1
|
Chen Z, Chen L, Tan J, Mao Y, Hao M, Li Y, Wang Y, Li J, Wang J, Jin L, Zheng HX. Natural selection shaped the protective effect of the mtDNA lineage against obesity in Han Chinese populations. J Genet Genomics 2025; 52:539-548. [PMID: 38880354 DOI: 10.1016/j.jgg.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
Mitochondria play a key role in lipid metabolism, and mitochondrial DNA (mtDNA) mutations are thus considered to affect obesity susceptibility by altering oxidative phosphorylation and mitochondrial function. In this study, we investigate mtDNA variants that may affect obesity risk in 2877 Han Chinese individuals from 3 independent populations. The association analysis of 16 basal mtDNA haplogroups with body mass index, waist circumference, and waist-to-hip ratio reveals that only haplogroup M7 is significantly negatively correlated with all three adiposity-related anthropometric traits in the overall cohort, verified by the analysis of a single population, i.e., the Zhengzhou population. Furthermore, subhaplogroup analysis suggests that M7b1a1 is the most likely haplogroup associated with a decreased obesity risk, and the variation T12811C (causing Y159H in ND5) harbored in M7b1a1 may be the most likely candidate for altering the mitochondrial function. Specifically, we find that proportionally more nonsynonymous mutations accumulate in M7b1a1 carriers, indicating that M7b1a1 is either under positive selection or subject to a relaxation of selective constraints. We also find that nuclear variants, especially in DACT2 and PIEZO1, may functionally interact with M7b1a1.
Collapse
Affiliation(s)
- Ziwei Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China
| | - Lu Chen
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jingze Tan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China
| | - Yizhen Mao
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Meng Hao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China
| | - Yi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China
| | - Yi Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| | - Jinxi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China; Research Unit of Dissecting Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China; Research Unit of Dissecting Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Hong-Xiang Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China.
| |
Collapse
|
2
|
Mareckova K, Mendes-Silva AP, Jáni M, Pacinkova A, Piler P, Gonçalves VF, Nikolova YS. Mitochondrial DNA variants and their impact on epigenetic and biological aging in young adulthood. Transl Psychiatry 2025; 15:16. [PMID: 39837837 PMCID: PMC11751369 DOI: 10.1038/s41398-025-03235-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/16/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025] Open
Abstract
The pace of biological aging varies between people independently of chronological age and mitochondria dysfunction is a key hallmark of biological aging. We hypothesized that higher functional impact (FI) score of mitochondrial DNA (mtDNA) variants might contribute to premature aging and tested the relationships between a novel FI score of mtDNA variants and epigenetic and biological aging in young adulthood. A total of 81 participants from the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) prenatal birth cohort had good quality genetic data as well as blood-based markers to estimate biological aging in the late 20. A subset of these participants (n = 69) also had epigenetic data to estimate epigenetic aging in the early 20s using Horvath's epigenetic clock. The novel FI score was calculated based on 7 potentially pathogenic mtDNA variants. Greater FI score of mtDNA variants was associated with older epigenetic age in the early 20s and older biological age in the late 20s. These medium to large effects were independent of sex, current BMI, cigarette smoking, cannabis, and alcohol use. These findings suggest that elevated FI score of mtDNA variants might contribute to premature aging in young adulthood.
Collapse
Affiliation(s)
- Klara Mareckova
- Brain and Mind Research, Central European Institute of Technology, Masaryk University (CEITEC), Brno, Czech Republic.
- 1st Department of Neurology, St Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Ana Paula Mendes-Silva
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Martin Jáni
- Brain and Mind Research, Central European Institute of Technology, Masaryk University (CEITEC), Brno, Czech Republic
| | - Anna Pacinkova
- Brain and Mind Research, Central European Institute of Technology, Masaryk University (CEITEC), Brno, Czech Republic
- Faculty of Informatics, Masaryk University, Brno, Czechia
| | - Pavel Piler
- RECETOX Faculty of Science, Masaryk Univeristy, Brno, Czech Republic
| | - Vanessa F Gonçalves
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Yuliya S Nikolova
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Luo L, Wang M, Liu Y, Li J, Bu F, Yuan H, Tang R, Liu C, He G. Sequencing and characterizing human mitochondrial genomes in the biobank-based genomic research paradigm. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2736-7. [PMID: 39843848 DOI: 10.1007/s11427-024-2736-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/18/2024] [Indexed: 01/24/2025]
Abstract
Human mitochondrial DNA (mtDNA) harbors essential mutations linked to aging, neurodegenerative diseases, and complex muscle disorders. Due to its uniparental and haploid inheritance, mtDNA captures matrilineal evolutionary trajectories, playing a crucial role in population and medical genetics. However, critical questions about the genomic diversity patterns, inheritance models, and evolutionary and medical functions of mtDNA remain unresolved or underexplored, particularly in the transition from traditional genotyping to large-scale genomic analyses. This review summarizes recent advancements in data-driven genomic research and technological innovations that address these questions and clarify the biological impact of nuclear-mitochondrial segments (NUMTs) and mtDNA variants on human health, disease, and evolution. We propose a streamlined pipeline to comprehensively identify mtDNA and NUMT genomic diversity using advanced sequencing and computational technologies. Haplotype-resolved mtDNA sequencing and assembly can distinguish authentic mtDNA variants from NUMTs, reduce diagnostic inaccuracies, and provide clearer insights into heteroplasmy patterns and the authenticity of paternal inheritance. This review emphasizes the need for integrative multi-omics approaches and emerging long-read sequencing technologies to gain new insights into mutation mechanisms, the influence of heteroplasmy and paternal inheritance on mtDNA diversity and disease susceptibility, and the detailed functions of NUMTs.
Collapse
Affiliation(s)
- Lintao Luo
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
| | - Yunhui Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Jianbo Li
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Fengxiao Bu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
| | - Huijun Yuan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China.
| | - Chao Liu
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
| |
Collapse
|
4
|
Gojanovich GS, Marsit CJ, Kacanek D, Russell J, Hudson G, Van Dyke RB, Naini AB, Gerschenson M. Relationships of mitochondrial DNA mutations and select clinical diagnoses in perinatally HIV- and ART-exposed uninfected children. Mitochondrion 2024; 79:101949. [PMID: 39218053 PMCID: PMC11568920 DOI: 10.1016/j.mito.2024.101949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The prevalence of pathogenic mutations within mitochondrial (mt) DNA of youth who were perinatally exposed to HIV and ART but remained uninfected (YHEU) were assessed relative to phenotypic clinical indicators of mitochondrial dysfunction (MtD). This was a cross-sectional, nested case-control study. A total of 144 cases met at least one clinical MtD definition and were matched with up to two controls each (n = 287). At least one risk mutation was present in nearly all YHEU (97 %). No differences in mutation frequencies were observed between metabolic or neurodevelopmental cases and respective controls; however, higher frequencies were found in controls versus respective neurologic or growth cases.
Collapse
Affiliation(s)
- Greg S Gojanovich
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Deborah Kacanek
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jonathan Russell
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gavin Hudson
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Russell B Van Dyke
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ali B Naini
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Mariana Gerschenson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
5
|
Zheng HX, Yan S, Zhang M, Gu Z, Wang J, Jin L. Mitochondrial DNA Genomes Reveal Relaxed Purifying Selection During Human Population Expansion after the Last Glacial Maximum. Mol Biol Evol 2024; 41:msae175. [PMID: 39162340 PMCID: PMC11373649 DOI: 10.1093/molbev/msae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
Modern humans have experienced explosive population growth in the past thousand years. We hypothesized that recent human populations have inhabited environments with relaxation of selective constraints, possibly due to the more abundant food supply after the Last Glacial Maximum. The ratio of nonsynonymous to synonymous mutations (N/S ratio) is a useful and common statistic for measuring selective constraints. In this study, we reconstructed a high-resolution phylogenetic tree using a total of 26,419 East Eurasian mitochondrial DNA genomes, which were further classified into expansion and nonexpansion groups on the basis of the frequencies of their founder lineages. We observed a much higher N/S ratio in the expansion group, especially for nonsynonymous mutations with moderately deleterious effects, indicating a weaker effect of purifying selection in the expanded clades. However, this observation on N/S ratio was unlikely in computer simulations where all individuals were under the same selective constraints. Thus, we argue that the expanded populations were subjected to weaker selective constraints than the nonexpanded populations were. The mildly deleterious mutations were retained during population expansion, which could have a profound impact on present-day disease patterns.
Collapse
Affiliation(s)
- Hong-Xiang Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai, China
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Shi Yan
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
- School of Ethnology and Sociology, Minzu University of China, Beijing, China
| | - Menghan Zhang
- Institute of Modern Languages and Linguistics, Fudan University, Shanghai, China
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
| | - Zhenglong Gu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai, China
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai, China
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
- Research Unit of Dissecting Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai, China
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
- Research Unit of Dissecting Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Cortes-Figueiredo F, Asseyer S, Chien C, Zimmermann HG, Ruprecht K, Schmitz-Hübsch T, Bellmann-Strobl J, Paul F, Morais VA. CD4 + T cell mitochondrial genotype in Multiple Sclerosis: a cross-sectional and longitudinal analysis. Sci Rep 2024; 14:7507. [PMID: 38553515 PMCID: PMC10980703 DOI: 10.1038/s41598-024-57592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Multiple Sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous system (CNS), with a largely unknown etiology, where mitochondrial dysfunction likely contributes to neuroaxonal loss and brain atrophy. Mirroring the CNS, peripheral immune cells from patients with MS, particularly CD4+ T cells, show inappropriate mitochondrial phenotypes and/or oxidative phosphorylation (OxPhos) insufficiency, with a still unknown contribution of mitochondrial DNA (mtDNA). We hypothesized that mitochondrial genotype in CD4+ T cells might influence MS disease activity and progression. Thus, we performed a retrospective cross-sectional and longitudinal study on patients with a recent diagnosis of either Clinically Isolated Syndrome (CIS) or Relapsing-Remitting MS (RRMS) at two timepoints: 6 months (VIS1) and 36 months (VIS2) after disease onset. Our primary outcomes were the differences in mtDNA extracted from CD4+ T cells between: (I) patients with CIS/RRMS (PwMS) at VIS1 and age- and sex-matched healthy controls (HC), in the cross-sectional analysis, and (II) different diagnostic evolutions in PwMS from VIS1 to VIS2, in the longitudinal analysis. We successfully performed mtDNA whole genome sequencing (mean coverage: 2055.77 reads/base pair) in 183 samples (61 triplets). Nonetheless, mitochondrial genotype was not associated with a diagnosis of CIS/RRMS, nor with longitudinal diagnostic evolution.
Collapse
Affiliation(s)
- Filipe Cortes-Figueiredo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Susanna Asseyer
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Claudia Chien
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Hanna G Zimmermann
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Judith Bellmann-Strobl
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany.
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Vanessa A Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
7
|
Citrigno L, Qualtieri A, Cerantonio A, De Benedittis S, Gallo O, Di Palma G, Spadafora P, Cavalcanti F. Genomics landscape of mitochondrial DNA variations in patients from South Italy affected by mitochondriopathies. J Neurol Sci 2024; 457:122869. [PMID: 38215527 DOI: 10.1016/j.jns.2024.122869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Mitochondrial DNA (mtDNA) is a 16,569 base pairs, double-stranded, circular molecule that contains 37 genes coding for 13 subunits of the respiratory chain plus 2 rRNAs and 22 tRNAs. Mutations in these genes have been identified in patients with a variety of disorders affecting every system in the body. The advent of next generation sequencing technologies has provided the possibility to perform the whole mitochondrial DNA sequencing, allowing the identification of disease-causing pathogenic variants in a single platform. In this study, the whole mtDNA of 100 patients from South Italy affected by mitochondrial diseases was analyzed by using an amplicon-based approach and then the enriched libraries were deeply sequenced on the ION Torrent platform (Thermofisher Scientific Waltham, MA, USA). After bioinformatics analysis and filtering, we were able to find 26 nonsynonymous variants with a MAF <1% that were associated with different pathological phenotypes, expanding the mutational spectrum of these diseases. Moreover, among the new mutations found, we have also analyzed the 3D structure of the MT-ATP6 A200T gene variation in order to confirm suspected functional alterations. This work brings light on new variants possibly associated with several mitochondriopathies in patients from South Italy and confirms that deep sequencing approach, compared to the standard methods, is a reliable and time-cost reducing strategy to detect all the variants present in the mitogenome, making the possibility to create a genomics landscape of mitochondrial DNA variations in human diseases.
