1
|
Yu HF, Zeng QR, Xiao P, Yang D, Ping Y, Liu M, Yu Z, Wang C, Teng CB. Hippo-YAP signaling alleviates copper-induced mitochondrial dysfunction and oxidative damage via the ATOX1-PPA2 pathway. Int J Biol Macromol 2025; 290:138908. [PMID: 39706439 DOI: 10.1016/j.ijbiomac.2024.138908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Hippo signaling plays a crucial role in the cellular response to various stressors, such as mechanical stress, metabolic stress, and hypoxic stress. However, its physiological significance in copper (Cu) stress remains poorly understood. Here, we demonstrated aberrant activation of Hippo-YAP signaling in sheep pancreas and pancreatic organoids exposed to excessive Cu, accompanied by significant pathological changes, elevated levels of oxidative stress, and impaired mitochondrial structure and function. The inhibition of Hippo signaling or overexpression of YAP protected against Cu-induced damage by improving mitochondrial function and maintaining cellular Cu homeostasis. YAP interacted with TEAD and upregulated the expression of Cu chaperone ATOX1, a key regulator of intracellular Cu homeostasis. ATOX1 restored mitochondrial function under Cu stress by reducing mitochondrial superoxide levels, increasing ATP production and mitochondrial membrane potential. Additionally, our findings confirmed that ATOX1 indirectly bound to the PPA2 promoter and increased its transcription. Notably, the restoration of ATP production in mitochondria mediated by PPA2 overexpression facilitated efficient intracellular Cu efflux, allowing rapid and precise reestablishment of intracellular Cu homeostasis under Cu stress. Collectively, Hippo-YAP signaling alleviates Cu-induced oxidative damage by restoring mitochondrial function through activation of PPA2 transcription depending on ATOX1, thereby ensuring cellular Cu efflux and enhancing antioxidant capacity.
Collapse
Affiliation(s)
- Hai-Fan Yu
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Qi-Ran Zeng
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Pengyu Xiao
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Dian Yang
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yue Ping
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Miao Liu
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ze Yu
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Chunsheng Wang
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Chun-Bo Teng
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
2
|
McGinn C, Agouba R, O'Sullivan S, Donnelly D, Casey F. PPA2-associated cardiac arrest survivor. Cardiol Young 2025; 35:433-435. [PMID: 39882621 DOI: 10.1017/s1047951125000174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Biallelic pathogenic variants in the inorganic pyrophosphatase 2 (PPA2) gene are a rare but established cause of sudden infant death, which may be precipitated by a pyrexial or viral illness. It has also been associated with sudden death secondary to alcohol ingestion in young adults. We describe the case of a thirteen-month-old female who presented following out-of- hospital cardiac arrest and was subsequently diagnosed with compound, heterozygous pathogenic variants of PPA2. She survived this episode and made excellent neurological recovery despite her prolonged out-of-hospital resuscitation. This case describes her initial presentation, consideration of PPA2-related cardiac arrest in the differential diagnosis, and the subsequent secondary preventative strategies. These included insertion of an implantable cardiac defibrillator, avoidance of alcohol in her medication preparations and administration of childhood vaccinations in a hospital environment due to risk of pyrexia-induced arrhythmias.
Collapse
Affiliation(s)
- Claire McGinn
- Royal Belfast Hospital for Sick Children, Belfast, UK
- Queen's University Belfast, UK
| | - Rihab Agouba
- Royal Belfast Hospital for Sick Children, Belfast, UK
| | | | | | - Frank Casey
- Royal Belfast Hospital for Sick Children, Belfast, UK
- Queen's University Belfast, UK
| |
Collapse
|
3
|
Bezpalaya E, Kurilova S, Vorobyeva N, Rodina E. Conformational Dynamics of Mitochondrial Inorganic Pyrophosphatase hPPA2 and Its Changes Caused by Pathogenic Mutations. Life (Basel) 2025; 15:100. [PMID: 39860040 PMCID: PMC11766831 DOI: 10.3390/life15010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Inorganic pyrophosphatases, or PPases, are ubiquitous enzymes whose activity is necessary for a large number of biosynthetic reactions. The catalytic function of PPases is dependent on certain conformational changes that have been previously characterized based on the comparison of the crystal structures of various complexes. The current work describes the conformational dynamics of a structural model of human mitochondrial pyrophosphatase hPPA2 using molecular dynamics simulation, all-atom principal component analysis, and coarse-grained normal mode analysis. In addition to the wild-type enzyme, four mutant variants of hPPA2 were characterized that correspond to the natural pathogenic variants causing severe mitochondrial dysfunction and cardio pathologies. As a result, we identified the global type of flexible motion that seems to be shared by other dimeric PPases. This motion is discussed in terms of the allosteric behavior of the protein. Analysis of the observed conformational dynamics revealed the formation of a binding site for anionic ligands in the active site that could be relevant to enzyme catalysis. Based on the comparison of the wild-type and mutant PPases dynamics, we suggest the possible molecular mechanisms of the functional incompetence of hPPA2 caused by mutations. The results of this work allow for deeper insight into the structural basis of PPase function and the possible effects of pathogenic mutations on the protein structure and function.
Collapse
Affiliation(s)
- Ekaterina Bezpalaya
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Svetlana Kurilova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia; (S.K.); (N.V.)
| | - Nataliya Vorobyeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia; (S.K.); (N.V.)
| | - Elena Rodina
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
4
|
Bezpalaya EY, Matyuta IO, Vorobyeva NN, Kurilova SA, Oreshkov SD, Minyaev ME, Boyko KM, Rodina EV. The crystal structure of yeast mitochondrial type pyrophosphatase provides a model to study pathological mutations in its human ortholog. Biochem Biophys Res Commun 2024; 738:150563. [PMID: 39178581 DOI: 10.1016/j.bbrc.2024.150563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
Mutations in human ppa2 gene encoding mitochondrial inorganic pyrophosphatase (PPA2) result in the mitochondria malfunction in heart and brain and lead to early death. In comparison with its cytosolic counterpart, PPA2 of any species is a poorly characterized enzyme with a previously unknown 3D structure. We report here the crystal structure of PPA2 from yeast Ogataea parapolymorpha (OpPPA2), as well as its biochemical characterization. OpPPA2 is a dimer, demonstrating the fold typical for other eukaryotic Family I pyrophosphatases, including the human cytosolic enzyme. Cofactor Mg2+ ions found in OpPPA2 structure have similar coordination to most known Family I pyrophosphatases. Most of the residues associated with the pathological mutations in human PPA2 are conserved in OpPPA2, and their structural context suggests possible explanations for the effects of the mutations on the human enzyme. In this work, the mutant variant of OpPPA2, Met52Val, corresponding to the natural pathogenic variant Met94Val of human PPA2, is characterized. The obtained structural and biochemical data provide a step to understanding the structural basis of PPA2-associated pathologies.
Collapse
Affiliation(s)
| | - Ilya O Matyuta
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia; Landau Phystech School of Physics and Research, Moscow Institute of Physics and Technology, Institutsky Lane, 9, Dolgoprudny, 141700, Moscow, Russia
| | - Natalia N Vorobyeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899, Moscow, Russia
| | - Svetlana A Kurilova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899, Moscow, Russia
| | - Sergey D Oreshkov
- Lomonosov Moscow State University, Chemistry Department, 119991, Moscow, Russia
| | - Mikhail E Minyaev
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, 119071, Moscow, Russia
| | - Konstantin M Boyko
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia.
| | - Elena V Rodina
- Lomonosov Moscow State University, Chemistry Department, 119991, Moscow, Russia.
| |
Collapse
|
5
|
Niu N, Miao H, Ren H. Transcriptome Analysis of Myocardial Ischemic-Hypoxic Injury in Rats and Hypoxic H9C2 Cells. ESC Heart Fail 2024; 11:3775-3795. [PMID: 39010664 PMCID: PMC11631282 DOI: 10.1002/ehf2.14903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/18/2024] [Accepted: 05/24/2024] [Indexed: 07/17/2024] Open
Abstract
AIMS This study aimed to address inconsistencies in results between the H9C2 myocardial hypoxia (MH) cell line and myocardial infarction (MI) rat models used in MI research. We identified differentially expressed genes (DEGs) and underlying molecular mechanisms using RNA sequencing technology. METHODS RNA sequencing was used to analyse DEGs in MI rat tissues and H9C2 cells exposed to hypoxia for 24 h. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to identify key biological processes and pathways. Weighted correlation network analysis [weighted gene co-expression network analysis (WGCNA)] was used to construct gene co-expression networks, and hub genes were compared with published MI datasets [Gene Expression Omnibus (GEO)] for target identification. RESULTS GO analysis revealed enrichment of immune inflammation and mitochondrial respiration processes among 5139 DEGs in MI tissues and 2531 in H9C2 cells. KEGG analysis identified 537 overlapping genes associated with metabolism and oxidative stress pathways. Cross-analyses using the published GSE35088 and GSE47495 datasets identified 40 and 16 overlapping genes, respectively, with nine genes overlapping across all datasets and our models. WGCNA identified a key module in the MI model enriched for mRNA processing and protein binding. GO analysis revealed enrichment of mRNA processing, protein binding and mitochondrial respiratory chain complex I assembly in MI and H9C2 MH models. Five relevant hub genes were identified via a cross-analysis between the 92 hub genes that showed a common expression trend in both models. CONCLUSIONS This study reveals both shared and distinct transcriptomic responses in the MI and H9C2 models, highlighting the importance of model selection for studying myocardial ischaemia and hypoxia.
