1
|
Dwornik R, Białkowska K. Insights into genetic modifiers of breast cancer risk in carriers of BRCA1 and BRCA2 pathogenic variants. Hered Cancer Clin Pract 2025; 23:15. [PMID: 40296163 PMCID: PMC12036133 DOI: 10.1186/s13053-025-00313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
Pathogenic variants in BRCA1 and BRCA2 are associated with an increased risk of developing several types of cancer, including breast cancer. However, the risk varies by other environmental and genetic factors present in carriers of mutation. To understand the value of these factors more clearly, a number of common genetic susceptibility variants have been studied through genome-wide association studies as potential genetic risk modifiers for BRCA1 and BRCA2 pathogenic variants carriers. Several studies have identified specific polymorphisms that may influence the risk of breast cancer development, either by increasing or reducing susceptibility. These variants are implicated in biological pathways such as DNA damage repair, hormonal regulation or cell proliferation. The identification and understanding of key genetic modifiers may provide valuable insights into development of personalized prevention, targeted therapies and screening strategies for high-risk individuals. This review presents the overview of known genetic risk modifiers for carriers of BRCA1 and BRCA2 pathogenic variants, their potential impact on risk, and their functional roles. Furthermore, it highlights the need for further research directions, including understanding the biological role of genetic modifiers in cancer development and the refinement of risk assessment models.
Collapse
Affiliation(s)
- Roksana Dwornik
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Katarzyna Białkowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
| |
Collapse
|
2
|
Bates BA, Bates KE, Boris SA, Wessman C, Stone D, Bryan J, Davis MF, Bailey MH. Intersection of rare pathogenic variants from TCGA in the All of Us Research Program v6. HGG ADVANCES 2025; 6:100405. [PMID: 39799398 PMCID: PMC11830373 DOI: 10.1016/j.xhgg.2025.100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/09/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025] Open
Abstract
Using rare cancer predisposition alleles derived from The Cancer Genome Atlas (TCGA) and high cancer prevalence (14% of participants) in All of Us (version 6), we assessed the impact of these rare alleles on cancer occurrence in six broad groups of genetic similarity provided by All of Us: African/African American (AFR), Admixed American/Latino (AMR), East Asian (EAS), European (EUR), Middle Eastern (MID), or South Asian (SAS). We observed that germline susceptibility to cancer consistently replicates in EUR-like participants but less so in other participants. We found that All of Us participants from the EUR (p = 1.8 × 10-7), AFR (p = 0.018), and MID (p = 0.0083) genetic similarity groups who carry a rare pathogenic mutation are more likely to have cancer than those without a rare pathogenic mutation. With the advent of combining medical records and genetic mutations, we also performed a phenome-wide association study (PheWAS) to assess the effect of pathogenic variants on additional phenotypes. This analysis again showed several associations between predisposition variants and cancer in EUR-like participants, but fewer in those of the other genetic similarity groups. As All of Us grows to 1 million participants, our projections suggest sufficient power (>99%) to detect cancer-associated variants that are common, but limited power (∼28%) to detect rare mutations when using the entire cohort. This study provides preliminary insights into genetic predispositions to cancer across a diverse cohort and demonstrates the value of All of Us as a resource for cancer research.
Collapse
Affiliation(s)
- Blaine A Bates
- Department of Biology, Brigham Young University, Provo, UT 84061, USA; Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Kylee E Bates
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Spencer A Boris
- Department of Biology, Brigham Young University, Provo, UT 84061, USA
| | - Colin Wessman
- Department of Biology, Brigham Young University, Provo, UT 84061, USA
| | - David Stone
- Department of Biology, Brigham Young University, Provo, UT 84061, USA
| | - Justin Bryan
- Department of Biology, Brigham Young University, Provo, UT 84061, USA
| | - Mary F Davis
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37203, USA
| | - Matthew H Bailey
- Department of Biology, Brigham Young University, Provo, UT 84061, USA; Simmons Center for Cancer Research, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
3
|
Pourmasoumi P, Moradi A, Bayat M. BRCA1/2 Mutations and Breast/Ovarian Cancer Risk: A New Insights Review. Reprod Sci 2024; 31:3624-3634. [PMID: 39107554 DOI: 10.1007/s43032-024-01666-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/26/2024] [Indexed: 12/13/2024]
Abstract
Breast and ovarian cancers are significant global health concerns, and understanding their genetic underpinnings is essential for effective prevention and cure. This narrative review provides a comprehensive analysis of studies conducted between 1994 and June 2024, focusing on the link between specific mutations in the breast cancer susceptibility gene 1 (BRCA1) and breast cancer susceptibility gene 2 (BRCA2) and the associated risks of both breast and ovarian cancers. It encompasses the findings of various works, including observational studies and molecular profiling analyses. Conducted on large international cohorts, these studies present compelling evidence of the relationship between different BRCA1 and BRCA2 mutations and the varying risks of breast and ovarian cancer. Furthermore, this review highlights the significance of nonsense-mediated decay mutations and their impact on cancer risk, particularly concerning the age of breast cancer onset. The implications of these findings are far-reaching, offering valuable information for risk assessment and decision-making in managing individuals who carry BRCA1 or BRCA2 mutations. The molecular subtyping profile BluePrint is discussed as a potential tool for enhancing clinical care by aiding the selection of appropriate treatment options, such as endocrine therapy or chemotherapy, based on the tumor's molecular characteristics. In conclusion, we establish a robust link between specific BRCA1 and BRCA2 gene mutations and increased susceptibility to breast and ovarian cancers. These mutations impact cancer onset age and severity, underscoring the need for targeted testing and screening. The current study enhances cancer detection, prevention, and cure strategies.
Collapse
Affiliation(s)
- Parvin Pourmasoumi
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali Moradi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Price Institute of Surgical Research, University of Louisville, Louisville, KY, USA.
- Noveratech LLC of Louisville, Louisville, KY, USA.
| |
Collapse
|
4
|
Sun X, Verma SP, Jia G, Wang X, Ping J, Guo X, Shu XO, Chen J, Derkach A, Cai Q, Liang X, Long J, Offit K, Hun Oh J, Reiner AS, Watt GP, Woods M, Yang Y, Ambrosone CB, Ambs S, Chen Y, Concannon P, Garcia-Closas M, Gu J, Haiman CA, Hu JJ, Huo D, John EM, Knight JA, Li CI, Lynch CF, Mellemkjær L, Nathanson KL, Nemesure B, Olopade OI, Olshan AF, Pal T, Palmer JR, Press MF, Sanderson M, Sandler DP, Troester MA, Zheng W, Bernstein JL, Buas MF, Shu X. Case-Case Genome-Wide Analyses Identify Subtype-Informative Variants That Confer Risk for Breast Cancer. Cancer Res 2024; 84:2533-2548. [PMID: 38832928 PMCID: PMC11293972 DOI: 10.1158/0008-5472.can-23-3854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/15/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Breast cancer includes several subtypes with distinct characteristic biological, pathologic, and clinical features. Elucidating subtype-specific genetic etiology could provide insights into the heterogeneity of breast cancer to facilitate the development of improved prevention and treatment approaches. In this study, we conducted pairwise case-case comparisons among five breast cancer subtypes by applying a case-case genome-wide association study (CC-GWAS) approach to summary statistics data of the Breast Cancer Association Consortium. The approach identified 13 statistically significant loci and eight suggestive loci, the majority of which were identified from comparisons between triple-negative breast cancer (TNBC) and luminal A breast cancer. Associations of lead variants in 12 loci remained statistically significant after accounting for previously reported breast cancer susceptibility variants, among which, two were genome-wide significant. Fine mapping implicated putative functional/causal variants and risk genes at several loci, e.g., 3q26.31/TNFSF10, 8q22.3/NACAP1/GRHL2, and 8q23.3/LINC00536/TRPS1, for TNBC as compared with luminal cancer. Functional investigation further identified rs16867605 at 8q22.3 as a SNP that modulates the enhancer activity of GRHL2. Subtype-informative polygenic risk scores (PRS) were derived, and patients with a high subtype-informative PRS had an up to two-fold increased risk of being diagnosed with TNBC instead of luminal cancers. The CC-GWAS PRS remained statistically significant after adjusting for TNBC PRS derived from traditional case-control GWAS in The Cancer Genome Atlas and the African Ancestry Breast Cancer Genetic Consortium. The CC-GWAS PRS was also associated with overall survival and disease-specific survival among patients with breast cancer. Overall, these findings have advanced our understanding of the genetic etiology of breast cancer subtypes, particularly for TNBC. Significance: The discovery of subtype-informative genetic risk variants for breast cancer advances our understanding of the etiologic heterogeneity of breast cancer, which could accelerate the identification of targets and personalized strategies for prevention and treatment.
Collapse
Affiliation(s)
- Xiaohui Sun
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Epidemiology, Zhejiang Chinese Medical University, Zhejiang, China
| | - Shiv Prakash Verma
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guochong Jia
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xinjun Wang
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jianhong Chen
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Andriy Derkach
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiaolin Liang
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jung Hun Oh
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anne S. Reiner
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gordon P. Watt
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meghan Woods
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yaohua Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA, USA
| | - Christine B. Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yu Chen
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Patrick Concannon
- Genetics Institute and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Montserrat Garcia-Closas
- Trans-Divisional Research Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jennifer J. Hu
- The University of Miami School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Esther M. John
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia A. Knight
- Prosserman Centre for Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Christopher I. Li
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Charles F. Lynch
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Lene Mellemkjær
- Diet, Cancer and Health, Danish Cancer Institute, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Katherine L. Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Barbara Nemesure
- Stony Brook Medicine, Department of Family, Population, and Preventive Medicine, Stony Brook, NY, USA
| | | | - Andrew F. Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Tuya Pal
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julie R. Palmer
- Slone Epidemiology Center, Boston University, Boston, MA, USA
| | - Michael F. Press
- Department of Pathology, Keck School of Medicine, USC/Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Maureen Sanderson
- Department of Family and Community Medicine, Meharry Medical College, Nashville, TN, USA
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Melissa A. Troester
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonine L. Bernstein
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew F. Buas
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiang Shu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
5
|
Linga BG, Mohammed SGAA, Farrell T, Rifai HA, Al-Dewik N, Qoronfleh MW. Genomic Newborn Screening for Pediatric Cancer Predisposition Syndromes: A Holistic Approach. Cancers (Basel) 2024; 16:2017. [PMID: 38893137 PMCID: PMC11171256 DOI: 10.3390/cancers16112017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
As next-generation sequencing (NGS) has become more widely used, germline and rare genetic variations responsible for inherited illnesses, including cancer predisposition syndromes (CPSs) that account for up to 10% of childhood malignancies, have been found. The CPSs are a group of germline genetic disorders that have been identified as risk factors for pediatric cancer development. Excluding a few "classic" CPSs, there is no agreement regarding when and how to conduct germline genetic diagnostic studies in children with cancer due to the constant evolution of knowledge in NGS technologies. Various clinical screening tools have been suggested to aid in the identification of individuals who are at greater risk, using diverse strategies and with varied outcomes. We present here an overview of the primary clinical and molecular characteristics of various CPSs and summarize the existing clinical genomics data on the prevalence of CPSs in pediatric cancer patients. Additionally, we discuss several ethical issues, challenges, limitations, cost-effectiveness, and integration of genomic newborn screening for CPSs into a healthcare system. Furthermore, we assess the effectiveness of commonly utilized decision-support tools in identifying patients who may benefit from genetic counseling and/or direct genetic testing. This investigation highlights a tailored and systematic approach utilizing medical newborn screening tools such as the genome sequencing of high-risk newborns for CPSs, which could be a practical and cost-effective strategy in pediatric cancer care.
Collapse
Affiliation(s)
- BalaSubramani Gattu Linga
- Department of Research, Women’s Wellness and Research Center, Hamad Medical Corporation (HMC), P.O. Box 3050, Doha 0974, Qatar
- Translational and Precision Medicine Research, Women’s Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha 0974, Qatar
| | | | - Thomas Farrell
- Department of Research, Women’s Wellness and Research Center, Hamad Medical Corporation (HMC), P.O. Box 3050, Doha 0974, Qatar
| | - Hilal Al Rifai
- Neonatal Intensive Care Unit (NICU), Newborn Screening Unit, Department of Pediatrics and Neonatology, Women’s Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha 0974, Qatar
| | - Nader Al-Dewik
- Department of Research, Women’s Wellness and Research Center, Hamad Medical Corporation (HMC), P.O. Box 3050, Doha 0974, Qatar
- Translational and Precision Medicine Research, Women’s Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha 0974, Qatar
- Neonatal Intensive Care Unit (NICU), Newborn Screening Unit, Department of Pediatrics and Neonatology, Women’s Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha 0974, Qatar
- Genomics and Precision Medicine (GPM), College of Health & Life Science (CHLS), Hamad Bin Khalifa University (HBKU), Doha 0974, Qatar
- Faculty of Health and Social Care Sciences, Kingston University and St George’s University of London, Kingston upon Thames, Surrey, London KT1 2EE, UK
| | - M. Walid Qoronfleh
- Healthcare Research & Policy Division, Q3 Research Institute (QRI), Ann Arbor, MI 48197, USA
| |
Collapse
|
6
|
Valentini V, Bucalo A, Conti G, Celli L, Porzio V, Capalbo C, Silvestri V, Ottini L. Gender-Specific Genetic Predisposition to Breast Cancer: BRCA Genes and Beyond. Cancers (Basel) 2024; 16:579. [PMID: 38339330 PMCID: PMC10854694 DOI: 10.3390/cancers16030579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Among neoplastic diseases, breast cancer (BC) is one of the most influenced by gender. Despite common misconceptions associating BC as a women-only disease, BC can also occur in men. Additionally, transgender individuals may also experience BC. Genetic risk factors play a relevant role in BC predisposition, with important implications in precision prevention and treatment. The genetic architecture of BC susceptibility is similar in women and men, with high-, moderate-, and low-penetrance risk variants; however, some sex-specific features have emerged. Inherited high-penetrance pathogenic variants (PVs) in BRCA1 and BRCA2 genes are the strongest BC genetic risk factor. BRCA1 and BRCA2 PVs are more commonly associated with increased risk of female and male BC, respectively. Notably, BRCA-associated BCs are characterized by sex-specific pathologic features. Recently, next-generation sequencing technologies have helped to provide more insights on the role of moderate-penetrance BC risk variants, particularly in PALB2, CHEK2, and ATM genes, while international collaborative genome-wide association studies have contributed evidence on common low-penetrance BC risk variants, on their combined effect in polygenic models, and on their role as risk modulators in BRCA1/2 PV carriers. Overall, all these studies suggested that the genetic basis of male BC, although similar, may differ from female BC. Evaluating the genetic component of male BC as a distinct entity from female BC is the first step to improve both personalized risk assessment and therapeutic choices of patients of both sexes in order to reach gender equality in BC care. In this review, we summarize the latest research in the field of BC genetic predisposition with a particular focus on similarities and differences in male and female BC, and we also discuss the implications, challenges, and open issues that surround the establishment of a gender-oriented clinical management for BC.
Collapse
Affiliation(s)
- Virginia Valentini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Agostino Bucalo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Giulia Conti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Ludovica Celli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Virginia Porzio
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Carlo Capalbo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
- Medical Oncology Unit, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Valentina Silvestri
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| |
Collapse
|
7
|
Chauhan S, Sen S, Irshad K, Kashyap S, Pushker N, Meel R, Sharma MC. Receptor tyrosine kinase gene expression profiling of orbital rhabdomyosarcoma unveils MET as a potential biomarker and therapeutic target. Hum Cell 2024; 37:297-309. [PMID: 37914903 DOI: 10.1007/s13577-023-00993-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
Receptor tyrosine kinases (RTKs) serve as molecular targets for the development of novel personalized therapies in many malignancies. In the present study, expression pattern of receptor tyrosine kinases and its clinical significance in orbital RMS has been explored. Eighteen patients with histopathologically confirmed orbital RMS formed part of this study. Comprehensive q-PCR gene expression profiles of 19 RTKs were generated in the cases and controls. The patients were followed up for 59.53 ± 20.93 years. Clustering and statistical analysis tools were applied to identify the significant combination of RTKs associated with orbital rhabdomyosarcoma patients. mRNA overexpression of RTKs which included MET, AXL, EGFR was seen in 60-80% of cases; EGFR3, IGFR2, FGFR1, RET, PDGFR1, VEGFR2, PDGFR2 in 30-60% of cases; and EGFR4, FGFR3,VEGFR3 and ROS,IGFR1, EGFR1, FGFR2, VEGFR1 in 10-30% of cases. Immunoexpression of MET was seen in 89% of cases. A significant association was seen between MET mRNA and its protein expression. In all the cases MET gene expression was associated with worst overall survival (P = 0.03).There was a significant correlation of MET mRNA expression with RET, ROS, AXL, FGFR1, FGFR3, PDGFR1, IGFR1, VEGFR2, and EGFR3 genes. Association between MET gene and collective expression of RTKs was further evaluated by semi-supervised gene cluster analysis and Principal component analysis, which showed well-separated tumor clusters. MET gene overexpression could be a useful biomarker for identifying high risk orbital rhabdomyosarcoma patients. Well-separated tumor clusters confirmed the association between MET gene and collective expression of RTK genes. Therefore, the therapeutic potential of multi-kinase inhibitors targeting MET and the 9 other significant RTKs needs to be explored.
Collapse
Affiliation(s)
- Sheetal Chauhan
- Ocular Pathology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, Room No. 725, New Delhi, 110029, India
| | - Seema Sen
- Ocular Pathology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, Room No. 725, New Delhi, 110029, India.
| | - Khushboo Irshad
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Seema Kashyap
- Ocular Pathology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, Room No. 725, New Delhi, 110029, India
| | - Neelam Pushker
- Ophthalmoplasty Services, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Rachna Meel
- Ophthalmoplasty Services, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Mehar Chand Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
8
|
Shah I, Silva-Santisteban A, Germansky KA, Wadhwa V, Tung N, Huang DC, Kandasamy C, Mlabasati J, Bilal M, Sawhney MS. Incidence and Prevalence of Intraductal Papillary Mucinous Neoplasms in Individuals With BRCA1 and BRCA2 Pathogenic Variant. J Clin Gastroenterol 2023; 57:317-323. [PMID: 35220378 DOI: 10.1097/mcg.0000000000001683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/23/2022] [Indexed: 12/10/2022]
Abstract
BACKGROUND The natural history of branch-duct intraductal papillary neoplasm (BD-IPMN) in BRCA1/2 patients is unknown. Our goal was to estimate the incidence and prevalence of BD-IPMN and other pancreatic lesions in BRCA1/2 patients and compare it to that for average-risk individuals. METHODS We identified a cohort of BRCA1/2 patients followed at our institution between 1995 and 2020. Medical records and imaging results were reviewed to determine prevalence of pancreatic lesions. We then identified those who had undergone follow-up imaging and determined the incidence of new pancreatic lesions. We categorized pancreatic lesions as low, intermediate, or high-risk based on their malignant potential. RESULTS During the study period, 359 eligible BRCA1/2 patients were identified. Average patient age was 56.8 years, 88.3% were women, and 51.5% had BRCA1 . The prevalence of low-risk pancreatic lesions was 14.4%, intermediate-risk 13.9%, and high-risk 3.3%. The prevalence of BD-IPMN was 13.6% with mean cyst size 7.7 mm (range: 2 to 34 mm). The prevalence of pancreatic cancer was 3.1%. Subsequent imaging was performed in 169 patents with mean follow-up interval of 5.3 years (range: 0 to 19.7 y). The incidence of BD-IPMN was 20.1%, with median cyst size 5.5 mm (range: 2 to 30 mm). The incidence of pancreatic cancer was 2.9%. BRCA2 patients were almost 4-times more likely to develop pancreatic cancer than BRCA1 patients, however, there was no difference in incidence or prevalence of BD-IPMN. CONCLUSIONS Incidence and prevalence of BD-IPMNs in BRCA1/2 patients was similar to that reported for average-risk individuals. BRCA2 patients were more likely than BRCA1 patients to develop pancreatic cancer but had similar rates of BD-IPMN.
Collapse
Affiliation(s)
- Ishani Shah
- Division of Gastroenterology, Department of Medicine
| | | | | | | | - Nadine Tung
- Division of Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Dora C Huang
- Division of Gastroenterology, Department of Medicine
| | | | | | | | | |
Collapse
|
9
|
Epigenetic Regulation in Breast Cancer: Insights on Epidrugs. EPIGENOMES 2023; 7:epigenomes7010006. [PMID: 36810560 PMCID: PMC9953240 DOI: 10.3390/epigenomes7010006] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Breast cancer remains a common cause of cancer-related death in women. Therefore, further studies are necessary for the comprehension of breast cancer and the revolution of breast cancer treatment. Cancer is a heterogeneous disease that results from epigenetic alterations in normal cells. Aberrant epigenetic regulation is strongly associated with the development of breast cancer. Current therapeutic approaches target epigenetic alterations rather than genetic mutations due to their reversibility. The formation and maintenance of epigenetic changes depend on specific enzymes, including DNA methyltransferases and histone deacetylases, which are promising targets for epigenetic-based therapy. Epidrugs target different epigenetic alterations, including DNA methylation, histone acetylation, and histone methylation, which can restore normal cellular memory in cancerous diseases. Epigenetic-targeted therapy using epidrugs has anti-tumor effects on malignancies, including breast cancer. This review focuses on the importance of epigenetic regulation and the clinical implications of epidrugs in breast cancer.
