1
|
Hara Y, Kuraku S. Intragenomic mutational heterogeneity: structural and functional insights from gene evolution. Trends Genet 2025:S0168-9525(25)00075-7. [PMID: 40328580 DOI: 10.1016/j.tig.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 05/08/2025]
Abstract
Variation of mutation rates between species has been documented over decades, but the variation between different regions of a genome has been less often discussed. Recent studies using high-quality sequence data have revealed previously unknown levels of intragenomic heterogeneity of mutation rates and their association with other structural and functional features of DNA sequences. This article reviews accumulating evidence of this intragenomic heterogeneity and speculates its cause and influence on organismal phenotypes.
Collapse
Affiliation(s)
- Yuichiro Hara
- Department of Data Science, Kitasato University School of Frontier Engineering, Sagamihara, Japan; Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Shigehiro Kuraku
- Molecular Life History Laboratory, National Institute of Genetics, Mishima, Japan; Department of Genetics, SOKENDAI (Graduate University for Advanced Studies), Mishima, Japan.
| |
Collapse
|
2
|
Apte M, Kumar A. Correlation of mutated gene and signalling pathways in ASD. IBRO Neurosci Rep 2023; 14:384-392. [PMID: 37101819 PMCID: PMC10123338 DOI: 10.1016/j.ibneur.2023.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Autism is a complicated spectrum of neurodevelopmental illnesses characterized by repetitive and constrained behaviors and interests, as well as social interaction and communication difficulties that are first shown in infancy. More than 18 million Indians, according to the National Health Portal of India, and 1 in 160 children worldwide, according to the WHO, are diagnosed with autism spectrum disorders. This review aims to discuss the complex genetic architecture that underlies autism and summarizes the role of proteins likely to play in the development of autism. We also consider how genetic mutations can affect convergent signaling pathways and hinder the development of brain circuitry and the role of cognition development and theory of mind with Cognition-behavior therapy benefits in autism.
Collapse
Affiliation(s)
- Madhavi Apte
- Quality Assurance and Pharmacognosy and Phytochemistry, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, 400056 Mumbai, India
| | - Aayush Kumar
- Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, 400056 Mumbai, India
| |
Collapse
|
3
|
Evaluation of Individuals with Non-Syndromic Global Developmental Delay and Intellectual Disability. CHILDREN 2023; 10:children10030414. [PMID: 36979972 PMCID: PMC10047567 DOI: 10.3390/children10030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
Global Developmental Delay (GDD) and Intellectual Disability (ID) are two of the most common presentations encountered by physicians taking care of children. GDD/ID is classified into non-syndromic GDD/ID, where GDD/ID is the sole evident clinical feature, or syndromic GDD/ID, where there are additional clinical features or co-morbidities present. Careful evaluation of children with GDD and ID, starting with detailed history followed by a thorough examination, remain the cornerstone for etiologic diagnosis. However, when initial history and examination fail to identify a probable underlying etiology, further genetic testing is warranted. In recent years, genetic testing has been shown to be the single most important diagnostic modality for clinicians evaluating children with non-syndromic GDD/ID. In this review, we discuss different genetic testing currently available, review common underlying copy-number variants and molecular pathways, explore the recent evidence and recommendations for genetic evaluation and discuss an approach to the diagnosis and management of children with non-syndromic GDD and ID.
Collapse
|
4
|
Steinberg DJ, Aqeilan RI. WWOX-Related Neurodevelopmental Disorders: Models and Future Perspectives. Cells 2021; 10:cells10113082. [PMID: 34831305 PMCID: PMC8623516 DOI: 10.3390/cells10113082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
The WW domain-containing oxidoreductase (WWOX) gene was originally discovered as a putative tumor suppressor spanning the common fragile site FRA16D, but as time has progressed the extent of its pleiotropic function has become apparent. At present, WWOX is a major source of interest in the context of neurological disorders, and more specifically developmental and epileptic encephalopathies (DEEs). This review article aims to introduce the many model systems used through the years to study its function and roles in neuropathies. Similarities and fundamental differences between rodent and human models are discussed. Finally, future perspectives and promising research avenues are suggested.
Collapse
|
5
|
Aldaz CM, Hussain T. WWOX Loss of Function in Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2020; 21:E8922. [PMID: 33255508 PMCID: PMC7727818 DOI: 10.3390/ijms21238922] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 01/13/2023] Open
Abstract
The WWOX gene was initially discovered as a putative tumor suppressor. More recently, its association with multiple central nervous system (CNS) pathologies has been recognized. WWOX biallelic germline pathogenic variants have been implicated in spinocerebellar ataxia type 12 (SCAR12; MIM:614322) and in early infantile epileptic encephalopathy (EIEE28; MIM:616211). WWOX germline copy number variants have also been associated with autism spectrum disorder (ASD). All identified germline genomic variants lead to partial or complete loss of WWOX function. Importantly, large-scale genome-wide association studies have also identified WWOX as a risk gene for common neurodegenerative conditions such as Alzheimer's disease (AD) and multiple sclerosis (MS). Thus, the spectrum of CNS disorders associated with WWOX is broad and heterogeneous, and there is little understanding of potential mechanisms at play. Exploration of gene expression databases indicates that WWOX expression is comparatively higher in the human cerebellar cortex than in other CNS structures. However, RNA in-situ hybridization data from the Allen Mouse Brain Atlas show that specific regions of the basolateral amygdala (BLA), the medial entorhinal cortex (EC), and deep layers of the isocortex can be singled out as brain regions with specific higher levels of Wwox expression. These observations are in close agreement with single-cell RNA-seq data which indicate that neurons from the medial entorhinal cortex, Layer 5 from the frontal cortex as well as GABAergic basket cells and granule cells from cerebellar cortex are the specific neuronal subtypes that display the highest Wwox expression levels. Importantly, the brain regions and cell types in which WWOX is most abundantly expressed, such as the EC and BLA, are intimately linked to pathologies and syndromic conditions in turn associated with this gene, such as epilepsy, intellectual disability, ASD, and AD. Higher Wwox expression in interneurons and granule cells from cerebellum points to a direct link to the described cerebellar ataxia in cases of WWOX loss of function. We now know that total or partial impairment of WWOX function results in a wide and heterogeneous variety of neurodegenerative conditions for which the specific molecular mechanisms remain to be deciphered. Nevertheless, these observations indicate an important functional role for WWOX in normal development and function of the CNS. Evidence also indicates that disruption of WWOX expression at the gene or protein level in CNS has significant deleterious consequences.
Collapse
Affiliation(s)
- C. Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA;
| | | |
Collapse
|
6
|
Yang Y, Cuenca J, Wang N, Liang Z, Sun H, Gutierrez B, Xi X, Arro J, Wang Y, Fan P, Londo J, Cousins P, Li S, Fei Z, Zhong GY. A key 'foxy' aroma gene is regulated by homology-induced promoter indels in the iconic juice grape 'Concord'. HORTICULTURE RESEARCH 2020; 7:67. [PMID: 32337050 PMCID: PMC7166211 DOI: 10.1038/s41438-020-0304-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 05/25/2023]
Abstract
'Concord', the most well-known juice grape with a parentage of the North American grape species Vitis labrusca L., possesses a special 'foxy' aroma predominantly resulted from the accumulation of methyl anthranilate (MA) in berries. This aroma, however, is often perceived as an undesirable attribute by wine consumers and rarely noticeable in the common table and wine grape species V. vinifera. Here we discovered homology-induced promoter indels as a major genetic mechanism for species-specific regulation of a key 'foxy' aroma gene, anthraniloyl-CoA:methanol acyltransferase (AMAT), that is responsible for MA biosynthesis. We found the absence of a 426-bp and/or a 42-bp sequence in AMAT promoters highly associated with high levels of AMAT expression and MA accumulation in 'Concord' and other V. labrusca-derived grapes. These promoter variants, all with direct and inverted repeats, were further confirmed in more than 1,300 Vitis germplasm. Moreover, functional impact of these indels was validated in transgenic Arabidopsis. Superimposed on the promoter regulation, large structural changes including exonic insertion of a retrotransposon were present at the AMAT locus in some V. vinifera grapes. Elucidation of the AMAT genetic regulation advances our understanding of the 'foxy' aroma trait and makes it genetically trackable and amenable in grapevine breeding.
