1
|
Meena D, Huang J, Zare M, Hasbani NR, Romuald BOUAP, Mustafa R, van der Laan SW, Xu H, Terry JG, Bis JC, Jain D, Palmer ND, Heard-Costa N, Min YI, Guo X, Yao J, Taylor KD, Tan J, Peralta J, Pereira AC, Khan A, Choudhury A, Newman AB, Xiang AH, Hingorani A, Freedman BI, O’Donnell CJ, Giambartolomei C, Herrington DM, Jacobs DR, Klarin D, Wang FF, Heiss G, Doddapaneni H, Hodis HN, Broome J, Wilson JG, Brandenburg JT, Blangero J, Krieger JE, Smith JD, Viaud-Martinez KA, Ryan KA, Lange LA, Montasser ME, Mahaney MC, Mokry M, Fornage M, Munroe P, Gibbs RA, Tracy RP, Kim RW, Damrauer SM, Rich SS, Hsueh WA, Chen YDI, Morrison AC, Mitchell BD, Carr JJ, Psaty BM, Bowden DW, Vasan RS, Correa A, Post WS, Goodarzi MO, Raffel LJ, Curran JE, Ramsay M, Rotter JI, Elliott P, Franceschini N, de Vries PS, Tzoulaki I, Dehghan A. Genome-wide association study and multi-ancestry meta-analysis identify common variants associated with carotid artery intima-media thickness. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.11.25325582. [PMID: 40321265 PMCID: PMC12047956 DOI: 10.1101/2025.04.11.25325582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
Carotid artery intima-media thickness (cIMT) is a measurement of subclinical atherosclerosis that predicts future cardiovascular events, including stroke and myocardial infarction. Genome-wide association studies (GWAS) have identified only a fraction of the genetic variants associated with cIMT. We performed the largest GWAS for cIMT involving up to 131,000 individuals. For the first time, we meta-analysed a diverse range of ancestries including populations with African, Asian (Chinese), Brazilian, European, and Hispanic ancestries. Our study identified 59 independent loci (53 loci from the multi-ancestry single variant analysis of which 19 are novel, P<5×10-8; 6 novel in gene-based analysis from single variant analysis, P=2.6×10-6, 2 novel in meta-regression) associated with cIMT. Gene-based, tissue-expression and gene-set enrichment analyses revealed novel genes of potential interest and highlighted significant relationships between vascular tissues (aorta, coronary and tibial arteries) and genetic associations. We found that circulatory levels of seven proteins, including ACAN, BCAM, DUT, ERI1, APOE, FN1, and GLRX were potentially causally associated with cIMT levels. We found a strong genome-wide correlation between cIMT and various cardiometabolic, smoking phenotypes, and lipid traits. Using Mendelian randomisation, our analyses provide robust evidence for causal associations between cIMT and several clinically relevant traits, including lipids, blood pressure, and waist circumference. Our study extends our genetic knowledge of atherosclerosis and highlights potential causal relations between risk factors, atherosclerosis and clinical diagnoses.
Collapse
Affiliation(s)
- Devendra Meena
- Department of Epidemiology and Biostatistics, Imperial College London School of Public Health, London, UK
| | - Jian Huang
- Department of Epidemiology and Biostatistics, Imperial College London School of Public Health, London, UK
| | - Marjan Zare
- Maternal-fetal medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Natalie R. Hasbani
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - BOUA Palwendé Romuald
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, CNRST, Burkina Faso
| | - Rima Mustafa
- Department of Epidemiology and Biostatistics, Imperial College London School of Public Health, London, UK
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Huichun Xu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - James G. Terry
- Department of Radiology, Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Deepti Jain
- Genetic Analysis Center, Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Nicholette D. Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Nancy Heard-Costa
- Boston University School of Medicine, Boston, MA, USA
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, USA
| | - Yuan-I Min
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jingyi Tan
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Juan Peralta
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Alexandre C. Pereira
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of S√£o Paulo, S√£o Paulo, Brazil
| | - Alyna Khan
- Genetic Analysis Center, Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Ananyo Choudhury
- Division of Human Genetics at the National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa
| | - Anne B. Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anny H. Xiang
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA USA
| | - Aroon Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, United Kingdom
| | - Barry I. Freedman
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christopher J. O’Donnell
- VA Boston Healthcare System, West Roxbury VA Medical Center, Cardiology Section, Boston, MA, USA
| | - Claudia Giambartolomei
- Department of Pathology and Laboratory Medicine, University of California (UCLA), Los Angeles, Los Angeles, CA, USA
| | - David M. Herrington
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - David R. Jacobs
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Derek Klarin
- VA Palo Alto Healthcare System, Palo Alto, CA
- Department of Surgery, Stanford University Medical Center, Stanford, CA
| | - Fei Fei Wang
- Genetic Analysis Center, Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Gerardo Heiss
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | | | - Howard N. Hodis
- Department of Preventive Medicine, Department of Medicine, Atherosclerosis Research Unit, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Jai Broome
- Genetic Analysis Center, Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - James G. Wilson
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jean-Tristan Brandenburg
- Division of Human Genetics at the National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa
| | - John Blangero
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Jose E Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of S√£o Paulo, S√£o Paulo, Brazil
| | - Josh D. Smith
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Northwest Genomics Center, University of Washington, Seattle, WA, USA
| | | | - Kathleen A. Ryan
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Leslie A. Lange
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - May E. Montasser
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael C. Mahaney
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Michal Mokry
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Myriam Fornage
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Patricia Munroe
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, UK
- NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, UK
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Scott M. Damrauer
- Division of Vascular Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Willa A. Hsueh
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Braxton D. Mitchell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - John Jeffrey Carr
- Department of Radiology, Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Donald W. Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ramachandran S. Vasan
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Adolfo Correa
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Population Health Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - Wendy S. Post
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark O. Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA USA
| | - Leslie J. Raffel
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA USA
| | - Joanne E. Curran
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Michele Ramsay
- Division of Human Genetics at the National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Paul Elliott
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London UK
- National Institute for Health Research Imperial College Biomedical Research Centre, Imperial College London, London, UK
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Paul S. de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, Imperial College London School of Public Health, London, UK
- British Heart Foundation Centre of Excellence, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina, Ioannina, Greece
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, Imperial College London School of Public Health, London, UK
| |
Collapse
|
2
|
Fang M, Gorin G, Pachter L. Trajectory inference from single-cell genomics data with a process time model. PLoS Comput Biol 2025; 21:e1012752. [PMID: 39836699 PMCID: PMC11760028 DOI: 10.1371/journal.pcbi.1012752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 01/24/2025] [Accepted: 12/25/2024] [Indexed: 01/23/2025] Open
Abstract
Single-cell transcriptomics experiments provide gene expression snapshots of heterogeneous cell populations across cell states. These snapshots have been used to infer trajectories and dynamic information even without intensive, time-series data by ordering cells according to gene expression similarity. However, while single-cell snapshots sometimes offer valuable insights into dynamic processes, current methods for ordering cells are limited by descriptive notions of "pseudotime" that lack intrinsic physical meaning. Instead of pseudotime, we propose inference of "process time" via a principled modeling approach to formulating trajectories and inferring latent variables corresponding to timing of cells subject to a biophysical process. Our implementation of this approach, called Chronocell, provides a biophysical formulation of trajectories built on cell state transitions. The Chronocell model is identifiable, making parameter inference meaningful. Furthermore, Chronocell can interpolate between trajectory inference, when cell states lie on a continuum, and clustering, when cells cluster into discrete states. By using a variety of datasets ranging from cluster-like to continuous, we show that Chronocell enables us to assess the suitability of datasets and reveals distinct cellular distributions along process time that are consistent with biological process times. We also compare our parameter estimates of degradation rates to those derived from metabolic labeling datasets, thereby showcasing the biophysical utility of Chronocell. Nevertheless, based on performance characterization on simulations, we find that process time inference can be challenging, highlighting the importance of dataset quality and careful model assessment.
Collapse
Affiliation(s)
- Meichen Fang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Gennady Gorin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
3
|
Jeon JP, Hong EP, Ha EJ, Kim BJ, Youn DH, Lee S, Lee HC, Kim KM, Lee SH, Cho WS, Kang HS, Kim JE. Genome-wide association study identifies novel susceptibilities to adult moyamoya disease. J Hum Genet 2023; 68:713-720. [PMID: 37365321 DOI: 10.1038/s10038-023-01167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
Genome-wide association study has limited to discover single-nucleotide polymorphisms (SNPs) in several ethnicities. Here, we investigated an initial GWAS to identify genetic modifiers predicting with adult moyamoya disease (MMD) in Koreans. GWAS was performed in 216 patients with MMD and 296 controls using the large-scale Asian-specific Axiom Precision Medicine Research Array. A subsequent fine-mapping analysis was conducted to assess the causal variants associated with adult MMD. A total of 489,966 out of 802,688 SNPs were subjected to quality control analysis. Twenty-one SNPs reached a genome-wide significance threshold (p = 5 × 10-8) after pruning linkage disequilibrium (r2 < 0.8) and mis-clustered SNPs. Among these variants, the 17q25.3 region including TBC1D16, CCDC40, GAA, RNF213, and ENDOV genes was broadly associated with MMD (p = 3.1 × 10-20 to 4.2 × 10-8). Mutations in RNF213 including rs8082521 (Q1133K), rs10782008 (V1195M), rs9913636 (E1272Q), rs8074015 (D1331G), and rs9674961 (S2334N) showed a genome-wide significance (1.9 × 10-8 < p < 4.3 × 10-12) and were also replicated in the East-Asian populations. In subsequent analysis, RNF213 mutations were validated in a fine-mapping outcome (log10BF > 7). Most of the loci associated with MMD including 17q25.3 regions were detected with a statistical power greater than 80%. This study identifies several novel and known variations predicting adult MMD in Koreans. These findings may good biomarkers to evaluate MMD susceptibility and its clinical outcomes.
Collapse
Affiliation(s)
- Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Republic of Korea
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Eun Pyo Hong
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Eun Jin Ha
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bong Jun Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Sungyoung Lee
- Department of Genomic Medicine, Center for Precision Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hee Chang Lee
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kang Min Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Ho Lee
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Won-Sang Cho
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Seung Kang
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Eun Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Zhang J, Zhang S, Qiao J, Wang T, Zeng P. Similarity and diversity of genetic architecture for complex traits between East Asian and European populations. BMC Genomics 2023; 24:314. [PMID: 37308816 DOI: 10.1186/s12864-023-09434-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Genome-wide association studies have detected a large number of single-nucleotide polymorphisms (SNPs) associated with complex traits in diverse ancestral groups. However, the trans-ethnic similarity and diversity of genetic architecture is not well understood currently. RESULTS By leveraging summary statistics of 37 traits from East Asian (Nmax=254,373) or European (Nmax=693,529) populations, we first evaluated the trans-ethnic genetic correlation (ρg) and found substantial evidence of shared genetic overlap underlying these traits between the two populations, with [Formula: see text] ranging from 0.53 (se = 0.11) for adult-onset asthma to 0.98 (se = 0.17) for hemoglobin A1c. However, 88.9% of the genetic correlation estimates were significantly less than one, indicating potential heterogeneity in genetic effect across populations. We next identified common associated SNPs using the conjunction conditional false discovery rate method and observed 21.7% of trait-associated SNPs can be identified simultaneously in both populations. Among these shared associated SNPs, 20.8% showed heterogeneous influence on traits between the two ancestral populations. Moreover, we demonstrated that population-common associated SNPs often exhibited more consistent linkage disequilibrium and allele frequency pattern across ancestral groups compared to population-specific or null ones. We also revealed population-specific associated SNPs were much likely to undergo natural selection compared to population-common associated SNPs. CONCLUSIONS Our study provides an in-depth understanding of similarity and diversity regarding genetic architecture for complex traits across diverse populations, and can assist in trans-ethnic association analysis, genetic risk prediction, and causal variant fine mapping.