Collapse
|
10
|
Tshiaba PT, Ratman DK, Sun JM, Tunstall TS, Levy B, Shah PS, Weitzel JN, Rabinowitz M, Kumar A, Im KM. Integration of a Cross-Ancestry Polygenic Model With Clinical Risk Factors Improves Breast Cancer Risk Stratification. JCO Precis Oncol 2023; 7:e2200447. [PMID: 36809055 DOI: 10.1200/po.22.00447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
PURPOSE To develop and validate a cross-ancestry integrated risk score (caIRS) that combines a cross-ancestry polygenic risk score (caPRS) with a clinical estimator for breast cancer (BC) risk. We hypothesized that the caIRS is a better predictor of BC risk than clinical risk factors across diverse ancestry groups. METHODS We used diverse retrospective cohort data with longitudinal follow-up to develop a caPRS and integrate it with the Tyrer-Cuzick (T-C) clinical model. We tested the association between the caIRS and BC risk in two validation cohorts including > 130,000 women. We compared model discrimination for 5-year and remaining lifetime BC risk between the caIRS and T-C and assessed how the caIRS would affect screening in the clinic. RESULTS The caIRS outperformed T-C alone for all populations tested in both validation cohorts and contributed significantly to risk prediction beyond T-C. The area under the receiver operating characteristic curve improved from 0.57 to 0.65, and the odds ratio per standard deviation increased from 1.35 (95% CI, 1.27 to 1.43) to 1.79 (95% CI, 1.70 to 1.88) in validation cohort 1 with similar improvements observed in validation cohort 2. We observed the largest gain in positive predictive value using the caIRS in Black/African American women across both validation cohorts, with an approximately two-fold increase and an equivalent negative predictive value as the T-C. In a multivariate, age-adjusted logistic regression model including both caIRS and T-C, caIRS remained significant, indicating that caIRS provides information over T-C alone. CONCLUSION Adding a caPRS to the T-C model improves BC risk stratification for women of multiple ancestries, which could have implications for screening recommendations and prevention.
Collapse
Affiliation(s)
| | | | | | | | - Brynn Levy
- MyOme Inc, Menlo Park, CA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | | | | | | | | | | |
Collapse
|
11
|
Ding YC, Adamson AW, Bakhtiari M, Patrick C, Park J, Laitman Y, Weitzel JN, Bafna V, Friedman E, Neuhausen SL. Variable number tandem repeats (VNTRs) as modifiers of breast cancer risk in carriers of BRCA1 185delAG. Eur J Hum Genet 2023; 31:216-222. [PMID: 36434258 PMCID: PMC9905572 DOI: 10.1038/s41431-022-01238-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
Despite substantial efforts in identifying both rare and common variants affecting disease risk, in the majority of diseases, a large proportion of unexplained genetic risk remains. We propose that variable number tandem repeats (VNTRs) may explain a proportion of the missing genetic risk. Herein, in a pilot study with a retrospective cohort design, we tested whether VNTRs are causal modifiers of breast cancer risk in 347 female carriers of the BRCA1 185delAG pathogenic variant, an important group given their high risk of developing breast cancer. We performed targeted-capture to sequence VNTRs, called genotypes with adVNTR, tested the association of VNTRs and breast cancer risk using Cox regression models, and estimated the effect size using a retrospective likelihood approach. Of 303 VNTRs that passed quality control checks, 4 VNTRs were significantly associated with risk to develop breast cancer at false discovery rate [FDR] < 0.05 and an additional 4 VNTRs had FDR < 0.25. After determining the specific risk alleles, there was a significantly earlier age at diagnosis of breast cancer in carriers of the risk alleles compared to those without the risk alleles for seven of eight VNTRs. One example is a VNTR in exon 2 of LINC01973 with a per-allele hazard ratio of 1.58 (1.07-2.33) and 5.28 (2.79-9.99) for the homozygous risk-allele genotype. Results from this first systematic study of VNTRs demonstrate that VNTRs may explain a proportion of the unexplained genetic risk for breast cancer.
Collapse
Affiliation(s)
- Yuan Chun Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Aaron W Adamson
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Mehrdad Bakhtiari
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Carmina Patrick
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Jonghun Park
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Yael Laitman
- Oncogenetics Unit, Institute of Human Genetics, Sheba Medical Center, Ramat Gan, Israel
| | - Jeffrey N Weitzel
- Latin American School of Oncology, Tuxla Gutierrez, Chiapas, MX and Natera, San Carlos, CA, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Eitan Friedman
- Oncogenetics Unit, Institute of Human Genetics, Sheba Medical Center, Ramat Gan, Israel
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Center for Preventive Personalized Medicine, Assuta Medical Center, Tel Aviv, Israel
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
12
|
Grolmusz VK, Nagy P, Likó I, Butz H, Pócza T, Bozsik A, Papp J, Oláh E, Patócs A. A common genetic variation in GZMB may associate with cancer risk in patients with Lynch syndrome. Front Oncol 2023; 13:1005066. [PMID: 36890824 PMCID: PMC9986427 DOI: 10.3389/fonc.2023.1005066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Lynch syndrome (LS), also known as hereditary nonpolyposis colorectal cancer syndrome (HNPCC) is a common genetic predisposition to cancer due to germline mutations in genes affecting DNA mismatch repair. Due to mismatch repair deficiency, developing tumors are characterized by microsatellite instability (MSI-H), high frequency of expressed neoantigens and good clinical response to immune checkpoint inhibitors. Granzyme B (GrB) is the most abundant serine protease in the granules of cytotoxic T-cells and natural killer cells, mediating anti-tumor immunity. However, recent results confirm a diverse range of physiological functions of GrB including that in extracellular matrix remodelling, inflammation and fibrosis. In the present study, our aim was to investigate whether a frequent genetic variation of GZMB, the gene encoding GrB, constituted by three missense single nucleotide polymorphisms (rs2236338, rs11539752 and rs8192917) has any association with cancer risk in individuals with LS. In silico analysis and genotype calls from whole exome sequencing data in the Hungarian population confirmed that these SNPs are closely linked. Genotyping results of rs8192917 on a cohort of 145 individuals with LS demonstrated an association of the CC genotype with lower cancer risk. In silico prediction proposed likely GrB cleavage sites in a high proportion of shared neontigens in MSI-H tumors. Our results propose the CC genotype of rs8192917 as a potential disease-modifying genetic factor in LS.
Collapse
Affiliation(s)
- Vince Kornél Grolmusz
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Eötvös Loránd Research Network - Semmelweis University, Budapest, Hungary.,Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.,National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Petra Nagy
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - István Likó
- Hereditary Cancers Research Group, Eötvös Loránd Research Network - Semmelweis University, Budapest, Hungary.,National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Henriett Butz
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Eötvös Loránd Research Network - Semmelweis University, Budapest, Hungary.,Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.,National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary.,National Oncology Biobank Center, National Institute of Oncology, Budapest, Hungary
| | - Tímea Pócza
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Anikó Bozsik
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Eötvös Loránd Research Network - Semmelweis University, Budapest, Hungary.,National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - János Papp
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Eötvös Loránd Research Network - Semmelweis University, Budapest, Hungary.,National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Edit Oláh
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Attila Patócs
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Eötvös Loránd Research Network - Semmelweis University, Budapest, Hungary.,Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.,National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
| |
Collapse
|
13
|
Barnekow E, Liu W, Helgadottir HT, Michailidou K, Dennis J, Bryant P, Thutkawkorapin J, Wendt C, Czene K, Hall P, Margolin S, Lindblom A. A Swedish Genome-Wide Haplotype Association Analysis Identifies a Novel Breast Cancer Susceptibility Locus in 8p21.2 and Characterizes Three Loci on Chromosomes 10, 11 and 16. Cancers (Basel) 2022; 14:cancers14051206. [PMID: 35267517 PMCID: PMC8909613 DOI: 10.3390/cancers14051206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: The heritability of breast cancer is partly explained but much of the genetic contribution remains to be identified. Haplotypes are often used as markers of ethnicity as they are preserved through generations. We have previously demonstrated that haplotype analysis, in addition to standard SNP association studies, could give novel and more detailed information on genetic cancer susceptibility. (2) Methods: In order to examine the association of a SNP or a haplotype to breast cancer risk, we performed a genome wide haplotype association study, using sliding window analysis of window sizes 1−25 and 50 SNPs, in 3200 Swedish breast cancer cases and 5021 controls. (3) Results: We identified a novel breast cancer susceptibility locus in 8p21.1 (OR 2.08; p 3.92 × 10−8), confirmed three known loci in 10q26.13, 11q13.3, 16q12.1-2 and further identified novel subloci within these three loci. Altogether 76 risk SNPs, 3302 risk haplotypes of window size 2−25 and 113 risk haplotypes of window size 50 at p < 5 × 10−8 on chromosomes 8, 10, 11 and 16 were identified. In the known loci haplotype analysis reached an OR of 1.48 in overall breast cancer and in familial cases OR 1.68. (4) Conclusions: Analyzing haplotypes, rather than single variants, could detect novel susceptibility loci even in small study populations but the method requires a fairly homogenous study population.
Collapse
Affiliation(s)
- Elin Barnekow
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, 11883 Stockholm, Sweden; (C.W.); (S.M.)
- Department of Oncology, Södersjukhuset, 11883 Stockholm, Sweden;
- Correspondence: (E.B.); (A.L.); Tel.: +46-736-565-798 (E.B.); +46-852-485-248 (A.L.)
| | - Wen Liu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden; (W.L.); (H.T.H.); (P.B.); (J.T.)
- Department of Neuroscience, Uppsala University, 75237 Uppsala, Sweden
| | - Hafdis T. Helgadottir
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden; (W.L.); (H.T.H.); (P.B.); (J.T.)
- Department of Clinical Genetics, Karolinska University Hospital, 17164 Stockholm, Sweden
| | - Kyriaki Michailidou
- The Cyprus Institute of Neurology & Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus;
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge CB18RN, UK;
| | - Patrick Bryant
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden; (W.L.); (H.T.H.); (P.B.); (J.T.)
- Department of Biochemistry and Biophysics, Stockholm University, 17165 Stockholm, Sweden
- Science for Life Laboratory, 17165 Stockholm, Sweden
| | - Jessada Thutkawkorapin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden; (W.L.); (H.T.H.); (P.B.); (J.T.)
- Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Camilla Wendt
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, 11883 Stockholm, Sweden; (C.W.); (S.M.)
- Department of Oncology, Södersjukhuset, 11883 Stockholm, Sweden;
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17165 Stockholm, Sweden;
| | - Per Hall
- Department of Oncology, Södersjukhuset, 11883 Stockholm, Sweden;
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17165 Stockholm, Sweden;
| | - Sara Margolin
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, 11883 Stockholm, Sweden; (C.W.); (S.M.)
- Department of Oncology, Södersjukhuset, 11883 Stockholm, Sweden;
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden; (W.L.); (H.T.H.); (P.B.); (J.T.)
- Department of Clinical Genetics, Karolinska University Hospital, 17164 Stockholm, Sweden
- Correspondence: (E.B.); (A.L.); Tel.: +46-736-565-798 (E.B.); +46-852-485-248 (A.L.)
| |
Collapse
|
14
|
Conduit C, Milne RL, Friedlander ML, Phillips KA. Bilateral Salpingo-oophorectomy and Breast Cancer Risk for BRCA1 and BRCA2 Mutation Carriers: Assessing the Evidence. Cancer Prev Res (Phila) 2021; 14:983-994. [PMID: 34348913 PMCID: PMC9662899 DOI: 10.1158/1940-6207.capr-21-0141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/24/2021] [Accepted: 07/20/2021] [Indexed: 01/07/2023]
Abstract
Without preventive interventions, women with germline pathogenic variants in BRCA1 or BRCA2 have high lifetime risks for breast cancer and tubo-ovarian cancer. The increased risk for breast cancer starts at a considerably younger age than that for tubo-ovarian cancer. Risk-reducing bilateral salpingo-oophorectomy (rrBSO) is effective in reducing tubo-ovarian cancer risk for BRCA1 and BRCA2 mutation carriers, but whether it reduces breast cancer risk is less clear. All studies of rrBSO and breast cancer risk are observational in nature and subject to various forms of bias and confounding, thus limiting conclusions that can be drawn about causation. Early studies supported a statistically significant protective association for rrBSO on breast cancer risk, which is reflected by several international guidelines that recommend consideration of premenopausal rrBSO for breast cancer risk reduction. However, these historical studies were hampered by the presence of several important biases, including immortal person-time bias, confounding by indication, informative censoring, and confounding by other risk factors, which may have led to overestimation of any protective benefit. Contemporary studies, specifically designed to reduce some of these biases, have yielded contradictory results. Taken together, there is no clear and consistent evidence for a role of premenopausal rrBSO in reducing breast cancer risk in BRCA1 or BRCA2 mutation carriers.
Collapse
Affiliation(s)
- Ciara Conduit
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Roger L. Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia.,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Michael L. Friedlander
- Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia.,Department of Medical Oncology, Prince of Wales Hospital, Barker St. Randwick, New South Wales, Australia
| | - Kelly-Anne Phillips
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.,Corresponding Author: Kelly-Anne Phillips, Department of Medical Oncology, Peter MacCallum Cancer Centre, 305 Grattan St., Melbourne, Victoria, 3000, Australia. Phone: 613-8559-7902; Fax: 613-8559-7739; E-mail:
| |
Collapse
|
15
|
Wendt C, Muranen TA, Mielikäinen L, Thutkawkorapin J, Blomqvist C, Jiao X, Ehrencrona H, Tham E, Arver B, Melin B, Kuchinskaya E, Stenmark Askmalm M, Paulsson-Karlsson Y, Einbeigi Z, von Wachenfeldt Väppling A, Kalso E, Tasmuth T, Kallioniemi A, Aittomäki K, Nevanlinna H, Borg Å, Lindblom A. A search for modifying genetic factors in CHEK2:c.1100delC breast cancer patients. Sci Rep 2021; 11:14763. [PMID: 34285278 PMCID: PMC8292481 DOI: 10.1038/s41598-021-93926-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022] Open
Abstract
The risk of breast cancer associated with CHEK2:c.1100delC is 2-threefold but higher in carriers with a family history of breast cancer than without, suggesting that other genetic loci in combination with CHEK2:c.1100delC confer an increased risk in a polygenic model. Part of the excess familial risk has been associated with common low-penetrance variants. This study aimed to identify genetic loci that modify CHEK2:c.1100delC-associated breast cancer risk by searching for candidate risk alleles that are overrepresented in CHEK2:c.1100delC carriers with breast cancer compared with controls. We performed whole-exome sequencing in 28 breast cancer cases with germline CHEK2:c.1100delC, 28 familial breast cancer cases and 70 controls. Candidate alleles were selected for validation in larger cohorts. One recessive synonymous variant, rs16897117, was suggested, but no overrepresentation of homozygous CHEK2:c.1100delC carriers was found in the following validation. Furthermore, 11 non-synonymous candidate alleles were suggested for further testing, but no significant difference in allele frequency could be detected in the validation in CHEK2:c.1100delC cases compared with familial breast cancer, sporadic breast cancer and controls. With this method, we found no support for a CHEK2:c.1100delC-specific genetic modifier. Further studies of CHEK2:c.1100delC genetic modifiers are warranted to improve risk assessment in clinical practice.
Collapse
Affiliation(s)
- Camilla Wendt
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden.
| | - Taru A Muranen
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Lotta Mielikäinen
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Jessada Thutkawkorapin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Xiang Jiao
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Hans Ehrencrona
- Department of Clinical Genetics and Pathology, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Brita Arver
- Department of Oncology-Pathology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Beatrice Melin
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Ekaterina Kuchinskaya
- Department of Clinical Genetics, Department of Clinical Experimental Medicine, Linköping University, Linköping, Sweden
| | - Marie Stenmark Askmalm
- Department of Clinical Genetics, Department of Clinical Experimental Medicine, Linköping University, Linköping, Sweden
| | | | - Zakaria Einbeigi
- Department of Oncology, Sahlgrenska University Hospital, 41345, Göteborg, Sweden
| | | | - Eija Kalso
- Department of Anaesthesiology, Intensive Care, and Pain Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tiina Tasmuth
- Department of Anaesthesiology, Intensive Care, and Pain Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Anne Kallioniemi
- TAYS Cancer Centre and Faculty of Medicine and Health Technology, Tampere University; Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Kristiina Aittomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Åke Borg
- Department of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Lund, Sweden
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Stockholm, Sweden
| |
Collapse
|
16
|
El-Shafie MK, Allah AMA, Alhanafy AM, Rizk SK, Habieb MSED. The association between tri-nucleotide-repeat containing 9 (TNRC9) /LOC643714 genetic variations and breast cancer in Egyptian females. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Sheikh-Hosseini M, Larijani B, Gholipoor Kakroodi Z, Shokoohi M, Moarefzadeh M, Sayahpour FA, Goodarzi P, Arjmand B. Gene Therapy as an Emerging Therapeutic Approach to Breast Cancer: New Developments and Challenges. Hum Gene Ther 2021; 32:1330-1345. [PMID: 33307949 DOI: 10.1089/hum.2020.199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is a heterogeneous disease, which is the consequence of several genetic and environmental factors. Also, it is one of the most common causes of cancer death and second leading cancer among women all around the world. Therefore, it is necessary to develop novel therapeutic approaches useful for the successful treatment of breast cancer. As conventional treatments had limited success, alternative approaches for the treatment of breast cancer have been applied in recent years. Hence, the molecular basis of breast cancer has provided the opportunity of using genetic materials for therapeutic uses. In this regard, gene therapy as one of the potentially efficient and beneficial treatments among various techniques became a popular treatment for different cancers, especially breast cancer. Accordingly, there are plenty of targets available for gene therapy of breast cancer. Gene therapy strategies have the potential to correct molecular defects that contributed to the cancer progression. These techniques should selectively target tumor cells without affecting normal cells. Moreover, data of clinical trials in gene therapy for breast cancer indicated that this approach has little toxicity compared to other therapeutic approaches. In this study, different aspects of breast neoplasm, gene therapy techniques, challenges, and recent developments will be mentioned.
Collapse
Affiliation(s)
- Motahareh Sheikh-Hosseini
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Gholipoor Kakroodi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Shokoohi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Moarefzadeh
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Coignard J, Lush M, Beesley J, O'Mara TA, Dennis J, Tyrer JP, Barnes DR, McGuffog L, Leslie G, Bolla MK, Adank MA, Agata S, Ahearn T, Aittomäki K, Andrulis IL, Anton-Culver H, Arndt V, Arnold N, Aronson KJ, Arun BK, Augustinsson A, Azzollini J, Barrowdale D, Baynes C, Becher H, Bermisheva M, Bernstein L, Białkowska K, Blomqvist C, Bojesen SE, Bonanni B, Borg A, Brauch H, Brenner H, Burwinkel B, Buys SS, Caldés T, Caligo MA, Campa D, Carter BD, Castelao JE, Chang-Claude J, Chanock SJ, Chung WK, Claes KBM, Clarke CL, Collée JM, Conroy DM, Czene K, Daly MB, Devilee P, Diez O, Ding YC, Domchek SM, Dörk T, Dos-Santos-Silva I, Dunning AM, Dwek M, Eccles DM, Eliassen AH, Engel C, Eriksson M, Evans DG, Fasching PA, Flyger H, Fostira F, Friedman E, Fritschi L, Frost D, Gago-Dominguez M, Gapstur SM, Garber J, Garcia-Barberan V, García-Closas M, García-Sáenz JA, Gaudet MM, Gayther SA, Gehrig A, Georgoulias V, Giles GG, Godwin AK, Goldberg MS, Goldgar DE, González-Neira A, Greene MH, Guénel P, Haeberle L, Hahnen E, Haiman CA, Håkansson N, Hall P, Hamann U, Harrington PA, Hart SN, He W, Hogervorst FBL, Hollestelle A, Hopper JL, Horcasitas DJ, Hulick PJ, et alCoignard J, Lush M, Beesley J, O'Mara TA, Dennis J, Tyrer JP, Barnes DR, McGuffog L, Leslie G, Bolla MK, Adank MA, Agata S, Ahearn T, Aittomäki K, Andrulis IL, Anton-Culver H, Arndt V, Arnold N, Aronson KJ, Arun BK, Augustinsson A, Azzollini J, Barrowdale D, Baynes C, Becher H, Bermisheva M, Bernstein L, Białkowska K, Blomqvist C, Bojesen SE, Bonanni B, Borg A, Brauch H, Brenner H, Burwinkel B, Buys SS, Caldés T, Caligo MA, Campa D, Carter BD, Castelao JE, Chang-Claude J, Chanock SJ, Chung WK, Claes KBM, Clarke CL, Collée JM, Conroy DM, Czene K, Daly MB, Devilee P, Diez O, Ding YC, Domchek SM, Dörk T, Dos-Santos-Silva I, Dunning AM, Dwek M, Eccles DM, Eliassen AH, Engel C, Eriksson M, Evans DG, Fasching PA, Flyger H, Fostira F, Friedman E, Fritschi L, Frost D, Gago-Dominguez M, Gapstur SM, Garber J, Garcia-Barberan V, García-Closas M, García-Sáenz JA, Gaudet MM, Gayther SA, Gehrig A, Georgoulias V, Giles GG, Godwin AK, Goldberg MS, Goldgar DE, González-Neira A, Greene MH, Guénel P, Haeberle L, Hahnen E, Haiman CA, Håkansson N, Hall P, Hamann U, Harrington PA, Hart SN, He W, Hogervorst FBL, Hollestelle A, Hopper JL, Horcasitas DJ, Hulick PJ, Hunter DJ, Imyanitov EN, Jager A, Jakubowska A, James PA, Jensen UB, John EM, Jones ME, Kaaks R, Kapoor PM, Karlan BY, Keeman R, Khusnutdinova E, Kiiski JI, Ko YD, Kosma VM, Kraft P, Kurian AW, Laitman Y, Lambrechts D, Le Marchand L, Lester J, Lesueur F, Lindstrom T, Lopez-Fernández A, Loud JT, Luccarini C, Mannermaa A, Manoukian S, Margolin S, Martens JWM, Mebirouk N, Meindl A, Miller A, Milne RL, Montagna M, Nathanson KL, Neuhausen SL, Nevanlinna H, Nielsen FC, O'Brien KM, Olopade OI, Olson JE, Olsson H, Osorio A, Ottini L, Park-Simon TW, Parsons MT, Pedersen IS, Peshkin B, Peterlongo P, Peto J, Pharoah PDP, Phillips KA, Polley EC, Poppe B, Presneau N, Pujana MA, Punie K, Radice P, Rantala J, Rashid MU, Rennert G, Rennert HS, Robson M, Romero A, Rossing M, Saloustros E, Sandler DP, Santella R, Scheuner MT, Schmidt MK, Schmidt G, Scott C, Sharma P, Soucy P, Southey MC, Spinelli JJ, Steinsnyder Z, Stone J, Stoppa-Lyonnet D, Swerdlow A, Tamimi RM, Tapper WJ, Taylor JA, Terry MB, Teulé A, Thull DL, Tischkowitz M, Toland AE, Torres D, Trainer AH, Truong T, Tung N, Vachon CM, Vega A, Vijai J, Wang Q, Wappenschmidt B, Weinberg CR, Weitzel JN, Wendt C, Wolk A, Yadav S, Yang XR, Yannoukakos D, Zheng W, Ziogas A, Zorn KK, Park SK, Thomassen M, Offit K, Schmutzler RK, Couch FJ, Simard J, Chenevix-Trench G, Easton DF, Andrieu N, Antoniou AC. A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers. Nat Commun 2021; 12:1078. [PMID: 33990587 PMCID: PMC7890067 DOI: 10.1038/s41467-020-20496-3] [Show More Authors] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/19/2020] [Indexed: 02/02/2023] Open
Abstract
Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10-8, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers.