Collapse
Affiliation(s)
- Luigi Citrigno
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy.
| | - Antonio Qualtieri
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy
| | - Annamaria Cerantonio
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy
| | - Selene De Benedittis
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy
| | - Olivier Gallo
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy
| | - Gemma Di Palma
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy
| | - Patrizia Spadafora
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy
| | - Francesca Cavalcanti
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy
| |
Collapse
|
8
|
Volpe KE, Samuels DC, Elson JL, Steyn JS, Gebretsadik T, Ellis RJ, Heaton RK, Kallianpur AR, Letendre S, Hulgan T. Mitochondrial DNA mutation pathogenicity score and neurocognitive performance in persons with HIV. Mitochondrion 2024; 74:101820. [PMID: 37989461 PMCID: PMC10872545 DOI: 10.1016/j.mito.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 10/06/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) genetic variation is associated with neurocognitive (NC) impairment (NCI) in people with HIV (PWH). Other approaches use sequence conservation and protein structure to predict the impact of mtDNA variants on protein function. We examined predicted mtDNA variant pathogenicity in the CHARTER study using MutPred scores, hypothesizing that persons with higher scores (greater predicted pathogenicity) have more NCI. METHODS CHARTER included NC testing in PWH from 2003 to 2007. MutPred scores were assigned to CHARTER participants with mtDNA sequence; any score > 0.5 was considered potentially deleterious. Outcomes at cohort entry were NCI, defined by global and seven NC domain deficit scores, and by mean global and domain NC performance T-scores. Univariate and multivariable regression analyses assessed associations between having a deleterious variant and NCI. Additional models included estimated peripheral blood cell mtDNA copy number. RESULTS Data were available for 744 PWH (357 African ancestry; 317 European; 70 Hispanic). In the overall cohort, PWH having any potentially deleterious variant were less likely to have motor impairment (16 vs. 25 %, p = 0.001). In multivariable analysis, having a deleterious variant remained associated with lower likelihood of motor impairment (adjusted odds ratio 0.59 [95 % CI 0.41-0.88]; p = 0.009), and better motor performance by T-score (β 1.71 [0.31-3.10], p = 0.02). Associations persisted after adjustment for estimated mtDNA quantity. CONCLUSIONS In these PWH, having a potentially deleterious mtDNA variant was associated with less motor impairment. These unexpected findings suggest that potentially deleterious mtDNA variations may confer protection against impaired motor function by as yet unknown mechanisms.
Collapse
Affiliation(s)
- Karen E Volpe
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - David C Samuels
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Joanna L Elson
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Jannetta S Steyn
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | | | | | | | | | | | - Todd Hulgan
- Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
9
|
Liu K, Xie N, Wang Y. Quantifying mitochondrial heteroplasmy diversity: A computational approach. Mol Ecol Resour 2024; 24:e13874. [PMID: 37815422 DOI: 10.1111/1755-0998.13874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
Biodiversity plays a pivotal role in sustaining ecosystem processes, encompassing diverse biological species, genetic types and the intricacies of ecosystem composition. However, the precise definition of biodiversity at the individual level remains a challenging endeavour. Hill numbers, derived from Rényi's entropy, have emerged as a popular measure of diversity, with a recent unified framework extending their application across various levels, from genetics to ecosystems. In this study, we employ a computational approach to exploring the diversity of mitochondrial heteroplasmy using real-world data. By adopting Hill numbers with q = 2, we demonstrate the feasibility of quantifying mitochondrial heteroplasmy diversity within and between individuals and populations. Furthermore, we investigate the alpha diversity of mitochondrial heteroplasmy among different species, revealing heterogeneity at multiple levels, including mitogenome components and protein-coding genes (PCGs). Our analysis explores large-scale mitochondrial heteroplasmy data in humans, examining the relationship between alpha diversity at the mitogenome components and PCGs level. Notably, we do not find a significant correlation between these two levels. Additionally, we observe significant correlations in alpha diversity between mothers and children in blood samples, exceeding the reported R2 value for allele frequency correlations. Moreover, our investigation of beta diversity and local overlay similarity demonstrates that heteroplasmy variant distributions in different tissues of children more closely resemble those of their mothers. Through systematic quantification and analysis of mitochondrial heteroplasmy diversity, this study enhances our understanding of heterogeneity at multiple levels, from individuals to populations, providing new insights into this fundamental dimension of biodiversity.
Collapse
Affiliation(s)
- Kai Liu
- Institute of Fishery Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Nan Xie
- Institute of Fishery Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Yuxi Wang
- Institute of Fishery Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
10
|
Onieva A, Martin J, R Cuesta-Aguirre D, Planells V, Coronado-Zamora M, Beyer K, Vega T, Lozano JE, Santos C, Aluja MP. Complete mitochondrial DNA profile in stroke: A geographical matched case-control study in Spanish population. Mitochondrion 2023; 73:51-61. [PMID: 37793469 DOI: 10.1016/j.mito.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/28/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
INTRODUCTION Stroke, the second leading cause of death worldwide, is a complex disease influenced by many risk factors among which we can find reactive oxygen species (ROS). Since mitochondria are the main producers of cellular ROS, nowadays studies are trying to elucidate the role of these organelles and its DNA (mtDNA) variation in stroke risk. The aim of the present study was to perform a comprehensive evaluation of the association between mtDNA mutations and mtDNA content and stroke risk. MATERIAL AND METHODS Homoplasmic and heteroplasmic mutations of the mtDNA were analysed in a case-controls study using 110 S cases and their corresponding control individuals. Mitochondrial DNA copy number (mtDNA-CN) was analysed in 73 of those case-control pairs. RESULTS Our results suggest that haplogroup V, specifically variants m.72C > T, m.4580G > A, m.15904C > T and m.16298 T > C have a protective role in relation to stroke risk. On the contrary, variants m.73A > G, m.11719G > A and m.14766C > T appear to be genetic risk factors for stroke. In this study, we found no statistically significant association between stroke risk and mitochondrial DNA copy number. CONCLUSIONS These results demonstrate the possible role of mtDNA genetics on the pathogenesis of stroke, probably through alterations in mitochondrial ROS production.
Collapse
Affiliation(s)
- Ana Onieva
- Unitat d'Antropologia Biològica, Departament BAVE, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - Joan Martin
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Daniel R Cuesta-Aguirre
- Unitat d'Antropologia Biològica, Departament BAVE, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Violeta Planells
- Unitat d'Antropologia Biològica, Departament BAVE, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Marta Coronado-Zamora
- Institut de Biotecnologia i Biomedicina; Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Katrin Beyer
- Department of Pathology, Germans Trias i Pujol Research Institute, Badalona 08916 Barcelona, Spain
| | - Tomás Vega
- Dirección General de Salud Pública. Consejería de Sanidad. Junta de Castilla y León, 47007 Valladolid, Spain
| | - José Eugenio Lozano
- Dirección General de Salud Pública. Consejería de Sanidad. Junta de Castilla y León, 47007 Valladolid, Spain
| | - Cristina Santos
- Unitat d'Antropologia Biològica, Departament BAVE, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Maria Pilar Aluja
- Unitat d'Antropologia Biològica, Departament BAVE, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
11
|
Panja C, Niedzwiecka K, Baranowska E, Poznanski J, Kucharczyk R. Analysis of MT-ATP8 gene variants reported in patients by modeling in silico and in yeast model organism. Sci Rep 2023; 13:9972. [PMID: 37340059 DOI: 10.1038/s41598-023-36637-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
Defects in ATP synthase functioning due to the substitutions in its two mitochondrially encoded subunits a and 8 lead to untreatable mitochondrial diseases. Defining the character of variants in genes encoding these subunits is challenging due to their low frequency, heteroplasmy of mitochondrial DNA in patients' cells and polymorphisms of mitochondrial genome. We successfully used yeast S. cerevisiae as a model to study the effects of variants in MT-ATP6 gene and our research led to understand how eight amino acid residues substitutions impact the proton translocation through the channel formed by subunit a and c-ring of ATP synthase at the molecular level. Here we applied this approach to study the effects of the m.8403T>C variant in MT-ATP8 gene. The biochemical data from yeast mitochondria indicate that equivalent mutation is not detrimental for the yeast enzyme functioning. The structural analysis of substitutions in subunit 8 introduced by m.8403T>C and five other variants in MT-ATP8 provides indications about the role of subunit 8 in the membrane domain of ATP synthase and potential structural consequences of substitutions in this subunit.
Collapse
Affiliation(s)
- Chiranjit Panja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Niedzwiecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Emilia Baranowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jaroslaw Poznanski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
12
|
Baranowska E, Niedzwiecka K, Panja C, Charles C, Dautant A, Poznanski J, di Rago JP, Tribouillard-Tanvier D, Kucharczyk R. Probing the pathogenicity of patient-derived variants of MT-ATP6 in yeast. Dis Model Mech 2023; 16:307138. [PMID: 37083953 PMCID: PMC10151828 DOI: 10.1242/dmm.049783] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/28/2023] [Indexed: 04/22/2023] Open
Abstract
The list of mitochondrial DNA (mtDNA) variants detected in individuals with neurodegenerative diseases is constantly growing. Evaluating their functional consequences and pathogenicity is not easy, especially when they are found in only a limited number of patients together with wild-type mtDNA (heteroplasmy). Owing to its amenability to mitochondrial genetic transformation and incapacity to stably maintain heteroplasmy, and the strong evolutionary conservation of the proteins encoded in mitochondria, Saccharomyces cerevisiae provides a convenient model to investigate the functional consequences of human mtDNA variants. We herein report the construction and energy-transducing properties of yeast models of eight MT-ATP6 gene variants identified in patients with various disorders: m.8843T>C, m.8950G>A, m.9016A>G, m.9025G>A, m.9029A>G, m.9058A>G, m.9139G>A and m.9160T>C. Significant defect in growth dependent on respiration and deficits in ATP production were observed in yeast models of m.8950G>A, m.9025G>A and m.9029A>G, providing evidence of pathogenicity for these variants. Yeast models of the five other variants showed very mild, if any, effect on mitochondrial function, suggesting that the variants do not have, at least alone, the potential to compromise human health.
Collapse
Affiliation(s)
- Emilia Baranowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02106 Warsaw, Poland
| | - Katarzyna Niedzwiecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02106 Warsaw, Poland
| | - Chiranjit Panja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02106 Warsaw, Poland
| | - Camille Charles
- University of Bordeaux, Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Alain Dautant
- University of Bordeaux, Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Jarosław Poznanski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02106 Warsaw, Poland
| | - Jean-Paul di Rago
- University of Bordeaux, Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Déborah Tribouillard-Tanvier
- University of Bordeaux, Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02106 Warsaw, Poland
| |
Collapse
|
13
|
Founder lineages in the Iberian Roma mitogenomes recapitulate the Roma diaspora and show the effects of demographic bottlenecks. Sci Rep 2022; 12:18720. [PMID: 36333436 PMCID: PMC9636147 DOI: 10.1038/s41598-022-23349-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
The Roma are the largest ethnic minority in Europe. With a Northwestern Indian origin around ~ 1.5 kya, they travelled throughout West Asia until their arrival in Europe around the eleventh century CE. Their diaspora through Europe is characterized by population bottlenecks and founder events which have contributed to their present day genetic and cultural diversity. In our study, we focus on the effects of founder effects in the mitochondrial DNA (mtDNA) pool of Iberian Roma by producing and analyzing 144 novel whole mtDNA sequences of Iberian Roma. Over 60% of their mtDNA pool is composed by founder lineages of South Asian origin or acquired by gene flow during their diaspora in the Middle East or locally in Europe in Europe. The TMRCA of these lineages predates the historical record of the Roma arrival in Spain. The abundance of founder lineages is in contrast with ~ 0.7% of autochthonous founder lineages present in the non-Roma Iberian population. Within those founder lineages, we found a substantial amount of South Asian M5a1b1a1 haplotypes and high frequencies of West Eurasian founder lineages (U3b1c, J2b1c, J1c1b, J1b3a, H88, among others), which we characterized phylogenetically and put in phylogeographical context. Besides, we found no evidence of genetic substructure of Roma within the Iberian Peninsula. These results show the magnitude of founder effects in the Iberian Roma and further explain the Roma history and genetic diversity from a matrilineal point of view.
Collapse
|
14
|
Islam F, Saeed F, Afzaal M, Ahmad A, Hussain M, Khalid MA, Saewan SA, Khashroum AO. Applications of green technologies-based approaches for food safety enhancement: A comprehensive review. Food Sci Nutr 2022; 10:2855-2867. [PMID: 36171783 PMCID: PMC9469842 DOI: 10.1002/fsn3.2915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/16/2022] [Accepted: 04/09/2022] [Indexed: 12/18/2022] Open
Abstract
Food is the basic necessity for life that always motivated man for its preservation and making it available for an extended period. Food scientists always tried to preserve it with minimum deterioration in quality by employing and investigating innovative preservation techniques. The food sector always remained in search of eco-friendly and sustainable solutions to tackle food safety challenges. Green technologies (ozone, pulsed electric field, ohmic heating, photosensitization, ultraviolet radiations, high-pressure processing, ultrasonic, nanotechnology) are in high demand owing to their eco-friendly, rapid, efficient, and effective nature in controlling microbes with a negligible residual impact on food quality during processing. The use of green technologies would be a desirable substitute for conventionally available preservation techniques. This paper discusses different food preservation techniques with special reference to green technologies to minimize the deleterious impact on the environment and employs these innovative technologies to play role in enhancing the food safety.
