 98.1, and 94.5%, respectively. They retained most of the CSP-phenolics (91.4-97.2%) and increased total antioxidant activity (108-127.1%). The prepared microcapsules released more CSP-phenolic compounds into the simulated intestinal stage (70-82%) than the gastric stage (15-24%), demonstrating that the coating materials enhance protection during the gastric stage. The produced microcapsules exhibited higher storage stability at 40 °C for 60 days than the non-capsulated CSP, indicating that the encapsulation provided enhanced stability. The prepared microcapsules microstructures showed uniform, smoother surfaces, and hidden micropores compared to their coating material microstructures. In addition, the connection between the functional groups of coating materials and CSP-phenolic compounds was demonstrated by FTIR analysis. The prepared CG-, CG/G-, and G-microcapsules can perfectly inhibit the α-amylase and α-glucosidase activities by 65, 68, 60 and 74, 78, and 70%, respectively, compared to CSP (54, and 66%). The three prepared microcapsules displayed better antibacterial with low MBC values (0.36-0.68 mg ml-1) compared to CSP (0.53-0.74 mg ml-1). The prepared CSP microcapsules can be incorporated into various food products to enhance their antioxidant, antidiabetic, and antibacterial properties.
Collapse
Affiliation(s)
- Azza M Abdel-Aty
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt.
| | - Amal Z Barakat
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Roqaya I Bassuiny
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Saleh A Mohamed
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
5
|
Zhang D, Gao W, Cui X, Qiao R, Li C. Caffeic Acid and Cyclen-Based Hydrogel for Synergistic Antibacterial Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44493-44503. [PMID: 39143929 DOI: 10.1021/acsami.4c09037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Caffeic acid is a natural product that contains both phenolic and acrylic functional groups and has been widely employed as an alternative drug to combat chronic infections induced by microbes such as bacteria, fungi, and viruses. Several strategies, including derivatization and nanoformulation, have been applied in order to overcome the issues of water insolubility, poor stability, and the bioavailability of caffeic acid. Here, caffeic acid and cyclen-Zn(II) are incorporated into a G4-assembly by using a phenylborate linker to form the mixed supramolecular prodrug GB-CA/Cy-Zn(II) hydrogel. The delivery system is expected to enhance antibacterial and anti-inflammatory properties during the wound healing process through the synergistic effect of caffeic acid and cyclen-Zn(II). The preparation and physicochemical and mechanical properties of the hydrogel were investigated by NMR, CD, TEM, and rheological assays. The typical inflammatory cytokines and in vitro antibacterial experiments indicated that inflammation and infection can be significant suppressed by the hydrogel treatment. An in vivo infected wound model treated by the hydrogel showed rapid wound healing capacity and biosafety. The current work depicts a simple method to prepare a caffeic acid hydrogel carrier, which facilitates synergistic treatment for inflammation and bacterial infections at the wound site.
Collapse
Affiliation(s)
- Di Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Wei Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xu Cui
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Renzhong Qiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Chao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
6
|
Kalinowska M, Świsłocka R, Wołejko E, Jabłońska-Trypuć A, Wydro U, Kozłowski M, Koronkiewicz K, Piekut J, Lewandowski W. Structural characterization and evaluation of antimicrobial and cytotoxic activity of six plant phenolic acids. PLoS One 2024; 19:e0299372. [PMID: 38885237 PMCID: PMC11182523 DOI: 10.1371/journal.pone.0299372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/08/2024] [Indexed: 06/20/2024] Open
Abstract
Phenolic acids still gain significant attention due to their potential antimicrobial and cytotoxic properties. In this study, we have investigated the antimicrobial of six phenolic acids, namely chlorogenic, caffeic, p-coumaric, rosmarinic, gallic and tannic acids in the concentration range 0.5-500 μM, against Escherichia coli and Lactobacillus rhamnosus. The antimicrobial activity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay. Additionally, the cytotoxic effects of these phenolic acids on two cancer cell lines, the colorectal adenocarcinoma Caco-2 cell line and Dukes' type C colorectal adenocarcinoma DLD-1 cell line was examined. To further understand the molecular properties of these phenolic acids, quantum chemical calculations were performed using the Gaussian 09W program. Parameters such as ionization potential, electron affinity, electronegativity, chemical hardness, chemical softness, dipole moment, and electrophilicity index were obtained. The lipophilicity properties represented by logP parameter was also discussed. This study provides a comprehensive evaluation of the antimicrobial and cytotoxic activity of six phenolic acids, compounds deliberately selected due to their chemical structure. They are derivatives of benzoic or cinnamic acids with the increasing number of hydroxyl groups in the aromatic ring. The integration of experimental and computational methodologies provides a knowledge of the molecular characteristics of bioactive compounds and partial explanation of the relationship between the molecular structure and biological properties. This knowledge aids in guiding the development of bioactive components for use in dietary supplements, functional foods and pharmaceutical drugs.
Collapse
Affiliation(s)
- Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Bialystok, Poland
| | - Renata Świsłocka
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Bialystok, Poland
| | - Elżbieta Wołejko
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Bialystok, Poland
| | - Agata Jabłońska-Trypuć
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Bialystok, Poland
| | - Urszula Wydro
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Bialystok, Poland
| | - Maciej Kozłowski
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Bialystok, Poland
| | - Kamila Koronkiewicz
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Bialystok, Poland
| | - Jolanta Piekut
- Department of Agri-Food Engineering and Environmental Management, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Bialystok, Poland
| | - Włodzimierz Lewandowski
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Bialystok, Poland
| |
Collapse
|
7
|
Wang Y, Liang Z, Cao Y, Hung CH, Du R, Leung ASL, So PK, Chan PH, Wong WL, Leung YC, Wong KY. Discovery of a novel class of rosmarinic acid derivatives as antibacterial agents: Synthesis, structure-activity relationship and mechanism of action. Bioorg Chem 2024; 146:107318. [PMID: 38579613 DOI: 10.1016/j.bioorg.2024.107318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 04/07/2024]
Abstract
Twenty-seven rosmarinic acid derivatives were synthesized, among which compound RA-N8 exhibited the most potent antibacterial ability. The minimum inhibition concentration of RA-N8 against both S. aureus (ATCC 29213) and MRSA (ATCC BAA41 and ATCC 43300) was found to be 6 μg/mL, and RA-N8 killed E. coli (ATCC 25922) at 3 μg/mL in the presence of polymyxin B nonapeptide (PMBN) which increased the permeability of E. coli. RA-N8 exhibited a weak hemolytic effect at the minimum inhibitory concentration. SYTOX Green assay, SEM, and LIVE/DEAD fluorescence staining assay proved that the mode of action of RA-N8 is targeting bacterial cell membranes. Furthermore, no resistance in wildtype S. aureus developed after incubation with RA-N8 for 20 passages. Cytotoxicity studies further demonstrated that RA-N8 is non-toxic to the human normal cell line (HFF1). RA-N8 also exerted potent inhibitory ability against biofilm formation of S. aureus and even collapsed the shaped biofilm.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Zhiguang Liang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yihui Cao
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Cheung-Hin Hung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Ruolan Du
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Alan Siu-Lun Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Pui-Kin So
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Pak-Ho Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yun-Chung Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Kwok-Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
8
|
He J, He Z, Wang H, Zhang C, Pei T, Yan S, Yan Y, Wang F, Chen Y, Yuan N, Wang M, Xiao W. Caffeic acid alleviates skeletal muscle atrophy in 5/6 nephrectomy rats through the TLR4/MYD88/NF-kB pathway. Biomed Pharmacother 2024; 174:116556. [PMID: 38636398 DOI: 10.1016/j.biopha.2024.116556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
Skeletal muscle atrophy is a common complication of chronic kidney disease (CKD) that affects the quality of life and prognosis of patients. We aimed to investigate the effects and mechanisms of caffeic acid (CA), a natural phenolic compound, on skeletal muscle atrophy in CKD rats. Male Sprague-Dawley rats underwent 5/6 nephrectomy (NPM) and were treated with CA (20, 40, or 80 mg/kg/day) for 10 weeks. The body and muscle weights, renal function, hemoglobin, and albumin were measured. The histological, molecular, and biochemical changes in skeletal muscles were evaluated using hematoxylin-eosin staining, quantitative real-time PCR, malondialdehyde/catalase/superoxide dismutase/glutathione level detection, and enzyme-linked immunosorbent assay. Western blotting and network pharmacology were applied to identify the potential targets and pathways of CA, CKD, and muscle atrophy. The results showed that CA significantly improved NPM-induced muscle-catabolic effects, reduced the expression of muscle atrophy-related proteins (muscle atrophy F-box and muscle RING finger 1) and proinflammatory cytokines (interleukin [IL]-6, tumor necrosis factor-alpha, and IL-1β), and attenuated muscle oxidative stress. Network pharmacology revealed that CA modulated the response to oxidative stress and nuclear factor kappa B (NF-κB) signaling pathway and that Toll-like receptor 4 (TLR4) was a key target. In vivo experiment confirmed that CA inhibited the TLR4/myeloid differentiation primary response 88 (MYD88)/NF-kB signaling pathway, reduced muscle iron levels, and restored glutathione peroxidase 4 activity, thereby alleviating ferroptosis and inflammation in skeletal muscles. Thus, CA might be a promising therapeutic agent for preventing and treating skeletal muscle atrophy in CKD by modulating the TLR4/MYD88/NF-κB pathway and ferroptosis.
Collapse
Affiliation(s)
- Jinyue He
- School of traditional Chinese medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhuoen He
- School of traditional Chinese medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hao Wang
- School of traditional Chinese medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chi Zhang
- School of traditional Chinese medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Tingting Pei
- School of traditional Chinese medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shihua Yan
- School of traditional Chinese medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yangtian Yan
- School of traditional Chinese medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fujing Wang
- School of traditional Chinese medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yuchi Chen
- School of traditional Chinese medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ningning Yuan
- School of traditional Chinese medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Mingqing Wang
- School of traditional Chinese medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Wei Xiao
- School of traditional Chinese medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
9
|
Arab N, Fotouhi L, Shokouhi M, A Mehrgardi M, Salis A. A multichannel closed bipolar platform to visual electrochemiluminescence sensing of caffeic acid as a model: Potential for multiplex detection. Anal Chim Acta 2024; 1287:342087. [PMID: 38182342 DOI: 10.1016/j.aca.2023.342087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024]
Abstract
In this study, a fully-featured electrochemiluminescence (ECL) sensing platform based on a multichannel closed bipolar system (closed-BP, C-BP) for the determination of caffeic acid (CA) was successfully developed. The system comprises three individual reservoirs connected to each other by two pairs of gold rods as bipolar electrodes. Moreover, a single pair of gold rods functions as the driving electrodes. Due to configuration consisting of three channels and double-bipolar electrodes, the detection of CA was accomplished in two oxidation and reduction pathways within a single device. Firstly, through close observation of the reactions occurring within the device and utilizing a universal pH indicator and bipolar electrodes, a precise mechanism for the current bipolar systems was initially proposed. Then, the concentration of CA was monitored in the reporting chamber through the following ECL intensities resulting from luminol oxidation and H2O2. The monitoring process was performed using both a photomultiplier tube (PMT) and a digital camera. In the process of analyte oxidation, the PMT and visual (camera)-based detection exhibited a linear response from 5 μmol L-1 to 700 μmol L-1 (limit of detection (LOD) 1.2 μmol L-1) and 50 μmol L-1 to 600 μmol L-1 (LOD 14.8 μmol L-1), respectively. In the analyte reduction pathway, the respective values were 30 μmol L-1 to 450 μmol L-1 (LOD 8.6 μmol L-1) and 55 μmol L-1 to 400 μmol L-1 (LOD 21.2 μmol L-1), for the PMT and visual-based detection, respectively. Our experiments have demonstrated the practical application of the sensor array for efficient and high-performance analysis. This innovative design holds significant potential for diverse fields and paves the way for the development of a user-friendly device.