Collapse
Affiliation(s)
- Juliette Coignard
- Genetic Epidemiology of Cancer team, Inserm, U900, Paris, France
- Institut Curie Paris, Paris, France
- Mines ParisTech Fontainebleau, Paris, France
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- PSL University Paris, Paris, France
- Paris Sud University, Orsay, France
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jonathan Beesley
- Department of Genetics and Computational Biology QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Tracy A O'Mara
- Department of Genetics and Computational Biology QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jonathan P Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Daniel R Barnes
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Lesley McGuffog
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Goska Leslie
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Muriel A Adank
- Family Cancer Clinic, The Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Simona Agata
- Immunology and Molecular Oncology, Unit Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Thomas Ahearn
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Hospital University of Helsinki, Helsinki, Finland
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics University of Toronto, Toronto, ON, Canada
| | - Hoda Anton-Culver
- Department of Epidemiology, Genetic Epidemiology Research Institute University of California Irvine, Irvine, CA, USA
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Norbert Arnold
- Department of Gynaecology and Obstetrics University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel, Germany
- Institute of Clinical Molecular Biology University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel, Germany
| | - Kristan J Aronson
- Department of Public Health Sciences, and Cancer Research Institute Queen's University, Kingston, ON, Canada
| | - Banu K Arun
- Department of Breast Medical Oncology University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Annelie Augustinsson
- Department of Cancer Epidemiology, Clinical Sciences Lund University, Lund, 22242, Sweden
| | - Jacopo Azzollini
- Unit of Medical Genetics, Department of Medical Oncology and Hematology Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Daniel Barrowdale
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Caroline Baynes
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Heiko Becher
- Institute for Medical Biometrics and Epidemiology University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - Leslie Bernstein
- Department of Population Sciences Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Katarzyna Białkowska
- Department of Genetics and Pathology Pomeranian Medical University Szczecin, Szczecin, Poland
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital University of Helsinki, Helsinki, Finland
- Department of Oncology Örebro University Hospital, Örebro, Sweden
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Ake Borg
- Department of Oncology Lund University and Skåne University Hospital, Lund, Sweden
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- iFIT-Cluster of Excellence University of Tübingen, Tübingen, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Burwinkel
- Molecular Epidemiology Group, C080 German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg University of Heidelberg, Heidelberg, Germany
| | - Saundra S Buys
- Department of Medicine Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Trinidad Caldés
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Maria A Caligo
- SOD Genetica Molecolare University Hospital, Pisa, Italy
| | - Daniele Campa
- Department of Biology University of Pisa, Pisa, Italy
- Division of Cancer Epidemiology German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Brian D Carter
- Behavioral and Epidemiology Research Group American Cancer Society Atlanta, Atlanta, GA, USA
| | - Jose E Castelao
- Oncology and Genetics Unit Instituto de Investigacion Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Vigo, Spain
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH) University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA
| | | | - Christine L Clarke
- Westmead Institute for Medical Research University of Sydney, Sydney, NSW, Australia
| | - J Margriet Collée
- Department of Clinical Genetics Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Don M Conroy
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mary B Daly
- Department of Clinical Genetics Fox Chase Cancer Center Philadelphia, Philadelphia, PA, USA
| | - Peter Devilee
- Department of Pathology Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics Leiden University Medical Center, Leiden, The Netherlands
| | - Orland Diez
- Oncogenetics Group Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Clinical and Molecular Genetics Area University Hospital Vall d'Hebron, Barcelona, Spain
| | - Yuan Chun Ding
- Department of Population Sciences Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Susan M Domchek
- Basser Center for BRCA, Abramson Cancer Center University of Pennsylvania, Philadelphia, PA, USA
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Isabel Dos-Santos-Silva
- Department of Non-Communicable Disease Epidemiology London School of Hygiene and Tropical Medicine, London, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Miriam Dwek
- School of Life Sciences University of Westminster, London, UK
| | - Diana M Eccles
- Faculty of Medicine University of Southampton, Southampton, UK
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology University of Leipzig, Leipzig, Germany
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - D Gareth Evans
- Genomic Medicine, Division of Evolution and Genomic Sciences The University of Manchester, Manchester Academic Health Science Centre, Manchester Universities Foundation Trust, St Mary's Hospital, Manchester, UK
- Genomic Medicine, North West Genomics hub Manchester Academic Health Science Centre, Manchester Universities Foundation Trust, St Mary's Hospital, Manchester, UK
| | - Peter A Fasching
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology University of California at Los Angeles, Los Angeles, CA, USA
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN University Hospital Erlangen, Friedrich-Alexander-University, Erlangen-Nuremberg, Erlangen, Germany
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRASTES National Centre for Scientific Research íDemokritosí, Athens, Greece
| | - Eitan Friedman
- The Susanne Levy Gertner Oncogenetics Unit Chaim Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine Tel Aviv University, Ramat Aviv, Israel
| | - Lin Fritschi
- School of Public Health Curtin University, Perth, Western Australia, Australia
| | - Debra Frost
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, Galician Foundation of Genomic Medicine Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
- Moores Cancer Center University of California, San Diego La Jolla, CA, USA
| | - Susan M Gapstur
- Behavioral and Epidemiology Research Group American Cancer Society Atlanta, Atlanta, GA, USA
| | - Judy Garber
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Vanesa Garcia-Barberan
- Medical Oncology Department, Hospital Clínico San Carlos Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - José A García-Sáenz
- Medical Oncology Department, Hospital Clínico San Carlos Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Mia M Gaudet
- Behavioral and Epidemiology Research Group American Cancer Society Atlanta, Atlanta, GA, USA
| | - Simon A Gayther
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrea Gehrig
- Department of Human Genetics University Würzburg, Würzburg, Germany
| | | | - Graham G Giles
- Cancer Epidemiology Division Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health Monash University, Clayton, VIC, Australia
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mark S Goldberg
- Department of Medicine, McGill University, Montréal, QC, Canada
- Division of Clinical Epidemiology, Royal Victoria Hospital McGill University Montréal, Montréal, QC, Canada
| | - David E Goldgar
- Huntsman Cancer Institute and Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Anna González-Neira
- Human Cancer Genetics Programme Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics National Cancer Institute, Bethesda, MD, USA
| | - Pascal Guénel
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP) INSERM, University Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Lothar Haeberle
- Department of Gynaecology and Obstetrics, University Hospital Erlangen Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Eric Hahnen
- Center for Hereditary Breast and Ovarian Cancer Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO) Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine University of Southern California, Los Angeles, CA, USA
| | | | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patricia A Harrington
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Steven N Hart
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Wei He
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Frans B L Hogervorst
- Family Cancer Clinic, The Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Antoinette Hollestelle
- Department of Medical Oncology, Family Cancer Clinic Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Darling J Horcasitas
- New Mexico Oncology Hematology Consultants, University of New Mexico, Albuquerque, NM, USA
| | - Peter J Hulick
- Center for Medical Genetics NorthShore University HealthSystem, Evanston, IL, USA
- The University of Chicago Pritzker School of Medicine Chicago, Chicago, IL, USA
| | - David J Hunter
- Department of Epidemiology Harvard TH Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics Harvard TH Chan School of Public Health Boston, Boston, MA, USA
- Nuffield Department of Population Health University of Oxford, Oxford, UK
| | | | - Agnes Jager
- Department of Medical Oncology, Family Cancer Clinic Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Anna Jakubowska
- Department of Genetics and Pathology Pomeranian Medical University Szczecin, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics Pomeranian Medical University, Szczecin, Poland
| | - Paul A James
- Sir Peter MacCallum Department of Oncology The University of Melbourne, Melbourne, VIC, Australia
- Parkville Familial Cancer Centre Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | - Uffe Birk Jensen
- Department of Clinical Genetics Aarhus, University Hospital, Aarhus, Denmark
| | - Esther M John
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael E Jones
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Rudolf Kaaks
- Division of Cancer Epidemiology German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pooja Middha Kapoor
- Division of Cancer Epidemiology German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Genetics and Epidemiology The Institute of Cancer Research, London, UK
| | - Beth Y Karlan
- Faculty of Medicine University of Heidelberg, Heidelberg, Germany
- David Geffen School of Medicine, Department of Obstetrics and Gynecology University of California at Los Angeles, Los Angeles, CA, USA
| | - Renske Keeman
- Womenís Cancer Program at the Samuel Oschin Comprehensive Cancer Institute Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
- Division of Molecular Pathology The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Johanna I Kiiski
- Department of Genetics and Fundamental Medicine Bashkir State Medical University, Ufa, Russia
| | - Yon-Dschun Ko
- Department of Obstetrics and Gynecology, Helsinki University Hospital University of Helsinki, Helsinki, Finland
| | - Veli-Matti Kosma
- Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH Johanniter Krankenhaus, Bonn, Germany
- Translational Cancer Research Area University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine University of Eastern Finland, Kuopio, Finland
| | - Peter Kraft
- Department of Epidemiology Harvard TH Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics Harvard TH Chan School of Public Health Boston, Boston, MA, USA
| | - Allison W Kurian
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Yael Laitman
- The Susanne Levy Gertner Oncogenetics Unit Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Diether Lambrechts
- VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics University of Leuven, Leuven, Belgium
| | - Loic Le Marchand
- Epidemiology Program University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Jenny Lester
- Faculty of Medicine University of Heidelberg, Heidelberg, Germany
- David Geffen School of Medicine, Department of Obstetrics and Gynecology University of California at Los Angeles, Los Angeles, CA, USA
| | - Fabienne Lesueur
- Genetic Epidemiology of Cancer team, Inserm, U900, Paris, France
- Institut Curie Paris, Paris, France
- Mines ParisTech Fontainebleau, Paris, France
- PSL University Paris, Paris, France
| | - Tricia Lindstrom
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Adria Lopez-Fernández
- High Risk and Cancer Prevention Group Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Jennifer T Loud
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics National Cancer Institute, Bethesda, MD, USA
| | - Craig Luccarini
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Arto Mannermaa
- Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH Johanniter Krankenhaus, Bonn, Germany
- Translational Cancer Research Area University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine University of Eastern Finland, Kuopio, Finland
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Sara Margolin
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education, Södersjukhuset Karolinska Institutet, Stockholm, Sweden
| | - John W M Martens
- Department of Medical Oncology, Family Cancer Clinic Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Noura Mebirouk
- Genetic Epidemiology of Cancer team, Inserm, U900, Paris, France
- Institut Curie Paris, Paris, France
- Mines ParisTech Fontainebleau, Paris, France
- PSL University Paris, Paris, France
| | - Alfons Meindl
- Department of Gynecology and Obstetrics University of Munich, Campus Grosshadern, Munich, Germany
| | - Austin Miller
- NRG Oncology, Statistics and Data Management Center Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Roger L Milne
- Cancer Epidemiology Division Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health Monash University, Clayton, VIC, Australia
| | - Marco Montagna
- Immunology and Molecular Oncology, Unit Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Katherine L Nathanson
- Basser Center for BRCA, Abramson Cancer Center University of Pennsylvania, Philadelphia, PA, USA
| | - Susan L Neuhausen
- Department of Population Sciences Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Heli Nevanlinna
- Department of Genetics and Fundamental Medicine Bashkir State Medical University, Ufa, Russia
| | - Finn C Nielsen
- Center for Genomic Medicine Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Katie M O'Brien
- Epidemiology Branch National Institute of Environmental Health Sciences, NIH Research Triangle Park, Durham, NC, USA
| | | | - Janet E Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Håkan Olsson
- Department of Cancer Epidemiology, Clinical Sciences Lund University, Lund, 22242, Sweden
| | - Ana Osorio
- Human Cancer Genetics Programme Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Laura Ottini
- Department of Molecular Medicine University La Sapienza, Rome, Italy
| | | | - Michael T Parsons
- Department of Genetics and Computational Biology QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Inge Sokilde Pedersen
- Molecular Diagnostics Aalborg University Hospital, Aalborg, Denmark
- Clinical Cancer Research Center Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine Aalborg University, Aalborg, Denmark
| | - Beth Peshkin
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Paolo Peterlongo
- Genome Diagnostics Program IFOM - the FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology, Milan, Italy
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology London School of Hygiene and Tropical Medicine, London, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Kelly-Anne Phillips
- Department of Genetics and Computational Biology QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology The University of Melbourne, Melbourne, VIC, Australia
| | - Eric C Polley
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Bruce Poppe
- Centre for Medical Genetics Ghent University, Gent, Belgium
| | - Nadege Presneau
- School of Life Sciences University of Westminster, London, UK
| | - Miquel Angel Pujana
- Translational Research Laboratory IDIBELL (Bellvitge Biomedical Research Institute), Catalan Institute of Oncology, CIBERONC, Barcelona, Spain
| | - Kevin Punie
- Leuven Multidisciplinary Breast Center, Department of Oncology Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | | | - Muhammad U Rashid
- Molecular Genetics of Breast Cancer German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Basic Sciences Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore, Pakistan
| | - Gad Rennert
- Clalit National Cancer Control Center Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Hedy S Rennert
- Clalit National Cancer Control Center Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Mark Robson
- Clinical Genetics Service, Department of Medicine Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Atocha Romero
- Medical Oncology Department Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Maria Rossing
- Center for Genomic Medicine Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Dale P Sandler
- Epidemiology Branch National Institute of Environmental Health Sciences, NIH Research Triangle Park, Durham, NC, USA
| | - Regina Santella
- Department of Epidemiology, Mailman School of Public Health Columbia University, New York, NY, USA
| | - Maren T Scheuner
- Cancer Genetics and Prevention Program University of California San Francisco, San Francisco, CA, USA
| | - Marjanka K Schmidt
- Womenís Cancer Program at the Samuel Oschin Comprehensive Cancer Institute Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Gunnar Schmidt
- Institute of Human Genetics Hannover Medical School, Hannover, Germany
| | - Christopher Scott
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Priyanka Sharma
- Department of Internal Medicine, Division of Medical Oncology University of Kansas Medical Center, Westwood, KS, USA
| | - Penny Soucy
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Québec City, QC, Canada
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health Monash University, Clayton, VIC, Australia
- Department of Clinical Pathology The University of Melbourne, Melbourne, VIC, Australia
| | - John J Spinelli
- Population Oncology BC Cancer, Vancouver, BC, Canada
- School of Population and Public Health University of British Columbia, Vancouver, BC, Canada
| | - Zoe Steinsnyder
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jennifer Stone
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- The Curtin UWA Centre for Genetic Origins of Health and Disease Curtin University and University of Western Australia, Perth, Western Australia, Australia
| | - Dominique Stoppa-Lyonnet
- Service de Génétique Institut Curie, Paris, France
- Department of Tumour Biology INSERM U830, Paris, France
- Université Paris Descartes, Paris, France
| | - Anthony Swerdlow
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Division of Breast Cancer Research Institute of Cancer Research, London, UK
| | - Rulla M Tamimi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology Harvard TH Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics Harvard TH Chan School of Public Health Boston, Boston, MA, USA
| | | | - Jack A Taylor
- Epidemiology Branch National Institute of Environmental Health Sciences, NIH Research Triangle Park, Durham, NC, USA
- Epigenetic and Stem Cell Biology Laboratory National Institute of Environmental Health Sciences, NIH Research Triangle Park, Triangle Park, NC, USA
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health Columbia University, New York, NY, USA
| | - Alex Teulé
- Hereditary Cancer Program ONCOBELL-IDIBELL-IDIBGI-IGTP, Catalan Institute of Oncology, CIBERONC, Barcelona, Spain
| | - Darcy L Thull
- Department of Medicine Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marc Tischkowitz
- Program in Cancer Genetics, Departments of Human Genetics and Oncology McGill University, Montréal, QC, Canada
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Center, University of Cambridge, Cambridge, UK
| | - Amanda E Toland
- Department of Cancer Biology and Genetics The Ohio State University, Columbus, OH, USA
| | - Diana Torres
- Molecular Genetics of Breast Cancer German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Human Genetics Pontificia Universidad Javeriana, Bogota, Colombia
| | - Alison H Trainer
- Parkville Familial Cancer Centre Peter MacCallum Cancer Center, Melbourne, VIC, Australia
- Department of medicine University Of Melbourne, Melbourne, VIC, Australia
| | - Thérèse Truong
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP) INSERM, University Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Nadine Tung
- Department of Medical Oncology Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Celine M Vachon
- Department of Health Science Research, Division of Epidemiology Mayo Clinic, Rochester, MN, USA
| | - Ana Vega
- Fundación Pública Galega Medicina Xenómica-SERGAS, Instituto de Investigación Sanitaria Santiago de Compostela (IDIS); CIBERER, Santiago de Compostela, Spain
| | - Joseph Vijai
- Clinical Genetics Service, Department of Medicine Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Barbara Wappenschmidt
- Center for Hereditary Breast and Ovarian Cancer Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO) Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch National Institute of Environmental Health Sciences, NIH Research Triangle Park, Triangle Park, NC, USA
| | | | - Camilla Wendt
- Department of Clinical Science and Education, Södersjukhuset Karolinska Institutet, Stockholm, Sweden
| | - Alicja Wolk
- Institute of Environmental Medicine Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences Uppsala University, Uppsala, Sweden
| | | | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, INRASTES National Centre for Scientific Research íDemokritosí, Athens, Greece
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Argyrios Ziogas
- Department of Epidemiology, Genetic Epidemiology Research Institute University of California Irvine, Irvine, CA, USA
| | - Kristin K Zorn
- Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sue K Park
- Department of Preventive Medicine Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences Seoul National University Graduate School, Seoul, Korea
- Cancer Research Institute Seoul National University, Seoul, Korea
| | - Mads Thomassen
- Department of Clinical Genetics Odense University Hospital, Odence C, Denmark
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Rita K Schmutzler
- Center for Hereditary Breast and Ovarian Cancer Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO) Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology Mayo Clinic, Rochester, MN, USA
| | - Jacques Simard
- Department of Epidemiology, Genetic Epidemiology Research Institute University of California Irvine, Irvine, CA, USA
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology University of Cambridge, Cambridge, UK
| | - Nadine Andrieu
- Genetic Epidemiology of Cancer team, Inserm, U900, Paris, France.
- Institut Curie Paris, Paris, France.
- Mines ParisTech Fontainebleau, Paris, France.
- PSL University Paris, Paris, France.
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| |
Collapse
|
19
|
Meier F, Harney A, Rhiem K, Neusser S, Neumann A, Braun M, Wasem J, Huster S, Dabrock P, Schmutzler RK. Risk-Adjusted Prevention. Perspectives on the Governance of Entitlements to Benefits in the Case of Genetic (Breast Cancer) Risks. Recent Results Cancer Res 2021; 218:47-66. [PMID: 34019162 DOI: 10.1007/978-3-030-63749-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This article is a revised version of our proposal for the establishment of the legal concept of risk-adjusted prevention in the German healthcare system to regulate access to risk-reduction measures for persons at high and moderate genetic cancer risk (Meier et al. Risikoadaptierte Prävention'. Governance Perspective für Leistungsansprüche bei genetischen (Brustkrebs-)Risiken, Springer, Wiesbaden, 2018). The German context specifics are summarized to enable the source text to be used for other country-specific healthcare systems. Establishing such a legal concept is relevant to all universal and free healthcare systems similar to Germany's. Disease risks can be determined with increasing precision using bioinformatics and biostatistical innovations ('big data'), due to the identification of pathogenic germ line mutations in cancer risk genes as well as non-genetic factors and their interactions. These new technologies open up opportunities to adapt therapeutic and preventive measures to the individual risk profile of complex diseases in a way that was previously unknown, enabling not only adequate treatment but in the best case, prevention. Access to risk-reduction measures for carriers of genetic risks is generally not regulated in healthcare systems that guarantee universal and equal access to healthcare benefits. In many countries, including Austria, Denmark, the UK and the US, entitlement to benefits is essentially linked to the treatment of already manifest disease. Issues around claiming benefits for prophylactic measures involve not only evaluation of clinical options (genetic diagnostics, chemoprevention, risk-reduction surgery), but the financial cost and-from a social ethics perspective-the relationship between them. Section 1 of this chapter uses the specific example of hereditary breast cancer to show why from a medical, social-legal, health-economic and socio-ethical perspective, regulated entitlement to benefits is necessary for persons at high and moderate risk of cancer. Section 2 discusses the medical needs of persons with genetic cancer risks and goes on to develop the healthy sick model which is able to integrate the problems of the different disciplines into one scheme and to establish criteria for the legal acknowledgement of persons at high and moderate (breast cancer) risks. In the German context, the social-legal categories of classical therapeutic medicine do not adequately represent preventive measures as a regular service within the healthcare system. We propose risk-adjusted prevention as a new legal concept based on the heuristic healthy sick model. This category can serve as a legal framework for social law regulation in the case of persons with genetic cancer risks. Risk-adjusted prevention can be established in principle in any healthcare system. Criteria are also developed in relation to risk collectives and allocation (Sects. 3, 4, 5).
