1
|
Niida H, Ito M, Iijima K, Motegi A, Ogihara R, Akiyama H, Uchida C, Sakai S, Ohhata T, Hatano A, Hirose M, Ogura A, Matsumoto M, McDonald N, Kitagawa M. CARM1/PRMT4 facilitates XPF-ERCC1 heterodimer assembly and maintains nucleotide excision repair activity. Nucleic Acids Res 2025; 53:gkaf355. [PMID: 40304182 PMCID: PMC12041854 DOI: 10.1093/nar/gkaf355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025] Open
Abstract
The structure-specific endonuclease, XPF-ERCC1, plays a central role in DNA damage repair. This nuclease is known to be important for nucleotide excision repair, interstrand crosslink repair, and DNA double-strand repair. We found that the arginine methyltransferase, CARM1/PRMT4, is essential for XPF stabilization and maintenance of intracellular protein levels. Loss of CARM1 results in a decrease in XPF protein levels and a concomitant decrease in ERCC1 protein. A similar destabilization of XPF protein was observed in cells expressing a mutant in which XPF arginine 568 was replaced by lysine. Loss of CARM1 impaired XPF-ERCC1 accumulation at the site of damage and delayed removal of cyclobutane pyrimidine dimers by UV. As a result, CARM1-deficient cells showed increased UV sensitivity. Our results provide insight into the importance of CARM1 not only in the mechanism of XPF-ERCC1 complex stabilization but also in the maintenance of genome stability.
Collapse
Affiliation(s)
- Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka 431-3192, Japan
| | - Masahiko Ito
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kenta Iijima
- Laboratory Animal Facilities and Services, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka 431-3192, Japan
| | - Akira Motegi
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Kyoto 606-8501, Japan
| | - Rin Ogihara
- Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka 431-3192, Japan
| | - Hironobu Akiyama
- Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka 431-3192, Japan
| | - Chiharu Uchida
- Advanced Research Facilities and Services, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka 431-3192, Japan
| | - Satoshi Sakai
- Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tatsuya Ohhata
- Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka 431-3192, Japan
| | - Atsushi Hatano
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Michiko Hirose
- Bioresource Engineering Division, RIKEN BioResource Research Center, Ibaraki 305-0074, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, RIKEN BioResource Research Center, Ibaraki 305-0074, Japan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Neil Q McDonald
- Institute of Structural and Molecular Biology, School of Natural Sciences, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
- Signalling and Structural Biology Laboratory, Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka 431-3192, Japan
- Molecular Targeting Laboratory, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
2
|
Muffels IJJ, Waterham HR, D'Alessandro G, Zagnoli-Vieira G, Sacher M, Lefeber DJ, Van der Vinne C, Roifman CM, Gassen KLI, Rehmann H, Van Haaften-Visser DY, Nieuwenhuis ESS, Jackson SP, Fuchs SA, Wijk F, van Hasselt P. Imaging flow cytometry-based cellular screening elucidates pathophysiology in individuals with Variants of Uncertain Significance. Genome Med 2025; 17:12. [PMID: 39920830 PMCID: PMC11806768 DOI: 10.1186/s13073-025-01433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 01/20/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Deciphering variants of uncertain significance (VUS) represents a major diagnostic challenge, partially due to the lack of easy-to-use and versatile cellular readouts that aid the interpretation of pathogenicity and pathophysiology. To address this challenge, we propose a high-throughput screening of cellular functionality through an imaging flow cytometry (IFC)-based platform. METHODS Six assays to evaluate autophagic-, lysosomal-, Golgi- health, mitochondrial function, ER stress, and NF-κβ activity were developed in fibroblasts. Assay sensitivity was verified with compounds (N = 5) and positive control patients (N = 6). Eight healthy controls and 20 individuals with VUS were screened. RESULTS All molecular compounds and positive controls showed significant changes on their cognate assays, confirming assay sensitivity. Simultaneous screening of positive control patients on all six assays revealed distinct phenotypic profiles. In addition, individuals with VUS(es) in well-known disease genes showed distinct - but similar-phenotypic profiles compared to patients with pathogenic variants in the same gene.. For all individuals with VUSes in Genes of Uncertain Significance (GUS), we found one or more of six assays were significantly altered. Broadening the screening to an untargeted approach led to the identification of two clusters that allowed for the recognition of altered cell cycle dynamics and DNA damage repair defects. Experimental follow-up of the 'DNA damage repair defect cluster' led to the discovery of highly specific defects in top2cc release from double-strand DNA breaks in one of these individuals, harboring a VUS in the RAD54L2 gene. CONCLUSIONS Our high-throughput IFC-based platform simplifies the process of identifying VUS pathogenicity through six assays and allows for the recognition of useful pathophysiological markers that structure follow-up experiments, thereby representing a novel valuable tool for precise functional diagnostics in genomics.
Collapse
Affiliation(s)
- Irena Josephina Johanna Muffels
- Department of Metabolic Diseases, Division Pediatrics, Wilhelmina Children's Hospital University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Hans R Waterham
- United For Metabolic Diseases (UMD), Amsterdam, the Netherlands
- Department of Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | | | - Guido Zagnoli-Vieira
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Michael Sacher
- Department of Biology, Concordia University, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Dirk J Lefeber
- Translational Metabolic Laboratory, Department of Neurology, Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Celine Van der Vinne
- Department of Metabolic Diseases, Division Pediatrics, Wilhelmina Children's Hospital University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Chaim M Roifman
- The Hospital for Sick Children and Research Institute, The University of Toronto, Toronto, Canada
| | - Koen L I Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Holger Rehmann
- Department of Energy and Biotechnology, Flensburg University of Applied Sciences, Flensburg, Germany
| | - Desiree Y Van Haaften-Visser
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Edward S S Nieuwenhuis
- Department of Metabolic Diseases, Division Pediatrics, Wilhelmina Children's Hospital University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
- Center for Rare Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Stephen P Jackson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Sabine A Fuchs
- Department of Metabolic Diseases, Division Pediatrics, Wilhelmina Children's Hospital University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Femke Wijk
- Center for Translational Immunology (CTI), University Medical Center Utrecht (UMC), Utrecht University (UU), Utrecht, The Netherlands
| | - Peter van Hasselt
- Department of Metabolic Diseases, Division Pediatrics, Wilhelmina Children's Hospital University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Kampalli PK, Ghanta MK, Verma HK, Alam A, Peela S, Bhaskar LVKS. Exploring the relationship between ERCC1 polymorphisms and colorectal cancer risk: Insights from an in-depth meta-analysis. HUMAN GENE 2025; 43:201361. [DOI: 10.1016/j.humgen.2024.201361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
4
|
Nakazawa Y, Oka Y, Matsunaga T, Ogi T. Transcription-coupled repair - mechanisms of action, regulation, and associated human disorders. FEBS Lett 2025; 599:166-167. [PMID: 39704188 PMCID: PMC11771657 DOI: 10.1002/1873-3468.15073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 12/21/2024]
Abstract
The transcription-coupled repair (TCR) pathway resolves transcription-blocking DNA lesions to maintain cellular function and prevent transcriptional arrest. Stalled RNA polymerase II (RNAPII) triggers repair mechanisms, including RNAPII ubiquitination, which recruit UVSSA and TFIIH. Defects in TCR-associated genes cause disorders like Cockayne syndrome, UV-sensitive syndrome, xeroderma pigmentosum, and recently defined AMeDS. TCR safeguards transcription, linking its failure to neurodegeneration and disease phenotypes.
Collapse
Affiliation(s)
- Yuka Nakazawa
- Department of GeneticsResearch Institute of Environmental Medicine (RIeM), Nagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8601Japan
- Department of Human Genetics and Molecular BiologyNagoya University Graduate School of Medicine65, Tsurumai‐cho, Showa‐kuNagoya466‐8550Japan
| | - Yasuyoshi Oka
- Department of GeneticsResearch Institute of Environmental Medicine (RIeM), Nagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8601Japan
- Department of Human Genetics and Molecular BiologyNagoya University Graduate School of Medicine65, Tsurumai‐cho, Showa‐kuNagoya466‐8550Japan
| | - Tomoko Matsunaga
- Department of GeneticsResearch Institute of Environmental Medicine (RIeM), Nagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8601Japan
- Department of Human Genetics and Molecular BiologyNagoya University Graduate School of Medicine65, Tsurumai‐cho, Showa‐kuNagoya466‐8550Japan
| | - Tomoo Ogi
- Department of GeneticsResearch Institute of Environmental Medicine (RIeM), Nagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8601Japan
- Department of Human Genetics and Molecular BiologyNagoya University Graduate School of Medicine65, Tsurumai‐cho, Showa‐kuNagoya466‐8550Japan
- Division of Animal Medical Science, Center for One Medicine Innovative Translational Research (COMIT), Tokai National Higher Education and Research SystemNagoya UniversityNagoya464‐8601Japan
- Division of Molecular Physiology and Dynamics, Institute for Glyco‐core Research (iGCORE)Tokai National Higher Education and Research SystemNagoya464‐8601Japan
| |
Collapse
|
5
|
Failla P, Saccuzzo L, Galesi O, Greco D, Barresi V, Amata S, Romano C, Fichera M. Unveiling Secondary Mutations in Blended Phenotypes: Dual ERCC4 and OTOA Pathogenic Variants Through WES Analysis. Int J Mol Sci 2024; 25:13471. [PMID: 39769235 PMCID: PMC11679737 DOI: 10.3390/ijms252413471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
This study describes two siblings from consanguineous parents who exhibit intellectual disability, microcephaly, photosensitivity, bilateral sensorineural hearing loss, numerous freckles, and other clinical features that suggest a potential disruption of the nucleotide excision repair (NER) pathway. Whole exome sequencing (WES) identified a novel homozygous missense variant in the ERCC4 gene, which was predicted to be pathogenic. However, a subsequent peculiar audiometric finding prompted further investigation, revealing a homozygous deletion in the OTOA gene linked to neurosensorial hearing loss. Both variants were located within a run of homozygosity (ROH) on chromosome 16p13.12-p12.2, implicating a complex genetic basis for the observed phenotype. While this study reports a potentially novel ERCC4 variant, it underscores the importance of comprehensive analysis and deep phenotyping in WES data to improve diagnostic accuracy. Our findings advocate for an expanded approach in WES analysis, ensuring more precise diagnoses and improved genetic counseling, particularly when specialized tests for structural variant analysis are unavailable.
Collapse
Affiliation(s)
- Pinella Failla
- Oasi Research Institute-IRCCS, via Conte Ruggero 73, 94018 Troina, Italy; (P.F.); (O.G.); (D.G.); (S.A.)
| | - Lucia Saccuzzo
- Department of Biomedical and Biotechnological Sciences, Section of Clinical Biochemistry and Medical Genetics, University of Catania, via Santa Sofia, 95123 Catania, Italy; (L.S.); (C.R.); (M.F.)
| | - Ornella Galesi
- Oasi Research Institute-IRCCS, via Conte Ruggero 73, 94018 Troina, Italy; (P.F.); (O.G.); (D.G.); (S.A.)
| | - Donatella Greco
- Oasi Research Institute-IRCCS, via Conte Ruggero 73, 94018 Troina, Italy; (P.F.); (O.G.); (D.G.); (S.A.)
| | - Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, Section of Clinical Biochemistry and Medical Genetics, University of Catania, via Santa Sofia, 95123 Catania, Italy; (L.S.); (C.R.); (M.F.)
| | - Silvestra Amata
- Oasi Research Institute-IRCCS, via Conte Ruggero 73, 94018 Troina, Italy; (P.F.); (O.G.); (D.G.); (S.A.)
| | - Corrado Romano
- Department of Biomedical and Biotechnological Sciences, Section of Clinical Biochemistry and Medical Genetics, University of Catania, via Santa Sofia, 95123 Catania, Italy; (L.S.); (C.R.); (M.F.)
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, via Conte Ruggero 73, 94018 Troina, Italy
| | - Marco Fichera
- Department of Biomedical and Biotechnological Sciences, Section of Clinical Biochemistry and Medical Genetics, University of Catania, via Santa Sofia, 95123 Catania, Italy; (L.S.); (C.R.); (M.F.)
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, via Conte Ruggero 73, 94018 Troina, Italy
| |
Collapse
|
6
|
Firsanov D, Zacher M, Tian X, Sformo TL, Zhao Y, Tombline G, Lu JY, Zheng Z, Perelli L, Gurreri E, Zhang L, Guo J, Korotkov A, Volobaev V, Biashad SA, Zhang Z, Heid J, Maslov A, Sun S, Wu Z, Gigas J, Hillpot E, Martinez J, Lee M, Williams A, Gilman A, Hamilton N, Haseljic E, Patel A, Straight M, Miller N, Ablaeva J, Tam LM, Couderc C, Hoopman M, Moritz R, Fujii S, Hayman DJ, Liu H, Cai Y, Leung AKL, Simons MJP, Zhang Z, Nelson CB, Abegglen LM, Schiffman JD, Gladyshev VN, Modesti M, Genovese G, Vijg J, Seluanov A, Gorbunova V. DNA repair and anti-cancer mechanisms in the long-lived bowhead whale. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.07.539748. [PMID: 39574710 PMCID: PMC11580846 DOI: 10.1101/2023.05.07.539748] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
At over 200 years, the maximum lifespan of the bowhead whale exceeds that of all other mammals. The bowhead is also the second-largest animal on Earth, reaching over 80,000 kg1. Despite its very large number of cells and long lifespan, the bowhead is not highly cancer-prone, an incongruity termed Peto's Paradox2. This phenomenon has been explained by the evolution of additional tumor suppressor genes in other larger animals, supported by research on elephants demonstrating expansion of the p53 gene3-5. Here we show that bowhead whale fibroblasts undergo oncogenic transformation after disruption of fewer tumor suppressors than required for human fibroblasts. However, analysis of DNA repair revealed that bowhead cells repair double strand breaks (DSBs) and mismatches with uniquely high efficiency and accuracy compared to other mammals. The protein CIRBP, implicated in protection from genotoxic stress, was present in very high abundance in the bowhead whale relative to other mammals. We show that CIRBP and its downstream protein RPA2, also present at high levels in bowhead cells, increase the efficiency and fidelity of DNA repair in human cells. These results indicate that rather than possessing additional tumor suppressor genes as barriers to oncogenesis, the bowhead whale relies on more accurate and efficient DNA repair to preserve genome integrity. This strategy which does not eliminate damaged cells but repairs them may be critical for the long and cancer-free lifespan of the bowhead whale.