Collapse
Affiliation(s)
- Nastaran Arab
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| | - Lida Fotouhi
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran; Analytical and Bioanalytical Research Centre (ABRC), Alzahra University, Tehran, Iran.
| | - Maryam Shokouhi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Masoud A Mehrgardi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Andrea Salis
- Department of Chemical and Geological Sciences, University of Cagliari, CSGI & CNBS, Cittadella Universitaria, SS 554 Bivio Sestu, 09042, Monserrato, CA, Italy
| |
Collapse
|
10
|
Eno EA, Cheng CR, Louis H, Gber TE, Emori W, Ita IAT, Unimke TO, Ling L, Adalikwu SA, Agwamba EC, Adeyinka AS. Investigation on the molecular, electronic and spectroscopic properties of rosmarinic acid: an intuition from an experimental and computational perspective. J Biomol Struct Dyn 2023; 41:10287-10301. [PMID: 36546691 DOI: 10.1080/07391102.2022.2154841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022]
Abstract
Various drugs such as corticosteroids, salbutamol, and β2 agonist are available for the treatment of asthma an inflammatory disease and its symptoms, although the ingredient and the mode of action of these drugs are not clearly elucidated. Hence this research aimed at carrying out improved scientific research with respect to the use of natural product rosmarinic acid which poses minima, side effects. Herein, we first carried out extraction, isolation, and spectroscopic (FT-IR, 1H-NMR and 13C-NMR) investigation, followed by molecular modeling analysis on the naturally occurring rosmarinic acid extracted from Rosmarinus officinalis. A detailed comparison of the experimental and theoretical vibrational analysis has been carried out using five DFT functionals: BHANDH, HSEH1PBE, M06-2X, MPW3PBE and THCTHHYB with the basis set 6-311++G (d, p) to investigate into the structural, reactivity, and stability of the isolated compound. Frontier molecular orbital analysis and appropriate quantum descriptors were calculated. Results showed that the compound was more stable at M06-2X and more reactive at HSEH1PBE with an energy gap of 6.43441 eV and 3.8047 eV, respectively, which was later affirmed by the global quantum reactivity parameters. From natural bond orbital analysis, π* → π* is the major contributor to electron transition with the summation perturbation energy of 889.57 kcal/mol, while π → π* had the perturbation energy totaling of 145.3 kcal/mol. Geometry analysis shows BHANDH to have lower bond length values and lesser deviation from 120° in carbon-carbon angle. The potency of the title molecule as an asthma drug was tested via a molecular docking approach and the binding score of -8.2 kcal/mol was observed against -7.0 of salbutamol standard drug, suggesting romarinic acid as a potential natural organic treatment for asthma.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ededet A Eno
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Chun-Ru Cheng
- Key Laboratory of Material Corrosion and Protection of Sichuan Province, Zigong, Sichuan, PR China
- College of Chemical Engineering, Institute of Pharmaceutical Engineering Technology and Application, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science & Engineering, Zigong, Sichuan, PR China
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Terkumbur E Gber
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Wilfred Emori
- Key Laboratory of Material Corrosion and Protection of Sichuan Province, Zigong, Sichuan, PR China
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, PR China
| | - Ima-Abasi T Ita
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Tomsmith O Unimke
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Liu Ling
- College of Chemical Engineering, Institute of Pharmaceutical Engineering Technology and Application, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science & Engineering, Zigong, Sichuan, PR China
| | - Stephen A Adalikwu
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Ernest C Agwamba
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Chemistry, Covenant University Ota, Ota, Nigeria
| | - Adedapo S Adeyinka
- Research Centre for Synthesis and Catalysis, Department of Chemical sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
11
|
Tourabi M, Metouekel A, Ghouizi AEL, Jeddi M, Nouioura G, Laaroussi H, Hosen ME, Benbrahim KF, Bourhia M, Salamatullah AM, Nafidi HA, Wondmie GF, Lyoussi B, Derwich E. Efficacy of various extracting solvents on phytochemical composition, and biological properties of Mentha longifolia L. leaf extracts. Sci Rep 2023; 13:18028. [PMID: 37865706 PMCID: PMC10590439 DOI: 10.1038/s41598-023-45030-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/14/2023] [Indexed: 10/23/2023] Open
Abstract
The current work attempts to explore the influence of three extraction solvents on phytochemical composition, content of polyphenols, antioxidant potential, and antibacterial capacity of hydroethanolic, acetonic, and aqueous extracts from Moroccan Mentha longifolia leaves. To achieve this goal, the chemical composition was identified using an HPLC-DAD examination. The contents of polyphenols were assessed, while the total antioxidant capacity (TAC), the DPPH test, and the reducing power test (RP) were utilized to determine antioxidant capacity. To assess the antibacterial activity, the microdilution technique was carried out to calculate the minimum inhibitory (MIC) and minimum bactericidal concentrations (MBC) of extracts against four nosocomial bacteria (Bacillus cereus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus). Additionally, the antibacterial and antioxidant activities of all tested extracts were examined in silico against the proteins NADPH oxidase and Bacillus cereus phospholipase C. Study reveals that M. longifolia extracts contain high phenolic and flavonoids. Additionally, the hydroethanolic extract contained the highest amounts of phenolic and flavonoid content, with values of 23.52 ± 0.14 mg Gallic acid equivalent/g dry weight and 17.62 ± 0.36 mg Quercetin Equivalent/g dry weight, respectively compared to the other two extracts. The same extract showed the best antioxidant capacity (IC50 = 39 µg/mL ± 0.00), and the higher RP (EC50 of 0.261 ± 0.00 mg/mL), compared to the acetonic and aqueous extract regarding these tests. Furthermore, the hydroethanolic and acetonic extracts expressed the highest TAC (74.40 ± 1.34, and 52.40 ± 0.20 mg EAA/g DW respectively), compared with the aqueous extract. Regarding antibacterial activity, the MIC value ranges between 1.17 and 12.50 mg/mL. The in-silico results showed that the antibacterial activity of all extracts is principally attributed to kaempferol and ferulic acid, while antioxidant capacity is attributed to ferulic acid.
Collapse
Affiliation(s)
- Meryem Tourabi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
| | - Amira Metouekel
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes (UEMF) Route de Meknes, 30000, Fez, Morocco
| | - Asmae E L Ghouizi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- The Higher Institute of Nursing Professions and Health Techniques (ISPITS), Fez, Morocco
| | - Mohamed Jeddi
- Laboratory of microbial biotechnology and bioactive molecules, science and technology faculty sidi Mohamed ben Abdellah University, Imouzzer, Road, Fez, Morocco
| | - Ghizlane Nouioura
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Md Eram Hosen
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Kawtar Fikri Benbrahim
- Laboratory of microbial biotechnology and bioactive molecules, science and technology faculty sidi Mohamed ben Abdellah University, Imouzzer, Road, Fez, Morocco
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, 70000, Laayoune, Morocco
| | - Ahmad Mohammad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, 11 P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, 2325, Quebec City, QC, G1V 0A6, Canada
| | | | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Elhoussine Derwich
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Unity of GC/MS and GC-FID, City of Innovation, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
12
|
Pessoa RT, Alcântara IS, da Silva LYS, da Costa RHS, Silva TM, de Morais Oliveira-Tintino CD, Ramos AGB, de Oliveira MRC, Martins AOBPB, de Lacerda BCGV, de Andrade EM, Ribeiro-Filho J, Gonçalves Lima CM, Coutinho HDM, Menezes IRAD. Ximenia americana L.: Chemical Characterization and Gastroprotective Effect. ANALYTICA 2023; 4:141-158. [DOI: 10.3390/analytica4020012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
Abstract
Ximenia americana L., popularly known in Brazil as “ameixa do-mato, ameixa-brava, and ameixa-do-sertão,” is widely used in folk medicine to treat several intestinal disorders. The present study assessed the potential mechanisms of action underlying the gastroprotective activity of the hydroethanolic extract of Ximenia americana L. (EHXA) stem bark. The acute toxicity of EHXA was estimated, and later, the gastroprotective effect in mice was assessed through acute models of gastric lesions induced by acidified or absolute ethanol and indomethacin, where the following mechanisms were pharmacologically analyzed: the involvement of prostaglandins (PG), histamine (H2) receptors, ATP-dependent potassium channels, sulfhydryl groups (SH), α2 adrenergic receptors, nitric oxide (NO), myeloperoxidase (MPO), gastric mucus production, and acetylcholine-mediated intestinal motility. Regarding toxicity, EHXA did not cause deaths or signs of toxicity (LD50 greater than or equal to 2000 mg/kg/p.o.). When the gastroprotective effect was assessed, EHXA (50, 100, and 200 mg/kg/p.o.) reduced the rate of lesions induced by acidified ethanol by 65.63; 53.66, and 58.02% in absolute ethanol at 88.91, 78.82, and 74.68%, respectively, when compared to the negative control group. In the indomethacin-induced gastric injury model, the reductions were 84.69, 55.99, 55.99, and 42.50%, respectively. The study revealed that EHXA might stimulate mucus production and reduce intestinal motility through SH groups, NO production, and activation of α2 adrenergic receptors. The results indicated that EHXA had significant gastroprotective activity in the evaluated models. However, further investigation is required to elucidate the cellular and molecular events underlying the action of EHXA components and to correlate them with the modulation of the signaling pathways, as demonstrated by the current pharmacological approach. Therefore, the results demonstrated in the present study, as well as previously reported findings, support the recommendation of using this species in traditional communities in Brazil.