Collapse
Affiliation(s)
- Yingzhen Yang
- US Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY USA
| | - José Cuenca
- US Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY USA
- Present Address: Centro de Citricultura y Producción Vegetal. Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain
| | - Nian Wang
- US Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY USA
- Present Address: College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, Hubei China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Honghe Sun
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY USA
| | - Benjamin Gutierrez
- US Department of Agriculture-Agricultural Research Service, Plant Genetic Resources Unit, Geneva, NY USA
| | - Xiaojun Xi
- US Department of Agriculture-Agricultural Research Service, Plant Genetic Resources Unit, Geneva, NY USA
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jie Arro
- US Department of Agriculture-Agricultural Research Service, Plant Genetic Resources Unit, Geneva, NY USA
| | - Yi Wang
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peige Fan
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jason Londo
- US Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY USA
| | | | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY USA
- US Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY USA
| | - Gan-Yuan Zhong
- US Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY USA
| |
Collapse
|
7
|
Cosemans N, Vandenhove L, Vogels A, Devriendt K, Van Esch H, Van Buggenhout G, Olivié H, de Ravel T, Ortibus E, Legius E, Aerssens P, Breckpot J, R Vermeesch J, Shen S, Fitzgerald J, Gallagher L, Peeters H. The clinical relevance of intragenic NRXN1 deletions. J Med Genet 2020; 57:347-355. [PMID: 31932357 DOI: 10.1136/jmedgenet-2019-106448] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/02/2019] [Accepted: 11/17/2019] [Indexed: 11/03/2022]
Abstract
BACKGROUND Intragenic NRXN1 deletions are susceptibility variants for neurodevelopmental disorders; however, their clinical interpretation is often unclear. Therefore, a literature study and an analysis of 43 previously unpublished deletions are provided. METHODS The literature cohort covered 629 heterozygous NRXN1 deletions: 148 in controls, 341 in probands and 140 in carrier relatives, and was used for clinical hypothesis testing. Exact breakpoint determination was performed for 43 in-house deletions. RESULTS The prevalence of exonic NRXN1 deletions in controls was ~1/3000 as compared with ~1/800 in patients with neurodevelopmental/neuropsychiatric disorders. The differential distribution of deletions across the gene between controls and probands allowed to distinguish distinct areas within the gene. Exon 6-24 deletions appeared only twice in over 100000 control individuals, had an estimated penetrance for neurodevelopmental disorders of 32.43%, a de novo rate of 50% and segregated mainly with intellectual disability (ID) and schizophrenia. In contrast, exon 1-5 deletions appeared in 20 control individuals, had an estimated penetrance of 12.59%, a de novo rate of 32.5% and were reported with a broad range of neurodevelopmental phenotypes. Exact breakpoint determination revealed six recurrent intron 5 deletions. CONCLUSION Exon 6-24 deletions have a high penetrance and are mainly associated with ID and schizophrenia. In contrast, the actual contribution of exon 1-5 deletions to a neurodevelopmental/neuropsychiatric disorder in an individual patient and family remains very difficult to assess. To enhance the clinical interpretation, this study provides practical considerations for counselling and an interactive table for comparing a deletion of interest with the available literature data.
Collapse
Affiliation(s)
- Nele Cosemans
- Department of Human Genetics, KU Leuven, Leuven, Belgium.,Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | | | - Annick Vogels
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Hilde Van Esch
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Hilde Olivié
- Center for Developmental Disabilities Leuven, Leuven, Belgium
| | - Thomy de Ravel
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Els Ortibus
- Center for Developmental Disabilities Leuven, Leuven, Belgium.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Eric Legius
- Department of Human Genetics, KU Leuven, Leuven, Belgium.,Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | | | | | | | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, BioMedical Sciences Building, National University of Ireland (NUI), Galway, Ireland
| | | | - Louise Gallagher
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Hilde Peeters
- Department of Human Genetics, KU Leuven, Leuven, Belgium .,Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Del Mundo IMA, Vasquez KM, Wang G. Modulation of DNA structure formation using small molecules. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:118539. [PMID: 31491448 PMCID: PMC6851491 DOI: 10.1016/j.bbamcr.2019.118539] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023]
Abstract
Genome integrity is essential for proper cell function such that genetic instability can result in cellular dysfunction and disease. Mutations in the human genome are not random, and occur more frequently at "hotspot" regions that often co-localize with sequences that have the capacity to adopt alternative (i.e. non-B) DNA structures. Non-B DNA-forming sequences are mutagenic, can stimulate the formation of DNA double-strand breaks, and are highly enriched at mutation hotspots in human cancer genomes. Thus, small molecules that can modulate the conformations of these structure-forming sequences may prove beneficial in the prevention and/or treatment of genetic diseases. Further, the development of molecular probes to interrogate the roles of non-B DNA structures in modulating DNA function, such as genetic instability in cancer etiology are warranted. Here, we discuss reported non-B DNA stabilizers, destabilizers, and probes, recent assays to identify ligands, and the potential biological applications of these DNA structure-modulating molecules.
Collapse
Affiliation(s)
- Imee M A Del Mundo
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA.
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| |
Collapse
|
9
|
Hijazi H, Coelho FS, Gonzaga-Jauregui C, Bernardini L, Mar SS, Manning MA, Hanson-Kahn A, Naidu S, Srivastava S, Lee JA, Jones JR, Friez MJ, Alberico T, Torres B, Fang P, Cheung SW, Song X, Davis-Williams A, Jornlin C, Wight PA, Patyal P, Taube J, Poretti A, Inoue K, Zhang F, Pehlivan D, Carvalho CMB, Hobson GM, Lupski JR. Xq22 deletions and correlation with distinct neurological disease traits in females: Further evidence for a contiguous gene syndrome. Hum Mutat 2019; 41:150-168. [PMID: 31448840 DOI: 10.1002/humu.23902] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 01/24/2023]
Abstract
Xq22 deletions that encompass PLP1 (Xq22-PLP1-DEL) are notable for variable expressivity of neurological disease traits in females ranging from a mild late-onset form of spastic paraplegia type 2 (MIM# 312920), sometimes associated with skewed X-inactivation, to an early-onset neurological disease trait (EONDT) of severe developmental delay, intellectual disability, and behavioral abnormalities. Size and gene content of Xq22-PLP1-DEL vary and were proposed as potential molecular etiologies underlying variable expressivity in carrier females where two smallest regions of overlap (SROs) were suggested to influence disease. We ascertained a cohort of eight unrelated patients harboring Xq22-PLP1-DEL and performed high-density array comparative genomic hybridization and breakpoint-junction sequencing. Molecular characterization of Xq22-PLP1-DEL from 17 cases (eight herein and nine published) revealed an overrepresentation of breakpoints that reside within repeats (11/17, ~65%) and the clustering of ~47% of proximal breakpoints in a genomic instability hotspot with characteristic non-B DNA density. These findings implicate a potential role for genomic architecture in stimulating the formation of Xq22-PLP1-DEL. The correlation of Xq22-PLP1-DEL gene content with neurological disease trait in female cases enabled refinement of the associated SROs to a single genomic interval containing six genes. Our data support the hypothesis that genes contiguous to PLP1 contribute to EONDT.