Collapse
Affiliation(s)
- Fakhar Islam
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmad
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muzzamal Hussain
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | | | - Shamaail A. Saewan
- Department of Food SciencesCollege of AgricultureUniversity of BasrahBasrahIraq
| | - Ashraf O. Khashroum
- Department of Plant Production and ProtectionFaculty of AgricultureJerash UniversityJerashJordan
| |
Collapse
|
15
|
Müller-Nedebock AC, Pfaff AL, Pienaar IS, Kõks S, van der Westhuizen FH, Elson JL, Bardien S. Mitochondrial DNA variation in Parkinson’s disease: Analysis of “out-of-place” population variants as a risk factor. Front Aging Neurosci 2022; 14:921412. [PMID: 35912088 PMCID: PMC9330142 DOI: 10.3389/fnagi.2022.921412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/30/2022] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial DNA (mtDNA), a potential source of mitochondrial dysfunction, has been implicated in Parkinson’s disease (PD). However, many previous studies investigating associations between mtDNA population variation and PD reported inconsistent or contradictory findings. Here, we investigated an alternative hypothesis to determine whether mtDNA variation could play a significant role in PD risk. Emerging evidence suggests that haplogroup-defining mtDNA variants may have pathogenic potential if they occur “out-of-place” on a different maternal lineage. We hypothesized that the mtDNA of PD cases would be enriched for out-of-place variation in genes encoding components of the oxidative phosphorylation complexes. We tested this hypothesis with a unique dataset comprising whole mitochondrial genomes of 70 African ancestry PD cases, two African ancestry control groups (n = 78 and n = 53) and a replication group of 281 European ancestry PD cases and 140 controls from the Parkinson’s Progression Markers Initiative cohort. Significantly more African ancestry PD cases had out-of-place variants than controls from the second control group (P < 0.0125), although this association was not observed in the first control group nor the replication group. As the first mtDNA study to include African ancestry PD cases and to explore out-of-place variation in a PD context, we found evidence that such variation might be significant in this context, thereby warranting further replication in larger cohorts.
Collapse
Affiliation(s)
- Amica C. Müller-Nedebock
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Abigail L. Pfaff
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | - Ilse S. Pienaar
- Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | | | - Joanna L. Elson
- Human Metabolomics, North-West University, Potchefstroom, South Africa
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
- *Correspondence: Soraya Bardien,
| |
Collapse
|
16
|
Helena's Many Daughters: More Mitogenome Diversity behind the Most Common West Eurasian mtDNA Control Region Haplotype in an Extended Italian Population Sample. Int J Mol Sci 2022; 23:ijms23126725. [PMID: 35743173 PMCID: PMC9223851 DOI: 10.3390/ijms23126725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/27/2023] Open
Abstract
The high number of matching haplotypes of the most common mitochondrial (mt)DNA lineages are considered to be the greatest limitation for forensic applications. This study investigates the potential to solve this constraint by massively parallel sequencing a large number of mitogenomes that share the most common West Eurasian mtDNA control region (CR) haplotype motif (263G 315.1C 16519C). We augmented a pilot study on 29 to a total of 216 Italian mitogenomes that represents the largest set of the most common CR haplotype compiled from a single country. The extended population sample confirmed and extended the huge coding region diversity behind the most common CR motif. Complete mitogenome sequencing allowed for the detection of 163 distinct haplotypes, raising the power of discrimination from 0 (CR) to 99.6% (mitogenome). The mtDNAs were clustered into 61 named clades of haplogroup H and did not reveal phylogeographic trends within Italy. Rapid individualization approaches for investigative purposes are limited to the most frequent H clades of the dataset, viz. H1, H3, and H7.
Collapse
|
17
|
Liu Q, Iqbal MF, Yaqub T, Firyal S, Zhao Y, Stoneking M, Li M. The Transmission of Human Mitochondrial DNA in Four-Generation Pedigrees. Hum Mutat 2022; 43:1259-1267. [PMID: 35460575 DOI: 10.1002/humu.24390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 11/06/2022]
Abstract
Most of the pathogenic variants in mitochondrial DNA (mtDNA) exist in a heteroplasmic state (coexistence of mutant and wild-type mtDNA). Understanding how mtDNA is transmitted is crucial for predicting mitochondrial disease risk. Previous studies were based mainly on two-generation pedigree data, which are limited by the randomness in a single transmission. In this study, we analyzed the transmission of heteroplasmies in 16 four-generation families. First, we found that 57.8% of the variants in the great grandmother were transmitted to the fourth generation. The direction and magnitude of the frequency change during transmission appeared to be random. Moreover, no consistent correlation was identified between the frequency changes among the continuous transmissions, suggesting that most variants were functionally neutral or mildly deleterious and thus not subject to strong natural selection. Additionally, we found that the frequency of one nonsynonymous variant (m.15773G>A) showed a consistent increase in one family, suggesting that this variant may confer a fitness advantage to the mitochondrion/cell. We also estimated the effective bottleneck size during transmission to be 21-71. In summary, our study demonstrates the advantages of multigeneration data for studying the transmission of mtDNA for shedding new light on the dynamics of the mutation frequency in successive generations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
| | - Muhammad Faaras Iqbal
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan.,University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Tahir Yaqub
- University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sehrish Firyal
- University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Yiqiang Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany.,Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne, France
| | - Mingkun Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
18
|
Young MJ, Sachidanandam R, Hales DB, Brard L, Robinson K, Rahman MM, Khadka P, Groesch K, Young CKJ. Identification of Somatic Mitochondrial DNA Mutations, Heteroplasmy, and Increased Levels of Catenanes in Tumor Specimens Obtained from Three Endometrial Cancer Patients. Life (Basel) 2022; 12:life12040562. [PMID: 35455053 PMCID: PMC9030153 DOI: 10.3390/life12040562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 12/30/2022] Open
Abstract
Endometrial carcinoma (EC) is the most common type of gynecologic malignant epithelial tumor, with the death rate from this disease doubling over the past 20 years. Mitochondria provide cancer cells with necessary anabolic building blocks such as amino acids, lipids, and nucleotides, and EC samples have been shown to increase mitochondrial biogenesis. In cancer, mitochondrial DNA (mtDNA) heteroplasmy studies suggest that heteroplasmic variants encode predicted pathogenic proteins. We investigated the mtDNA genotypes within peri-normal and tumor specimens obtained from three individuals diagnosed with EC. DNA extracts from peri-normal and tumor tissues were used for mtDNA-specific next-generation sequencing and analyses of mtDNA content and topoisomers. The three tumors harbor heteroplasmic somatic mutations, and at least one mutation in each carcinoma is predicted to deleteriously alter a mtDNA-encoded protein. Somatic heteroplasmy linked to two mtDNA tRNA genes was found in separate tumors, and two heteroplasmic non-coding variants were identified in a single EC tumor. While two tumors had altered mtDNA content, all three displayed increased mtDNA catenanes. Our findings support that EC cells require wild-type mtDNA, but heteroplasmic mutations may alter mitochondrial metabolism to help promote cancer cell growth and proliferation.
Collapse
Affiliation(s)
- Matthew J. Young
- Department of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (D.B.H.); (M.M.R.); (P.K.); (C.K.J.Y.)
- Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA; (L.B.); (K.R.)
- Correspondence: ; Tel.: +1-618-453-6437
| | - Ravi Sachidanandam
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Dale B. Hales
- Department of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (D.B.H.); (M.M.R.); (P.K.); (C.K.J.Y.)
- Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA; (L.B.); (K.R.)
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Laurent Brard
- Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA; (L.B.); (K.R.)
- Department of Obstetrics & Gynecology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Kathy Robinson
- Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA; (L.B.); (K.R.)
- Division of Hematology/Oncology, Department of Internal Medicine, Southern Illinois University, Springfield, IL 62702, USA
| | - Md. Mostafijur Rahman
- Department of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (D.B.H.); (M.M.R.); (P.K.); (C.K.J.Y.)
| | - Pabitra Khadka
- Department of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (D.B.H.); (M.M.R.); (P.K.); (C.K.J.Y.)
| | - Kathleen Groesch
- Department of Obstetrics & Gynecology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
- Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Carolyn K. J. Young
- Department of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (D.B.H.); (M.M.R.); (P.K.); (C.K.J.Y.)
| |
Collapse
|
19
|
Calabrese C, Pyle A, Griffin H, Coxhead J, Hussain R, Braund PS, Li L, Burgess A, Munroe PB, Little L, Warren HR, Cabrera C, Hall A, Caulfield MJ, Rothwell PM, Samani NJ, Hudson G, Chinnery PF. Heteroplasmic mitochondrial DNA variants in cardiovascular diseases. PLoS Genet 2022; 18:e1010068. [PMID: 35363781 PMCID: PMC9007378 DOI: 10.1371/journal.pgen.1010068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 04/13/2022] [Accepted: 02/01/2022] [Indexed: 01/05/2023] Open
Abstract
Mitochondria are implicated in the pathogenesis of cardiovascular diseases (CVDs) but the reasons for this are not well understood. Maternally-inherited population variants of mitochondrial DNA (mtDNA) which affect all mtDNA molecules (homoplasmic) are associated with cardiometabolic traits and the risk of developing cardiovascular disease. However, it is not known whether mtDNA mutations only affecting a proportion of mtDNA molecules (heteroplasmic) also play a role. To address this question, we performed a high-depth (~1000-fold) mtDNA sequencing of blood DNA in 1,399 individuals with hypertension (HTN), 1,946 with ischemic heart disease (IHD), 2,146 with ischemic stroke (IS), and 723 healthy controls. We show that the per individual burden of heteroplasmic single nucleotide variants (mtSNVs) increases with age. The age-effect was stronger for low-level heteroplasmies (heteroplasmic fraction, HF, 5-10%), likely reflecting acquired somatic events based on trinucleotide mutational signatures. After correcting for age and other confounders, intermediate heteroplasmies (HF 10-95%) were more common in hypertension, particularly involving non-synonymous variants altering the amino acid sequence of essential respiratory chain proteins. These findings raise the possibility that heteroplasmic mtSNVs play a role in the pathophysiology of hypertension.
Collapse
Affiliation(s)
- Claudia Calabrese
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Angela Pyle
- Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Helen Griffin
- Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Jonathan Coxhead
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rafiqul Hussain
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Peter S Braund
- Department of Cardiovascular Sciences, University of Leicester and Leicester NIHR Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Linxin Li
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Annette Burgess
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Louis Little
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Helen R Warren
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Claudia Cabrera
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Alistair Hall
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, United Kingdom
| | - Mark J Caulfield
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Peter M Rothwell
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester and Leicester NIHR Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Gavin Hudson
- Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Patrick F. Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Samanic CM, Teer JK, Thompson ZJ, Creed JH, Fridley BL, Burt Nabors L, Williams SL, Egan KM. Mitochondrial DNA sequence variation and risk of glioma. Mitochondrion 2022; 63:32-36. [PMID: 35032707 PMCID: PMC8885975 DOI: 10.1016/j.mito.2022.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Malignant gliomas are the most common primary adult brain tumors, with a poor prognosis and ill-defined etiology. Mitochondrial DNA (mtDNA) sequence variation has been linked with certain cancers; however, research on glioma is lacking. METHODS We examined the association of common (minor allele frequency ≥ 5%) germline mtDNA variants and haplogroups with glioma risk in 1,566 glioma cases and 1,017 controls from a US case-control study, and 425 glioma cases and 1,534 matched controls from the UK Biobank cohort (UKB). DNA samples were genotyped using the UK Biobank array that included a set of common and rare mtDNA variants. Risk associations were examined separately for glioblastoma (GBM) and lower grade tumors (non-GBM). RESULTS In the US study, haplogroup W was inversely associated with glioma when compared with haplogroup H (OR = 0.43, 95%CI: 0.23-0.79); this association was not demonstrated in the UKB (OR = 1.07, 95%CI: 0.47-2.43). In the UKB, the variant m.3010G > A was significantly associated with GBM (OR = 1.32; 95%CI: 1.01-1.73; p = 0.04), but not non-GBM (1.23; 95%CI: 0.78-1.95; p = 0.38); no similar association was observed in the US study. In the US study, the variant m.14798 T > C, was significantly associated with non-GBM (OR = 0.72; 95%CI: 0.53-0.99), but not GBM (OR = 0.86; 95%CI: 0.66-1.11), whereas in the UKB, a positive association was observed between this variant and GBM (OR = 1.46; 95%CI: 1.06-2.02) but not non-GBM (OR = 0.92; 95%CI: 0.52-1.63). None of these associations were significant after adjustment for multiple testing. CONCLUSION The association of inherited mtDNA variation, including rare and singleton variants, with glioma risk merits further study.