Collapse
Affiliation(s)
- Renata Torres Pessoa
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| | - Isabel Sousa Alcântara
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| | - Lucas Yure Santos da Silva
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| | - Roger Henrique Souza da Costa
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| | - Tarcísio Mendes Silva
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| | - Cícera Datiane de Morais Oliveira-Tintino
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| | - Andreza Guedes Barbosa Ramos
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| | - Maria Rayane Correia de Oliveira
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
- Graduate Program in Biotechnology-Northeast Biotechnology Network (RENORBIO), State University of Ceará (UECE), Av. Dr. Silas Munguba, 1700, Fortaleza 60741-000, CE, Brazil
| | - Anita Oliveira Brito Pereira Bezerra Martins
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| | | | | | - Jaime Ribeiro-Filho
- Department of Biotechnology, Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio, Fortaleza 60180-190, CE, Brazil
| | | | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| | - Irwin Rose Alencar de Menezes
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| |
Collapse
|
13
|
Lin L, Peng S, Chen X, Li C, Cui H. Silica nanoparticles loaded with caffeic acid to optimize the performance of cassava starch/sodium carboxymethyl cellulose film for meat packaging. Int J Biol Macromol 2023; 241:124591. [PMID: 37116847 DOI: 10.1016/j.ijbiomac.2023.124591] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/03/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Cassava starch/sodium carboxymethyl cellulose (CC) was used as the substrate to create a multipurpose food packaging film, and caffeic acid@silica nanoparticles (C@SNPs) was added. The encapsulation rate of caffeic acid in C@SNPs was 84.7 ± 0.97 %. According to SEM pictures, the nanoparticles were evenly dispersed throughout the film and exhibited good compatibility with the other polymers. C@SNPs was added, which enhanced the physical characteristics of film and decreased its water solubility. The best mechanical and oxygen barrier qualities among them are found in the C@SCC5:1 film, whose tensile strength rises from 7.17 MPa to 15.44 MPa. The C@SCC5:1 film has scavenging rates of 95.43 % and 84.67 % against ABTS and DPPH free radicals, respectively, and CA can be released continuously in various food systems. In addition, the antibacterial rate of E. coli O157:H7 and S. aureus of C@SCC5:1 film in meat was 99.9 %, and it can effectively delay lipid oxidation and pH rise. In conclusion,C@SCC5:1 film is a new type of antibacterial and antioxidant food packaging material.
Collapse
Affiliation(s)
- Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shuangxi Peng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaochen Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
14
|
Kinart Z. Stability of the Inclusion Complexes of Dodecanoic Acid with α-Cyclodextrin, β-Cyclodextrin and 2-HP-β-Cyclodextrin. Molecules 2023; 28:molecules28073113. [PMID: 37049876 PMCID: PMC10095696 DOI: 10.3390/molecules28073113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
In the presented work, the stability of the formation of inclusion complexes of dodecanoic acid (lauric acid) with three cyclodextrins, α-cyclodextrin, β-cyclodextrin and 2-HP-β-cyclodextrin, was analyzed from the point of view of the size of the cavity in cyclodextrins, their molar mass and the structure of the studied fatty acid. The measurements were made in a wide temperature range of 283.15–318.15K. The conductometric method was used for these studies. The results obtained allowed us to determine the value of the theoretical limiting molar conductivity (Λm0) of the studied complexes, the values of the inclusion complex formation constants (Kf) and the values of thermodynamic functions (ΔG0, ΔH0 and ΔS0) describing the complexation process in the studied temperature range.
Collapse
Affiliation(s)
- Zdzisław Kinart
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163/165, 90-236 Lodz, Poland
| |
Collapse
|
15
|
Abdel-Aty AM, Barakat AZ, Mohamed SA. Garden cress gum and maltodextrin as microencapsulation coats for entrapment of garden cress phenolic-rich extract: improved thermal stability, storage stability, antioxidant and antibacterial activities. Food Sci Biotechnol 2023; 32:47-58. [PMID: 36606085 PMCID: PMC9807720 DOI: 10.1007/s10068-022-01171-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 01/09/2023] Open
Abstract
The obtained garden cress 6-day sprouts phenolic-rich extract (GCSP) contained efficient health-promoting antioxidant-phenolic compounds. To improve the stability, bioavailability, and functional properties of these valuable phenolic compounds, GCSP was encapsulated by freeze-drying technique using different ratios of garden cress gum (GG) and maltodextrin (M) in the absence and presence of sonication (S). The prepared S/GG-microcapsule retained the highest phenolic content (95%), antioxidant activity (141.6%), and encapsulation efficiency (98.2%). It displayed the highest bio-accessibility of GCSP-phenolic compounds in simulated intestine fluid (87%) and demonstrated the greatest storage-stability at 40 °C for 60 days. S/GG-microcapsule possessed better physical properties including moisture, solubility, swelling, and morphological structures using SEM. The main spectral features, crosslinking, and improved thermal stability were demonstrated for S/GG-microcapsule using FTIR and thermogravimetric analyses. S/GG-microcapsule demonstrated much greater antibacterial activity than GCSP against pathogenic bacteria. S/GG-microcapsule can be added to different food products to improve their antioxidant and antibacterial properties.
Collapse
Affiliation(s)
- Azza M. Abdel-Aty
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Amal Z. Barakat
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Saleh A. Mohamed
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
16
|
Conductometric Studies of Formation the Inclusion Complexes of Phenolic Acids with β-Cyclodextrin and 2-HP-β-Cyclodextrin in Aqueous Solutions. Molecules 2022; 28:molecules28010292. [PMID: 36615484 PMCID: PMC9822027 DOI: 10.3390/molecules28010292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
An attempt was made to evaluate the possibility of creating and assessing the stability of inclusion complexes of selected phenolic acids [trans-4-hydroxycinnamic acid (trans-p-coumaric acid), trans-3,4-dihydroxycinnamic acid (trans-caffeic acid), trans-4-hydroxy-3-methoxycinnamic acid, (trans-ferulic acid) and trans-3-phenylacrylic acid (trans-cinnamic acid)] with β-cyclodextrin and 2-HP-β-cyclodextrin in aqueous solutions in a wide temperature range 283.15 K-313.15 K. On the basis of the values of the limiting molar conductivity (ΛCDNaDod), calculated from the experimental data, the values of the formation constants and the thermodynamic functions of formation (standard enthalpy, entropy, and Gibs standard enthalpy) of the studied complexes were determined. It has been found that the stability of the studied complexes increases with lowering of the molar mass of cyclodextrin and lowering of the temperature.
Collapse
|
17
|
The effect of ethanol/water concentration on phenolic composition, antioxidant, and antimicrobial activities of Rosmarinus tournefortii de Noé hydrodistillation solid residues. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
SHESHALA R, WAI NZ, SAID ID, ASHRAF K, LIM SM, RAMASAMY K, ZEESHAN F. Poloxamer and Chitosan-Based In Situ Gels Loaded with Orthosiphon stamineus Benth. Extracts Containing Rosmarinic Acid for the Treatment of Ocular Infections. Turk J Pharm Sci 2022; 19:671-680. [PMID: 36544377 PMCID: PMC9780577 DOI: 10.4274/tjps.galenos.2021.40121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objectives Orthosiphon stamineus Benth. (OS) is a commonly used medicinal plant for curbing bacterial infections globally. This work aimed to fabricate poloxamer and chitosan-based in situ gels loaded with standardized aqueous-ethanolic OS leaf extracts and investigate their antimicrobial efficacy as a potential remedy against ocular infections. Materials and Methods In situ gels containing 0.5% w/v OS extract prepared using cold dispersion method were subjected to physicochemical characterization, including in vitro-release studies. Antimicrobial efficacy was tested against Staphylococcus aureus, Micrococcus luteus, Escherichia coli, and Pseudomonas aeruginosa using agar diffusion method. Results Thin layer chromatography and high performance liquid chromatography chromatograms confirmed the presence of rosmarinic acid (RA) and sinensitin in OS extracts with same retention factor (0.26 and 0.49) and retention times (12.2 and 20.7 min) against reference standards. A homogenous brown coloured in situ gel exhibited low viscosity as a solution and increased viscosity in gel form at ocular temperature. The optimized formulations, P7 (21% P407/4% P188), P8 (21% P407/5% P188) and F5 (1.5% chitosan and 45% β-glycerophosphate) exhibited ideal ocular pH (7.27-7.46), phase transition at ocular temperature (33-37°C) and prolonged RA release up to 12 h. Formulation F5 showed an inhibition zone of 4.3 mm against M. luteus. Conclusion Among all, formulation F5 alone exhibited modest antimicrobial activity against M. luteus. OS extracts at 5% and 10% were most active against tested bacteria however, loading them into in situ gels resulted in sedimentation. Hence, isolation of RA from OS extract is suggested before loading into formulations for a better antimicrobial activity.
Collapse
Affiliation(s)
- Ravi SHESHALA
- Universiti Teknologi MARA, Faculty of Pharmacy, Department of Pharmaceutics, Selangor, Malaysia
| | - Ng Zing WAI
- International Medical University, School of Pharmacy, Department of Pharmaceutical Technology, Kuala Lumpur, Malaysia
| | - Iqbal Danial SAID
- International Medical University, School of Pharmacy, Department of Pharmaceutical Technology, Kuala Lumpur, Malaysia
| | - Kamran ASHRAF
- Universiti Teknologi MARA, Faculty of Pharmacy, Department of Pharmacology and Pharmaceutical Chemistry, Selangor, Malaysia
| | - Siong Meng LIM
- Universiti Teknologi MARA, Faculty of Pharmacy, Department of Pharmacology and Pharmaceutical Chemistry, Selangor, Malaysia
| | - Kalavathy RAMASAMY
- Universiti Teknologi MARA, Faculty of Pharmacy, Department of Pharmaceutical Life Sciences, Selangor, Malaysia
| | - Farrukh ZEESHAN
- International Medical University, School of Pharmacy, Department of Pharmaceutical Technology, Kuala Lumpur, Malaysia,* Address for Correspondence: Phone: +0060178455295 E-mail:
| |
Collapse
|
19
|
Zhao X, Liu Z, Liu H, Guo J, Long S. Hybrid molecules based on caffeic acid as potential therapeutics: A focused review. Eur J Med Chem 2022; 243:114745. [PMID: 36152388 DOI: 10.1016/j.ejmech.2022.114745] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 01/29/2023]
Abstract
Caffeic acid-based compounds possess a high degree of structural diversity and show a variety of pharmacological properties, providing a useful framework for the discovery of new therapeutic agents. They are well-known analogues of antioxidants found in many natural products and synthetic compounds. The present review surveys the recent developments in structure-activity relationships (SAR) and mechanism of action (MOA) of various caffeic acid-containing compounds that play important roles in the design and synthesis of new bioactive molecules with antioxidant, antidiabetic, antiviral, antibacterial, anticancer, anti-inflammatory, and other properties. This review should provide inspiration to scientists in the research fields of organic synthesis and medicinal chemistry related to the development of new antioxidants with versatile therapeutic potential.
Collapse
Affiliation(s)
- Xue Zhao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Optics Valley 1st Rd, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ziwei Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Optics Valley 1st Rd, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Hao Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Optics Valley 1st Rd, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ju Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Optics Valley 1st Rd, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Optics Valley 1st Rd, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| |
Collapse
|
20
|
Ordoñez R, Atarés L, Chiralt A. Biodegradable active materials containing phenolic acids for food packaging applications. Compr Rev Food Sci Food Saf 2022; 21:3910-3930. [PMID: 35912666 DOI: 10.1111/1541-4337.13011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 06/05/2022] [Accepted: 06/30/2022] [Indexed: 01/28/2023]
Abstract
The development of new materials for food packaging applications is necessary to reduce the excessive use of disposable plastics and their environmental impact. Biodegradable polymers represent an alternative means of mitigating the problem. To add value to biodegradable materials and to enhance food preservation, the incorporation of active compounds into the polymer matrix is an affordable strategy. Phenolic acids are plant metabolites that can be found in multiple plant extracts and exhibit antioxidant and antimicrobial properties. Compared with other natural active compounds, such as essential oils, phenolic acids do not present a high sensorial impact while exhibiting similar minimal inhibitory concentrations against different bacteria. This study summarizes and discusses recent studies about the potential of both phenolic acids/plant extracts and biodegradable polymers as active food packaging materials, their properties, interactions, and the factors that could affect their antimicrobial efficiency. The molecular structure of phenolic acids greatly affects their potential antioxidant and antimicrobial capacity, as well as their specific interactions with polymer matrices and food substrates. These interactions, in turn, can lead to plasticizing or cross-linking effects. In the present study, the antioxidant and antimicrobial properties of different biodegradable films with phenolic acids have been described, as well as the main factors affecting the active properties of these films as useful materials for active packaging development. More studies applying these active materials in real foods are required.