Collapse
Affiliation(s)
- Nan Niu
- Department of Cardiovascular MedicinePeople's Hospital of Ningxia Hui Autonomous RegionYinchuanChina
| | - Huangtai Miao
- Coronary Heart Disease Center,Beijing Anzhen Hospital, Capital Medical UniversityBeijingChina
| | - Hongmei Ren
- Department of Cardiovascular MedicinePeople's Hospital of Ningxia Hui Autonomous RegionYinchuanChina
| |
Collapse
|
6
|
Gómez González C, Del Campo Cano I, Isabel Fernández-Avila A, Paz Suárez-Mier M, José Sagastizábal M, Álvarez García-Rovés R, Méndez Fernández I, Vilches S, Centeno Jiménez M, Siles Sánchez-Manjavacas A, Usano Carrasco A, Gonzalez-Vioque E, Pablo Ochoa J, Medrano C, González López E, García-Pavía P, Bermejo J, Angeles Espinosa Castro M. Sudden cardiac death triggered by minimal alcohol consumption in the context of novel PPA2 mutations in 2 unrelated families. Gene 2024; 916:148437. [PMID: 38582264 DOI: 10.1016/j.gene.2024.148437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Biallelic variants in PPA2 gene cause a rare but lethal mitochondrial disorder. We describe the first four cases reported in Spain of PPA2 disease in two unrelated families. We have conducted a revision of the clinical history, necropsies, and postmortem genetic testing from probands, and clinical evaluation, genetic testing and blood transcript analysis in family members. All the cases harbored biallelic PPA2 variants in compound heterozygous status. Two brothers from family 1 suffered sudden death after a small first intake of alcohol in 2013 and 2022. The sister remains alive but affected with cardiomyopathy, extensive scar on cardiac imaging, and high sensitivity to alcohol intake. The three siblings carried PPA2 c.290A > G (p.Glu97Gly) novel missense variant and PPA2 c.513C > T (p.Cys171 = ) altering splicing site variant, both probably leading to mRNA degradation based on in-silico and transcript analyses. A teenager from family 2 suffered sudden death after a small intake of alcohol in 2018 and carried PPA2 c.683C > T (p.Pro228Leu) missense and PPA2 c.980_983del (p.Gln327fs) novel frameshift variant, both probably leading to abnormal protein structure. All cases were asymptomatic until adolescence. Furthermore, the sister in family 1 has survived as an asymptomatic adult. PPA2 disease can manifest as cardiac arrest in the young, especially after alcohol exposure. Our results show that PPA2 deficiency can be related to different pathogenicity mechanisms such as abnormal protein structure but also mRNA decay caused by synonymous or missense variants. Strict avoidance of alcohol consumption and early defibrillator implantation might prevent lethal arrhythmias in patients at risk.
Collapse
Affiliation(s)
- Cristina Gómez González
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Facultad de Medicina, Universidad Complutense de Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBERCV, Spain
| | - Iván Del Campo Cano
- Department of Pediatrics, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain; IDIPHISA, Madrid, Spain
| | - Ana Isabel Fernández-Avila
- Facultad de Medicina, Universidad Complutense de Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBERCV, Spain.
| | - Maria Paz Suárez-Mier
- Servicio de Histopatología. Instituto Nacional de Toxicología y Ciencias Forenses. Madrid. Spain
| | | | - Reyes Álvarez García-Rovés
- Facultad de Medicina, Universidad Complutense de Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Pediatric Cardiology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Irene Méndez Fernández
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Facultad de Medicina, Universidad Complutense de Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBERCV, Spain
| | - Silvia Vilches
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Facultad de Medicina, Universidad Complutense de Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBERCV, Spain
| | - Miriam Centeno Jiménez
- Facultad de Medicina, Universidad Complutense de Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Pediatric Cardiology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Ana Siles Sánchez-Manjavacas
- Department of Pediatrics, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain; IDIPHISA, Madrid, Spain
| | - Ana Usano Carrasco
- Department of Pediatrics, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain; IDIPHISA, Madrid, Spain
| | | | - Juan Pablo Ochoa
- Health in Code. A Coruña. Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Constancio Medrano
- Facultad de Medicina, Universidad Complutense de Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Pediatric Cardiology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Esther González López
- CIBERCV, Spain; IDIPHISA, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Pablo García-Pavía
- CIBERCV, Spain; IDIPHISA, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Department of Cardiology, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Javier Bermejo
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Facultad de Medicina, Universidad Complutense de Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBERCV, Spain
| | - María Angeles Espinosa Castro
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Facultad de Medicina, Universidad Complutense de Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBERCV, Spain
| |
Collapse
|
7
|
Naseri A, Zhi D, Zhang S. Discovery of runs-of-homozygosity diplotype clusters and their associations with diseases in UK Biobank. eLife 2024; 13:e81698. [PMID: 38905121 PMCID: PMC11249732 DOI: 10.7554/elife.81698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 06/20/2024] [Indexed: 06/23/2024] Open
Abstract
Runs-of-homozygosity (ROH) segments, contiguous homozygous regions in a genome were traditionally linked to families and inbred populations. However, a growing literature suggests that ROHs are ubiquitous in outbred populations. Still, most existing genetic studies of ROH in populations are limited to aggregated ROH content across the genome, which does not offer the resolution for mapping causal loci. This limitation is mainly due to a lack of methods for the efficient identification of shared ROH diplotypes. Here, we present a new method, ROH-DICE (runs-of-homozygous diplotype cluster enumerator), to find large ROH diplotype clusters, sufficiently long ROHs shared by a sufficient number of individuals, in large cohorts. ROH-DICE identified over 1 million ROH diplotypes that span over 100 single nucleotide polymorphisms (SNPs) and are shared by more than 100 UK Biobank participants. Moreover, we found significant associations of clustered ROH diplotypes across the genome with various self-reported diseases, with the strongest associations found between the extended human leukocyte antigen (HLA) region and autoimmune disorders. We found an association between a diplotype covering the homeostatic iron regulator (HFE) gene and hemochromatosis, even though the well-known causal SNP was not directly genotyped or imputed. Using a genome-wide scan, we identified a putative association between carriers of an ROH diplotype in chromosome 4 and an increase in mortality among COVID-19 patients (p-value = 1.82 × 10-11). In summary, our ROH-DICE method, by calling out large ROH diplotypes in a large outbred population, enables further population genetics into the demographic history of large populations. More importantly, our method enables a new genome-wide mapping approach for finding disease-causing loci with multi-marker recessive effects at a population scale.
Collapse
Affiliation(s)
- Ardalan Naseri
- Department of Computer Science, University of Central FloridaOrlandoUnited States
| | - Degui Zhi
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at HoustonHoustonUnited States
| | - Shaojie Zhang
- Department of Computer Science, University of Central FloridaOrlandoUnited States
| |
Collapse
|
8
|
Lin L, Wang B, Zhang X, Deng C, Zhou C, Zhu J, Wu H, He J. Functional TET2 gene polymorphisms increase the risk of neuroblastoma in Chinese children. IUBMB Life 2024; 76:200-211. [PMID: 38014648 DOI: 10.1002/iub.2791] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/09/2023] [Indexed: 11/29/2023]
Abstract
The 5-methylcytosine (m5C) is the key chemical modification in RNAs. As one of the demethylases in m5C, TET2 has been shown as a tumor suppressor. However, the impact of TET2 gene polymorphisms on neuroblastoma has not been elucidated. 402 neuroblastoma patients and 473 controls were genotyped for TET2 gene polymorphisms using the TaqMan method. The impact of TET2 gene polymorphisms on neuroblastoma susceptibility was determined using multivariate logistic regression analysis. We also adopted genotype-tissue expression database to explore the impact of TET2 gene polymorphisms on the expression of host and nearby genes. We used the R2 platform and Sangerbox tool to analyze the relationship between gene expression and neuroblastoma risk and prognosis through non-parametric testing and Kaplan-Meier analysis, respectively. We found the TET2 gene polymorphisms (rs10007915 G > C and rs7670522 A > C) and the combined 2-5 risk genotypes can significantly increase neuroblastoma risk. Stratification analysis showed that these significant associations were more prominent in certain subgroups. TET2 rs10007915 G > C and rs7670522 A > C are significantly associated with reduced expression of TET2 mRNA. Moreover, lower expression of TET2 gene is associated with high risk, MYCN amplification, and poor prognosis of neuroblastoma. The rs10007915 G > C and rs7670522 A > C are significantly related to the increased expression of inorganic pyrophosphatase 2 mRNA, and higher expression of PPA2 gene is associated with high risk, MYCN amplification, and poor prognosis of neuroblastomas. In summary, TET2 rs10007915 G > C and rs7670522 A > C significantly confer neuroblastoma susceptibility, and further research is needed to investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Lei Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Bo Wang
- Department of Clinical Laboratory, Qingdao Eighth People's Hospital, Qingdao, Shandong, China
| | - Xinxin Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Changmi Deng
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Chunlei Zhou
- Department of Pathology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Haiyan Wu
- Department of Pathology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Graham S, Peterson DC, James C. Alcohol-Induced Sudden Cardiac Death in a Teenager With PPA2 Gene Mutations. Am J Forensic Med Pathol 2023; 44:332-335. [PMID: 37249496 DOI: 10.1097/paf.0000000000000841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
ABSTRACT The PPA2 gene encodes a mitochondrial pyrophosphatase protein. Mutations in the gene are inherited in an autosomal recessive fashion and, when mutated, function to induce mitochondrial ATP production failure resulting in increased stress on the heart and sudden cardiac death, especially when combined with alcohol. Herein, we describe a case of a 19-year-old female patient with a history of "alcohol intolerance" who was found unexpectedly deceased after consuming a minimal amount of alcohol. Histological examination of her heart revealed widespread fibrosis of the left ventricle and the interventricular septum. Other findings include hypertrophied myocytes, including some with pleomorphic nuclei. Genetic studies were performed on postmortem blood, revealing heterozygous PPA2 gene mutations, the pathogenic variant c.683C>T (p.Pro228Leu), and the other variant c.814C>T (p.His272Tyr), a novel variant of undetermined significance. We propose that the variant of undetermined significance is likely a pathogenic mutation due to the decedent's phenotype.
Collapse
Affiliation(s)
- Sydney Graham
- From the Arkansas College of Osteopathic Medicine, Fort Smith, AR
| | | | | |
Collapse
|
10
|
Genthe W, Donnelly C, Ezon D, Fettig V, Ganesh J, Marin-Valecia I, Gelb BD. PPA2 Deficiency in 2 Sisters: A Rare Cause of Sudden Cardiac Death. JACC Case Rep 2023; 24:102024. [PMID: 37869221 PMCID: PMC10589443 DOI: 10.1016/j.jaccas.2023.102024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 10/24/2023]
Abstract
Inorganic pyrophosphatase 2 (PPA2) deficiency is a genetic cause of sudden cardiac death, often triggered by viral infection or alcohol consumption. Literature on management is limited because most cases are diagnosed post mortem. We report lethal and nonlethal cardiac presentations of PPA2 deficiency in 2 adolescent sisters that resulted from a novel pathogenic PPA2 variant. (Level of Difficulty: Advanced.).