Collapse
Affiliation(s)
- Denis Firsanov
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Max Zacher
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Xiao Tian
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Todd L. Sformo
- Department of Wildlife Management, North Slope Borough, Utqiaġvik (Barrow), AK 99723, USA
| | - Yang Zhao
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Greg Tombline
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - J. Yuyang Lu
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Zhizhong Zheng
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Luigi Perelli
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enrico Gurreri
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Guo
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Anatoly Korotkov
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | | | | - Zhihui Zhang
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Johanna Heid
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alex Maslov
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Shixiang Sun
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Zhuoer Wu
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Jonathan Gigas
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Eric Hillpot
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - John Martinez
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Minseon Lee
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Alyssa Williams
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Abbey Gilman
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | | - Ena Haseljic
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Avnee Patel
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Maggie Straight
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Nalani Miller
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Julia Ablaeva
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Lok Ming Tam
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Chloé Couderc
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | | | | - Shingo Fujii
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix Marseille Univ, Marseille, France
| | | | - Hongrui Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Cross-Disciplinary Graduate Program in Biomedical Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yuxuan Cai
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anthony K. L. Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Zhengdong Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - C. Bradley Nelson
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Lisa M. Abegglen
- Department of Pediatrics & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Peel Therapeutics, Inc., Salt Lake City, UT, USA
| | - Joshua D. Schiffman
- Department of Pediatrics & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Peel Therapeutics, Inc., Salt Lake City, UT, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mauro Modesti
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix Marseille Univ, Marseille, France
| | - Giannicola Genovese
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
7
|
Costanzo F, Paccosi E, Proietti-De-Santis L, Egly JM. CS proteins and ubiquitination: orchestrating DNA repair with transcription and cell division. Trends Cell Biol 2024; 34:882-895. [PMID: 38910038 DOI: 10.1016/j.tcb.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024]
Abstract
To face genotoxic stress, eukaryotic cells evolved extremely refined mechanisms. Defects in counteracting the threat imposed by DNA damage underlie the rare disease Cockayne syndrome (CS), which arises from mutations in the CSA and CSB genes. Although initially defined as DNA repair proteins, recent work shows that CSA and CSB act instead as master regulators of the integrated response to genomic stress by coordinating DNA repair with transcription and cell division. CSA and CSB exert this function through the ubiquitination of target proteins, which are effectors/regulators of these processes. This review describes how the ubiquitination of target substrates is a common denominator by which CSA and CSB participate in different aspects of cellular life and how their mutation gives rise to the complex disease CS.
Collapse
Affiliation(s)
- Federico Costanzo
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona 6500, Switzerland; Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, Illkirch-Graffenstaden 67400, Strasbourg, France.
| | - Elena Paccosi
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, Viterbo 01100, Italy
| | - Luca Proietti-De-Santis
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, Viterbo 01100, Italy
| | - Jean Marc Egly
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona 6500, Switzerland; Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, Illkirch-Graffenstaden 67400, Strasbourg, France; College of Medicine, Centre for Genomics and Precision Medicine, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
8
|
Stavgiannoudaki I, Goulielmaki E, Garinis GA. Broken strands, broken minds: Exploring the nexus of DNA damage and neurodegeneration. DNA Repair (Amst) 2024; 140:103699. [PMID: 38852477 DOI: 10.1016/j.dnarep.2024.103699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Neurodegenerative disorders are primarily characterized by neuron loss progressively leading to cognitive decline and the manifestation of incurable and debilitating conditions, such as Alzheimer's, Parkinson's, and Huntington's diseases. Loss of genome maintenance causally contributes to age-related neurodegeneration, as exemplified by the premature appearance of neurodegenerative features in a growing family of human syndromes and mice harbouring inborn defects in DNA repair. Here, we discuss the relevance of persistent DNA damage, key DNA repair mechanisms and compromised genome integrity in age-related neurodegeneration highlighting the significance of investigating these connections to pave the way for the development of rationalized intervention strategies aimed at delaying the onset of neurodegenerative disorders and promoting healthy aging.
Collapse
Affiliation(s)
- Ioanna Stavgiannoudaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece; Department of Biology, University of Crete, Crete, Heraklion, Greece
| | - Evi Goulielmaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece; Department of Biology, University of Crete, Crete, Heraklion, Greece.
| |
Collapse
|
9
|
van der Linden J, Stefens SJM, Heredia‐Genestar JM, Ridwan Y, Brandt RMC, van Vliet N, de Beer I, van Thiel BS, Steen H, Cheng C, Roks AJM, Danser AHJ, Essers J, van der Pluijm I. Ercc1 DNA repair deficiency results in vascular aging characterized by VSMC phenotype switching, ECM remodeling, and an increased stress response. Aging Cell 2024; 23:e14126. [PMID: 38451018 PMCID: PMC11113264 DOI: 10.1111/acel.14126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Cardiovascular diseases are the number one cause of death globally. The most important determinant of cardiovascular health is a person's age. Aging results in structural changes and functional decline of the cardiovascular system. DNA damage is an important contributor to the aging process, and mice with a DNA repair defect caused by Ercc1 deficiency display hypertension, vascular stiffening, and loss of vasomotor control. To determine the underlying cause, we compared important hallmarks of vascular aging in aortas of both Ercc1Δ/- and age-matched wildtype mice. Additionally, we investigated vascular aging in 104 week old wildtype mice. Ercc1Δ/- aortas displayed arterial thickening, a loss of cells, and a discontinuous endothelial layer. Aortas of 24 week old Ercc1Δ/- mice showed phenotypical switching of vascular smooth muscle cells (VSMCs), characterized by a decrease in contractile markers and a decrease in synthetic markers at the RNA level. As well as an increase in osteogenic markers, microcalcification, and an increase in markers for damage induced stress response. This suggests that Ercc1Δ/- VSMCs undergo a stress-induced contractile-to-osteogenic phenotype switch. Ercc1Δ/- aortas showed increased MMP activity, elastin fragmentation, and proteoglycan deposition, characteristic of vascular aging and indicative of age-related extracellular matrix remodeling. The 104 week old WT mice showed loss of cells, VSMC dedifferentiation, and senescence. In conclusion, Ercc1Δ/- aortas rapidly display many characteristics of vascular aging, and thus the Ercc1Δ/- mouse is an excellent model to evaluate drugs that prevent vascular aging in a short time span at the functional, histological, and cellular level.
Collapse
Affiliation(s)
- Janette van der Linden
- Division of Vascular Medicine and Pharmacology, Department of Internal MedicineErasmus University Medical CenterRotterdamThe Netherlands
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
| | - Sanne J. M. Stefens
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
| | - José María Heredia‐Genestar
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
| | - Yanto Ridwan
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
- AMIE Core facilityErasmus University Medical CenterRotterdamThe Netherlands
| | - Renata M. C. Brandt
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
| | - Nicole van Vliet
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
| | - Isa de Beer
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
| | - Bibi S. van Thiel
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
| | | | - Caroline Cheng
- Division of Experimental Cardiology, Department of CardiologyMC UtrechtUtrechtThe Netherlands
- Division of Internal Medicine and Dermatology, Department of Nephrology and HypertensionMC UtrechtUtrechtThe Netherlands
| | - Anton J. M. Roks
- Division of Vascular Medicine and Pharmacology, Department of Internal MedicineErasmus University Medical CenterRotterdamThe Netherlands
| | - A. H. Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal MedicineErasmus University Medical CenterRotterdamThe Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
- Department of Vascular SurgeryCardiovascular Institute, Erasmus University Medical CenterRotterdamThe Netherlands
- Department of RadiotherapyErasmus University Medical CenterRotterdamThe Netherlands
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, Cancer Genomics CenterErasmus University Medical CenterRotterdamThe Netherlands
- Department of Vascular SurgeryCardiovascular Institute, Erasmus University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
10
|
Muniesa-Vargas A, Davó-Martínez C, Ribeiro-Silva C, van der Woude M, Thijssen KL, Haspels B, Häckes D, Kaynak ÜU, Kanaar R, Marteijn JA, Theil AF, Kuijten MMP, Vermeulen W, Lans H. Persistent TFIIH binding to non-excised DNA damage causes cell and developmental failure. Nat Commun 2024; 15:3490. [PMID: 38664429 PMCID: PMC11045817 DOI: 10.1038/s41467-024-47935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Congenital nucleotide excision repair (NER) deficiency gives rise to several cancer-prone and/or progeroid disorders. It is not understood how defects in the same DNA repair pathway cause different disease features and severity. Here, we show that the absence of functional ERCC1-XPF or XPG endonucleases leads to stable and prolonged binding of the transcription/DNA repair factor TFIIH to DNA damage, which correlates with disease severity and induces senescence features in human cells. In vivo, in C. elegans, this prolonged TFIIH binding to non-excised DNA damage causes developmental arrest and neuronal dysfunction, in a manner dependent on transcription-coupled NER. NER factors XPA and TTDA both promote stable TFIIH DNA binding and their depletion therefore suppresses these severe phenotypical consequences. These results identify stalled NER intermediates as pathogenic to cell functionality and organismal development, which can in part explain why mutations in XPF or XPG cause different disease features than mutations in XPA or TTDA.
Collapse
Affiliation(s)
- Alba Muniesa-Vargas
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Carlota Davó-Martínez
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Cristina Ribeiro-Silva
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Melanie van der Woude
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Karen L Thijssen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Ben Haspels
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Oncode Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - David Häckes
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Ülkem U Kaynak
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Oncode Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Oncode Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Arjan F Theil
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Maayke M P Kuijten
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Oncode Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
11
|
Hozhabrpour A, Mojbafan M, Palizban F, Vahidnezhad F, Talebi S, Amani M, Garshasbi M, Naghavi A, Khalesi R, Mansouri P, Sotoudeh S, Mahmoudi H, Varghaei A, Daneshpazhooh M, Karimi F, Zeinali S, Kalamati E, Uitto J, Youssefian L, Vahidnezhad H. DNA repair-related heritable photosensitivity syndromes: Mutation landscape in a multiethnic cohort of 17 multigenerational families with high degree of consanguinity. DNA Repair (Amst) 2024; 136:103633. [PMID: 38422792 DOI: 10.1016/j.dnarep.2024.103633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 12/30/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024]
Abstract
Inherited photosensitivity syndromes are a heterogeneous group of genetic skin disorders with tremendous phenotypic variability, characterized by photosensitivity and defective DNA repair, especially nucleotide excision repair. A cohort of 17 Iranian families with heritable photosensitivity syndromes was evaluated to identify their genetic defect. The patients' DNA was analyzed with either whole-exome sequencing or RNA sequencing (RNA-Seq). The interpretations of the genomic results were guided by genome-wide homozygosity mapping. Haplotype analysis was performed for cases with recurrent mutations. RNA-Seq, in addition to mutation detection, was also utilized to confirm the pathogenicity. Thirteen sequence variants, including six previously unreported pathogenic variants, were disclosed in 17 Iranian families, with XPC as the most common mutated gene in 10 families (59%). In one patient, RNA-Seq, as a first-tier diagnostic approach, revealed a non-canonical homozygous germline variant: XPC:c.413-9 T > A. The Sashimi plot showed skipping of exon 4 with dramatic XPC down-expression. Haplotype analysis of XPC:c.2251-1 G>C and XPC:1243 C>T in four families showed common haplotypes of 1.7 Mb and 2.6 Mb, respectively, denoting a founder effect. Lastly, two extremely rare cases were presented in this report: a homozygous UVSSA:c .1990 C>T was disclosed, and ERCC2-related cerebro-oculo-facio-skeletal (COFS) syndrome with an early childhood death. A direct comparison of our data with the results of previously reported cohorts demonstrates the international mutation landscape of DNA repair-related photosensitivity disorders, although population-specific differences were observed.
Collapse
Affiliation(s)
- Amir Hozhabrpour
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Marzieh Mojbafan
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fahimeh Palizban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Saeed Talebi
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Maliheh Amani
- Clinical Research Development Unit of Allameh Bohlool Gonabadi Hospital, Gonabad University of Medical Sciences, Gonabad, Iran; Department of Dermatology, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Anoosh Naghavi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Raziyeh Khalesi
- Department of Medical Genetics, DeNA Laboratory, Tehran, Iran
| | - Parvin Mansouri
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Sotoudeh
- Department of Dermatology, Children's Medical Center, Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Mahmoudi
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Varghaei
- Department of Dermatology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Daneshpazhooh
- Department of Dermatology, Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Elnaz Kalamati
- Department of Obstetrics and Gynecology, Imam Zaman Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Leila Youssefian
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA.