Collapse
Affiliation(s)
- Friedhelm Meier
- Systematic Theology II (Ethics), University of Tübingen, Liebermeisterstraße 12, 72076, Tübingen, Germany.
| | - Anke Harney
- Medical Faculty, Institute for Social and Health Law, University of Bochum, Bochum, Germany
| | - Kerstin Rhiem
- Center for Hereditary Breast and Ovarian Cancer and Center for Integrated Oncology (CIO), University Hospital Cologne, Cologne, Germany
| | - Silke Neusser
- Institute for Healthcare Management and Research, University of Duisburg-Essen, Essen, Germany
| | - Anja Neumann
- Institute for Healthcare Management and Research, University of Duisburg-Essen, Essen, Germany
| | - Matthias Braun
- Systematic Theology II (Ethics), University of Erlangen-Nuremberg, Erlangen-Nuremberg, Germany
| | - Jürgen Wasem
- Institute for Healthcare Management and Research, University of Duisburg-Essen, Essen, Germany
| | - Stefan Huster
- Medical Faculty, Institute for Social and Health Law, University of Bochum, Bochum, Germany
| | - Peter Dabrock
- Systematic Theology II (Ethics), University of Erlangen-Nuremberg, Erlangen-Nuremberg, Germany
| | - Rita Katharina Schmutzler
- Center for Hereditary Breast and Ovarian Cancer and Center for Integrated Oncology (CIO), University Hospital Cologne, Cologne, Germany
| |
Collapse
|
20
|
Genomic Diversity in Sporadic Breast Cancer in a Latin American Population. Genes (Basel) 2020; 11:genes11111272. [PMID: 33126731 PMCID: PMC7716199 DOI: 10.3390/genes11111272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
Among Latin American women, breast cancer incidences vary across populations. Uruguay and Argentina have the highest rates in South America, which are mainly attributed to strong, genetic European contributions. Most genetic variants associated with breast cancer were described in European populations. However, the vast majority of genetic contributors to breast cancer risk remain unknown. Here, we report the results of a candidate gene association study of sporadic breast cancer in 176 cases and 183 controls in the Uruguayan population. We analyzed 141 variants from 98 loci that have been associated with overall breast cancer risk in European populations. We found weak evidence for the association of risk variants rs294174 (ESR1), rs16886165 (MAP3K1), rs2214681 (CNTNAP2), rs4237855 (VDR), rs9594579 (RANKL), rs8183919 (PTGIS), rs2981582 (FGFR2), and rs1799950 (BRCA1) with sporadic breast cancer. These results provide useful insight into the genetic susceptibility to sporadic breast cancer in the Uruguayan population and support the use of genetic risk scores for individualized screening and prevention.
Collapse
|
21
|
Abstract
AbstractThe human protein Rad51 is double-edged in cancer contexts: on one hand, preventing tumourigenesis by eliminating potentially carcinogenic DNA damage and, on the other, promoting tumours by introducing new mutations. Understanding mechanistic details of Rad51 in homologous recombination (HR) and repair could facilitate design of novel methods, including CRISPR, for Rad51-targeted cancer treatment. Despite extensive research, however, we do not yet understand the mechanism of HR in sufficient detail, partly due to complexity, a large number of Rad51 protein units being involved in the exchange of long DNA segments. Another reason for lack of understanding could be that current recognition models of DNA interactions focus only on hydrogen bond-directed base pair formation. A more complete model may need to include, for example, the kinetic effects of DNA base stacking and unstacking (‘longitudinal breathing’). These might explain how Rad51 can recognize sequence identity of DNA over several bases long stretches with high accuracy, despite the fact that a single base mismatch could be tolerated if we consider only the hydrogen bond energy. We here propose that certain specific hydrophobic effects, recently discovered destabilizing stacking of nucleobases, may play a central role in this context for the function of Rad51.
Collapse
|
22
|
Barnes DR, Rookus MA, McGuffog L, Leslie G, Mooij TM, Dennis J, Mavaddat N, Adlard J, Ahmed M, Aittomäki K, Andrieu N, Andrulis IL, Arnold N, Arun BK, Azzollini J, Balmaña J, Barkardottir RB, Barrowdale D, Benitez J, Berthet P, Białkowska K, Blanco AM, Blok MJ, Bonanni B, Boonen SE, Borg Å, Bozsik A, Bradbury AR, Brennan P, Brewer C, Brunet J, Buys SS, Caldés T, Caligo MA, Campbell I, Christensen LL, Chung WK, Claes KBM, Colas C, Collonge-Rame MA, Cook J, Daly MB, Davidson R, de la Hoya M, de Putter R, Delnatte C, Devilee P, Diez O, Ding YC, Domchek SM, Dorfling CM, Dumont M, Eeles R, Ejlertsen B, Engel C, Evans DG, Faivre L, Foretova L, Fostira F, Friedlander M, Friedman E, Frost D, Ganz PA, Garber J, Gehrig A, Gerdes AM, Gesta P, Giraud S, Glendon G, Godwin AK, Goldgar DE, González-Neira A, Greene MH, Gschwantler-Kaulich D, Hahnen E, Hamann U, Hanson H, Hentschel J, Hogervorst FBL, Hooning MJ, Horvath J, Hu C, Hulick PJ, Imyanitov EN, Isaacs C, Izatt L, Izquierdo A, Jakubowska A, James PA, Janavicius R, John EM, Joseph V, Karlan BY, Kast K, Koudijs M, Kruse TA, Kwong A, Laitman Y, Lasset C, Lazaro C, et alBarnes DR, Rookus MA, McGuffog L, Leslie G, Mooij TM, Dennis J, Mavaddat N, Adlard J, Ahmed M, Aittomäki K, Andrieu N, Andrulis IL, Arnold N, Arun BK, Azzollini J, Balmaña J, Barkardottir RB, Barrowdale D, Benitez J, Berthet P, Białkowska K, Blanco AM, Blok MJ, Bonanni B, Boonen SE, Borg Å, Bozsik A, Bradbury AR, Brennan P, Brewer C, Brunet J, Buys SS, Caldés T, Caligo MA, Campbell I, Christensen LL, Chung WK, Claes KBM, Colas C, Collonge-Rame MA, Cook J, Daly MB, Davidson R, de la Hoya M, de Putter R, Delnatte C, Devilee P, Diez O, Ding YC, Domchek SM, Dorfling CM, Dumont M, Eeles R, Ejlertsen B, Engel C, Evans DG, Faivre L, Foretova L, Fostira F, Friedlander M, Friedman E, Frost D, Ganz PA, Garber J, Gehrig A, Gerdes AM, Gesta P, Giraud S, Glendon G, Godwin AK, Goldgar DE, González-Neira A, Greene MH, Gschwantler-Kaulich D, Hahnen E, Hamann U, Hanson H, Hentschel J, Hogervorst FBL, Hooning MJ, Horvath J, Hu C, Hulick PJ, Imyanitov EN, Isaacs C, Izatt L, Izquierdo A, Jakubowska A, James PA, Janavicius R, John EM, Joseph V, Karlan BY, Kast K, Koudijs M, Kruse TA, Kwong A, Laitman Y, Lasset C, Lazaro C, Lester J, Lesueur F, Liljegren A, Loud JT, Lubiński J, Mai PL, Manoukian S, Mari V, Mebirouk N, Meijers-Heijboer HEJ, Meindl A, Mensenkamp AR, Miller A, Montagna M, Mouret-Fourme E, Mukherjee S, Mulligan AM, Nathanson KL, Neuhausen SL, Nevanlinna H, Niederacher D, Nielsen FC, Nikitina-Zake L, Noguès C, Olah E, Olopade OI, Ong KR, O'Shaughnessy-Kirwan A, Osorio A, Ott CE, Papi L, Park SK, Parsons MT, Pedersen IS, Peissel B, Peixoto A, Peterlongo P, Pfeiler G, Phillips KA, Prajzendanc K, Pujana MA, Radice P, Ramser J, Ramus SJ, Rantala J, Rennert G, Risch HA, Robson M, Rønlund K, Salani R, Schuster H, Senter L, Shah PD, Sharma P, Side LE, Singer CF, Slavin TP, Soucy P, Southey MC, Spurdle AB, Steinemann D, Steinsnyder Z, Stoppa-Lyonnet D, Sutter C, Tan YY, Teixeira MR, Teo SH, Thull DL, Tischkowitz M, Tognazzo S, Toland AE, Trainer AH, Tung N, van Engelen K, van Rensburg EJ, Vega A, Vierstraete J, Wagner G, Walker L, Wang-Gohrke S, Wappenschmidt B, Weitzel JN, Yadav S, Yang X, Yannoukakos D, Zimbalatti D, Offit K, Thomassen M, Couch FJ, Schmutzler RK, Simard J, Easton DF, Chenevix-Trench G, Antoniou AC. Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants. Genet Med 2020; 22:1653-1666. [PMID: 32665703 PMCID: PMC7521995 DOI: 10.1038/s41436-020-0862-x] [Show More Authors] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 11/21/2022] Open
Abstract
PURPOSE We assessed the associations between population-based polygenic risk scores (PRS) for breast (BC) or epithelial ovarian cancer (EOC) with cancer risks for BRCA1 and BRCA2 pathogenic variant carriers. METHODS Retrospective cohort data on 18,935 BRCA1 and 12,339 BRCA2 female pathogenic variant carriers of European ancestry were available. Three versions of a 313 single-nucleotide polymorphism (SNP) BC PRS were evaluated based on whether they predict overall, estrogen receptor (ER)-negative, or ER-positive BC, and two PRS for overall or high-grade serous EOC. Associations were validated in a prospective cohort. RESULTS The ER-negative PRS showed the strongest association with BC risk for BRCA1 carriers (hazard ratio [HR] per standard deviation = 1.29 [95% CI 1.25-1.33], P = 3×10-72). For BRCA2, the strongest association was with overall BC PRS (HR = 1.31 [95% CI 1.27-1.36], P = 7×10-50). HR estimates decreased significantly with age and there was evidence for differences in associations by predicted variant effects on protein expression. The HR estimates were smaller than general population estimates. The high-grade serous PRS yielded the strongest associations with EOC risk for BRCA1 (HR = 1.32 [95% CI 1.25-1.40], P = 3×10-22) and BRCA2 (HR = 1.44 [95% CI 1.30-1.60], P = 4×10-12) carriers. The associations in the prospective cohort were similar. CONCLUSION Population-based PRS are strongly associated with BC and EOC risks for BRCA1/2 carriers and predict substantial absolute risk differences for women at PRS distribution extremes.
Collapse
Affiliation(s)
- Daniel R Barnes
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| | - Matti A Rookus
- The Netherlands Cancer Institute, Department of Epidemiology (PSOE), Amsterdam, The Netherlands
| | - Lesley McGuffog
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Goska Leslie
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Thea M Mooij
- The Netherlands Cancer Institute, Department of Epidemiology (PSOE), Amsterdam, The Netherlands
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Nasim Mavaddat
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Julian Adlard
- Chapel Allerton Hospital, Yorkshire Regional Genetics Service, Leeds, UK
| | - Munaza Ahmed
- Great Ormond Street Hospital for Children NHS Trust, North East Thames Regional Genetics Service, London, UK
| | - Kristiina Aittomäki
- University of Helsinki, Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland
| | - Nadine Andrieu
- Inserm U900, Genetic Epidemiology of Cancer team, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
- Department of Life & Health Sciences, PSL University, Paris, France
| | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON, Canada
- University of Toronto, Department of Molecular Genetics, Toronto, ON, Canada
| | - Norbert Arnold
- University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Department of Gynaecology and Obstetrics, Kiel, Germany
- University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Institute of Clinical Molecular Biology, Kiel, Germany
| | - Banu K Arun
- University of Texas MD Anderson Cancer Center, Department of Breast Medical Oncology, Houston, TX, USA
| | - Jacopo Azzollini
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Unit of Medical Genetics, Department of Medical Oncology and Hematology, Milan, Italy
| | - Judith Balmaña
- Vall d'Hebron Institute of Oncology, High Risk and Cancer Prevention Group, Barcelona, Spain
- University Hospital of Vall d'Hebron, Department of Medical Oncology, Barcelona, Spain
| | - Rosa B Barkardottir
- Landspitali University Hospital, Department of Pathology, Reykjavik, Iceland
- University of Iceland, BMC (Biomedical Centre), Faculty of Medicine, Reykjavik, Iceland
| | - Daniel Barrowdale
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Javier Benitez
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Spanish National Cancer Research Centre (CNIO), Human Cancer Genetics Programme, Madrid, Spain
| | - Pascaline Berthet
- Centre François Baclesse, Département de Biopathologie, Caen, France
| | - Katarzyna Białkowska
- Pomeranian Medical University, Department of Genetics and Pathology, Szczecin, Poland
| | - Amie M Blanco
- University of California San Francisco, Cancer Genetics and Prevention Program, San Francisco, CA, USA
| | - Marinus J Blok
- Maastricht University Medical Center, Department of Clinical Genetics, Maastricht, The Netherlands
| | - Bernardo Bonanni
- IEO, European Institute of Oncology IRCCS, Division of Cancer Prevention and Genetics, Milan, Italy
| | - Susanne E Boonen
- Zealand University Hospital, Clinical Genetic Unit, Department of Paediatrics, Roskilde, Denmark
| | - Åke Borg
- Lund University, Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund, Sweden
| | - Aniko Bozsik
- National Institute of Oncology, Department of Molecular Genetics, Budapest, Hungary
| | - Angela R Bradbury
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, Abramson Cancer Center, Philadelphia, PA, USA
| | - Paul Brennan
- Institute of Genetic Medicine, International Centre for Life, Northern Genetic Service, Newcastle upon Tyne, UK
| | - Carole Brewer
- Royal Devon & Exeter Hospital, Department of Clinical Genetics, Exeter, UK
| | - Joan Brunet
- ONCOBELL-IDIBELL-IDIBGI-IGTP, Catalan Institute of Oncology, CIBERONC, Hereditary Cancer Program, Barcelona, Spain
| | - Saundra S Buys
- Huntsman Cancer Institute, Department of Medicine, Salt Lake City, UT, USA
| | - Trinidad Caldés
- CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Molecular Oncology Laboratory, Madrid, Spain
| | - Maria A Caligo
- University Hospital, SOD Genetica Molecolare, Pisa, Italy
| | - Ian Campbell
- Peter MacCallum Cancer Center, Melbourne, VIC, Australia
- The University of Melbourne, Sir Peter MacCallum Department of Oncology, Melbourne, VIC, Australia
| | | | - Wendy K Chung
- Columbia University, Departments of Pediatrics and Medicine, New York, NY, USA
| | | | | | | | - Jackie Cook
- Sheffield Children's Hospital, Sheffield Clinical Genetics Service, Sheffield, UK
| | - Mary B Daly
- Fox Chase Cancer Center, Department of Clinical Genetics, Philadelphia, PA, USA
| | - Rosemarie Davidson
- Queen Elizabeth University Hospitals, Department of Clinical Genetics, Glasgow, UK
| | - Miguel de la Hoya
- CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Molecular Oncology Laboratory, Madrid, Spain
| | - Robin de Putter
- Ghent University, Centre for Medical Genetics, Ghent, Belgium
| | | | - Peter Devilee
- Leiden University Medical Center, Department of Pathology, Leiden, The Netherlands
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
| | - Orland Diez
- Vall dHebron Institute of Oncology (VHIO), Oncogenetics Group, Barcelona, Spain
- University Hospital Vall dHebron, Clinical and Molecular Genetics Area, Barcelona, Spain
| | - Yuan Chun Ding
- Beckman Research Institute of City of Hope, Department of Population Sciences, Duarte, CA, USA
| | - Susan M Domchek
- University of Pennsylvania, Basser Center for BRCA, Abramson Cancer Center, Philadelphia, PA, USA
| | | | - Martine Dumont
- Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Genomics Center,, Québec City, QC, Canada
| | - Ros Eeles
- The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Oncogenetics Team, London, UK
| | - Bent Ejlertsen
- Rigshospitalet, Copenhagen University Hospital, Department of Oncology, Copenhagen, Denmark
| | - Christoph Engel
- University of Leipzig, Institute for Medical Informatics, Statistics and Epidemiology, Leipzig, Germany
| | - D Gareth Evans
- The University of Manchester, Manchester Academic Health Science Centre, Manchester Universities Foundation Trust, St. Mary's Hospital, Genomic Medicine, Division of Evolution and Genomic Sciences, Manchester, UK
- Manchester Academic Health Science Centre, Manchester Universities Foundation Trust, St. Mary's Hospital, Genomic Medicine, North West Genomics hub, Manchester, UK
| | - Laurence Faivre
- Centre Georges-François Leclerc, Unité d'oncogénétique, Centre de Lutte Contre le Cancer, Dijon, France
- DHU Dijon, Centre de Génétique, Dijon, France
| | - Lenka Foretova
- Masaryk Memorial Cancer Institute, Department of Cancer Epidemiology and Genetics, Brno, Czech Republic
| | - Florentia Fostira
- National Centre for Scientific Research 'Demokritos', Molecular Diagnostics Laboratory, INRASTES, Athens, Greece
| | - Michael Friedlander
- NHMRC Clinical Trials, ANZ GOTG Coordinating Centre, Camperdown, NSW, Australia
| | - Eitan Friedman
- Chaim Sheba Medical Center, The Susanne Levy Gertner Oncogenetics Unit, Ramat Gan, Israel
- Tel Aviv University, Sackler Faculty of Medicine, Ramat Aviv, Israel
| | - Debra Frost
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Patricia A Ganz
- Jonsson Comprehensive Cancer Centre, UCLA, Schools of Medicine and Public Health, Division of Cancer Prevention & Control Research, Los Angeles, CA, USA
| | - Judy Garber
- Dana-Farber Cancer Institute, Cancer Risk and Prevention Clinic, Boston, MA, USA
| | - Andrea Gehrig
- University Würzburg, Department of Human Genetics, Würzburg, Germany
| | - Anne-Marie Gerdes
- Rigshospitalet, Copenhagen University Hospital, Department of Clinical Genetics, Copenhagen, Denmark
| | - Paul Gesta
- CH Niort, Service Régional Oncogénétique Poitou-Charentes, Niort, France
| | - Sophie Giraud
- Hospices Civils de Lyon, Department of Genetics, Bron, France
| | - Gord Glendon
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON, Canada
| | - Andrew K Godwin
- University of Kansas Medical Center, Department of Pathology and Laboratory Medicine, Kansas City, KS, USA
| | - David E Goldgar
- Huntsman Cancer Institute, University of Utah School of Medicine, Department of Dermatology, Salt Lake City, UT, USA
| | - Anna González-Neira
- Spanish National Cancer Research Centre (CNIO), Human Cancer Genetics Programme, Madrid, Spain
| | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | - Eric Hahnen
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Familial Breast and Ovarian Cancer, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Integrated Oncology (CIO), Cologne, Germany
| | - Ute Hamann
- German Cancer Research Center (DKFZ), Molecular Genetics of Breast Cancer, Heidelberg, Germany
| | - Helen Hanson
- St George's NHS Foundation Trust, Southwest Thames Regional Genetics Service, London, UK
| | - Julia Hentschel
- University Hospital Leipzig, Institute of Human Genetics, Leipzig, Germany
| | - Frans B L Hogervorst
- The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Family Cancer Clinic, Amsterdam, The Netherlands
| | - Maartje J Hooning
- Erasmus MC Cancer Institute, Department of Medical Oncology, Family Cancer Clinic, Rotterdam, The Netherlands
| | - Judit Horvath
- University of Münster, Institute of Human Genetics, Münster, Germany
| | - Chunling Hu
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, MN, USA
| | - Peter J Hulick
- NorthShore University HealthSystem, Center for Medical Genetics, Evanston, IL, USA
- The University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | | | - Claudine Isaacs
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Louise Izatt
- Guy's and St Thomas' NHS Foundation Trust, Clinical Genetics, London, UK
| | - Angel Izquierdo
- ONCOBELL-IDIBELL-IDIBGI-IGTP, Catalan Institute of Oncology, CIBERONC, Hereditary Cancer Program, Barcelona, Spain
| | - Anna Jakubowska
- Pomeranian Medical University, Department of Genetics and Pathology, Szczecin, Poland
- Pomeranian Medical University, Independent Laboratory of Molecular Biology and Genetic Diagnostics, Szczecin, Poland
| | - Paul A James
- The University of Melbourne, Sir Peter MacCallum Department of Oncology, Melbourne, VIC, Australia
- Peter MacCallum Cancer Center, Parkville Familial Cancer Centre, Melbourne, VIC, Australia
| | - Ramunas Janavicius
- Vilnius University Hospital Santariskiu Clinics, Hematology, Oncology and Transfusion Medicine Center, Department of Molecular and Regenerative Medicine, Vilnius, Lithuania
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Esther M John
- Stanford Cancer Institute, Stanford University School of Medicine, Department of Medicine, Division of Oncology, Stanford, CA, USA
| | - Vijai Joseph
- Memorial Sloan-Kettering Cancer Center, Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, New York, NY, USA
| | - Beth Y Karlan
- University of California at Los Angeles, David Geffen School of Medicine, Department of Obstetrics and Gynecology, Los Angeles, CA, USA
- Cedars-Sinai Medical Center, Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Karin Kast
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marco Koudijs
- University Medical Center Utrecht, Department of Medical Genetics, Utrecht, The Netherlands
| | - Torben A Kruse
- Odense University Hospital, Department of Clinical Genetics, Odense, Denmark
| | - Ava Kwong
- Cancer Genetics Centre, Hong Kong Hereditary Breast Cancer Family Registry, Happy Valley, Hong Kong
- The University of Hong Kong, Department of Surgery, Pok Fu Lam, Hong Kong
- Hong Kong Sanatorium and Hospital, Department of Surgery, Happy Valley, Hong Kong
| | - Yael Laitman
- Chaim Sheba Medical Center, The Susanne Levy Gertner Oncogenetics Unit, Ramat Gan, Israel
| | - Christine Lasset
- Centre Léon Bérard, Unité de Prévention et d'Epidémiologie Génétique, Lyon, France
- Lyon University, UMR CNRS 5558, Lyon, France
| | - Conxi Lazaro
- ONCOBELL-IDIBELL-IDIBGI-IGTP, Catalan Institute of Oncology, CIBERONC, Hereditary Cancer Program, Barcelona, Spain
| | - Jenny Lester
- University of California at Los Angeles, David Geffen School of Medicine, Department of Obstetrics and Gynecology, Los Angeles, CA, USA
- Cedars-Sinai Medical Center, Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Fabienne Lesueur
- Inserm U900, Genetic Epidemiology of Cancer team, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
- Department of Life & Health Sciences, PSL University, Paris, France
| | | | - Jennifer T Loud
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jan Lubiński
- Pomeranian Medical University, Department of Genetics and Pathology, Szczecin, Poland
| | - Phuong L Mai
- Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Siranoush Manoukian
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Unit of Medical Genetics, Department of Medical Oncology and Hematology, Milan, Italy
| | - Véronique Mari
- Centre Antoine Lacassagne, Département d'Hématologie-Oncologie Médicale, Nice, France
| | - Noura Mebirouk
- Inserm U900, Genetic Epidemiology of Cancer team, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
- Department of Life & Health Sciences, PSL University, Paris, France
| | | | - Alfons Meindl
- University of Munich, Campus Großhadern, Department of Gynecology and Obstetrics, Munich, Germany
| | - Arjen R Mensenkamp
- Radboud University Medical Center, Department of Human Genetics, Nijmegen, The Netherlands
| | - Austin Miller
- Roswell Park Cancer Institute, NRG Oncology, Statistics and Data Management Center, Buffalo, NY, USA
| | - Marco Montagna
- Veneto Institute of Oncology IOV - IRCCS, Immunology and Molecular Oncology Unit, Padua, Italy
| | | | - Semanti Mukherjee
- Memorial Sloan-Kettering Cancer Center, Clinical Genetics Service, Department of Medicine, New York, NY, USA
| | - Anna Marie Mulligan
- University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, ON, Canada
- University Health Network, Laboratory Medicine Program, Toronto, ON, Canada
| | - Katherine L Nathanson
- University of Pennsylvania, Basser Center for BRCA, Abramson Cancer Center, Philadelphia, PA, USA
| | - Susan L Neuhausen
- Beckman Research Institute of City of Hope, Department of Population Sciences, Duarte, CA, USA
| | - Heli Nevanlinna
- University of Helsinki, Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Dieter Niederacher
- University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Department of Gynecology and Obstetrics, Düsseldorf, Germany
| | - Finn Cilius Nielsen
- Rigshospitalet, Copenhagen University Hospital, Center for Genomic Medicine, Copenhagen, Denmark
| | | | - Catherine Noguès