Collapse
Affiliation(s)
- Will Genthe
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Colleen Donnelly
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David Ezon
- Department of Pediatric Cardiology, Icahn School of Medicine at Mount Sinai, Children’s Heart Center, Mount Sinai Hospital, New York, New York, USA
| | - Veronica Fettig
- Department of Pediatric Cardiology, Icahn School of Medicine at Mount Sinai, Children’s Heart Center, Mount Sinai Hospital, New York, New York, USA
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jaya Ganesh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Isaac Marin-Valecia
- Department of Pediatric Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bruce D. Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pediatric Cardiology, Icahn School of Medicine at Mount Sinai, Children’s Heart Center, Mount Sinai Hospital, New York, New York, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
11
|
Lipov A, Jurgens SJ, Mazzarotto F, Allouba M, Pirruccello JP, Aguib Y, Gennarelli M, Yacoub MH, Ellinor PT, Bezzina CR, Walsh R. Exploring the complex spectrum of dominance and recessiveness in genetic cardiomyopathies. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1078-1094. [PMID: 38666070 PMCID: PMC11041721 DOI: 10.1038/s44161-023-00346-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/07/2023] [Indexed: 04/28/2024]
Abstract
Discrete categorization of Mendelian disease genes into dominant and recessive models often oversimplifies their underlying genetic architecture. Cardiomyopathies (CMs) are genetic diseases with complex etiologies for which an increasing number of recessive associations have recently been proposed. Here, we comprehensively analyze all published evidence pertaining to biallelic variation associated with CM phenotypes to identify high-confidence recessive genes and explore the spectrum of monoallelic and biallelic variant effects in established recessive and dominant disease genes. We classify 18 genes with robust recessive association with CMs, largely characterized by dilated phenotypes, early disease onset and severe outcomes. Several of these genes have monoallelic association with disease outcomes and cardiac traits in the UK Biobank, including LMOD2 and ALPK3 with dilated and hypertrophic CM, respectively. Our data provide insights into the complex spectrum of dominance and recessiveness in genetic heart disease and demonstrate how such approaches enable the discovery of unexplored genetic associations.
Collapse
Affiliation(s)
- Alex Lipov
- Department of Experimental Cardiology, Heart Centre, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Sean J. Jurgens
- Department of Experimental Cardiology, Heart Centre, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA USA
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Francesco Mazzarotto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Mona Allouba
- National Heart and Lung Institute, Imperial College London, London, UK
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Aswan, Egypt
| | - James P. Pirruccello
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA USA
- Division of Cardiology, University of California, San Francisco, San Francisco, CA USA
| | - Yasmine Aguib
- National Heart and Lung Institute, Imperial College London, London, UK
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Aswan, Egypt
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Genetics Unit, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Magdi H. Yacoub
- National Heart and Lung Institute, Imperial College London, London, UK
- Aswan Heart Centre, Magdi Yacoub Heart Foundation, Aswan, Egypt
- Harefield Heart Science Centre, Uxbridge, UK
| | - Patrick T. Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA USA
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA USA
| | - Connie R. Bezzina
- Department of Experimental Cardiology, Heart Centre, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, Amsterdam, the Netherlands
| | - Roddy Walsh
- Department of Experimental Cardiology, Heart Centre, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Manzanilla-Romero HH, Schermer E, Mayr A, Rudnik-Schöneborn S. Only one beer can be mortal: a case report of two sisters with cardiac arrest due to a homozygous mutation in PPA2 gene. Eur J Pediatr 2023; 182:3785-3788. [PMID: 37269378 PMCID: PMC10460352 DOI: 10.1007/s00431-023-05034-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 03/31/2023] [Accepted: 05/19/2023] [Indexed: 06/05/2023]
Abstract
We report the long way to the correct diagnosis in two teenage sisters who developed a cardiac arrest after consuming minimal amounts of alcohol. The older girl dramatically survived two cardiac arrests at the age of 14 and 15 years. She underwent an extensive examination that revealed isolated cardiac abnormalities including fibrosis, dilated cardiomyopathy and inflammation. The younger girl also had a cardiac arrest at the age of 15 and died suddenly after consuming 1-2 beers, 3 years after her sister´s first incident. Autopsy of the heart revealed acute myocarditis without structural alterations. Multigene panel analysis (not including PPA2) showed SCN5A and CACNA1D variants in both sisters and their healthy mother. Six years later duo exome allowed the diagnosis of an autosomal recessive PPA2-related mitochondriopathy. We discuss the molecular results and clinical picture of our patients compared to other PPA2-related cases. We highlight the diagnostic contribution of multigene panels and exome analysis. The genetic diagnosis is important for medical care and for everyday life, specifically because alcohol intake can result in cardiac arrest and should be strictly avoided. Conclusion: Duo exome sequencing clarified the diagnosis of PPA2-related mitochondriopathy in two sisters with isolated cardiac features and sudden cardiac arrest triggered by minimal amounts of alcohol. What is Known: • Multigene-Panel or exome analysis is a valuable tool to identify genetic causes of hereditary cardiac arrhythmias. • Variants of unknown significance can lead to misinterpretation. PPA2-related mitochondriopathy is a very rare autosomal recessive condition that is normally fatal in infancy. What is New: • Duo exome analysis in two teeenage sisters with cardiac arrest revealed a homozygous mild PPA2 mutation as the underlying pathology restricted to the heart muscle.
Collapse
Affiliation(s)
| | - Elisabeth Schermer
- Pediatrics III (Cardiopulmonary Unit), Medical University of Innsbruck, Innsbruck, Austria
| | - Agnes Mayr
- Clinic of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
13
|
Szeliga M, Bakera B, Święcicka M, Tyrka M, Rakoczy-Trojanowska M. Identification of candidate genes responsible for chasmogamy in wheat. BMC Genomics 2023; 24:170. [PMID: 37016302 PMCID: PMC10074802 DOI: 10.1186/s12864-023-09252-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/15/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND The flowering biology of wheat plants favours self-pollination which causes obstacles in wheat hybrid breeding. Wheat flowers can be divided into two groups, the first one is characterized by flowering and pollination within closed flowers (cleistogamy), while the second one possesses the ability to open flowers during processes mentioned above (chasmogamy). The swelling of lodicules is involved in the flowering of cereals and among others their morphology, calcium and potassium content differentiate between cleistogamic and non-cleistogamous flowers. A better understanding of the chasmogamy mechanism can lead to the development of tools for selection of plants with the desired outcrossing rate. To learn more, the sequencing of transcriptomes (RNA-Seq) and Representational Difference Analysis products (RDA-Seq) were performed to investigate the global transcriptomes of wheat lodicules in two highly chasmogamous (HCH, Piko and Poezja) and two low chasmogamous (LCH, Euforia and KWS Dacanto) varieties at two developmental stages-pre-flowering and early flowering. RESULTS The differentially expressed genes were enriched in five, main pathways: "metabolism", "organismal systems", "genetic information processing", "cellular processes" and "environmental information processing", respectively. Important genes with opposite patterns of regulation between the HCH and LCH lines have been associated with the lodicule development i.e. expression levels of MADS16 and MADS58 genes may be responsible for quantitative differences in chasmogamy level in wheat. CONCLUSIONS We conclude that the results provide a new insight into lodicules involvement in the wheat flowering process. This study generated important genomic information to support the exploitation of the chasmogamy in wheat hybrid breeding programs.
Collapse
Affiliation(s)
- Magdalena Szeliga
- Rzeszow University of Technology, Powstańców Warszawy 12, 35-959, Rzeszów, Poland.
| | - Beata Bakera
- Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa Street 1, 02-096, Warsaw, Poland
| | - Magdalena Święcicka
- Warsaw University of Life Sciences, Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Mirosław Tyrka
- Rzeszow University of Technology, Powstańców Warszawy 12, 35-959, Rzeszów, Poland
| | | |
Collapse
|
14
|
Mitochondrial DNA content: a new potential biomarker for Sudden Infant Death Syndrome. Pediatr Res 2022; 92:1282-1287. [PMID: 35102299 DOI: 10.1038/s41390-021-01901-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Sudden Infant Death Syndrome (SIDS) occurs in apparently healthy infants and is unpredictable and unexplained despite thorough investigations and enormous research efforts. The hypothesis tested in this case-control study concerns mitochondrial involvement in SIDS occurrence. METHODS Mitochondrial DNA content (MtDNAcn) was measured in 24 SIDS cerebral cortex samples and 18 controls using real-time PCR. RESULTS The median (interquartile range) mtDNAcn in SIDS and controls was 2578 (2224-3838) and 1452 (724-2517) copies per nuclear DNA, respectively (P = 0.0001). MtDNAcn values were higher in SIDS victims born to non-smoking parents (n = 7) 4984 (2832-6908) compared to the controls (n = 5) 2020 (478-2386) (P = 0.006). Increased levels of mtDNAcn have been observed in the SIDS cases with mild defects in nuclei not essential for life compared to those found in SIDS cases with severe alterations of respiratory function (P = 0.034) 3571 (2568-5053) (n = 14) 2356 (1909-3132) (n = 8), respectively. CONCLUSIONS Our study revealed for the first time higher mtDNAcn in the cerebral cortex of the SIDS cases than the controls, indicating metabolic alterations. MtDNAcn plays an important role in compensatory mechanisms against environmental factors affecting human health. Despite the small sample size, mtDNA may prove to be a potential forensic biomarker for autopsied SIDS victims for gaining new insights into the etiology of SIDS. IMPACT Mitochondrial DNA content evaluated in cerebral cortex samples is higher in SIDS victims than controls. These results represent a novel line of investigation for the etiology of SIDS and could have a significant role in the compensatory mechanism due to environmental factors affecting human health. These findings suggest that the mitochondria are involved in SIDS: mtDNA content may represent a biomarker of this syndrome.
Collapse
|
15
|
Basili D, Reynolds J, Houghton J, Malcomber S, Chambers B, Liddell M, Muller I, White A, Shah I, Everett LJ, Middleton A, Bender A. Latent Variables Capture Pathway-Level Points of Departure in High-Throughput Toxicogenomic Data. Chem Res Toxicol 2022; 35:670-683. [PMID: 35333521 PMCID: PMC9019810 DOI: 10.1021/acs.chemrestox.1c00444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/28/2022]
Abstract
Estimation of points of departure (PoDs) from high-throughput transcriptomic data (HTTr) represents a key step in the development of next-generation risk assessment (NGRA). Current approaches mainly rely on single key gene targets, which are constrained by the information currently available in the knowledge base and make interpretation challenging as scientists need to interpret PoDs for thousands of genes or hundreds of pathways. In this work, we aimed to address these issues by developing a computational workflow to investigate the pathway concentration-response relationships in a way that is not fully constrained by known biology and also facilitates interpretation. We employed the Pathway-Level Information ExtractoR (PLIER) to identify latent variables (LVs) describing biological activity and then investigated in vitro LVs' concentration-response relationships using the ToxCast pipeline. We applied this methodology to a published transcriptomic concentration-response data set for 44 chemicals in MCF-7 cells and showed that our workflow can capture known biological activity and discriminate between estrogenic and antiestrogenic compounds as well as activity not aligning with the existing knowledge base, which may be relevant in a risk assessment scenario. Moreover, we were able to identify the known estrogen activity in compounds that are not well-established ER agonists/antagonists supporting the use of the workflow in read-across. Next, we transferred its application to chemical compounds tested in HepG2, HepaRG, and MCF-7 cells and showed that PoD estimates are in strong agreement with those estimated using a recently developed Bayesian approach (cor = 0.89) and in weak agreement with those estimated using a well-established approach such as BMDExpress2 (cor = 0.57). These results demonstrate the effectiveness of using PLIER in a concentration-response scenario to investigate pathway activity in a way that is not fully constrained by the knowledge base and to ease the biological interpretation and support the development of an NGRA framework with the ability to improve current risk assessment strategies for chemicals using new approach methodologies.