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Tsukada K, Jones SE, Bannister J, Durin MA, Vendrell I, Fawkes M, Fischer R, Kessler BM, Chapman JR, Blackford AN. BLM and BRCA1-BARD1 coordinate complementary mechanisms of joint DNA molecule resolution. Mol Cell 2024; 84:640-658.e10. [PMID: 38266639 DOI: 10.1016/j.molcel.2023.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 10/10/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
The Bloom syndrome helicase BLM interacts with topoisomerase IIIα (TOP3A), RMI1, and RMI2 to form the BTR complex, which dissolves double Holliday junctions and DNA replication intermediates to promote sister chromatid disjunction before cell division. In its absence, structure-specific nucleases like the SMX complex (comprising SLX1-SLX4, MUS81-EME1, and XPF-ERCC1) can cleave joint DNA molecules instead, but cells deficient in both BTR and SMX are not viable. Here, we identify a negative genetic interaction between BLM loss and deficiency in the BRCA1-BARD1 tumor suppressor complex. We show that this is due to a previously overlooked role for BARD1 in recruiting SLX4 to resolve DNA intermediates left unprocessed by BLM in the preceding interphase. Consequently, cells with defective BLM and BRCA1-BARD1 accumulate catastrophic levels of chromosome breakage and micronucleation, leading to cell death. Thus, we reveal mechanistic insights into SLX4 recruitment to DNA lesions, with potential clinical implications for treating BRCA1-deficient tumors.
Collapse
Affiliation(s)
- Kaima Tsukada
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Samuel E Jones
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Julius Bannister
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Mary-Anne Durin
- MRC Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Iolanda Vendrell
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Matthew Fawkes
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - J Ross Chapman
- MRC Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Andrew N Blackford
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK.
| |
Collapse
|
13
|
Traband EL, Hammerlund SR, Shameem M, Narayan A, Ramana S, Tella A, Sobeck A, Shima N. Mitotic DNA Synthesis in Untransformed Human Cells Preserves Common Fragile Site Stability via a FANCD2-Driven Mechanism That Requires HELQ. J Mol Biol 2023; 435:168294. [PMID: 37777152 PMCID: PMC10839910 DOI: 10.1016/j.jmb.2023.168294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Faithful genome duplication is a challenging task for dividing mammalian cells, particularly under replication stress where timely resolution of late replication intermediates (LRIs) becomes crucial prior to cell division. In human cancer cells, mitotic DNA repair synthesis (MiDAS) is described as a final mechanism for the resolution of LRIs to avoid lethal chromosome mis-segregation. RAD52-driven MiDAS achieves this mission in part by generating gaps/breaks on metaphase chromosomes, which preferentially occur at common fragile sites (CFS). We previously demonstrated that a MiDAS mechanism also exists in untransformed and primary human cells, which is RAD52 independent but requires FANCD2. However, the properties of this form of MiDAS are not well understood. Here, we report that FANCD2-driven MiDAS in untransformed human cells: 1) requires a prerequisite step of FANCD2 mono-ubiquitination by a subset of Fanconi anemia (FA) proteins, 2) primarily acts to preserve CFS stability but not to prevent chromosome mis-segregation, and 3) depends on HELQ, which potentially functions at an early step. Hence, FANCD2-driven MiDAS in untransformed cells is built to protect CFS stability, whereas RAD52-driven MiDAS in cancer cells is likely adapted to prevent chromosome mis-segregation at the cost of CFS expression. Notably, we also identified a novel form of MiDAS, which surfaces to function when FANCD2 is absent in untransformed cells. Our findings substantiate the complex nature of MiDAS and a link between its deficiencies and the pathogenesis of FA, a human genetic disease.
Collapse
Affiliation(s)
- Emma L Traband
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Sciences, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Sarah R Hammerlund
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Sciences, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Mohammad Shameem
- Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Sciences, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Ananya Narayan
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Sanjiv Ramana
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Anika Tella
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Alexandra Sobeck
- Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Sciences, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - Naoko Shima
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, Minneapolis, MN 55455, USA.
| |
Collapse
|
14
|
Chatzinikolaou G, Stratigi K, Siametis A, Goulielmaki E, Akalestou-Clocher A, Tsamardinos I, Topalis P, Austin C, Bouwman BA, Crosetto N, Altmüller J, Garinis GA. XPF interacts with TOP2B for R-loop processing and DNA looping on actively transcribed genes. SCIENCE ADVANCES 2023; 9:eadi2095. [PMID: 37939182 PMCID: PMC10631727 DOI: 10.1126/sciadv.adi2095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Co-transcriptional RNA-DNA hybrids can not only cause DNA damage threatening genome integrity but also regulate gene activity in a mechanism that remains unclear. Here, we show that the nucleotide excision repair factor XPF interacts with the insulator binding protein CTCF and the cohesin subunits SMC1A and SMC3, leading to R-loop-dependent DNA looping upon transcription activation. To facilitate R-loop processing, XPF interacts and recruits with TOP2B on active gene promoters, leading to double-strand break accumulation and the activation of a DNA damage response. Abrogation of TOP2B leads to the diminished recruitment of XPF, CTCF, and the cohesin subunits to promoters of actively transcribed genes and R-loops and the concurrent impairment of CTCF-mediated DNA looping. Together, our findings disclose an essential role for XPF with TOP2B and the CTCF/cohesin complex in R-loop processing for transcription activation with important ramifications for DNA repair-deficient syndromes associated with transcription-associated DNA damage.
Collapse
Affiliation(s)
- Georgia Chatzinikolaou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas, GR70013, Heraklion, Crete, Greece
| | - Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas, GR70013, Heraklion, Crete, Greece
| | - Athanasios Siametis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas, GR70013, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Evi Goulielmaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas, GR70013, Heraklion, Crete, Greece
| | - Alexia Akalestou-Clocher
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas, GR70013, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Ioannis Tsamardinos
- Computer Science Department of University of Crete, Heraklion, Crete, Greece
| | - Pantelis Topalis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas, GR70013, Heraklion, Crete, Greece
| | - Caroline Austin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Britta A. M. Bouwman
- Division of Microbiology, Tumor and Cell Biology, Karolinska Institutet and Science for Life Laboratory, Stockholm 17177, Sweden
| | - Nicola Crosetto
- Division of Microbiology, Tumor and Cell Biology, Karolinska Institutet and Science for Life Laboratory, Stockholm 17177, Sweden
- Human Technopole, Viale Rita Levi-Montalcini 1, 22157 Milan, Italy
| | - Janine Altmüller
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Core Facility Genomics, Charitéplatz 1, 10117 Berlin, Germany
| | - George A. Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas, GR70013, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
15
|
van der Linden J, Trap L, Scherer CV, Roks AJM, Danser AHJ, van der Pluijm I, Cheng C. Model Systems to Study the Mechanism of Vascular Aging. Int J Mol Sci 2023; 24:15379. [PMID: 37895059 PMCID: PMC10607365 DOI: 10.3390/ijms242015379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death globally. Within cardiovascular aging, arterial aging holds significant importance, as it involves structural and functional alterations in arteries that contribute substantially to the overall decline in cardiovascular health during the aging process. As arteries age, their ability to respond to stress and injury diminishes, while their luminal diameter increases. Moreover, they experience intimal and medial thickening, endothelial dysfunction, loss of vascular smooth muscle cells, cellular senescence, extracellular matrix remodeling, and deposition of collagen and calcium. This aging process also leads to overall arterial stiffening and cellular remodeling. The process of genomic instability plays a vital role in accelerating vascular aging. Progeria syndromes, rare genetic disorders causing premature aging, exemplify the impact of genomic instability. Throughout life, our DNA faces constant challenges from environmental radiation, chemicals, and endogenous metabolic products, leading to DNA damage and genome instability as we age. The accumulation of unrepaired damages over time manifests as an aging phenotype. To study vascular aging, various models are available, ranging from in vivo mouse studies to cell culture options, and there are also microfluidic in vitro model systems known as vessels-on-a-chip. Together, these models offer valuable insights into the aging process of blood vessels.
Collapse
Affiliation(s)
- Janette van der Linden
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Molecular Genetics, Cancer Genomics Center Netherlands, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Lianne Trap
- Department of Pulmonary Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Caroline V. Scherer
- Department of Molecular Genetics, Cancer Genomics Center Netherlands, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Anton J. M. Roks
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - A. H. Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, Cancer Genomics Center Netherlands, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Vascular Surgery, Cardiovascular Institute, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Caroline Cheng
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
16
|
Bona N, Crossan GP. Fanconi anemia DNA crosslink repair factors protect against LINE-1 retrotransposition during mouse development. Nat Struct Mol Biol 2023; 30:1434-1445. [PMID: 37580626 PMCID: PMC10584689 DOI: 10.1038/s41594-023-01067-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/13/2023] [Indexed: 08/16/2023]
Abstract
Long interspersed nuclear element 1 (LINE-1) is the only autonomous retrotransposon in humans and new integrations are a major source of genetic variation between individuals. These events can also lead to de novo germline mutations, giving rise to heritable genetic diseases. Recently, a role for DNA repair in regulating these events has been identified. Here we find that Fanconi anemia (FA) DNA crosslink repair factors act in a common pathway to prevent retrotransposition. We purify recombinant SLX4-XPF-ERCC1, the crosslink repair incision complex, and find that it cleaves putative nucleic acid intermediates of retrotransposition. Mice deficient in upstream crosslink repair signaling (FANCA), a downstream component (FANCD2) or the nuclease XPF-ERCC1 show increased LINE-1 retrotransposition in vivo. Organisms limit retrotransposition through transcriptional silencing but this protection is attenuated during early development leaving the zygote vulnerable. We find that during this window of vulnerability, DNA crosslink repair acts as a failsafe to prevent retrotransposition. Together, our results indicate that the FA DNA crosslink repair pathway acts together to protect against mutation by restricting LINE-1 retrotransposition.
Collapse
|
17
|
Ozturk A, Agbektas T, Huseynzada A, Guliyev R, Ganbarova R, Hasanova U, Tas A, Erkan S, Zontul C, Inandiklioglu N, Silig Y. In Silico and In Vitro Studies of Novel Azomethines on DNA Repair Genes in Gastric Cell Lines. Life (Basel) 2023; 13:1982. [PMID: 37895364 PMCID: PMC10607974 DOI: 10.3390/life13101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
We herein report the determination of the cytotoxic activity and expression profiles of some DNA repair genes of newly synthesized azomethines in the gastric cancer cell line (AGS). The studied novel compounds were synthesized by a condensation reaction and received compounds were characterized by 1H and 13C NMR spectroscopy methods. Furthermore, they were applied to the AGS cell line at eight different concentrations (0.1-50 µg/mL). Anticancer activities were determined using the MTT method. Expression levels of ATR, ERCC1, TOP2A, and ABCB1 genes were determined by the RT-PCR method. Biochemical parameters were also examined. The interaction of proteins with other proteins was investigated with the String v11 program. The IC50 values of compounds 1, 2, and 3 obtained after 72 h were 23.10, 8.93, and 1.58 µg/mL, respectively. The results demonstrate that the cytotoxic activity of compound 3 on AGS cancer cells is higher in comparison with other molecules. It was determined that the expression levels of ATR, TOP2A, and ABCB1 genes in compounds 1, 2, and 3 were decreased compared to the control group. In addition, it was determined that ERCC1 gene expression increased in compound 3, decreased in compound 2, and remained unchanged in compound 1 (p < 0.001). In AGS gastric cancer cells, a 64% decrease was detected for GST levels in compound 1, while a 38% decrease in GSH levels in compound 2. In addition, compounds 1-3 were examined at the molecular level with computational techniques and the docking studies revealed 4LN0 as a target protein.
Collapse
Affiliation(s)
- Alpaslan Ozturk
- Clinical Biochemistry, Etlik City Hospital, 06170 Ankara, Turkey
| | - Tugba Agbektas
- Department of Food Processing Technologies Services, Yıldızeli Vocational School, 58500 Sivas, Turkey;
| | - Alakbar Huseynzada
- Industrial Chemistry Research Laboratory, Baku State University, Z. Khalilov 33, Baku AZ1148, Azerbaijan; (A.H.); (R.G.); (R.G.); (U.H.)
- GPOGC SRI, Azerbaijan State Oil and Industry University, Baku AZ1010, Azerbaijan
- Department of Chemistry, Azerbaijan Engineers Union, Bashir Safaroglu 118, Baku AZ1022, Azerbaijan
- ICESCO Biomedical Materials Department, Baku State University, Z. Khalilov 33, Baku AZ1148, Azerbaijan
| | - Ruslan Guliyev
- Industrial Chemistry Research Laboratory, Baku State University, Z. Khalilov 33, Baku AZ1148, Azerbaijan; (A.H.); (R.G.); (R.G.); (U.H.)
- GPOGC SRI, Azerbaijan State Oil and Industry University, Baku AZ1010, Azerbaijan
| | - Rana Ganbarova
- Industrial Chemistry Research Laboratory, Baku State University, Z. Khalilov 33, Baku AZ1148, Azerbaijan; (A.H.); (R.G.); (R.G.); (U.H.)
- GPOGC SRI, Azerbaijan State Oil and Industry University, Baku AZ1010, Azerbaijan
| | - Ulviyya Hasanova
- Industrial Chemistry Research Laboratory, Baku State University, Z. Khalilov 33, Baku AZ1148, Azerbaijan; (A.H.); (R.G.); (R.G.); (U.H.)