Collapse
Affiliation(s)
- Hadia Hijazi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Fernanda S Coelho
- Programa de Pós-Graduação em Genética Departmento de Biologia Geral, UFMG, Belo Horizonte, Minas Gerais, Brazil.,Instituto René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | | | - Laura Bernardini
- Medical Genetics Division, IRCCS "Casa Sollievo della Sofferenza" Foundation, San Giovanni Rotondo (FG), Italy
| | - Soe S Mar
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Melanie A Manning
- Division of Medical Genetics, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California.,Department of Pathology, Stanford University School of Medicine, Palo Alto, California
| | - Andrea Hanson-Kahn
- Division of Medical Genetics, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California.,Department of Genetics, Stanford University School of Medicine, Palo Alto, California
| | - SakkuBai Naidu
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland
| | | | - Jennifer A Lee
- Molecular Diagnostic Laboratory, Greenwood Genetic Center, Greenwood, South Carolina
| | - Julie R Jones
- Molecular Diagnostic Laboratory, Greenwood Genetic Center, Greenwood, South Carolina
| | - Michael J Friez
- Molecular Diagnostic Laboratory, Greenwood Genetic Center, Greenwood, South Carolina
| | - Thomas Alberico
- Nemours Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Barbara Torres
- Medical Genetics Division, IRCCS "Casa Sollievo della Sofferenza" Foundation, San Giovanni Rotondo (FG), Italy
| | - Ping Fang
- Clinical Genomics, WuXi NextCODE, Cambridge, Massachusetts
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Angelique Davis-Williams
- Nemours Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Carly Jornlin
- Nemours Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Patricia A Wight
- Department of Physiology and Biophysics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Pankaj Patyal
- Department of Physiology and Biophysics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jennifer Taube
- Nemours Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Andrea Poretti
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Feng Zhang
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Section of Neurology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Grace M Hobson
- Nemours Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas
| |
Collapse
|
10
|
Breakpoint junction features of seven DMD deletion mutations. Hum Genome Var 2019; 6:39. [PMID: 31645977 PMCID: PMC6804640 DOI: 10.1038/s41439-019-0070-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 11/25/2022] Open
Abstract
Duchenne muscular dystrophy is an inherited muscle wasting disease with severe symptoms and onset in early childhood. Duchenne muscular dystrophy is caused by loss-of-function mutations, most commonly deletions, within the DMD gene. Characterizing the junction points of large genomic deletions facilitates a more detailed model of the origins of these mutations and allows for a greater understanding of phenotypic variations associated with particular genotypes, potentially providing insights into the deletion mechanism. Here, we report sequencing of breakpoint junctions for seven patients with intragenic, whole-exon DMD deletions. Of the seven junction sequences identified, we found one instance of a “clean” break, three instances of microhomology (2–5 bp) at the junction site, and three complex rearrangements involving local sequences. Bioinformatics analysis of the upstream and downstream breakpoint regions revealed a possible role of short inverted repeats in the initiation of some of these deletion events. Researchers in Australia have identified new examples of the genomic factors and mechanisms that lead to deletions linked with Duchenne muscular dystrophy (DMD). DMD is an inherited neuromuscular disease which causes progressive deterioration of muscles and, in some cases, intellectual impairment. Using samples from seven DMD patients, Niall Keegan of Murdoch University in Perth and colleagues sequenced the DNA left behind around the deletions in the DMD gene which cause the disease. They found one clean break, three sections with short repeated sequences, and three with more complex rearrangements. The diversity of these findings led them to suggest that the deletions resulted from a diversity of genomic factors and repair mechanisms. Future work could incorporate these findings into a model to predict where deletions will occur, expanding our understanding of DMD and its causes.
Collapse
|
11
|
Castronovo P, Baccarin M, Ricciardello A, Picinelli C, Tomaiuolo P, Cucinotta F, Frittoli M, Lintas C, Sacco R, Persico AM. Phenotypic spectrum of NRXN1 mono- and bi-allelic deficiency: A systematic review. Clin Genet 2019; 97:125-137. [PMID: 30873608 DOI: 10.1111/cge.13537] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 01/13/2023]
Abstract
Neurexins are presynaptic cell adhesion molecules critically involved in synaptogenesis and vesicular neurotransmitter release. They are encoded by three genes (NRXN1-3), each yielding a longer alpha (α) and a shorter beta (β) transcript. Deletions spanning the promoter and the initial exons of the NRXN1 gene, located in chromosome 2p16.3, are associated with a variety of neurodevelopmental, psychiatric, neurological and neuropsychological phenotypes. We have performed a systematic review to define (a) the clinical phenotypes most associated with mono-allelic exonic NRXN1 deletions, and (b) the phenotypic features of NRXN1 bi-allelic deficiency due to compound heterozygous deletions/mutations. Clinically, three major conclusions can be drawn: (a) incomplete penetrance and pleiotropy do not allow reliable predictions of clinical outcome following prenatal detection of mono-allelic exonic NRXN1 deletions. Newborn carriers should undergo periodic neuro-behavioral observations for the timely detection of warning signs and the prescription of early behavioral intervention; (b) the presence of additional independent genetic risk factors should always be sought, as they may influence prognosis; (c) children with exonic NRXN1 deletions displaying early-onset, severe psychomotor delay in the context of a Pitt-Hopkins-like syndrome 2 phenotype, should undergo DNA sequencing of the spared NRXN1 allele in search for mutations or very small insertions/deletions.
Collapse
Affiliation(s)
- Paola Castronovo
- Laboratory for Pervasive Developmental Disorders, Mafalda Luce Center, Milan, Italy
| | - Marco Baccarin
- Laboratory for Pervasive Developmental Disorders, Mafalda Luce Center, Milan, Italy
| | - Arianna Ricciardello
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| | - Chiara Picinelli
- Laboratory for Pervasive Developmental Disorders, Mafalda Luce Center, Milan, Italy
| | - Pasquale Tomaiuolo
- Laboratory for Pervasive Developmental Disorders, Mafalda Luce Center, Milan, Italy
| | - Francesca Cucinotta
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| | - Myriam Frittoli
- Laboratory for Pervasive Developmental Disorders, Mafalda Luce Center, Milan, Italy
| | - Carla Lintas
- Service for Neurodevelopmental Disorders & Laboratory of Molecular Psychiatry and Neurogenetics, University "Campus Bio-Medico", Rome, Italy
| | - Roberto Sacco
- Service for Neurodevelopmental Disorders & Laboratory of Molecular Psychiatry and Neurogenetics, University "Campus Bio-Medico", Rome, Italy
| | - Antonio M Persico
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| |
Collapse
|
12
|
Molecular basis of SERPINC1 mutations in Japanese patients with antithrombin deficiency. Thromb Res 2019; 178:159-170. [PMID: 31030036 DOI: 10.1016/j.thromres.2019.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/20/2019] [Accepted: 04/05/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Congenital antithrombin (AT) deficiency, which arises from various SERPINC1 defects, is an autosomal-dominant thrombophilic disorder associated with a high risk of recurrent venous thromboembolism. PATIENTS/METHODS We investigated SERPINC1 defects in Japanese patients with congenital AT deficiency who developed venous thromboembolism or had a family history of deep vein thrombosis. We analyzed the full DNA sequences of SERPINC1 exons and exon-intron junctions by PCR-mediated direct sequencing. If no mutation was found, multiplex ligation-dependent probe amplification (MLPA) was conducted for the relative quantification of the copy number of all exons in SERPINC1. If splice-site mutations were detected, mRNA splicing abnormalities were further investigated using an in vitro cell-based exontrap assay. RESULTS We identified 19 different SERPINC1 abnormalities, including 8 novel mutations, in 21 Japanese patients with AT deficiency. These abnormalities were distributed as follows: 9 missense mutations (42.9%), 3 nonsense mutations (14.3%), 1 splice-site mutation (4.8%), 2 small insertions (9.5%), 2 deletion mutations (9.5%) and 4 large deletions (19.0%). Cases with large deletions of SERPINC1 included Alu-mediated gene rearrangements and non-Alu-mediated complex gene rearrangements; the latter could conceivably be explained using the fork stalling and template switching (FoSTeS) model. CONCLUSIONS We identified a variety of SERPINC1 defects in Japanese patients with AT deficiency. The SERPINC1 mutations detected in patients with type I AT deficiency included single nucleotide missense or nonsense mutations, small intragenic insertions or deletions, and large genomic structural deletions. Large deletions of SERPINC1 were caused by various recurrent or non-recurrent complex genomic rearrangement mutations.