- Oncogénétique Clinique and Aix Marseille Univ, INSERM, IRD, SESSTIM, Institut Paoli-Calmettes, Département d'Anticipation et de Suivi des Cancers, Marseille, France
| | - Edith Olah
- National Institute of Oncology, Department of Molecular Genetics, Budapest, Hungary
| | | | - Kai-Ren Ong
- Birmingham Women's Hospital Healthcare NHS Trust, West Midlands Regional Genetics Service, Birmingham, UK
| | - Aoife O'Shaughnessy-Kirwan
- Cambridge University Hospitals NHS Foundation Trust, East Anglian Medical Genetics Service, Cambridge, UK
| | - Ana Osorio
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Spanish National Cancer Research Centre (CNIO), Human Cancer Genetics Programme, Madrid, Spain
| | - Claus-Eric Ott
- Campus Virchov Klinikum, Charite, Institute of Human Genetics, Berlin, Germany
| | - Laura Papi
- University of Florence, Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', Medical Genetics Unit, Florence, Italy
| | - Sue K Park
- Seoul National University College of Medicine, Department of Preventive Medicine, Seoul, Korea
- Seoul National University Graduate School, Department of Biomedical Sciences, Seoul, Korea
- Seoul National University, Cancer Research Institute, Seoul, Korea
| | - Michael T Parsons
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, QLD, Australia
| | - Inge Sokilde Pedersen
- Aalborg University Hospital, Molecular Diagnostics, Aalborg, Denmark
- Aalborg University Hospital, Clinical Cancer Research Center, Aalborg, Denmark
- Aalborg University, Department of Clinical Medicine, Aalborg, Denmark
| | - Bernard Peissel
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Unit of Medical Genetics, Department of Medical Oncology and Hematology, Milan, Italy
| | - Ana Peixoto
- Portuguese Oncology Institute, Department of Genetics, Porto, Portugal
| | - Paolo Peterlongo
- IFOM - the FIRC Institute of Molecular Oncology, Genome Diagnostics Program, Milan, Italy
| | - Georg Pfeiler
- Medical University of Vienna, Dept of OB/GYN and Comprehensive Cancer Center, Vienna, Austria
| | - Kelly-Anne Phillips
- Peter MacCallum Cancer Center, Melbourne, VIC, Australia
- The University of Melbourne, Sir Peter MacCallum Department of Oncology, Melbourne, VIC, Australia
- The University of Melbourne, Department of Medicine, St Vincent's Hospital, Fitzroy, VIC, Australia
- The University of Melbourne, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, VIC, Australia
| | - Karolina Prajzendanc
- Pomeranian Medical University, Department of Genetics and Pathology, Szczecin, Poland
| | - Miquel Angel Pujana
- IDIBELL (Bellvitge Biomedical Research Institute), Catalan Institute of Oncology, ProCURE, Barcelona, Spain
| | - Paolo Radice
- Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Milan, Italy
| | - Juliane Ramser
- Klinikum rechts der Isar der Technischen Universität München, Department of Gynaecology and Obstetrics, Munich, Germany
| | - Susan J Ramus
- University of NSW Sydney, School of Women's and Children's Health, Faculty of Medicine, Sydney, NSW, Australia
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia
- University of NSW Sydney, Adult Cancer Program, Lowy Cancer Research Centre, Sydney, NSW, Australia
| | | | - Gad Rennert
- Carmel Medical Center and Technion Faculty of Medicine, Clalit National Cancer Control Center, Haifa, Israel
| | - Harvey A Risch
- Yale School of Medicine, Chronic Disease Epidemiology, New Haven, CT, USA
| | - Mark Robson
- Memorial Sloan-Kettering Cancer Center, Clinical Genetics Service, Department of Medicine, New York, NY, USA
| | - Karina Rønlund
- Region of Southern Denmark, Vejle Hospital, Department of Clinical Genetics, Vejle, Denmark
| | - Ritu Salani
- Wexner Medical Center, The Ohio State University, Department of Gynecology and Obstetrics, Columbus, OH, USA
| | - Hélène Schuster
- Unité d'Oncogénétique Centre de Lutte contre le Cancer Paul Strauss, Strasbourg, France
- Institut de Cancérologie Strasbourg Europe, ICANS, Strasbourg, France
- Université de Strasbourg, Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR_S 1109, LabEx TRANSPLANTEX, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Strasbourg, France
| | - Leigha Senter
- The Ohio State University, Clinical Cancer Genetics Program, Division of Human Genetics, Department of Internal Medicine, The Comprehensive Cancer Center, Columbus, OH, USA
| | - Payal D Shah
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, Abramson Cancer Center, Philadelphia, PA, USA
| | - Priyanka Sharma
- University of Kansas Medical Center, Department of Internal Medicine, Division of Medical Oncology, Westwood, KS, USA
| | | | - Christian F Singer
- Medical University of Vienna, Dept of OB/GYN and Comprehensive Cancer Center, Vienna, Austria
| | | | - Penny Soucy
- Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Genomics Center,, Québec City, QC, Canada
| | - Melissa C Southey
- Monash University, Precision Medicine, School of Clinical Sciences at Monash Health, Clayton, VIC, Australia
- The University of Melbourne, Department of Clinical Pathology, Melbourne, VIC, Australia
- Cancer Council Victoria, Cancer Epidemiology Division, Melbourne, VIC, Australia
| | - Amanda B Spurdle
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, QLD, Australia
| | - Doris Steinemann
- Hannover Medical School, Institute of Human Genetics, Hannover, Germany
| | - Zoe Steinsnyder
- Memorial Sloan-Kettering Cancer Center, Clinical Genetics Service, Department of Medicine, New York, NY, USA
| | - Dominique Stoppa-Lyonnet
- Institut Curie, Service de Génétique, Paris, France
- INSERM U830, Department of Tumour Biology, Paris, France
- Université Paris Descartes, Paris, France
| | - Christian Sutter
- University Hospital Heidelberg, Institute of Human Genetics, Heidelberg, Germany
| | - Yen Yen Tan
- Medical University of Vienna, Dept of OB/GYN, Vienna, Austria
| | - Manuel R Teixeira
- Portuguese Oncology Institute, Department of Genetics, Porto, Portugal
- University of Porto, Biomedical Sciences Institute (ICBAS), Porto, Portugal
| | - Soo Hwang Teo
- Cancer Research Malaysia, Breast Cancer Research Programme, Subang Jaya, Selangor, Malaysia
- University of Malaya, Department of Surgery, Faculty of Medicine, Kuala Lumpur, Malaysia
| | - Darcy L Thull
- Magee-Womens Hospital, University of Pittsburgh School of Medicine, Department of Medicine, Pittsburgh, PA, USA
| | - Marc Tischkowitz
- McGill University, Program in Cancer Genetics, Departments of Human Genetics and Oncology, Montréal, QC, Canada
- University of Cambridge, Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Silvia Tognazzo
- Veneto Institute of Oncology IOV - IRCCS, Immunology and Molecular Oncology Unit, Padua, Italy
| | - Amanda E Toland
- The Ohio State University, Department of Cancer Biology and Genetics, Columbus, OH, USA
| | - Alison H Trainer
- Peter MacCallum Cancer Center, Parkville Familial Cancer Centre, Melbourne, VIC, Australia
- University Of Melbourne, Department of Medicine, Melbourne, VIC, Australia
| | - Nadine Tung
- Beth Israel Deaconess Medical Center, Department of Medical Oncology, Boston, MA, USA
| | - Klaartje van Engelen
- Amsterdam UMC, location VUmc, Department of Clinical Genetics, Amsterdam, The Netherlands
| | | | - Ana Vega
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | | | - Gabriel Wagner
- Medical University of Vienna, Dept of OB/GYN and Comprehensive Cancer Center, Vienna, Austria
| | - Lisa Walker
- Oxford University Hospitals, Oxford Centre for Genomic Medicine, Oxford, UK
| | - Shan Wang-Gohrke
- University Hospital Ulm, Department of Gynaecology and Obstetrics, Ulm, Germany
| | - Barbara Wappenschmidt
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Familial Breast and Ovarian Cancer, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Integrated Oncology (CIO), Cologne, Germany
| | | | | | - Xin Yang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Drakoulis Yannoukakos
- National Centre for Scientific Research 'Demokritos', Molecular Diagnostics Laboratory, INRASTES, Athens, Greece
| | - Dario Zimbalatti
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Unit of Medical Genetics, Department of Medical Oncology and Hematology, Milan, Italy
| | - Kenneth Offit
- Memorial Sloan-Kettering Cancer Center, Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, New York, NY, USA
- Memorial Sloan-Kettering Cancer Center, Clinical Genetics Service, Department of Medicine, New York, NY, USA
| | - Mads Thomassen
- Odense University Hospital, Department of Clinical Genetics, Odense, Denmark
| | - Fergus J Couch
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, MN, USA
| | - Rita K Schmutzler
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Familial Breast and Ovarian Cancer, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Integrated Oncology (CIO), Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Jacques Simard
- Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Genomics Center,, Québec City, QC, Canada
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Georgia Chenevix-Trench
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, QLD, Australia
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| |
Collapse
|
23
|
Gallagher S, Hughes E, Wagner S, Tshiaba P, Rosenthal E, Roa BB, Kurian AW, Domchek SM, Garber J, Lancaster J, Weitzel JN, Gutin A, Lanchbury JS, Robson M. Association of a Polygenic Risk Score With Breast Cancer Among Women Carriers of High- and Moderate-Risk Breast Cancer Genes. JAMA Netw Open 2020; 3:e208501. [PMID: 32609350 PMCID: PMC7330720 DOI: 10.1001/jamanetworkopen.2020.8501] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
Importance To date, few studies have examined the extent to which polygenic single-nucleotide variation (SNV) (formerly single-nucleotide polymorphism) scores modify risk for carriers of pathogenic variants (PVs) in breast cancer susceptibility genes. In previous reports, polygenic risk modification was reduced for BRCA1 and BRCA2 PV carriers compared with noncarriers, but limited information is available for carriers of CHEK2, ATM, or PALB2 PVs. Objective To examine an 86-SNV polygenic risk score (PRS) for BRCA1, BRCA2, CHEK2, ATM, and PALB2 PV carriers. Design, Setting, and Participants A retrospective case-control study using data on 150 962 women tested with a multigene hereditary cancer panel between July 19, 2016, and January 11, 2019, was conducted in a commercial testing laboratory. Participants included women of European ancestry between the ages of 18 and 84 years. Main Outcomes and Measures Multivariable logistic regression was used to examine the association of the 86-SNV score with invasive breast cancer after adjusting for age, ancestry, and personal and/or family cancer history. Effect sizes, expressed as standardized odds ratios (ORs) with 95% CIs, were assessed for carriers of PVs in each gene as well as for noncarriers. Results The median age at hereditary cancer testing of the population was 48 years (range, 18-84 years); there were 141 160 noncarriers in addition to carriers of BRCA1 (n = 2249), BRCA2 (n = 2638), CHEK2 (n = 2564), ATM (n = 1445), and PALB2 (n = 906) PVs included in the analysis. The 86-SNV score was associated with breast cancer risk in each of the carrier populations (P < 1 × 10-4). Stratification was more pronounced for noncarriers (OR, 1.47; 95% CI, 1.45-1.49) and CHEK2 PV carriers (OR, 1.49; 95% CI, 1.36-1.64) than for carriers of BRCA1 (OR, 1.20; 95% CI, 1.10-1.32) or BRCA2 (OR, 1.23; 95% CI, 1.12-1.34) PVs. Odds ratios for ATM (OR, 1.37; 95% CI, 1.21-1.55) and PALB2 (OR, 1.34; 95% CI, 1.16-1.55) PV carrier populations were intermediate between those for BRCA1/2 and CHEK2 noncarriers. Conclusions and Relevance In this study, the 86-SNV score was associated with modified risk for carriers of BRCA1, BRCA2, CHEK2, ATM, and PALB2 PVs. This finding supports previous reports of reduced PRS stratification for BRCA1 and BRCA2 PV carriers compared with noncarriers. Modification of risk in CHEK2 carriers associated with the 86-SNV score appeared to be similar to that observed in women without a PV. Larger studies are needed to provide more refined estimates of polygenic modification of risk for women with PVs in other moderate-penetrance genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Susan M. Domchek
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Judy Garber
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Johnathan Lancaster
- Myriad Genetics Inc, Salt Lake City, Utah
- Regeneron Pharmaceuticals Inc, Tarrytown, New York
| | | | | | | | - Mark Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
24
|
Huber D, Seitz S, Kast K, Emons G, Ortmann O. Use of oral contraceptives in BRCA mutation carriers and risk for ovarian and breast cancer: a systematic review. Arch Gynecol Obstet 2020; 301:875-884. [PMID: 32140806 PMCID: PMC8494665 DOI: 10.1007/s00404-020-05458-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/27/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE BRCA mutation carriers have an increased risk of developing breast or ovarian cancer. Oral contraception (OC) is known to increase breast cancer and reduce ovarian cancer risk in the general population. This review analyses the published data on OC and risk of cancer in BRCA mutation carriers. METHODS We included all relevant articles published in English from 1995 to 2018. Literature was identified through a search on PubMed and Cochrane Library. RESULTS We included four meta-analyses, one review, one case-control study and one retrospective cohort study on the association between ovarian cancer and OC in BRCA mutation carriers. All report a risk reduction for the OC users and several also describe an inverse correlation with duration of use. Regarding breast cancer, we included four meta-analyses, one review, one case-control study, two case-only studies, one prospective and one retrospective cohort study. Some studies report a risk elevation, while others did not find an association between OC use and breast cancer in BRCA mutation carriers. In other studies, the association was limited to early-onset breast cancer and/or associated with young age at first start of OC. CONCLUSION Oral contraception leads to a risk reduction of ovarian cancer also in BRCA mutation carriers. An increase in breast cancer risk due to OC cannot be excluded. Women with BRCA mutation who consider OC use have to be informed about possible increase in breast cancer risk and alternative contraceptive methods. OC should not be used for the prevention of ovarian cancer in this population.
Collapse
Affiliation(s)
- D Huber
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
| | - S Seitz
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
| | - K Kast
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - G Emons
- Department of Gynecology and Obstetrics, Georg August University Göttingen, University Medicine, Göttingen, Germany
| | - O Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany.
| |
Collapse
|
25
|
Maleki Dana P, Mansournia MA, Mirhashemi SM. PIWI-interacting RNAs: new biomarkers for diagnosis and treatment of breast cancer. Cell Biosci 2020; 10:44. [PMID: 32211149 PMCID: PMC7092456 DOI: 10.1186/s13578-020-00403-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/07/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the most important reasons of mortality in the world. However, there are several therapeutic platforms to treat patients who suffering from cancer common treatments such as surgery, chemotherapy and etc. The current therapeutic approaches are related to some limitations. Hence, more understanding about molecular mechanisms that involved in cancer particularly in breast cancer pathogenesis, could contribute to provide better therapeutic platforms. Recently, non-coding RNAs such as microRNAs have attracted researchers' attention in the field of cancer due to their functions in gene expression's regulation and functional interactions with other molecules. Interestingly, great advances in next-generation sequencing lead to considering other roles for another non-coding RNAs subgroup called PIWI-interacting RNAs (piRNAs) in addition to their functions in the germline. Novel studies investigated the role of piRNAs in several cancers including lung cancer, hepatocellular carcinoma, gastric cancer, multiple myeloma and colorectal cancer. Hopefully, based on new findings, piRNAs may be a potential biomarker which can be used as a tool to diagnose or treat breast cancer. Thus, this review aimed to discuss the role of piRNAs in breast cancer progression and metastasis as well as its molecular mechanisms.
Collapse
Affiliation(s)
- Parisa Maleki Dana
- 1Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Mohammad Ali Mansournia
- 2Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyyed Mehdi Mirhashemi
- 3Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
26
|
Design, synthesis and interaction of BRC4 analogous peptides with RAD51(241–260). Amino Acids 2019; 52:361-369. [DOI: 10.1007/s00726-019-02813-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 12/12/2019] [Indexed: 02/05/2023]
|
27
|
Sepahi I, Faust U, Sturm M, Bosse K, Kehrer M, Heinrich T, Grundman-Hauser K, Bauer P, Ossowski S, Susak H, Varon R, Schröck E, Niederacher D, Auber B, Sutter C, Arnold N, Hahnen E, Dworniczak B, Wang-Gorke S, Gehrig A, Weber BHF, Engel C, Lemke JR, Hartkopf A, Nguyen HP, Riess O, Schroeder C. Investigating the effects of additional truncating variants in DNA-repair genes on breast cancer risk in BRCA1-positive women. BMC Cancer 2019; 19:787. [PMID: 31395037 PMCID: PMC6686546 DOI: 10.1186/s12885-019-5946-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/16/2019] [Indexed: 01/22/2023] Open
Abstract
Background Inherited pathogenic variants in BRCA1 and BRCA2 are the most common causes of hereditary breast and ovarian cancer (HBOC). The risk of developing breast cancer by age 80 in women carrying a BRCA1 pathogenic variant is 72%. The lifetime risk varies between families and even within affected individuals of the same family. The cause of this variability is largely unknown, but it is hypothesized that additional genetic factors contribute to differences in age at onset (AAO). Here we investigated whether truncating and rare missense variants in genes of different DNA-repair pathways contribute to this phenomenon. Methods We used extreme phenotype sampling to recruit 133 BRCA1-positive patients with either early breast cancer onset, below 35 (early AAO cohort) or cancer-free by age 60 (controls). Next Generation Sequencing (NGS) was used to screen for variants in 311 genes involved in different DNA-repair pathways. Results Patients with an early AAO (73 women) had developed breast cancer at a median age of 27 years (interquartile range (IQR); 25.00–27.00 years). A total of 3703 variants were detected in all patients and 43 of those (1.2%) were truncating variants. The truncating variants were found in 26 women of the early AAO group (35.6%; 95%-CI 24.7 - 47.7%) compared to 16 women of controls (26.7%; 95%-CI 16.1 to 39.7%). When adjusted for environmental factors and family history, the odds ratio indicated an increased breast cancer risk for those carrying an additional truncating DNA-repair variant to BRCA1 mutation (OR: 3.1; 95%-CI 0.92 to 11.5; p-value = 0.07), although it did not reach the conventionally acceptable significance level of 0.05. Conclusions To our knowledge this is the first time that the combined effect of truncating variants in DNA-repair genes on AAO in patients with hereditary breast cancer is investigated. Our results indicate that co-occurring truncating variants might be associated with an earlier onset of breast cancer in BRCA1-positive patients. Larger cohorts are needed to confirm these results. Electronic supplementary material The online version of this article (10.1186/s12885-019-5946-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ilnaz Sepahi
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Ulrike Faust
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Kristin Bosse
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Martin Kehrer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Tilman Heinrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Kathrin Grundman-Hauser
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,CENTOGENE AG, Rostock, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Hana Susak
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Raymonda Varon
- Institute of Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Dieter Niederacher
- Department of Obstetrics and Gynaecology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Christian Sutter
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Norbert Arnold
- Department of Gynaecology and Obstetrics and Institute of Clinical Molecular Biology, University Hospital of Schleswig-Holstein, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Eric Hahnen
- Centre for Hereditary Breast and Ovarian Cancer, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Bernd Dworniczak
- Institute of Human Genetics, University Hospital Münster, Münster, Germany
| | - Shan Wang-Gorke
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Ulm, Germany
| | - Andrea Gehrig
- Centre of Familial Breast and Ovarian Cancer, Department of Medical Genetics, Institute of Human Genetics, University Würzburg, Würzburg, Germany
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Andreas Hartkopf
- Department of Obstetrics and Gynecology, University of Tuebingen, Tuebingen, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr-University Bochum, Bochum, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
28
|
Gao F, Ge R. LOC643714 Polymorphisms Contribute to an Elevated Susceptibility to Breast Cancer: A Meta-analysis of 231,191 Subjects. Clin Breast Cancer 2019; 19:e596-e610. [PMID: 31324582 DOI: 10.1016/j.clbc.2019.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/27/2019] [Accepted: 04/27/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Several recent genome-wide association studies tried to explore associations between LOC643714 polymorphisms and breast cancer (BC). However, the results of these studies were inconsistent. The purpose of this meta-analysis was to better analyze the effects of LOC643714 polymorphisms on individual susceptibility to BC in a larger pooled population. MATERIALS AND METHODS PubMed, Web of Science, and Embase were searched for eligible studies. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to estimate the strength of associations. RESULTS In total, 42 studies with 231,191 subjects were analyzed. Significant associations with BC were observed for rs3803662 (dominant comparison: OR, 0.89; 95% CI, 0.84-0.95; P = .0008; recessive comparison: OR, 1.17; 95% CI, 1.07-1.28; P = .0004; over-dominant comparison: OR, 1.07; 95% CI, 1.02-1.11; P = .002; allele comparison: OR, 0.90; 95% CI, 0.86-0.95; P = .0002), rs8051542 (dominant comparison: OR, 0.87; 95% CI, 0.83-0.91; P < .0001; recessive comparison: OR, 1.19; 95% CI, 1.11-1.28; P < .0001; over-dominant comparison: OR, 1.07; 95% CI, 1.02-1.11; P = .004; allele comparison: OR, 0.89; 95% CI, 0.86-0.91; P < .0001), and rs12922061 (dominant comparison: OR, 0.83; 95% CI, 0.73-0.93; P = .002; over-dominant comparison: OR, 1.43; 95% CI, 1.27-1.61; P < .0001) polymorphisms in the overall population. Further subgroup analyses yielded similar positive results for rs3803662 and rs8051542 polymorphisms in Asians, Caucasians, and Africans, for rs12443621 polymorphism in Caucasians, and for rs12922061 polymorphism in Asians. CONCLUSIONS Our findings suggested that LOC643714 rs3803662, rs8051542, rs12443621, and rs12922061 polymorphisms were all significantly associated with BC in certain populations.