Collapse
Affiliation(s)
- Claudine M Samanic
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Zachary J Thompson
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Jordan H Creed
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Brooke L Fridley
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - L Burt Nabors
- Division of NeuroOncology, Department of Neurology, University of Alabama at Birmingham, 510 20th Street South, Faculty Office Tower Suite 1020 Birmingham, Birmingham, AL, United States
| | - Sion L Williams
- UM-CFAR/Sylvester CCC Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies University of Miami Miller School of Medicine, Miami, FL, United States; Neurology Basic Science Division, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kathleen M Egan
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| |
Collapse
|
21
|
Mitochondrial Proteins as Source of Cancer Neoantigens. Int J Mol Sci 2022; 23:ijms23052627. [PMID: 35269772 PMCID: PMC8909979 DOI: 10.3390/ijms23052627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/27/2023] Open
Abstract
In the past decade, anti-tumour immune responses have been successfully exploited to improve the outcome of patients with different cancers. Significant progress has been made in taking advantage of different types of T cell functions for therapeutic purposes. Despite these achievements, only a subset of patients respond favorably to immunotherapy. Therefore, there is a need of novel approaches to improve the effector functions of immune cells and to recognize the major targets of anti-tumour immunity. A major hallmark of cancer is metabolic rewiring associated with switch of mitochondrial functions. These changes are a consequence of high energy demand and increased macromolecular synthesis in cancer cells. Such adaptations in tumour cells might generate novel targets of tumour therapy, including the generation of neoantigens. Here, we review the most recent advances in research on the immune response to mitochondrial proteins in different cellular conditions.
Collapse
|
22
|
Cai N, Gomez-Duran A, Yonova-Doing E, Kundu K, Burgess AI, Golder ZJ, Calabrese C, Bonder MJ, Camacho M, Lawson RA, Li L, Williams-Gray CH, Di Angelantonio E, Roberts DJ, Watkins NA, Ouwehand WH, Butterworth AS, Stewart ID, Pietzner M, Wareham NJ, Langenberg C, Danesh J, Walter K, Rothwell PM, Howson JMM, Stegle O, Chinnery PF, Soranzo N. Mitochondrial DNA variants modulate N-formylmethionine, proteostasis and risk of late-onset human diseases. Nat Med 2021; 27:1564-1575. [PMID: 34426706 DOI: 10.1038/s41591-021-01441-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/15/2021] [Indexed: 02/02/2023]
Abstract
Mitochondrial DNA (mtDNA) variants influence the risk of late-onset human diseases, but the reasons for this are poorly understood. Undertaking a hypothesis-free analysis of 5,689 blood-derived biomarkers with mtDNA variants in 16,220 healthy donors, here we show that variants defining mtDNA haplogroups Uk and H4 modulate the level of circulating N-formylmethionine (fMet), which initiates mitochondrial protein translation. In human cytoplasmic hybrid (cybrid) lines, fMet modulated both mitochondrial and cytosolic proteins on multiple levels, through transcription, post-translational modification and proteolysis by an N-degron pathway, abolishing known differences between mtDNA haplogroups. In a further 11,966 individuals, fMet levels contributed to all-cause mortality and the disease risk of several common cardiovascular disorders. Together, these findings indicate that fMet plays a key role in common age-related disease through pleiotropic effects on cell proteostasis.
Collapse
Affiliation(s)
- Na Cai
- Human Genetics Department, Wellcome Sanger Institute (WT), Hinxton, UK.,European Bioinformatics Institute (EMBL-EBI), Hinxton, UK.,Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Aurora Gomez-Duran
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, Spain
| | - Ekaterina Yonova-Doing
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Primary Public Health and Primary Care, University of Cambridge, Cambridge, UK.,Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK
| | - Kousik Kundu
- Human Genetics Department, Wellcome Sanger Institute (WT), Hinxton, UK
| | - Annette I Burgess
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Zoe J Golder
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Claudia Calabrese
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Marc J Bonder
- European Bioinformatics Institute (EMBL-EBI), Hinxton, UK.,Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marta Camacho
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Rachael A Lawson
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Lixin Li
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Caroline H Williams-Gray
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Emanuele Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Primary Public Health and Primary Care, University of Cambridge, Cambridge, UK.,British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.,National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK.,Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - David J Roberts
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK.,NHS Blood and Transplant-Oxford Centre, John Radcliffe Hospital, Oxford, UK.,Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nick A Watkins
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
| | - Willem H Ouwehand
- Human Genetics Department, Wellcome Sanger Institute (WT), Hinxton, UK.,British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.,NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK.,Department of Haematology, University of Cambridge, Cambridge, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Primary Public Health and Primary Care, University of Cambridge, Cambridge, UK.,British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.,National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK.,Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | | | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Nick J Wareham
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | | | - John Danesh
- Human Genetics Department, Wellcome Sanger Institute (WT), Hinxton, UK.,British Heart Foundation Cardiovascular Epidemiology Unit, Department of Primary Public Health and Primary Care, University of Cambridge, Cambridge, UK.,British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.,National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK.,Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Klaudia Walter
- Human Genetics Department, Wellcome Sanger Institute (WT), Hinxton, UK
| | - Peter M Rothwell
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Joanna M M Howson
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Primary Public Health and Primary Care, University of Cambridge, Cambridge, UK.,Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK
| | - Oliver Stegle
- European Bioinformatics Institute (EMBL-EBI), Hinxton, UK. .,Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK. .,Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| | - Nicole Soranzo
- Human Genetics Department, Wellcome Sanger Institute (WT), Hinxton, UK. .,British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK. .,National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK. .,Department of Haematology, University of Cambridge, Cambridge, UK. .,Genomics Research Centre, Human Technopole, Milan, Italy.
| |
Collapse
|
23
|
Hulgan T, Samuels DC. Mitochondria and Human Immunodeficiency Virus: A Troubled Relationship Enters Its Fourth Decade. Clin Infect Dis 2021; 73:e474-e476. [PMID: 32722791 DOI: 10.1093/cid/ciaa983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/09/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Todd Hulgan
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David C Samuels
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
24
|
Gutiérrez Cortés N, Pertuiset C, Dumon E, Börlin M, Da Costa B, Le Guédard M, Stojkovic T, Loundon N, Rouillon I, Nadjar Y, Letellier T, Jonard L, Marlin S, Rocher C. Mutation m.3395A > G in MT-ND1 leads to variable pathologic manifestations. Hum Mol Genet 2021; 29:980-989. [PMID: 32011699 DOI: 10.1093/hmg/ddaa020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 11/12/2022] Open
Abstract
A non-synonymous mtDNA mutation, m.3395A > G, which changes tyrosine in position 30 to cysteine in p.MT-ND1, was found in several patients with a wide range of clinical phenotypes such as deafness, diabetes and cerebellar syndrome but no Leber's hereditary optic neuropathy. Although this mutation has already been described, its pathogenicity has not been demonstrated. Here, it was found isolated for the first time, allowing a study to investigate its pathogenicity. To do so, we constructed cybrid cell lines and carried out a functional study to assess the possible consequences of the mutation on mitochondrial bioenergetics. Results obtained demonstrated that this mutation causes an important dysfunction of the mitochondrial respiratory chain with a decrease in both activity and quantity of complex I due to a diminution of p.MT-ND1 quantity. However, no subcomplexes were found in cybrids carrying the mutation, indicating that the quality of the complex I assembly is not affected. Moreover, based on the crystal structure of p.MT-ND1 and the data found in the literature, we propose a hypothesis for the mechanism of the degradation of p.MT-ND1. Our study provides new insights into the pathophysiology of mitochondrial diseases and in particular of MT-ND1 mutations.
Collapse
Affiliation(s)
- Nicolás Gutiérrez Cortés
- INSERM-U688 Physiopathologie Mitochondriale, Université Bordeaux Segalen, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Claire Pertuiset
- INSERM-U688 Physiopathologie Mitochondriale, Université Bordeaux Segalen, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Elodie Dumon
- INSERM-U688 Physiopathologie Mitochondriale, Université Bordeaux Segalen, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Marine Börlin
- INSERM-U688 Physiopathologie Mitochondriale, Université Bordeaux Segalen, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Barbara Da Costa
- INSERM-U688 Physiopathologie Mitochondriale, Université Bordeaux Segalen, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Marina Le Guédard
- Laboratoire de Biogenèse Membranaire, CNRS UMR 5200, Université de Bordeaux, INRA Bordeaux Aquitaine, Villenave d'Ornon, France.,LEB Aquitaine Transfert-ADERA, FR-33883 Villenave d'Ornon, Cedex, France
| | - Tanya Stojkovic
- APHP, Centre de Référence des Maladies Neuromusculaires Ile de France Nord Est, G-H Pitié-Salpêtrière, 75013 Paris, France
| | - Natalie Loundon
- Otorhinolaryngologie Pédiatrique, Centre de Référence des Surdités Génétiques, Hôpital Necker, AP-HP, Paris, France
| | - Isabelle Rouillon
- Otorhinolaryngologie Pédiatrique, Centre de Référence des Surdités Génétiques, Hôpital Necker, AP-HP, Paris, France
| | - Yann Nadjar
- Neurologie, GH Pitié Salpêtrière, 75013 Paris, France
| | - Thierry Letellier
- Equipe de Médecine Evolutive, AMIS, UMR 5288 CNRS/Université Paul Sabatier, 31073 Toulouse, France
| | - Laurence Jonard
- Service de Génétique Moléculaire, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Sandrine Marlin
- Service de Génétique Moléculaire, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France.,Centre de Référence des Surdités Génétiques, Service de Génétique Médicale, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France.,UMR 1163, Université Paris Descartes, Sorbonne Paris Cité, Institut IMAGINE, 24 Boulevard du Montparnasse, 75015 Paris, France
| | - Christophe Rocher
- INSERM-U688 Physiopathologie Mitochondriale, Université Bordeaux Segalen, 146 rue Léo Saignat, 33076 Bordeaux, France
| |
Collapse
|
25
|
Laaksonen J, Mishra PP, Seppälä I, Lyytikäinen LP, Raitoharju E, Mononen N, Lepistö M, Almusa H, Ellonen P, Hutri-Kähönen N, Juonala M, Raitakari O, Kähönen M, Salonen JT, Lehtimäki T. Examining the effect of mitochondrial DNA variants on blood pressure in two Finnish cohorts. Sci Rep 2021; 11:611. [PMID: 33436758 PMCID: PMC7804469 DOI: 10.1038/s41598-020-79931-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
High blood pressure (BP) is a major risk factor for many noncommunicable diseases. The effect of mitochondrial DNA single-nucleotide polymorphisms (mtSNPs) on BP is less known than that of nuclear SNPs. We investigated the mitochondrial genetic determinants of systolic, diastolic, and mean arterial BP. MtSNPs were determined from peripheral blood by sequencing or with genome-wide association study SNP arrays in two independent Finnish cohorts, the Young Finns Study and the Finnish Cardiovascular Study, respectively. In total, over 4200 individuals were included. The effects of individual common mtSNPs, with an additional focus on sex-specificity, and aggregates of rare mtSNPs grouped by mitochondrial genes were evaluated by meta-analysis of linear regression and a sequence kernel association test, respectively. We accounted for the predicted pathogenicity of the rare variants within protein-encoding and the tRNA regions. In the meta-analysis of 87 common mtSNPs, we did not observe significant associations with any of the BP traits. Sex-specific and rare-variant analyses did not pinpoint any significant associations either. Our results are in agreement with several previous studies suggesting that mtDNA variation does not have a significant role in the regulation of BP. Future studies might need to reconsider the mechanisms thought to link mtDNA with hypertension.
Collapse
Affiliation(s)
- Jaakko Laaksonen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, PO Box 100, 33014, Tampere, Finland.
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, PO Box 100, 33014, Tampere, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, PO Box 100, 33014, Tampere, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, PO Box 100, 33014, Tampere, Finland
| | - Emma Raitoharju
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, PO Box 100, 33014, Tampere, Finland
| | - Nina Mononen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, PO Box 100, 33014, Tampere, Finland
| | - Maija Lepistö
- Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Henrikki Almusa
- Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Pekka Ellonen
- Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Nina Hutri-Kähönen
- Department of Paediatrics, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Markus Juonala
- Department of Medicine, University of Turku, Turku, Finland.,Division of Medicine, Turku University Hospital, Turku, Finland.,Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.,Research Centre for Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jukka T Salonen
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,MAS-Metabolic Analytical Services Oy, Helsinki, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, PO Box 100, 33014, Tampere, Finland
| |
Collapse
|
26
|
Piotrowska-Nowak A, Krawczyński MR, Kosior-Jarecka E, Ambroziak AM, Korwin M, Ołdak M, Tońska K, Bartnik E. Mitochondrial genome variation in male LHON patients with the m.11778G > A mutation. Metab Brain Dis 2020; 35:1317-1327. [PMID: 32740724 PMCID: PMC7584531 DOI: 10.1007/s11011-020-00605-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/21/2020] [Indexed: 11/30/2022]
Abstract
Leber hereditary optic neuropathy (LHON) is a mitochondrial disorder with symptoms limited to a single tissue, optic nerve, resulting in vision loss. In the majority of cases it is caused by one of three point mutations in mitochondrial DNA (mtDNA) but their presence is not sufficient for disease development, since ~50% of men and ~10% women who carry them are affected. Thus additional modifying factors must exist. In this study, we use next generation sequencing to investigate the role of whole mtDNA variation in male Polish patients with LHON and m.11778G > A, the most frequent LHON mutation. We present a possible association between mtDNA haplogroup K and variants in its background, a combination of m.3480A > G, m.9055G > A, m.11299 T > C and m.14167C > T, and LHON mutation. These variants may have a negative effect on m.11778G > A increasing its penetrance and the risk of LHON in the Polish population. Surprisingly, we did not observe associations previously reported for m.11778G > A and LHON in European populations, particularly for haplogroup J as a risk factor, implying that mtDNA variation is much more complex. Our results indicate possible contribution of novel combination of mtDNA genetic factors to the LHON phenotype.