Collapse
Affiliation(s)
- Jinhui Zhang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Shuo Zhang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Jiahao Qiao
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Ting Wang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| | - Ping Zeng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
- Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
- Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
- Engineering Research Innovation Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| |
Collapse
|
5
|
Stankey CT, Lee JC. Translating non-coding genetic associations into a better understanding of immune-mediated disease. Dis Model Mech 2023; 16:dmm049790. [PMID: 36897113 PMCID: PMC10040244 DOI: 10.1242/dmm.049790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Genome-wide association studies have identified hundreds of genetic loci that are associated with immune-mediated diseases. Most disease-associated variants are non-coding, and a large proportion of these variants lie within enhancers. As a result, there is a pressing need to understand how common genetic variation might affect enhancer function and thereby contribute to immune-mediated (and other) diseases. In this Review, we first describe statistical and experimental methods to identify causal genetic variants that modulate gene expression, including statistical fine-mapping and massively parallel reporter assays. We then discuss approaches to characterise the mechanisms by which these variants modulate immune function, such as clustered regularly interspaced short palindromic repeats (CRISPR)-based screens. We highlight examples of studies that, by elucidating the effects of disease variants within enhancers, have provided important insights into immune function and uncovered key pathways of disease.
Collapse
Affiliation(s)
- Christina T. Stankey
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - James C. Lee
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Institute of Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| |
Collapse
|
6
|
Kim G, Lee Y, Park JH, Kim D, Lee W. Beta-Meta: a meta-analysis application considering heterogeneity among genome-wide association studies. Genomics Inform 2022; 20:e49. [PMID: 36617656 PMCID: PMC9847376 DOI: 10.5808/gi.22046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/05/2022] [Indexed: 12/31/2022] Open
Abstract
Many packages for a meta-analysis of genome-wide association studies (GWAS) have beendeveloped to discover genetic variants. Although variations across studies must be considered, there are not many currently-accessible packages that estimate between-study heterogeneity. Thus, we propose a python based application called Beta-Meta which can easilyprocess a meta-analysis by automatically selecting between a fixed effects and a randomeffects model based on heterogeneity. Beta-Meta implements flexible input data manipulation to allow multiple meta-analyses of different genotype-phenotype associations in asingle process. It provides a step-by-step meta-analysis of GWAS for each association inthe following order: heterogeneity test, two different calculations of an effect size and ap-value based on heterogeneity, and the Benjamini-Hochberg p-value adjustment. Thesemethods enable users to validate the results of individual studies with greater statisticalpower and better estimation precision. We elaborate on these and illustrate them with examples from several studies of infertility-related disorders.
Collapse
|
7
|
Byun J, Han Y, Li Y, Xia J, Long E, Choi J, Xiao X, Zhu M, Zhou W, Sun R, Bossé Y, Song Z, Schwartz A, Lusk C, Rafnar T, Stefansson K, Zhang T, Zhao W, Pettit RW, Liu Y, Li X, Zhou H, Walsh KM, Gorlov I, Gorlova O, Zhu D, Rosenberg SM, Pinney S, Bailey-Wilson JE, Mandal D, de Andrade M, Gaba C, Willey JC, You M, Anderson M, Wiencke JK, Albanes D, Lam S, Tardon A, Chen C, Goodman G, Bojeson S, Brenner H, Landi MT, Chanock SJ, Johansson M, Muley T, Risch A, Wichmann HE, Bickeböller H, Christiani DC, Rennert G, Arnold S, Field JK, Shete S, Le Marchand L, Melander O, Brunnstrom H, Liu G, Andrew AS, Kiemeney LA, Shen H, Zienolddiny S, Grankvist K, Johansson M, Caporaso N, Cox A, Hong YC, Yuan JM, Lazarus P, Schabath MB, Aldrich MC, Patel A, Lan Q, Rothman N, Taylor F, Kachuri L, Witte JS, Sakoda LC, Spitz M, Brennan P, Lin X, McKay J, Hung RJ, Amos CI. Cross-ancestry genome-wide meta-analysis of 61,047 cases and 947,237 controls identifies new susceptibility loci contributing to lung cancer. Nat Genet 2022; 54:1167-1177. [PMID: 35915169 PMCID: PMC9373844 DOI: 10.1038/s41588-022-01115-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 05/27/2022] [Indexed: 02/03/2023]
Abstract
To identify new susceptibility loci to lung cancer among diverse populations, we performed cross-ancestry genome-wide association studies in European, East Asian and African populations and discovered five loci that have not been previously reported. We replicated 26 signals and identified 10 new lead associations from previously reported loci. Rare-variant associations tended to be specific to populations, but even common-variant associations influencing smoking behavior, such as those with CHRNA5 and CYP2A6, showed population specificity. Fine-mapping and expression quantitative trait locus colocalization nominated several candidate variants and susceptibility genes such as IRF4 and FUBP1. DNA damage assays of prioritized genes in lung fibroblasts indicated that a subset of these genes, including the pleiotropic gene IRF4, potentially exert effects by promoting endogenous DNA damage.
Collapse
Affiliation(s)
- Jinyoung Byun
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yafang Li
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jun Xia
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Erping Long
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiangjun Xiao
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | - Wen Zhou
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Ryan Sun
- Department of Biostatistics, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Department of Molecular Medicine, Laval University, Quebec City, Quebec, Canada
| | - Zhuoyi Song
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ann Schwartz
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Karmanos Cancer Institute, Detroit, MI, USA
| | - Christine Lusk
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Karmanos Cancer Institute, Detroit, MI, USA
| | | | | | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wei Zhao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rowland W Pettit
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Yanhong Liu
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Xihao Li
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Hufeng Zhou
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Kyle M Walsh
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Ivan Gorlov
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Olga Gorlova
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Dakai Zhu
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Susan M Rosenberg
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Susan Pinney
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Diptasri Mandal
- Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | - Colette Gaba
- The University of Toledo College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - James C Willey
- The University of Toledo College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Ming You
- Center for Cancer Prevention, Houston Methodist Research Institute, Houston, TX, USA
| | | | - John K Wiencke
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephan Lam
- Department of Integrative Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Adonina Tardon
- Public Health Department, University of Oviedo, ISPA and CIBERESP, Asturias, Spain
| | - Chu Chen
- Program in Epidemiology, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Stig Bojeson
- Department of Clinical Biochemistry, Herlev Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mattias Johansson
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Thomas Muley
- Division of Cancer Epigenomics, DKFZ - German Cancer Research Center, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Angela Risch
- Division of Cancer Epigenomics, DKFZ - German Cancer Research Center, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Biosciences and Medical Biology, Allergy-Cancer-BioNano Research Centre, University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | | | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - David C Christiani
- Department of Epidemiology, Harvard T.H.Chan School of Public Health, Boston, MA, USA
| | - Gad Rennert
- Clalit National Cancer Control Center at Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Susanne Arnold
- University of Kentucky, Markey Cancer Center, Lexington, KY, USA
| | - John K Field
- Roy Castle Lung Cancer Research Programme, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Sanjay Shete
- Department of Biostatistics, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | | | - Geoffrey Liu
- University Health Network- The Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Angeline S Andrew
- Departments of Epidemiology and Community and Family Medicine, Dartmouth College, Hanover, NH, USA
| | | | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | | | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Mikael Johansson
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Angela Cox
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jian-Min Yuan
- UPMC Hillman Cancer Center and Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Melinda C Aldrich
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alpa Patel
- American Cancer Society, Atlanta, GA, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fiona Taylor
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Linda Kachuri
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - John S Witte
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Margaret Spitz
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Paul Brennan
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Xihong Lin
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - James McKay
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA.
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
8
|
Yang W, He X, Yao Y, Lu H, Wang Y, Zhang Z, Wang Y, Wang L, He Y, Yuan D, Jin T. Genome-Wide Association Study on the Hematological Phenotypic Characteristics of the Han Population from Northwest China. Pharmgenomics Pers Med 2022; 15:743-763. [PMID: 35945964 PMCID: PMC9357418 DOI: 10.2147/pgpm.s361809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
Background Hematological characteristics have positive reference value as clinical indicators in the evaluation of various diseases. The purpose of this study was to determine the gene loci associated with 20 hematological phenotypes in the Han population from northwest China. Methods A genome-wide association study (GWAS) was conducted on hematological indicators of 1005 Han people from northwest China. Genotyping was performed with a GeneTitan multichannel instrument and Axiom Analysis Suite 6.0. Using the 1000 Genomes Project (phase 3) as a reference, haplotype imputation was performed with IMPUTE2. SNVs (single nucleotide variants) significantly associated with hematological phenotypes were identified. The top SNV (p < 5E-7) was then selected for replication detection. Results Ninety genetic variations identified in the GWAS were significantly associated with hematological indicators. Among them, only rs35289401 (CCDC157) was significantly associated (genome-wide) with red blood cell distribution width (RDW) (p = 4.21E-08). The fourteen top SNVs were selected for replication verification and were significantly associated with hematological phenotypes. However, only HBS1 L-MYB rs1331309 was significantly associated with the mean hemoglobin content (p = 6.42E-07). We also found that the mean corpuscular hemoglobin (MCH) level in the rs1331309 GG/GT genotype was significantly higher than that in the TT genotype (p = 0.023). Conclusion The GWAS identified a total of 90 genetic variants significantly associated with hematological phenotypic indicators. In particular, rs1331309 (HBS1 L-MYB) is expected to be a biomarker for monitoring the dynamics of MCH levels. This study provides a reference for related studies on the genetic structure of hematological characteristics. It provides a valuable reference for the clinical diagnosis or prediction of a variety of diseases.
Collapse
Affiliation(s)
- Wei Yang
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, 712082, People’s Republic of China
- School of Basic Medical Sciences, Xizang Minzu University, Xianyang, Shaanxi, 712082, People’s Republic of China
- Department of Emergency, The Affiliated Hospital of Xizang Minzu University, Xianyang, Shaanxi, 712082, People’s Republic of China
| | - Xue He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, 712082, People’s Republic of China
- School of Basic Medical Sciences, Xizang Minzu University, Xianyang, Shaanxi, 712082, People’s Republic of China
| | - Yuying Yao
- School of Basic Medical Sciences, Xizang Minzu University, Xianyang, Shaanxi, 712082, People’s Republic of China
| | - Hongyan Lu
- School of Basic Medical Sciences, Xizang Minzu University, Xianyang, Shaanxi, 712082, People’s Republic of China
| | - Yuliang Wang
- School of Basic Medical Sciences, Xizang Minzu University, Xianyang, Shaanxi, 712082, People’s Republic of China
| | - Zhanhao Zhang
- School of Basic Medical Sciences, Xizang Minzu University, Xianyang, Shaanxi, 712082, People’s Republic of China
| | - Yuhe Wang
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, 712082, People’s Republic of China
- School of Basic Medical Sciences, Xizang Minzu University, Xianyang, Shaanxi, 712082, People’s Republic of China
- Department of Clinical Laboratory, The Affiliated Hospital of Xizang Minzu University, Xianyang, Shaanxi, 712082, People’s Republic of China
| | - Li Wang
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, 712082, People’s Republic of China
- School of Basic Medical Sciences, Xizang Minzu University, Xianyang, Shaanxi, 712082, People’s Republic of China
| | - Yongjun He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, 712082, People’s Republic of China
- School of Basic Medical Sciences, Xizang Minzu University, Xianyang, Shaanxi, 712082, People’s Republic of China
| | - Dongya Yuan
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, 712082, People’s Republic of China
- School of Basic Medical Sciences, Xizang Minzu University, Xianyang, Shaanxi, 712082, People’s Republic of China
| | - Tianbo Jin
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, 712082, People’s Republic of China
- School of Basic Medical Sciences, Xizang Minzu University, Xianyang, Shaanxi, 712082, People’s Republic of China
- Correspondence: Tianbo Jin, Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, #6 East Wenhui Road, Xianyang, Shaanxi, 712082, People’s Republic of China, Tel/Fax +86-29-88895902, Email
| |
Collapse
|
9
|
Rhee EP, Surapaneni A, Zheng Z, Zhou L, Dutta D, Arking DE, Zhang J, Duong T, Chatterjee N, Luo S, Schlosser P, Mehta R, Waikar SS, Saraf SL, Kelly TN, Hamm LL, Rao PS, Mathew AV, Hsu CY, Parsa A, Vasan RS, Kimmel PL, Clish CB, Coresh J, Feldman HI, Grams ME. Trans-ethnic genome-wide association study of blood metabolites in the Chronic Renal Insufficiency Cohort (CRIC) study. Kidney Int 2022; 101:814-823. [PMID: 35120996 PMCID: PMC8940669 DOI: 10.1016/j.kint.2022.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/06/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022]
Abstract
Metabolomics genome wide association study (GWAS) help outline the genetic contribution to human metabolism. However, studies to date have focused on relatively healthy, population-based samples of White individuals. Here, we conducted a GWAS of 537 blood metabolites measured in the Chronic Renal Insufficiency Cohort (CRIC) Study, with separate analyses in 822 White and 687 Black study participants. Trans-ethnic meta-analysis was then applied to improve fine-mapping of potential causal variants. Mean estimated glomerular filtration rate was 44.4 and 41.5 mL/min/1.73m2 in the White and Black participants, respectively. There were 45 significant metabolite associations at 19 loci, including novel associations at PYROXD2, PHYHD1, FADS1-3, ACOT2, MYRF, FAAH, and LIPC. The strength of associations was unchanged in models additionally adjusted for estimated glomerular filtration rate and proteinuria, consistent with a direct biochemical effect of gene products on associated metabolites. At several loci, trans-ethnic meta-analysis, which leverages differences in linkage disequilibrium across populations, reduced the number and/or genomic interval spanned by potentially causal single nucleotide polymorphisms compared to fine-mapping in the White participant cohort alone. Across all validated associations, we found strong concordance in effect sizes of the potentially causal single nucleotide polymorphisms between White and Black study participants. Thus, our study identifies novel genetic determinants of blood metabolites in chronic kidney disease, demonstrates the value of diverse cohorts to improve causal inference in metabolomics GWAS, and underscores the shared genetic basis of metabolism across race.