Collapse
Affiliation(s)
- Fucun Gao
- Department of Breast Surgery, Linyi Central Hospital, Linyi, China
| | - Rongli Ge
- Department of Breast Surgery, Linyi Central Hospital, Linyi, China.
| |
Collapse
|
29
|
Qian F, Wang S, Mitchell J, McGuffog L, Barrowdale D, Leslie G, Oosterwijk JC, Chung WK, Evans DG, Engel C, Kast K, Aalfs CM, Adank MA, Adlard J, Agnarsson BA, Aittomäki K, Alducci E, Andrulis IL, Arun BK, Ausems MGEM, Azzollini J, Barouk-Simonet E, Barwell J, Belotti M, Benitez J, Berger A, Borg A, Bradbury AR, Brunet J, Buys SS, Caldes T, Caligo MA, Campbell I, Caputo SM, Chiquette J, Claes KBM, Margriet Collée J, Couch FJ, Coupier I, Daly MB, Davidson R, Diez O, Domchek SM, Donaldson A, Dorfling CM, Eeles R, Feliubadaló L, Foretova L, Fowler J, Friedman E, Frost D, Ganz PA, Garber J, Garcia-Barberan V, Glendon G, Godwin AK, Gómez Garcia EB, Gronwald J, Hahnen E, Hamann U, Henderson A, Hendricks CB, Hopper JL, Hulick PJ, Imyanitov EN, Isaacs C, Izatt L, Izquierdo Á, Jakubowska A, Kaczmarek K, Kang E, Karlan BY, Kets CM, Kim SW, Kim Z, Kwong A, Laitman Y, Lasset C, Hyuk Lee M, Won Lee J, Lee J, Lester J, Lesueur F, Loud JT, Lubinski J, Mebirouk N, Meijers-Heijboer HEJ, Meindl A, Miller A, Montagna M, Mooij TM, Morrison PJ, Mouret-Fourme E, Nathanson KL, Neuhausen SL, Nevanlinna H, Niederacher D, Nielsen FC, Nussbaum RL, Offit K, et alQian F, Wang S, Mitchell J, McGuffog L, Barrowdale D, Leslie G, Oosterwijk JC, Chung WK, Evans DG, Engel C, Kast K, Aalfs CM, Adank MA, Adlard J, Agnarsson BA, Aittomäki K, Alducci E, Andrulis IL, Arun BK, Ausems MGEM, Azzollini J, Barouk-Simonet E, Barwell J, Belotti M, Benitez J, Berger A, Borg A, Bradbury AR, Brunet J, Buys SS, Caldes T, Caligo MA, Campbell I, Caputo SM, Chiquette J, Claes KBM, Margriet Collée J, Couch FJ, Coupier I, Daly MB, Davidson R, Diez O, Domchek SM, Donaldson A, Dorfling CM, Eeles R, Feliubadaló L, Foretova L, Fowler J, Friedman E, Frost D, Ganz PA, Garber J, Garcia-Barberan V, Glendon G, Godwin AK, Gómez Garcia EB, Gronwald J, Hahnen E, Hamann U, Henderson A, Hendricks CB, Hopper JL, Hulick PJ, Imyanitov EN, Isaacs C, Izatt L, Izquierdo Á, Jakubowska A, Kaczmarek K, Kang E, Karlan BY, Kets CM, Kim SW, Kim Z, Kwong A, Laitman Y, Lasset C, Hyuk Lee M, Won Lee J, Lee J, Lester J, Lesueur F, Loud JT, Lubinski J, Mebirouk N, Meijers-Heijboer HEJ, Meindl A, Miller A, Montagna M, Mooij TM, Morrison PJ, Mouret-Fourme E, Nathanson KL, Neuhausen SL, Nevanlinna H, Niederacher D, Nielsen FC, Nussbaum RL, Offit K, Olah E, Ong KR, Ottini L, Park SK, Peterlongo P, Pfeiler G, Phelan CM, Poppe B, Pradhan N, Radice P, Ramus SJ, Rantala J, Robson M, Rodriguez GC, Schmutzler RK, Hutten Selkirk CG, Shah PD, Simard J, Singer CF, Sokolowska J, Stoppa-Lyonnet D, Sutter C, Yen Tan Y, Teixeira RM, Teo SH, Terry MB, Thomassen M, Tischkowitz M, Toland AE, Tucker KM, Tung N, van Asperen CJ, van Engelen K, van Rensburg EJ, Wang-Gohrke S, Wappenschmidt B, Weitzel JN, Yannoukakos D, GEMO Study Collaborators, HEBON, EMBRACE, Greene MH, Rookus MA, Easton DF, Chenevix-Trench G, Antoniou AC, Goldgar DE, Olopade OI, Rebbeck TR, Huo D. Height and Body Mass Index as Modifiers of Breast Cancer Risk in BRCA1/2 Mutation Carriers: A Mendelian Randomization Study. J Natl Cancer Inst 2019; 111:350-364. [PMID: 30312457 PMCID: PMC6449171 DOI: 10.1093/jnci/djy132] [Show More Authors] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 06/03/2018] [Accepted: 06/29/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND BRCA1/2 mutations confer high lifetime risk of breast cancer, although other factors may modify this risk. Whether height or body mass index (BMI) modifies breast cancer risk in BRCA1/2 mutation carriers remains unclear. METHODS We used Mendelian randomization approaches to evaluate the association of height and BMI on breast cancer risk, using data from the Consortium of Investigators of Modifiers of BRCA1/2 with 14 676 BRCA1 and 7912 BRCA2 mutation carriers, including 11 451 cases of breast cancer. We created a height genetic score using 586 height-associated variants and a BMI genetic score using 93 BMI-associated variants. We examined both observed and genetically determined height and BMI with breast cancer risk using weighted Cox models. All statistical tests were two-sided. RESULTS Observed height was positively associated with breast cancer risk (HR = 1.09 per 10 cm increase, 95% confidence interval [CI] = 1.0 to 1.17; P = 1.17). Height genetic score was positively associated with breast cancer, although this was not statistically significant (per 10 cm increase in genetically predicted height, HR = 1.04, 95% CI = 0.93 to 1.17; P = .47). Observed BMI was inversely associated with breast cancer risk (per 5 kg/m2 increase, HR = 0.94, 95% CI = 0.90 to 0.98; P = .007). BMI genetic score was also inversely associated with breast cancer risk (per 5 kg/m2 increase in genetically predicted BMI, HR = 0.87, 95% CI = 0.76 to 0.98; P = .02). BMI was primarily associated with premenopausal breast cancer. CONCLUSION Height is associated with overall breast cancer and BMI is associated with premenopausal breast cancer in BRCA1/2 mutation carriers. Incorporating height and BMI, particularly genetic score, into risk assessment may improve cancer management.
Collapse
Affiliation(s)
- Frank Qian
- Department of Medicine, The University of Chicago, Chicago, IL
| | - Shengfeng Wang
- Center for Clinical Cancer Genetics, The University of Chicago, Chicago, IL
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Jonathan Mitchell
- Division of Gastroenterology, Department of Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Lesley McGuffog
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Daniel Barrowdale
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Goska Leslie
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Jan C Oosterwijk
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY
| | - D Gareth Evans
- Division of Evolution and Genomic Sciences, Genomic Medicine, Manchester Academic Health Sciences Centre, University of Manchester, Central Manchester University Hospitals, NHS Foundation Trust, Manchester, UK
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE - Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Karin Kast
- Department of Gynecology and Obstetrics, Technical University of Dresden, Dresden, Germany
- Department of Clinical Genetics and GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Cora M Aalfs
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, the Netherlands
- Center for Medical Genetics, NorthShore University HealthSystem, Evanston, IL
- The University of Chicago Pritzker School of Medicine, Chicago, IL
| | - Muriel A Adank
- Family Cancer Clinic, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Julian Adlard
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds, UK
- Department of Clinical Genetics and GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Bjarni A Agnarsson
- Department of Pathology, National Institute of Oncology, Budapest, Hungary
- School of Medicine, University of Iceland, Reykjavik, Iceland
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Elisa Alducci
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
- Department of Clinical Genetics and GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Banu K Arun
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Jacopo Azzollini
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Emmanuelle Barouk-Simonet
- Oncogénétique, Institut Bergonié, Bordeaux, France
- Department of Pathology and Laboratory Medicine, Kansas University Medical Center, Kansas City, KS
| | - Julian Barwell
- Leicestershire Clinical Genetics Service, University Hospitals of Leicester NHS Trust, Leicester, UK
- Genetic Counseling Unit, Hereditary Cancer Program, IDIBGI (Institut d'Investigació Biomèdica de Girona), Catalan Institute of Oncology, CIBERONC, Girona, Spain
| | | | - Javier Benitez
- Schools of Medicine and Public Health, Division of Cancer Prevention & Control Research, Jonsson Comprehensive Cancer Center, University of California Los Angeles, CA
| | - Andreas Berger
- Department of Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ake Borg
- Cancer Risk and Prevention Clinic, Dana-Farber Cancer Institute, Boston, MA
- Institute of Genetic Medicine, Centre for Life, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Angela R Bradbury
- Department of Medicine, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Joan Brunet
- Service de Génétique, Institut Curie, Paris, France
- Human Cancer Genetics Program, Spanish National Cancer Research Centre, Madrid, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Valencia, Spain, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Saundra S Buys
- Department of Medicine, Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT
| | - Trinidad Caldes
- Molecular Oncology Laboratory, Hospital Clinico San Carlos, IdISSC, CIBERONC, Madrid, Spain
| | - Maria A Caligo
- Section of Genetic Oncology, Department of Laboratory Medicine, University and University Hospital of Pisa, Pisa, Italy
| | - Ian Campbell
- Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sandrine M Caputo
- Leicestershire Clinical Genetics Service, University Hospitals of Leicester NHS Trust, Leicester, UK
- Service de Génétique, Institut Curie, Paris, France
| | - Jocelyne Chiquette
- Unité de recherche en santé des populations, Centre des maladies du sein Deschênes-Fabia, Hôpital du Saint-Sacrement, Québec, QC, Canada
| | | | - J Margriet Collée
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Isabelle Coupier
- Unité d'Oncogénétique, CHU Arnaud de Villeneuve, Montpellier, France
| | - Mary B Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA
| | - Rosemarie Davidson
- Department of Clinical Genetics, South Glasgow University Hospitals, Glasgow, UK
| | - Orland Diez
- N.N. Petrov Institute of Oncology, St. Petersburg, Russia
| | - Susan M Domchek
- Department of Medicine, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Alan Donaldson
- Oncogenetics Group, Clinical and Molecular Genetics Area, Vall d'Hebron Institute of Oncology (VHIO), University Hospital, Vall d'Hebron, Barcelona, Spain (OD); Clinical Genetics Department, St Michael's Hospital, Bristol, UK
| | - Cecilia M Dorfling
- Department of Genetics, University of Pretoria, Arcadia, South Africa
- City of Hope Clinical Cancer Genetics Community Research Network, Duarte, CA
| | - Ros Eeles
- Ocogenetics Team, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Lidia Feliubadaló
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lenka Foretova
- Molecular Diagnostic Unit, Hereditary Cancer Program, ICO-IDIBELL (Catalan Institute of Oncology, Bellvitge Biomedical Research Institute), CIBERONC, Barcelona, Spain
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Jeffrey Fowler
- The Ohio State University, Columbus Cancer Council, Columbus, OH
| | - Eitan Friedman
- The Susanne Levy Gertner Oncogenetics Unit, Chaim Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Debra Frost
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Patricia A Ganz
- Schools of Medicine and Public Health, Division of Cancer Prevention & Control Research, Jonsson Comprehensive Cancer Center, University of California Los Angeles, CA
| | - Judy Garber
- Cancer Risk and Prevention Clinic, Dana-Farber Cancer Institute, Boston, MA
| | - Vanesa Garcia-Barberan
- Molecular Oncology Laboratory, Hospital Clinico San Carlos, IdISSC, CIBERONC, Madrid, Spain
| | - Gord Glendon
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, Kansas University Medical Center, Kansas City, KS
| | - Encarna B Gómez Garcia
- Department of Clinical Genetics and GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Jacek Gronwald
- Department of Clinical Genetics and GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Eric Hahnen
- Centers for Hereditary Breast and Ovarian Cancer, Integrated Oncology and Molecular Medicine, University Hospital of Cologne, Cologne, Germany Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Alex Henderson
- Institute of Genetic Medicine, Centre for Life, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Carolyn B Hendricks
- City of Hope Clinical Cancer Genetics Community Research Network, Duarte, CA
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Peter J Hulick
- Center for Medical Genetics, NorthShore University HealthSystem, Evanston, IL
- The University of Chicago Pritzker School of Medicine, Chicago, IL
| | | | - Claudine Isaacs
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC (CI)
| | - Louise Izatt
- Clinical Genetics, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Ángel Izquierdo
- Genetic Counseling Unit, Hereditary Cancer Program, IDIBGI (Institut d'Investigació Biomèdica de Girona), Catalan Institute of Oncology, CIBERONC, Girona, Spain
| | - Anna Jakubowska
- Department of Clinical Genetics and GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Katarzyna Kaczmarek
- Department of Clinical Genetics and GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Eunyoung Kang
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Beth Y Karlan
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Carolien M Kets
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sung-Won Kim
- Department of Surgery, Daerim Saint Mary's Hospital, Seoul, Korea
| | - Zisun Kim
- Department of Surgery, Soonchunhyang University Hospital Bucheon, Bucheon, Korea
| | - Ava Kwong
- Hong Kong Hereditary Breast Cancer Family Registry, Happy Valley, Hong Kong
- Department of Surgery, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Department of Surgery, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong
| | - Yael Laitman
- The Susanne Levy Gertner Oncogenetics Unit, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Christine Lasset
- Unité de Prévention et d’Epidémiologie Génétique, Centre Léon Bérard, Lyon, France
| | - Min Hyuk Lee
- Department of Surgery, Soonchunhyang University College of Medicine and Soonchunhyang University Hospital, Seoul, Korea
| | - Jong Won Lee
- Department of Surgery, Ulsan University College of Medicine and Asan Medical Center, Seoul, Korea
| | - Jihyoun Lee
- Department of Clinical Genetics and GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Surgery, Soonchunhyang University College of Medicine and Soonchunhyang University Hospital, Seoul, Korea
| | - Jenny Lester
- Department of Clinical Genetics and GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Fabienne Lesueur
- Genetic Epidemiology of Cancer team, Institut Curie, Paris, France
- U900, INSERM, Paris, France
- PSL University, Paris, France
- Mines ParisTech, Fontainebleau, France
| | - Jennifer T Loud
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Jan Lubinski
- Department of Clinical Genetics and GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Noura Mebirouk
- Genetic Epidemiology of Cancer team, Institut Curie, Paris, France
- U900, INSERM, Paris, France
- PSL University, Paris, France
- Mines ParisTech, Fontainebleau, France
| | | | - Alfons Meindl
- Division of Gynaecology and Obstetrics, Technische Universität München, Munich, Germany
- NRG Oncology, Statistics and Data Management Center, Roswell Park Cancer Institute, Buffalo, NY
| | - Austin Miller
- Division of Gynaecology and Obstetrics, Technische Universität München, Munich, Germany
| | - Marco Montagna
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Thea M Mooij
- Department of Epidemiology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Patrick J Morrison
- Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, UK
| | | | | | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Dieter Niederacher
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Finn C Nielsen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Robert L Nussbaum
- Cancer Genetics and Prevention Program, University of California San Francisco, San Francisco, CA
| | - Kenneth Offit
- Clinical Genetics Research Laboratory, Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Edith Olah
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Kai-Ren Ong
- West Midlands Regional Genetics Service, Birmingham Women’s Hospital Healthcare NHS Trust, Birmingham, UK
| | - Laura Ottini
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - Sue K Park
- Departments of Preventive Medicine and Biomedical Sciences, and Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Paolo Peterlongo
- IFOM, The FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology, Milan, Italy
| | - Georg Pfeiler
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | | | - Bruce Poppe
- Centre for Medical Genetics, Ghent University, Ghent, Belgium
| | - Nisha Pradhan
- Clinical Genetics Research Laboratory, Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Susan J Ramus
- School of Women's and Children's Health, University of New South Wales Sydney, New South Wales, Australia
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | | - Mark Robson
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Gustavo C Rodriguez
- Division of Gynecologic Oncology, NorthShore University HealthSystem, University of Chicago, Evanston, IL
| | - Rita K Schmutzler
- Centers for Hereditary Breast and Ovarian Cancer, Integrated Oncology and Molecular Medicine, University Hospital of Cologne, Cologne, Germany Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Payal D Shah
- Department of Medicine, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Jacques Simard
- Laboratoire de génétique médicale, Nancy Université, Centre Hospitalier Régional et Universitaire, Vandoeuvre-les-Nancy, France
| | - Christian F Singer
- Department of Obstetrics and Gynecology and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Johanna Sokolowska
- Genomics Center, Centre Hospitalier Universitaire de Québec Research Center, Laval University, Québec City, QC, Canada
| | - Dominique Stoppa-Lyonnet
- Department of Tumour Biology, Institut Curie, INSERM U830, Paris, France
- Université Paris Descartes, Paris, France
| | - Christian Sutter
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Yen Yen Tan
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Valencia, Spain, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - R Manuel Teixeira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
- Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Soo H Teo
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
- Breast Cancer Research Unit, Cancer Research Institute, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
| | - Marc Tischkowitz
- Program in Cancer Genetics, Departments of Human Genetics and Oncology, McGill University, Montréal, QC, Canada
- Department of Medical Genetics, Addenbrooke's Hospital, Cambridge, UK
| | - Amanda E Toland
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Katherine M Tucker
- School of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Hereditary Cancer Centre, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Nadine Tung
- Department of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Klaartje van Engelen
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Shan Wang-Gohrke
- Department of Gynaecology and Obstetrics, University of Ulm, Ulm, Germany
| | - Barbara Wappenschmidt
- Centers for Hereditary Breast and Ovarian Cancer, Integrated Oncology and Molecular Medicine, University Hospital of Cologne, Cologne, Germany Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - GEMO Study Collaborators
- Department of Tumour Biology, Institut Curie, INSERM U830, Paris, France
- Université Paris Descartes, Paris, France
| | - HEBON
- The Hereditary Breast and Ovarian Cancer Research Group Netherlands
- Coordinating Center, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - EMBRACE
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Matti A Rookus
- Department of Epidemiology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Douglas F Easton
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Antonis C Antoniou
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - David E Goldgar
- Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | | | - Timothy R Rebbeck
- Harvard T.H. Chan School of Public Health, Boston, MA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Dezheng Huo
- Department of Medicine, The University of Chicago, Chicago, IL
- Department of Public Health Sciences, The University of Chicago, Chicago, IL (DH)
| |
Collapse
|
30
|
Wendt C, Margolin S. Identifying breast cancer susceptibility genes - a review of the genetic background in familial breast cancer. Acta Oncol 2019; 58:135-146. [PMID: 30606073 DOI: 10.1080/0284186x.2018.1529428] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Heritage is the most important risk factor for breast cancer. About 15-20% of breast cancer is familial, referring to affected women who have one or more first- or second-degree relatives with the disease. The heritable component in these families is substantial, especially in families with aggregation of breast cancer with low age at onset. Identifying breast cancer susceptibility genes: Since the discovery of the highly penetrant autosomal dominant susceptibility genes BRCA1 and BRCA2 in the 1990s, several more breast cancer genes that confer a moderate to high risk of breast cancer have been identified. Furthermore, during the last decade, advances in genomic technologies have led to large scale genotyping in genome-wide association studies that have identified a considerable amount of common low penetrance loci. In total, the high risk genes, BRCA1, BRCA2, TP53, STK11, CD1 and PTEN account for approximately 20% of the familial risk. Moderate risk variants account for up to 5% of the inherited familial risk. The more than 180 identified low-risk loci explain 18% of the familial risk. Altogether more than half of the genetic background in familial breast cancer remains unclear. Other genes and low risk loci that explain a part the remaining fraction will probably be identified. Clinical aspects and future perspectives: Definitive clinical recommendations can be drawn only for carriers of germline variants in a limited number of high and moderate risk genes for which an association with breast cancer has been established. Future progress in evaluating previously identified breast cancer candidate variants and low risk loci as well as exploring new ones can play an important role in improving individual risk prediction in familial breast cancer.