Collapse
Affiliation(s)
- Agnieszka Piotrowska-Nowak
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 5a Pawińskiego Street, 02-106 Warsaw, Poland
| | - Maciej R. Krawczyński
- Department of Medical Genetics, Poznań University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznań, Poland
- Centers for Medical Genetics GENESIS, 4 Grudzieniec Street, 60-601 Poznań, Poland
| | - Ewa Kosior-Jarecka
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, 1 Chmielna Street, 20-079 Lublin, Poland
| | - Anna M. Ambroziak
- Faculty of Physics, University of Warsaw, 5 Pasteur Street, 02-093 Warsaw, Poland
| | - Magdalena Korwin
- Department of Ophthalmology, Medical University of Warsaw, 13 Sierakowskiego Street, 03-709 Warsaw, Poland
| | - Monika Ołdak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 10 Mochnackiego Street, 02-042 Warsaw, Poland
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, 5 Chałubińskiego Street, 02-004 Warsaw, Poland
| | - Katarzyna Tońska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 5a Pawińskiego Street, 02-106 Warsaw, Poland
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 5a Pawińskiego Street, 02-106 Warsaw, Poland
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 5a Pawińskiego Street, 02-106 Warsaw, Poland
| |
Collapse
|
27
|
Habbane M, Llobet L, Bayona-Bafaluy MP, Bárcena JE, Ceberio L, Gómez-Díaz C, Gort L, Artuch R, Montoya J, Ruiz-Pesini E. Leigh Syndrome in a Pedigree Harboring the m.1555A>G Mutation in the Mitochondrial 12S rRNA. Genes (Basel) 2020; 11:genes11091007. [PMID: 32867169 PMCID: PMC7565518 DOI: 10.3390/genes11091007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Leigh syndrome (LS) is a serious genetic disease that can be caused by mutations in dozens of different genes. Methods: Clinical study of a deafness pedigree in which some members developed LS. Cellular, biochemical and molecular genetic analyses of patients’ tissues and cybrid cell lines were performed. Results: mitochondrial DNA (mtDNA) m.1555A>G/MT-RNR1 and m.9541T>C/MT-CO3 mutations were found. The first one is a well-known pathologic mutation. However, the second one does not appear to contribute to the high hearing loss penetrance and LS phenotype observed in this family. Conclusion: The m.1555A>G pathological mutation, accompanied with an unknown nuclear DNA (nDNA) factor, could be the cause of the phenotypic manifestations in this pedigree.
Collapse
Affiliation(s)
- Mouna Habbane
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50013 Zaragoza, Spain; (M.H.); (L.L.); (M.P.B.-B.); (J.M.)
- Laboratoire Biologie et Santé, Faculté des Sciences Ben M’Sik, Université Hassan II, 20670 Casablanca, Morocco
| | - Laura Llobet
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50013 Zaragoza, Spain; (M.H.); (L.L.); (M.P.B.-B.); (J.M.)
| | - M. Pilar Bayona-Bafaluy
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50013 Zaragoza, Spain; (M.H.); (L.L.); (M.P.B.-B.); (J.M.)
- Instituto de Investigación Sanitaria (IIS) de Aragón, 50009 Zaragoza, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (L.G.); (R.A.)
| | - José E. Bárcena
- Servicio de Neurología, Hospital Universitario Cruces, 48903 Baracaldo, Vizcaya, Spain;
| | - Leticia Ceberio
- Servicio de Medicina Interna, Hospital Universitario Cruces, 48903 Baracaldo, Vizcaya, Spain;
| | - Covadonga Gómez-Díaz
- Servicio de Otorrinolaringología, Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain;
| | - Laura Gort
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (L.G.); (R.A.)
- Errors Congènits del Metabolisme, Servicio de Bioquímica i Genètica Molecular, CDB, Hospital Clínic, IDIBAPS, 08036 Barcelona, Spain
| | - Rafael Artuch
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (L.G.); (R.A.)
- Servicio de Bioquímica Clínica, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50013 Zaragoza, Spain; (M.H.); (L.L.); (M.P.B.-B.); (J.M.)
- Instituto de Investigación Sanitaria (IIS) de Aragón, 50009 Zaragoza, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (L.G.); (R.A.)
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50013 Zaragoza, Spain; (M.H.); (L.L.); (M.P.B.-B.); (J.M.)
- Instituto de Investigación Sanitaria (IIS) de Aragón, 50009 Zaragoza, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (L.G.); (R.A.)
- Fundación Araid, 50018 Zaragoza, Spain
- Correspondence: ; Tel.: +34-976761646
| |
Collapse
|
28
|
Fendt L, Fazzini F, Weissensteiner H, Bruckmoser E, Schönherr S, Schäfer G, Losso JL, Streiter GA, Lamina C, Rasse M, Klocker H, Kofler B, Kloss-Brandstätter A, Huck CW, Kronenberg F, Laimer J. Profiling of Mitochondrial DNA Heteroplasmy in a Prospective Oral Squamous Cell Carcinoma Study. Cancers (Basel) 2020; 12:E1933. [PMID: 32708892 PMCID: PMC7409097 DOI: 10.3390/cancers12071933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 01/25/2023] Open
Abstract
While a shift in energy metabolism is essential to cancers, the knowledge about the involvement of the mitochondrial genome in tumorigenesis and progression in oral squamous cell carcinoma (OSCC) is still very limited. In this study, we evaluated 37 OSCC tumors and the corresponding benign mucosa tissue pairs by deep sequencing of the complete mitochondrial DNA (mtDNA). After extensive quality control, we identified 287 variants, 137 in tumor and 150 in benign samples exceeding the 1% threshold. Variant heteroplasmy levels were significantly increased in cancer compared to benign tissues (p = 0.0002). Furthermore, pairwise high heteroplasmy frequency difference variants (∆HF% > 20) with potential functional impact were increased in the cancer tissues (p = 0.024). Fourteen mutations were identified in the protein-coding region, out of which thirteen were detected in cancer and only one in benign tissue. After eight years of follow-up, the risk of mortality was higher for patients who harbored at least one ∆HF% > 20 variant in mtDNA protein-coding regions relative to those with no mutations (HR = 4.6, (95%CI = 1.3-17); p = 0.019 in primary tumor carriers). Haplogroup affiliation showed an impact on survival time, which however needs confirmation in a larger study. In conclusion, we observed a significantly higher accumulation of somatic mutations in the cancer tissues associated with a worse prognosis.
Collapse
Affiliation(s)
- Liane Fendt
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (L.F.); (F.F.); (H.W.); (S.S.); (J.L.L.); (G.A.S.); (C.L.); (A.K.-B.); (F.K.)
| | - Federica Fazzini
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (L.F.); (F.F.); (H.W.); (S.S.); (J.L.L.); (G.A.S.); (C.L.); (A.K.-B.); (F.K.)
| | - Hansi Weissensteiner
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (L.F.); (F.F.); (H.W.); (S.S.); (J.L.L.); (G.A.S.); (C.L.); (A.K.-B.); (F.K.)
| | - Emanuel Bruckmoser
- Oral and Maxillofacial Surgeon, Private Practice, A-5020 Salzburg, Austria;
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (L.F.); (F.F.); (H.W.); (S.S.); (J.L.L.); (G.A.S.); (C.L.); (A.K.-B.); (F.K.)
| | - Georg Schäfer
- Institute for Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, A-6020 Innsbruck, Austria;
| | - Jamie Lee Losso
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (L.F.); (F.F.); (H.W.); (S.S.); (J.L.L.); (G.A.S.); (C.L.); (A.K.-B.); (F.K.)
| | - Gertraud A. Streiter
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (L.F.); (F.F.); (H.W.); (S.S.); (J.L.L.); (G.A.S.); (C.L.); (A.K.-B.); (F.K.)
| | - Claudia Lamina
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (L.F.); (F.F.); (H.W.); (S.S.); (J.L.L.); (G.A.S.); (C.L.); (A.K.-B.); (F.K.)
| | - Michael Rasse
- University Hospital for Craniomaxillofacial and Oral Surgery, Medical University of Innsbruck, A-6020 Innsbruck, Austria;
- Clinic for Maxillofacial Surgery, Sechenov University, Trubetskaya Str. 8 b.2, 119992 Moscow, Russia
| | - Helmut Klocker
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, A-6020 Innsbruck, Austria;
| | - Barbara Kofler
- Department of Otorhinolaryngology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria;
| | - Anita Kloss-Brandstätter
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (L.F.); (F.F.); (H.W.); (S.S.); (J.L.L.); (G.A.S.); (C.L.); (A.K.-B.); (F.K.)
- Carinthia University of Applied Sciences, A-9524 Villach, Austria
| | - Christian W. Huck
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold Franzens University Innsbruck, A-6020 Innsbruck, Austria;
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (L.F.); (F.F.); (H.W.); (S.S.); (J.L.L.); (G.A.S.); (C.L.); (A.K.-B.); (F.K.)
| | - Johannes Laimer
- University Hospital for Craniomaxillofacial and Oral Surgery, Medical University of Innsbruck, A-6020 Innsbruck, Austria;
| |
Collapse
|
29
|
Lin Y, Xu X, Zhao D, Liu F, Luo Y, Du J, Wang D, Ji K, Zhao Y, Yan C. A novel m.11406 T > A mutation in mitochondrial ND4 gene causes MELAS syndrome. Mitochondrion 2020; 54:57-64. [PMID: 32659360 DOI: 10.1016/j.mito.2020.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/16/2020] [Accepted: 06/25/2020] [Indexed: 10/23/2022]
Abstract
Pathogenic point mutations of mitochondrial DNA (mtDNA) are associated with a large number of heterogeneous diseases involving multiple systems with which patients may present with a wide range of clinical phenotypes. In this study, we describe a novel heteroplasmic missense mutation, m.11406 T > A, of the ND4 gene encoding the subunit 4 of mitochondrial complex I in a 32-year-old woman with recurrent epileptic seizure, headache and bilateral hearing loss. Skeletal muscle histochemistry demonstrated that approximately 20% of fibers were cytochrome C oxidase (COX) deficient with increased activity of succinate dehydrogenase (SDH). Further investigations in muscle specimens showed significantly reduced level of ND4 protein. It is interesting that the subunits of complex I (ND1 and NDFUB8) and complex IV(CO1) were also remarkably decreased. These findings indicate that ND1, NDFUB8 and CO1 are more susceptible than other subunits to mutations in the mitochondrial ND4 gene.
Collapse
Affiliation(s)
- Yan Lin
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xuebi Xu
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou 325000, China
| | - Dandan Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fuchen Liu
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Yuebei Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jixiang Du
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Dongdong Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Kunqian Ji
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao, Shandong 266035, China; Brain Science Research Institute, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
30
|
Liu Q, Lin D, Li M, Gu Z, Zhao Y. Evidence of Neutral Evolution of Mitochondrial DNA in Human Hepatocellular Carcinoma. Genome Biol Evol 2020; 11:2909-2916. [PMID: 31599941 PMCID: PMC6804334 DOI: 10.1093/gbe/evz214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2019] [Indexed: 12/14/2022] Open
Abstract
Many studies have suggested that mitochondria and mitochondrial DNA (mtDNA) might be functionally associated with tumor genesis and development. Although the heterogeneity of tumors is well known, most studies were based on the analysis of a single tumor sample. The extent of mtDNA diversity in the same tumor is unclear, as is whether the diversity is influenced by selection pressure. Here, we analyzed the whole exon data from 1 nontumor sample and 23 tumor samples from different locations of one single tumor tissue from a hepatocellular carcinoma (HCC) patient. Among 18 heteroplasmic sites identified in the tumor, only 2 heteroplasmies were shared among all tumor samples. By investigating the correlations between the occurrence and frequency of heteroplasmy (Het) and sampling locations (Coordinate), relative mitochondrial copy numbers, and single-nucleotide variants in the nuclear genome, we found that the Coordinate was significantly correlated with Het, suggesting no strong purifying selection or positive selection acted on the mtDNA in HCC. By further investigating the allele frequency and proportion of nonsynonymous mutations in the tumor mtDNA, we found that mtDNA in HCC did not undergo extra selection compared with mtDNA in the adjacent nontumor tissue, and they both likely evolved under neutral selection.
Collapse
Affiliation(s)
- Qi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Deng Lin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Mingkun Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853
| | - Yiqiang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
31
|
OXPHOS remodeling in high-grade prostate cancer involves mtDNA mutations and increased succinate oxidation. Nat Commun 2020; 11:1487. [PMID: 32198407 PMCID: PMC7083862 DOI: 10.1038/s41467-020-15237-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Rewiring of energy metabolism and adaptation of mitochondria are considered to impact on prostate cancer development and progression. Here, we report on mitochondrial respiration, DNA mutations and gene expression in paired benign/malignant human prostate tissue samples. Results reveal reduced respiratory capacities with NADH-pathway substrates glutamate and malate in malignant tissue and a significant metabolic shift towards higher succinate oxidation, particularly in high-grade tumors. The load of potentially deleterious mitochondrial-DNA mutations is higher in tumors and associated with unfavorable risk factors. High levels of potentially deleterious mutations in mitochondrial Complex I-encoding genes are associated with a 70% reduction in NADH-pathway capacity and compensation by increased succinate-pathway capacity. Structural analyses of these mutations reveal amino acid alterations leading to potentially deleterious effects on Complex I, supporting a causal relationship. A metagene signature extracted from the transcriptome of tumor samples exhibiting a severe mitochondrial phenotype enables identification of tumors with shorter survival times.