Collapse
Affiliation(s)
- Eugene P Rhee
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Boston, Massachussetts, USA.
| | - Aditya Surapaneni
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zihe Zheng
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Linda Zhou
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Diptavo Dutta
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Dan E Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jingning Zhang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - ThuyVy Duong
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nilanjan Chatterjee
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Shengyuan Luo
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Pascal Schlosser
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA; Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Rupal Mehta
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sushrut S Waikar
- Section of Nephrology, Boston University School of Medicine, Boston Medical Center, Boston, Massachussetts, USA
| | - Santosh L Saraf
- Division of Hematology and Oncology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Tanika N Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Lee L Hamm
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Panduranga S Rao
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anna V Mathew
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Chi-Yuan Hsu
- Division of Nephrology, University of California, San Francisco School of Medicine, San Francisco, California, USA
| | - Afshin Parsa
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ramachandran S Vasan
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, Massachussetts, USA; Section of Cardiology, Department of Medicine, Boston University School of Medicine, Boston, Massachussetts, USA; Department of Epidemiology, Boston University School of Public Health, Boston, Massachussetts, USA
| | - Paul L Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, Massachussetts, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Harold I Feldman
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Morgan E Grams
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA; Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
10
|
Kamariza M, Crawford L, Jones D, Finucane H. Misuse of the term 'trans-ethnic' in genomics research. Nat Genet 2021; 53:1520-1521. [PMID: 34741159 DOI: 10.1038/s41588-021-00952-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Lorin Crawford
- Microsoft Research New England, Cambridge, MA, USA. .,Brown University, Providence, RI, USA.
| | | | - Hilary Finucane
- Massachusetts General Hospital, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Boston, MA, USA.
| |
Collapse
|
11
|
McCartney DL, Min JL, Richmond RC, Lu AT, Sobczyk MK, Davies G, Broer L, Guo X, Jeong A, Jung J, Kasela S, Katrinli S, Kuo PL, Matias-Garcia PR, Mishra PP, Nygaard M, Palviainen T, Patki A, Raffield LM, Ratliff SM, Richardson TG, Robinson O, Soerensen M, Sun D, Tsai PC, van der Zee MD, Walker RM, Wang X, Wang Y, Xia R, Xu Z, Yao J, Zhao W, Correa A, Boerwinkle E, Dugué PA, Durda P, Elliott HR, Gieger C, de Geus EJC, Harris SE, Hemani G, Imboden M, Kähönen M, Kardia SLR, Kresovich JK, Li S, Lunetta KL, Mangino M, Mason D, McIntosh AM, Mengel-From J, Moore AZ, Murabito JM, Ollikainen M, Pankow JS, Pedersen NL, Peters A, Polidoro S, Porteous DJ, Raitakari O, Rich SS, Sandler DP, Sillanpää E, Smith AK, Southey MC, Strauch K, Tiwari H, Tanaka T, Tillin T, Uitterlinden AG, Van Den Berg DJ, van Dongen J, Wilson JG, Wright J, Yet I, Arnett D, Bandinelli S, Bell JT, Binder AM, Boomsma DI, Chen W, Christensen K, Conneely KN, Elliott P, Ferrucci L, Fornage M, Hägg S, Hayward C, Irvin M, Kaprio J, Lawlor DA, Lehtimäki T, Lohoff FW, Milani L, Milne RL, Probst-Hensch N, Reiner AP, Ritz B, Rotter JI, et alMcCartney DL, Min JL, Richmond RC, Lu AT, Sobczyk MK, Davies G, Broer L, Guo X, Jeong A, Jung J, Kasela S, Katrinli S, Kuo PL, Matias-Garcia PR, Mishra PP, Nygaard M, Palviainen T, Patki A, Raffield LM, Ratliff SM, Richardson TG, Robinson O, Soerensen M, Sun D, Tsai PC, van der Zee MD, Walker RM, Wang X, Wang Y, Xia R, Xu Z, Yao J, Zhao W, Correa A, Boerwinkle E, Dugué PA, Durda P, Elliott HR, Gieger C, de Geus EJC, Harris SE, Hemani G, Imboden M, Kähönen M, Kardia SLR, Kresovich JK, Li S, Lunetta KL, Mangino M, Mason D, McIntosh AM, Mengel-From J, Moore AZ, Murabito JM, Ollikainen M, Pankow JS, Pedersen NL, Peters A, Polidoro S, Porteous DJ, Raitakari O, Rich SS, Sandler DP, Sillanpää E, Smith AK, Southey MC, Strauch K, Tiwari H, Tanaka T, Tillin T, Uitterlinden AG, Van Den Berg DJ, van Dongen J, Wilson JG, Wright J, Yet I, Arnett D, Bandinelli S, Bell JT, Binder AM, Boomsma DI, Chen W, Christensen K, Conneely KN, Elliott P, Ferrucci L, Fornage M, Hägg S, Hayward C, Irvin M, Kaprio J, Lawlor DA, Lehtimäki T, Lohoff FW, Milani L, Milne RL, Probst-Hensch N, Reiner AP, Ritz B, Rotter JI, Smith JA, Taylor JA, van Meurs JBJ, Vineis P, Waldenberger M, Deary IJ, Relton CL, Horvath S, Marioni RE. Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging. Genome Biol 2021; 22:194. [PMID: 34187551 PMCID: PMC8243879 DOI: 10.1186/s13059-021-02398-9] [Show More Authors] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/03/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field. RESULTS Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels. CONCLUSION This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity.
Collapse
Affiliation(s)
- Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Josine L Min
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rebecca C Richmond
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Maria K Sobczyk
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Gail Davies
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Linda Broer
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ayoung Jeong
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jeesun Jung
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, USA
| | - Silva Kasela
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Seyma Katrinli
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Pei-Lun Kuo
- Longitudinal Study Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Pamela R Matias-Garcia
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - Marianne Nygaard
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Amit Patki
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Oliver Robinson
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Mette Soerensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Pei-Chien Tsai
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Matthijs D van der Zee
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Xiaochuan Wang
- Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Victoria, 3004, Australia
| | - Yunzhang Wang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Rui Xia
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zongli Xu
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Eric Boerwinkle
- School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pierre-Antoine Dugué
- Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Victoria, 3004, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, 3168, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, Victoria, 3010, Australia
| | - Peter Durda
- Department of Pathology & Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05446, USA
| | - Hannah R Elliott
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Christian Gieger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Sarah E Harris
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, 33521, Tampere, Finland
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Jacob K Kresovich
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Shengxu Li
- Children's Minnesota Research Institute, Children's Minnesota, Minneapolis, MN, 55404, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, USA
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, SE1 9RT, UK
| | - Dan Mason
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | | | - Jonas Mengel-From
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Ann Zenobia Moore
- Longitudinal Study Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Joanne M Murabito
- Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - James S Pankow
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Silvia Polidoro
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Stephen S Rich
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Dale P Sandler
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Elina Sillanpää
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Victoria, 3004, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, 3168, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, Victoria, 3010, Australia
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, 55101, Mainz, Germany
- Chair of Genetic Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hemant Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, USA
| | - Toshiko Tanaka
- Longitudinal Study Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Therese Tillin
- MRC Unit for Lifelong Health and Ageing at UCL, London, UK
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - David J Van Den Berg
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - James G Wilson
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Idil Yet
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, 06100, Ankara, Turkey
| | - Donna Arnett
- Deans Office, College of Public Health, University of Kentucky, Lexington, UK
| | | | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Alexandra M Binder
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawai'i Cancer Center, University of Hawai'i, Honolulu, HI, USA
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Wei Chen
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Kaare Christensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Paul Elliott
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Luigi Ferrucci
- Longitudinal Study Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Rd. South, Edinburgh, EH4 2XU, UK
| | - Marguerite Irvin
- Dept of Epidemiology, University of Alabama at Birmingham, Birmingham, USA
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol NIHR Biomedical Research Centre, Bristol, UK
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - Falk W Lohoff
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, USA
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Victoria, 3004, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, 3168, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, Victoria, 3010, Australia
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Alex P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Jack A Taylor
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Paolo Vineis
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Ian J Deary
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
12
|
Hu Y, Stilp AM, McHugh CP, Rao S, Jain D, Zheng X, Lane J, Méric de Bellefon S, Raffield LM, Chen MH, Yanek LR, Wheeler M, Yao Y, Ren C, Broome J, Moon JY, de Vries PS, Hobbs BD, Sun Q, Surendran P, Brody JA, Blackwell TW, Choquet H, Ryan K, Duggirala R, Heard-Costa N, Wang Z, Chami N, Preuss MH, Min N, Ekunwe L, Lange LA, Cushman M, Faraday N, Curran JE, Almasy L, Kundu K, Smith AV, Gabriel S, Rotter JI, Fornage M, Lloyd-Jones DM, Vasan RS, Smith NL, North KE, Boerwinkle E, Becker LC, Lewis JP, Abecasis GR, Hou L, O'Connell JR, Morrison AC, Beaty TH, Kaplan R, Correa A, Blangero J, Jorgenson E, Psaty BM, Kooperberg C, Walton RT, Kleinstiver BP, Tang H, Loos RJF, Soranzo N, Butterworth AS, Nickerson D, Rich SS, Mitchell BD, Johnson AD, Auer PL, Li Y, Mathias RA, Lettre G, Pankratz N, Laurie CC, Laurie CA, Bauer DE, Conomos MP, Reiner AP. Whole-genome sequencing association analysis of quantitative red blood cell phenotypes: The NHLBI TOPMed program. Am J Hum Genet 2021; 108:874-893. [PMID: 33887194 DOI: 10.1016/j.ajhg.2021.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Whole-genome sequencing (WGS), a powerful tool for detecting novel coding and non-coding disease-causing variants, has largely been applied to clinical diagnosis of inherited disorders. Here we leveraged WGS data in up to 62,653 ethnically diverse participants from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program and assessed statistical association of variants with seven red blood cell (RBC) quantitative traits. We discovered 14 single variant-RBC trait associations at 12 genomic loci, which have not been reported previously. Several of the RBC trait-variant associations (RPN1, ELL2, MIDN, HBB, HBA1, PIEZO1, and G6PD) were replicated in independent GWAS datasets imputed to the TOPMed reference panel. Most of these discovered variants are rare/low frequency, and several are observed disproportionately among non-European Ancestry (African, Hispanic/Latino, or East Asian) populations. We identified a 3 bp indel p.Lys2169del (g.88717175_88717177TCT[4]) (common only in the Ashkenazi Jewish population) of PIEZO1, a gene responsible for the Mendelian red cell disorder hereditary xerocytosis (MIM: 194380), associated with higher mean corpuscular hemoglobin concentration (MCHC). In stepwise conditional analysis and in gene-based rare variant aggregated association analysis, we identified several of the variants in HBB, HBA1, TMPRSS6, and G6PD that represent the carrier state for known coding, promoter, or splice site loss-of-function variants that cause inherited RBC disorders. Finally, we applied base and nuclease editing to demonstrate that the sentinel variant rs112097551 (nearest gene RPN1) acts through a cis-regulatory element that exerts long-range control of the gene RUVBL1 which is essential for hematopoiesis. Together, these results demonstrate the utility of WGS in ethnically diverse population-based samples and gene editing for expanding knowledge of the genetic architecture of quantitative hematologic traits and suggest a continuum between complex trait and Mendelian red cell disorders.