- GPOGC SRI, Azerbaijan State Oil and Industry University, Baku AZ1010, Azerbaijan
- ICESCO Biomedical Materials Department, Baku State University, Z. Khalilov 33, Baku AZ1148, Azerbaijan
| | - Ayca Tas
- Department of Nutrition and Diet, Faculty of Health Sciences, Sivas Cumhuriyet University, 58140 Sivas, Turkey;
| | - Sultan Erkan
- Department of Chemistry, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey;
| | - Cemile Zontul
- Department of Chemistry and Chemical Processing Technologies Services, Yıldızeli Vocational School, 58500 Sivas, Turkey;
| | - Nihal Inandiklioglu
- Department of Medical Biology, Faculty of Medicine, Yozgat Bozok University, 66100 Yozgat, Turkey;
| | - Yavuz Silig
- Department of Biochemistry, Faculty of Medicine, Sivas Cumhuriyet University, 58140 Sivas, Turkey;
| |
Collapse
|
18
|
Koschitzki K, Ivanova I, Berneburg M. [Progeroid syndromes : Aging, skin aging, and mechanisms of progeroid syndromes]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2023; 74:696-706. [PMID: 37650893 PMCID: PMC10480280 DOI: 10.1007/s00105-023-05212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 09/01/2023]
Abstract
Progeroid syndromes (PSs) are characterized by the premature onset of age-related pathologies. PSs display a wide range of heterogeneous pathological symptoms that also manifest during natural aging, including vision and hearing loss, atrophy, hair loss, progressive neurodegeneration, and cardiovascular defects. Recent advances in molecular pathology have led to a better understanding of the underlying mechanisms of these diseases. The genetic mutations underlying PSs are functionally linked to genome maintenance and repair, supporting the causative role of DNA damage accumulation in aging. While some of those genes encode proteins with a direct involvement in a DNA repair machinery, such as nucleotide excision repair (NER), others destabilize the genome by compromising the stability of the nuclear envelope, when lamin A is dysfunctional in Hutchinson-Gilford progeria syndrome (HGPS) or regulate the DNA damage response (DDR) such as the ataxia telangiectasia-mutated (ATM) gene. Understanding the molecular pathology of progeroid diseases is crucial in developing potential treatments to manage and prevent the onset of symptoms. This knowledge provides insight into the underlying mechanisms of premature aging and could lead to improved quality of life for individuals affected by progeroid diseases.
Collapse
Affiliation(s)
- Kevin Koschitzki
- Poliklinik und Klinik für Dermatologie, Universitätsklinikum Regensburg, Regensburg, Deutschland.
| | - Irina Ivanova
- Poliklinik und Klinik für Dermatologie, Universitätsklinikum Regensburg, Regensburg, Deutschland
| | - Mark Berneburg
- Poliklinik und Klinik für Dermatologie, Universitätsklinikum Regensburg, Regensburg, Deutschland
| |
Collapse
|
19
|
Garaycoechea JI, Quinlan C, Luijsterburg MS. Pathological consequences of DNA damage in the kidney. Nat Rev Nephrol 2023; 19:229-243. [PMID: 36702905 DOI: 10.1038/s41581-022-00671-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 01/27/2023]
Abstract
DNA lesions that evade repair can lead to mutations that drive the development of cancer, and cellular responses to DNA damage can trigger senescence and cell death, which are associated with ageing. In the kidney, DNA damage has been implicated in both acute and chronic kidney injury, and in renal cell carcinoma. The susceptibility of the kidney to chemotherapeutic agents that damage DNA is well established, but an unexpected link between kidney ciliopathies and the DNA damage response has also been reported. In addition, human genetic deficiencies in DNA repair have highlighted DNA crosslinks, DNA breaks and transcription-blocking damage as lesions that are particularly toxic to the kidney. Genetic tools in mice, as well as advances in kidney organoid and single-cell RNA sequencing technologies, have provided important insights into how specific kidney cell types respond to DNA damage. The emerging view is that in the kidney, DNA damage affects the local microenvironment by triggering a damage response and cell proliferation to replenish injured cells, as well as inducing systemic responses aimed at reducing exposure to genotoxic stress. The pathological consequences of DNA damage are therefore key to the nephrotoxicity of DNA-damaging agents and the kidney phenotypes observed in human DNA repair-deficiency disorders.
Collapse
Affiliation(s)
- Juan I Garaycoechea
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Catherine Quinlan
- Department of Paediatrics, University of Melbourne, Parkville, Australia
- Department of Nephrology, Royal Children's Hospital, Melbourne, Australia
- Department of Kidney Regeneration, Murdoch Children's Research Institute, Melbourne, Australia
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| |
Collapse
|
20
|
Kulikowska J, Jakubiuk-Tomaszuk A, Rydzanicz M, Płoski R, Kochanowicz J, Kulakowska A, Kapica-Topczewska K. Case report: Variants in the ERCC4 gene as a rare cause of cerebellar ataxia with chorea. Front Genet 2023; 14:1107460. [PMID: 36816046 PMCID: PMC9932026 DOI: 10.3389/fgene.2023.1107460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Variants in the ERCC4 gene have been described to be associated with the following autosomal recessive diseases: xeroderma pigmentosum group F (XPF), xeroderma pigmentosum type F/Cockayne syndrome (XPF/CS), Fanconi anemia complementation group Q (FANCQ), and XFE progeroid syndrome (XFEPS). In this paper, we present a case of a 53-year-old Caucasian female patient with rare variants in the ERCC4 gene. When she was 42 years old, falls and loss of balance occurred. At the age of 48, involuntary, uncoordinated movements of the upper limbs and head, tongue stereotypes (licking and extending movements), speech problems (dysarthria), memory deterioration, and hearing loss occurred. Since childhood, she has shown hypersensitivity to UV radiation. The neurological examination revealed chorea syndrome, cerebellar ataxia, dysarthria, and bilateral hearing loss. She has numerous pigmented lesions on the skin. Brain MRI demonstrated massive cortico-subcortical atrophy. The neuropsychological examination revealed dysfunctions in the executive domain in terms of attention, working memory, organizing, and planning activities. The genetic diagnostics was performed which excluded spinocerebellar ataxia types 1, 2, 3, 6, and 17, Huntington's disease, and FMR1 premutation. In the genetic analysis of next-generation sequencing (NGS), two variants: c.2395C > T and c.1349G > A in the ERCC4 gene were identified in a heterozygote configuration. So far, a few cases of ERCC4 gene variants, which are associated with nucleotide excision repair pathways, have been described in connection with symptoms of cerebellar ataxia. In patients with ERCC4 biallelic variants, the adult neurological phenotype can sometimes be the first symptom and reason for access to genetic testing. The aforementioned case highlights the occurrence of rare genetic causes of progressive neurodegenerative diseases in adults, especially with the spectrum of autosomal recessive nucleotide excision repair pathway disorders (NERDs).
Collapse
Affiliation(s)
- Joanna Kulikowska
- Departament of Neurology, Medical University of Bialystok, Białystok, Poland,*Correspondence: Joanna Kulikowska,
| | | | | | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Jan Kochanowicz
- Departament of Neurology, Medical University of Bialystok, Białystok, Poland
| | - Alina Kulakowska
- Departament of Neurology, Medical University of Bialystok, Białystok, Poland
| | | |
Collapse
|
21
|
The ATRX splicing variant c.21-1G>A is asymptomatic. Hum Genome Var 2022; 9:33. [PMID: 36104326 PMCID: PMC9474544 DOI: 10.1038/s41439-022-00212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 01/11/2023] Open
Abstract
The ATRX variant c.21-1G>A was detected by an exome analysis of a patient with Cockayne syndrome without alpha thalassemia X-linked intellectual disability syndrome (ATR-XS). In addition, variants in ERCC6 were detected. ATRX c.21-1G>A is localized at the splicing acceptor site of intron 1. This splicing event, NM_000489.6: c.21_133del p.S7Rfs*1, induces exon 2 deletion and early termination. The start codon in exon 3 of ATRX is presumed to produce a slightly shorter but functional ATRX protein.
Collapse
|
22
|
Li X, Cao G, Liu X, Tang TS, Guo C, Liu H. Polymerases and DNA Repair in Neurons: Implications in Neuronal Survival and Neurodegenerative Diseases. Front Cell Neurosci 2022; 16:852002. [PMID: 35846567 PMCID: PMC9279898 DOI: 10.3389/fncel.2022.852002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022] Open
Abstract
Most of the neurodegenerative diseases and aging are associated with reactive oxygen species (ROS) or other intracellular damaging agents that challenge the genome integrity of the neurons. As most of the mature neurons stay in G0/G1 phase, replication-uncoupled DNA repair pathways including BER, NER, SSBR, and NHEJ, are pivotal, efficient, and economic mechanisms to maintain genomic stability without reactivating cell cycle. In these progresses, polymerases are prominent, not only because they are responsible for both sensing and repairing damages, but also for their more diversified roles depending on the cell cycle phase and damage types. In this review, we summarized recent knowledge on the structural and biochemical properties of distinct polymerases, including DNA and RNA polymerases, which are known to be expressed and active in nervous system; the biological relevance of these polymerases and their interactors with neuronal degeneration would be most graphically illustrated by the neurological abnormalities observed in patients with hereditary diseases associated with defects in DNA repair; furthermore, the vicious cycle of the trinucleotide repeat (TNR) and impaired DNA repair pathway is also discussed. Unraveling the mechanisms and contextual basis of the role of the polymerases in DNA damage response and repair will promote our understanding about how long-lived postmitotic cells cope with DNA lesions, and why disrupted DNA repair contributes to disease origin, despite the diversity of mutations in genes. This knowledge may lead to new insight into the development of targeted intervention for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoling Li
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Xiaoling Li
| | - Guanghui Cao
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Xiaokang Liu
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Caixia Guo
- Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- *Correspondence: Caixia Guo
| | - Hongmei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Hongmei Liu
| |
Collapse
|
23
|
Clavere NG, Alqallaf A, Rostron KA, Parnell A, Mitchell R, Patel K, Boateng SY. Inhibition of activin A receptor signalling attenuates age-related pathological cardiac remodelling. Dis Model Mech 2022; 15:275323. [PMID: 35380160 PMCID: PMC9118092 DOI: 10.1242/dmm.049424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/16/2022] [Indexed: 11/20/2022] Open
Abstract
In the heart, ageing is associated with DNA damage, oxidative stress, fibrosis and activation of the activin signalling pathway, leading to cardiac dysfunction. The cardiac effects of activin signalling blockade in progeria are unknown. This study investigated the cardiac effects of progeria induced by attenuated levels of Ercc1, which is required for DNA excision and repair, and the impact of activin signalling blockade using a soluble activin receptor type IIB (sActRIIB). DNA damage and oxidative stress were significantly increased in Ercc1Δ/− hearts, but were reduced by sActRIIB treatment. sActRIIB treatment improved cardiac systolic function and induced cardiomyocyte hypertrophy in Ercc1Δ/− hearts. RNA-sequencing analysis showed that in Ercc1Δ/− hearts, there was an increase in pro-oxidant and a decrease in antioxidant gene expression, whereas sActRIIB treatment reversed this effect. Ercc1Δ/− hearts also expressed higher levels of anti-hypertrophic genes and decreased levels of pro-hypertrophic ones, which were also reversed by sActRIIB treatment. These results show for the first time that inhibition of activin A receptor signalling attenuates cardiac dysfunction, pathological tissue remodelling and gene expression in Ercc1-deficient mice and presents a potentially novel therapeutic target for heart diseases. Summary: Attenuated DNA repair is associated with pathological cardiac remodelling and gene expression. Much of this phenotype is attenuated by inhibition of the activin signalling pathway using soluble activin receptor treatment.
Collapse
Affiliation(s)
- Nicolas G Clavere
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Ali Alqallaf
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Kerry A Rostron
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Commonwealth Building, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Andrew Parnell
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Robert Mitchell
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Ketan Patel
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Samuel Y Boateng
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| |
Collapse
|
24
|
Toss A, Quarello P, Mascarin M, Banna GL, Zecca M, Cinieri S, Peccatori FA, Ferrari A. Cancer Predisposition Genes in Adolescents and Young Adults (AYAs): a Review Paper from the Italian AYA Working Group. Curr Oncol Rep 2022; 24:843-860. [PMID: 35320498 PMCID: PMC9170630 DOI: 10.1007/s11912-022-01213-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The present narrative systematic review summarizes current knowledge on germline gene mutations predisposing to solid tumors in adolescents and young adults (AYAs). RECENT FINDINGS AYAs with cancer represent a particular group of patients with specific challenging characteristics and yet unmet needs. A significant percentage of AYA patients carry pathogenic or likely pathogenic variants (PV/LPVs) in cancer predisposition genes. Nevertheless, knowledge on spectrum, frequency, and clinical implications of germline variants in AYAs with solid tumors is limited. The identification of PV/LPV in AYA is especially critical given the need for appropriate communicative strategies, risk of second primary cancers, need for personalized long-term surveillance, potential reproductive implications, and cascade testing of at-risk family members. Moreover, these gene alterations may potentially provide novel biomarkers and therapeutic targets that are lacking in AYA patients. Among young adults with early-onset phenotypes of malignancies typically presenting at later ages, the increased prevalence of germline PV/LPVs supports a role for genetic counseling and testing irrespective of tumor type.