Collapse
Affiliation(s)
- Danilo Basili
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Joe Reynolds
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Jade Houghton
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Sophie Malcomber
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Bryant Chambers
- Center
for Computational Toxicology and Exposure, Office of Research and
Development, U.S. Environmental Protection
Agency, Research Triangle Park, North Carolina 27711, United States
| | - Mark Liddell
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Iris Muller
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Andrew White
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Imran Shah
- Center
for Computational Toxicology and Exposure, Office of Research and
Development, U.S. Environmental Protection
Agency, Research Triangle Park, North Carolina 27711, United States
| | - Logan J. Everett
- Center
for Computational Toxicology and Exposure, Office of Research and
Development, U.S. Environmental Protection
Agency, Research Triangle Park, North Carolina 27711, United States
| | - Alistair Middleton
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Andreas Bender
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
16
|
De novo mutations in childhood cases of sudden unexplained death that disrupt intracellular Ca2+ regulation. Proc Natl Acad Sci U S A 2021; 118:2115140118. [PMID: 34930847 PMCID: PMC8719874 DOI: 10.1073/pnas.2115140118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 01/04/2023] Open
Abstract
Approximately 400 United States children 1 y of age and older die suddenly from unexplained causes annually. We studied whole-exome sequence data from 124 “trios” (decedent child and living parents) to identify genetic risk factors. Nonsynonymous mutations, mostly de novo (present in child but absent in both biological parents), were highly enriched in genes associated with cardiac and seizure disorders relative to controls, and contributed to 9% of deaths. We found significant overtransmission of loss-of-function or pathogenic missense variants in cardiac and seizure disorder genes. Most pathogenic variants were de novo in origin, highlighting the importance of trio studies. Many of these pathogenic de novo mutations altered a protein network regulating calcium-related excitability at submembrane junctions in cardiomyocytes and neurons. Sudden unexplained death in childhood (SUDC) is an understudied problem. Whole-exome sequence data from 124 “trios” (decedent child, living parents) was used to test for excessive de novo mutations (DNMs) in genes involved in cardiac arrhythmias, epilepsy, and other disorders. Among decedents, nonsynonymous DNMs were enriched in genes associated with cardiac and seizure disorders relative to controls (odds ratio = 9.76, P = 2.15 × 10−4). We also found evidence for overtransmission of loss-of-function (LoF) or previously reported pathogenic variants in these same genes from heterozygous carrier parents (11 of 14 transmitted, P = 0.03). We identified a total of 11 SUDC proband genotypes (7 de novo, 1 transmitted parental mosaic, 2 transmitted parental heterozygous, and 1 compound heterozygous) as pathogenic and likely contributory to death, a genetic finding in 8.9% of our cohort. Two genes had recurrent missense DNMs, RYR2 and CACNA1C. Both RYR2 mutations are pathogenic (P = 1.7 × 10−7) and were previously studied in mouse models. Both CACNA1C mutations lie within a 104-nt exon (P = 1.0 × 10−7) and result in slowed L-type calcium channel inactivation and lower current density. In total, six pathogenic DNMs can alter calcium-related regulation of cardiomyocyte and neuronal excitability at a submembrane junction, suggesting a pathway conferring susceptibility to sudden death. There was a trend for excess LoF mutations in LoF intolerant genes, where ≥1 nonhealthy sample in denovo-db has a similar variant (odds ratio = 6.73, P = 0.02); additional uncharacterized genetic causes of sudden death in children might be discovered with larger cohorts.
Collapse
|
17
|
Zhu W, Jiang H, Xie S, Xiao H, Liu Q, Chen N, Wan P, Lu S. Downregulation of PPA2 expression correlates with poor prognosis of kidney renal clear cell carcinoma. PeerJ 2021; 9:e12086. [PMID: 34567842 PMCID: PMC8428262 DOI: 10.7717/peerj.12086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/07/2021] [Indexed: 11/23/2022] Open
Abstract
Background Kidney renal clear cell carcinoma (KIRC) is the most common subtype of kidney cancer. Inorganic pyrophosphatase (PPA2) is an enzyme that catalyzes the hydrolysis of pyrophosphate to inorganic phosphate; few studies have reported its significance in cancers. Therefore, we aimed to explore the prognostic value of PPA2 in KIRC. Methods PPA2 expression was detected via immunohistochemistry in a tissue chip containing specimens from 150 patients with KIRC. We evaluated the correlation between PPA2 expression, clinicopathological characteristics, and survival. Data from online databases and another cohort (paraffin-embedded specimens from 10 patients with KIRC) were used for external validation. Results PPA2 expression was significantly lower in KIRC tissues than in normal renal tissues (p < 0.0001). Low expression of PPA2 was significantly associated with a high histologic grade and poor prognosis. The differential expression of PPA2 was validated at the gene and protein levels. Multivariate Cox regression analysis showed that PPA2 expression was an independent prognostic factor in patients with KIRC. Gene set enrichment analysis suggested that decreased expression of PPA2 might be related to the epithelial-mesenchymal transition in KIRC. Conclusions Our study demonstrated that PPA2 is an important energy metabolism-associated biomarker correlated with a favorable prognosis in KIRC.
Collapse
Affiliation(s)
- Wenbiao Zhu
- Department of Pathology, Meizhou People's Hospital, Meizhou, Guangdong, China
| | - Huiming Jiang
- Department of Urology, Meizhou People's Hospital, Meizhou, Guangdong, China
| | - Shoucheng Xie
- Department of Pathology, Meizhou People's Hospital, Meizhou, Guangdong, China
| | - Huanqin Xiao
- Department of Pathology, Meizhou People's Hospital, Meizhou, Guangdong, China
| | - Qinghua Liu
- Department of Pathology, Meizhou People's Hospital, Meizhou, Guangdong, China
| | - Nanhui Chen
- Department of Urology, Meizhou People's Hospital, Meizhou, Guangdong, China
| | - Pei Wan
- Department of Urology, Meizhou People's Hospital, Meizhou, Guangdong, China
| | - Shanming Lu
- Department of Pathology, Meizhou People's Hospital, Meizhou, Guangdong, China
| |
Collapse
|
18
|
Yeast as a Tool to Understand the Significance of Human Disease-Associated Gene Variants. Genes (Basel) 2021; 12:genes12091303. [PMID: 34573285 PMCID: PMC8465565 DOI: 10.3390/genes12091303] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
At present, the great challenge in human genetics is to provide significance to the growing amount of human disease-associated gene variants identified by next generation DNA sequencing technologies. Increasing evidences suggest that model organisms are of pivotal importance to addressing this issue. Due to its genetic tractability, the yeast Saccharomyces cerevisiae represents a valuable model organism for understanding human genetic variability. In the present review, we show how S. cerevisiae has been used to study variants of genes involved in different diseases and in different pathways, highlighting the versatility of this model organism.
Collapse
|
19
|
PPA2-associated sudden cardiac death: extending the clinical and allelic spectrum in 20 new families. Genet Med 2021; 23:2415-2425. [PMID: 34400813 PMCID: PMC8629752 DOI: 10.1038/s41436-021-01296-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose Biallelic hypomorphic variants in PPA2, encoding the mitochondrial inorganic pyrophosphatase 2 protein, have been recently identified in individuals presenting with sudden cardiac death, occasionally triggered by alcohol intake or a viral infection. Here we report 20 new families harboring PPA2 variants. Methods Synthesis of clinical and molecular data concerning 34 individuals harboring five previously reported PPA2 variants and 12 novel variants, 11 of which were functionally characterized. Results Among the 34 individuals, only 6 remain alive. Twenty-three died before the age of 2 years while five died between 14 and 16 years. Within these 28 cases, 15 died of sudden cardiac arrest and 13 of acute heart failure. One case was diagnosed prenatally with cardiomyopathy. Four teenagers drank alcohol before sudden cardiac arrest. Progressive neurological signs were observed in 2/6 surviving individuals. For 11 variants, recombinant PPA2 enzyme activities were significantly decreased and sensitive to temperature, compared to wild-type PPA2 enzyme activity. Conclusion We expand the clinical and mutational spectrum associated with PPA2 dysfunction. Heart failure and sudden cardiac arrest occur at various ages with inter- and intrafamilial phenotypic variability, and presentation can include progressive neurological disease. Alcohol intake can trigger cardiac arrest and should be strictly avoided.
Collapse
|
20
|
Yin Y, Wu Y, Zhang X, Zhu Y, Sun Y, Yu J, Gong Y, Sun P, Lin H, Han X. PPA1 Regulates Systemic Insulin Sensitivity by Maintaining Adipocyte Mitochondria Function as a Novel PPARγ Target Gene. Diabetes 2021; 70:1278-1291. [PMID: 33722839 DOI: 10.2337/db20-0622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/28/2021] [Indexed: 11/13/2022]
Abstract
Downregulation of mitochondrial function in adipose tissue is considered as one important driver for the development of obesity-associated metabolic disorders. Inorganic pyrophosphatase 1 (PPA1) is an enzyme that catalyzes the hydrolysis of inorganic pyrophosphate to inorganic phosphate and is required for anabolism to take place in cells. Although alteration of PPA1 has been related to some diseases, the importance of PPA1 in metabolic syndromes has never been discussed. In this study, we found that global PPA1 knockout mice (PPA1+/-) showed impaired glucose tolerance and severe insulin resistance under high-fat-diet feeding. In addition, impaired adipose tissue development and ectopic lipid accumulation were observed. Conversely, overexpression of PPA1 in adipose tissue by adeno-associated virus injection can partly reverse the metabolic disorders in PPA1+/- mice, suggesting that impaired adipose tissue function is responsible for the metabolic disorders observed in PPA1+/- mice. Mechanistic studies revealed that PPA1 acted as a PPARγ target gene to maintain mitochondrial function in adipocytes. Furthermore, specific knockdown of PPA1 in fat body of Drosophila led to impaired mitochondria morphology, decreased lipid storage, and made Drosophila more sensitive to starvation. In conclusion, for the first time, our findings demonstrate the importance of PPA1 in maintaining adipose tissue function and whole-body metabolic homeostasis.