Collapse
Affiliation(s)
- Ramón Ordoñez
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Valencia, Spain
| | - Lorena Atarés
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Valencia, Spain
| | - Amparo Chiralt
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
21
|
Guo Z, Yang Y, Li L, Zhao Q, Li Y, Liu Z, Hao L, Guo B, Diao A. The novel prolyl hydroxylase-2 inhibitor caffeic acid upregulates hypoxia inducible factor and protects against hypoxia. Eur J Pharmacol 2022; 934:175307. [DOI: 10.1016/j.ejphar.2022.175307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/26/2022]
|
22
|
El-Ghorab AH, Behery FA, Abdelgawad MA, Alsohaimi IH, Musa A, Mostafa EM, Altaleb HA, Althobaiti IO, Hamza M, Elkomy MH, Hamed AA, Sayed AM, Hassan HM, Aboseada MA. LC/MS Profiling and Gold Nanoparticle Formulation of Major Metabolites from Origanum majorana as Antibacterial and Antioxidant Potentialities. PLANTS (BASEL, SWITZERLAND) 2022; 11:1871. [PMID: 35890504 PMCID: PMC9319600 DOI: 10.3390/plants11141871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Origanum majoranum L. is a Lamiaceae medicinal plant with culinary and ethnomedical applications. Its biological and phytochemical profiles have been extensively researched. Accordingly, this study aimed to investigate the chemical composition and the antibacterial and antioxidant properties of O. majoranum high features, as well as to search for techniques for activity optimization. A metabolomics study of the crude extract of O. majoranum using liquid chromatography-high-resolution electrospray ionization mass spectrometry (LC ± HR ± ESI ± MS) was conducted. Five fractions (petroleum ether, dichloromethane, ethyl acetate, n-butanol, and aqueous) were derived from the total extract of the aerial parts. Different chromatographic methods and NMR analysis were utilized to purify and identify the isolated phenolics (high features). Moreover, the antimicrobial, antibiofilm, and antioxidant activity of phenolics were performed. Results showed that metabolomic profiling of the crude extract of O. majoranum aerial parts revealed the presence of a variety of phytochemicals, predominantly phenolics, resulting in the isolation and identification of seven high-feature compounds comprising two phenolic acids, rosmarinic and caffeic acids, one phenolic diterpene, 7-methoxyepirosmanol, in addition to four flavonoids, quercetin, hesperitin, hesperidin, and luteolin. On the other hand, 7-methoxyepirosmanol (OM1) displayed the most antimicrobial and antioxidant potential. Such a phenolic principal activity improvement seems to be established after loading on gold nanoparticles.
Collapse
Affiliation(s)
- Ahmed H. El-Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Saudi Arabia; (A.H.E.-G.); (I.H.A.)
| | - Fathy A. Behery
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
- Department of Pharmacy, College of Pharmacy, Riyadh Elm University, Riyadh 11681, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Ibrahim Hotan Alsohaimi
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Saudi Arabia; (A.H.E.-G.); (I.H.A.)
| | - Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (A.M.); (E.M.M.)
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (A.M.); (E.M.M.)
| | - Hamud A. Altaleb
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 41477, Saudi Arabia;
| | - Ibrahim O. Althobaiti
- Department of Chemistry, College of Science and Arts, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Mohamed Hamza
- Department of Biology, College of Science, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Ahmed A. Hamed
- National Research Centre, Microbial Chemistry Department, 33 El-Buhouth Street, Dokki, Giza 12622, Egypt;
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62513, Egypt;
| | - Mahmoud A. Aboseada
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
| |
Collapse
|
23
|
Kinart Z, Tomaš R. Studies of the Formation of Inclusion Complexes Derivatives of Cinnamon Acid with α-Cyclodextrin in a Wide Range of Temperatures Using Conductometric Methods. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144420. [PMID: 35889293 PMCID: PMC9318531 DOI: 10.3390/molecules27144420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
The electrical conductivities of aqueous solutions of sodium salts of trans-4-hydroxycinnamic acid (trans-p-coumaric acid), trans-3,4-dihydroxycinnamic acid (trans-caffeic acid), trans-4-hydroxy-3-methoxycinnamic acid, (trans-ferulic acid) and trans-3-phenylacrylic acid (trans-cinnamic acid) with α-cyclodextrin were measured in the temperature range of 288.15 K–318.15 K. For the first time in the literature, using the limiting molar conductivity (Λmo) obtained from conductivity measurements, the values of the complexation constants (Kf) of the salts of phenolic acid derivatives with α-cyclodextrin were determined using a modified low concentration chemical model (IcCM). An attempt was also made to analyze the individual thermodynamic functions ΔGo, ΔHo and ΔSo describing the complexation process as a function of temperature changes. The obtained results show that the process of formation of inclusion complexes is exothermic and is spontaneous.
Collapse
Affiliation(s)
- Zdzisław Kinart
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163/165, 90-236 Lodz, Poland
- Correspondence:
| | - Renato Tomaš
- Department of Physical Chemistry, University of Split, Ruđera Boškovića 35, HR-21000 Split, Croatia;
| |
Collapse
|
24
|
Salpianthus macrodontus Extracts, a Novel Source of Phenolic Compounds with Antibacterial Activity against Potentially Pathogenic Bacteria Isolated from White Shrimp. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144397. [PMID: 35889267 PMCID: PMC9316449 DOI: 10.3390/molecules27144397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
This study aimed to evaluate the antibacterial activity in vitro of Salpianthus macrodontus and Azadirachta indica extracts against potentially pathogenic bacteria for Pacific white shrimp. Furthermore, the extracts with higher inhibitory activity were analyzed to identify compounds responsible for bacterial inhibition and evaluate their effect on motility and biofilm formation. S. macrodontus and A. indica extracts were prepared using methanol, acetone, and hexane by ultrasound. The minimum inhibitory concentration (MIC) of the extracts was determined against Vibrio parahaemolyticus, V. harveyi, Photobacterium damselae and P. leiognathi. The polyphenol profile of those extracts showing the highest bacterial inhibition were determined. Besides, the bacterial swimming and swarming motility and biofilm formation were determined. The highest inhibitory activity against the four pathogens was found with the acetonic extract of S. macrodontus leaf (MIC of 50 mg/mL for Vibrio spp. and 25 mg/mL for Photobacterium spp.) and the methanol extract of S. macrodontus flower (MIC of 50 mg/mL for all pathogens tested). Both extracts affected the swarming and swimming motility and the biofilm formation of the tested bacteria. The main phenolic compounds related to Vibrio bacteria inhibition were naringin, vanillic acid, and rosmarinic acid, whilst hesperidin, kaempferol pentosyl-rutinoside, and rhamnetin were related to Photobacterium bacteria inhibition.
Collapse
|
25
|
Improved production of antioxidant-phenolic compounds and certain fungal phenolic-associated enzymes under solid-state fermentation of chia seeds with Trichoderma reesei: response surface methodology-based optimization. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01447-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AbstractChia seeds (CS) are becoming increasingly consumed due to their great nutritional and therapeutic properties. In this study, solid-state fermentation (SSF) of CS by Trichoderma reesei was employed to maximize the production of the antioxidant-phenolic compounds and some fungal phenolic-associated enzymes (α-amylase, xylanase, β-glucosidase, polygalacturonase, and phenylalanine ammonia-lyase). The SSF-conditions were statistically optimized using response surface methodology (RSM). In the statistical model, four variables were analyzed at two levels. According to RSM, the adjusted R2 (< 0.9) is reasonably consistent with the predicted R2 (< 0.9), indicating that the statistical model is valid. The optimal conditions for maximum production of both phenolic compounds and fungal phenolic-associated enzymes were found to be 28 °C, pH 7.0, 20% moisture, and 7-day fermentation. The total phenolic content of fermented CS (FCS) increased 23 folds and total antioxidant activity was enhanced by 113- and 150-fold using DPPH and ABTS methods, respectively. Three new phenolics (kaempferol, apigenin, and p-coumaric) were recognized in FCS using HPLC analysis. The activities of all the extracted phenolic-associated enzymes showed strong correlations with the phenolic content of FCS. Against some human-pathogenic bacteria, FCS extract displayed considerably better antibacterial activity than UFCS extract. Finally, the phenolic-rich-FCS can be employed as a dietary supplement as well as an antibacterial agent. Furthermore, T. reesei has produced considerable quantities of industrially valuable enzymes.
Collapse
|
26
|
Influence of Cynara cardunculus L. Phenolic Compounds on Pseudomonas putida Isolated from the Dairy Industry: Growth and Melanin Bioproduction. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cynara cardunculus L. inflorescence infusion has been used for several centuries as curd in traditional cheese making, such as some highly prized Portuguese cheeses. To promote the sustainable use of all C. cardunculus plants, C. cardunculus extract leaves decoction (CL), inflorescence decoction (CI), chlorogenic acid (CA) (a compound in the plant leaves), and rosmarinic acid (RA) (a similar phenolic compound) solutions were tested for antimicrobial activity against bacteria that may appear on the cheese rind. The antimicrobial activity was evaluated by 15 bacterial strains using two different methodologies: solid and liquid. The influence of these extracts and the phenolic compounds on melanin bioproduction by Pseudomonas putida ESACB 191 was also studied. CA and RA (1 mg/mL) showed antimicrobial activity. CL and CA reduced P. putida ESACB 191 growth in the liquid assay and melanin bioproduction by 6.20 Log CFU/mL and 50%, respectively. Cynarin, CA, and its derivates were identified as the main phenolic compounds (52%) of CL, which may justify its inhibitory action on bacterial growth and melanin bioproduction. Thus, future perspectives include the application of CL extracts with antimicrobial activity in edible films and/or coatings to applied in cheese rind to increase the shelf time.
Collapse
|
27
|
Matejczyk M, Ofman P, Świsłocka R, Parcheta M, Lewandowski W. The study of biological activity of mandelic acid and its alkali metal salts in wastewaters. ENVIRONMENTAL RESEARCH 2022; 205:112429. [PMID: 34863693 DOI: 10.1016/j.envres.2021.112429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/29/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
In the present work we compared the biological activity of mandelic acid (MA) and its Li, Na, K, Rb and Cs salts. The study also investigated the effect of raw wastewaters (RW) and treated wastewaters (TW), comparable to microbial medium (MM) on the biological activity of the tested chemical compounds used in concentrations of 5; 2.5; 1.25; 0.625; 0.3125 mg/ml. In the present experiment the evaluation of the following parameters was performed: E. coli (ATCC 25922) cells viability, growth inhibition of E. coli (ATCC 25922), the inhibition of GFP protein, genotoxicity and ROS generation. Our results showed that three main factors differentiated the antibacterial activity of MA and its Li, Na, K, Rb and Cs salts: study environment (MM, RW, TW), metal forming salt of mandelic acid and concentration of tested compounds. Additionally, raw and treated wastewater, compared to microbial medium, changes the antimicrobial activity of MA and its salts in relation to the E. coli strain. We also detected that both MA and its salts affect the GFP protein and the induction of the recA promoter (genotoxicity test). The activity of the tested salts in relation to these two parameters is strictly dependent on the type of salt-forming metal and the concentration used. The analysis of ROS synthesis suggests that in the majority of the studied mandelic acid salts, oxidative stress is the dominant mechanism of cytotoxicity and genotoxicity. We also showed that both raw wastewaters (RW) and treated wastewaters (TW), compared to microbial medium (MM), change significantly the activity of MA and its salts.