Collapse
|
13
|
Peter B, Dinu V, Liu L, Huentelman M, Naymik M, Lancaster H, Vose C, Schrauwen I. Exome Sequencing of Two Siblings with Sporadic Autism Spectrum Disorder and Severe Speech Sound Disorder Suggests Pleiotropic and Complex Effects. Behav Genet 2019; 49:399-414. [DOI: 10.1007/s10519-019-09957-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/18/2019] [Indexed: 12/19/2022]
|
14
|
Zahir FR, Tucker T, Mayo S, Brown CJ, Lim EL, Taylor J, Marra MA, Hamdan FF, Michaud JL, Friedman JM. Intragenic CNVs for epigenetic regulatory genes in intellectual disability: Survey identifies pathogenic and benign single exon changes. Am J Med Genet A 2017; 170:2916-2926. [PMID: 27748065 DOI: 10.1002/ajmg.a.37669] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/07/2016] [Indexed: 02/05/2023]
Abstract
The disruption of genes involved in epigenetic regulation is well known to cause Intellectual Disability (ID). We reported a custom microarray study that interrogated among others, the epigenetic regulatory gene-class, at single exon resolution. Here we elaborate on identified intragenic CNVs involving epigenetic regulatory genes; specifically discussing those in three genes previously unreported in ID etiology-ARID2, KDM3A, and ARID4B. The changes in ARID2 and KDM3A are likely pathogenic while the ARID4B variant is uncertain. Previously, we found a CNV involving only exon 6 of the JARID2 gene occurred apparently de novo in seven patients. JARID2 is known to cause ID and other neurodevelopmental conditions. However, exon 6 of this gene encodes one of a series of repeated motifs. We therefore, investigated the impact of this variant in two cohorts and present a genotype-phenotype assessment. We find the JARID2 exon 6 CNV is benign, with a high population frequency (>14%), but nevertheless could have a contributory effect. We also present results from an interrogation of the exomes of 2,044 patients with neurocognitive phenotypes for the incidence of potentially damaging mutation in the epigenetic regulatory gene-class. This paper provides a survey of the fine-scale CNV landscape for epigenetic regulatory genes in the context of ID, describing likely pathogenic as well as benign single exon imbalances. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Farah R Zahir
- Canada's Michael Smith Genome Sciences Center, Vancouver, British Columbia, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Tracy Tucker
- Provincial Medical Genetics Programme, Children's and Women's Health Centre of British Columbia, Vancouver, British Columbia, Canada
| | - Sonia Mayo
- Unidad de Genética y Diagnóstico Prenatal, Hospital Universitario y Politécnico La Fe. Valencia, Valencia, Spain
| | - Carolyn J Brown
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Emilia L Lim
- Canada's Michael Smith Genome Sciences Center, Vancouver, British Columbia, Canada
| | - Jonathan Taylor
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Center, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fadi F Hamdan
- CHU Sainte-Justine Research Center, Montréal, Quebec, Canada
| | | | - Jan M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
A complex intragenic rearrangement of ERCC8 in Chinese siblings with Cockayne syndrome. Sci Rep 2017; 7:44271. [PMID: 28333167 PMCID: PMC5363064 DOI: 10.1038/srep44271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/07/2017] [Indexed: 01/06/2023] Open
Abstract
Cockayne syndrome is an autosomal recessive disorder principally characterized by postnatal growth failure and progressive neurological dysfunction, due primarily to mutations in ERCC6 and ERCC8. Here, we report our diagnostic experience for two patients in a Chinese family suspected on clinical grounds to have Cockayne syndrome. Using multiple molecular techniques, including whole exome sequencing, array comparative genomic hybridization and quantitative polymerase chain reaction, we identified compound heterozygosity for a maternal splicing variant (chr5:60195556, NM_000082:c.618-2A > G) and a paternal complex deletion/inversion/deletion rearrangement removing exon 4 of ERCC8, confirming the suspected pathogenesis in these two subjects. Microhomology (TAA and AGCT) at the breakpoints indicated that microhomology-mediated FoSTeS events were involved in this complex ERCC8 rearrangement. This diagnostic experience illustrates the value of high-throughput genomic technologies combined with detailed phenotypic assessment in clinical genetic diagnosis.
Collapse
|
16
|
Flaherty EK, Brennand KJ. Using hiPSCs to model neuropsychiatric copy number variations (CNVs) has potential to reveal underlying disease mechanisms. Brain Res 2017; 1655:283-293. [PMID: 26581337 PMCID: PMC4865445 DOI: 10.1016/j.brainres.2015.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/16/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a neuropsychological disorder with a strong heritable component; genetic risk for schizophrenia is conferred by both common variants of relatively small effect and rare variants with high penetrance. Genetically engineered mouse models can recapitulate rare variants, displaying some behavioral defects associated with schizophrenia; however, these mouse models cannot recapitulate the full genetic architecture underlying the disorder. Patient-derived human induced pluripotent stem cells (hiPSCs) present an alternative approach for studying rare variants, in the context of all other risk alleles. Genome editing technologies, such as CRISPR-Cas9, enable the generation of isogenic hiPSC lines with which to examine the functional contribution of single variants within any genetic background. Studies of these rare variants using hiPSCs have the potential to identify commonly disrupted pathways in schizophrenia and allow for the identification of new therapeutic targets. This article is part of a Special Issue entitled SI:StemsCellsinPsychiatry.
Collapse
Affiliation(s)
- Erin K Flaherty
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, 1425 Madison Ave, New York, NY 10029, United States
| | - Kristen J Brennand
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, 1425 Madison Ave, New York, NY 10029, United States.
| |
Collapse
|
17
|
Effects of Replication and Transcription on DNA Structure-Related Genetic Instability. Genes (Basel) 2017; 8:genes8010017. [PMID: 28067787 PMCID: PMC5295012 DOI: 10.3390/genes8010017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/21/2016] [Accepted: 12/26/2016] [Indexed: 12/20/2022] Open
Abstract
Many repetitive sequences in the human genome can adopt conformations that differ from the canonical B-DNA double helix (i.e., non-B DNA), and can impact important biological processes such as DNA replication, transcription, recombination, telomere maintenance, viral integration, transposome activation, DNA damage and repair. Thus, non-B DNA-forming sequences have been implicated in genetic instability and disease development. In this article, we discuss the interactions of non-B DNA with the replication and/or transcription machinery, particularly in disease states (e.g., tumors) that can lead to an abnormal cellular environment, and how such interactions may alter DNA replication and transcription, leading to potential conflicts at non-B DNA regions, and eventually result in genetic stability and human disease.
Collapse
|
18
|
Saini N, Roberts SA, Klimczak LJ, Chan K, Grimm SA, Dai S, Fargo DC, Boyer JC, Kaufmann WK, Taylor JA, Lee E, Cortes-Ciriano I, Park PJ, Schurman SH, Malc EP, Mieczkowski PA, Gordenin DA. The Impact of Environmental and Endogenous Damage on Somatic Mutation Load in Human Skin Fibroblasts. PLoS Genet 2016; 12:e1006385. [PMID: 27788131 PMCID: PMC5082821 DOI: 10.1371/journal.pgen.1006385] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/23/2016] [Indexed: 12/24/2022] Open
Abstract
Accumulation of somatic changes, due to environmental and endogenous lesions, in the human genome is associated with aging and cancer. Understanding the impacts of these processes on mutagenesis is fundamental to understanding the etiology, and improving the prognosis and prevention of cancers and other genetic diseases. Previous methods relying on either the generation of induced pluripotent stem cells, or sequencing of single-cell genomes were inherently error-prone and did not allow independent validation of the mutations. In the current study we eliminated these potential sources of error by high coverage genome sequencing of single-cell derived clonal fibroblast lineages, obtained after minimal propagation in culture, prepared from skin biopsies of two healthy adult humans. We report here accurate measurement of genome-wide magnitude and spectra of mutations accrued in skin fibroblasts of healthy adult humans. We found that every cell contains at least one chromosomal rearrangement and 600–13,000 base substitutions. The spectra and correlation of base substitutions with epigenomic features resemble many cancers. Moreover, because biopsies were taken from body parts differing by sun exposure, we can delineate the precise contributions of environmental and endogenous factors to the accrual of genetic changes within the same individual. We show here that UV-induced and endogenous DNA damage can have a comparable impact on the somatic mutation loads in skin fibroblasts. Somatic genomes are constantly accumulating changes caused by endogenous lesions, errors in DNA replication and repair, as well as environmental insults. Despite the importance of somatic genome instability in aging and age-related pathologies, including cancers, accurate measurements of mutation loads in healthy cells is still missing. In this study, we developed an experimental approach to accurately determine the somatic genome changes accrued in cell lineages over the lifetime of healthy humans. We show that the amounts and types of mutations in skin cells resemble many cancers, thus indicating that the mechanisms that lead to carcinogenesis are also functional in healthy cells. Moreover, sun-exposed skin cells have a higher mutation load attributable to ultraviolet radiation (UV) unlike cells from hips that were protected by clothing. Our work provides precise measurements of the mutation loads in single cells in human skin. Furthermore our data allowed defining the mutagenic impacts of environmental and endogenous processes within the same individual and led to conclusion that these processes have a comparable impact on the somatic mutation load.