Collapse
Affiliation(s)
- Ye Yin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangyang Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yeting Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiani Yu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yufei Gong
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haiyan Lin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
21
|
Zhao A, Shen J, Ding Y, Sheng M, Zuo M, Lv H, Wang J, Shen Y, Wang H, Sun L. Long-read sequencing identified a novel nonsense and a de novo missense of PPA2 in trans in a Chinese patient with autosomal recessive infantile sudden cardiac failure. Clin Chim Acta 2021; 519:163-171. [PMID: 33826954 DOI: 10.1016/j.cca.2021.03.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND AIMS Biallelic missense variants in PPA2 gene cause infantile sudden cardiac failure (SCFI; OMIM #617222) characterized by sudden cardiac failure, sudden cardiac death in infants. Here, we present an unusual survivor with one inherited plus one de novo variant in PPA2. Since next-generation sequencing (NGS) fails to resolve variant phasing, which require long-read sequencing to clarify the diagnosis. MATERIALS AND METHODS Whole exome and Sanger sequencing were initially performed to identify the causative variants. PCR-based short tandem repeats (STRs) analysis and long-read single molecule real-time (SMRT) sequencing were further implemented for paternity testing and variant phasing. Pathogenicity evaluation of the biallelic variants in PPA2 was conducted according to the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) guidelines based on VarSome. RESULTS Whole exome and Sanger sequencing revealed two variants in PPA2, with one novel nonsense variant (c.524C > G; p.Ser175*) inherited from the mother and one de novo missense variant (c.379C > T; p.Arg127Cys). PCR-based STRs analysis verified the paternity. And long-read SMRT sequencing phased the two variants in trans and identified the paternal origin of the de novo variant. The genetic diagnosis clarified the genetic etiology of the proband and assisted in patient management and counseling. CONCLUSION We identified a rare combination of one inherited plus one de novo variant of PPA2 in a patient with autosomal recessive SCFI, which expanded the mutation spectrum of PPA2 and demonstrated the power of target long-read sequencing to make up the diagnostic gap of prevailing NGS.
Collapse
Affiliation(s)
- Arman Zhao
- Department of Clinical Laboratory, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China.
| | - Jie Shen
- Department of Cardiology, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China.
| | - Yueyue Ding
- Department of Cardiology, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China.
| | - Mao Sheng
- Department of Radiology, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China.
| | - Mengying Zuo
- Department of Cardiology, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China.
| | - Haitao Lv
- Department of Cardiology, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China.
| | - Jian Wang
- Department of Pediatric Surgery, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China.
| | - Yiping Shen
- Department of Genetics and Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, Guangxi, China; Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, United States; Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States.
| | - Hongying Wang
- Department of Clinical Laboratory, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China; Department of Clinical Laboratory, Children's Hospital of Wujiang District, Suzhou, 169 Park Road, Wujiang District, Suzhou 215234, Jiangsu, China.
| | - Ling Sun
- Department of Cardiology, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China.
| |
Collapse
|
22
|
Ceccatelli Berti C, di Punzio G, Dallabona C, Baruffini E, Goffrini P, Lodi T, Donnini C. The Power of Yeast in Modelling Human Nuclear Mutations Associated with Mitochondrial Diseases. Genes (Basel) 2021; 12:300. [PMID: 33672627 PMCID: PMC7924180 DOI: 10.3390/genes12020300] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
The increasing application of next generation sequencing approaches to the analysis of human exome and whole genome data has enabled the identification of novel variants and new genes involved in mitochondrial diseases. The ability of surviving in the absence of oxidative phosphorylation (OXPHOS) and mitochondrial genome makes the yeast Saccharomyces cerevisiae an excellent model system for investigating the role of these new variants in mitochondrial-related conditions and dissecting the molecular mechanisms associated with these diseases. The aim of this review was to highlight the main advantages offered by this model for the study of mitochondrial diseases, from the validation and characterisation of novel mutations to the dissection of the role played by genes in mitochondrial functionality and the discovery of potential therapeutic molecules. The review also provides a summary of the main contributions to the understanding of mitochondrial diseases emerged from the study of this simple eukaryotic organism.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claudia Donnini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (C.C.B.); (G.d.P.); (C.D.); (E.B.); (P.G.); (T.L.)
| |
Collapse
|
23
|
Ferreira CR, Blau N. Clinical and biochemical footprints of inherited metabolic diseases. IV. Metabolic cardiovascular disease. Mol Genet Metab 2021; 132:112-118. [PMID: 33388235 PMCID: PMC7867625 DOI: 10.1016/j.ymgme.2020.12.290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Inherited metabolic diseases account for 15-20% of all cases of pediatric cardiomyopathy, with a high mortality of 15-47%. Metabolic diseases can also commonly be associated with other types of cardiovascular involvement such as arrhythmias, valvulopathy or vasculopathy. We reviewed and updated the list of known metabolic etiologies associated with cardiovascular involvement, and found 246 relevant inborn errors of metabolism. This represents the fourth of a series of articles attempting to create and maintain a comprehensive list of clinical and metabolic differential diagnoses according to system involvement.
Collapse
Affiliation(s)
- Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital, Zürich, Switzerland.
| |
Collapse
|
24
|
Naseri A, Zhi D, Zhang S. Discovery of runs-of-homozygosity diplotype clusters and their associations with diseases in UK Biobank. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.10.26.20220004. [PMID: 33140058 PMCID: PMC7605569 DOI: 10.1101/2020.10.26.20220004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Runs of homozygosity (ROH) segments, contiguous homozygous regions in a genome were traditionally linked to families and inbred populations. However, a growing literature suggests that ROHs are ubiquitous in outbred populations. Still, most existing genetic studies of ROH in populations are limited to aggregated ROH content across the genome, which does not offer the resolution for mapping causal loci. This limitation is mainly due to a lack of methods for efficient identification of shared ROH diplotypes. Here, we present a new method, ROH-DICE, to find large ROH diplotype clusters, sufficiently long ROHs shared by a sufficient number of individuals, in large cohorts. ROH-DICE identified over 1 million ROH diplotypes that span over 100 SNPs and shared by more than 100 UK Biobank participants. Moreover, we found significant associations of clustered ROH diplotypes across the genome with various self-reported diseases, with the strongest associations found between the extended HLA region and autoimmune disorders. We found an association between a diplotype covering the HFE gene and haemochromatosis, even though the well-known causal SNP was not directly genotyped nor imputed. Using genome-wide scan, we identified a putative association between carriers of an ROH diplotype in chromosome 4 and an increase of mortality among COVID-19 patients. In summary, our ROH-DICE method, by calling out large ROH diplotypes in a large outbred population, enables further population genetics into the demographic history of large populations. More importantly, our method enables a new genome-wide mapping approach for finding disease-causing loci with multi-marker recessive effects at population scale.
Collapse
Affiliation(s)
- Ardalan Naseri
- Department of Computer Science, University of Central Florida, Orlando, Florida 32816, USA
| | - Degui Zhi
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Shaojie Zhang
- Department of Computer Science, University of Central Florida, Orlando, Florida 32816, USA
| |
Collapse
|
25
|
Sanford E, Jones MC, Brigger M, Hammer M, Giudugli L, Kingsmore SF, Dimmock D, Bainbridge MN. Postmortem diagnosis of PPA2-associated sudden cardiac death from dried blood spot in a neonate presenting with vocal cord paralysis. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a005611. [PMID: 33028643 PMCID: PMC7552926 DOI: 10.1101/mcs.a005611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/12/2020] [Indexed: 01/16/2023] Open
Abstract
Biallelic variants in inorganic pyrophosphatase 2 (PPA2) are known to cause infantile sudden cardiac failure (OMIM #617222), but relatively little is known about phenotypic variability of these patients prior to their death. We report a 5-wk-old male with bilateral vocal cord paralysis and hypertension who had a sudden unexpected cardiac death. Subsequently, molecular autopsy via whole-genome sequencing from newborn dried blood spot identified compound heterozygous mutations in PPA2, with a paternally inherited, pathogenic missense variant (c.514G > A; p.Glu172Lys) and a novel, maternally inherited missense variant of uncertain significance (c.442A > T; p.Thr148Ser). This report expands the presenting phenotype of patients with PPA2 variants. It also highlights the utility of dried blood spots for postmortem molecular diagnosis.
Collapse
Affiliation(s)
- Erica Sanford
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA.,Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
| | - Marilyn C Jones
- Division of Genetics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
| | - Matthew Brigger
- Department of Otolaryngology, Rady Children's Hospital, San Diego, California 92123, USA
| | - Monia Hammer
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Lucia Giudugli
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Stephen F Kingsmore
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - David Dimmock
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Matthew N Bainbridge
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
26
|
Saneto RP. Mitochondrial diseases: expanding the diagnosis in the era of genetic testing. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2020; 4:384-428. [PMID: 33426505 PMCID: PMC7791531 DOI: 10.20517/jtgg.2020.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial diseases are clinically and genetically heterogeneous. These diseases were initially described a little over three decades ago. Limited diagnostic tools created disease descriptions based on clinical, biochemical analytes, neuroimaging, and muscle biopsy findings. This diagnostic mechanism continued to evolve detection of inherited oxidative phosphorylation disorders and expanded discovery of mitochondrial physiology over the next two decades. Limited genetic testing hampered the definitive diagnostic identification and breadth of diseases. Over the last decade, the development and incorporation of massive parallel sequencing has identified approximately 300 genes involved in mitochondrial disease. Gene testing has enlarged our understanding of how genetic defects lead to cellular dysfunction and disease. These findings have expanded the understanding of how mechanisms of mitochondrial physiology can induce dysfunction and disease, but the complete collection of disease-causing gene variants remains incomplete. This article reviews the developments in disease gene discovery and the incorporation of gene findings with mitochondrial physiology. This understanding is critical to the development of targeted therapies.