Collapse
Affiliation(s)
- Angela Toss
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Paola Quarello
- Paediatric Onco-Haematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Turin, Italy
- Department of Public Health and Paediatric Sciences, University of Torino, Turin, Italy
| | - Maurizio Mascarin
- AYA Oncology and Pediatric Radiotherapy Unit, Centro di Riferimento Oncologico IRCCS, Aviano, Italy
| | - Giuseppe Luigi Banna
- Candiolo Cancer Institute, FPO-IRCCS, SP142, km 3.95, 10060, Candiolo, Turin, Italy.
| | - Marco Zecca
- Department of Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Saverio Cinieri
- Medical Oncology Unit and Breast Unit Ospedale Perrino ASL, Brindisi, Italy
| | - Fedro Alessandro Peccatori
- Fertility and Procreation Unit, Gynecologic Oncology Program, European Institute of Oncology IRCCS, Milan, Italy
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| |
Collapse
|
25
|
Akahori R, Takamori C, Wakasugi M, Matsunaga T. Mapping of the regions implicated in nuclear localization of multi-functional DNA repair endonuclease XPF-ERCC1. Genes Cells 2022; 27:356-367. [PMID: 35238109 DOI: 10.1111/gtc.12932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/27/2022] [Accepted: 02/27/2022] [Indexed: 12/01/2022]
Abstract
The structure-specific endonuclease XPF-ERCC1 is a multi-functional heterodimer that participates in a variety of DNA repair mechanisms for maintaining genome integrity. Both subunits contain C-terminal tandem helix-hairpin-helix (HhH2 ) domains, which are necessary for not only their dimerization but also enzymatic activity as well as protein stability. However, the interdependency of both subunits in their nuclear localization remains poorly understood. In this study, we have analyzed the region(s) that affects the subcellular localization of XPF and ERCC1 using various deletion mutants. We first identified the nuclear localization signal (NLS) in XPF, which was essential for its nuclear localization under the ERCC1-free condition, but dispensable in the presence of ERCC1 (probably as XPF-ERCC1 heterodimer). Interestingly, in the NLS-independent and ERCC1-dependent XPF nuclear localization, the physical interaction between XPF and ERCC1 via C-terminal HhH2 domains was not needed. Instead, the amino acid regions 311-469 of XPF and 216-260 of ERCC1 are required for the nuclear localization. Furthermore, we found that the 311-469 region of XPF interacts with ERCC1 in a co-immunoprecipitation assay. These results suggest that the nuclear localization of XPF-ERCC1 heterodimer is regulated at multiple levels in an interdependent manner.
Collapse
Affiliation(s)
- Ryo Akahori
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Chie Takamori
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Mitsuo Wakasugi
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Tsukasa Matsunaga
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
26
|
Senju C, Nakazawa Y, Shimada M, Iwata D, Matsuse M, Tanaka K, Miyazaki Y, Moriwaki S, Mitsutake N, Ogi T. Aicardi-Goutières syndrome with SAMHD1 deficiency can be diagnosed by unscheduled DNA synthesis test. Front Pediatr 2022; 10:1048002. [PMID: 36405817 PMCID: PMC9673124 DOI: 10.3389/fped.2022.1048002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Aicardi-Goutières syndrome (AGS) is a rare genetic disorder characterised by progressive encephalopathy, involving microcephaly, intracranial calcification, and cerebrospinal fluid lymphocytosis with increased interferon-α concentrations. The clinical features of AGS overlap with fetal cerebral anomalies caused by congenital infections, such as TORCH (toxoplasmosis, other, rubella, cytomegalovirus, and herpes), or with those of other genetic disorders showing neonatal microcephaly, including Cockayne syndrome (CS) with transcription-coupled DNA repair deficiency, and Seckel syndrome (SS) showing aberrant cell-cycle checkpoint signaling. Therefore, a differential diagnosis to confirm the genetic cause or a proof of infection should be considered. In this report, we describe an individual who showed primordial dwarfism and encephalopathy, and whose initial diagnosis was CS. First, we conducted conventional DNA repair proficiency tests for the patient derived fibroblast cells. Transcription-coupled nucleotide excision repair (TC-NER) activity, which is mostly compromised in CS cases, was slightly reduced in the patient's cells. However, unscheduled DNA synthesis (UDS) was significantly diminished. These cellular traits were inconsistent with the diagnosis of CS. We further performed whole exome sequencing for the case and identified a compound heterozygous loss-of-function variants in the SAMHD1 gene, mutations in which are known to cause AGS. As SAMHD1 encodes deoxyribonucleoside triphosphate triphosphohydrolase, we reasoned that the deoxyribonucleoside triphosphate (dNTP) pool size in the patient's cells was elevated, and the labeling efficiency of UDS-test was hindered due to the reduced concentration of phosphorylated ethynyl deoxyuridine (EdU), a nucleoside analogue used for the assay. In conclusion, UDS assay may be a useful diagnostic tool to distinguish between AGS with SAMHD1 mutations and other related diseases.
Collapse
Affiliation(s)
- Chikako Senju
- Department of Hematology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Plastic and Reconstructive Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Department of Genome Repair, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Yuka Nakazawa
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Department of Genome Repair, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Mayuko Shimada
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Department of Genome Repair, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Dai Iwata
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Michiko Matsuse
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Katsumi Tanaka
- Department of Plastic and Reconstructive Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasushi Miyazaki
- Department of Hematology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shinichi Moriwaki
- Department of Dermatology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Department of Genome Repair, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
27
|
Feltes BC. Revisiting the structural features of the xeroderma pigmentosum proteins: Focus on mutations and knowledge gaps. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108416. [PMID: 35690419 DOI: 10.1016/j.mrrev.2022.108416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
The nucleotide excision repair pathway is a broadly studied DNA repair mechanism because impairments of its key players, the xeroderma pigmentosum proteins (XPA to XPG), are associated with multiple hereditary diseases. Due to the massive number of novel mutations reported for these proteins and new structural data published every year, proper categorization and discussion of relevant observations is needed to organize this extensive inflow of knowledge. This review aims to revisit the structural data of all XP proteins while updating it with the information developed in of the past six years. Discussions and interpretations of mutation outcomes, mechanisms of action, and knowledge gaps regarding their structures are provided, as well as new perspectives based on recent research.
Collapse
Affiliation(s)
- Bruno César Feltes
- Department of Theoretical Informatics, Institute of Informatics, Department of Theoretical Informatics, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Genetics, Institute of Bioscience, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Biophysics, Institute of Bioscience, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
28
|
Tsutakawa SE, Bacolla A, Katsonis P, Bralić A, Hamdan SM, Lichtarge O, Tainer JA, Tsai CL. Decoding Cancer Variants of Unknown Significance for Helicase-Nuclease-RPA Complexes Orchestrating DNA Repair During Transcription and Replication. Front Mol Biosci 2021; 8:791792. [PMID: 34966786 PMCID: PMC8710748 DOI: 10.3389/fmolb.2021.791792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/16/2021] [Indexed: 01/13/2023] Open
Abstract
All tumors have DNA mutations, and a predictive understanding of those mutations could inform clinical treatments. However, 40% of the mutations are variants of unknown significance (VUS), with the challenge being to objectively predict whether a VUS is pathogenic and supports the tumor or whether it is benign. To objectively decode VUS, we mapped cancer sequence data and evolutionary trace (ET) scores onto crystallography and cryo-electron microscopy structures with variant impacts quantitated by evolutionary action (EA) measures. As tumors depend on helicases and nucleases to deal with transcription/replication stress, we targeted helicase–nuclease–RPA complexes: (1) XPB-XPD (within TFIIH), XPF-ERCC1, XPG, and RPA for transcription and nucleotide excision repair pathways and (2) BLM, EXO5, and RPA plus DNA2 for stalled replication fork restart. As validation, EA scoring predicts severe effects for most disease mutations, but disease mutants with low ET scores not only are likely destabilizing but also disrupt sophisticated allosteric mechanisms. For sites of disease mutations and VUS predicted to be severe, we found strong co-localization to ordered regions. Rare discrepancies highlighted the different survival requirements between disease and tumor mutations, as well as the value of examining proteins within complexes. In a genome-wide analysis of 33 cancer types, we found correlation between the number of mutations in each tumor and which pathways or functional processes in which the mutations occur, revealing different mutagenic routes to tumorigenesis. We also found upregulation of ancient genes including BLM, which supports a non-random and concerted cancer process: reversion to a unicellular, proliferation-uncontrolled, status by breaking multicellular constraints on cell division. Together, these genes and global analyses challenge the binary “driver” and “passenger” mutation paradigm, support a gradient impact as revealed by EA scoring from moderate to severe at a single gene level, and indicate reduced regulation as well as activity. The objective quantitative assessment of VUS scoring and gene overexpression in the context of functional interactions and pathways provides insights for biology, oncology, and precision medicine.
Collapse
Affiliation(s)
- Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Amer Bralić
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Samir M Hamdan
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - John A Tainer
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States.,Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
29
|
Pears CJ, Brustel J, Lakin ND. Dictyostelium discoideum as a Model to Assess Genome Stability Through DNA Repair. Front Cell Dev Biol 2021; 9:752175. [PMID: 34692705 PMCID: PMC8529158 DOI: 10.3389/fcell.2021.752175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022] Open
Abstract
Preserving genome integrity through repair of DNA damage is critical for human health and defects in these pathways lead to a variety of pathologies, most notably cancer. The social amoeba Dictyostelium discoideum is remarkably resistant to DNA damaging agents and genome analysis reveals it contains orthologs of several DNA repair pathway components otherwise limited to vertebrates. These include the Fanconi Anemia DNA inter-strand crosslink and DNA strand break repair pathways. Loss of function of these not only results in malignancy, but also neurodegeneration, immune-deficiencies and congenital abnormalities. Additionally, D. discoideum displays remarkable conservations of DNA repair factors that are targets in cancer and other therapies, including poly(ADP-ribose) polymerases that are targeted to treat breast and ovarian cancers. This, taken together with the genetic tractability of D. discoideum, make it an attractive model to assess the mechanistic basis of DNA repair to provide novel insights into how these pathways can be targeted to treat a variety of pathologies. Here we describe progress in understanding the mechanisms of DNA repair in D. discoideum, and how these impact on genome stability with implications for understanding development of malignancy.
Collapse
Affiliation(s)
- Catherine J. Pears
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
30
|
Meier B, Volkova NV, Wang B, González-Huici V, Bertolini S, Campbell PJ, Gerstung M, Gartner A. C. elegans genome-wide analysis reveals DNA repair pathways that act cooperatively to preserve genome integrity upon ionizing radiation. PLoS One 2021; 16:e0258269. [PMID: 34614038 PMCID: PMC8494335 DOI: 10.1371/journal.pone.0258269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022] Open
Abstract
Ionizing radiation (IR) is widely used in cancer therapy and accidental or environmental exposure is a major concern. However, little is known about the genome-wide effects IR exerts on germ cells and the relative contribution of DNA repair pathways for mending IR-induced lesions. Here, using C. elegans as a model system and using primary sequencing data from our recent high-level overview of the mutagenic consequences of 11 genotoxic agents, we investigate in detail the genome-wide mutagenic consequences of exposing wild-type and 43 DNA repair and damage response defective C. elegans strains to a Caesium (Cs-137) source, emitting γ-rays. Cs-137 radiation induced single nucleotide variants (SNVs) at a rate of ~1 base substitution per 3 Gy, affecting all nucleotides equally. In nucleotide excision repair mutants, this frequency increased 2-fold concurrently with increased dinucleotide substitutions. As observed for DNA damage induced by bulky DNA adducts, small deletions were increased in translesion polymerase mutants, while base changes decreased. Structural variants (SVs) were augmented with dose, but did not arise with significantly higher frequency in any DNA repair mutants tested. Moreover, 6% of all mutations occurred in clusters, but clustering was not significantly altered in any DNA repair mutant background. Our data is relevant for better understanding how DNA repair pathways modulate IR-induced lesions.
Collapse
Affiliation(s)
- Bettina Meier
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Nadezda V. Volkova
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Bin Wang
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Víctor González-Huici
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Simone Bertolini
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Peter J. Campbell
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Moritz Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Anton Gartner
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
31
|
Rothzerg E, Ho XD, Xu J, Wood D, Märtson A, Kõks S. Upregulation of 15 Antisense Long Non-Coding RNAs in Osteosarcoma. Genes (Basel) 2021; 12:genes12081132. [PMID: 34440306 PMCID: PMC8394133 DOI: 10.3390/genes12081132] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
The human genome encodes thousands of natural antisense long noncoding RNAs (lncRNAs); they play the essential role in regulation of gene expression at multiple levels, including replication, transcription and translation. Dysregulation of antisense lncRNAs plays indispensable roles in numerous biological progress, such as tumour progression, metastasis and resistance to therapeutic agents. To date, there have been several studies analysing antisense lncRNAs expression profiles in cancer, but not enough to highlight the complexity of the disease. In this study, we investigated the expression patterns of antisense lncRNAs from osteosarcoma and healthy bone samples (24 tumour-16 bone samples) using RNA sequencing. We identified 15 antisense lncRNAs (RUSC1-AS1, TBX2-AS1, PTOV1-AS1, UBE2D3-AS1, ERCC8-AS1, ZMIZ1-AS1, RNF144A-AS1, RDH10-AS1, TRG-AS1, GSN-AS1, HMGA2-AS1, ZNF528-AS1, OTUD6B-AS1, COX10-AS1 and SLC16A1-AS1) that were upregulated in tumour samples compared to bone sample controls. Further, we performed real-time polymerase chain reaction (RT-qPCR) to validate the expressions of the antisense lncRNAs in 8 different osteosarcoma cell lines (SaOS-2, G-292, HOS, U2-OS, 143B, SJSA-1, MG-63, and MNNG/HOS) compared to hFOB (human osteoblast cell line). These differentially expressed IncRNAs can be considered biomarkers and potential therapeutic targets for osteosarcoma.
Collapse
Affiliation(s)
- Emel Rothzerg
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia; (E.R.); (J.X.); (D.W.)