Collapse
Affiliation(s)
- Marzena Matejczyk
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Department of Chemistry, Biology and Biotechnology, Wiejska 45E Street, 15-341, Bialystok, Poland.
| | - Piotr Ofman
- Bialystok University of Technology, Department of Environmental Engineering Technology, Bialystok University of Technology, Bialystok, 15-341, Poland
| | - Renata Świsłocka
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Department of Chemistry, Biology and Biotechnology, Wiejska 45E Street, 15-341, Bialystok, Poland
| | - Monika Parcheta
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Department of Chemistry, Biology and Biotechnology, Wiejska 45E Street, 15-341, Bialystok, Poland
| | - Włodzimierz Lewandowski
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Department of Chemistry, Biology and Biotechnology, Wiejska 45E Street, 15-341, Bialystok, Poland
| |
Collapse
|
28
|
Alam M, Ashraf GM, Sheikh K, Khan A, Ali S, Ansari MM, Adnan M, Pasupuleti VR, Hassan MI. Potential Therapeutic Implications of Caffeic Acid in Cancer Signaling: Past, Present, and Future. Front Pharmacol 2022; 13:845871. [PMID: 35355732 PMCID: PMC8959753 DOI: 10.3389/fphar.2022.845871] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
Caffeic acid (CA) has been present in many herbs, vegetables, and fruits. CA is a bioactive compound and exhibits various health advantages that are linked with its anti-oxidant functions and implicated in the therapy and prevention of disease progression of inflammatory diseases and cancer. The anti-tumor action of CA is attributed to its pro-oxidant and anti-oxidant properties. CA’s mechanism of action involves preventing reactive oxygen species formation, diminishing the angiogenesis of cancer cells, enhancing the tumor cells’ DNA oxidation, and repressing MMP-2 and MMP-9. CA and its derivatives have been reported to exhibit anti-carcinogenic properties against many cancer types. CA has indicated low intestinal absorption, low oral bioavailability in rats, and pitiable permeability across Caco-2 cells. In the present review, we have illustrated CA’s therapeutic potential, pharmacokinetics, and characteristics. The pharmacological effects of CA, the emphasis on in vitro and in vivo studies, and the existing challenges and prospects of CA for cancer treatment and prevention are discussed in this review.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kayenat Sheikh
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Anish Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Meraj Ansari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar Mohali, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia.,Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia.,Centre for International Collaboration and Research, Reva University, Bangalore, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
29
|
Alam M, Ashraf GM, Sheikh K, Khan A, Ali S, Ansari MM, Adnan M, Pasupuleti VR, Hassan MI. Potential Therapeutic Implications of Caffeic Acid in Cancer Signaling: Past, Present, and Future. Front Pharmacol 2022. [DOI: 10.3389/fphar.2022.845871
expr 835330423 + 878857932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Caffeic acid (CA) has been present in many herbs, vegetables, and fruits. CA is a bioactive compound and exhibits various health advantages that are linked with its anti-oxidant functions and implicated in the therapy and prevention of disease progression of inflammatory diseases and cancer. The anti-tumor action of CA is attributed to its pro-oxidant and anti-oxidant properties. CA’s mechanism of action involves preventing reactive oxygen species formation, diminishing the angiogenesis of cancer cells, enhancing the tumor cells’ DNA oxidation, and repressing MMP-2 and MMP-9. CA and its derivatives have been reported to exhibit anti-carcinogenic properties against many cancer types. CA has indicated low intestinal absorption, low oral bioavailability in rats, and pitiable permeability across Caco-2 cells. In the present review, we have illustrated CA’s therapeutic potential, pharmacokinetics, and characteristics. The pharmacological effects of CA, the emphasis onin vitro and in vivostudies, and the existing challenges and prospects of CA for cancer treatment and prevention are discussed in this review.
Collapse
|
30
|
Boutahiri S, Eto B, Bouhrim M, Mechchate H, Saleh A, Al kamaly O, Drioiche A, Remok F, Samaillie J, Neut C, Gressier B, Kouoh Elombo F, Nassiri L, Zair T, Sahpaz S. Lavandula pedunculata (Mill.) Cav. Aqueous Extract Antibacterial Activity Improved by the Addition of Salvia rosmarinus Spenn., Salvia lavandulifolia Vahl and Origanum compactum Benth. Life (Basel) 2022; 12:328. [PMID: 35330079 PMCID: PMC8954779 DOI: 10.3390/life12030328] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
Lavender aqueous extracts are widely used in the Moroccan traditional medicine for their antibacterial properties. However, previous research have generally focused on investigating the antibacterial activity of lavender essential oils. The aim of this study is to evaluate the antibacterial activity of the Moroccan Lavandula pedunculata (Mill.) Cav. aqueous extract, alone, as well as in combination with extracts of other plant species known for their antibacterial activity: Salvia rosmarinus Spenn., Salvia lavandulifolia Vahl. and Origanum compactum Benth. We have tested the antibacterial activity of L. pedunculata, S. rosmarinus, S. lavandulifolia and O. compactum aqueous extracts individually and in combination against 34 strains using the agar dilution method. The combination effect was evaluated using the fractional inhibitory concentration (FIC). Polyphenol and tannin contents were determined using Folin-Ciocalteu reagent, and then some phenolic compounds were identified using UHPLC-MS. All the extracts displayed a large spectrum of antibacterial activity, especially against staphylococci, streptococci, Mycobacterium smegmatis and Proteus mirabilis. The minimum inhibitory concentration (MIC) values reached 0.15 ± 0.00 mg/mL for Staphylococcus warneri tested with S. lavandulifolia and 0.20 ± 0.07 mg/mL for Staphylococcus epidermidis tested with L. pedunculata or S. rosmarinus. Association of the L. pedunculata extract with S. rosmarinus, S. lavandulifolia and O. compactum showed synergistic effects (FIC ≤ 1). Moreover, the association of L. pedunculata with S. lavandulifolia was active against most of the Gram-negative strains resistant to the individual extracts. Determination of polyphenol and tannin contents showed the richness of the studied plants in these compounds. Additionally, chromatographic analysis demonstrated the high presence of rosmarinic acid in all the studied plant extracts. To our knowledge, this is the first study that shows the enhancing effect of the antibacterial activity of L. pedunculata aqueous extract combined with S. rosmarinus, S. lavandulifolia and O. compactum. These results confirm the effectiveness of the plant mixtures commonly used by traditional healers in Morocco and suggest that L. pedunculata might be used as an antibacterial agent either alone or, more efficiently, in combination with S. rosmarinus, S. lavandulifolia and O. compactum.
Collapse
Affiliation(s)
- Salima Boutahiri
- Univ. Lille, University of Liège, University of Picardie Jules Verne, JUNIA, UMRT 1158 BioEcoAgro, Specialized Metabolites of Plant Origin, F-59000 Lille, France; (S.B.); (J.S.); (S.S.)
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco; (M.B.); (A.D.); (F.R.); (T.Z.)
| | - Bruno Eto
- Laboratoires TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Lille, 3, Rue du Professeur Laguesse, B.P. 83, F-59000 Lille, France; (B.E.); (F.K.E.)
| | - Mohamed Bouhrim
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco; (M.B.); (A.D.); (F.R.); (T.Z.)
| | - Hamza Mechchate
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Omkulthom Al kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Aziz Drioiche
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco; (M.B.); (A.D.); (F.R.); (T.Z.)
| | - Firdaous Remok
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco; (M.B.); (A.D.); (F.R.); (T.Z.)
| | - Jennifer Samaillie
- Univ. Lille, University of Liège, University of Picardie Jules Verne, JUNIA, UMRT 1158 BioEcoAgro, Specialized Metabolites of Plant Origin, F-59000 Lille, France; (S.B.); (J.S.); (S.S.)
| | - Christel Neut
- U1286 INFINITE Inst Translat Res Inflammat, University of Lille, Inserm, CHU Lille, F-59000 Lille, France;
| | - Bernard Gressier
- Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Lille, 3, rue du Professeur Laguesse, B.P. 83, F-59000 Lille, France;
| | - Ferdinand Kouoh Elombo
- Laboratoires TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Lille, 3, Rue du Professeur Laguesse, B.P. 83, F-59000 Lille, France; (B.E.); (F.K.E.)
| | - Laila Nassiri
- Research Team of Environment and Valorization of Plant and Microbial Resources, Faculty of Sciences, Moulay Ismaïl University, Meknes, B.P. 11201 Zitoune, Meknes 50070, Morocco;
| | - Touriya Zair
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco; (M.B.); (A.D.); (F.R.); (T.Z.)
| | - Sevser Sahpaz
- Univ. Lille, University of Liège, University of Picardie Jules Verne, JUNIA, UMRT 1158 BioEcoAgro, Specialized Metabolites of Plant Origin, F-59000 Lille, France; (S.B.); (J.S.); (S.S.)
| |
Collapse
|
31
|
Cai W, Chen T, Lei M, Wan X. Potential, risks, and benefits of the extract recycled from Pteris vittata arsenic-rich biomass as a broiler growth promoter. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127557. [PMID: 34736197 DOI: 10.1016/j.jhazmat.2021.127557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/12/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
The arsenic-rich biomass of Pteris vittata is a heavy burden to phytoremediation, but the compositions of extracts recycled from arsenic-rich biomass, such as rutin, may promote broiler growth. As such, this extract can be used to reduce the usage of antibiotics in the broiler industry and the cost of phytoremediation at the same time. Therefore, the critical issues for using extract from arsenic-rich biomass as a growth promoter have been studied, including its effective composition, health and environmental risks, and potential benefits and feasibility. Forty-five compounds were identified in the extract, and they were mainly flavonoids, chlorogenic acids, and proanthocyanidins, which can directly or indirectly influence the growth of broiler. The lifetime carcinogenic risks of broiler edible parts may be maximally increased by 4.75 × 10-9 due to feeding the extract. The arsenic concentration of the farmland fertilized with the excrement from the broiler fed with the extract may increase by 0.00003-0.01857 mg/kg per year. Results revealed a feasible scenario that the sustainability of phytoremediation and broiler industry could be benefited through wastes from each other.