Collapse
Affiliation(s)
- Natalie Saini
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, North Carolina, United States Of America
| | - Steven A. Roberts
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States Of America
| | - Leszek J. Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, North Carolina, United States Of America
| | - Kin Chan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, North Carolina, United States Of America
| | - Sara A. Grimm
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, North Carolina, United States Of America
| | - Shuangshuang Dai
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, North Carolina, United States Of America
| | - David C. Fargo
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, North Carolina, United States Of America
| | - Jayne C. Boyer
- Department of Environmental Science and Engineering, University of North Carolina, Chapel Hill, North Carolina, United States Of America
| | - William K. Kaufmann
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States Of America
| | - Jack A. Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, North Carolina, United States Of America
| | - Eunjung Lee
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States Of America
- Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts, United States Of America
| | - Isidro Cortes-Ciriano
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States Of America
| | - Peter J. Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States Of America
- Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts, United States Of America
| | - Shepherd H. Schurman
- Clinical Research Unit, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, North Carolina, United States Of America
| | - Ewa P. Malc
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States Of America
| | - Piotr A. Mieczkowski
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States Of America
| | - Dmitry A. Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, North Carolina, United States Of America
- * E-mail:
| |
Collapse
|
19
|
Wang G, Zhao J, Vasquez KM. Detection of cis- and trans-acting Factors in DNA Structure-Induced Genetic Instability Using In silico and Cellular Approaches. Front Genet 2016; 7:135. [PMID: 27532010 PMCID: PMC4969553 DOI: 10.3389/fgene.2016.00135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/15/2016] [Indexed: 11/13/2022] Open
Abstract
Sequences that can adopt alternative DNA structures (i.e., non-B DNA) are very abundant in mammalian genomes, and recent studies have revealed many important biological functions of non-B DNA structures in chromatin remodeling, DNA replication, transcription, and genetic instability. Here, we provide results from an in silico web-based search engine coupled with cell-based experiments to characterize the roles of non-B DNA conformations in genetic instability in eukaryotes. The purpose of this article is to illustrate strategies that can be used to identify and interrogate the biological roles of non-B DNA structures, particularly on genetic instability. We have included unpublished data using a short H-DNA-forming sequence from the human c-MYC promoter region as an example, and identified two different mechanisms of H-DNA-induced genetic instability in yeast and mammalian cells: a DNA replication-related model of mutagenesis; and a replication-independent cleavage model. Further, we identified candidate proteins involved in H-DNA-induced genetic instability by using a yeast genetic screen. A combination of in silico and cellular methods, as described here, should provide further insight into the contributions of non-B DNA structures in biological functions, genetic evolution, and disease development.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute Austin, TX, USA
| | - Junhua Zhao
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute Austin, TX, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute Austin, TX, USA
| |
Collapse
|
20
|
Karagiannidis I, Tsetsos F, Padmanabhuni SS, Alexander J, Georgitsi M, Paschou P. The Genetics of Gilles de la Tourette Syndrome: a Common Aetiological Basis with Comorbid Disorders? Curr Behav Neurosci Rep 2016. [DOI: 10.1007/s40473-016-0088-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
|
22
|
Mencía Á, García M, García E, Llames S, Charlesworth A, de Lucas R, Vicente A, Trujillo-Tiebas MJ, Coto P, Costa M, Vera Á, López-Pestaña A, Murillas R, Meneguzzi G, Jorcano JL, Conti CJ, Escámez Toledano MJ, del Río Nechaevsky M. Identification of two rare and novel large deletions in ITGB4 gene causing epidermolysis bullosa with pyloric atresia. Exp Dermatol 2016; 25:269-74. [PMID: 26739954 DOI: 10.1111/exd.12938] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2015] [Indexed: 12/21/2022]
Abstract
Epidermolysis bullosa with pyloric atresia (EB-PA) is a rare autosomal recessive hereditary disease with a variable prognosis from lethal to very mild. EB-PA is classified into Simplex form (EBS-PA: OMIM #612138) and Junctional form (JEB-PA: OMIM #226730), and it is caused by mutations in ITGA6, ITGB4 and PLEC genes. We report the analysis of six patients with EB-PA, including two dizygotic twins. Skin immunofluorescence epitope mapping was performed followed by PCR and direct sequencing of the ITGB4 gene. Two of the patients presented with non-lethal EB-PA associated with missense ITGB4 gene mutations. For the other four, early postnatal demise was associated with complete lack of β4 integrin due to a variety of ITGB4 novel mutations (2 large deletions, 1 splice-site mutation and 3 missense mutations). One of the deletions spanned 278 bp, being one of the largest reported to date for this gene. Remarkably, we also found for the first time a founder effect for one novel mutation in the ITGB4 gene. We have identified 6 novel mutations in the ITGB4 gene to be added to the mutation database. Our results reveal genotype-phenotype correlations that contribute to the molecular understanding of this heterogeneous disease, a pivotal issue for prognosis and for the development of novel evidence-based therapeutic options for EB management.
Collapse
Affiliation(s)
- Ángeles Mencía
- Department of Bioengineering, Tissue Engineering and Regenerative Medicine Group (TERMeG), Universidad Carlos III de Madrid, Madrid, Spain.,Regenerative Medicine Unit, Centro de Investigaciones Energética Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Instituto de Investigación Sanitaria de la Fundación Jimenez Diaz (IIS-FJD), Madrid, Spain
| | - Marta García
- Department of Bioengineering, Tissue Engineering and Regenerative Medicine Group (TERMeG), Universidad Carlos III de Madrid, Madrid, Spain.,Regenerative Medicine Unit, Centro de Investigaciones Energética Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Instituto de Investigación Sanitaria de la Fundación Jimenez Diaz (IIS-FJD), Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Eva García
- Instituto de Investigación Sanitaria de la Fundación Jimenez Diaz (IIS-FJD), Madrid, Spain.,Laboratorio de Ingeniería de Tejidos, Centro Comunitario de Sangre y Tejidos de Asturias (CCST) Asturias, Oviedo, Spain
| | - Sara Llames
- Instituto de Investigación Sanitaria de la Fundación Jimenez Diaz (IIS-FJD), Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Laboratorio de Ingeniería de Tejidos, Centro Comunitario de Sangre y Tejidos de Asturias (CCST) Asturias, Oviedo, Spain
| | - Alexandra Charlesworth
- French Reference Centre for Inherited Epidermolysis Bullosa, L'Archet Hospital, BP 3079, 06202, Nice, Cedex3, France
| | - Raúl de Lucas
- Sección de Dermatología, Hospital Universitario La Paz, Madrid, Spain
| | - Asunción Vicente
- Servicio de Dermatología, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - María José Trujillo-Tiebas
- Instituto de Investigación Sanitaria de la Fundación Jimenez Diaz (IIS-FJD), Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria de la Fundación Jimenez Diaz (IIS-FJD), Hospital Universitario Jiménez Díaz, Madrid, Spain
| | - Pablo Coto
- Servicio de Dermatología y Neonatología, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Marta Costa
- Servicio de Dermatología y Neonatología, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Ángel Vera
- Servicio de Dermatología, Complejo Hospitalario Carlos Haya, Málaga, Spain
| | | | - Rodolfo Murillas
- Regenerative Medicine Unit, Centro de Investigaciones Energética Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Instituto de Investigación Sanitaria de la Fundación Jimenez Diaz (IIS-FJD), Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Guerrino Meneguzzi
- INSERM U1081, CNRS UMR7284, University of Nice, Sophia Antipolis, Faculty of Medicine, 28 Avenue Valombrose, F-06107, Nice, France
| | - José Luis Jorcano
- Department of Bioengineering, Tissue Engineering and Regenerative Medicine Group (TERMeG), Universidad Carlos III de Madrid, Madrid, Spain.,Regenerative Medicine Unit, Centro de Investigaciones Energética Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Claudio J Conti
- Department of Bioengineering, Tissue Engineering and Regenerative Medicine Group (TERMeG), Universidad Carlos III de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria de la Fundación Jimenez Diaz (IIS-FJD), Madrid, Spain
| | - María José Escámez Toledano
- Department of Bioengineering, Tissue Engineering and Regenerative Medicine Group (TERMeG), Universidad Carlos III de Madrid, Madrid, Spain.,Regenerative Medicine Unit, Centro de Investigaciones Energética Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Instituto de Investigación Sanitaria de la Fundación Jimenez Diaz (IIS-FJD), Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Marcela del Río Nechaevsky
- Department of Bioengineering, Tissue Engineering and Regenerative Medicine Group (TERMeG), Universidad Carlos III de Madrid, Madrid, Spain.,Regenerative Medicine Unit, Centro de Investigaciones Energética Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Instituto de Investigación Sanitaria de la Fundación Jimenez Diaz (IIS-FJD), Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| |
Collapse
|
23
|
Erickson RP. The importance of de novo mutations for pediatric neurological disease--It is not all in utero or birth trauma. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 767:42-58. [PMID: 27036065 DOI: 10.1016/j.mrrev.2015.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 01/30/2023]
Abstract
The advent of next generation sequencing (NGS, which consists of massively parallel sequencing to perform TGS (total genome sequencing) or WES (whole exome sequencing)) has abundantly discovered many causative mutations in patients with pediatric neurological disease. A surprisingly high number of these are de novo mutations which have not been inherited from either parent. For epilepsy, autism spectrum disorders, and neuromotor disorders, including cerebral palsy, initial estimates put the frequency of causative de novo mutations at about 15% and about 10% of these are somatic. There are some shared mutated genes between these three classes of disease. Studies of copy number variation by comparative genomic hybridization (CGH) proceded the NGS approaches but they also detect de novo variation which is especially important for ASDs. There are interesting differences between the mutated genes detected by CGS and NGS. In summary, de novo mutations cause a very significant proportion of pediatric neurological disease.