Collapse
Affiliation(s)
- Russell P. Saneto
- Center for Integrative Brain Research, Neuroscience Institute, Seattle, WA 98101, USA
- Department of Neurology/Division of Pediatric Neurology, Seattle Children’s Hospital/University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
27
|
Khanna S, Padhan P, Jaiswal KS, Jain AP, Ghosh A, Tripathy A, Gowda H, Raghav SK, Gupta B. Altered mitochondrial proteome and functional dynamics in patients with rheumatoid arthritis. Mitochondrion 2020; 54:8-14. [PMID: 32544466 DOI: 10.1016/j.mito.2020.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 05/03/2020] [Accepted: 06/10/2020] [Indexed: 02/05/2023]
Abstract
The autoimmune inflammatory disease, Rheumatoid arthritis (RA), has known imbalances in energy metabolism and superoxide levels thus may have an etiology associated with mitochondrial dysfunction. We thus evaluated the presence of a differential mitochondrial proteome as well as other characteristics including mitochondrial mass, membrane potential (Ψm), total cellular ATP and superoxide levels. Eighteen mitochondrial proteins were down-regulated while four were up-regulated in RA patients in comparison to the healthy controls (HC). A significant decrease in mitochondrial Ψm, superoxides and cellular ATP levels was observed in RA with constant mitochondrial mass suggesting mitochondrial dysfunction responsible for functional disparity in RA.
Collapse
Affiliation(s)
- Shweta Khanna
- Disease Biology Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Prasanta Padhan
- Department of Rheumatology, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Kumar S Jaiswal
- Disease Biology Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Ankit P Jain
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Arup Ghosh
- Laboratory of Immuno-Genomics and Systems Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Archana Tripathy
- Disease Biology Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Sunil K Raghav
- Laboratory of Immuno-Genomics and Systems Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Bhawna Gupta
- Disease Biology Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India.
| |
Collapse
|
28
|
Valueva A, Romanov RS, Vorobyeva NN, Kurilova SA, Rodina EV. Synthesis of Inorganic Pyrophosphatase-Nanodiamond Conjugates Resistant to Calcium and Fluoride. ACS OMEGA 2020; 5:6641-6650. [PMID: 32258899 PMCID: PMC7114608 DOI: 10.1021/acsomega.9b04428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/04/2020] [Indexed: 05/15/2023]
Abstract
Pyrophosphate arthropathy is the mineralization defect in humans caused by the deposition of microcrystals of calcium pyrophosphate dihydrate in joint tissues. As a potential therapeutic strategy for the treatment of pyrophosphate arthropathy, delivery of exogenous pyrophosphate-hydrolyzing enzymes, inorganic pyrophosphatases (PPases), to the synovial fluid has been suggested. Previously, we synthesized the conjugates of Escherichia coli PPase (Ec-PPase) with detonation synthesis nanodiamonds (NDs) as a delivery platform, obtaining the hybrid biomaterial retaining high pyrophosphate-hydrolyzing activity in vitro. However, most known PPases including Ec-PPase in the soluble form are strongly inhibited by Ca2+ ions. Because synovial fluid contains up to millimolar concentrations of soluble calcium, this inhibition might limit the in vivo application of Ec-PPase-based material in joint tissues. In this work, we proposed other bacterial PPases from Mycobacterium tuberculosis (Mt-PPase), which are resistant to the inhibition by Ca2+ ions, as an active PPi-hydrolyzing agent. We synthesized conjugates of Mt-PPase with NDs and tested their activity under various conditions. Unexpectedly, conjugates of both Ec-PPase and Mt-PPase with aminated NDs retained significant hydrolytic activity in the presence of well-known mechanism-based PPase inhibitors, fluoride or calcium. The incomplete inhibition of PPases by fluoride or calcium was found for the first time.
Collapse
Affiliation(s)
- Anastasiya
V. Valueva
- Pharmaceutical
Department, Pavlov Ryazan State Medical
University, 9 Vysokovol’tnaya
Street, Ryazan 390026, Russia
| | - Roman S. Romanov
- Department
of Fundamental Medicine, Lomonosov Moscow
State University, 31, Build. 5, Lomonosovsky Prospect, Moscow 119991, Russia
| | - Nataliya N. Vorobyeva
- Chemistry
Department, Lomonosov Moscow State University, 1, Build. 3, Leninskie Gory, Moscow 119992, Russia
| | - Svetlana A. Kurilova
- A.N.
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1, Build. 40, Leninskie Gory, Moscow 119992, Russia
| | - Elena V. Rodina
- Chemistry
Department, Lomonosov Moscow State University, 1, Build. 3, Leninskie Gory, Moscow 119992, Russia
- E-mail:
| |
Collapse
|
29
|
Hamza A, Driessen MRM, Tammpere E, O'Neil NJ, Hieter P. Cross-Species Complementation of Nonessential Yeast Genes Establishes Platforms for Testing Inhibitors of Human Proteins. Genetics 2020; 214:735-747. [PMID: 31937519 PMCID: PMC7054014 DOI: 10.1534/genetics.119.302971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/13/2020] [Indexed: 01/09/2023] Open
Abstract
Cross-species complementation can be used to generate humanized yeast, which is a valuable resource with which to model and study human biology. Humanized yeast can be used as an in vivo platform to screen for chemical inhibition of human protein drug targets. To this end, we report the systematic complementation of nonessential yeast genes implicated in chromosome instability (CIN) with their human homologs. We identified 20 human-yeast complementation pairs that are replaceable in 44 assays that test rescue of chemical sensitivity and/or CIN defects. We selected a human-yeast pair (hFEN1/yRAD27), which is frequently overexpressed in cancer and is an anticancer therapeutic target, to perform in vivo inhibitor assays using a humanized yeast cell-based platform. In agreement with published in vitro assays, we demonstrate that HU-based PTPD is a species-specific hFEN1 inhibitor. In contrast, another reported hFEN1 inhibitor, the arylstibonic acid derivative NSC-13755, was determined to have off-target effects resulting in a synthetic lethal phenotype with yRAD27-deficient strains. Our study expands the list of human-yeast complementation pairs to nonessential genes by defining novel cell-based assays that can be utilized as a broad resource to study human drug targets.
Collapse
Affiliation(s)
- Akil Hamza
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Maureen R M Driessen
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Erik Tammpere
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Nigel J O'Neil
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Philip Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| |
Collapse
|
30
|
Beecroft SJ, Yau KS, Allcock RJN, Mina K, Gooding R, Faiz F, Atkinson VJ, Wise C, Sivadorai P, Trajanoski D, Kresoje N, Ong R, Duff RM, Cabrera‐Serrano M, Nowak KJ, Pachter N, Ravenscroft G, Lamont PJ, Davis MR, Laing NG. Targeted gene panel use in 2249 neuromuscular patients: the Australasian referral center experience. Ann Clin Transl Neurol 2020; 7:353-362. [PMID: 32153140 PMCID: PMC7086001 DOI: 10.1002/acn3.51002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/28/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To develop, test, and iterate a comprehensive neuromuscular targeted gene panel in a national referral center. METHODS We designed two iterations of a comprehensive targeted gene panel for neuromuscular disorders. Version 1 included 336 genes, which was increased to 464 genes in Version 2. Both panels used TargetSeqTM probe-based hybridization for target enrichment followed by Ion Torrent sequencing. Targeted high-coverage sequencing and analysis was performed on 2249 neurology patients from Australia and New Zealand (1054 Version 1, 1195 Version 2) from 2012 to 2015. No selection criteria were used other than referral from a suitable medical specialist (e.g., neurologist or clinical geneticist). Patients were classified into 15 clinical categories based on the clinical diagnosis from the referring clinician. RESULTS Six hundred and sixty-five patients received a genetic diagnosis (30%). Diagnosed patients were significantly younger that undiagnosed patients (26.4 and 32.5 years, respectively; P = 4.6326E-9). The diagnostic success varied markedly between disease categories. Pathogenic variants in 10 genes explained 38% of the disease burden. Unexpected phenotypic expansions were discovered in multiple cases. Triage of unsolved cases for research exome testing led to the discovery of six new disease genes. INTERPRETATION A comprehensive targeted diagnostic panel was an effective method for neuromuscular disease diagnosis within the context of an Australasian referral center. Use of smaller disease-specific panels would have precluded diagnosis in many patients and increased cost. Analysis through a centralized laboratory facilitated detection of recurrent, but under-recognized pathogenic variants.