Collapse
Affiliation(s)
- Wen Cai
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Tongbin Chen
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
32
|
Study for Evaluation of Hydrogels after the Incorporation of Liposomes Embedded with Caffeic Acid. Pharmaceuticals (Basel) 2022; 15:ph15020175. [PMID: 35215288 PMCID: PMC8875116 DOI: 10.3390/ph15020175] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 11/17/2022] Open
Abstract
Caffeic acid (CA), a phenolic acid, is a powerful antioxidant with proven effectiveness. CA instability gives it limited use, so encapsulation in polymeric nanomaterials has been used to solve the problem but also to obtain topical hydrogel formulas. Two different formulas of caffeic acid liposomes were incorporated into three different formulas of carbopol-based hydrogels. A Franz diffusion cell system was used to evaluate the release of CA from hydrogels. For the viscoelastic measurements of the hydrogels, the equilibrium flow test was used. The dynamic tests were examined at rest by three oscillating tests: the amplitude test, the frequency test and the flow and recovery test. These carbopol gels have a high elasticity at flow stress even at very low polymer concentrations. In the analysis of the texture, the increase of the polymer concentration from 0.5% to 1% determined a linear increase of the values of the textural parameters for hydrogels. The textural properties of 1% carbopol-based hydrogels were slightly affected by the addition of liposomal vesicle dispersion and the firmness and shear work increased with increasing carbomer concentration.
Collapse
|
33
|
Zhao Y, Li H, Zhang Z, Ren Z, Yang F. Extraction, preparative monomer separation and antibacterial activity of total polyphenols from Perilla frutescens. Food Funct 2022; 13:880-890. [PMID: 34994359 DOI: 10.1039/d1fo02282b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Polyphenols exhibit potential functional activities, especially rosmarinic acid (RosA) and caffeic acid (CafA). In this study, two different methods, ultrasonic-assisted ethanol extraction (60%) and ultrasound-assisted cellulase (≥15 000 Ug-1, 2%) hydrolysis, were used for the extraction of the total phenolics from 44 species of Perilla frutescens. The Folin-Ciocalteu method of detection showed that the content of the total phenolics extracted by cellulase hydrolysis was the highest and attained up to 28.00 mgGAE per gextracts for ZB1. Continuously, the extracts were purified using XDA-8 macroporous resin and medium-pressure liquid chromatography (MPLC), and the content of the total phenolics improved to 66.62 mgGAE per gextract. A high-performance liquid chromatography (HPLC) assay showed that the total polyphenols were mainly composed of gallic acid, caffeic acid, rosmarinic acid, luteolin and apigenin. Besides, a sequential XDA-8 macroporous resin combined with high-speed counter-current chromatography (HSCCC)/MPLC system was established for the simultaneous isolation and preparation of RosA (purity 98.29%) and CafA (purity 97.01%) from the extracts. Furthermore, the antibacterial activities of the total polyphenols were evaluated by the disc diffusion method and scanning electron microscopy (SEM) observation. The results verified that the total polyphenols had effective antibacterial activity on three kinds of bacteria including E. coli, S. aureus, and B. subtilis in a concentration-dependent manner. All of these results demonstrated that the ultrasound-assisted cellulase hydrolysis extraction of the total polyphenols and the proposed three-step separation of RosA and CafA gave high yields and good purity, and they exhibited effective antibacterial ability.
Collapse
Affiliation(s)
- Yana Zhao
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, PR China.
| | - Huizhen Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, PR China.
| | - Zhijun Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, PR China.
| | - Zhiqing Ren
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, PR China.
| | - Fuhan Yang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, PR China.
| |
Collapse
|
34
|
Caffeic Acid/Eu(III) Complexes: Solution Equilibrium Studies, Structure Characterization and Biological Activity. Int J Mol Sci 2022; 23:ijms23020888. [PMID: 35055074 PMCID: PMC8775996 DOI: 10.3390/ijms23020888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Caffeic acid (CFA) is one of the various natural antioxidants and chemoprotective agents occurring in the human diet. In addition, its metal complexes play fundamental roles in biological systems. Nevertheless, research on the properties of CFA with lanthanide metals is very scarce, and little to no chemical or biological information is known about these particular systems. Most of their properties, including their biological activity and environmental impact, strictly depend on their structure, stability, and solution behaviour. In this work, a multi-analytical-technique approach was used to study these relationships for the Eu(III)/CFA complex. The synthesized metal complex was studied by FT-IR, FT-Raman, elemental, and thermal (TGA) analysis. In order to examine the chemical speciation of the Eu(III)/CFA system in an aqueous solution, several independent potentiometric and spectrophotometric UV-Vis titrations were performed at different M:L (metal:ligand) and pH ratios. The general molecular formula of the synthesized metal complex in the solid state was [Eu(CFA)3(H2O)3]∙2H2O (M:L ratio 1:3), while in aqueous solution the 1:1 species were observed at the optimum pH of 6 ≤ pH ≤ 10, ([Eu(CFA)] and [Eu(CFA)(OH)]−). These results were confirmed by 1H-NMR experiments and electrospray-ionization mass spectrometry (ESI-MS). To evaluate the interaction of Eu(III)/CFA and CFA alone with cell membranes, electrophoretic mobility assays were used. Various antioxidant tests have shown that Eu(III)/CFA exhibits lower antioxidant activity than the free CFA ligand. In addition, the antimicrobial properties of Eu(III)/CFA and CFA against Escherichia coli, Bacillus subtilis and Candida albicans were investigated by evaluation of the minimum inhibitory concentration (MIC). Eu(III)/CFA shows higher antibacterial activity against bacteria compared to CFA, which can be explained by the highly probable increased lipophilicity of the Eu(III) complex.
Collapse
|
35
|
Oulahal N, Degraeve P. Phenolic-Rich Plant Extracts With Antimicrobial Activity: An Alternative to Food Preservatives and Biocides? Front Microbiol 2022; 12:753518. [PMID: 35058892 PMCID: PMC8764166 DOI: 10.3389/fmicb.2021.753518] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, the search for natural plant-based antimicrobial compounds as alternatives to some synthetic food preservatives or biocides has been stimulated by sanitary, environmental, regulatory, and marketing concerns. In this context, besides their established antioxidant activity, the antimicrobial activity of many plant phenolics deserved increased attention. Indeed, industries processing agricultural plants generate considerable quantities of phenolic-rich products and by-products, which could be valuable natural sources of natural antimicrobial molecules. Plant extracts containing volatile (e.g., essential oils) and non-volatile antimicrobial molecules can be distinguished. Plant essential oils are outside the scope of this review. This review will thus provide an overview of current knowledge regarding the promises and the limits of phenolic-rich plant extracts for food preservation and biofilm control on food-contacting surfaces. After a presentation of the major groups of antimicrobial plant phenolics, of their antimicrobial activity spectrum, and of the diversity of their mechanisms of action, their most promising sources will be reviewed. Since antimicrobial activity reduction often observed when comparing in vitro and in situ activities of plant phenolics has often been reported as a limit for their application, the effects of the composition and the microstructure of the matrices in which unwanted microorganisms are present (e.g., food and/or microbial biofilms) on their activity will be discussed. Then, the different strategies of delivery of antimicrobial phenolics to promote their activity in such matrices, such as their encapsulation or their association with edible coatings or food packaging materials are presented. The possibilities offered by encapsulation or association with polymers of packaging materials or coatings to increase the stability and ease of use of plant phenolics before their application, as well as to get systems for their controlled release are presented and discussed. Finally, the necessity to consider phenolic-rich antimicrobial plant extracts in combination with other factors consistently with hurdle technology principles will be discussed. For instance, several authors recently suggested that natural phenolic-rich extracts could not only extend the shelf-life of foods by controlling bacterial contamination, but could also coexist with probiotic lactic acid bacteria in food systems to provide enhanced health benefits to human.
Collapse
Affiliation(s)
- Nadia Oulahal
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d’Accueil n°3733, IUT Lyon 1, Technopole Alimentec, Bourg-en-Bresse, France
| | | |
Collapse
|
36
|
Huerta-Madroñal M, Caro-León J, Espinosa-Cano E, Aguilar MR, Vázquez-Lasa B. Chitosan - Rosmarinic acid conjugates with antioxidant, anti-inflammatory and photoprotective properties. Carbohydr Polym 2021; 273:118619. [PMID: 34561015 DOI: 10.1016/j.carbpol.2021.118619] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/15/2022]
Abstract
Rosmarinic acid is an attractive candidate for skin applications because of its antioxidant, anti-inflammatory, and photoprotective functions, however, its poor bioavailability hampers its therapeutic outcome. In this context, synthesis of polymer conjugates is an alternative to enlarge its applications. This work describes the synthesis of novel water-soluble chitosan - rosmarinic acid conjugates (CSRA) that have great potential for skin applications. Chitosan was functionalized with different contents of rosmarinic acid as confirmed by ATR-FTIR, 1H NMR and UV spectroscopies. CSRA conjugates presented three-fold radical scavenger capacity compared to the free phenolic compound. Films were prepared by solvent-casting procedure and the biological activity of the lixiviates was studied in vitro. Results revealed that lixiviates reduced activation of inflamed macrophages, improved antibacterial capacity against E. coli with respect to native chitosan and free rosmarinic acid, and also attenuated UVB-induced cellular damage and reactive oxygen species production in fibroblasts and keratinocytes.
Collapse
Affiliation(s)
- Miguel Huerta-Madroñal
- Group of Biomaterials, Institute of Polymer Science and Technology ICTP-CSIC, Madrid, Spain.
| | - Javier Caro-León
- Grupo de Investigación en Biopolímeros, Centro de Investigación en Alimentación y Desarrollo A.C., Sonora, Mexico.
| | - Eva Espinosa-Cano
- Group of Biomaterials, Institute of Polymer Science and Technology ICTP-CSIC, Madrid, Spain; Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain.
| | - María Rosa Aguilar
- Group of Biomaterials, Institute of Polymer Science and Technology ICTP-CSIC, Madrid, Spain; Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain.
| | - Blanca Vázquez-Lasa
- Group of Biomaterials, Institute of Polymer Science and Technology ICTP-CSIC, Madrid, Spain; Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain.
| |
Collapse
|
37
|
Natural Cinnamic Acid Derivatives: A Comprehensive Study on Structural, Anti/Pro-Oxidant, and Environmental Impacts. MATERIALS 2021; 14:ma14206098. [PMID: 34683697 PMCID: PMC8537339 DOI: 10.3390/ma14206098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/21/2022]
Abstract
Cinnamic acid (CA), p-coumaric acid (4-hydroxycinnamic acid, 4-HCA), caffeic acid (3,4-vdihydroxycinnamic acid, 3,4-dHCA), and 3,4,5-trihydroxycinnamic acid (3,4,5-tHCA) were studied for their structural, anti-/pro-oxidant properties and biodegradability. The FT-IR, FT-Raman, UV/Vis, 1H and 13C NMR, and quantum chemical calculations in B3LYP/6-311++G** were performed to study the effect on number and position of hydroxyl group in the ring on the molecular structure of molecules. The antioxidant properties of the derivatives were examined using DPPH● and HO● radicals scavenging assays, ferric ion reducing antioxidant power (FRAP), cupric reducing antioxidant capacity (CUPRAC), inhibition of linoleic acid oxidation, as well as the biological antioxidant assay with Saccharomyces cerevisiae. Moreover, the pro-oxidant activity of compounds in Trolox oxidation assay was estimated. The effect of the derivatives on environment on the basis of increasing the carbon and nitrogen compounds transformation processes occurring in biological wastewater treatment was studied.