Collapse
Affiliation(s)
- Camilla Wendt
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Sara Margolin
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
Tan L, Mai D, Zhang B, Jiang X, Zhang J, Bai R, Ye Y, Li M, Pan L, Su J, Zheng Y, Liu Z, Zuo Z, Zhao Q, Li X, Huang X, Yang J, Tan W, Zheng J, Lin D. PIWI-interacting RNA-36712 restrains breast cancer progression and chemoresistance by interaction with SEPW1 pseudogene SEPW1P RNA. Mol Cancer 2019; 18:9. [PMID: 30636640 PMCID: PMC6330501 DOI: 10.1186/s12943-019-0940-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 01/01/2019] [Indexed: 12/25/2022] Open
Abstract
Background Breast cancer is one of the most common malignancies and the major cause of cancer-related death in women. Although the importance of PIWI-interacting RNAs (piRNAs) in cancer has been increasingly recognized, few studies have been explored the functional mechanism of piRNAs in breast cancer development and progression. Methods We examined the top 20 highly expressed piRNAs based on the analysis of TCGA breast cancer data in two patient cohorts to test the roles of piRNAs in breast cancer. The effects of piRNA-36,712 on the malignant phenotypes and chemosensitivity of breast cancer cells were detected in vitro and in vivo. MS2-RIP and reporter gene assays were conducted to identify the interaction and regulation among piRNA-36,712, miRNAs and SEPW1P. Kaplan-Meier estimate with log-rank test was used to compare patient survival by different piRNA-36,712 expression levels. Results We found piRNA-36,712 level was significantly lower in breast cancer than in normal breast tissues and low level was correlated with poor clinical outcome in patients. Functional studies demonstrated that piRNA-36,712 interacts with RNAs produced by SEPW1P, a retroprocessed pseudogene of SEPW1, and subsequently inhibits SEPW1 expression through competition of SEPW1 mRNA with SEPW1P RNA for microRNA-7 and microRNA-324. We also found that higher SEPW1 expression due to downregulation of piRNA-36,712 in breast cancer may suppress P53, leading to the upregulated Slug but decreased P21 and E-cadherin levels, thus promoting cancer cell proliferation, invasion and migration. Furthermore, we found that piRNA-36,712 had synergistic anticancer effects with the paclitaxel and doxorubicin, two chemotherapeutic agents for breast cancer. Conclusions These findings suggest that piRNA-36,712 is a novel tumor suppressor and may serve as a potential predictor for the prognosis of breast cancer patients. Electronic supplementary material The online version of this article (10.1186/s12943-019-0940-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liping Tan
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dongmei Mai
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bailin Zhang
- Department of Breast Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaobing Jiang
- Department of Surgical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jialiang Zhang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ruihong Bai
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Ye
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mei Li
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ling Pan
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiachun Su
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanfen Zheng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zexian Liu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoxing Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xudong Huang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jie Yang
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen Tan
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Zheng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Dongxin Lin
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
32
|
Hemming ML, Lawlor MA, Andersen JL, Hagan T, Chipashvili O, Scott TG, Raut CP, Sicinska E, Armstrong SA, Demetri GD, Bradner JE, Ganz PA, Tomlinson G, Olopade OI, Couch FJ, Wang X, Lindor NM, Pankratz VS, Radice P, Manoukian S, Peissel B, Zaffaroni D, Barile M, Viel A, Allavena A, Dall'Olio V, Peterlongo P, Szabo CI, Zikan M, Claes K, Poppe B, Foretova L, Mai PL, Greene MH, Rennert G, Lejbkowicz F, Glendon G, Ozcelik H, Andrulis IL, Thomassen M, Gerdes AM, Sunde L, Cruger D, Birk Jensen U, Caligo M, Friedman E, Kaufman B, Laitman Y, Milgrom R, Dubrovsky M, Cohen S, Borg A, Jernström H, Lindblom A, Rantala J, Stenmark-Askmalm M, Melin B, Nathanson K, Domchek S, Jakubowska A, Lubinski J, Huzarski T, Osorio A, Lasa A, Durán M, Tejada MI, Godino J, Benitez J, Hamann U, Kriege M, Hoogerbrugge N, van der Luijt RB, van Asperen CJ, Devilee P, Meijers-Heijboer EJ, Blok MJ, Aalfs CM, Hogervorst F, Rookus M, Cook M, Oliver C, Frost D, Conroy D, Evans DG, Lalloo F, Pichert G, Davidson R, Cole T, Cook J, Paterson J, Hodgson S, Morrison PJ, Porteous ME, Walker L, Kennedy MJ, Dorkins H, Peock S, et alHemming ML, Lawlor MA, Andersen JL, Hagan T, Chipashvili O, Scott TG, Raut CP, Sicinska E, Armstrong SA, Demetri GD, Bradner JE, Ganz PA, Tomlinson G, Olopade OI, Couch FJ, Wang X, Lindor NM, Pankratz VS, Radice P, Manoukian S, Peissel B, Zaffaroni D, Barile M, Viel A, Allavena A, Dall'Olio V, Peterlongo P, Szabo CI, Zikan M, Claes K, Poppe B, Foretova L, Mai PL, Greene MH, Rennert G, Lejbkowicz F, Glendon G, Ozcelik H, Andrulis IL, Thomassen M, Gerdes AM, Sunde L, Cruger D, Birk Jensen U, Caligo M, Friedman E, Kaufman B, Laitman Y, Milgrom R, Dubrovsky M, Cohen S, Borg A, Jernström H, Lindblom A, Rantala J, Stenmark-Askmalm M, Melin B, Nathanson K, Domchek S, Jakubowska A, Lubinski J, Huzarski T, Osorio A, Lasa A, Durán M, Tejada MI, Godino J, Benitez J, Hamann U, Kriege M, Hoogerbrugge N, van der Luijt RB, van Asperen CJ, Devilee P, Meijers-Heijboer EJ, Blok MJ, Aalfs CM, Hogervorst F, Rookus M, Cook M, Oliver C, Frost D, Conroy D, Evans DG, Lalloo F, Pichert G, Davidson R, Cole T, Cook J, Paterson J, Hodgson S, Morrison PJ, Porteous ME, Walker L, Kennedy MJ, Dorkins H, Peock S, Godwin AK, Stoppa-Lyonnet D, de Pauw A, Mazoyer S, Bonadona V, Lasset C, Dreyfus H, Leroux D, Hardouin A, Berthet P, Faivre L, Loustalot C, Noguchi T, Sobol H, Rouleau E, Nogues C, Frénay M, Vénat-Bouvet L, Hopper JL, Daly MB, Terry MB, John EM, Buys SS, Yassin Y, Miron A, Goldgar D, Singer CF, Dressler AC, Gschwantler-Kaulich D, Pfeiler G, Hansen TVO, Jønson L, Agnarsson BA, Kirchhoff T, Offit K, Devlin V, Dutra-Clarke A, Piedmonte M, Rodriguez GC, Wakeley K, Boggess JF, Basil J, Schwartz PE, Blank SV, Toland AE, Montagna M, Casella C, Imyanitov E, Tihomirova L, Blanco I, Lazaro C, Ramus SJ, Sucheston L, Karlan BY, Gross J, Schmutzler R, Wappenschmidt B, Engel C, Meindl A, Lochmann M, Arnold N, Heidemann S, Varon-Mateeva R, Niederacher D, Sutter C, Deissler H, Gadzicki D, Preisler-Adams S, Kast K, Schönbuchner I, Caldes T, de la Hoya M, Aittomäki K, Nevanlinna H, Simard J, Spurdle AB, Holland H, Chen X, Platte R, Chenevix-Trench G, Easton DF. Enhancer Domains in Gastrointestinal Stromal Tumor Regulate KIT Expression and Are Targetable by BET Bromodomain Inhibition. Cancer Res 2019. [PMID: 18483246 DOI: 10.1158/0008-5472] [Show More Authors] [Citation(s) in RCA: 750] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is a mesenchymal neoplasm characterized by activating mutations in the related receptor tyrosine kinases KIT and PDGFRA. GIST relies on expression of these unamplified receptor tyrosine kinase (RTK) genes through a large enhancer domain, resulting in high expression levels of the oncogene required for tumor growth. Although kinase inhibition is an effective therapy for many patients with GIST, disease progression from kinase-resistant mutations is common and no other effective classes of systemic therapy exist. In this study, we identify regulatory regions of the KIT enhancer essential for KIT gene expression and GIST cell viability. Given the dependence of GIST upon enhancer-driven expression of RTKs, we hypothesized that the enhancer domains could be therapeutically targeted by a BET bromodomain inhibitor (BBI). Treatment of GIST cells with BBIs led to cell-cycle arrest, apoptosis, and cell death, with unique sensitivity in GIST cells arising from attenuation of the KIT enhancer domain and reduced KIT gene expression. BBI treatment in KIT-dependent GIST cells produced genome-wide changes in the H3K27ac enhancer landscape and gene expression program, which was also seen with direct KIT inhibition using a tyrosine kinase inhibitor (TKI). Combination treatment with BBI and TKI led to superior cytotoxic effects in vitro and in vivo, with BBI preventing tumor growth in TKI-resistant xenografts. Resistance to select BBI in GIST was attributable to drug efflux pumps. These results define a therapeutic vulnerability and clinical strategy for targeting oncogenic kinase dependency in GIST. SIGNIFICANCE: Expression and activity of mutant KIT is essential for driving the majority of GIST neoplasms, which can be therapeutically targeted using BET bromodomain inhibitors.
Collapse
Affiliation(s)
- Matthew L Hemming
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Matthew A Lawlor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jessica L Andersen
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Timothy Hagan
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Otari Chipashvili
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Thomas G Scott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Chandrajit P Raut
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ewa Sicinska
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - George D Demetri
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Ludwig Center at Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Significant association of TOX3/LOC643714 locus-rs3803662 and breast cancer risk in a cohort of Iranian population. Mol Biol Rep 2018; 46:805-811. [PMID: 30515698 DOI: 10.1007/s11033-018-4535-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022]
Abstract
Genome-wide association studies normally focus on low penetrance and moderate to high-frequency single nucleotide polymorphisms (SNPs), which lead to genetic susceptibility to breast cancer. In this regard, the T allele of rs3803662 has been associated with breast cancer risk and with lower expression level of TOX3. We aimed to assess the risk of breast cancer associated with this polymorphism in an Iranian population. Using Tetra Primer ARMS PCR, rs3803662 was analyzed in a total of 943 individuals (430 cases and 513 healthy controls form North East of Iran). Allele frequencies and genotype distribution were analyzed in case and control samples to find out any association using the Chi-squared test and Logistic regression. All cases were pathologically confirmed; all controls were mainly healthy individuals. Genotype frequencies were found to be in agreement with HWE in controls and cases. TOX3-rs3803662 SNP was associated with breast cancer risk in our study (T vs. C allele contrast model: OR 1.36, 95% CI 1.12-1.64, Pvalue = 0.002; TT vs. CT + TT dominant model: OR 0.67, 95% CI 0.51-0.87, Pvalue = 0.003; TT vs. CT + CC recessive model: OR 1.54, 95% CI 1.02-2.30, Pvlue = 0.036). Moreover, after adjusting for age, BMI, history of previous cancer and also family history of cancer, all results, except for the recessive model, were remained significant. TOX3-rs3803662, may confer some degrees of risk of breast cancer in Iranian population. This finding is in line with similar results in other populations. It highlights the importance of TOX3 pathway in tumorigenesis.
Collapse
|
34
|
Lesueur F, Mebirouk N, Jiao Y, Barjhoux L, Belotti M, Laurent M, Léone M, Houdayer C, Bressac-de Paillerets B, Vaur D, Sobol H, Noguès C, Longy M, Mortemousque I, Fert-Ferrer S, Mouret-Fourme E, Pujol P, Venat-Bouvet L, Bignon YJ, Leroux D, Coupier I, Berthet P, Mari V, Delnatte C, Gesta P, Collonge-Rame MA, Giraud S, Bonadona V, Baurand A, Faivre L, Buecher B, Lasset C, Gauthier-Villars M, Damiola F, Mazoyer S, Caputo SM, Andrieu N, Stoppa-Lyonnet D. GEMO, a National Resource to Study Genetic Modifiers of Breast and Ovarian Cancer Risk in BRCA1 and BRCA2 Pathogenic Variant Carriers. Front Oncol 2018; 8:490. [PMID: 30430080 PMCID: PMC6220051 DOI: 10.3389/fonc.2018.00490] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/11/2018] [Indexed: 02/03/2023] Open
Affiliation(s)
- Fabienne Lesueur
- INSERM, U900, Institut Curie, PSL Research University, Mines ParisTech, Paris, France
| | - Noura Mebirouk
- INSERM, U900, Institut Curie, PSL Research University, Mines ParisTech, Paris, France
| | - Yue Jiao
- Service de Génétique, Institut Curie, Paris, France
| | | | | | | | - Mélanie Léone
- Hospices Civils de Lyon, Groupement Hospitalier EST, Bron, France
| | | | | | - Dominique Vaur
- Département de Biopathologie, Centre François Baclesse, Caen, France
| | - Hagay Sobol
- Institut Paoli Calmette, Département d'Anticipation et de Suivi des Cancers, Oncogénétique, Faculté de Médecine, Université d'Aix-Marseille, Marseille, France
| | - Catherine Noguès
- Institut Paoli Calmette, Département d'Anticipation et de Suivi des Cancers, Oncogénétique, Faculté de Médecine, Université d'Aix-Marseille, Marseille, France
| | - Michel Longy
- Biopathologie, Institut Bergonié, Bordeaux, France
| | | | | | | | - Pascal Pujol
- Service de Génétique Médicale et Oncogénétique, Hôpital Arnaud de Villeneuve, CHU Montpellier, INSERM 896, CRCM Val d'Aurelle, Montpellier, France
| | | | - Yves-Jean Bignon
- Université Clermont Auvergne, INSERM, U1240, Centre Jean Perrin, Clermont-Ferrand, France
| | - Dominique Leroux
- Département de Génétique, CHU de Grenoble, Hôpital Couple-Enfant, Grenoble, France
| | - Isabelle Coupier
- Service de Génétique Médicale et Oncogénétique, Hôpital Arnaud de Villeneuve, CHU Montpellier, INSERM 896, CRCM Val d'Aurelle, Montpellier, France
| | - Pascaline Berthet
- Département de Biopathologie, Centre François Baclesse, Caen, France
| | - Véronique Mari
- Unité d'Oncogénétique, Centre Antoine Lacassagne, Nice, France
| | | | - Paul Gesta
- Service d'Oncogénétique Régional Poitou-Charentes, Niort, France
| | - Marie-Agnès Collonge-Rame
- Service Génétique et Biologie du Développement-Histologie, CHU Hôpital Saint-Jacques, Besançon, France
| | - Sophie Giraud
- Hospices Civils de Lyon, Groupement Hospitalier EST, Bron, France
| | - Valérie Bonadona
- Université Claude Bernard Lyon 1, Villeurbanne, France.,CNRS UMR 5558; Unité de Prévention et Epidémiologie Génétique, Centre Léon Bérard, Lyon, France
| | - Amandine Baurand
- Institut GIMI, CHU de Dijon et Centre de Lutte contre le Cancer Georges François Leclerc, Dijon, France
| | - Laurence Faivre
- Institut GIMI, CHU de Dijon et Centre de Lutte contre le Cancer Georges François Leclerc, Dijon, France
| | | | - Christine Lasset
- Université Claude Bernard Lyon 1, Villeurbanne, France.,CNRS UMR 5558; Unité de Prévention et Epidémiologie Génétique, Centre Léon Bérard, Lyon, France
| | | | | | - Sylvie Mazoyer
- INSERM, U1028, CNRS, UMR5292, Centre de Recherche en Neurosciences de Lyon, Lyon, France
| | | | - Nadine Andrieu
- INSERM, U900, Institut Curie, PSL Research University, Mines ParisTech, Paris, France
| | - Dominique Stoppa-Lyonnet
- Service de Génétique, Institut Curie, Paris, France.,INSERM, U830, Université Paris Descartes, Paris, France
| | | |
Collapse
|
35
|
Tang J, Li H, Luo J, Mei H, Peng L, Li X. The LSP1 rs3817198 T > C polymorphism contributes to increased breast cancer risk: a meta-analysis of twelve studies. Oncotarget 2018; 7:63960-63967. [PMID: 27590509 PMCID: PMC5325417 DOI: 10.18632/oncotarget.11741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/26/2016] [Indexed: 12/16/2022] Open
Abstract
The association between the LSP1 rs3817198 T > C polymorphism and breast cancer risk has been widely investigated, but remains controversial. We therefore undertook a comprehensive meta-analysis to provide a high-quality evaluation of this association. A literature search was performed among Pubmed, EMBASE and Chinese National Knowledge Infrastructure (CNKI) databases prior to July 31, 2016, and the strength of the association between the LSP1 rs3817198 T > C polymorphism and breast cancer risk was assessed based on odds ratio (OR) and 95% confidence interval (95% CI). In total, 12 studies with 50,525 cases and 54,302 controls were included. Pooled risk estimates indicated a significant association between the LSP1 rs3817198 T > C polymorphism and breast cancer risk. Analysis of cases stratified based on ethnicity suggested that the association was significant in both Caucasian and Asian populations. Stratification based on source of controls revealed an association only in population-based studies. These findings indicate the LSP1 rs3817198 T > C polymorphism is associated with increased risk of breast cancer, especially in Caucasian and Asian populations. Large, well-designed studies with different ethnicities are still needed to verify our findings.
Collapse
Affiliation(s)
- Jianzhou Tang
- Department of Biological and Environmental Engineering, Changsha University, Changsha 410003, Hunan, China.,College of Animal Science and Technology of Hunan Agriculture University, Changsha 410128, Hunan, China
| | - Hui Li
- Department of Microbiology and Immunology, Medical School of Jishou University, Jishou 416000, Hunan, China
| | - Jiashun Luo
- Institute of Medical Sciences, Medical School of Jishou University, Jishou 416000, Hunan, China
| | - Hua Mei
- Hunan Guangxiu Hospital, Changsha 410002, Hunan, China
| | - Liang Peng
- Department of Biological and Environmental Engineering, Changsha University, Changsha 410003, Hunan, China
| | - Xiaojie Li
- College of Animal Science and Technology of Hunan Agriculture University, Changsha 410128, Hunan, China
| |
Collapse
|
36
|
Lilyquist J, Ruddy KJ, Vachon CM, Couch FJ. Common Genetic Variation and Breast Cancer Risk-Past, Present, and Future. Cancer Epidemiol Biomarkers Prev 2018; 27:380-394. [PMID: 29382703 PMCID: PMC5884707 DOI: 10.1158/1055-9965.epi-17-1144] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most common cancer among women in the United States, with up to 30% of those diagnosed displaying a family history of breast cancer. To date, 18% of the familial risk of breast cancer can be explained by SNPs. This review summarizes the discovery of risk-associated SNPs using candidate gene and genome-wide association studies (GWAS), including discovery and replication in large collaborative efforts such as The Collaborative Oncologic Gene-environment Study and OncoArray. We discuss the evolution of GWAS studies, efforts to discover additional SNPs, and methods for identifying causal variants. We summarize findings associated with overall breast cancer, pathologic subtypes, and mutation carriers (BRCA1, BRCA2, and CHEK2). In addition, we summarize the development of polygenic risk scores (PRS) using the risk-associated SNPs and show how PRS can contribute to estimation of individual risks for developing breast cancer. Cancer Epidemiol Biomarkers Prev; 27(4); 380-94. ©2018 AACRSee all articles in this CEBP Focus section, "Genome-Wide Association Studies in Cancer."
Collapse
Affiliation(s)
- Jenna Lilyquist
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Celine M Vachon
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Fergus J Couch
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota.
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
37
|
Zhang Y, Zeng X, Liu P, Hong R, Lu H, Ji H, Lu L, Li Y. Association between FGFR2 (rs2981582, rs2420946 and rs2981578) polymorphism and breast cancer susceptibility: a meta-analysis. Oncotarget 2018; 8:3454-3470. [PMID: 27966449 PMCID: PMC5356895 DOI: 10.18632/oncotarget.13839] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/22/2016] [Indexed: 01/07/2023] Open
Abstract
The association between fibroblast growth factor receptor 2 (FGFR2) polymorphism and breast cancer (BC) susceptibility remains inconclusive. The purpose of this systematic review was to evaluate the relationship between FGFR2 (rs2981582, rs2420946 and rs2981578) polymorphism and BC risk. PubMed, Web of science and the Cochrane Library databases were searched before October 11, 2015 to identify relevant studies. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to estimate the strength of associations. Sensitivity and subgroup analyses were conducted. Thirty-five studies published from 2007 to 2015 were included in this meta-analysis. The pooled results showed that there was significant association between all the 3 variants and BC risk in any genetic model. Subgroup analysis was performed on rs2981582 and rs2420946 by ethnicity and Source of controls, the effects remained in Asians, Caucasians, population-based and hospital-based groups. We did not carryout subgroup analysis on rs2981578 for the variant included only 3 articles. This meta-analysis of case-control studies provides strong evidence that FGFR2 (rs2981582, rs2420946 and rs2981578) polymorphisms were significantly associated with the BC risk. For rs2981582 and rs2420946, the association remained significant in Asians, Caucasians, general populations and hospital populations. However, further large scale multicenter epidemiological studies are warranted to confirm this finding and the molecular mechanism for the association need to be elucidated further.