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Xuan Dung Ho
- Department of Oncology, College of Medicine and Pharmacy, Hue University, Hue 53000, Vietnam;
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia; (E.R.); (J.X.); (D.W.)
| | - David Wood
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia; (E.R.); (J.X.); (D.W.)
| | - Aare Märtson
- Department of Traumatology and Orthopaedics, University of Tartu, Tartu University Hospital, 50411 Tartu, Estonia;
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence: ; Tel.: +61-(0)-8-6457-0313
| |
Collapse
|
32
|
Jia N, Guo C, Nakazawa Y, van den Heuvel D, Luijsterburg MS, Ogi T. Dealing with transcription-blocking DNA damage: Repair mechanisms, RNA polymerase II processing and human disorders. DNA Repair (Amst) 2021; 106:103192. [PMID: 34358806 DOI: 10.1016/j.dnarep.2021.103192] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/15/2022]
Abstract
Transcription-blocking DNA lesions (TBLs) in genomic DNA are triggered by a wide variety of DNA-damaging agents. Such lesions cause stalling of elongating RNA polymerase II (RNA Pol II) enzymes and fully block transcription when unresolved. The toxic impact of DNA damage on transcription progression is commonly referred to as transcription stress. In response to RNA Pol II stalling, cells activate and employ transcription-coupled repair (TCR) machineries to repair cytotoxic TBLs and resume transcription. Increasing evidence indicates that the modification and processing of stalled RNA Pol II is an integral component of the cellular response to and the repair of TBLs. If TCR pathways fail, the prolonged stalling of RNA Pol II will impede global replication and transcription as well as block the access of other DNA repair pathways that may act upon the TBL. Consequently, such prolonged stalling will trigger profound genome instability and devastating clinical features. In this review, we will discuss the mechanisms by which various types of TBLs are repaired by distinct TCR pathways and how RNA Pol II processing is regulated during these processes. We will also discuss the clinical consequences of transcription stress and genotype-phenotype correlations of related TCR-deficiency disorders.
Collapse
Affiliation(s)
- Nan Jia
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Chaowan Guo
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yuka Nakazawa
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Diana van den Heuvel
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.
| |
Collapse
|
33
|
Friedman J, Bird LM, Haas R, Robbins SL, Nahas SA, Dimmock DP, Yousefzadeh MJ, Witt MA, Niedernhofer LJ, Chowdhury S. Ending a diagnostic odyssey: Moving from exome to genome to identify cockayne syndrome. Mol Genet Genomic Med 2021; 9:e1623. [PMID: 34076366 PMCID: PMC8372079 DOI: 10.1002/mgg3.1623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/20/2021] [Accepted: 01/29/2021] [Indexed: 01/04/2023] Open
Abstract
Background Cockayne syndrome (CS) is a rare autosomal recessive disorder characterized by growth failure and multisystemic degeneration. Excision repair cross‐complementation group 6 (ERCC6 OMIM: *609413) is the gene most frequently mutated in CS. Methods A child with pre and postnatal growth failure and progressive neurologic deterioration with multisystem involvement, and with nondiagnostic whole‐exome sequencing, was screened for causal variants with whole‐genome sequencing (WGS). Results WGS identified biallelic ERCC6 variants, including a previously unreported intronic variant. Pathogenicity of these variants was established by demonstrating reduced levels of ERCC6 mRNA and protein expression, normal unscheduled DNA synthesis, and impaired recovery of RNA synthesis in patient fibroblasts following UV‐irradiation. Conclusion The study confirms the pathogenicity of a previously undescribed upstream intronic variant, highlighting the power of genome sequencing to identify noncoding variants. In addition, this report provides evidence for the utility of a combination approach of genome sequencing plus functional studies to provide diagnosis in a child for whom a lengthy diagnostic odyssey, including exome sequencing, was previously unrevealing.
Collapse
Affiliation(s)
- Jennifer Friedman
- Department of NeurosciencesUniversity of California San DiegoSan DiegoCAUSA
- Department of PediatricsUniversity of California San DiegoSan DiegoCAUSA
- Division of Neurology Rady Children’s HospitalSan DiegoCAUSA
- Rady Children’s Institute for Genomic MedicineSan DiegoCAUSA
| | - Lynne M. Bird
- Department of PediatricsUniversity of California San DiegoSan DiegoCAUSA
- Division of Genetics/DysmorphologyRady Children’s Hospital San DiegoSan DiegoCAUSA
| | - Richard Haas
- Department of NeurosciencesUniversity of California San DiegoSan DiegoCAUSA
- Department of PediatricsUniversity of California San DiegoSan DiegoCAUSA
- Division of Neurology Rady Children’s HospitalSan DiegoCAUSA
| | - Shira L. Robbins
- Viterbi Family Department of Ophthalmology at the Shiley Eye InstituteUniversity of California San DiegoLa JollaCAUSA
| | | | | | - Matthew J. Yousefzadeh
- Institute on the Biology of Aging and MetabolismDepartment of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
| | - Mariah A. Witt
- Institute on the Biology of Aging and MetabolismDepartment of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and MetabolismDepartment of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
| | | |
Collapse
|
34
|
Nabouli I, Chikhaoui A, Othman H, Elouej S, Jones M, Lagarde A, Rekaya MB, Messaoud O, Zghal M, Delague V, Levy N, De Sandre-Giovannoli A, Abdelhak S, Yacoub-Youssef H. Case Report: Identification of Novel Variants in ERCC4 and DDB2 Genes in Two Tunisian Patients With Atypical Xeroderma Pigmentosum Phenotype. Front Genet 2021; 12:650639. [PMID: 34135938 PMCID: PMC8203331 DOI: 10.3389/fgene.2021.650639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Xeroderma Pigmentosum (XP) is a rare genetic disorder affecting the nucleotide excision repair system (NER). It is characterized by an extreme sensitivity to sunlight that induces cutaneous disorders such as severe sunburn, freckling and cancers. In Tunisia, six complementation groups have been already identified. However, the genetic etiology remains unknown for several patients. In this study, we investigated clinical characteristics and genetic defects in two families with atypical phenotypes originating from the central region in Tunisia. Clinical investigation revealed mild cutaneous features in two patients who develop multiple skin cancers at later ages, with no neurological disorders. Targeted gene sequencing revealed that they carried novel variants. A homozygous variation in the ERCC4 gene c.1762G>T, p.V588F, detected in patient XP21. As for patient XP134, he carried two homozygous mutations in the DDB2 gene c.613T>C, p.C205R and c.618C>A, p.S206R. Structural modeling of the protein predicted the identified ERCC4 variant to mildly affect protein stability without affecting its functional domains. As for the case of DDB2 double mutant, the second variation seems to cause a mild effect on the protein structure unlike the first variation which does not seem to have an effect on it. This study contributes to further characterize the mutation spectrum of XP in Tunisian families. Targeted gene sequencing accelerated the identification of rare unexpected genetic defects for diagnostic testing and genetic counseling.
Collapse
Affiliation(s)
- Imen Nabouli
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, LR16IPT05, Université Tunis ElManar, Tunis, Tunisia
| | - Asma Chikhaoui
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, LR16IPT05, Université Tunis ElManar, Tunis, Tunisia
| | - Houcemeddine Othman
- Faculty of Health Sciences, Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Sahar Elouej
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, LR16IPT05, Université Tunis ElManar, Tunis, Tunisia.,Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France
| | - Meriem Jones
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, LR16IPT05, Université Tunis ElManar, Tunis, Tunisia.,Service de dermatologie, Hôpital Charles Nicolle, Tunis, Tunisia
| | - Arnaud Lagarde
- Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France
| | - Meriem Ben Rekaya
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, LR16IPT05, Université Tunis ElManar, Tunis, Tunisia
| | - Olfa Messaoud
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, LR16IPT05, Université Tunis ElManar, Tunis, Tunisia
| | - Mohamed Zghal
- Service de dermatologie, Hôpital Charles Nicolle, Tunis, Tunisia
| | | | - Nicolas Levy
- Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France.,Departement of Medical Genetics, Assistance Publique Hôpitaux de Marseille, La Timone Children's Hospital, Marseille, France
| | - Annachiara De Sandre-Giovannoli
- Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France.,Biological Resource Center (CRB-TAC), Assistance Publique Hôpitaux de Marseille, La Timone Children's Hospital, Marseille, France
| | - Sonia Abdelhak
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, LR16IPT05, Université Tunis ElManar, Tunis, Tunisia
| | - Houda Yacoub-Youssef
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, LR16IPT05, Université Tunis ElManar, Tunis, Tunisia
| |
Collapse
|
35
|
Cockayne Syndrome Group B (CSB): The Regulatory Framework Governing the Multifunctional Protein and Its Plausible Role in Cancer. Cells 2021; 10:cells10040866. [PMID: 33920220 PMCID: PMC8068816 DOI: 10.3390/cells10040866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022] Open
Abstract
Cockayne syndrome (CS) is a DNA repair syndrome characterized by a broad spectrum of clinical manifestations such as neurodegeneration, premature aging, developmental impairment, photosensitivity and other symptoms. Mutations in Cockayne syndrome protein B (CSB) are present in the vast majority of CS patients and in other DNA repair-related pathologies. In the literature, the role of CSB in different DNA repair pathways has been highlighted, however, new CSB functions have been identified in DNA transcription, mitochondrial biology, telomere maintenance and p53 regulation. Herein, we present an overview of identified structural elements and processes that impact on CSB activity and its post-translational modifications, known to balance the different roles of the protein not only during normal conditions but most importantly in stress situations. Moreover, since CSB has been found to be overexpressed in a number of different tumors, its role in cancer is presented and possible therapeutic targeting is discussed.
Collapse
|
36
|
Tiwari V, Baptiste BA, Okur MN, Bohr VA. Current and emerging roles of Cockayne syndrome group B (CSB) protein. Nucleic Acids Res 2021; 49:2418-2434. [PMID: 33590097 DOI: 10.1093/nar/gkab085] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Cockayne syndrome (CS) is a segmental premature aging syndrome caused primarily by defects in the CSA or CSB genes. In addition to premature aging, CS patients typically exhibit microcephaly, progressive mental and sensorial retardation and cutaneous photosensitivity. Defects in the CSB gene were initially thought to primarily impair transcription-coupled nucleotide excision repair (TC-NER), predicting a relatively consistent phenotype among CS patients. In contrast, the phenotypes of CS patients are pleiotropic and variable. The latter is consistent with recent work that implicates CSB in multiple cellular systems and pathways, including DNA base excision repair, interstrand cross-link repair, transcription, chromatin remodeling, RNAPII processing, nucleolin regulation, rDNA transcription, redox homeostasis, and mitochondrial function. The discovery of additional functions for CSB could potentially explain the many clinical phenotypes of CSB patients. This review focuses on the diverse roles played by CSB in cellular pathways that enhance genome stability, providing insight into the molecular features of this complex premature aging disease.
Collapse
Affiliation(s)
- Vinod Tiwari
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Beverly A Baptiste
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mustafa N Okur
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
37
|
Zhang X, Heng Y, Kooistra SM, van Weering HRJ, Brummer ML, Gerrits E, Wesseling EM, Brouwer N, Nijboer TW, Dubbelaar ML, Boddeke EWGM, Eggen BJL. Intrinsic DNA damage repair deficiency results in progressive microglia loss and replacement. Glia 2021; 69:729-745. [PMID: 33068332 PMCID: PMC7821301 DOI: 10.1002/glia.23925] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/30/2022]
Abstract
The DNA excision repair protein Ercc1 is important for nucleotide excision, double strand DNA break, and interstrand DNA crosslink repair. In constitutive Ercc1-knockout mice, microglia display increased phagocytosis, proliferation and an enhanced responsiveness to lipopolysaccharide (LPS)-induced peripheral inflammation. However, the intrinsic effects of Ercc1-deficiency on microglia are unclear. In this study, Ercc1 was specifically deleted from Cx3cr1-expressing cells and changes in microglia morphology and immune responses at different times after deletion were determined. Microglia numbers were reduced with approximately 50% at 2-12 months after Ercc1 deletion. Larger and more ramified microglia were observed following Ercc1 deletion both in vivo and in organotypic hippocampal slice cultures. Ercc1-deficient microglia were progressively lost, and during this period, microglia proliferation was transiently increased. Ercc1-deficient microglia were gradually replaced by nondeficient microglia carrying a functional Ercc1 allele. In contrast to constitutive Ercc1-deficient mice, microglia-specific deletion of Ercc1 did not induce microglia activation or increase their responsiveness to a systemic LPS challenge. Gene expression analysis suggested that Ercc1 deletion in microglia induced a transient aging signature, which was different from a priming or disease-associated microglia gene expression profile.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Yang Heng
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Susanne M. Kooistra
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Hilmar R. J. van Weering
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Maaike L. Brummer
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Emma Gerrits
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Evelyn M. Wesseling
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Nieske Brouwer
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Tjalling W. Nijboer
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Marissa L. Dubbelaar
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Erik W. G. M. Boddeke
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Center for Healthy Ageing, Department of Cellular and Molecular MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Bart J. L. Eggen
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
38
|
Apelt K, White SM, Kim HS, Yeo JE, Kragten A, Wondergem AP, Rooimans MA, González-Prieto R, Wiegant WW, Lunke S, Flanagan D, Pantaleo S, Quinlan C, Hardikar W, van Attikum H, Vertegaal AC, Wilson BT, Wolthuis RM, Schärer OD, Luijsterburg MS. ERCC1 mutations impede DNA damage repair and cause liver and kidney dysfunction in patients. J Exp Med 2021; 218:e20200622. [PMID: 33315086 PMCID: PMC7927433 DOI: 10.1084/jem.20200622] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/25/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
ERCC1-XPF is a multifunctional endonuclease involved in nucleotide excision repair (NER), interstrand cross-link (ICL) repair, and DNA double-strand break (DSB) repair. Only two patients with bi-allelic ERCC1 mutations have been reported, both of whom had features of Cockayne syndrome and died in infancy. Here, we describe two siblings with bi-allelic ERCC1 mutations in their teenage years. Genomic sequencing identified a deletion and a missense variant (R156W) within ERCC1 that disrupts a salt bridge below the XPA-binding pocket. Patient-derived fibroblasts and knock-in epithelial cells carrying the R156W substitution show dramatically reduced protein levels of ERCC1 and XPF. Moreover, mutant ERCC1 weakly interacts with NER and ICL repair proteins, resulting in diminished recruitment to DNA damage. Consequently, patient cells show strongly reduced NER activity and increased chromosome breakage induced by DNA cross-linkers, while DSB repair was relatively normal. We report a new case of ERCC1 deficiency that severely affects NER and considerably impacts ICL repair, which together result in a unique phenotype combining short stature, photosensitivity, and progressive liver and kidney dysfunction.