Collapse
Affiliation(s)
- Yao Hu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98105, USA
| | - Adrienne M Stilp
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Caitlin P McHugh
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Shuquan Rao
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Xiuwen Zheng
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - John Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ming-Huei Chen
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA
| | - Lisa R Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Marsha Wheeler
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Yao Yao
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
| | - Chunyan Ren
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
| | - Jai Broome
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Brian D Hobbs
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB1 8RN, UK; Rutherford Fund Fellow, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98105, USA
| | - Thomas W Blackwell
- TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94601, USA
| | - Kathleen Ryan
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ravindranath Duggirala
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78539, USA
| | - Nancy Heard-Costa
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA; Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nathalie Chami
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nancy Min
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Lynette Ekunwe
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mary Cushman
- Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT 05405, USA
| | - Nauder Faraday
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78539, USA
| | - Laura Almasy
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia and Department of Genetics University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kousik Kundu
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK
| | - Albert V Smith
- TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | | | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Myriam Fornage
- University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | - Ramachandran S Vasan
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA; Departments of Cardiology and Preventive Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, WA 98105, USA; Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA 98105, USA; Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA 98105, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lewis C Becker
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joshua P Lewis
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Goncalo R Abecasis
- TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | - Lifang Hou
- Northwestern University, Chicago, IL 60208, USA
| | - Jeffrey R O'Connell
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Terri H Beaty
- School of Public Health, John Hopkins University, Baltimore, MD 21205, USA
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78539, USA
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94601, USA
| | - Bruce M Psaty
- Department of Epidemiology, University of Washington, Seattle, WA 98105, USA; Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA 98105, USA; Department of Medicine, University of Washington, Seattle, WA 98105, USA
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98105, USA
| | - Russell T Walton
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole Soranzo
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK; Department of Human Genetics, Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB1 8RN, UK; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK; National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge CB1 8RN, UK
| | - Debbie Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Braxton D Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Andrew D Johnson
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53205, USA
| | - Yun Li
- Departments of Biostatistics, Genetics, Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rasika A Mathias
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MA 21205, USA
| | - Guillaume Lettre
- Montreal Heart Institute, Montréal, QC H1T 1C8, Canada; Faculté de Médecine, Université de Montréal, Montréal, QC H1T 1C8, Canada
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Cathy C Laurie
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Cecelia A Laurie
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
| | - Matthew P Conomos
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
13
|
Sun P, Zhou W, Fu Y, Cheung CYY, Dong Y, Yang ML, Zhang H, Jia J, Huo Y, Willer CJ, Chen YE, Tang CS, Tse HF, Lam KSL, Gao W, Xu M, Yu H, Sham PC, Zhang Y, Ganesh SK. An Asian-specific MPL genetic variant alters JAK-STAT signaling and influences platelet count in the population. Hum Mol Genet 2021; 30:836-842. [PMID: 33693786 DOI: 10.1093/hmg/ddab062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/27/2022] Open
Abstract
Genomic discovery efforts for hematological traits have been successfully conducted through genome-wide association study on samples of predominantly European ancestry. We sought to conduct unbiased genetic discovery for coding variants that influence hematological traits in a Han Chinese population. A total of 5257 Han Chinese subjects from Beijing, China were included in the discovery cohort and analyzed by an Illumina ExomeChip array. Replication analyses were conducted in 3827 independent Chinese subjects. We analyzed 12 hematological traits and identified 22 exome-wide significant single-nucleotide polymorphisms (SNP)-trait associations with 15 independent SNPs. Our study provides replication for two associations previously reported but not replicated. Further, one association was identified and replicated in the current study, of a coding variant in the myeloproliferative leukemia (MPL) gene, c.793C > T, p.Leu265Phe (L265F) with increased platelet count (β = 20.6 109 cells/l, Pmeta-analysis = 2.6 × 10-13). This variant is observed at ~2% population frequency in East Asians, whereas it has not been reported in gnomAD European or African populations. Functional analysis demonstrated that expression of MPL L265F in Ba/F3 cells resulted in enhanced phosphorylation of Stat3 and ERK1/2 as compared with the reference MPL allele, supporting altered activation of the JAK-STAT signal transduction pathway as the mechanism underlying the novel association between MPL L265F and platelet count.
Collapse
Affiliation(s)
- Pengfei Sun
- Department of Cardiology, Peking University First Hospital, Beijing 100034, China
| | - Wei Zhou
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Chloe Y Y Cheung
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Yujun Dong
- Department of Hematology, Peking University First Hospital, Beijing 100034, China
| | - Min-Lee Yang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - He Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jia Jia
- Department of Cardiology, Peking University First Hospital, Beijing 100034, China
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing 100034, China
| | - Cristen J Willer
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Y Eugene Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Clara S Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Hung-Fat Tse
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Karen S L Lam
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Wei Gao
- Department of Cardiology, Peking University Third Hospital, Beijing 100083, China
| | - Ming Xu
- Department of Cardiology, Peking University Third Hospital, Beijing 100083, China
| | - Haiyi Yu
- Department of Cardiology, Peking University Third Hospital, Beijing 100083, China
| | - Pak Chung Sham
- Department of Psychiatry and Centre for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing 100034, China.,Institute of Cardiovascular Disease?Peking University First Hospital, Beijing, 100034, China
| | - Santhi K Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Goddard PC, Keys KL, Mak ACY, Lee EY, Liu AK, Samedy-Bates LA, Risse-Adams O, Contreras MG, Elhawary JR, Hu D, Huntsman S, Oh SS, Salazar S, Eng C, Himes BE, White MJ, Burchard EG. Integrative genomic analysis in African American children with asthma finds three novel loci associated with lung function. Genet Epidemiol 2021; 45:190-208. [PMID: 32989782 PMCID: PMC7902343 DOI: 10.1002/gepi.22365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/21/2020] [Accepted: 09/14/2020] [Indexed: 11/06/2022]
Abstract
Bronchodilator (BD) drugs are commonly prescribed for treatment and management of obstructive lung function present with diseases such as asthma. Administration of BD medication can partially or fully restore lung function as measured by pulmonary function tests. The genetics of baseline lung function measures taken before BD medication have been extensively studied, and the genetics of the BD response itself have received some attention. However, few studies have focused on the genetics of post-BD lung function. To address this gap, we analyzed lung function phenotypes in 1103 subjects from the Study of African Americans, Asthma, Genes, and Environment, a pediatric asthma case-control cohort, using an integrative genomic analysis approach that combined genotype, locus-specific genetic ancestry, and functional annotation information. We integrated genome-wide association study (GWAS) results with an admixture mapping scan of three pulmonary function tests (forced expiratory volume in 1 s [FEV1 ], forced vital capacity [FVC], and FEV1 /FVC) taken before and after albuterol BD administration on the same subjects, yielding six traits. We identified 18 GWAS loci, and five additional loci from admixture mapping, spanning several known and novel lung function candidate genes. Most loci identified via admixture mapping exhibited wide variation in minor allele frequency across genotyped global populations. Functional fine-mapping revealed an enrichment of epigenetic annotations from peripheral blood mononuclear cells, fetal lung tissue, and lung fibroblasts. Our results point to three novel potential genetic drivers of pre- and post-BD lung function: ADAMTS1, RAD54B, and EGLN3.
Collapse
Affiliation(s)
- Pagé C. Goddard
- Department of Genetics, Stanford University, Stanford, California, USA
- Department of Medicine, University of California, San Francisco, California, USA
| | - Kevin L. Keys
- Department of Medicine, University of California, San Francisco, California, USA
- Berkeley Institute for Data Science, University of California, Berkeley, California, USA
| | - Angel C. Y. Mak
- Department of Medicine, University of California, San Francisco, California, USA
| | - Eunice Y. Lee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Amy K. Liu
- Department of Neurology, University of California, San Francisco, California, USA
| | - Lesly-Anne Samedy-Bates
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Oona Risse-Adams
- Department of Medicine, University of California, San Francisco, California, USA
- Department of Biology, University of California, Santa Cruz, California, USA
| | - María G. Contreras
- Department of Medicine, University of California, San Francisco, California, USA
- Department of Biology, San Francisco State University, San Francisco, California, USA
| | - Jennifer R. Elhawary
- Department of Medicine, University of California, San Francisco, California, USA
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, California, USA
| | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, California, USA
| | - Sam S. Oh
- Department of Medicine, University of California, San Francisco, California, USA
| | - Sandra Salazar
- Department of Medicine, University of California, San Francisco, California, USA
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, California, USA
| | - Blanca E. Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marquitta J. White
- Department of Medicine, University of California, San Francisco, California, USA
| | - Esteban G. Burchard
- Department of Medicine, University of California, San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| |
Collapse
|
15
|
Petrović T, Lauc G, Trbojević-Akmačić I. The Importance of Glycosylation in COVID-19 Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:239-264. [PMID: 34495539 DOI: 10.1007/978-3-030-70115-4_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently one of the major health problems worldwide. SARS-CoV-2 survival and virulence are shown to be impacted by glycans, covalently attached to proteins in a process of glycosylation, making glycans an area of interest in SARS-CoV-2 biology and COVID-19 infection. The SARS-CoV-2 uses its highly glycosylated spike (S) glycoproteins to bind to the cell surface receptor angiotensin-converting enzyme 2 (ACE2) glycoprotein and facilitate host cell entry. Viral glycosylation has wide-ranging roles in viral pathobiology, including mediating protein folding and stability, immune evasion, host receptor attachment, and cell entry. Modification of SARS-CoV-2 envelope membrane with glycans is important in host immune recognition and interaction between S and ACE2 glycoproteins. On the other hand, immunoglobulin G, a key molecule in immune response, shows a distinct glycosylation profile in COVID-19 infection and with increased disease severity. Hence, further studies on the role of glycosylation in SARS-CoV-2 infectivity and COVID-19 infection are needed for its successful prevention and treatment. This chapter focuses on recent findings on the importance of glycosylation in COVID-19 infection.
Collapse
Affiliation(s)
- Tea Petrović
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | |
Collapse
|
16
|
Choudhuri A, Trompouki E, Abraham BJ, Colli LM, Kock KH, Mallard W, Yang ML, Vinjamur DS, Ghamari A, Sporrij A, Hoi K, Hummel B, Boatman S, Chan V, Tseng S, Nandakumar SK, Yang S, Lichtig A, Superdock M, Grimes SN, Bowman TV, Zhou Y, Takahashi S, Joehanes R, Cantor AB, Bauer DE, Ganesh SK, Rinn J, Albert PS, Bulyk ML, Chanock SJ, Young RA, Zon LI. Common variants in signaling transcription-factor-binding sites drive phenotypic variability in red blood cell traits. Nat Genet 2020; 52:1333-1345. [PMID: 33230299 DOI: 10.1038/s41588-020-00738-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
Genome-wide association studies identify genomic variants associated with human traits and diseases. Most trait-associated variants are located within cell-type-specific enhancers, but the molecular mechanisms governing phenotypic variation are less well understood. Here, we show that many enhancer variants associated with red blood cell (RBC) traits map to enhancers that are co-bound by lineage-specific master transcription factors (MTFs) and signaling transcription factors (STFs) responsive to extracellular signals. The majority of enhancer variants reside on STF and not MTF motifs, perturbing DNA binding by various STFs (BMP/TGF-β-directed SMADs or WNT-induced TCFs) and affecting target gene expression. Analyses of engineered human blood cells and expression quantitative trait loci verify that disrupted STF binding leads to altered gene expression. Our results propose that the majority of the RBC-trait-associated variants that reside on transcription-factor-binding sequences fall in STF target sequences, suggesting that the phenotypic variation of RBC traits could stem from altered responsiveness to extracellular stimuli.