Collapse
|
32
|
Alvarez-Mora MI, Santos C, Carreño-Gago L, Madrigal I, Tejada MI, Martinez F, Izquierdo-Alvarez S, Garcia-Arumi E, Mila M, Rodriguez-Revenga L. Role of mitochondrial DNA variants in the development of fragile X-associated tremor/ataxia syndrome. Mitochondrion 2020; 52:157-162. [PMID: 32173566 DOI: 10.1016/j.mito.2020.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/08/2020] [Accepted: 03/09/2020] [Indexed: 01/05/2023]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder that appears in at least one-third of adult carriers of FMR1 premutation. Several studies have shown that mitochondrial dysfunction may play a role in neurodegenerative disorders. In order to assess whether mitochondrial DNA variants are involved in the risk of developing FXTAS we evaluated the frequency of mitochondrial haplogroups in 132 unrelated Spanish FMR1 premutation carriers. In addition, the entire mitogenome of 26 FMR1 premutation carriers was sequenced using massively parallel sequencing technologies to analyze mitochondrial DNA variants. Statistical analyses reveal a significant difference in the frequency of T haplogroup. Data analysis of mitochondrial DNA sequences evidence an association between FXTAS and the burden of heteroplasmic variants as well as their distribution. Our results suggest that haplogroup T might be a potential protective factor for FXTAS and that FXTAS individuals accumulate higher rates of heteroplasmic variants in compromised regions of the mitochondrial genome. These results may explain, in part, the role of mitochondrial DNA in the development of FXTAS.
Collapse
Affiliation(s)
- Maria Isabel Alvarez-Mora
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBER of Rare Diseases, Instiuto de Salud Carlos III, Spain
| | - Cristina Santos
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Lidia Carreño-Gago
- CIBER of Rare Diseases, Instiuto de Salud Carlos III, Spain; Departament de Patología Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Irene Madrigal
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBER of Rare Diseases, Instiuto de Salud Carlos III, Spain
| | - Maria Isabel Tejada
- CIBER of Rare Diseases, Instiuto de Salud Carlos III, Spain; Biocruces Health Research Institute, Barakaldo-Bizkaia, Spain; Molecular Genetics Laboratory, Genetics Service, Cruces University Hospital, Barakaldo, Spain
| | - Francisco Martinez
- Genetics Unit, Hospital Universitario y Politecnico La Fe, Valencia, Spain
| | - Silvia Izquierdo-Alvarez
- Genetics Department of Clinical Biochemistry Service, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Elena Garcia-Arumi
- CIBER of Rare Diseases, Instiuto de Salud Carlos III, Spain; Departament de Patología Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Àrea de Genètica Clínica i Molecular, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Montserrat Mila
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBER of Rare Diseases, Instiuto de Salud Carlos III, Spain
| | - Laia Rodriguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBER of Rare Diseases, Instiuto de Salud Carlos III, Spain.
| |
Collapse
|
33
|
O'Keefe H, Queen R, Lord P, Elson JL. What can a comparative genomics approach tell us about the pathogenicity of mtDNA mutations in human populations? Evol Appl 2019; 12:1912-1930. [PMID: 31700535 PMCID: PMC6824070 DOI: 10.1111/eva.12851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/13/2019] [Accepted: 07/17/2019] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial disorders are heterogeneous, showing variable presentation and penetrance. Over the last three decades, our ability to recognize mitochondrial patients and diagnose these mutations, linking genotype to phenotype, has greatly improved. However, it has become increasingly clear that these strides in diagnostics have not benefited all population groups. Recent studies have demonstrated that patients from genetically understudied populations, in particular those of black African heritage, are less likely to receive a diagnosis of mtDNA disease. It has been suggested that haplogroup context might influence the presentation and penetrance of mtDNA disease; thus, the spectrum of mutations that are associated with disease in different populations. However, to date there is only one well-established example of such an effect: the increased penetrance of two Leber's hereditary optic neuropathy mutations on a haplogroup J background. This paper conducted the most extensive investigation to date into the importance of haplogroup context on the pathogenicity of mtDNA mutations. We searched for proven human point mutations across 726 multiple sequence alignments derived from 33 non-human species absent of disease. A total of 58 pathogenic point mutations arise in the sequences of these species. We assessed the sequence context and found evidence of population variants that could modulate the phenotypic expression of these point mutations masking the pathogenic effects seen in humans. This supports the theory that sequence context is influential in the presentation of mtDNA disease and has implications for diagnostic practices. We have shown that our current understanding of the pathogenicity of mtDNA point mutations, primarily built on studies of individuals with haplogroups HVUKTJ, will not present a complete picture. This will have the effect of creating a diagnostic inequality, whereby individuals who do not belong to these lineages are less likely to receive a genetic diagnosis.
Collapse
Affiliation(s)
- Hannah O'Keefe
- Institute of Genetic MedicineNewcastle UniversityNewcastle‐upon‐TyneUK
- School of ComputingNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Rachel Queen
- Bioinformatics Core FacilityNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Phillip Lord
- School of ComputingNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Joanna L. Elson
- Institute of Genetic MedicineNewcastle UniversityNewcastle‐upon‐TyneUK
- Centre for Human MetabonomicsNorth‐West UniversityPotchefstroomSouth Africa
| |
Collapse
|
34
|
Li S, Duan S, Qin Y, Lin S, Zheng K, Li X, Zhang L, Gu X, Yao K, Wang B. Leber's Hereditary Optic Neuropathy-Specific Heteroplasmic Mutation m.14495A>G Found in a Chinese Family. Transl Vis Sci Technol 2019; 8:3. [PMID: 31316863 PMCID: PMC6615366 DOI: 10.1167/tvst.8.4.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 05/06/2019] [Indexed: 01/25/2023] Open
Abstract
Purpose Leber's hereditary optic neuropathy (LHON) is a mitochondrial DNA (mtDNA)-associated, maternally inherited eye disease. Mutation heteroplasmy level is one of the leading causes to trigger LHON manifestation. In this study, we aimed to identify the causative mutation in a large Han Chinese family with LHON and explore the underlying pathogenic mechanism in this LHON family. Methods The whole-mtDNA sequence was amplified by long-range PCR. Mutations were subsequently identified by next-generation sequencing (NGS) and validated by Sanger sequencing. The heteroplasmy rates of those family members were determined by digital PCR (dPCR). Mitochondrial haplogroups were assigned based on mtDNA tree build 17. Results The m.14495A>G mutation was identified as causative due to its higher heteroplasmy level (>50%) in patients than in their unaffected relatives. All mutation carriers belong to M7b1a1 and are assigned to Asian mtDNA lineage. Interestingly, our result revealed that high mtDNA copy number in carrier might prevent LHON manifestation. Conclusions This is the first report of m.14495A>G mutation in Asian individuals with LHON. Our study shows that dPCR technology can provide more reliable results in mutation heteroplasmy assay and determination of the cellular mtDNA content, making it a potentially promising tool for clinical precise diagnosis of LHON. Furthermore, our results also add evidence to the opinion that higher mtDNA content may protect mutation carriers from LHON. Translational Relevance dPCR can be used for the assessment of LHON disease, and a new genetic-based diagnostic strategy has been proposed for LHON patients with the m.14495A>G mutation.
Collapse
Affiliation(s)
- Shouqing Li
- Department of Neuro-ophthalmology, Weifang Eye Hospital, Shandong Province, China
| | - Shan Duan
- Laboratory of Medical Genetics, Shenzhen Health Development Research Center, Shenzhen, China.,Center for Birth Defect Research and Prevention, Shenzhen Health Development Research Center, Shenzhen, China
| | - Yueyuan Qin
- Laboratory of Medical Genetics, Shenzhen Health Development Research Center, Shenzhen, China.,Center for Birth Defect Research and Prevention, Shenzhen Health Development Research Center, Shenzhen, China
| | - Sheng Lin
- Laboratory of Medical Genetics, Shenzhen Health Development Research Center, Shenzhen, China.,Center for Birth Defect Research and Prevention, Shenzhen Health Development Research Center, Shenzhen, China
| | - Kaifeng Zheng
- Laboratory of Medical Genetics, Shenzhen Health Development Research Center, Shenzhen, China.,Center for Birth Defect Research and Prevention, Shenzhen Health Development Research Center, Shenzhen, China
| | - Xi Li
- Laboratory of Medical Genetics, Shenzhen Health Development Research Center, Shenzhen, China.,Center for Birth Defect Research and Prevention, Shenzhen Health Development Research Center, Shenzhen, China
| | - Linghua Zhang
- Laboratory of Medical Genetics, Shenzhen Health Development Research Center, Shenzhen, China
| | - Xueying Gu
- Laboratory of Medical Genetics, Shenzhen Health Development Research Center, Shenzhen, China
| | - Keqin Yao
- Laboratory of Medical Genetics, Shenzhen Health Development Research Center, Shenzhen, China
| | - Baojiang Wang
- Laboratory of Medical Genetics, Shenzhen Health Development Research Center, Shenzhen, China.,Center for Birth Defect Research and Prevention, Shenzhen Health Development Research Center, Shenzhen, China
| |
Collapse
|
35
|
Gu X, Kang X, Liu J. Mutation signatures in germline mitochondrial genome provide insights into human mitochondrial evolution and disease. Hum Genet 2019; 138:613-624. [PMID: 30968252 DOI: 10.1007/s00439-019-02009-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/02/2019] [Indexed: 01/06/2023]
Abstract
Variations in mitochondrial DNA (mtDNA) have been fundamental for understanding human evolution and are causative for a plethora of inherited mitochondrial diseases, but the mutation signatures of germline mtDNA and their value in understanding mitochondrial pathogenicity remain unknown. Here, we carried out a systematic analysis of mutation patterns in germline mtDNA based on 97,566 mtDNA variants from 45,494 full-length sequences and revealed a highly non-stochastic and replication-coupled mutation signature characterized by nucleotide-specific mutation pressure (G > T>A > C) and position-specific selection pressure, suggesting the existence of an intensive mutation-selection interplay in germline mtDNA. We provide evidence that this mutation-selection interplay has strongly shaped the mtDNA sequence during evolution, which not only manifests as an oriented alteration of amino acid compositions of mitochondrial encoded proteins, but also explains the long-lasting mystery of CpG depletion in mitochondrial genome. Finally, we demonstrated that these insights may be integrated to better understand the pathogenicity of disease-implicated mitochondrial variants.
Collapse
Affiliation(s)
- Xiwen Gu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Xinyun Kang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine & Douglas C. Wallace Institute for Mitochondrial and Epigenetic Information Sciences, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
36
|
Venter M, Tomas C, Pienaar IS, Strassheim V, Erasmus E, Ng WF, Howell N, Newton JL, Van der Westhuizen FH, Elson JL. MtDNA population variation in Myalgic encephalomyelitis/Chronic fatigue syndrome in two populations: a study of mildly deleterious variants. Sci Rep 2019; 9:2914. [PMID: 30814539 PMCID: PMC6393470 DOI: 10.1038/s41598-019-39060-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023] Open
Abstract
Myalgic Encephalomyelitis (ME), also known as Chronic Fatigue Syndrome (CFS) is a debilitating condition. There is growing interest in a possible etiologic or pathogenic role of mitochondrial dysfunction and mitochondrial DNA (mtDNA) variation in ME/CFS. Supporting such a link, fatigue is common and often severe in patients with mitochondrial disease. We investigate the role of mtDNA variation in ME/CFS. No proven pathogenic mtDNA mutations were found. We then investigated population variation. Two cohorts were analysed, one from the UK (n = 89 moderately affected; 29 severely affected) and the other from South Africa (n = 143 moderately affected). For both cohorts, ME/CFS patients had an excess of individuals without a mildly deleterious population variant. The differences in population variation might reflect a mechanism important to the pathophysiology of ME/CFS.
Collapse
Affiliation(s)
- Marianne Venter
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Cara Tomas
- Institute of Cellular Medicine & NIHR Biomedical Research Centre in Ageing and Chronic Disease, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Ilse S Pienaar
- School of Life Sciences, University of Sussex, Falmer, BN1 9PH, United Kingdom
- Centre for Neuroinflammation and Neurodegeneration, Imperial College London, London, United Kingdom
| | - Victoria Strassheim
- Institute of Cellular Medicine & NIHR Biomedical Research Centre in Ageing and Chronic Disease, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Centre for Neuroinflammation and Neurodegeneration, Imperial College London, London, United Kingdom
| | - Elardus Erasmus
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Wan-Fai Ng
- Institute of Cellular Medicine & NIHR Biomedical Research Centre in Ageing and Chronic Disease, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Neil Howell
- Department of Radiation Therapy, UTMB, Galveston, Texas, USA
| | - Julia L Newton
- Centre for Neuroinflammation and Neurodegeneration, Imperial College London, London, United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | | | - Joanna L Elson
- Human Metabolomics, North-West University, Potchefstroom, South Africa.