Collapse
Affiliation(s)
- Sarah J. Beecroft
- Centre for Medical ResearchUniversity of Western AustraliaHarry Perkins Institute of Medical ResearchQEII Medical CentreNedlandsWestern AustraliaAustralia
| | - Kyle S. Yau
- Centre for Medical ResearchUniversity of Western AustraliaHarry Perkins Institute of Medical ResearchQEII Medical CentreNedlandsWestern AustraliaAustralia
| | - Richard J. N. Allcock
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Kym Mina
- Department of Diagnostic GenomicsDepartment of HealthPathWest Laboratory MedicineQEII Medical CentreNedlandsWestern AustraliaAustralia
| | - Rebecca Gooding
- Department of Diagnostic GenomicsDepartment of HealthPathWest Laboratory MedicineQEII Medical CentreNedlandsWestern AustraliaAustralia
| | - Fathimath Faiz
- Department of Diagnostic GenomicsDepartment of HealthPathWest Laboratory MedicineQEII Medical CentreNedlandsWestern AustraliaAustralia
| | - Vanessa J. Atkinson
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
- Department of Diagnostic GenomicsDepartment of HealthPathWest Laboratory MedicineQEII Medical CentreNedlandsWestern AustraliaAustralia
| | - Cheryl Wise
- Department of Diagnostic GenomicsDepartment of HealthPathWest Laboratory MedicineQEII Medical CentreNedlandsWestern AustraliaAustralia
| | - Padma Sivadorai
- Department of Diagnostic GenomicsDepartment of HealthPathWest Laboratory MedicineQEII Medical CentreNedlandsWestern AustraliaAustralia
| | - Daniel Trajanoski
- Department of Diagnostic GenomicsDepartment of HealthPathWest Laboratory MedicineQEII Medical CentreNedlandsWestern AustraliaAustralia
| | - Nina Kresoje
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Royston Ong
- Centre for Medical ResearchUniversity of Western AustraliaHarry Perkins Institute of Medical ResearchQEII Medical CentreNedlandsWestern AustraliaAustralia
| | - Rachael M. Duff
- Centre for Medical ResearchUniversity of Western AustraliaHarry Perkins Institute of Medical ResearchQEII Medical CentreNedlandsWestern AustraliaAustralia
| | - Macarena Cabrera‐Serrano
- Department of NeurologyHospital Universitario Virgen del RocioInstituto de Biomedicina de SevillaCSICUniversidad de SevillaSevillaSpain
| | - Kristen J. Nowak
- Centre for Medical ResearchUniversity of Western AustraliaHarry Perkins Institute of Medical ResearchQEII Medical CentreNedlandsWestern AustraliaAustralia
- Public and Aboriginal Health DivisionDepartment of HealthOffice of Population Health GenomicsPerthWestern AustraliaAustralia
| | - Nicholas Pachter
- Genetic Services of Western AustraliaDepartment of HealthGovernment of Western AustraliaPerthWestern AustraliaAustralia
- School of Paediatrics and Child HealthUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Gianina Ravenscroft
- Centre for Medical ResearchUniversity of Western AustraliaHarry Perkins Institute of Medical ResearchQEII Medical CentreNedlandsWestern AustraliaAustralia
| | | | - Mark R. Davis
- Department of Diagnostic GenomicsDepartment of HealthPathWest Laboratory MedicineQEII Medical CentreNedlandsWestern AustraliaAustralia
| | - Nigel G. Laing
- Centre for Medical ResearchUniversity of Western AustraliaHarry Perkins Institute of Medical ResearchQEII Medical CentreNedlandsWestern AustraliaAustralia
- Department of Diagnostic GenomicsDepartment of HealthPathWest Laboratory MedicineQEII Medical CentreNedlandsWestern AustraliaAustralia
| |
Collapse
|
31
|
Yin B, Zhang J, Liu Y, Pan X, Zhao Z, Li H, Zhang C, Li C, Du X, Li Y, Liu D, Lu H. PtomtAPX, a mitochondrial ascorbate peroxidase, plays an important role in maintaining the redox balance of Populus tomentosa Carr. Sci Rep 2019; 9:19541. [PMID: 31862975 PMCID: PMC6925217 DOI: 10.1038/s41598-019-56148-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/06/2019] [Indexed: 12/21/2022] Open
Abstract
Plant mitochondria are important energy-producing structure and ROS are generated as byproducts. APX is one enzyme of the AsA-GSH cycle to reduces H2O2 to water. We identified both PtomtAPX and PtosAPX are located in mitochondria of Populus tomentosa Carr. PtomtAPX is specifically targeted to mitochondria, while PtosAPX is dual targeted to both chloroplast and mitochondria. The expression of PtomtAPX in mitochondria was 60-fold that of PtosAPX by ELISA and qPCR analysis. Under high light stress, the expression levels of PtosAPX increased, while that of PtomtAPX only slightly changed. Compared to the WT, the antisense transgenic PtomtAPX cell lines showed slowed growth, smaller cells impaired mitochondria in MS medium under normal growth. RNA-seq results showed 3121 genes significantly altered expression in the antisense cells, and most of them are important for mitochondrial function, particularly in oxidative phosphorylation. Our findings demonstrates a mitochondrial location for one APX isoform, and provide valuable insight into the mechanism which ROS balance is modulated by AsA-GSH cycle in mitochondria.
Collapse
Affiliation(s)
- Bin Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, People's Republic of China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Jiaxue Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yadi Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Xiang Pan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Zhijing Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Hui Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Chong Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Conghui Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Xihua Du
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yinjun Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Di Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Hai Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, People's Republic of China. .,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
32
|
Phoon CKL, Halvorsen M, Goldstein DB, Rabin R, Cecchin F, Crandall L, Devinsky O. Sudden unexpected death in asymptomatic infants due to PPA2 variants. Mol Genet Genomic Med 2019; 8:e1008. [PMID: 31705601 PMCID: PMC6978244 DOI: 10.1002/mgg3.1008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 01/31/2023] Open
Abstract
Background Sudden death in children is a tragic event that often remains unexplained after comprehensive investigation. We report two asymptomatic siblings who died unexpectedly at approximately 1 year of age found to have biallelic (compound heterozygous) variants in PPA2. Methods The index case, parents, and sister were enrolled in the Sudden Unexplained Death in Childhood Registry and Research Collaborative, which included next‐generation genetic screening. Prior published cases of PPA2 variants, along with the known biology of PPA2, were also summarized. Results Whole exome sequencing in both siblings revealed biallelic rare missense variants in PPA2: c.182C > T (p.Ser61Phe) and c.380G > T (p.Arg127Leu). PPA2 encodes a mitochondrially located inorganic pyrophosphatase implicated in progressive and lethal cardiomyopathies. As a regulator and supplier of inorganic phosphate, PPA2 is central to phosphate metabolism. Biological roles include the following: mtDNA maintenance; oxidative phosphorylation and generation of ATP; reactive oxygen species homeostasis; mitochondrial membrane potential regulation; and possibly, retrograde signaling between mitochondria and nucleus. Conclusions Two healthy and asymptomatic sisters died unexpectedly at ages 12 and 10 months, and were diagnosed by molecular autopsy to carry biallelic variants in PPA2. Our cases add additional details to those reported thus far, and broaden the spectrum of clinical and molecular features of PPA2 variants.
Collapse
Affiliation(s)
- Colin K L Phoon
- Division of Pediatric Cardiology, New York University School of Medicine, Hassenfeld Children's Hospital at NYU Langone, New York, NY, USA.,Department of Pediatrics, New York University School of Medicine, Hassenfeld Children's Hospital at NYU Langone, New York, NY, USA
| | - Matthew Halvorsen
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Rachel Rabin
- Department of Pediatrics, New York University School of Medicine, Hassenfeld Children's Hospital at NYU Langone, New York, NY, USA
| | - Frank Cecchin
- Division of Pediatric Cardiology, New York University School of Medicine, Hassenfeld Children's Hospital at NYU Langone, New York, NY, USA.,Department of Pediatrics, New York University School of Medicine, Hassenfeld Children's Hospital at NYU Langone, New York, NY, USA
| | - Laura Crandall
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Orrin Devinsky
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
33
|
Chan H, Bhide KP, Vaidyam A, Hedrick V, Sobreira TJP, Sors TG, Grant RW, Aryal UK. Proteomic Analysis of 3T3-L1 Adipocytes Treated with Insulin and TNF-α. Proteomes 2019; 7:35. [PMID: 31635166 PMCID: PMC6958341 DOI: 10.3390/proteomes7040035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/19/2022] Open
Abstract
Insulin resistance is an indication of early stage Type 2 diabetes (T2D). Insulin resistant adipose tissues contain higher levels of insulin than the physiological level, as well as higher amounts of intracellular tumor necrosis factor-α (TNF-α) and other cytokines. However, the mechanism of insulin resistance remains poorly understood. To better understand the roles played by insulin and TNF-α in insulin resistance, we performed proteomic analysis of differentiated 3T3-L1 adipocytes treated with insulin (Ins), TNF-α (TNF), and both (Ins + TNF). Out of the 693 proteins identified, the abundances of 78 proteins were significantly different (p < 0.05). Carnitine parmitoyltransferase-2 (CPT2), acetyl CoA carboxylase 1 (ACCAC-1), ethylmalonyl CoA decarboxylase (ECHD1), and methylmalonyl CoA isomerase (MCEE), enzymes required for fatty acid β-oxidation and respiratory electron transport, and β-glucuronidase, an enzyme responsible for the breakdown of complex carbohydrates, were down-regulated in all the treatment groups, compared to the control group. In contrast, superoxide dismutase 2 (SOD2), protein disulfide isomerase (PDI), and glutathione reductase, which are the proteins responsible for cytoskeletal structure, protein folding, degradation, and oxidative stress responses, were up-regulated. This suggests higher oxidative stress in cells treated with Ins, TNF, or both. We proposed a conceptual metabolic pathway impacted by the treatments and their possible link to insulin resistance or T2D.
Collapse
Affiliation(s)
- Hayley Chan
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA.
| | - Ketaki P Bhide
- College of Agriculture, Purdue University, West Lafayette, IN 47907, USA.
| | - Aditya Vaidyam
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA.
| | - Victoria Hedrick
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA.
| | | | - Thomas G Sors
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA.
| | - Ryan W Grant
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| | - Uma K Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA.
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
34
|
Clinical Diagnosis, Imaging, and Genetics of Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia: JACC State-of-the-Art Review. J Am Coll Cardiol 2019; 72:784-804. [PMID: 30092956 DOI: 10.1016/j.jacc.2018.05.065] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 01/30/2023]
Abstract
Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is an inherited cardiomyopathy that can lead to sudden cardiac death and heart failure. Our understanding of its pathophysiology and clinical expressivity is continuously evolving. The diagnosis of ARVC/D remains particularly challenging due to the absence of specific unique diagnostic criteria, its variable expressivity, and incomplete penetrance. Advances in genetics have enlarged the clinical spectrum of the disease, highlighting possible phenotypes that overlap with arrhythmogenic dilated cardiomyopathy and channelopathies. The principal challenges for ARVC/D diagnosis include the following: earlier detection of the disease, particularly in cases of focal right ventricular involvement; differential diagnosis from other arrhythmogenic diseases affecting the right ventricle; and the development of new objective electrocardiographic and imaging criteria for diagnosis. This review provides an update on the diagnosis of ARVC/D, focusing on the contribution of emerging imaging techniques, such as echocardiogram/magnetic resonance imaging strain measurements or computed tomography scanning, new electrocardiographic parameters, and high-throughput sequencing.
Collapse
|
35
|
Sewry CA, Laitila JM, Wallgren-Pettersson C. Nemaline myopathies: a current view. J Muscle Res Cell Motil 2019; 40:111-126. [PMID: 31228046 PMCID: PMC6726674 DOI: 10.1007/s10974-019-09519-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
Nemaline myopathies are a heterogenous group of congenital myopathies caused by de novo, dominantly or recessively inherited mutations in at least twelve genes. The genes encoding skeletal α-actin (ACTA1) and nebulin (NEB) are the commonest genetic cause. Most patients have congenital onset characterized by muscle weakness and hypotonia, but the spectrum of clinical phenotypes is broad, ranging from severe neonatal presentations to onset of a milder disorder in childhood. Most patients with adult onset have an autoimmune-related myopathy with a progressive course. The wide application of massively parallel sequencing methods is increasing the number of known causative genes and broadening the range of clinical phenotypes. Nemaline myopathies are identified by the presence of structures that are rod-like or ovoid in shape with electron microscopy, and with light microscopy stain red with the modified Gömöri trichrome technique. These rods or nemaline bodies are derived from Z lines (also known as Z discs or Z disks) and have a similar lattice structure and protein content. Their shape in patients with mutations in KLHL40 and LMOD3 is distinctive and can be useful for diagnosis. The number and distribution of nemaline bodies varies between fibres and different muscles but does not correlate with severity or prognosis. Additional pathological features such as caps, cores and fibre type disproportion are associated with the same genes as those known to cause the presence of rods. Animal models are advancing the understanding of the effects of various mutations in different genes and paving the way for the development of therapies, which at present only manage symptoms and are aimed at maintaining muscle strength, joint mobility, ambulation, respiration and independence in the activities of daily living.