Collapse
Affiliation(s)
- Avik Choudhuri
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Eirini Trompouki
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.,Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Brian J Abraham
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Leandro M Colli
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, MD, USA.,Department of Medical Imaging, Hematology, and Medical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kian Hong Kock
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA, USA
| | - William Mallard
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,The Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Min-Lee Yang
- Division of Cardiovascular Medicine, Department of Internal Medicine and Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Divya S Vinjamur
- Division of Hematology and Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alireza Ghamari
- Division of Pediatric Hematology-Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Audrey Sporrij
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Karen Hoi
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Barbara Hummel
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Sonja Boatman
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Victoria Chan
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Sierra Tseng
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Satish K Nandakumar
- Division of Hematology and Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Song Yang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Asher Lichtig
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Michael Superdock
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Seraj N Grimes
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Summer Institute in Biomedical Informatics, Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Teresa V Bowman
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.,Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yi Zhou
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | | | - Roby Joehanes
- Hebrew Senior Life, Harvard Medical School, Boston, MA, USA.,Framingham Heart Study, National Heart, Blood, and Lung Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan B Cantor
- Division of Pediatric Hematology-Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Daniel E Bauer
- Division of Hematology and Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Santhi K Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine and Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - John Rinn
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Paul S Albert
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA, USA.,The Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Summer Institute in Biomedical Informatics, Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Leonard I Zon
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA. .,Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
17
|
Zietz M, Zucker J, Tatonetti NP. Associations between blood type and COVID-19 infection, intubation, and death. Nat Commun 2020; 11:5761. [PMID: 33188185 PMCID: PMC7666188 DOI: 10.1038/s41467-020-19623-x] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/16/2020] [Indexed: 01/06/2023] Open
Abstract
The rapid global spread of the novel coronavirus SARS-CoV-2 has strained healthcare and testing resources, making the identification and prioritization of individuals most at-risk a critical challenge. Recent evidence suggests blood type may affect risk of severe COVID-19. Here, we use observational healthcare data on 14,112 individuals tested for SARS-CoV-2 with known blood type in the New York Presbyterian (NYP) hospital system to assess the association between ABO and Rh blood types and infection, intubation, and death. We find slightly increased infection prevalence among non-O types. Risk of intubation was decreased among A and increased among AB and B types, compared with type O, while risk of death was increased for type AB and decreased for types A and B. We estimate Rh-negative blood type to have a protective effect for all three outcomes. Our results add to the growing body of evidence suggesting blood type may play a role in COVID-19.
Collapse
Affiliation(s)
- Michael Zietz
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Jason Zucker
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Nicholas P Tatonetti
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
18
|
Zietz M, Zucker J, Tatonetti NP. Testing the association between blood type and COVID-19 infection, intubation, and death. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.04.08.20058073. [PMID: 32511586 PMCID: PMC7276013 DOI: 10.1101/2020.04.08.20058073] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The rapid global spread of the novel coronavirus SARS-CoV-2 has strained healthcare and testing resources, making the identification and prioritization of individuals most at-risk a critical challenge. Recent evidence suggests blood type may affect risk of severe COVID-19. We used observational healthcare data on 14,112 individuals tested for SARS-CoV-2 with known blood type in the New York Presbyterian (NYP) hospital system to assess the association between ABO and Rh blood types and infection, intubation, and death. We found slightly increased infection prevalence among non-O types. Risk of intubation was decreased among A and increased among AB and B types, compared with type O, while risk of death was increased for type AB and decreased for types A and B. We estimated Rh-negative blood type to have a protective effect for all three outcomes. Our results add to the growing body of evidence suggesting blood type may play a role in COVID-19.
Collapse
Affiliation(s)
- Michael Zietz
- Department of Biomedical Informatics, Columbia University Irving Medical Center
| | - Jason Zucker
- Department of Medicine, Columbia University Irving Medical Center
| | | |
Collapse
|
19
|
Shrestha R, Lieberth J, Tillman S, Natalizio J, Bloomekatz J. Using Zebrafish to Analyze the Genetic and Environmental Etiologies of Congenital Heart Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:189-223. [PMID: 32304074 DOI: 10.1007/978-981-15-2389-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Congenital heart defects (CHDs) are among the most common human birth defects. However, the etiology of a large proportion of CHDs remains undefined. Studies identifying the molecular and cellular mechanisms that underlie cardiac development have been critical to elucidating the origin of CHDs. Building upon this knowledge to understand the pathogenesis of CHDs requires examining how genetic or environmental stress changes normal cardiac development. Due to strong molecular conservation to humans and unique technical advantages, studies using zebrafish have elucidated both fundamental principles of cardiac development and have been used to create cardiac disease models. In this chapter we examine the unique toolset available to zebrafish researchers and how those tools are used to interrogate the genetic and environmental contributions to CHDs.
Collapse
Affiliation(s)
- Rabina Shrestha
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Jaret Lieberth
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Savanna Tillman
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Joseph Natalizio
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | | |
Collapse
|
20
|
Hodonsky CJ, Baldassari AR, Bien SA, Raffield LM, Highland HM, Sitlani CM, Wojcik GL, Tao R, Graff M, Tang W, Thyagarajan B, Buyske S, Fornage M, Hindorff LA, Li Y, Lin D, Reiner AP, North KE, Loos RJF, Kooperberg C, Avery CL. Ancestry-specific associations identified in genome-wide combined-phenotype study of red blood cell traits emphasize benefits of diversity in genomics. BMC Genomics 2020; 21:228. [PMID: 32171239 PMCID: PMC7071748 DOI: 10.1186/s12864-020-6626-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/26/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Quantitative red blood cell (RBC) traits are highly polygenic clinically relevant traits, with approximately 500 reported GWAS loci. The majority of RBC trait GWAS have been performed in European- or East Asian-ancestry populations, despite evidence that rare or ancestry-specific variation contributes substantially to RBC trait heritability. Recently developed combined-phenotype methods which leverage genetic trait correlation to improve statistical power have not yet been applied to these traits. Here we leveraged correlation of seven quantitative RBC traits in performing a combined-phenotype analysis in a multi-ethnic study population. RESULTS We used the adaptive sum of powered scores (aSPU) test to assess combined-phenotype associations between ~ 21 million SNPs and seven RBC traits in a multi-ethnic population (maximum n = 67,885 participants; 24% African American, 30% Hispanic/Latino, and 43% European American; 76% female). Thirty-nine loci in our multi-ethnic population contained at least one significant association signal (p < 5E-9), with lead SNPs at nine loci significantly associated with three or more RBC traits. A majority of the lead SNPs were common (MAF > 5%) across all ancestral populations. Nineteen additional independent association signals were identified at seven known loci (HFE, KIT, HBS1L/MYB, CITED2/FILNC1, ABO, HBA1/2, and PLIN4/5). For example, the HBA1/2 locus contained 14 conditionally independent association signals, 11 of which were previously unreported and are specific to African and Amerindian ancestries. One variant in this region was common in all ancestries, but exhibited a narrower LD block in African Americans than European Americans or Hispanics/Latinos. GTEx eQTL analysis of all independent lead SNPs yielded 31 significant associations in relevant tissues, over half of which were not at the gene immediately proximal to the lead SNP. CONCLUSION This work identified seven loci containing multiple independent association signals for RBC traits using a combined-phenotype approach, which may improve discovery in genetically correlated traits. Highly complex genetic architecture at the HBA1/2 locus was only revealed by the inclusion of African Americans and Hispanics/Latinos, underscoring the continued importance of expanding large GWAS to include ancestrally diverse populations.
Collapse
Affiliation(s)
- Chani J. Hodonsky
- University of North Carolina Gillings School of Public Health, 135 Dauer Dr, Chapel Hill, NC 27599 USA
- University of Virginia Center for Public Health Genomics, 1355 Lee St, Charlottesville, VA 22908 USA
| | - Antoine R. Baldassari
- University of North Carolina Gillings School of Public Health, 135 Dauer Dr, Chapel Hill, NC 27599 USA
| | - Stephanie A. Bien
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 USA
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599 USA
| | - Heather M. Highland
- University of North Carolina Gillings School of Public Health, 135 Dauer Dr, Chapel Hill, NC 27599 USA
| | - Colleen M. Sitlani
- University of Washington, 1730 Minor Ave, Ste 1360, Seattle, WA 98101 USA
| | - Genevieve L. Wojcik
- Stanford University School of Medicine, 291 Campus Dr, Stanford, CA 94305 USA
| | - Ran Tao
- Vanderbilt University, 2525 West End Ave #1100, Nashville, TN 37203 USA
| | - Marielisa Graff
- University of North Carolina Gillings School of Public Health, 135 Dauer Dr, Chapel Hill, NC 27599 USA
| | - Weihong Tang
- University of Minnesota, 420 Delaware St SE, Minneapolis, MN 55455 USA
| | | | - Steve Buyske
- Rutgers University, 683 Hoes Ln W, Piscataway, NJ 08854 USA
| | - Myriam Fornage
- University of Texas Houston, 7000 Fannin Street, Houston, TX 77030 USA
| | - Lucia A. Hindorff
- National Human Genome Research Institute, 31 Center Dr, Bethesda, MD 20894 USA
| | - Yun Li
- University of North Carolina Gillings School of Public Health, 135 Dauer Dr, Chapel Hill, NC 27599 USA
| | - Danyu Lin
- University of North Carolina Gillings School of Public Health, 135 Dauer Dr, Chapel Hill, NC 27599 USA
| | - Alex P. Reiner
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 USA
- University of Washington, 1705 NE Pacific St, Seattle, WA 98195 USA
| | - Kari E. North
- University of North Carolina Gillings School of Public Health, 135 Dauer Dr, Chapel Hill, NC 27599 USA
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599 USA
| | - Ruth J. F. Loos
- Icahn School of Medicine at Mount Sinai, 1468 Madison Ave, New York, NY 10029 USA
| | | | - Christy L. Avery
- University of North Carolina Gillings School of Public Health, 135 Dauer Dr, Chapel Hill, NC 27599 USA
| |
Collapse
|
21
|
Lin SH, Loftfield E, Sampson JN, Zhou W, Yeager M, Freedman ND, Chanock SJ, Machiela MJ. Mosaic chromosome Y loss is associated with alterations in blood cell counts in UK Biobank men. Sci Rep 2020; 10:3655. [PMID: 32108144 PMCID: PMC7046668 DOI: 10.1038/s41598-020-59963-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/04/2020] [Indexed: 12/31/2022] Open
Abstract
Mosaic loss of Y chromosome (mLOY) is the most frequently detected somatic copy number alteration in leukocytes of men. In this study, we investigate blood cell counts as a potential mechanism linking mLOY to disease risk in 206,353 UK males. Associations between mLOY, detected by genotyping arrays, and blood cell counts were assessed by multivariable linear models adjusted for relevant risk factors. Among the participants, mLOY was detected in 39,809 men. We observed associations between mLOY and reduced erythrocyte count (−0.009 [−0.014, −0.005] × 1012 cells/L, p = 2.75 × 10−5) and elevated thrombocyte count (5.523 [4.862, 6.183] × 109 cells/L, p = 2.32 × 10−60) and leukocyte count (0.218 [0.198, 0.239] × 109 cells/L, p = 9.22 × 10−95), particularly for neutrophil count (0.174 × [0.158, 0.190]109 cells/L, p = 1.24 × 10−99) and monocyte count (0.021 [0.018 to 0.024] × 109 cells/L, p = 6.93 × 10−57), but lymphocyte count was less consistent (0.016 [0.007, 0.025] × 109 cells/L, p = 8.52 × 10−4). Stratified analyses indicate these associations are independent of the effects of aging and smoking. Our findings provide population-based evidence for associations between mLOY and blood cell counts that should stimulate investigation of the underlying biological mechanisms linking mLOY to cancer and chronic disease risk.