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom.
| |
Collapse
|
37
|
Venter M, Malan L, Elson JL, van der Westhuizen FH. Implementing a new variant load model to investigate the role of mtDNA in oxidative stress and inflammation in a bi-ethnic cohort: the SABPA study. Mitochondrial DNA A DNA Mapp Seq Anal 2019; 30:440-447. [PMID: 30657012 DOI: 10.1080/24701394.2018.1544248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondrial DNA (mtDNA) variation has been implicated in several common complex and degenerative diseases, including cardiovascular disease. Inflammation is seen as part of many of these conditions. Mitochondria feature in inflammatory pathways and it has been suggested that mtDNA variation or released mtDNA might be important in this phenomenon. To determine if mtDNA is involved in the mechanisms leading up to cardiovascular disease, we investigated the role of these variants in seven indicators of oxidative stress and inflammation. This study was done in participants of the Sympathetic Activity and Ambulatory Blood Pressure in Africans (SABPA) cohort, a South African bi-ethnic cohort (N = 363). We applied a variant load hypothesis, which is an alternative approach to, and moves away from the classic haplogroup association approaches, to evaluate the cumulative effect of non-synonymous mtDNA variants on measurements of serum peroxides, nitric oxide metabolites, 8-hydroxy-deoxyguanosine, thiobarbituric acid reactive substances, whole blood reduced glutathione, C-reactive protein, and tumor necrosis factor alpha. We found no significant relationships between non-synonymous mtDNA variants and the seven biochemical parameters investigated here. Non-synonymous mtDNA variants are unlikely to impact on disease in this cohort, to an appreciable or measurable extent.
Collapse
Affiliation(s)
- Marianne Venter
- a Human Metabolomics, North-West University , Potchefstroom , South Africa
| | - Leone Malan
- b Hypertension in Africa Research Team (HART), Centre of Excellence , North-West University , Potchefstroom , South Africa
| | - Joanna L Elson
- a Human Metabolomics, North-West University , Potchefstroom , South Africa.,c Institute of Genetic Medicine, Newcastle University , Newcastle-upon-Tyne , United Kingdom
| | | |
Collapse
|
38
|
Piotrowska-Nowak A, Elson JL, Sobczyk-Kopciol A, Piwonska A, Puch-Walczak A, Drygas W, Ploski R, Bartnik E, Tonska K. New mtDNA Association Model, MutPred Variant Load, Suggests Individuals With Multiple Mildly Deleterious mtDNA Variants Are More Likely to Suffer From Atherosclerosis. Front Genet 2019; 9:702. [PMID: 30671084 PMCID: PMC6332467 DOI: 10.3389/fgene.2018.00702] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/14/2018] [Indexed: 12/31/2022] Open
Abstract
The etiology of common complex diseases is multifactorial, involving both genetic, and environmental factors. A role for mitochondrial dysfunction and mitochondrial DNA (mtDNA) variation has been suggested in the pathogenesis of common complex traits. The aim of this study was to investigate a potential role of mtDNA variants in the development of obesity, diabetes, and atherosclerosis in the Polish population. Whole mtDNA sequences from 415 Polish individuals representing three disease cohorts and a control group were obtained using high-throughput sequencing. Two approaches for the assessment of mtDNA variation were applied, traditional mitochondrial haplogroup association analysis and the mutational or variant load model using the MutPred pathogenicity prediction algorithm for amino acid substitutions in humans. We present a possible association between mildly deleterious mtDNA variant load and atherosclerosis that might be due to having more than one likely mildly deleterious non-synonymous substitution. Moreover, it seems largely dependent upon a few common haplogroup associated variants with MutPred score above 0.5.
Collapse
Affiliation(s)
| | - Joanna L Elson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | | | - Aleksandra Piwonska
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, Institute of Cardiology, Warsaw, Poland
| | - Aleksandra Puch-Walczak
- Department of Prevention and Education, Department of Arterial Hypertension and Diabetology, Medical University of Gdansk, Gdansk, Poland
| | - Wojciech Drygas
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, Institute of Cardiology, Warsaw, Poland
| | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Bartnik
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland.,Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Tonska
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
39
|
Daghistani HM, Rajab BS, Kitmitto A. Three-dimensional electron microscopy techniques for unravelling mitochondrial dysfunction in heart failure and identification of new pharmacological targets. Br J Pharmacol 2018; 176:4340-4359. [PMID: 30225980 PMCID: PMC6887664 DOI: 10.1111/bph.14499] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/30/2018] [Accepted: 08/18/2018] [Indexed: 12/23/2022] Open
Abstract
A hallmark of heart failure is mitochondrial dysfunction leading to a bioenergetics imbalance in the myocardium. Consequently, there is much interest in targeting mitochondrial abnormalities to attenuate the pathogenesis of heart failure. This review discusses (i) how electron microscopy (EM) techniques have been fundamental for the current understanding of mitochondrial structure–function, (ii) the paradigm shift in resolutions now achievable by 3‐D EM techniques due to the introduction of direct detection devices and phase plate technology, and (iii) the application of EM for unravelling mitochondrial pathological remodelling in heart failure. We further consider the tremendous potential of multi‐scale EM techniques for the development of therapeutics, structure‐based ligand design and for delineating how a drug elicits nanostructural effects at the molecular, organelle and cellular levels. In conclusion, 3‐D EM techniques have entered a new era of structural biology and are poised to play a pivotal role in discovering new therapies targeting mitochondria for treating heart failure. Linked Articles This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc
Collapse
Affiliation(s)
- Hussam M Daghistani
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Bodour S Rajab
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ashraf Kitmitto
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
40
|
Ryzhkova AI, Sazonova MA, Sinyov VV, Galitsyna EV, Chicheva MM, Melnichenko AA, Grechko AV, Postnov AY, Orekhov AN, Shkurat TP. Mitochondrial diseases caused by mtDNA mutations: a mini-review. Ther Clin Risk Manag 2018; 14:1933-1942. [PMID: 30349272 PMCID: PMC6186303 DOI: 10.2147/tcrm.s154863] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There are several types of mitochondrial cytopathies, which cause a set of disorders, arise as a result of mitochondria’s failure. Mitochondria’s functional disruption leads to development of physical, growing and cognitive disabilities and includes multiple organ pathologies, essentially disturbing the nervous and muscular systems. The origins of mitochondrial cytopathies are mutations in genes of nuclear DNA encoding mitochondrial proteins or in mitochondrial DNA. Nowadays, numerous mtDNA mutations significant to the appearance and progress of pathologies in humans are detected. In this mini-review, we accent on the mitochondrial cytopathies related to mutations of mtDNA. As well known, there are definite set of symptoms of mitochondrial cytopathies distinguishing or similar for different syndromes. The present article contains data about mutations linked with cytopathies that facilitate diagnosis of different syndromes by using genetic analysis methods. In addition, for every individual, more effective therapeutic approach could be developed after wide-range mutant background analysis of mitochondrial genome.
Collapse
Affiliation(s)
- Anastasia I Ryzhkova
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, Moscow, Russian Federation, .,Department of Virology, K.I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology-MVA, Moscow, Russian Federation,
| | - Margarita A Sazonova
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, Moscow, Russian Federation, .,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| | - Vasily V Sinyov
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, Moscow, Russian Federation,
| | - Elena V Galitsyna
- Department of Genetics, Southern Federal University, Rostov-on-Don, Russian Federation
| | - Mariya M Chicheva
- Department of Genetics, Southern Federal University, Rostov-on-Don, Russian Federation
| | | | - Andrey V Grechko
- Federal Research and Clinical Center of Reanimatology and Rehabilitology, Moscow, Russian Federation
| | - Anton Yu Postnov
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, Moscow, Russian Federation,
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russian Federation.,Institute for Atherosclerosis Research, Skolkovo Innovative Centre, Moscow Region, Russian Federation
| | - Tatiana P Shkurat
- Department of Genetics, Southern Federal University, Rostov-on-Don, Russian Federation
| |
Collapse
|
41
|
Wei W, Gomez-Duran A, Hudson G, Chinnery PF. Correction: Background sequence characteristics influence the occurrence and severity of disease-causing mtDNA mutations. PLoS Genet 2018; 14:e1007364. [PMID: 29727451 PMCID: PMC5935389 DOI: 10.1371/journal.pgen.1007364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
42
|
Mitchell SL, Neininger AC, Bruce CN, Chocron IM, Bregman JA, Estopinal CB, Muhammad A, Umfress AC, Jarrell KL, Warden C, Harlow PA, Wellons M, Samuels DC, Brantley MA. Mitochondrial Haplogroups Modify the Effect of Diabetes Duration and HbA1c on Proliferative Diabetic Retinopathy Risk in Patients With Type 2 Diabetes. Invest Ophthalmol Vis Sci 2018; 58:6481-6488. [PMID: 29288266 PMCID: PMC5749245 DOI: 10.1167/iovs.17-22804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We previously demonstrated an association between European mitochondrial haplogroups and proliferative diabetic retinopathy (PDR). The purpose of this study was to determine how the relationship between these haplogroups and both diabetes duration and hyperglycemia, two major risk factors for diabetic retinopathy (DR), affect PDR prevalence. Methods Our population consisted of patients with type 2 diabetes with (n = 377) and without (n = 480) DR. A Kruskal-Wallis test was used to compare diabetes duration and hemoglobin A1c (HbA1c) among mitochondrial haplogroups. Logistic regressions were performed to investigate diabetes duration and HbA1c as risk factors for PDR in the context of European mitochondrial haplogroups. Results Neither diabetes duration nor HbA1c differed among mitochondrial haplogroups. Among DR patients from haplogroup H, longer diabetes duration and increasing HbA1c were significant risk factors for PDR (P = 0.0001 and P = 0.011, respectively). Neither diabetes duration nor HbA1c was a significant risk factor for PDR in DR patients from haplogroup UK. Conclusions European mitochondrial haplogroups modify the effects of diabetes duration and HbA1c on PDR risk in patients with type 2 diabetes. In our patient population, longer diabetes duration and higher HbA1c increased PDR risk in patients from haplogroup H, but did not affect PDR risk in patients from haplogroup UK. This relationship has not been previously demonstrated and may explain, in part, why some patients with nonproliferative DR develop PDR and others do not, despite similar diabetes duration and glycemic control.
Collapse
Affiliation(s)
- Sabrina L Mitchell
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Abigail C Neininger
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Carleigh N Bruce
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Isaac M Chocron
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jana A Bregman
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Christopher B Estopinal
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Ayesha Muhammad
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Allison C Umfress
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Kelli L Jarrell
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Cassandra Warden
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Paula A Harlow
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Melissa Wellons
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - David C Samuels
- Vanderbilt Genetics Institute and Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Milam A Brantley
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
43
|
Genomic and transcriptomic characterization of the mitochondrial-rich oncocytic phenotype on a thyroid carcinoma background. Mitochondrion 2018; 46:123-133. [PMID: 29631022 DOI: 10.1016/j.mito.2018.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/22/2022]
Abstract
We conducted the first systematic omics study of the oncocytic phenotype in 488 papillary thyroid carcinomas (PTC) from The Cancer Genome Atlas. Oncocytic phenotype is secondary to PTC, being unrelated to several pathologic scores. The nuclear genome had low impact on this phenotype (except in specific copy number variation), which was mostly driven by the significant accumulation of mitochondrial DNA non-synonymous and frameshift mutations at high heteroplasmy levels. Energy and mitochondrial-related pathways were significantly enriched in oncocytic tumors that also displayed increased levels of expression for genes involved in autophagy and fusion of mitochondria. Our in vitro tests confirmed that autophagy is increased and functional while mitophagy is decreased in these tumors.
Collapse
|
44
|
Emperador S, Vidal M, Hernández-Ainsa C, Ruiz-Ruiz C, Woods D, Morales-Becerra A, Arruga J, Artuch R, López-Gallardo E, Bayona-Bafaluy MP, Montoya J, Ruiz-Pesini E. The Decrease in Mitochondrial DNA Mutation Load Parallels Visual Recovery in a Leber Hereditary Optic Neuropathy Patient. Front Neurosci 2018; 12:61. [PMID: 29479304 PMCID: PMC5811516 DOI: 10.3389/fnins.2018.00061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/24/2018] [Indexed: 11/13/2022] Open
Abstract
The onset of Leber hereditary optic neuropathy is relatively rare in childhood and, interestingly, the rate of spontaneous visual recovery is very high in this group of patients. Here, we report a child harboring a rare pathological mitochondrial DNA mutation, present in heteroplasmy, associated with the disease. A patient follow-up showed a rapid recovery of the vision accompanied by a decrease of the percentage of mutated mtDNA. A retrospective study on the age of recovery of all childhood-onset Leber hereditary optic neuropathy patients reported in the literature suggested that this process was probably related with pubertal changes.