Collapse
Affiliation(s)
- Yafei Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Xianling Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Pengdi Liu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Ruofeng Hong
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Hongwei Lu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Hong Ji
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Le Lu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yiming Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| |
Collapse
|
38
|
Jiang C, Yu S, Qian P, Guo R, Zhang R, Ao Z, Li Q, Wu G, Chen Y, Li J, Wang C, Yao W, Xu J, Qian G, Ji F. The breast cancer susceptibility-related polymorphisms at the TOX3/LOC643714 locus associated with lung cancer risk in a Han Chinese population. Oncotarget 2018; 7:59742-59753. [PMID: 27486757 PMCID: PMC5312345 DOI: 10.18632/oncotarget.10874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/09/2016] [Indexed: 11/25/2022] Open
Abstract
It has been well established that besides environmental factors, genetic factors are also associated with lung cancer risk. However, to date, the prior identified genetic variants and loci only explain a small fraction of the familial risk of lung cancer. Hence it is vital to investigate the remaining missing heritability to understand the development and process of lung cancer. In the study, to test our hypothesis that the previously identified breast cancer risk-associated genetic polymorphisms at the TOX3/LOC643714 locus might contribute to lung cancer risk, 16 SNPs at the TOX3/LOC643714 locus were evaluated in a Han Chinese population based on a case-control study. Pearson's chi-square test or Fisher's exact test revealed that rs9933638, rs12443621, and rs3104746 were significantly associated with lung cancer risk (P < 0.001, P < 0.001, and P = 0.005, respectively). Logistic regression analyses displayed that lung cancer risk of individuals with rs9933638(GG+GA) were 1.89 times higher than that of rs9933638AA carriers (OR = 1.893, 95% CI = 1.308-2.741, P = 0.001). Similar findings were manifested for rs12443621 (OR = 1.824, 95% CI = 1.272-2.616, P = 0.001, rs12443621(GG+GA) carriers vs. rs12443621AA carriers) and rs3104746 (OR = 1.665, 95% CI = 1.243-2.230, P = 0.001, rs3104746TT carriers vs. rs3104746(TA+AA) carriers). The study discovered for the first time that three SNPs (rs9933638, rs12443621, and rs3104746) at the TOX3/LOC643714 locus contributed to lung cancer risk, providing new evidences that lung cancer and breast cancer are linked at the molecular and genetic level to a certain extent.
Collapse
Affiliation(s)
- Chaowen Jiang
- Institute of Human Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Shilong Yu
- Institute of Human Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Pin Qian
- Institute of Human Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Ruiling Guo
- Department of Respiratory Diseases, 324th Hospital of People's Liberation Army (No.324 Hospital of PLA), Chongqing 400020, China
| | - Ruijie Zhang
- Department of Respiratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zhi Ao
- Institute of Human Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Qi Li
- Institute of Human Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Guoming Wu
- Institute of Human Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Yan Chen
- Institute of Human Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Jin Li
- Institute of Human Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Changzheng Wang
- Institute of Human Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Wei Yao
- Institute of Human Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Jiancheng Xu
- Institute of Human Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Guisheng Qian
- Institute of Human Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Fuyun Ji
- Institute of Human Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
39
|
Abstract
Hereditary predisposition accounts for approximately 10% of all breast cancers and is mostly associated with germline mutations in high-penetrance genes encoding for proteins participating in DNA repair through homologous recombination (BRCA1 and BRCA2). With the advent of massive parallel next-generation DNA sequencing, simultaneous analysis of multiple genes with a short turnaround time and at a low cost has become possible. The clinical validity and utility of multi-gene panel testing is getting better characterized as more data on the significance of moderate-penetrance genes are collected from large, cancer genetic testing studies. In this chapter, we attempt to provide a general guide for interpretation of panel gene testing in breast cancer and use of the information obtained for clinical decision-making.
Collapse
Affiliation(s)
- Christos Fountzilas
- Cancer Therapy and Research Center, University of Texas Health Science Center San Antonio, 7979 Wurzbach Road, San Antonio, TX, 78229, USA
| | - Virginia G Kaklamani
- Cancer Therapy and Research Center, University of Texas Health Science Center San Antonio, 7979 Wurzbach Road, San Antonio, TX, 78229, USA.
| |
Collapse
|
40
|
Abstract
Multidisciplinary genetic clinics offer counseling and testing to those who meet criteria for familial breast cancer, and plastic surgeons become integral to this process when risk-reducing surgery and postmastectomy reconstruction are deemed appropriate. As reconstructive surgeons, it is important that plastic surgeons are aware of the risks and issues associated with the genetic variants that cause patients to present for prophylactic or therapeutic surgery.
Collapse
|
41
|
Godet I, Gilkes DM. BRCA1 and BRCA2 mutations and treatment strategies for breast cancer. ACTA ACUST UNITED AC 2017; 4. [PMID: 28706734 DOI: 10.15761/icst.1000228] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Breast cancer is a global burden with a woman's lifetime risk of developing breast cancer at 1 in 8. Although breast cancer is a disease that affects mostly women, the lifetime risk in men is about 1 in 1000. Most cases of breast cancer are associated with somatic mutations in breast cells that are acquired during a person's lifetime. In this scenario, the mutations are not inherited and they do not cluster in families. In hereditary breast cancer, the specific genetic factors involved will determine the inherited cancer risk. Inherited mutations in the BRCA1 or BRCA2 genes have been well-described, but mutations in ATM, CDH1, CHEK2, PALB2, PTEN, STK11, and TP53 also confer breast cancer risk. Understanding the functional significance of hereditary mutations has opened new paths for breast cancer prevention and is uncovering promising treatment strategies.
Collapse
Affiliation(s)
- Inês Godet
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, USA.,Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, USA
| | - Daniele M Gilkes
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, USA.,Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, USA
| |
Collapse
|
42
|
van der Merwe N, Peeters AV, Pienaar FM, Bezuidenhout J, van Rensburg SJ, Kotze MJ. Exome Sequencing in a Family with Luminal-Type Breast Cancer Underpinned by Variation in the Methylation Pathway. Int J Mol Sci 2017; 18:E467. [PMID: 28241424 PMCID: PMC5343999 DOI: 10.3390/ijms18020467] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 01/31/2017] [Accepted: 02/10/2017] [Indexed: 01/19/2023] Open
Abstract
Panel-based next generation sequencing (NGS) is currently preferred over whole exome sequencing (WES) for diagnosis of familial breast cancer, due to interpretation challenges caused by variants of uncertain clinical significance (VUS). There is also no consensus on the selection criteria for WES. In this study, a pathology-supported genetic testing (PSGT) approach was used to select two BRCA1/2 mutation-negative breast cancer patients from the same family for WES. Homozygosity for the MTHFR 677 C>T mutation detected during this PSGT pre-screen step was considered insufficient to cause bilateral breast cancer in the index case and her daughter diagnosed with early-onset breast cancer (<30 years). Extended genetic testing using WES identified the RAD50 R385C missense mutation in both cases. This rare variant with a minor allele frequency (MAF) of <0.001 was classified as a VUS after exclusion in an affected cousin and extended genotyping in 164 unrelated breast cancer patients and 160 controls. Detection of functional polymorphisms (MAF > 5%) in the folate pathway in all three affected family members is consistent with inheritance of the luminal-type breast cancer in the family. PSGT assisted with the decision to pursue extended genetic testing and facilitated clinical interpretation of WES aimed at reduction of recurrence risk.
Collapse
Affiliation(s)
- Nicole van der Merwe
- Division of Anatomical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7500, South Africa.
| | - Armand V Peeters
- Division of Anatomical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7500, South Africa.
| | | | - Juanita Bezuidenhout
- Division of Anatomical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7500, South Africa.
| | - Susan J van Rensburg
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7500, South Africa.
| | - Maritha J Kotze
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7500, South Africa.
- National Health Laboratory Service, Tygerberg Hospital, Tygerberg 7500, South Africa.
| |
Collapse
|
43
|
De Luca A, Frezzetti D, Gallo M, Normanno N. FGFR-targeted therapeutics for the treatment of breast cancer. Expert Opin Investig Drugs 2017; 26:303-311. [DOI: 10.1080/13543784.2017.1287173] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Antonella De Luca
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori ‘Fondazione G. Pascale’-IRCCS, Naples, Italy
| | - Daniela Frezzetti
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori ‘Fondazione G. Pascale’-IRCCS, Naples, Italy
| | - Marianna Gallo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori ‘Fondazione G. Pascale’-IRCCS, Naples, Italy
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori ‘Fondazione G. Pascale’-IRCCS, Naples, Italy
| |
Collapse
|
44
|
Kobayashi Y, Yang S, Nykamp K, Garcia J, Lincoln SE, Topper SE. Pathogenic variant burden in the ExAC database: an empirical approach to evaluating population data for clinical variant interpretation. Genome Med 2017; 9:13. [PMID: 28166811 PMCID: PMC5295186 DOI: 10.1186/s13073-017-0403-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/13/2017] [Indexed: 12/25/2022] Open
Abstract
Background The frequency of a variant in the general population is a key criterion used in the clinical interpretation of sequence variants. With certain exceptions, such as founder mutations, the rarity of a variant is a prerequisite for pathogenicity. However, defining the threshold at which a variant should be considered “too common” is challenging and therefore diagnostic laboratories have typically set conservative allele frequency thresholds. Methods Recent publications of large population sequencing data, such as the Exome Aggregation Consortium (ExAC) database, provide an opportunity to characterize with accuracy and precision the frequency distributions of very rare disease-causing alleles. Allele frequencies of pathogenic variants in ClinVar, as well as variants expected to be pathogenic through the nonsense-mediated decay (NMD) pathway, were analyzed to study the burden of pathogenic variants in 79 genes of clinical importance. Results Of 1364 BRCA1 and BRCA2 variants that are well characterized as pathogenic or that are expected to lead to NMD, 1350 variants had an allele frequency of less than 0.0025%. The remaining 14 variants were previously published founder mutations. Importantly, we observed no difference in the distributions of pathogenic variants expected to be lead to NMD compared to those that are not. Therefore, we expanded the analysis to examine the distributions of NMD expected variants in 77 additional genes. These 77 genes were selected to represent a broad set of clinical areas, modes of inheritance, and penetrance. Among these variants, most (97.3%) had an allele frequency of less than 0.01%. Furthermore, pathogenic variants with allele frequencies greater than 0.01% were well characterized in publications and included many founder mutations. Conclusions The observations made in this study suggest that, with certain caveats, a very low allele frequency threshold can be adopted to more accurately interpret sequence variants. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0403-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuya Kobayashi
- Invitae Corporation, 1400 16th St., San Francisco, CA, 94103, USA.
| | - Shan Yang
- Invitae Corporation, 1400 16th St., San Francisco, CA, 94103, USA
| | - Keith Nykamp
- Invitae Corporation, 1400 16th St., San Francisco, CA, 94103, USA
| | - John Garcia
- Invitae Corporation, 1400 16th St., San Francisco, CA, 94103, USA
| | | | - Scott E Topper
- Invitae Corporation, 1400 16th St., San Francisco, CA, 94103, USA
| |
Collapse
|
45
|
de Gouvea ACRC, Garber JE. Breast Cancer Genetics. Breast Cancer 2017. [DOI: 10.1007/978-3-319-48848-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Milne RL, Antoniou AC. Modifiers of breast and ovarian cancer risks for BRCA1 and BRCA2 mutation carriers. Endocr Relat Cancer 2016; 23:T69-84. [PMID: 27528622 DOI: 10.1530/erc-16-0277] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022]
Abstract
Pathogenic mutations in BRCA1 and BRCA2 are associated with high risks of breast and ovarian cancer. However, penetrance estimates for mutation carriers have been found to vary substantially between studies, and the observed differences in risk are consistent with the hypothesis that genetic and environmental factors modify cancer risks for women with these mutations. Direct evidence that this is the case has emerged in the past decade, through large-scale international collaborative efforts. Here, we describe the methodological challenges in the identification and characterisation of these risk-modifying factors, review the latest evidence on genetic and lifestyle/hormonal risk factors that modify breast and ovarian cancer risks for women with BRCA1 and BRCA2 mutations and outline the implications of these findings for cancer risk prediction. We also review the unresolved issues in this area of research and identify strategies of clinical implementation so that women with BRCA1 and BRCA2 mutations are no longer counselled on the basis of 'average' risk estimates.
Collapse
Affiliation(s)
- Roger L Milne
- Cancer Epidemiology CentreCancer Council Victoria, Melbourne, Australia Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Antonis C Antoniou
- Centre for Cancer Genetic EpidemiologyDepartment of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| |
Collapse
|
47
|
Association of single nucleotide polymorphism rs3803662 with the risk of breast cancer. Sci Rep 2016; 6:29008. [PMID: 27350156 PMCID: PMC4924094 DOI: 10.1038/srep29008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/09/2016] [Indexed: 02/02/2023] Open
Abstract
Large scale association studies have identified the single nucleotide polymorphism rs3803662 associated with breast cancer risk. However, the sample size of most studies is too small. Here, we performed this meta-analysis to make the result more convincing. Relevant articles published up to 2016 were identified by searching the PubMed database. 13 studies, involving a total of 29405 participants, were included in the meta-analysis. Odds Ratios (ORs) with 95% confidence intervals (CIs) was calculated with random or fixed effects model. All data analyses were analyzed by Review Manger 5.3 software. In Caucasian subgroup: Dominant model (TT + CT vs CC): OR = 1.17 (1.06, 1.29), Recessive model (TT vs CT + CC): OR = 1.25 (1.13, 1.39) and Allele frequency (T vs C): OR = 1.15 (1.08, 1.22). The present meta-analysis suggests that rs3803662 polymorphism is significantly associated with breast cancer risk in Caucasian women, and we did not find the association in Asian women.
Collapse
|
48
|
Choi CH, Chung JY, Kim JH, Kim BG, Hewitt SM. Expression of fibroblast growth factor receptor family members is associated with prognosis in early stage cervical cancer patients. J Transl Med 2016; 14:124. [PMID: 27154171 PMCID: PMC4859953 DOI: 10.1186/s12967-016-0874-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/25/2016] [Indexed: 02/08/2023] Open
Abstract
Background The oncogenic role of the fibroblast growth factor receptor (FGFR) has been recognized in a number of different cancer types. However, the prognostic significance of FGFRs has not been elucidated yet in cervical cancer. In the present study, we investigate the expression of FGFRs and their prognostic value in cervical cancer patients. Methods FGFR1, FGFR2, FGFR3, and FGFR4 expression was determined by immunohistochemistry in conjunction with quantitative digital image analysis of 336 formalin-fixed, paraffin-embedded cervical cancer tissues and 61 normal cervical tissues, as well as NCI60 cell microarray. Subsequently, the association between clinicopathological characteristics and patient survival was assessed. Results FGFRs proteins were differentially expressed in the NCI60 cell line panel and showed considerable correlation between protein and mRNA expression. The expression of FGFR1, FGFR2, and FGFR4 were higher in cancer tissues than in normal tissues, whereas the expression of FGFR3 was higher in normal tissues. FGFR1 was highly expressed in adeno-/adenosquamous carcinoma (P = 0.020), while FGFR2, FGFR3, and FGFR4 expression were more prominent in squamous cell carcinoma (P < 0.001, P < 0.001, and P = 0.020, respectively). FGFR2 expression was significantly higher in small sized tumors (P = 0.020). Additionally, high FGFR2 and FGFR4 were correlated with negative lymph node metastasis (P = 0.048 and P = 0.040, respectively). FGFR1, FGFR2, and FGFR3 were highly expressed in tumors without parametrial involvement (P = 0.030, P = 0.005, and P = 0.010, respectively). In survival analysis, high expressions of FGFR2, FGFR3, and FGFR4 was associated with longer disease-free survival (P = 0.006, P = 0.035, P = 0.001, respectively) and overall survival (P = 0.003, P = 0.002, P = 0.003, respectively). Notably, the co-expression of all three FGFRs was significantly associated with favorable disease-free survival (P < 0.001) and overall survival (P < 0.001), compared to the negative expressions of the three FGFRs. The prognostic significance persisted in the cox regression analysis. Conclusions The frequent expression of members of the FGFR family in cervical cancer suggests they may have prognostic and therapeutic relevance. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0874-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chel Hun Choi
- Experimental Pathology Laboratory, Laboratory of Pathology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, MSC 1500, Bethesda, MD, 20892, USA.,Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, Republic of Korea
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, MSC 1500, Bethesda, MD, 20892, USA
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 135-720, Korea
| | - Byoung-Gie Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, Republic of Korea.
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, MSC 1500, Bethesda, MD, 20892, USA.
| |
Collapse
|
49
|
Polymorphism rs144848 in BRCA2 may reduce lung cancer risk in women: a case-control study in southeast China. TUMORI JOURNAL 2016; 102:150-5. [PMID: 26979245 DOI: 10.5301/tj.5000473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2016] [Indexed: 11/20/2022]
Abstract
PURPOSE Whereas lung cancer incidence among men has declined in recent years, the incidence rate among women has increased rapidly. Sex could affect DNA repair capacity. Although BRCA2 is important in DNA repair, few data are available on the association between BRCA2 polymorphisms and lung cancer in women. Therefore, we investigated this in a case-control study among Chinese women. METHODS We enrolled 226 women with lung cancer and 269 age-matched healthy controls in our study. Polymorphisms studied were genotyped by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RESULTS Unconditional logistic regression showed no association between rs1799943 or rs1799944 and cancer risk. However, the AC and CC genotypes of rs144848 were significantly associated with reduced risk after adjustment for age and education, with adjusted odds ratios (ORs) of 0.66 (95% confidence interval [CI] 0.45-0.97) and 0.37 (95% CI 0.16-0.78), respectively. The adjusted OR of carriers with the C allele was 0.62 (95% CI 0.44-0.81) compared with the A allele. CONCLUSIONS The rs144848 mutation may have a protective effect against lung cancer among women.
Collapse
|
50
|
Fernandes GC, Michelli RAD, Scapulatempo-Neto C, Palmero EI. Association of polymorphisms with a family history of cancer and the presence of germline mutations in the BRCA1/BRCA2 genes. Hered Cancer Clin Pract 2016; 14:2. [PMID: 26770289 PMCID: PMC4712611 DOI: 10.1186/s13053-015-0042-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/04/2015] [Indexed: 11/10/2022] Open
Abstract
Introduction Breast cancer (BC) is an important public health problem worldwide. In Brazil, breast cancer is the most frequently diagnosed tumor and the leading cause of cancer death in women. Hereditary cancer represents approximately 5 to 10 % of BC cases. Even outside the hereditary cancer context, the presence of polymorphisms acting as genetic modifiers may contribute to a better or worse prognosis. Not much is known about the hereditary BC epidemiology in Brazil or about the influence of polymorphisms on hereditary predisposition. Objective This study examined the role of five different polymorphisms in four groups of women with BC: Group 1: women with a germline mutation in the BRCA1/2 genes; Group 2: women with variants of uncertain significance in BRCA1/2 and Group 3: women with no mutations in BRCA1/2. Patients and methods The women included in groups 1, 2 and 3 were patients from the Department of Oncogenetics of the Barretos Cancer Hospital who had undergone genetic testing because of a clinical suspicion of hereditary predisposition syndrome. The constitutive DNA was analyzed for the presence of polymorphisms at rs2981582 (FGFR2 gene); rs3803662 (TNRC9); rs889312 (MAP3K1); rs3817198 (LSP1 gene); and rs13281615 (8q24). The analyses were performed using PCR amplification and bi-directional sequencing. Results No differences were identified in the frequency of the polymorphisms that were analyzed among the three groups. However, some associations were identified, such as the occurrence of bilateral breast cancer and homozygosity for the G allele in rs13281615 as well as the correlation between the SNPs rs2981582 and rs13281615 and the number of cancer cases in the family. Regarding the G allele of rs13281615, we observed that the proportion of individuals who were homozygous for this allele increased with the number of generations affected by cancer, regardless of the group where the patients were included. Concerning the rs2981582 we could observe that individuals from group 1 and homozygous CC had fewer cancer (and also fewer breast cancer) cases. Regarding the hormone receptors, we observed an increased frequency in C homozygotes (rs3803662) among estrogen receptor-negative individuals from groups 1 and 3. For rs2981582 (FGFR2), we observed an increased frequency of the T allele in women who were positive for the estrogen and progesterone receptors regardless of the BRCA1/2 mutational status (p = 0.020 and p = 0.014, respectively). Conclusion The results presented here provide interesting data on the modifying effect of polymorphisms on a family history of cancer; this may be a variable to consider in the analysis of tumor diversity, and of the family history observed in families with hereditary breast cancer (even in those harboring the same type of genetic alteration). Electronic supplementary material The online version of this article (doi:10.1186/s13053-015-0042-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gabriela C Fernandes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil ; Post-Graduate Program in Oncology, Barretos Cancer Hospital, Barretos, Brazil
| | | | - Cristovam Scapulatempo-Neto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil ; Post-Graduate Program in Oncology, Barretos Cancer Hospital, Barretos, Brazil ; Pathology Department, Barretos Cancer Hospital, Barretos, Brazil
| | - Edenir I Palmero
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil ; Post-Graduate Program in Oncology, Barretos Cancer Hospital, Barretos, Brazil ; Oncogenetics Department, Barretos Cancer Hospital, Barretos, Brazil ; Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos, Brazil
| |
Collapse
|