Collapse
Affiliation(s)
- Shu-Hong Lin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, 9609 Medical Center Drive MSC 9776, Bethesda, Maryland, 20892, USA
| | - Erikka Loftfield
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, 9609 Medical Center Drive MSC 9776, Bethesda, Maryland, 20892, USA
| | - Josh N Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, 9609 Medical Center Drive MSC 9776, Bethesda, Maryland, 20892, USA
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, 9609 Medical Center Drive MSC 9776, Bethesda, Maryland, 20892, USA.,Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland, 8717 Grovemont Circle, Gaithersburg, MD, 20877, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, 9609 Medical Center Drive MSC 9776, Bethesda, Maryland, 20892, USA.,Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland, 8717 Grovemont Circle, Gaithersburg, MD, 20877, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, 9609 Medical Center Drive MSC 9776, Bethesda, Maryland, 20892, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, 9609 Medical Center Drive MSC 9776, Bethesda, Maryland, 20892, USA
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, 9609 Medical Center Drive MSC 9776, Bethesda, Maryland, 20892, USA.
| |
Collapse
|
22
|
Kowalski MH, Qian H, Hou Z, Rosen JD, Tapia AL, Shan Y, Jain D, Argos M, Arnett DK, Avery C, Barnes KC, Becker LC, Bien SA, Bis JC, Blangero J, Boerwinkle E, Bowden DW, Buyske S, Cai J, Cho MH, Choi SH, Choquet H, Cupples LA, Cushman M, Daya M, de Vries PS, Ellinor PT, Faraday N, Fornage M, Gabriel S, Ganesh SK, Graff M, Gupta N, He J, Heckbert SR, Hidalgo B, Hodonsky CJ, Irvin MR, Johnson AD, Jorgenson E, Kaplan R, Kardia SLR, Kelly TN, Kooperberg C, Lasky-Su JA, Loos RJF, Lubitz SA, Mathias RA, McHugh CP, Montgomery C, Moon JY, Morrison AC, Palmer ND, Pankratz N, Papanicolaou GJ, Peralta JM, Peyser PA, Rich SS, Rotter JI, Silverman EK, Smith JA, Smith NL, Taylor KD, Thornton TA, Tiwari HK, Tracy RP, Wang T, Weiss ST, Weng LC, Wiggins KL, Wilson JG, Yanek LR, Zöllner S, North KE, Auer PL, Raffield LM, Reiner AP, Li Y. Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations. PLoS Genet 2019; 15:e1008500. [PMID: 31869403 PMCID: PMC6953885 DOI: 10.1371/journal.pgen.1008500] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 01/10/2020] [Accepted: 10/30/2019] [Indexed: 01/10/2023] Open
Abstract
Most genome-wide association and fine-mapping studies to date have been conducted in individuals of European descent, and genetic studies of populations of Hispanic/Latino and African ancestry are limited. In addition, these populations have more complex linkage disequilibrium structure. In order to better define the genetic architecture of these understudied populations, we leveraged >100,000 phased sequences available from deep-coverage whole genome sequencing through the multi-ethnic NHLBI Trans-Omics for Precision Medicine (TOPMed) program to impute genotypes into admixed African and Hispanic/Latino samples with genome-wide genotyping array data. We demonstrated that using TOPMed sequencing data as the imputation reference panel improves genotype imputation quality in these populations, which subsequently enhanced gene-mapping power for complex traits. For rare variants with minor allele frequency (MAF) < 0.5%, we observed a 2.3- to 6.1-fold increase in the number of well-imputed variants, with 11-34% improvement in average imputation quality, compared to the state-of-the-art 1000 Genomes Project Phase 3 and Haplotype Reference Consortium reference panels. Impressively, even for extremely rare variants with minor allele count <10 (including singletons) in the imputation target samples, average information content rescued was >86%. Subsequent association analyses of TOPMed reference panel-imputed genotype data with hematological traits (hemoglobin (HGB), hematocrit (HCT), and white blood cell count (WBC)) in ~21,600 African-ancestry and ~21,700 Hispanic/Latino individuals identified associations with two rare variants in the HBB gene (rs33930165 with higher WBC [p = 8.8x10-15] in African populations, rs11549407 with lower HGB [p = 1.5x10-12] and HCT [p = 8.8x10-10] in Hispanics/Latinos). By comparison, neither variant would have been genome-wide significant if either 1000 Genomes Project Phase 3 or Haplotype Reference Consortium reference panels had been used for imputation. Our findings highlight the utility of the TOPMed imputation reference panel for identification of novel rare variant associations not previously detected in similarly sized genome-wide studies of under-represented African and Hispanic/Latino populations.
Collapse
Affiliation(s)
- Madeline H. Kowalski
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Huijun Qian
- Department of Statistics and Operation Research, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Ziyi Hou
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan D. Rosen
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Amanda L. Tapia
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Yue Shan
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Maria Argos
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Donna K. Arnett
- College of Public Health, University of Kentucky, Lexington, Kentucky, United States of America
| | - Christy Avery
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kathleen C. Barnes
- Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Lewis C. Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Stephanie A. Bien
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, United States of America
| | - Eric Boerwinkle
- Human Genome Sequencing Center, University of Texas Health Science Center at Houston; Baylor College of Medicine, Houston, Texas, United States of America
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Donald W. Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Steve Buyske
- Department of Statistics, Rutgers University, Piscataway, New Jersey, United States of America
| | - Jianwen Cai
- Collaborative Studies Coordinating Center, Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Michael H. Cho
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Seung Hoan Choi
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, California, United States of America
| | - L. Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
- Framingham Heart Study, Framingham, Massachusetts, United States of America
| | - Mary Cushman
- Departments of Medicine & Pathology, Larner College of Medicine, University of Vermont, Colchester, Vermont, United States of America
| | - Michelle Daya
- Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Paul S. de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Patrick T. Ellinor
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Nauder Faraday
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Myriam Fornage
- School of Public Health, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Stacey Gabriel
- Genomics Platform, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Santhi K. Ganesh
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Misa Graff
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Namrata Gupta
- Genomics Platform, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Los Angeles, United States of America
| | - Susan R. Heckbert
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, Washington, United States of America
| | - Bertha Hidalgo
- Department of Epidemiology, Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Chani J. Hodonsky
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Marguerite R. Irvin
- Department of Epidemiology, Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Andrew D. Johnson
- Framingham Heart Study, Framingham, Massachusetts, United States of America
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Framingham, Massachusetts, United States of America
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, California, United States of America
| | - Robert Kaplan
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tanika N. Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Los Angeles, United States of America
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jessica A. Lasky-Su
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ruth J. F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Steven A. Lubitz
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Rasika A. Mathias
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Caitlin P. McHugh
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Courtney Montgomery
- Department of Genes and Human Disease, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Jee-Young Moon
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Nicholette D. Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - George J. Papanicolaou
- National Heart, Lung, and Blood Institute, Division of Cardiovascular Sciences, PPSP/EB, NIH, Bethesda, Maryland, United States of America
| | - Juan M. Peralta
- Department of Human Genetics and South Texas Diabetes Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, United States of America
| | - Patricia A. Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Stephen S. Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nicholas L. Smith
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, Washington, United States of America
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, Washington, United States of America
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Timothy A. Thornton
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Hemant K. Tiwari
- Department of Biostatistics, Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Russell P. Tracy
- Departments of Pathology & Laboratory Medicine and Biochemistry, Larrner College of Medicine, University of Vermont, Colchester, Vermont, United States of America
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lu-Chen Weng
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Kerri L. Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Lisa R. Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Sebastian Zöllner
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kari E. North
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Carolina Center of Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Paul L. Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | | | | | - Laura M. Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Alexander P. Reiner
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Yun Li
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
23
|
Fang H, Hui Q, Lynch J, Honerlaw J, Assimes TL, Huang J, Vujkovic M, Damrauer SM, Pyarajan S, Gaziano JM, DuVall SL, O’Donnell CJ, Cho K, Chang KM, Wilson PW, Tsao PS, Sun YV, Tang H, Gaziano JM, Ramoni R, Breeling J, Chang KM, Huang G, Muralidhar S, O’Donnell CJ, Tsao PS, Muralidhar S, Moser J, Whitbourne SB, Brewer JV, Concato J, Warren S, Argyres DP, Stephens B, Brophy MT, Humphries DE, Do N, Shayan S, Nguyen XMT, Pyarajan S, Cho K, Hauser E, Sun Y, Zhao H, Wilson P, McArdle R, Dellitalia L, Harley J, Whittle J, Beckham J, Wells J, Gutierrez S, Gibson G, Kaminsky L, Villareal G, Kinlay S, Xu J, Hamner M, Haddock KS, Bhushan S, Iruvanti P, Godschalk M, Ballas Z, Buford M, Mastorides S, Klein J, Ratcliffe N, Florez H, Swann A, Murdoch M, Sriram P, Yeh SS, Washburn R, Jhala D, Aguayo S, Cohen D, Sharma S, Callaghan J, Oursler KA, Whooley M, Ahuja S, Gutierrez A, Schifman R, Greco J, Rauchman M, Servatius R, Oehlert M, Wallbom A, Fernando R, Morgan T, Stapley T, Sherman S, Anderson G, Sonel E, Boyko E, Meyer L, Gupta S, Fayad J, Hung A, Lichy J, et alFang H, Hui Q, Lynch J, Honerlaw J, Assimes TL, Huang J, Vujkovic M, Damrauer SM, Pyarajan S, Gaziano JM, DuVall SL, O’Donnell CJ, Cho K, Chang KM, Wilson PW, Tsao PS, Sun YV, Tang H, Gaziano JM, Ramoni R, Breeling J, Chang KM, Huang G, Muralidhar S, O’Donnell CJ, Tsao PS, Muralidhar S, Moser J, Whitbourne SB, Brewer JV, Concato J, Warren S, Argyres DP, Stephens B, Brophy MT, Humphries DE, Do N, Shayan S, Nguyen XMT, Pyarajan S, Cho K, Hauser E, Sun Y, Zhao H, Wilson P, McArdle R, Dellitalia L, Harley J, Whittle J, Beckham J, Wells J, Gutierrez S, Gibson G, Kaminsky L, Villareal G, Kinlay S, Xu J, Hamner M, Haddock KS, Bhushan S, Iruvanti P, Godschalk M, Ballas Z, Buford M, Mastorides S, Klein J, Ratcliffe N, Florez H, Swann A, Murdoch M, Sriram P, Yeh SS, Washburn R, Jhala D, Aguayo S, Cohen D, Sharma S, Callaghan J, Oursler KA, Whooley M, Ahuja S, Gutierrez A, Schifman R, Greco J, Rauchman M, Servatius R, Oehlert M, Wallbom A, Fernando R, Morgan T, Stapley T, Sherman S, Anderson G, Sonel E, Boyko E, Meyer L, Gupta S, Fayad J, Hung A, Lichy J, Hurley R, Robey B, Striker R. Harmonizing Genetic Ancestry and Self-identified Race/Ethnicity in Genome-wide Association Studies. Am J Hum Genet 2019; 105:763-772. [PMID: 31564439 DOI: 10.1016/j.ajhg.2019.08.012] [Show More Authors] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/28/2019] [Indexed: 02/08/2023] Open
Abstract
Large-scale multi-ethnic cohorts offer unprecedented opportunities to elucidate the genetic factors influencing complex traits related to health and disease among minority populations. At the same time, the genetic diversity in these cohorts presents new challenges for analysis and interpretation. We consider the utility of race and/or ethnicity categories in genome-wide association studies (GWASs) of multi-ethnic cohorts. We demonstrate that race/ethnicity information enhances the ability to understand population-specific genetic architecture. To address the practical issue that self-identified racial/ethnic information may be incomplete, we propose a machine learning algorithm that produces a surrogate variable, termed HARE. We use height as a model trait to demonstrate the utility of HARE and ethnicity-specific GWASs.