Collapse
Affiliation(s)
- Sonia Emperador
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Mariona Vidal
- Servicio de Oftalmología Pediátrica, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Carmen Hernández-Ainsa
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Cristina Ruiz-Ruiz
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Daniel Woods
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Ana Morales-Becerra
- Servicio de Oftalmología Pediátrica, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Jorge Arruga
- Servicio de Oftalmología, Hospital Universitario de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rafael Artuch
- Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Servicio de Bioquímica, Hospital Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Ester López-Gallardo
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - M Pilar Bayona-Bafaluy
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Fundación ARAID, Zaragoza, Spain
| |
Collapse
|
45
|
Skonieczna K, Malyarchuk B, Jawień A, Marszałek A, Banaszkiewicz Z, Jarmocik P, Grzybowski T. Mitogenomic differences between the normal and tumor cells of colorectal cancer patients. Hum Mutat 2018; 39:691-701. [PMID: 29330893 DOI: 10.1002/humu.23402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/18/2017] [Accepted: 01/05/2018] [Indexed: 12/13/2022]
Abstract
So far, a reliable spectrum of mitochondrial DNA mutations in colorectal cancer cells is still unknown, and neither is their significance in carcinogenesis. Indeed, it remains debatable whether mtDNA mutations are "drivers" or "passengers" of colorectal carcinogenesis. Thus, we analyzed 200 mitogenomes from normal and cancer tissues of 100 colorectal cancer patients. Minority variant mutations were detected at the 1% level. We showed that somatic mutations frequently occur in colorectal cancer cells (75%) and are randomly distributed across the mitochondrial genome. Mutational signatures of somatic mitogenome mutations suggest that they might arise through nucleotide deamination due to oxidative stress. The majority of somatic mutations localized within the coding region (in positions not known from the human phylogeny) and was potentially pathogenic to cell metabolism. Further analysis suggested that the relaxation of negative selection in the mitogenomes of colorectal cancer cells may allow accumulation of somatic mutations. Thus, a shift in glucose metabolism from oxidative phosphorylation to glycolysis may create advantageous conditions for accumulation of mtDNA mutations. Considering the fact that the presence of somatic mtDNA mutations was not associated with any clinicopathological features, we suggested that mtDNA somatic mutations are "passengers" rather than the cause of colorectal carcinogenesis.
Collapse
Affiliation(s)
- Katarzyna Skonieczna
- Division of Molecular and Forensic Genetics, Department of Forensic Medicine, Faculty of Medicine, Nicolaus Copernicus University, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Boris Malyarchuk
- Institute of Biological Problems of the North, Far-East Branch of the Russian Academy of Sciences, Magadan, Russia
| | - Arkadiusz Jawień
- Department of Vascular Surgery and Angiology, Faculty of Medicine, Nicolaus Copernicus University, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Andrzej Marszałek
- Department of Pathology, Faculty of Medicine, Nicolaus Copernicus University, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland.,Department of Tumor Pathology and Prophylaxis, Poznan University of Medical Sciences and Greater Poland Cancer Center, Poznan, Poland
| | - Zbigniew Banaszkiewicz
- Department of Vascular Surgery and Angiology, Faculty of Medicine, Nicolaus Copernicus University, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Paweł Jarmocik
- Department of Vascular Surgery and Angiology, Faculty of Medicine, Nicolaus Copernicus University, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Tomasz Grzybowski
- Division of Molecular and Forensic Genetics, Department of Forensic Medicine, Faculty of Medicine, Nicolaus Copernicus University, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| |
Collapse
|
46
|
Grandhi S, Bosworth C, Maddox W, Sensiba C, Akhavanfard S, Ni Y, LaFramboise T. Heteroplasmic shifts in tumor mitochondrial genomes reveal tissue-specific signals of relaxed and positive selection. Hum Mol Genet 2018; 26:2912-2922. [PMID: 28475717 DOI: 10.1093/hmg/ddx172] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/28/2017] [Indexed: 12/27/2022] Open
Abstract
Although mitochondrial genomes (mtDNA) accumulate elevated levels of mutations in cancer cells, the origin and functional impact of these mutations remain controversial. Here, we queried whole-genome sequence data from 1,916 patients across 24 cancer types to characterize patterns of mtDNA mutations and elucidate the selective constraints driving their fate. Given that mitochondrial genomes are polyploid, cells with advantageous levels of mtDNA mutations can be selected for depending on their cellular environment. Therefore, we tracked changes in per-cell abundances of mtDNA mutations from normal to tumor cells in the same patient. Tumor mitochondrial genomes show distinct mutational patterns and are disproportionately enriched for protein-altering changes. Moreover, protein-altering mtDNA variants that are initially present at low frequencies in normal cells preferentially expand in the altered tumor environment, suggesting selective advantage. We also perform these analyses with attention to the cancer's tissue of origin, which revealed tissue-specific differences in selective signals. The mitochondrial genomes in renal chromophobe and thyroid cancers show particularly strong signals of positive selection, indicated by higher proportions and per-cell abundances of truncating variants. Dramatic tumor- and tissue-specific variations in selective pressures suggest that cancer cells with advantageous levels of damaged mitochondrial genomes will selectively proliferate to facilitate the tumorigenic process.
Collapse
Affiliation(s)
- Sneha Grandhi
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Colleen Bosworth
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Wesley Maddox
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Cole Sensiba
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Sara Akhavanfard
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ying Ni
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Thomas LaFramboise
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
47
|
Wei W, Gomez-Duran A, Hudson G, Chinnery PF. Background sequence characteristics influence the occurrence and severity of disease-causing mtDNA mutations. PLoS Genet 2017; 13:e1007126. [PMID: 29253894 PMCID: PMC5757940 DOI: 10.1371/journal.pgen.1007126] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/08/2018] [Accepted: 11/26/2017] [Indexed: 11/18/2022] Open
Abstract
Inherited mitochondrial DNA (mtDNA) mutations have emerged as a common cause of human disease, with mutations occurring multiple times in the world population. The clinical presentation of three pathogenic mtDNA mutations is strongly associated with a background mtDNA haplogroup, but it is not clear whether this is limited to a handful of examples or is a more general phenomenon. To address this, we determined the characteristics of 30,506 mtDNA sequences sampled globally. After performing several quality control steps, we ascribed an established pathogenicity score to the major alleles for each sequence. The mean pathogenicity score for known disease-causing mutations was significantly different between mtDNA macro-haplogroups. Several mutations were observed across all haplogroup backgrounds, whereas others were only observed on specific clades. In some instances this reflected a founder effect, but in others, the mutation recurred but only within the same phylogenetic cluster. Sequence diversity estimates showed that disease-causing mutations were more frequent on young sequences, and genomes with two or more disease-causing mutations were more common than expected by chance. These findings implicate the mtDNA background more generally in recurrent mutation events that have been purified through natural selection in older populations. This provides an explanation for the low frequency of mtDNA disease reported in specific ethnic groups. MtDNA mutations are a major cause of genetic disease. Many of these variants have recurred several times in different populations and on diverse haplogroup backgrounds, but the clinical presentation of mutations causing Leber Hereditary Optic Neuropathy (LHON: m.14484T>C, m.3460G>A, m.11778G>A) are strongly associated with a specific mtDNA haplogroup. This raises the possibility that many pathogenic mtDNA mutations are subject to the same effects. Here, our analysis of 30,506 human mtDNA sequences shows that the association between disease-causing mtDNA mutations and background mtDNA haplogroups is not only restricted to three disease-causing mtDNA mutations known to cause LHON. The frequent recurrence of the same mutations on a population clade, and the reduced frequency of European mtDNAs harboring two or more diseases-causing mutations, suggest that the population mtDNA background influences the risk of developing mtDNA mutations. Our analysis also shows that disease-causing mtDNA mutations also occur more frequently on younger mtDNAs. This implies that, once formed, the mutations are selected against. These findings indicate that the clinical interpretation of mtDNA variants should be performed within an ethnogeographic context.
Collapse
Affiliation(s)
- Wei Wei
- MRC-Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Aurora Gomez-Duran
- MRC-Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Gavin Hudson
- Institute of Genetic Medicine, Central Parkway, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Patrick F. Chinnery
- MRC-Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
48
|
Koshikawa N, Akimoto M, Hayashi JI, Nagase H, Takenaga K. Association of predicted pathogenic mutations in mitochondrial ND genes with distant metastasis in NSCLC and colon cancer. Sci Rep 2017; 7:15535. [PMID: 29138417 PMCID: PMC5686070 DOI: 10.1038/s41598-017-15592-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/31/2017] [Indexed: 11/17/2022] Open
Abstract
Cancer cells have more mutations in their mitochondrial DNA (mtDNA) than do normal cells, and pathogenic mutations in the genes encoding mitochondrial NADH dehydrogenase (ND) subunits have been found to enhance the invasive and metastatic ability of various tumour cells in animal experiments. However, it is unknown whether single-nucleotide variants (SNVs) of the ND genes that decrease complex I activity are involved in distant metastasis in human clinical samples. Here, we demonstrated the enhancement of the distant metastasis of Lewis lung carcinoma cells by the ND6 13885insC mutation, which is accompanied by the overexpression of metastasis-related genes, metabolic reprogramming, the enhancement of tumour angiogenesis and the acquisition of resistance to stress-induced cell death. We then sequenced ND genes in primary tumour lesions with or without distant metastases as well as metastatic tumour lesions from 115 patients with non-small cell lung cancer (NSCLC) and colon cancer, and we subsequently selected 14 SNVs with the potential to decrease complex I activity. Intriguingly, a significant correlation was observed (P < 0.05 by Chi-square test) between the incidence of the selected mutations and distant metastasis. Thus, these results strongly suggest that pathogenic ND gene mutations participate in enhancing distant metastasis in human cancers.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/secondary
- Cell Line, Tumor
- Colonic Neoplasms/genetics
- Colonic Neoplasms/secondary
- DNA, Mitochondrial/genetics
- Female
- Genes, Mitochondrial/genetics
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Male
- Mice, Inbred C57BL
- Middle Aged
- Mitochondria/genetics
- Mutation
- NADH Dehydrogenase/genetics
- Neoplasm Metastasis
- Polymorphism, Single Nucleotide
Collapse
Affiliation(s)
- Nobuko Koshikawa
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuoh-ku, Chiba, 260-8717, Japan
| | - Miho Akimoto
- Department of Life Science, Shimane University Faculty of Medicine, 89-1 Enya, Izumo, Shimane, 693-8501, Japan
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Jun-Ichi Hayashi
- University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hiroki Nagase
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuoh-ku, Chiba, 260-8717, Japan
| | - Keizo Takenaga
- Department of Life Science, Shimane University Faculty of Medicine, 89-1 Enya, Izumo, Shimane, 693-8501, Japan.
| |
Collapse
|
49
|
Errichiello E, Venesio T. Mitochondrial DNA variants in colorectal carcinogenesis: Drivers or passengers? J Cancer Res Clin Oncol 2017; 143:1905-1914. [PMID: 28393270 DOI: 10.1007/s00432-017-2418-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/03/2017] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Mitochondrial DNA alterations have widely been reported in many age-related degenerative diseases and tumors, including colorectal cancer. In the past few years, the discovery of inter-genomic crosstalk between nucleus and mitochondria has reinforced the role of mitochondrial DNA variants in perturbing this essential signaling pathway and thus indirectly targeting nuclear genes involved in tumorigenic and invasive phenotype. FINDINGS Mitochondrial dysfunction is currently considered a crucial hallmark of carcinogenesis as well as a promising target for anticancer therapy. Mitochondrial DNA alterations include point mutations, deletions, inversions, and copy number variations, but numerous studies investigating their pathogenic role in cancer have provided inconsistent evidence. Furthermore, the biological impact of mitochondrial DNA variants may vary tremendously, depending on the proportion of mutant DNA molecules carried by the neoplastic cells (heteroplasmy). CONCLUSIONS In this review, we discuss the role of different type of mitochondrial DNA alterations in colorectal carcinogenesis and, in particular, we revisit the issue of whether they may be considered as causative driver or simply genuine passenger events. The advent of high-throughput techniques as well as the development of genetic and pharmaceutical interventions for the treatment of mitochondrial dysfunction in colorectal cancer are also explored.
Collapse
Affiliation(s)
- Edoardo Errichiello
- Department of Molecular Medicine, University of Pavia, Via Forlanini 14, 27100, Pavia, Italy.
- Molecular Pathology Laboratory, Unit of Pathology, Candiolo Cancer Institute, FPO-IRCCS, Starda Provinciale 142, Candiolo, 10060, Turin, Italy.
| | - Tiziana Venesio
- Molecular Pathology Laboratory, Unit of Pathology, Candiolo Cancer Institute, FPO-IRCCS, Starda Provinciale 142, Candiolo, 10060, Turin, Italy
| |
Collapse
|
50
|
Zheng HX, Li L, Jiang XY, Yan S, Qin Z, Wang X, Jin L. MtDNA genomes reveal a relaxation of selective constraints in low-BMI individuals in a Uyghur population. Hum Genet 2017; 136:1353-1362. [DOI: 10.1007/s00439-017-1829-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/15/2017] [Indexed: 10/19/2022]
|