Collapse
Affiliation(s)
- Caroline A Sewry
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London, WC1N 1EH, UK. .,Wolfson Centre of Inherited Neuromuscular Disorders, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK.
| | - Jenni M Laitila
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Carina Wallgren-Pettersson
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
36
|
Ravenscroft G, Bryson-Richardson RJ, Nowak KJ, Laing NG. Recent advances in understanding congenital myopathies. F1000Res 2018; 7. [PMID: 30631434 PMCID: PMC6290972 DOI: 10.12688/f1000research.16422.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2018] [Indexed: 12/18/2022] Open
Abstract
By definition, congenital myopathy typically presents with skeletal muscle weakness and hypotonia at birth. Traditionally, congenital myopathy subtypes have been predominantly distinguished on the basis of the pathological hallmarks present on skeletal muscle biopsies. Many genes cause congenital myopathies when mutated, and a burst of new causative genes have been identified because of advances in gene sequencing technology. Recent discoveries include extending the disease phenotypes associated with previously identified genes and determining that genes formerly known to cause only dominant disease can also cause recessive disease. The more recently identified congenital myopathy genes account for only a small proportion of patients. Thus, the congenital myopathy genes remaining to be discovered are predicted to be extremely rare causes of disease, which greatly hampers their identification. Significant progress in the provision of molecular diagnoses brings important information and value to patients and their families, such as possible disease prognosis, better disease management, and informed reproductive choice, including carrier screening of parents. Additionally, from accurate genetic knowledge, rational treatment options can be hypothesised and subsequently evaluated
in vitro and in animal models. A wide range of potential congenital myopathy therapies have been investigated on the basis of improved understanding of disease pathomechanisms, and some therapies are in clinical trials. Although large hurdles remain, promise exists for translating treatment benefits from preclinical models to patients with congenital myopathy, including harnessing proven successes for other genetic diseases.
Collapse
Affiliation(s)
- Gianina Ravenscroft
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
| | | | - Kristen J Nowak
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,School of Biological Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia.,Office of Population Health Genomics, Western Australian Department of Health, East Perth, WA, Australia
| | - Nigel G Laing
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,Department of Diagnostic Genomics, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, WA, Australia
| |
Collapse
|
37
|
Liu T, Zhou J, Cui H, Li P, Li H, Wang Y, Tang T. Quantitative proteomic analysis of intracerebral hemorrhage in rats with a focus on brain energy metabolism. Brain Behav 2018; 8:e01130. [PMID: 30307711 PMCID: PMC6236229 DOI: 10.1002/brb3.1130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Intracerebral hemorrhage (ICH) is a lethal cerebrovascular disorder with a high mortality and morbidity. The pathophysiological mechanisms underlying ICH-induced secondary injury remain unclear. METHODS To examine one of the gaps in the knowledge about ICH pathological mechanisms, isobaric tag for relative and absolute quantification (iTRAQ)-based liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used in collagenase-induced ICH rats on the 2nd day. RESULTS A total of 6,456 proteins were identified with a 1% false discovery rate (FDR). Of these proteins, 126 and 75 differentially expressed proteins (DEPs) were substantially increased and decreased, respectively. Based on Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and STRING analyses, the protein changes in cerebral hemorrhage were comprehensively evaluated, and the energy metabolism in ICH was anchored. The core position of the nitrogen metabolism pathway in brain metabolism in ICH was found for the first time. Carbonic anhydrase 1 (Ca1), carbonic anhydrase 2 (Ca2), and glutamine synthetase (Glul) participated in this pathway. We constructed the protein-protein interaction (PPI) networks for the energy metabolism of ICH, including the Atp6v1a-Atp6v0c-Atp6v0d1-Ppa2-Atp6ap2 network. CONCLUSIONS It seems that dysregulation of energy metabolism, especially nitrogen metabolism, may be a major cause in secondary ICH injury. This information provides novel insights into secondary events following ICH.
Collapse
Affiliation(s)
- Tao Liu
- Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaChina
- Department of GerontologyTraditional Chinese Medicine Hospital Affiliated to Xinjiang Medical UniversityUrumqiChina
| | - Jing Zhou
- Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaChina
| | - Hanjin Cui
- Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaChina
| | - Pengfei Li
- Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaChina
| | - Haigang Li
- Department of PharmacyChangsha Medical UniversityChangshaChina
| | - Yang Wang
- Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaChina
| | - Tao Tang
- Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
38
|
Vasilescu C, Ojala TH, Brilhante V, Ojanen S, Hinterding HM, Palin E, Alastalo TP, Koskenvuo J, Hiippala A, Jokinen E, Jahnukainen T, Lohi J, Pihkala J, Tyni TA, Carroll CJ, Suomalainen A. Genetic Basis of Severe Childhood-Onset Cardiomyopathies. J Am Coll Cardiol 2018; 72:2324-2338. [DOI: 10.1016/j.jacc.2018.08.2171] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/09/2018] [Accepted: 08/12/2018] [Indexed: 11/26/2022]
|
39
|
PPA2 gene is involved in neonatal fatal acute dilated cardiomyopathy. ARCHIVES OF CARDIOVASCULAR DISEASES SUPPLEMENTS 2018. [DOI: 10.1016/j.acvdsp.2018.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Kwon HK, Jeong H, Hwang D, Park ZY. Comparative proteomic analysis of mouse models of pathological and physiological cardiac hypertrophy, with selection of biomarkers of pathological hypertrophy by integrative Proteogenomics. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:S1570-9639(18)30118-3. [PMID: 30048702 DOI: 10.1016/j.bbapap.2018.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/13/2018] [Accepted: 07/20/2018] [Indexed: 12/21/2022]
Abstract
To determine fundamental characteristics of pathological cardiac hypertrophy, protein expression profiles in two widely accepted models of cardiac hypertrophy (swimming-trained mouse for physiological hypertrophy and pressure-overload-induced mouse for pathological hypertrophy) were compared using a label-free quantitative proteomics approach. Among 3955 proteins (19,235 peptides, false-discovery rate < 0.01) identified in these models, 486 were differentially expressed with a log2 fold difference ≥ 0.58, or were detected in only one hypertrophy model (each protein from 4 technical replicates, p < .05). Analysis of gene ontology biological processes and KEGG pathways identified cellular processes enriched in one or both hypertrophy models. Processes unique to pathological hypertrophy were compared with processes previously identified in cardiac-hypertrophy models. Individual proteins with differential expression in processes unique to pathological hypertrophy were further confirmed using the results of previous targeted functional analysis studies. Using a proteogenomic approach combining transcriptomic and proteomic analyses, similar patterns of differential expression were observed for 23 proteins and corresponding genes associated with pathological hypertrophy. A total of 11 proteins were selected as early-stage pathological-hypertrophy biomarker candidates, and the results of western blotting for five of these proteins in independent samples confirmed the patterns of differential expression in mouse models of pathological and physiological cardiac hypertrophy.
Collapse
Affiliation(s)
- Hye Kyeong Kwon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hyobin Jeong
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea; Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 42988, Republic of Korea; School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Daehee Hwang
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea; Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 42988, Republic of Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
41
|
Cai P, Weerakoon KG, Mu Y, Olveda DU, Piao X, Liu S, Olveda RM, Chen Q, Ross AG, McManus DP. A Parallel Comparison of Antigen Candidates for Development of an Optimized Serological Diagnosis of Schistosomiasis Japonica in the Philippines. EBioMedicine 2017; 24:237-246. [PMID: 28943229 PMCID: PMC5652020 DOI: 10.1016/j.ebiom.2017.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/01/2017] [Accepted: 09/12/2017] [Indexed: 12/19/2022] Open
Abstract
Schistosoma japonicum is stubbornly persistent in China and the Philippines. Fast and accurate diagnostic tools are required to monitor effective control measures against schistosomiasis japonica. Promising antigen candidates for the serological diagnosis of schistosomiasis japonica have generally been identified from the Chinese strain of S. japonicum. However, the Chinese (SjC) and Philippine (SjP) strains of S. japonicum express a number of clear phenotypic differences, including aspects of host immune responses. This feature thereby emphasized the requirement to determine whether antigens identified as having diagnostic value for SjC infection are also suitable for the diagnosis of SjP infection. In the current study, 10 antigens were selected for comparison of diagnostic performance of the SjP infection using ELISA. On testing of sera from 180 subjects in the Philippines, SjSAP4 exhibited the best diagnostic performance with 94.03% sensitivity and 98.33% specificity using an optimized serum dilution. In another large scale testing with 412 serum samples, a combination (SjSAP4 + Sj23-LHD (large hydrophilic domain)) provided the best diagnostic outcome with 87.04% sensitivity and 96.67% specificity. This combination could be used in future for serological diagnosis of schistosomiasis in the Philippines, thereby representing an important component for monitoring integrated control measures. Sj23-LHD was the most promising antigen candidate for early diagnosis of schistosomiasis japonica in a murine model. SjSAP4 + Sj23-LHD had the highest diagnostic value when probed with sera from a human cohort with low infection intensity. We have developed a novel diagnostic tool that can aid in the integrated control of schistosomiasis in the Philippines.
Schistosomiasis japonica remains a major public health concern in China and the Philippines. Development of accurate and affordable diagnostic tools is a necessity for the control and elimination of schistosomiasis. The differences in the mammalian host immunological responses to Chinese (SjC) and Philippine (SjP) strains of S. japonicum necessitated validation of proven SjC serological markers for application in the diagnosis of SjP infections. Ten antigens were selected for comparison, in ELISA, for their potential of the diagnosis of SjP infection. The results provide the basis for developing an affordable and easy-to-operate tool for the diagnosis of schistosomiasis in the Philippines.
Collapse
Affiliation(s)
- Pengfei Cai
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia.
| | - Kosala G Weerakoon
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Yi Mu
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - David U Olveda
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Xianyu Piao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Shuai Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Remigio M Olveda
- Research Institute for Tropical Medicine, Department of Health, Manila, Philippines
| | - Qijun Chen
- Key Laboratory of Zoonosis, Shangyang Agricultural University, Shengyang, PR China
| | - Allen G Ross
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia.
| |
Collapse
|
42
|
Bagnall RD, Semsarian C. Role of the molecular autopsy in the investigation of sudden cardiac death. PROGRESS IN PEDIATRIC CARDIOLOGY 2017. [DOI: 10.1016/j.ppedcard.2017.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|