Collapse
|
24
|
Akerberg AA, Burns CE, Burns CG. Exploring the Activities of RBPMS Proteins in Myocardial Biology. Pediatr Cardiol 2019; 40:1410-1418. [PMID: 31399780 PMCID: PMC6786954 DOI: 10.1007/s00246-019-02180-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022]
Abstract
Numerous RNA-binding proteins (RBPs) are expressed in the heart, and mutations in several RBPs have been implicated in cardiovascular disease through genetic associations, animal modeling, and mechanistic studies. However, the functions of many more cardiac RBPs, and their relevance to disease states, remain to be elucidated. Recently, we have initiated studies to characterize the functions of the RBPs RBPMS and RBPMS2 in regulating myocardial biology in zebrafish and higher vertebrate species. These studies began when we learned, using an unbiased gene discovery approach, that rbpms2a and rbpms2b in zebrafish are robust markers of embryonic myocardium. This observation, which is consistent with published data, suggests that the encoded proteins are likely to be performing critical functions in regulating one or more aspects of cardiomyocyte differentiation, proliferation, survival, and/or contractility. This notion is supported by recent reports demonstrating that zebrafish embryos with disrupted Rbpms2 function exhibit gross signs of cardiac distress. Interestingly, a 20-year-old study determined that myocardial tissue from the frog, chick, and mouse also express high levels of Rbpms and/or Rbpms2, which is suggestive of evolutionary conservation of function. In this review, we will provide a historical account of how RBPMS and RBPMS2 genes were discovered, attempt to clarify some potentially confusing nomenclature, and summarize published observations that inform our ongoing studies.
Collapse
Affiliation(s)
- Alexander A Akerberg
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129,Harvard Medical School, Boston, MA 02115
| | - Caroline E. Burns
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129,Harvard Medical School, Boston, MA 02115,Harvard Stem Cell Institute, Cambridge, MA 02138,Authors for Correspondence: ()
| | - C. Geoffrey Burns
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129,Harvard Medical School, Boston, MA 02115,Authors for Correspondence: ()
| |
Collapse
|
25
|
Yasukochi Y, Sakuma J, Takeuchi I, Kato K, Oguri M, Fujimaki T, Horibe H, Yamada Y. Evolutionary history of disease-susceptibility loci identified in longitudinal exome-wide association studies. Mol Genet Genomic Med 2019; 7:e925. [PMID: 31402603 PMCID: PMC6732299 DOI: 10.1002/mgg3.925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 06/12/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022] Open
Abstract
Background Our longitudinal exome‐wide association studies previously detected various genetic determinants of complex disorders using ~26,000 single‐nucleotide polymorphisms (SNPs) that passed quality control and longitudinal medical examination data (mean follow‐up period, 5 years) in 4884–6022 Japanese subjects. We found that allele frequencies of several identified SNPs were remarkably different among four ethnic groups. Elucidating the evolutionary history of disease‐susceptibility loci may help us uncover the pathogenesis of the related complex disorders. Methods In the present study, we conducted evolutionary analyses such as extended haplotype homozygosity, focusing on genomic regions containing disease‐susceptibility loci and based on genotyping data of our previous studies and datasets from the 1000 Genomes Project. Results Our evolutionary analyses suggest that derived alleles of rs78338345 of GGA3, rs7656604 at 4q13.3, rs34902660 of SLC17A3, and six SNPs closely located at 12q24.1 associated with type 2 diabetes mellitus, obesity, dyslipidemia, and three complex disorders (hypertension, hyperuricemia, and dyslipidemia), respectively, rapidly expanded after the human dispersion from Africa (Out‐of‐Africa). Allele frequencies of GGA3 and six SNPs at 12q24.1 appeared to have remarkably changed in East Asians, whereas the derived alleles of rs34902660 of SLC17A3 and rs7656604 at 4q13.3 might have spread across Japanese and non‐Africans, respectively, although we cannot completely exclude the possibility that allele frequencies of disease‐associated loci may be affected by demographic events. Conclusion Our findings indicate that derived allele frequencies of nine disease‐associated SNPs (rs78338345 of GGA3, rs7656604 at 4q13.3, rs34902660 of SLC17A3, and six SNPs at 12q24.1) identified in the longitudinal exome‐wide association studies largely increased in non‐Africans after Out‐of‐Africa.
Collapse
Affiliation(s)
- Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Jun Sakuma
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.,Computer Science Department, College of Information Science, University of Tsukuba, Tsukuba, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Ichiro Takeuchi
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.,Department of Computer Science, Nagoya Institute of Technology, Nagoya, Japan
| | - Kimihiko Kato
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,Department of Internal Medicine, Meitoh Hospital, Nagoya, Japan
| | - Mitsutoshi Oguri
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,Department of Cardiology, Kasugai Municipal Hospital, Kasugai, Japan
| | - Tetsuo Fujimaki
- Department of Cardiovascular Medicine, Inabe General Hospital, Inabe, Japan
| | - Hideki Horibe
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Japan
| | - Yoshiji Yamada
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
26
|
Gouveia MH, Bergen AW, Borda V, Nunes K, Leal TP, Ogwang MD, Yeboah ED, Mensah JE, Kinyera T, Otim I, Nabalende H, Legason ID, Mpoloka SW, Mokone GG, Kerchan P, Bhatia K, Reynolds SJ, Birtwum RB, Adjei AA, Tettey Y, Tay E, Hoover R, Pfeiffer RM, Biggar RJ, Goedert JJ, Prokunina-Olsson L, Dean M, Yeager M, Lima-Costa MF, Hsing AW, Tishkoff SA, Chanock SJ, Tarazona-Santos E, Mbulaiteye SM. Genetic signatures of gene flow and malaria-driven natural selection in sub-Saharan populations of the "endemic Burkitt Lymphoma belt". PLoS Genet 2019; 15:e1008027. [PMID: 30849090 PMCID: PMC6426263 DOI: 10.1371/journal.pgen.1008027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 03/20/2019] [Accepted: 02/17/2019] [Indexed: 12/13/2022] Open
Abstract
Populations in sub-Saharan Africa have historically been exposed to intense selection from chronic infection with falciparum malaria. Interestingly, populations with the highest malaria intensity can be identified by the increased occurrence of endemic Burkitt Lymphoma (eBL), a pediatric cancer that affects populations with intense malaria exposure, in the so called "eBL belt" in sub-Saharan Africa. However, the effects of intense malaria exposure and sub-Saharan populations' genetic histories remain poorly explored. To determine if historical migrations and intense malaria exposure have shaped the genetic composition of the eBL belt populations, we genotyped ~4.3 million SNPs in 1,708 individuals from Ghana and Northern Uganda, located on opposite sides of eBL belt and with ≥ 7 months/year of intense malaria exposure and published evidence of high incidence of BL. Among 35 Ghanaian tribes, we showed a predominantly West-Central African ancestry and genomic footprints of gene flow from Gambian and East African populations. In Uganda, the North West population showed a predominantly Nilotic ancestry, and the North Central population was a mixture of Nilotic and Southern Bantu ancestry, while the Southwest Ugandan population showed a predominant Southern Bantu ancestry. Our results support the hypothesis of diverse ancestral origins of the Ugandan, Kenyan and Tanzanian Great Lakes African populations, reflecting a confluence of Nilotic, Cushitic and Bantu migrations in the last 3000 years. Natural selection analyses suggest, for the first time, a strong positive selection signal in the ATP2B4 gene (rs10900588) in Northern Ugandan populations. These findings provide important baseline genomic data to facilitate disease association studies, including of eBL, in eBL belt populations.
Collapse
Affiliation(s)
- Mateus H. Gouveia
- Instituto de Pesquisa René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Center for Research on Genomics & Global Health, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Andrew W. Bergen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Victor Borda
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Kelly Nunes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Thiago P. Leal
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Statistics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Martin D. Ogwang
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | | | | | - Tobias Kinyera
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Isaac Otim
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | | | | | | | - Gaonyadiwe George Mokone
- Department of Biomedical Sciences, University of Botswana School of Medicine, Gaborone, Botswana
| | - Patrick Kerchan
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Kishor Bhatia
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Steven J. Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | | | | | - Yao Tettey
- University of Ghana Medical School, Accra, Ghana
| | - Evelyn Tay
- University of Ghana Medical School, Accra, Ghana
| | - Robert Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Ruth M. Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Robert J. Biggar
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - James J. Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Michael Dean
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, US Department of Health and Human Services, Frederick, Maryland, United States of America
| | - M. Fernanda Lima-Costa
- Instituto de Pesquisa René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Ann W. Hsing
- Stanford Cancer Institute, Stanford University, Stanford, California, United States of America
| | - Sarah A. Tishkoff
- Department of Genetics and Biology, University of Pennsylvania, Philadelphia, United States of America
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Eduardo Tarazona-Santos
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sam M. Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, United States of America
| |
Collapse
|
27
|
Beaumont RN, Warrington NM, Cavadino A, Tyrrell J, Nodzenski M, Horikoshi M, Geller F, Myhre R, Richmond RC, Paternoster L, Bradfield JP, Kreiner-Møller E, Huikari V, Metrustry S, Lunetta KL, Painter JN, Hottenga JJ, Allard C, Barton SJ, Espinosa A, Marsh JA, Potter C, Zhang G, Ang W, Berry DJ, Bouchard L, Das S, Hakonarson H, Heikkinen J, Helgeland Ø, Hocher B, Hofman A, Inskip HM, Jones SE, Kogevinas M, Lind PA, Marullo L, Medland SE, Murray A, Murray JC, Njølstad PR, Nohr EA, Reichetzeder C, Ring SM, Ruth KS, Santa-Marina L, Scholtens DM, Sebert S, Sengpiel V, Tuke MA, Vaudel M, Weedon MN, Willemsen G, Wood AR, Yaghootkar H, Muglia LJ, Bartels M, Relton CL, Pennell CE, Chatzi L, Estivill X, Holloway JW, Boomsma DI, Montgomery GW, Murabito JM, Spector TD, Power C, Järvelin MR, Bisgaard H, Grant SFA, Sørensen TIA, Jaddoe VW, Jacobsson B, Melbye M, McCarthy MI, Hattersley AT, Hayes MG, Frayling TM, Hivert MF, Felix JF, Hyppönen E, Lowe WL, Evans DM, Lawlor DA, Feenstra B, Freathy RM. Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics. Hum Mol Genet 2019; 27:742-756. [PMID: 29309628 PMCID: PMC5886200 DOI: 10.1093/hmg/ddx429] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/15/2017] [Indexed: 12/22/2022] Open
Abstract
Genome-wide association studies of birth weight have focused on fetal genetics, whereas relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86 577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother–child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P < 5 × 10−8. In SEM analyses, at least 7 of the 10 associations were consistent with effects of the maternal genotype acting via the intrauterine environment, rather than via effects of shared alleles with the fetus. Variants, or correlated proxies, at many of the loci had been previously associated with adult traits, including fasting glucose (MTNR1B, GCK and TCF7L2) and sex hormone levels (CYP3A7), and one (EBF1) with gestational duration. The identified associations indicate that genetic effects on maternal glucose, cytochrome P450 activity and gestational duration, and potentially on maternal blood pressure and immune function, are relevant for fetal growth. Further characterization of these associations in mechanistic and causal analyses will enhance understanding of the potentially modifiable maternal determinants of fetal growth, with the goal of reducing the morbidity and mortality associated with low and high birth weights.