Collapse
Affiliation(s)
- Robert P Erickson
- Dept. of Pediatrics, University of Arizona College of Medicine, Tucson, AZ 85724, United States.
| |
Collapse
|
24
|
Yoo H. Genetics of Autism Spectrum Disorder: Current Status and Possible Clinical Applications. Exp Neurobiol 2015; 24:257-72. [PMID: 26713075 PMCID: PMC4688327 DOI: 10.5607/en.2015.24.4.257] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/02/2015] [Accepted: 12/02/2015] [Indexed: 12/18/2022] Open
Abstract
Autism spectrum disorder (ASD) is one of the most complex behavioral disorders with a strong genetic influence. The objectives of this article are to review the current status of genetic research in ASD, and to provide information regarding the potential candidate genes, mutations, and genetic loci possibly related to pathogenesis in ASD. Investigations on monogenic causes of ASD, candidate genes among common variants, rare de novo mutations, and copy number variations are reviewed. The current possible clinical applications of the genetic knowledge and their future possibilities are highlighted.
Collapse
Affiliation(s)
- Heejeong Yoo
- Department of Psychiatry, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea
| |
Collapse
|
25
|
Hsiao MC, Piotrowski A, Callens T, Fu C, Wimmer K, Claes KBM, Messiaen L. Decoding NF1 Intragenic Copy-Number Variations. Am J Hum Genet 2015; 97:238-49. [PMID: 26189818 DOI: 10.1016/j.ajhg.2015.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/05/2015] [Indexed: 11/30/2022] Open
Abstract
Genomic rearrangements can cause both Mendelian and complex disorders. Currently, several major mechanisms causing genomic rearrangements, such as non-allelic homologous recombination (NAHR), non-homologous end joining (NHEJ), fork stalling and template switching (FoSTeS), and microhomology-mediated break-induced replication (MMBIR), have been proposed. However, to what extent these mechanisms contribute to gene-specific pathogenic copy-number variations (CNVs) remains understudied. Furthermore, few studies have resolved these pathogenic alterations at the nucleotide-level. Accordingly, our aim was to explore which mechanisms contribute to a large, unique set of locus-specific non-recurrent genomic rearrangements causing the genetic neurocutaneous disorder neurofibromatosis type 1 (NF1). Through breakpoint-spanning PCR as well as array comparative genomic hybridization, we have identified the breakpoints in 85 unrelated individuals carrying an NF1 intragenic CNV. Furthermore, we characterized the likely rearrangement mechanisms of these 85 CNVs, along with those of two additional previously published NF1 intragenic CNVs. Unlike the most typical recurrent rearrangements mediated by flanking low-copy repeats (LCRs), NF1 intragenic rearrangements vary in size, location, and rearrangement mechanisms. We propose the DNA-replication-based mechanisms comprising both FoSTeS and/or MMBIR and serial replication stalling to be the predominant mechanisms leading to NF1 intragenic CNVs. In addition to the loop within a 197-bp palindrome located in intron 40, four Alu elements located in introns 1, 2, 3, and 50 were also identified as intragenic-rearrangement hotspots within NF1.
Collapse
Affiliation(s)
- Meng-Chang Hsiao
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Arkadiusz Piotrowski
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Tom Callens
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chuanhua Fu
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Katharina Wimmer
- Division of Human Genetics, Medical University Innsbruck, Peter-Mayr-Straße 1, 6020 Innsbruck, Austria
| | - Kathleen B M Claes
- Center for Medical Genetics, Ghent University Hospital, De Pintelaan, 185 9000 Gent, Belgium
| | - Ludwine Messiaen
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
26
|
Kirov G. CNVs in neuropsychiatric disorders. Hum Mol Genet 2015; 24:R45-9. [PMID: 26130694 DOI: 10.1093/hmg/ddv253] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/26/2015] [Indexed: 02/03/2023] Open
Abstract
Over the last few years at least 11 copy number variations (CNVs) have been shown convincingly to increase risk to developing schizophrenia: deletions at 1q21.1, NRXN1, 3q29, 15q11.2, 15q13.3 and 22q11.2, and duplications at 1q21.1, 7q11.23, 15q11.2-q13.1, 16p13.1 and proximal 16p11.2. They are very rare, found cumulatively in 2.4% of patients with schizophrenia and in only 0.5% of controls. They all increase risk for other neurodevelopmental disorders, such as developmental delay and autism spectrum disorders, where they are found at higher rates (3.3%). Their involvement in bipolar affective disorder is much less prominent. All of them affect multiple genes (apart from NRXN1) and cause substantial increases in risk to develop schizophrenia (odds ratios of 2 to over 50). Their penetrance for any neurodevelopmental disorder is high, from ∼10% to nearly 100%. Carriers of these CNVs display cognitive deficits, even when free of neuropsychiatric disorders.
Collapse
Affiliation(s)
- George Kirov
- Cardiff University, MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
| |
Collapse
|
27
|
van Rahden V, Fernandez-Vizarra E, Alawi M, Brand K, Fellmann F, Horn D, Zeviani M, Kutsche K. Mutations in NDUFB11, encoding a complex I component of the mitochondrial respiratory chain, cause microphthalmia with linear skin defects syndrome. Am J Hum Genet 2015; 96:640-50. [PMID: 25772934 DOI: 10.1016/j.ajhg.2015.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/02/2015] [Indexed: 01/07/2023] Open
Abstract
Microphthalmia with linear skin defects (MLS) syndrome is an X-linked male-lethal disorder also known as MIDAS (microphthalmia, dermal aplasia, and sclerocornea). Additional clinical features include neurological and cardiac abnormalities. MLS syndrome is genetically heterogeneous given that heterozygous mutations in HCCS or COX7B have been identified in MLS-affected females. Both genes encode proteins involved in the structure and function of complexes III and IV, which form the terminal segment of the mitochondrial respiratory chain (MRC). However, not all individuals with MLS syndrome carry a mutation in either HCCS or COX7B. The majority of MLS-affected females have severe skewing of X chromosome inactivation, suggesting that mutations in HCCS, COX7B, and other as-yet-unidentified X-linked gene(s) cause selective loss of cells in which the mutated X chromosome is active. By applying whole-exome sequencing and filtering for X-chromosomal variants, we identified a de novo nonsense mutation in NDUFB11 (Xp11.23) in one female individual and a heterozygous 1-bp deletion in a second individual, her asymptomatic mother, and an affected aborted fetus of the subject's mother. NDUFB11 encodes one of 30 poorly characterized supernumerary subunits of NADH:ubiquinone oxidoreductase, known as complex I (cI), the first and largest enzyme of the MRC. By shRNA-mediated NDUFB11 knockdown in HeLa cells, we demonstrate that NDUFB11 is essential for cI assembly and activity as well as cell growth and survival. These results demonstrate that X-linked genetic defects leading to the complete inactivation of complex I, III, or IV underlie MLS syndrome. Our data reveal an unexpected role of cI dysfunction in a developmental phenotype, further underscoring the existence of a group of mitochondrial diseases associated with neurocutaneous manifestations.
Collapse
|
28
|
Chen L, Zhou W, Zhang L, Zhang F. Genome architecture and its roles in human copy number variation. Genomics Inform 2014; 12:136-44. [PMID: 25705150 PMCID: PMC4330246 DOI: 10.5808/gi.2014.12.4.136] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/12/2014] [Accepted: 11/12/2014] [Indexed: 02/06/2023] Open
Abstract
Besides single-nucleotide variants in the human genome, large-scale genomic variants, such as copy number variations (CNVs), are being increasingly discovered as a genetic source of human diversity and the pathogenic factors of diseases. Recent experimental findings have shed light on the links between different genome architectures and CNV mutagenesis. In this review, we summarize various genomic features and discuss their contributions to CNV formation. Genomic repeats, including both low-copy and high-copy repeats, play important roles in CNV instability, which was initially known as DNA recombination events. Furthermore, it has been found that human genomic repeats can also induce DNA replication errors and consequently result in CNV mutations. Some recent studies showed that DNA replication timing, which reflects the high-order information of genomic organization, is involved in human CNV mutations. Our review highlights that genome architecture, from DNA sequence to high-order genomic organization, is an important molecular factor in CNV mutagenesis and human genomic instability.