Collapse
|
38
|
Chamkhi I, Benali T, Aanniz T, El Menyiy N, Guaouguaou FE, El Omari N, El-Shazly M, Zengin G, Bouyahya A. Plant-microbial interaction: The mechanism and the application of microbial elicitor induced secondary metabolites biosynthesis in medicinal plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:269-295. [PMID: 34391201 DOI: 10.1016/j.plaphy.2021.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Plants and microbes interact with each other via different chemical signaling pathways. At the risophere level, the microbes can secrete molecules, called elicitors, which act on their receptors located in plant cells. The so-called elicitor molecules as well as their actions differ according to the mcirobes and induce different bilogical responses in plants such as the synthesis of secondary metabolites. Microbial compounds induced phenotype changes in plants are known as elicitors and signaling pathways which integrate elicitor's signals in plants are called elicitation. In this review, the impact of microbial elicitors on the synthesis and the secretion of secondary metabolites in plants was highlighted. Moreover, biological properties of these bioactive compounds were also highlighted and discussed. Indeed, several bacteria, fungi, and viruses release elicitors which bind to plant cell receptors and mediate signaling pathways involved in secondary metabolites synthesis. Different phytochemical classes such as terpenoids, phenolic acids and flavonoids were synthesized and/or increased in medicinal plants via the action of microbial elicitors. Moreover, these compounds compounds exhibit numerous biological activities and can therefore be explored in drugs discovery.
Collapse
Affiliation(s)
- Imane Chamkhi
- Centre GEOPAC, Laboratoire de Geobiodiversite et Patrimoine Naturel, Université Mohammed V de, Institut Scientifique Rabat, Maroc; University Mohammed VI Polytechnic, Agrobiosciences Program, Lot 660, Hay Moulay Rachid, Benguerir, Morocco.
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, Morocco
| | - Tarik Aanniz
- Medical Biotechnology Laboratory (MedBiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, 6203 Rabat, Morocco
| | - Naoual El Menyiy
- Department of Biology, Faculty of Science, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Fatima-Ezzahrae Guaouguaou
- Mohammed V University in Rabat, LPCMIO, Materials Science Center (MSC), Ecole Normale Supérieure, Rabat, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt; Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| |
Collapse
|
39
|
Affiliation(s)
- Mehtap Sahiner
- Department of Fashion Design, Faculty of Canakkale School of Applied Science Canakkale Onsekiz Mart University Terzioglu Campus Canakkale Turkey
| |
Collapse
|
40
|
Abdel-Aty AM, Elsayed AM, Salah HA, Bassuiny RI, Mohamed SA. Egyptian chia seeds ( Salvia hispanica L.) during germination: Upgrading of phenolic profile, antioxidant, antibacterial properties and relevant enzymes activities. Food Sci Biotechnol 2021; 30:723-734. [PMID: 34123468 DOI: 10.1007/s10068-021-00902-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/20/2021] [Accepted: 03/04/2021] [Indexed: 10/21/2022] Open
Abstract
Little studies on chia sprouts were not deeply address the polyphenols profiles and their functional properties during long period of germination. This study aims to evaluate the impact of germination process on the phenolic profile, antioxidant and antibacterial properties and relevant enzymes activities of Egyptian chia seeds. The total phenolic and flavonoid contents of chia sprouts increased several times during ten days of germination and maximized on 7-day sprouts (6.4 and 11.5 folds, respectively). In HPLC analysis, seventeen phenolic compounds were detected on 7-day sprouts compared to fifteen in dry seeds, where two new phenolic compounds (p-coumaric acid and kaempferol) were detected. The concentrations of all the identified phenolic compounds increased several folds (1.8-27) on 7-day sprouts. The total antioxidant activity increased 10, 17, and 29 folds on 7-day sprouts using DPPH, ABTS and PMC antioxidant methods, respectively compared to the dry seeds. Both antioxidant and carbohydrate-cleaving enzymes increased in chia sprouts and correlated with their phenolic content and antioxidant activity. The phenolic content of 7-day sprouts showed a potent antibacterial activity against some human enteric pathogenic bacteria including Escherichia coli O157-H7, Salmonella typhi, Pseudomonas aeruginosa and Staphylococcus aureus with lower MIC values compared to the raw seeds.
Collapse
Affiliation(s)
- Azza M Abdel-Aty
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | | | - Hala A Salah
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Roqaya I Bassuiny
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Saleh A Mohamed
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
41
|
Synthesis, Spectroscopic, and Theoretical Study of Copper and Cobalt Complexes with Dacarbazine. MATERIALS 2021; 14:ma14123274. [PMID: 34199318 PMCID: PMC8231934 DOI: 10.3390/ma14123274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022]
Abstract
Dacarbazine (DAC) 5-(3,3-dimethyl-1-triazenyl)imidazole-4-carboxamide is an imidazole-carboxamide derivative that is structurally related to purines. DAC belongs to the triazene compounds, which are a group of alkylating agents with antitumor and mutagenic properties. DAC is a non-cell cycle specific drug, active in all phases of the cellular cycle. In the frame of this work the 3d metal complexes (cobalt and copper) with dacarbazine were synthesized. Their spectroscopic properties by the use of FT-IR, FT-Raman, and 1HNMR were studied. The structures of dacarbazine and its complexes with copper(II) and cobalt(II) were calculated using DFT methods. The effect of metals on the electronic charge distribution of dacarbazine was discussed on the basis of calculated NBO atomic charges. The reactivity of metal complexes in relation to ligand alone was estimated on the basis of calculated energy of HOMO and LUMO orbitals. The aromaticity of the imidazole ring in dacarbazine and the complexes were compared (on the basis of calculated geometric indices of aromaticity). Thermal stability of the investigated 3d-metal complexes with dacarbazine and the products of their thermal decomposition were analyzed.
Collapse
|
42
|
Khan F, Bamunuarachchi NI, Tabassum N, Kim YM. Caffeic Acid and Its Derivatives: Antimicrobial Drugs toward Microbial Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2979-3004. [PMID: 33656341 DOI: 10.1021/acs.jafc.0c07579] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Caffeic acid is a plant-derived compound that is classified as hydroxycinnamic acid which contains both phenolic and acrylic functional groups. Caffeic acid has been greatly employed as an alternative strategy to combat microbial pathogenesis and chronic infection induced by microbes such as bacteria, fungi, and viruses. Similarly, several derivatives of caffeic acid such as sugar esters, organic esters, glycosides, and amides have been chemically synthesized or naturally isolated as potential antimicrobial agents. To overcome the issue of water insolubility and poor stability, caffeic acid and its derivative have been utilized either in conjugation with other bioactive molecules or in nanoformulation. Besides, caffeic acid and its derivatives have also been applied in combination with antibiotics or photoirradiation to achieve a synergistic mode of action. The present review describes the antimicrobial roles of caffeic acid and its derivatives exploited either in free form or in combination or in nanoformulation to kill a diverse range of microbial pathogens along with their mode of action. The chemistry employed for the synthesis of the caffeic acid derivatives has been discussed in detail as well.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan 48513, South Korea
| | - Nilushi Indika Bamunuarachchi
- Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
- Department of Fisheries and Marine Sciences, Ocean University of Sri Lanka, Tangalle 82200, Sri Lanka
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan 48513, South Korea
| | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan 48513, South Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
| |
Collapse
|
43
|
Morlock GE, Heil J, Bardot V, Lenoir L, Cotte C, Dubourdeaux M. Effect-Directed Profiling of 17 Different Fortified Plant Extracts by High-Performance Thin-Layer Chromatography Combined with Six Planar Assays and High-Resolution Mass Spectrometry. Molecules 2021; 26:1468. [PMID: 33800407 PMCID: PMC7962818 DOI: 10.3390/molecules26051468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
An effect-directed profiling method was developed to investigate 17 different fortified plant extracts for potential benefits. Six planar effect-directed assays were piezoelectrically sprayed on the samples separated side-by-side by high-performance thin-layer chromatography. Multipotent compounds with antibacterial, α-glucosidase, β-glucosidase, AChE, tyrosinase and/or β-glucuronidase-inhibiting effects were detected in most fortified plant extracts. A comparatively high level of antimicrobial activity was observed for Eleutherococcus, hops, grape pomace, passiflora, rosemary and Eschscholzia. Except in red vine, black radish and horse tail, strong enzyme inhibiting compounds were also detected. Most plants with anti-α-glucosidase activity also inhibited β-glucosidase. Green tea, lemon balm and rosemary were identified as multipotent plants. Their multipotent compound zones were characterized by high-resolution mass spectrometry to be catechins, rosmarinic acid, chlorogenic acid and gallic acid. The results pointed to antibacterial and enzymatic effects that were not yet known for plants such as Eleutherococcus and for compounds such as cynaratriol and caffeine. The nontarget effect-directed profiling with multi-imaging is of high benefit for routine inspections, as it provides comprehensive information on the quality and safety of the plant extracts with respect to the global production chain. In this study, it not only confirmed what was expected, but also identified multipotent plants and compounds, and revealed new bioactivity effects.
Collapse
Affiliation(s)
- Gertrud E. Morlock
- TransMIT Center for Effect-Directed Analysis, and Chair of Food Science, Institute of Nutritional Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany;
| | - Julia Heil
- TransMIT Center for Effect-Directed Analysis, and Chair of Food Science, Institute of Nutritional Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany;
| | - Valérie Bardot
- PiLeJe Industrie, Naturopôle Nutrition Santé, Les Tiolans, 03800 Saint-Bonnet-de-Rochefort, France; (V.B.); (L.L.); (C.C.); (M.D.)
| | - Loïc Lenoir
- PiLeJe Industrie, Naturopôle Nutrition Santé, Les Tiolans, 03800 Saint-Bonnet-de-Rochefort, France; (V.B.); (L.L.); (C.C.); (M.D.)
| | - César Cotte
- PiLeJe Industrie, Naturopôle Nutrition Santé, Les Tiolans, 03800 Saint-Bonnet-de-Rochefort, France; (V.B.); (L.L.); (C.C.); (M.D.)
| | - Michel Dubourdeaux
- PiLeJe Industrie, Naturopôle Nutrition Santé, Les Tiolans, 03800 Saint-Bonnet-de-Rochefort, France; (V.B.); (L.L.); (C.C.); (M.D.)