Collapse
Affiliation(s)
- Katja Apelt
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Susan M. White
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Hyun Suk Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Jung-Eun Yeo
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Angela Kragten
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Martin A. Rooimans
- Section of Oncogenetics, Department of Clinical Genetics, Vrije Universiteit Medical Center and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Wouter W. Wiegant
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, Australia
- Department of Pathology, University of Melbourne, Parkville, Australia
| | - Daniel Flanagan
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, Australia
| | - Sarah Pantaleo
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, Australia
| | - Catherine Quinlan
- Department of Paediatrics, University of Melbourne, Parkville, Australia
- Department of Nephrology, Royal Children’s Hospital, Melbourne, Australia
- Department of Kidney Regeneration, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Winita Hardikar
- Department of Paediatrics, University of Melbourne, Parkville, Australia
- Department of Gastroenterology, Royal Children's Hospital, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Parkville, Australia
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Alfred C.O. Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Brian T. Wilson
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
- Northern Genetics Service, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, International Centre for Life, Newcastle upon Tyne, UK
- Department of Clinical Genetics, Great Ormond Street Hospital, London, UK
| | - Rob M.F. Wolthuis
- Section of Oncogenetics, Department of Clinical Genetics, Vrije Universiteit Medical Center and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Orlando D. Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | | |
Collapse
|
39
|
D'Amico AM, Vasquez KM. The multifaceted roles of DNA repair and replication proteins in aging and obesity. DNA Repair (Amst) 2021; 99:103049. [PMID: 33529944 DOI: 10.1016/j.dnarep.2021.103049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
Efficient mechanisms for genomic maintenance (i.e., DNA repair and DNA replication) are crucial for cell survival. Aging and obesity can lead to the dysregulation of genomic maintenance proteins/pathways and are significant risk factors for the development of cancer, metabolic disorders, and other genetic diseases. Mutations in genes that code for proteins involved in DNA repair and DNA replication can also exacerbate aging- and obesity-related disorders and lead to the development of progeroid diseases. In this review, we will discuss the roles of various DNA repair and replication proteins in aging and obesity as well as investigate the possible mechanisms by which aging and obesity can lead to the dysregulation of these proteins and pathways.
Collapse
Affiliation(s)
- Alexandra M D'Amico
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX, 78723, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX, 78723, USA.
| |
Collapse
|
40
|
Lee TL, Lin PH, Chen PL, Hong JB, Wu CC. Hereditary Hearing Impairment with Cutaneous Abnormalities. Genes (Basel) 2020; 12:43. [PMID: 33396879 PMCID: PMC7823799 DOI: 10.3390/genes12010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022] Open
Abstract
Syndromic hereditary hearing impairment (HHI) is a clinically and etiologically diverse condition that has a profound influence on affected individuals and their families. As cutaneous findings are more apparent than hearing-related symptoms to clinicians and, more importantly, to caregivers of affected infants and young individuals, establishing a correlation map of skin manifestations and their underlying genetic causes is key to early identification and diagnosis of syndromic HHI. In this article, we performed a comprehensive PubMed database search on syndromic HHI with cutaneous abnormalities, and reviewed a total of 260 relevant publications. Our in-depth analyses revealed that the cutaneous manifestations associated with HHI could be classified into three categories: pigment, hyperkeratosis/nail, and connective tissue disorders, with each category involving distinct molecular pathogenesis mechanisms. This outline could help clinicians and researchers build a clear atlas regarding the phenotypic features and pathogenetic mechanisms of syndromic HHI with cutaneous abnormalities, and facilitate clinical and molecular diagnoses of these conditions.
Collapse
Affiliation(s)
- Tung-Lin Lee
- Department of Medical Education, National Taiwan University Hospital, Taipei City 100, Taiwan;
| | - Pei-Hsuan Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 11556, Taiwan;
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City 100, Taiwan;
| | - Pei-Lung Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City 100, Taiwan;
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei City 100, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10041, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10041, Taiwan
| | - Jin-Bon Hong
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei City 100, Taiwan
- Department of Dermatology, National Taiwan University Hospital, Taipei City 100, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 11556, Taiwan;
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City 100, Taiwan;
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10041, Taiwan
- Department of Medical Research, National Taiwan University Biomedical Park Hospital, Hsinchu City 300, Taiwan
| |
Collapse
|
41
|
Oka Y, Hamada M, Nakazawa Y, Muramatsu H, Okuno Y, Higasa K, Shimada M, Takeshima H, Hanada K, Hirano T, Kawakita T, Sakaguchi H, Ichimura T, Ozono S, Yuge K, Watanabe Y, Kotani Y, Yamane M, Kasugai Y, Tanaka M, Suganami T, Nakada S, Mitsutake N, Hara Y, Kato K, Mizuno S, Miyake N, Kawai Y, Tokunaga K, Nagasaki M, Kito S, Isoyama K, Onodera M, Kaneko H, Matsumoto N, Matsuda F, Matsuo K, Takahashi Y, Mashimo T, Kojima S, Ogi T. Digenic mutations in ALDH2 and ADH5 impair formaldehyde clearance and cause a multisystem disorder, AMeD syndrome. SCIENCE ADVANCES 2020; 6:eabd7197. [PMID: 33355142 PMCID: PMC11206199 DOI: 10.1126/sciadv.abd7197] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Rs671 in the aldehyde dehydrogenase 2 gene (ALDH2) is the cause of Asian alcohol flushing response after drinking. ALDH2 detoxifies endogenous aldehydes, which are the major source of DNA damage repaired by the Fanconi anemia pathway. Here, we show that the rs671 defective allele in combination with mutations in the alcohol dehydrogenase 5 gene, which encodes formaldehyde dehydrogenase (ADH5FDH ), causes a previously unidentified disorder, AMeD (aplastic anemia, mental retardation, and dwarfism) syndrome. Cellular studies revealed that a decrease in the formaldehyde tolerance underlies a loss of differentiation and proliferation capacity of hematopoietic stem cells. Moreover, Adh5-/-Aldh2 E506K/E506K double-deficient mice recapitulated key clinical features of AMeDS, showing short life span, dwarfism, and hematopoietic failure. Collectively, our results suggest that the combined deficiency of formaldehyde clearance mechanisms leads to the complex clinical features due to overload of formaldehyde-induced DNA damage, thereby saturation of DNA repair processes.
Collapse
Affiliation(s)
- Yasuyoshi Oka
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Motoharu Hamada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuka Nakazawa
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koichiro Higasa
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mayuko Shimada
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Honoka Takeshima
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- School of Medicine, Nagoya University, Nagoya, Japan
| | - Katsuhiro Hanada
- Clinical Engineering Research Center, Faculty of Medicine, Oita University, Yufu, Japan
| | - Taichi Hirano
- Department of Hematology, National Hospital Organization, Kumamoto Medical Center, Kumamoto, Japan
| | - Toshiro Kawakita
- Department of Hematology, National Hospital Organization, Kumamoto Medical Center, Kumamoto, Japan
| | - Hirotoshi Sakaguchi
- Department of Hematology and Oncology, Children Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Takuya Ichimura
- Department of Pediatrics, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Shuichi Ozono
- Department of Pediatrics and Child Health, School of Medicine, Kurume University, Kurume, Japan
| | - Kotaro Yuge
- Department of Pediatrics and Child Health, School of Medicine, Kurume University, Kurume, Japan
| | - Yoriko Watanabe
- Department of Pediatrics and Child Health, School of Medicine, Kurume University, Kurume, Japan
| | - Yuko Kotani
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
- Genome Editing Research and Development (R&D) Center, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mutsumi Yamane
- Center for Animal Research and Education, Nagoya University, Nagoya, Japan
| | - Yumiko Kasugai
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Miyako Tanaka
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichiro Nakada
- Department of Bioregulation and Cellular Response, Graduate School of Medicine, Osaka University, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Yuichiro Hara
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kohji Kato
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seiji Mizuno
- Department of Pediatrics, Aichi Developmental Disability Center, Kasugai, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yosuke Kawai
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masao Nagasaki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Human Biosciences Unit for the Top Global Course Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Seiji Kito
- Center for Animal Research and Education, Nagoya University, Nagoya, Japan
| | - Keiichi Isoyama
- Department of Pediatrics, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Masafumi Onodera
- Division of Immunology, National Center for Child Health and Development, Tokyo, Japan
| | - Hideo Kaneko
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
- Genome Editing Research and Development (R&D) Center, Graduate School of Medicine, Osaka University, Osaka, Japan
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan.
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
42
|
Baer S, Tuzin N, Kang PB, Mohammed S, Kubota M, van Ierland Y, Busa T, Rossi M, Morel G, Michot C, Baujat G, Durand M, Obringer C, Le May N, Calmels N, Laugel V. Growth charts in Cockayne syndrome type 1 and type 2. Eur J Med Genet 2020; 64:104105. [PMID: 33227433 DOI: 10.1016/j.ejmg.2020.104105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/08/2020] [Accepted: 11/15/2020] [Indexed: 11/29/2022]
Abstract
Cockayne syndrome (CS) is a multisystem degenerative disorder divided in 3 overlapping subtypes, with a continuous phenotypic spectrum: CS2 being the most severe form, CS1 the classical form and CS3 the late-onset form. Failure to thrive and growth difficulties are among the most consistent features of CS, leaving affected individuals vulnerable to numerous medical complications, including adverse effects of undernutrition, abrupt overhydration and overfeeding. There is thus a significant need for specific growth charts. We retrospectively collected growth parameters from genetically-confirmed CS1 and CS2 patients, used the GAMLSS package to construct specific CS growth charts compared to healthy children from WHO and CDC databases. Growth data were obtained from 88 CS patients with a total of 1626 individual growth data points. 49 patients were classified as CS1 and 39 as CS2 with confirmed mutations in CSB/ERCC6, CSA/ERCC8 or ERCC1 genes. Individuals with CS1 initially have normal growth parameters; microcephaly occurs from 2 months whereas onset of weight and height restrictions appear later, between 5 and 22 months. In CS2, growth parameters are already below standard references at birth or drop below the 5th percentile before 3 months. Microcephaly is the first parameter to show a delay, appearing around 2 months in CS1 and at birth in CS2. Height and head circumference are more severely affected in CS2 compared to CS1 whereas weight curves are similar in CS1 and CS2 patients. These new growth charts will serve as a practical tool to improve the nutritional management of children with CS.