Collapse
Affiliation(s)
- Lu Chen
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Weichen Zhou
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ling Zhang
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Feng Zhang
- School of Life Sciences, Fudan University, Shanghai 200438, China. ; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| |
Collapse
|
29
|
Abstract
Available research data in Autism suggests the role of a network of brain areas, often known as the ‘social brain’. Recent studies highlight the role of genetic mutations as underlying patho-mechanism in Autism. This mini review, discusses the basic concepts behind social brain networks, theory of mind and genetic factors associated with Autism. It critically evaluates and explores the relationship between the behavioral outcomes and genetic factors providing a conceptual framework for understanding of autism.
Collapse
|
30
|
Genomic and genetic aspects of autism spectrum disorder. Biochem Biophys Res Commun 2014; 452:244-53. [PMID: 25173933 DOI: 10.1016/j.bbrc.2014.08.108] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/21/2014] [Indexed: 01/22/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a strong genetic component. The past decade has witnessed tremendous progress in the genetic studies of ASD. In this article, we review the accumulating literatures on the monogenic forms of ASD and chromosomal abnormalities associated with ASD, the genome-wide linkage and association studies, the copy number variation (CNV) and the next generation sequencing (NGS) studies. With more than hundreds of mutations being implicated, the convergent biological pathways are emerging and the genetic landscape of ASD becomes clearer. The genetic studies provide a solid basis for future translational study for better diagnoses, intervention and treatment of ASD.
Collapse
|
31
|
Jenkins A, Apud JA, Zhang F, Decot H, Weinberger DR, Law AJ. Identification of candidate single-nucleotide polymorphisms in NRXN1 related to antipsychotic treatment response in patients with schizophrenia. Neuropsychopharmacology 2014; 39:2170-8. [PMID: 24633560 PMCID: PMC4104334 DOI: 10.1038/npp.2014.65] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/20/2014] [Accepted: 03/09/2014] [Indexed: 12/22/2022]
Abstract
Neurexins are presynaptic neuronal adhesion molecules that interact with postsynaptic neuroligins to form an inter-synaptic complex required for synaptic specification and efficient neurotransmission. Deletions and point mutations in the neurexin 1 (NRXN1) gene are associated with a broad spectrum of neuropsychiatric and neurodevelopmental disorders, including autism, intellectual disability, epilepsy, developmental delay, and schizophrenia. Recently, small nucleotide polymorphisms in NRXN1 have been associated with antipsychotic drug response in patients with schizophrenia. Based on previous suggestive evidence of an impact on clozapine response in patients with schizophrenia, we conducted an association study of NRXN1 polymorphisms (rs12467557 and rs10490162) with antipsychotic treatment response in 54 patients with schizophrenia in a double blind, placebo-controlled NIMH inpatient crossover trial and examined for association with risk for schizophrenia in independent case-control and family-based clinical cohorts. Pharmacogenetic analysis in the placebo controlled trial revealed significant association of rs12467557and rs10490162 with drug response, whereby individuals homozygous for the A allele, at either SNP, showed significant improvement in positive symptoms, general psychopathology, thought disturbance, and negative symptoms, whereas patients carrying the G allele showed no overall response. Although we did not find evidence of the same NRXN1 SNPs being associated with results of the NIMH sponsored CATIE trial, other SNPs showed weakly positive signals. The family and case-control analyses for schizophrenia risk were negative. Our results provide confirmatory evidence of genetically determined differences in drug response in patients with schizophrenia related to NRXN1 variation. Furthermore, these findings potentially implicate NRXN1 in the therapeutic actions of antipsychotic drugs.
Collapse
Affiliation(s)
- Aaron Jenkins
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, National Institute of Health, National Institutes of Health, Bethesda, MD, USA,University of Kentucky College of Medicine, Lexington, KY, USA
| | - José A Apud
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, National Institute of Health, National Institutes of Health, Bethesda, MD, USA
| | - Fengyu Zhang
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Heather Decot
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, National Institute of Health, National Institutes of Health, Bethesda, MD, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA,Departments of Psychiatry, Neurology, Neuroscience and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Amanda J Law
- Departments of Psychiatry and Cell and Developmental Biology, University of Colorado, School of Medicine, Aurora, CO, USA,Departments of Psychiatry and Cell and Developmental Biology, University of Colorado, School of Medicine, Mailstop 8344, RC1 North, RM. 8101, Aurora, CO 80045, USA, Tel: +1 303 724 4418, Fax: +1 303 724 4425, E-mail:
| |
Collapse
|
32
|
Abstract
Repetitive genomic sequences can adopt a number of alternative DNA structures that differ from the canonical B-form duplex (i.e. non-B DNA). These non-B DNA-forming sequences have been shown to have many important biological functions related to DNA metabolic processes; for example, they may have regulatory roles in DNA transcription and replication. In addition to these regulatory functions, non-B DNA can stimulate genetic instability in the presence or absence of DNA damage, via replication-dependent and/or replication-independent pathways. This review focuses on the interactions of non-B DNA conformations with DNA repair proteins and how these interactions impact genetic instability.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States.
| |
Collapse
|
33
|
Vogt J, Bengesser K, Claes KBM, Wimmer K, Mautner VF, van Minkelen R, Legius E, Brems H, Upadhyaya M, Högel J, Lazaro C, Rosenbaum T, Bammert S, Messiaen L, Cooper DN, Kehrer-Sawatzki H. SVA retrotransposon insertion-associated deletion represents a novel mutational mechanism underlying large genomic copy number changes with non-recurrent breakpoints. Genome Biol 2014; 15:R80. [PMID: 24958239 PMCID: PMC4229983 DOI: 10.1186/gb-2014-15-6-r80] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/02/2014] [Indexed: 01/06/2023] Open
Abstract
Background Genomic disorders are caused by copy number changes that may exhibit recurrent breakpoints processed by nonallelic homologous recombination. However, region-specific disease-associated copy number changes have also been observed which exhibit non-recurrent breakpoints. The mechanisms underlying these non-recurrent copy number changes have not yet been fully elucidated. Results We analyze large NF1 deletions with non-recurrent breakpoints as a model to investigate the full spectrum of causative mechanisms, and observe that they are mediated by various DNA double strand break repair mechanisms, as well as aberrant replication. Further, two of the 17 NF1 deletions with non-recurrent breakpoints, identified in unrelated patients, occur in association with the concomitant insertion of SINE/variable number of tandem repeats/Alu (SVA) retrotransposons at the deletion breakpoints. The respective breakpoints are refractory to analysis by standard breakpoint-spanning PCRs and are only identified by means of optimized PCR protocols designed to amplify across GC-rich sequences. The SVA elements are integrated within SUZ12P intron 8 in both patients, and were mediated by target-primed reverse transcription of SVA mRNA intermediates derived from retrotranspositionally active source elements. Both SVA insertions occurred during early postzygotic development and are uniquely associated with large deletions of 1 Mb and 867 kb, respectively, at the insertion sites. Conclusions Since active SVA elements are abundant in the human genome and the retrotranspositional activity of many SVA source elements is high, SVA insertion-associated large genomic deletions encompassing many hundreds of kilobases could constitute a novel and as yet under-appreciated mechanism underlying large-scale copy number changes in the human genome.
Collapse
|
34
|
The role of microhomology in genomic structural variation. Trends Genet 2014; 30:85-94. [PMID: 24503142 DOI: 10.1016/j.tig.2014.01.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/03/2014] [Accepted: 01/05/2014] [Indexed: 02/06/2023]
Abstract
Genomic structural variation, which can be defined as differences in the copy number, orientation, or location of relatively large DNA segments, is not only crucial in evolution, but also gives rise to genomic disorders. Whereas the major mechanisms that generate structural variation have been well characterised, insights into additional mechanisms are emerging from the identification of short regions of DNA sequence homology, also known as microhomology, at chromosomal breakpoints. In addition, functional studies are elucidating the characteristics of microhomology-mediated pathways, which are mutagenic. Here, we describe the features and mechanistic models of microhomology-mediated events, discuss their physiological and pathological significance, and highlight recent advances in this rapidly evolving field of research.