| |
Collapse
|
44
|
Uysal S, Zengin G, Sinan KI, Ak G, Ceylan R, Mahomoodally MF, Uysal A, Sadeer NB, Jekő J, Cziáky Z, Rodrigues MJ, Yıldıztugay E, Elbasan F, Custodio L. Chemical characterization, cytotoxic, antioxidant, antimicrobial, and enzyme inhibitory effects of different extracts from one sage ( Salvia ceratophylla L.) from Turkey: open a new window on industrial purposes. RSC Adv 2021; 11:5295-5310. [PMID: 35423082 PMCID: PMC8694645 DOI: 10.1039/d0ra10044g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/19/2021] [Indexed: 11/27/2022] Open
Abstract
In the present study, the methanolic, hydro-methanolic, dichloromethane, hexane and aqueous extracts of Salvia ceratophylla L. (Family: Lamiaceae), a lemon-scented herb, were tested for total phenolic (TPC) and flavonoid content (TFC) and antioxidant activities were evaluated using a battery of assays (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), cupric reducing antioxidant capacity, total antioxidant capacity (TAC) (phosphomolybdenum) and metal chelating). Enzyme inhibitory effects were investigated using acetyl- (AChE), butyryl-cholinesterase (BChE), tyrosinase, α-amylase and α-glucosidase as target enzymes. Regarding the cytotoxic abilities, HepG2, B164A5 and S17 cell lines were used. The phytochemical profile was conducted using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Our data showed that the methanolic aerial extracts possessed the highest phenolic (72.50 ± 0.63 mg gallic acid equivalent per g) and flavonoid (43.77 ± 1.09 mg rutin equivalent per g) contents. The hydro-methanolic aerial extract showed significant DPPH radical scavenging activity (193.40 ± 0.27 mg TE per g) and the highest reducing potential against CUPRAC (377.93 ± 2.38 mg TE per g). The best tyrosinase activity was observed with dichloromethane root extract (125.45 ± 1.41 mg kojic acid equivalent per g). Among the tested extracts, hexane root extract exerted the highest antimicrobial potential with a minimum inhibitory concentration value of 0.048 mg mL−1. Methanolic root extract showed the lowest cytotoxicity (28%) against HepG2 cells. Phytochemical analysis revealed the presence of important polyphenolic compounds including luteolin, gallic acid, rosmarinic acid, to name a few. This research can be used as one methodological starting point for further investigations on this lemon-scented herb. Our findings suggested that Salvia ceratophylla could be one potential raw material in industrial applications.![]()
Collapse
Affiliation(s)
- Sengul Uysal
- Erciyes University Halil Bayraktar Health Services Vocational College Kayseri Turkey .,Drug Application and Research Center, Erciyes University Kayseri Turkey
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University Campus Konya Turkey
| | - Kouadio Ibrahime Sinan
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University Campus Konya Turkey
| | - Gunes Ak
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University Campus Konya Turkey
| | - Ramazan Ceylan
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University Campus Konya Turkey
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius Réduit Mauritius
| | - Ahmet Uysal
- Department of Medicinal Laboratory, Vocational School of Health Services, Selcuk University Konya Turkey
| | - Nabeelah Bibi Sadeer
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius Réduit Mauritius
| | - József Jekő
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza Nyíregyháza Hungary
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza Nyíregyháza Hungary
| | - Maria João Rodrigues
- Centre of Marine Sciences, University of Algarve, Faculty of Sciences and Technology Ed. 7, Campus of Gambelas 8005-139 Faro Portugal
| | - Evren Yıldıztugay
- Department of Biotechnology, Science Faculty, Selcuk University Campus Konya Turkey
| | - Fevzi Elbasan
- Department of Biotechnology, Science Faculty, Selcuk University Campus Konya Turkey
| | - Luisa Custodio
- Centre of Marine Sciences, University of Algarve, Faculty of Sciences and Technology Ed. 7, Campus of Gambelas 8005-139 Faro Portugal
| |
Collapse
|
45
|
Salem MA, El-Shiekh RA, Hashem RA, Hassan M. In vivo Antibacterial Activity of Star Anise ( Illicium verum Hook.) Extract Using Murine MRSA Skin Infection Model in Relation to Its Metabolite Profile. Infect Drug Resist 2021; 14:33-48. [PMID: 33442274 PMCID: PMC7797340 DOI: 10.2147/idr.s285940] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/12/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction Star anise fruits (Illicium verum Hook.) have been used as an important treatment in traditional Chinese medicine. The previous studies reported the activity of the non-polar fractions as potential sources of antibacterial metabolites, and little was done concerning the polar fractions of star anise. Methods The antibacterial activity of the star anise aqueous methanolic (50%) extract against multidrug-resistant Acinetobacter baumannii AB5057 and methicillin-resistant Staphylococcus aureus (MRSA USA300) was investigated in vitro (disc diffusion assay, minimum bactericidal concentration determination, anti-biofilm activity and biofilm detachment activity). The antibacterial activity was further tested in vivo using a murine model of MRSA skin infection. Ultra-performance liquid chromatography coupled to high-resolution mass spectrometry (UPLC/HRMS) approach was applied for the identification of the metabolites responsible for the antibacterial activity. The antioxidant potential was evaluated using five in vitro assays: TAC (total antioxidant capacity), DPPH, ABTS, FRAP (ferric reducing antioxidant power) and iron-reducing power. Results In vitro, star anise aqueous methanolic extract showed significant inhibition and detachment activity against biofilm formation by the multidrug-resistant and highly virulent Acinetobacter baumannii AB5057 and MRSA USA300. The topical application of the extract in vivo significantly reduced the bacterial load in MRSA-infected skin lesions. The extract showed strong antioxidant activity using five different complementary methods. More than seventy metabolites from different classes were identified: phenolic acids, phenylpropanoids, sesquiterpenes, tannins, lignans and flavonoids. Conclusion This study proposes the potential use of star anise polar fraction in anti-virulence strategies against persistent infections and for the treatment of staphylococcal skin infections as a topical antimicrobial agent. To our knowledge, our research is the first to provide the complete polar metabolome list of star anise in an approach to understand the relationship between the chemistry of these metabolites and the proposed antibacterial activity.
Collapse
Affiliation(s)
- Mohamed A Salem
- Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rasha A Hashem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
46
|
Bounegru AV, Apetrei C. Voltamperometric Sensors and Biosensors Based on Carbon Nanomaterials Used for Detecting Caffeic Acid-A Review. Int J Mol Sci 2020; 21:E9275. [PMID: 33291758 PMCID: PMC7730703 DOI: 10.3390/ijms21239275] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Caffeic acid is one of the most important hydroxycinnamic acids found in various foods and plant products. It has multiple beneficial effects in the human body such as antioxidant, antibacterial, anti-inflammatory, and antineoplastic. Since overdoses of caffeic acid may have negative effects, the quality and quantity of this acid in foods, pharmaceuticals, food supplements, etc., needs to be accurately determined. The present paper analyzes the most representative scientific papers published mostly in the last 10 years which describe the development and characterization of voltamperometric sensors or biosensors based on carbon nanomaterials and/or enzyme commonly used for detecting caffeic acid and a series of methods which may improve the performance characteristics of such sensors.
Collapse
Affiliation(s)
| | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galaţi, 47 Domnească Street, 800008 Galaţi, Romania;
| |
Collapse
|
47
|
de Alencar Silva A, Pereira-de-Morais L, Rodrigues da Silva RE, de Menezes Dantas D, Brito Milfont CG, Gomes MF, Araújo IM, Kerntopf MR, Alencar de Menezes IR, Barbosa R. Pharmacological screening of the phenolic compound caffeic acid using rat aorta, uterus and ileum smooth muscle. Chem Biol Interact 2020; 332:109269. [DOI: 10.1016/j.cbi.2020.109269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/02/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022]
|
48
|
Godlewska-Żyłkiewicz B, Świsłocka R, Kalinowska M, Golonko A, Świderski G, Arciszewska Ż, Nalewajko-Sieliwoniuk E, Naumowicz M, Lewandowski W. Biologically Active Compounds of Plants: Structure-Related Antioxidant, Microbiological and Cytotoxic Activity of Selected Carboxylic Acids. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4454. [PMID: 33049979 PMCID: PMC7579235 DOI: 10.3390/ma13194454] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Natural carboxylic acids are plant-derived compounds that are known to possess biological activity. The aim of this review was to compare the effect of structural differences of the selected carboxylic acids (benzoic acid (BA), cinnamic acid (CinA), p-coumaric acid (p-CA), caffeic acid (CFA), rosmarinic acid (RA), and chicoric acid (ChA)) on the antioxidant, antimicrobial, and cytotoxic activity. The studied compounds were arranged in a logic sequence of increasing number of hydroxyl groups and conjugated bonds in order to investigate the correlations between the structure and bioactivity. A review of the literature revealed that RA exhibited the highest antioxidant activity and this property decreased in the following order: RA > CFA ~ ChA > p-CA > CinA > BA. In the case of antimicrobial properties, structure-activity relationships were not easy to observe as they depended on the microbial strain and the experimental conditions. The highest antimicrobial activity was found for CFA and CinA, while the lowest for RA. Taking into account anti-cancer properties of studied NCA, it seems that the presence of hydroxyl groups had an influence on intermolecular interactions and the cytotoxic potential of the molecules, whereas the carboxyl group participated in the chelation of endogenous transition metal ions.
Collapse
Affiliation(s)
- Beata Godlewska-Żyłkiewicz
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15–245 Białystok, Poland; (Ż.A.); (E.N.-S.)
| | - Renata Świsłocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15–351 Białystok, Poland; (R.Ś.); (M.K.); (G.Ś.)
| | - Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15–351 Białystok, Poland; (R.Ś.); (M.K.); (G.Ś.)
| | - Aleksandra Golonko
- Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02–532 Warsaw, Poland;
| | - Grzegorz Świderski
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15–351 Białystok, Poland; (R.Ś.); (M.K.); (G.Ś.)
| | - Żaneta Arciszewska
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15–245 Białystok, Poland; (Ż.A.); (E.N.-S.)
| | - Edyta Nalewajko-Sieliwoniuk
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15–245 Białystok, Poland; (Ż.A.); (E.N.-S.)
| | - Monika Naumowicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15–245 Białystok, Poland;
| | - Włodzimierz Lewandowski
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15–351 Białystok, Poland; (R.Ś.); (M.K.); (G.Ś.)
| |
Collapse
|
49
|
Monitoring of the Surface Charge Density Changes of Human Glioblastoma Cell Membranes upon Cinnamic and Ferulic Acids Treatment. Int J Mol Sci 2020; 21:ijms21186972. [PMID: 32971943 PMCID: PMC7555054 DOI: 10.3390/ijms21186972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
Cinnamic acid (CA) and ferulic acid (FA) are naturally occurring phenolic acids claimed to exert beneficial effects against disorders related to oxidative stress, including cancer. One such malignancy that still remains a therapeutic challenge mainly due to its heterogeneity and inaccessibility to therapeutic agents is Glioblastoma multiforme (GBM). Here, the influence of CA and FA on the surface charge density of human GBM cell line LN-229 was studied using the electrophoretic light scattering technique. Also, the cytotoxicity of both phenolic acids was determined by metabolic activity-assessing tetrazolium test (MTT) analysis after exposure to CA and FA for 24 h and 48 h. Results showed that both compounds reduced cell viability of LN-229 cells, with more pronounced effect evoked by CA as reflected in IC50 values. Further analyses demonstrated that, after treatment with both phenolic acids, the negative charge of membranes decreased at high pH values and the positive charge of the membranes increased at low pH values compared to the data obtained for untreated cells. Afterward, a four-equilibrium model was applied to estimate the total surface concentrations of both acidic and basic functional groups and their association constants with solution ions in order to calculate theoretical values of membrane surface charge densities. Then, the theoretical data were compared to the experimental data in order to verify the mathematical model. As such, our results indicate that application of electrochemical methods to determine specific drug-membrane interactions might be crucial for predicting their pharmacological activity and bioavailability.
Collapse
|
50
|
Solid-state fermentation with Aspergillus niger for the bio-enrichment of bioactive compounds in Moringa oleifera (moringa) leaves. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|