Collapse
Affiliation(s)
- Sarah Baer
- Service de Pédiatrie 1, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| | - Nicolas Tuzin
- Groupe Méthode en Recherche Clinique, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Strasbourg, France
| | - Peter B Kang
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Shehla Mohammed
- South East Thames Regional Genetics Service, Guy's and St Thomas' Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Masaya Kubota
- Division of Neurology, National Center for Child Health and Development, Tokyo, Japan
| | - Yvette van Ierland
- Erasmus University Medical Center, Department of Clinical Genetics, 3000 CA Rotterdam, The Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
| | - Tiffany Busa
- Hôpital de la Timone, Medical Genetics, Marseille, Provence-Alpes-Côte d'Azur, France
| | - Massimiliano Rossi
- Centre de référence des anomalies du développement, Service de génétique, Hospices Civils de Lyon & Centre de Recherche en Neurosciences de Lyon, Inserm U1028, UMR CNRS 5292, GENDEV Team, Lyon 1-Claude Bernard University, Bron, France
| | - Godelieve Morel
- Service de Génétique Clinique, Centre de Référence Maladies Rares Centre Labellisé Anomalies du Développement-Ouest, Centre Hospitalier Universitaire de Rennes, 35033, Rennes, France
| | - Caroline Michot
- Service de génétique clinique, CRMR maladies osseuses constitutionnelles, INSERM UMR 1163, Université Paris-Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker Enfants Malades, Paris, France
| | - Geneviève Baujat
- Service de génétique clinique, CRMR maladies osseuses constitutionnelles, INSERM UMR 1163, Université Paris-Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker Enfants Malades, Paris, France
| | - Myriam Durand
- Centre d'Investigation Clinique INSERM-CIC 1434, CHRU de Strasbourg, F - 67091, Strasbourg, France
| | - Cathy Obringer
- Laboratoire de Génétique médicale, INSERM U1112, Institut de génétique médicale d'Alsace, Faculté de Médecine de Strasbourg, Hôpitaux Universitaires de Strasbourg, France
| | - Nicolas Le May
- Laboratoire de Génétique médicale, INSERM U1112, Institut de génétique médicale d'Alsace, Faculté de Médecine de Strasbourg, Hôpitaux Universitaires de Strasbourg, France
| | - Nadège Calmels
- Laboratoire de Génétique médicale, INSERM U1112, Institut de génétique médicale d'Alsace, Faculté de Médecine de Strasbourg, Hôpitaux Universitaires de Strasbourg, France; Laboratoires de Diagnostic Génétique, Institut de génétique médicale d'Alsace, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, France
| | - Vincent Laugel
- Service de Pédiatrie 1, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Laboratoire de Génétique médicale, INSERM U1112, Institut de génétique médicale d'Alsace, Faculté de Médecine de Strasbourg, Hôpitaux Universitaires de Strasbourg, France
| |
Collapse
|
43
|
Felix FA, da Silva LP, Lopes MLDDS, Sobral APV, Freitas RDA, de Souza LB, Barboza CAG. DNA base excision repair and nucleotide excision repair proteins in malignant salivary gland tumors. Arch Oral Biol 2020; 121:104987. [PMID: 33202356 DOI: 10.1016/j.archoralbio.2020.104987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To analyze the immunohistochemical expression of the base excision repair (BER) proteins apurinic/apyrimidinic endonuclease 1 (APE1) and X-ray repair cross-complementing protein 1 (XRCC1) and nucleotide excision repair (NER) protein xeroderma pigmentosum group F (XPF) in malignant salivary gland tumors (MSGTs). DESIGN Sixty-two cases of MSGTs were selected, including 14 acinic cell carcinomas (AcCC), 15 polymorphous adenocarcinomas (PAC), 16 adenoid cystic carcinomas (ACC), and 17 mucoepidermoid carcinomas (MEC). The specimens were submitted to quantitative immunohistochemical analysis. RESULTS All MSGTs exhibited nuclear or nucleo-cytoplasmic immunostaining of APE1, XRCC1 and XPF, with a high percentage of positive cells (median = 78.31, 70.48 and 75.46, respectively). XRCC1 expression was higher in PAC compared to MEC (p = 0.032). Nuclear APE1 immunostaining was significantly higher than nucleo-cytoplasmic expression in the selected MSGTs (p < 0.0001). APE1 expression was significantly associated with T1-T2 tumors in ACC (p = 0.006). Increased expression of XPF was associated with age older than 60 years in MEC (p = 0.015) and with ACC involving the minor salivary gland (p = 0.012), while a lower expression was found in AcCC and ACC patients treated by surgery combined with adjuvant therapy (p = 0.036 and p = 0.020, respectively). Low expression of XRCC1 in the nucleus (p = 0.028) and concomitant expression of this protein in the nucleus/cytoplasm were associated with a lower overall 5-year survival rate (p = 0.017). CONCLUSIONS This study showed that BER and NER proteins evaluated are highly expressed in the MSGTs studied, indicating mechanisms of genotoxic control in these tumors. In addition, the dysregulation of XRCC1 expression was a prognostic predictor in MSGTs analyzed.
Collapse
Affiliation(s)
- Fernanda Aragão Felix
- Postgraduate Program in Dental Science, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | | | | | - Roseana de Almeida Freitas
- Postgraduate Program in Dental Science, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Lélia Batista de Souza
- Postgraduate Program in Dental Science, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Carlos Augusto Galvão Barboza
- Postgraduate Program in Dental Science, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
44
|
New Perspectives on Unscheduled DNA Synthesis: Functional Assay for Global Genomic DNA Nucleotide Excision Repair. Methods Mol Biol 2020; 2102:483-507. [PMID: 31989573 DOI: 10.1007/978-1-0716-0223-2_27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The unscheduled DNA synthesis (UDS) assay measures the ability of a cell to perform global genomic nucleotide excision repair (NER). This chapter provides instructions for the application of this technique by creating 6-4 photoproducts and pyrimidine dimers using UV-C (254 nm) irradiation. This procedure is designed specifically for quantification of the 6-4 photoproducts. Repair is quantified by the amount of radioactive thymidine incorporated during repair synthesis after this insult, and radioactivity is evaluated by grain counting after autoradiography. The results have been used to clinically diagnose human DNA repair deficiency disorders, and provide a basis for investigation of repair deficiency in human tissues or tumors. Genomic sequencing to establish the presence of specific mutations is also used now for clinical diagnosis of DNA repair deficiency syndromes. Few functional assays are available which directly measure the capacity to perform NER on the entire genome. Since live cells are required for this assay, explant culture techniques must be previously established. Host cell reactivation (HCR). As discussed in Chap. 28 is not an equivalent technique, as it measures only transcription-coupled repair (TCR) at active genes, a small subset of total NER. Our laboratory also explored the fluorescent label-based Click-iT assay that uses EdU as the label, rather than 3H thymidine. Despite emerging studies in the literature finding this assay to be useful for other purposes, we found that the EdU-based UDS assay was not consistent or reproducible compared with the 3H thymidine-based assay.
Collapse
|
45
|
Bermisheva MA, Gilyazova IR, Zinnatullina GF, Khusnutdinova EK. Analysis of Rare Variant c.2395C>T (p.Arg799Trp) in Gene ERCC4 in Breast Cancer Patients from Bashkortostan. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420050026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Vessoni AT, Guerra CCC, Kajitani GS, Nascimento LLS, Garcia CCM. Cockayne Syndrome: The many challenges and approaches to understand a multifaceted disease. Genet Mol Biol 2020; 43:e20190085. [PMID: 32453336 PMCID: PMC7250278 DOI: 10.1590/1678-4685-gmb-2019-0085] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 01/15/2020] [Indexed: 01/04/2023] Open
Abstract
The striking and complex phenotype of Cockayne syndrome (CS) patients combines progeria-like features with developmental deficits. Since the establishment of the in vitro culture of skin fibroblasts derived from patients with CS in the 1970s, significant progress has been made in the understanding of the genetic alterations associated with the disease and their impact on molecular, cellular, and organismal functions. In this review, we provide a historic perspective on the research into CS by revisiting seminal papers in this field. We highlighted the great contributions of several researchers in the last decades, ranging from the cloning and characterization of CS genes to the molecular dissection of their roles in DNA repair, transcription, redox processes and metabolism control. We also provide a detailed description of all pathological mutations in genes ERCC6 and ERCC8 reported to date and their impact on CS-related proteins. Finally, we review the contributions (and limitations) of many genetic animal models to the study of CS and how cutting-edge technologies, such as cell reprogramming and state-of-the-art genome editing, are helping us to address unanswered questions.
Collapse
Affiliation(s)
| | - Camila Chaves Coelho Guerra
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
| | - Gustavo Satoru Kajitani
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
- Universidade de São Paulo, Instituto de Ciências Biomédicas,
Departamento de Microbiologia, São Paulo,SP, Brazil
| | - Livia Luz Souza Nascimento
- Universidade de São Paulo, Instituto de Ciências Biomédicas,
Departamento de Microbiologia, São Paulo,SP, Brazil
| | - Camila Carrião Machado Garcia
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
| |
Collapse
|
47
|
Sabatella M, Pines A, Slyskova J, Vermeulen W, Lans H. ERCC1-XPF targeting to psoralen-DNA crosslinks depends on XPA and FANCD2. Cell Mol Life Sci 2020; 77:2005-2016. [PMID: 31392348 PMCID: PMC7228994 DOI: 10.1007/s00018-019-03264-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/19/2019] [Accepted: 07/31/2019] [Indexed: 01/02/2023]
Abstract
The effectiveness of many DNA-damaging chemotherapeutic drugs depends on their ability to form monoadducts, intrastrand crosslinks and/or interstrand crosslinks (ICLs) that interfere with transcription and replication. The ERCC1-XPF endonuclease plays a critical role in removal of these lesions by incising DNA either as part of nucleotide excision repair (NER) or interstrand crosslink repair (ICLR). Engagement of ERCC1-XPF in NER is well characterized and is facilitated by binding to the XPA protein. However, ERCC1-XPF recruitment to ICLs is less well understood. Moreover, specific mutations in XPF have been found to disrupt its function in ICLR but not in NER, but whether this involves differences in lesion targeting is unknown. Here, we imaged GFP-tagged ERCC1, XPF and ICLR-defective XPF mutants to investigate how in human cells ERCC1-XPF is localized to different types of psoralen-induced DNA lesions, repaired by either NER or ICLR. Our results confirm its dependence on XPA in NER and furthermore show that its engagement in ICLR is dependent on FANCD2. Interestingly, we find that two ICLR-defective XPF mutants (R689S and S786F) are less well recruited to ICLs. These studies highlight the differential mechanisms that regulate ERCC1-XPF activity in DNA repair.
Collapse
Affiliation(s)
- Mariangela Sabatella
- Department of Molecular Genetics, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
- Oncode Institute, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Alex Pines
- Department of Molecular Genetics, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
- Oncode Institute, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Jana Slyskova
- Department of Molecular Genetics, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC, 3015 GE, Rotterdam, The Netherlands.
- Oncode Institute, Erasmus MC, 3015 GE, Rotterdam, The Netherlands.
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC, 3015 GE, Rotterdam, The Netherlands.
- Oncode Institute, Erasmus MC, 3015 GE, Rotterdam, The Netherlands.
| |
Collapse
|
48
|
Mulderrig L, Garaycoechea JI. XPF-ERCC1 protects liver, kidney and blood homeostasis outside the canonical excision repair pathways. PLoS Genet 2020; 16:e1008555. [PMID: 32271760 PMCID: PMC7144963 DOI: 10.1371/journal.pgen.1008555] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/05/2019] [Indexed: 01/02/2023] Open
Abstract
Loss of the XPF-ERCC1 endonuclease causes a dramatic phenotype that results in progeroid features associated with liver, kidney and bone marrow dysfunction. As this nuclease is involved in multiple DNA repair transactions, it is plausible that this severe phenotype results from the simultaneous inactivation of both branches of nucleotide excision repair (GG- and TC-NER) and Fanconi anaemia (FA) inter-strand crosslink (ICL) repair. Here we use genetics in human cells and mice to investigate the interaction between the canonical NER and ICL repair pathways and, subsequently, how their joint inactivation phenotypically overlaps with XPF-ERCC1 deficiency. We find that cells lacking TC-NER are sensitive to crosslinking agents and that there is a genetic interaction between NER and FA in the repair of certain endogenous crosslinking agents. However, joint inactivation of GG-NER, TC-NER and FA crosslink repair cannot account for the hypersensitivity of XPF-deficient cells to classical crosslinking agents nor is it sufficient to explain the extreme phenotype of Ercc1-/- mice. These analyses indicate that XPF-ERCC1 has important functions outside of its central role in NER and FA crosslink repair which are required to prevent endogenous DNA damage. Failure to resolve such damage leads to loss of tissue homeostasis in mice and humans.
Collapse
Affiliation(s)
- Lee Mulderrig
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, United Kingdom
| | - Juan I. Garaycoechea
- Hubrecht Institute–KNAW, University Medical Center Utrecht, Uppsalalaan, CT Utrecht, Netherlands
| |
Collapse
|
49
|
Affiliation(s)
- Peter J. McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
50
|
Nakazawa Y, Hara Y, Oka Y, Komine O, van den Heuvel D, Guo C, Daigaku Y, Isono M, He Y, Shimada M, Kato K, Jia N, Hashimoto S, Kotani Y, Miyoshi Y, Tanaka M, Sobue A, Mitsutake N, Suganami T, Masuda A, Ohno K, Nakada S, Mashimo T, Yamanaka K, Luijsterburg MS, Ogi T. Ubiquitination of DNA Damage-Stalled RNAPII Promotes Transcription-Coupled Repair. Cell 2020; 180:1228-1244.e24. [PMID: 32142649 DOI: 10.1016/j.cell.2020.02.010] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/16/2019] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
Transcription-coupled nucleotide excision repair (TC-NER) is initiated by the stalling of elongating RNA polymerase II (RNAPIIo) at DNA lesions. The ubiquitination of RNAPIIo in response to DNA damage is an evolutionarily conserved event, but its function in mammals is unknown. Here, we identified a single DNA damage-induced ubiquitination site in RNAPII at RPB1-K1268, which regulates transcription recovery and DNA damage resistance. Mechanistically, RPB1-K1268 ubiquitination stimulates the association of the core-TFIIH complex with stalled RNAPIIo through a transfer mechanism that also involves UVSSA-K414 ubiquitination. We developed a strand-specific ChIP-seq method, which revealed RPB1-K1268 ubiquitination is important for repair and the resolution of transcriptional bottlenecks at DNA lesions. Finally, RPB1-K1268R knockin mice displayed a short life-span, premature aging, and neurodegeneration. Our results reveal RNAPII ubiquitination provides a two-tier protection mechanism by activating TC-NER and, in parallel, the processing of DNA damage-stalled RNAPIIo, which together prevent prolonged transcription arrest and protect against neurodegeneration.
Collapse
Affiliation(s)
- Yuka Nakazawa
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichiro Hara
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuyoshi Oka
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Okiru Komine
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Diana van den Heuvel
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Chaowan Guo
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasukazu Daigaku
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan; Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Mayu Isono
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuxi He
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mayuko Shimada
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kana Kato
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nan Jia
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoru Hashimoto
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Kotani
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan; Genome Editing Research and Development (R&D) Center, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuka Miyoshi
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miyako Tanaka
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Sobue
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichiro Nakada
- Department of Bioregulation and Cellular Response, Graduate School of Medicine, Osaka University, Osaka, Japan; Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan; Genome Editing Research and Development (R&D) Center, Graduate School of Medicine, Osaka University, Osaka, Japan; Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|