Collapse
|
35
|
Enggaard Hoeffding LK, Hansen T, Ingason A, Doung L, Thygesen JH, Møller RS, Tommerup N, Kirov G, Rujescu D, Larsen LA, Werge T. Sequence analysis of 17 NRXN1 deletions. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:52-61. [PMID: 24339137 DOI: 10.1002/ajmg.b.32204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/27/2013] [Indexed: 11/06/2022]
Abstract
BACKGROUND Genome instability plays fundamental roles in human evolution and phenotypic variation within our population. This instability leads to genomic rearrangements that are involved in a wide variety of human disorders, including congenital and neurodevelopmental disorders, and cancers. Insight into the molecular mechanisms governing such genomic rearrangements may increase our understanding of disease pathology and evolutionary processes. Here we analyse 17 carriers of non-recurrent deletions in the NRXN1 gene, which have been associated with neurodevelopmental disorders, e.g. schizophrenia, autism and epilepsies. METHODS 17 non-recurrent NRXN1 deletions identified by GWA were sequenced to map the breakpoints of each. Meme … etc. was used to identify shared patterns between the deletions and compare these were previously studies on non-recurrent deletions. RESULTS We discovered two novel sequence motifs shared between all 17 NRXN1 deletions and a significantly higher AT nucleotide content at the breakpoints, compared to the overall nucleotide content on chromosome 2. We found different alteration of sequence at the breakpoint; small insertions and duplications giving rise to short microhomology sequences. CONCLUSIONS No single mechanism seems to be implicated in the deletion events, but the results suggest that NHEJ, FoSTeS or MMBIR is implicated. The two novel sequence motifs together with a high AT content in all in NRXN1 deletions may lead to increased instability leading to a increase susceptibility to a single stranded structures. This favours potentially repaired by NHEJ mechanism of double strand breaks or may leading to replication errors. © 2013 Wiley Periodicals, Inc.
Collapse
|
36
|
Lionel AC, Tammimies K, Vaags AK, Rosenfeld JA, Ahn JW, Merico D, Noor A, Runke CK, Pillalamarri VK, Carter MT, Gazzellone MJ, Thiruvahindrapuram B, Fagerberg C, Laulund LW, Pellecchia G, Lamoureux S, Deshpande C, Clayton-Smith J, White AC, Leather S, Trounce J, Melanie Bedford H, Hatchwell E, Eis PS, Yuen RKC, Walker S, Uddin M, Geraghty MT, Nikkel SM, Tomiak EM, Fernandez BA, Soreni N, Crosbie J, Arnold PD, Schachar RJ, Roberts W, Paterson AD, So J, Szatmari P, Chrysler C, Woodbury-Smith M, Brian Lowry R, Zwaigenbaum L, Mandyam D, Wei J, Macdonald JR, Howe JL, Nalpathamkalam T, Wang Z, Tolson D, Cobb DS, Wilks TM, Sorensen MJ, Bader PI, An Y, Wu BL, Musumeci SA, Romano C, Postorivo D, Nardone AM, Monica MD, Scarano G, Zoccante L, Novara F, Zuffardi O, Ciccone R, Antona V, Carella M, Zelante L, Cavalli P, Poggiani C, Cavallari U, Argiropoulos B, Chernos J, Brasch-Andersen C, Speevak M, Fichera M, Ogilvie CM, Shen Y, Hodge JC, Talkowski ME, Stavropoulos DJ, Marshall CR, Scherer SW. Disruption of the ASTN2/TRIM32 locus at 9q33.1 is a risk factor in males for autism spectrum disorders, ADHD and other neurodevelopmental phenotypes. Hum Mol Genet 2013; 23:2752-68. [PMID: 24381304 DOI: 10.1093/hmg/ddt669] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Rare copy number variants (CNVs) disrupting ASTN2 or both ASTN2 and TRIM32 have been reported at 9q33.1 by genome-wide studies in a few individuals with neurodevelopmental disorders (NDDs). The vertebrate-specific astrotactins, ASTN2 and its paralog ASTN1, have key roles in glial-guided neuronal migration during brain development. To determine the prevalence of astrotactin mutations and delineate their associated phenotypic spectrum, we screened ASTN2/TRIM32 and ASTN1 (1q25.2) for exonic CNVs in clinical microarray data from 89 985 individuals across 10 sites, including 64 114 NDD subjects. In this clinical dataset, we identified 46 deletions and 12 duplications affecting ASTN2. Deletions of ASTN1 were much rarer. Deletions near the 3' terminus of ASTN2, which would disrupt all transcript isoforms (a subset of these deletions also included TRIM32), were significantly enriched in the NDD subjects (P = 0.002) compared with 44 085 population-based controls. Frequent phenotypes observed in individuals with such deletions include autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), speech delay, anxiety and obsessive compulsive disorder (OCD). The 3'-terminal ASTN2 deletions were significantly enriched compared with controls in males with NDDs, but not in females. Upon quantifying ASTN2 human brain RNA, we observed shorter isoforms expressed from an alternative transcription start site of recent evolutionary origin near the 3' end. Spatiotemporal expression profiling in the human brain revealed consistently high ASTN1 expression while ASTN2 expression peaked in the early embryonic neocortex and postnatal cerebellar cortex. Our findings shed new light on the role of the astrotactins in psychopathology and their interplay in human neurodevelopment.
Collapse
|
37
|
Rogers FA, Tiwari MK. Triplex-induced DNA damage response. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2013; 86:471-8. [PMID: 24348211 PMCID: PMC3848101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Cellular DNA damage response is critical to preserving genomic integrity following exposure to genotoxic stress. A complex series of networks and signaling pathways become activated after DNA damage and trigger the appropriate cellular response, including cell cycle arrest, DNA repair, and apoptosis. The response elicited is dependent upon the type and extent of damage sustained, with the ultimate goal of preventing propagation of the damaged DNA. A major focus of our studies is to determine the cellular pathways involved in processing damage induced by altered helical structures, specifically triplexes. Our lab has demonstrated that the TFIIH factor XPD occupies a central role in triggering apoptosis in response to triplex-induced DNA strand breaks. We have shown that XPD co-localizes with γH2AX, and its presence is required for the phosphorylation of H2AX tyrosine142, which stimulates the signaling pathway to recruit pro-apoptotic factors to the damage site. Herein, we examine the cellular pathways activated in response to triplex formation and discuss our finding that suggests that XPD-dependent apoptosis plays a role in preserving genomic integrity in the presence of excessive structurally induced DNA damage.
Collapse
Affiliation(s)
- Faye A. Rogers
- To whom all correspondence should be
addressed: Faye A. Rogers, Department of Therapeutic Radiology, 15 York St., HRT
213B, New Haven, CT 06520; Tele: 203-737-3658; Fax: 203-737-6309;
| | | |
Collapse
|
38
|
|
39
|
Zhou W, Zhang F, Chen X, Shen Y, Lupski JR, Jin L. Increased genome instability in human DNA segments with self-chains: homology-induced structural variations via replicative mechanisms. Hum Mol Genet 2013; 22:2642-51. [PMID: 23474816 DOI: 10.1093/hmg/ddt113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Environmental factors including ionizing radiation and chemical agents have been known to be able to induce DNA rearrangements and cause genomic structural variations (SVs); however, the roles of intrinsic characteristics of the human genome, such as regional genome architecture, in SV formation and the potential mechanisms underlying genomic instability remain to be further elucidated. Recently, locus-specific observations showed that 'self-chain' (SC), a group of short low-copy repeats (LCRs) in the human genome, can induce autism-associated SV mutations of the MECP2 and NRXN1 genes. In this study, we conducted a genome-wide analysis to investigate SCs and their potential roles in genomic SV formation. Utilizing a vast amount of human SV data, we observed a significant biased distribution of human germline SV breakpoints to SC regions. Notably, the breakpoint distribution pattern is different between SV types across deletion, duplication, inversion and insertion. Our observations were coincident with a mechanism of SC-induced DNA replicative errors, whereas SC may sporadically be used as substrates of nonallelic homologous recombination (NAHR). This contention was further supported by our consistent findings in somatic SV mutations of cancer genomes, suggesting a general mechanism of SC-induced genome instability in human germ and somatic cells.
Collapse
Affiliation(s)
- Weichen Zhou
- State Key Laboratory of Genetic Engineering and Ministry of Education, Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|