Collapse
Affiliation(s)
- Robin N Beaumont
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - Nicole M Warrington
- Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Alana Cavadino
- Centre for Environmental and Preventive Medicine, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jessica Tyrrell
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK.,European Centre for Environment and Human Health, University of Exeter, The Knowledge Spa, Truro TR1 3HD, UK
| | - Michael Nodzenski
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Momoko Horikoshi
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.,Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Ronny Myhre
- Division of Epidemiology, Department of Genes and Environment, Norwegian Institute of Public Health, Oslo, Norway
| | - Rebecca C Richmond
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,Population Health Science, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Lavinia Paternoster
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Jonathan P Bradfield
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eskil Kreiner-Møller
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Danish Pediatric Asthma Center, Copenhagen University Hospital, Gentofte, Denmark
| | - Ville Huikari
- Institute of Health Sciences, University of Oulu, Oulu, Finland
| | - Sarah Metrustry
- Department of Twin Research, King's College London, St. Thomas' Hospital, London, UK
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.,Framingham Heart Study, Framingham, MA, USA
| | - Jodie N Painter
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, QLD 4029, Australia
| | - Jouke-Jan Hottenga
- EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands.,Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands
| | - Catherine Allard
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Sheila J Barton
- Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Ana Espinosa
- Pompeu Fabra University (UPF), Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
| | - Julie A Marsh
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Australia
| | - Catherine Potter
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Ge Zhang
- Human Genetics Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, OH, USA.,March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
| | - Wei Ang
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Australia
| | - Diane J Berry
- Population, Policy and Practice, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Luigi Bouchard
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada.,ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada.,Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Shikta Das
- Population, Policy and Practice, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | | | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jani Heikkinen
- FIMM Institute for Molecular Medicine Finland, Helsinki University, Helsinki FI-00014, Finland
| | - Øyvind Helgeland
- Department of Clinical Science, KG Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway.,Department of Genetics and Bioinformatics, Domain of Health Data and Digitalisation, Institute of Public Health, Oslo, Norway
| | - Berthold Hocher
- The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.,Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Hazel M Inskip
- Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Samuel E Jones
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - Manolis Kogevinas
- Pompeu Fabra University (UPF), Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
| | - Penelope A Lind
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, QLD 4029, Australia
| | - Letizia Marullo
- Genetic Section, Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, QLD 4029, Australia
| | - Anna Murray
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Pål R Njølstad
- Department of Clinical Science, KG Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway.,Department of Pediatrics, Haukeland University Hospital, Bergen 5021, Norway
| | - Ellen A Nohr
- Research Unit of Obstetrics & Gynecology, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Christoph Reichetzeder
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany.,Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Susan M Ring
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,Population Health Science, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Katherine S Ruth
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - Loreto Santa-Marina
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Subdirección de Salud Pública y Adicciones de Gipuzkoa, Donostia/San Sebastián, Spain.,Instituto de Investigación Sanitaria BIODONOSTIA, Donostia/San Sebastián, Spain
| | - Denise M Scholtens
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sylvain Sebert
- Institute of Health Sciences, University of Oulu, Oulu, Finland.,Department of Epidemiology and Biostatistics, School of Public Health, Medical Research Council-Health Protection Agency Centre for Environment and Health, Faculty of Medicine, Imperial College London, London, UK
| | - Verena Sengpiel
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, Sahgrenska University Hospital, Gothenburg, Sweden
| | - Marcus A Tuke
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - Marc Vaudel
- Department of Clinical Science, KG Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Michael N Weedon
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - Gonneke Willemsen
- EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands.,Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands
| | - Andrew R Wood
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - Hanieh Yaghootkar
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - Louis J Muglia
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, OH, USA.,March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
| | - Meike Bartels
- EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands.,Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands
| | - Caroline L Relton
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,Population Health Science, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Craig E Pennell
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Australia
| | - Leda Chatzi
- Department of Social Medicine, University of Crete, Crete, Greece
| | - Xavier Estivill
- Pompeu Fabra University (UPF), Barcelona, Spain.,ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
| | - John W Holloway
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Dorret I Boomsma
- EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands.,Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands
| | - Grant W Montgomery
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, QLD 4029, Australia
| | - Joanne M Murabito
- Framingham Heart Study, Framingham, MA, USA.,Section of General Internal Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Tim D Spector
- Department of Twin Research, King's College London, St. Thomas' Hospital, London, UK
| | - Christine Power
- Population, Policy and Practice, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Marjo-Ritta Järvelin
- Institute of Health Sciences, University of Oulu, Oulu, Finland.,Department of Epidemiology and Biostatistics, School of Public Health, Medical Research Council-Health Protection Agency Centre for Environment and Health, Faculty of Medicine, Imperial College London, London, UK.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Unit of Primary Care, Oulu University Hospital, FI-90220 Oulu, 90029 OYS, Finland.,Department of Children and Young People and Families, National Institute for Health and Welfare, FI-90101 Oulu, Finland
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Danish Pediatric Asthma Center, Copenhagen University Hospital, Gentofte, Denmark
| | - Struan F A Grant
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thorkild I A Sørensen
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vincent W Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Bo Jacobsson
- Division of Epidemiology, Department of Genes and Environment, Norwegian Institute of Public Health, Oslo, Norway.,Department of Obstetrics and Gynecology, Sahlgrenska Academy, Sahgrenska University Hospital, Gothenburg, Sweden
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.,Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.,Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - M Geoffrey Hayes
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Timothy M Frayling
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA, USA.,Diabetes Center, Massachussetts General Hospital, Boston, MA, USA.,Department of Medicine, Universite de Sherbrooke, QC, Canada
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Elina Hyppönen
- Population, Policy and Practice, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.,Centre for School of Population Health Research, School of Health Sciences, and Sansom Institute, University of South Australia, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - William L Lowe
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - David M Evans
- Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia.,Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,Population Health Science, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Debbie A Lawlor
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.,Population Health Science, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Rachel M Freathy
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK.,Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| |
Collapse
|
28
|
Poz D, De Falco E, Pisano C, Madonna R, Ferdinandy P, Balistreri CR. Diagnostic and Prognostic Relevance of Red Blood Cell Distribution Width for Vascular Aging and Cardiovascular Diseases. Rejuvenation Res 2018; 22:146-162. [PMID: 30132390 DOI: 10.1089/rej.2018.2094] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Evidence suggests association of red blood cell distribution width (RDW) with cardiovascular diseases (CVDs). On the contrary, we underline that the sole RDW values cannot represent a valid CVD biomarker. High RDW values are expression of biological effects of a lot of both endogenous and exogenous factors (i.e., age, sex, genetic background, inflammation, hormones, drugs, diet, exercise, hematological analyzers, and ranges of values), modulating the biology and physiology of erythrocytes. Thus, the singular monitoring of RDW cannot be used to predict cardiovascular disorders. Accordingly, we have reviewed the evidence for potential relationship of RDW values with alterations in the cardiovascular system (i.e., regenerative capacity, endothelial turnover, and senescence of cardiovascular cells), associated with vascular aging and disease. In addition, we highlight the inevitable impact of biases in clinical application of RDW related to CVDs. Based on our thorough review of literature, we suggest a combined evaluation of RDW with other emerging biomarkers related to vascular aging and the diagnosis and prognosis of CVDs, including telomere length of leukocytes, circulating nucleated red blood cells (nRBCs) and endothelial progenitor cells (EPCs) in future large scale studies.
Collapse
Affiliation(s)
- Donatella Poz
- 1 Department of Laboratory Medicine, Institute of Clinical Pathology, Azienda Sanitaria Universitaria Integrata (ASUI) di Udine, Udine, Italy
| | - Elena De Falco
- 2 Department of Medical-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Latina, Italy
| | - Calogera Pisano
- 3 Cardiac Surgery, Tor Vergata University, Cardiochirurgia Policlinico Tor Vergata, Rome, Italy
| | - Rosalinda Madonna
- 4 Heart Failure Research, Texas Heart Institute, St. Luke's Episcopal Hospital, Houston, Texas.,5 Department of Internal Medicine, Cardiology, The University of Texas Health Science Center at Houston, Houston, Texas.,6 Department of Neurosciences, Center of Aging Sciences and Translational Medicine, CESI-Met and Institute of Cardiology, Imaging and Clinical Sciences "G. D'Annunzio" University, Chieti, Italy
| | - Peter Ferdinandy
- 7 Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,8 Pharmahungary Group, Szeged, Hungary
| | - Carmela Rita Balistreri
- 9 Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| |
Collapse
|
29
|
Jeong C, Witonsky DB, Basnyat B, Neupane M, Beall CM, Childs G, Craig SR, Novembre J, Di Rienzo A. Detecting past and ongoing natural selection among ethnically Tibetan women at high altitude in Nepal. PLoS Genet 2018; 14:e1007650. [PMID: 30188897 PMCID: PMC6143271 DOI: 10.1371/journal.pgen.1007650] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/18/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022] Open
Abstract
Adaptive evolution in humans has rarely been characterized for its whole set of components, i.e. selective pressure, adaptive phenotype, beneficial alleles and realized fitness differential. We combined approaches for detecting polygenic adaptations and for mapping the genetic bases of physiological and fertility phenotypes in approximately 1000 indigenous ethnically Tibetan women from Nepal, adapted to high altitude. The results of genome-wide association analyses and tests for polygenic adaptations showed evidence of positive selection for alleles associated with more pregnancies and live births and evidence of negative selection for those associated with higher offspring mortality. Lower hemoglobin level did not show clear evidence for polygenic adaptation, despite its strong association with an EPAS1 haplotype carrying selective sweep signals.
Collapse
Affiliation(s)
- Choongwon Jeong
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - David B. Witonsky
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Buddha Basnyat
- Oxford University Clinical Research Unit, Patan Hospital, Kathmandu, Nepal
| | | | - Cynthia M. Beall
- Department of Anthropology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Geoff Childs
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Sienna R. Craig
- Department of Anthropology, Dartmouth College, Hanover, New Hampshire, United States of America
| | - John Novembre
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Anna Di Rienzo
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
30
|
Wu S, Zhang M, Yang X, Peng F, Zhang J, Tan J, Yang Y, Wang L, Hu Y, Peng Q, Li J, Liu Y, Guan Y, Chen C, Hamer MA, Nijsten T, Zeng C, Adhikari K, Gallo C, Poletti G, Schuler-Faccini L, Bortolini MC, Canizales-Quinteros S, Rothhammer F, Bedoya G, González-José R, Li H, Krutmann J, Liu F, Kayser M, Ruiz-Linares A, Tang K, Xu S, Zhang L, Jin L, Wang S. Genome-wide association studies and CRISPR/Cas9-mediated gene editing identify regulatory variants influencing eyebrow thickness in humans. PLoS Genet 2018; 14:e1007640. [PMID: 30248107 PMCID: PMC6171961 DOI: 10.1371/journal.pgen.1007640] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/04/2018] [Accepted: 08/16/2018] [Indexed: 12/12/2022] Open
Abstract
Hair plays an important role in primates and is clearly subject to adaptive selection. While humans have lost most facial hair, eyebrows are a notable exception. Eyebrow thickness is heritable and widely believed to be subject to sexual selection. Nevertheless, few genomic studies have explored its genetic basis. Here, we performed a genome-wide scan for eyebrow thickness in 2961 Han Chinese. We identified two new loci of genome-wide significance, at 3q26.33 near SOX2 (rs1345417: P = 6.51×10(-10)) and at 5q13.2 near FOXD1 (rs12651896: P = 1.73×10(-8)). We further replicated our findings in the Uyghurs, a population from China characterized by East Asian-European admixture (N = 721), the CANDELA cohort from five Latin American countries (N = 2301), and the Rotterdam Study cohort of Dutch Europeans (N = 4411). A meta-analysis combining the full GWAS results from the three cohorts of full or partial Asian descent (Han Chinese, Uyghur and Latin Americans, N = 5983) highlighted a third signal of genome-wide significance at 2q12.3 (rs1866188: P = 5.81×10(-11)) near EDAR. We performed fine-mapping and prioritized four variants for further experimental verification. CRISPR/Cas9-mediated gene editing provided evidence that rs1345417 and rs12651896 affect the transcriptional activity of the nearby SOX2 and FOXD1 genes, which are both involved in hair development. Finally, suitable statistical analyses revealed that none of the associated variants showed clear signals of selection in any of the populations tested. Contrary to popular speculation, we found no evidence that eyebrow thickness is subject to strong selective pressure.
Collapse
Affiliation(s)
- Sijie Wu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Manfei Zhang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, China
| | - Xinzhou Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- SIBS (Institute of Health Sciences) Changzheng Hospital Joint Center for Translational Research, Institutes for Translational Research (CAS-SMMU), Shanghai, China
| | - Fuduan Peng
- Key laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Juan Zhang
- Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Jingze Tan
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yajun Yang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Lina Wang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanan Hu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qianqian Peng
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinxi Li
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Liu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yaqun Guan
- Department of Biochemistry, Preclinical Medicine College, Xinjiang Medical University, Urumqi, China
| | - Chen Chen
- Department of Stomatology, Chang Zheng Hospital, Second Military Medical University, Shanghai, China
| | - Merel A. Hamer
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Tamar Nijsten
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Changqing Zeng
- Key laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Kaustubh Adhikari
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, United Kingdom
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Maria-Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre Brasil
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, México City, México
| | | | - Gabriel Bedoya
- Laboratorio de Genética Molecular (GENMOL), Universidad de Antioquia, Medellín, Colombia
| | - Rolando González-José
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, Puerto Madryn, Argentina
| | - Hui Li
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jean Krutmann
- IUF-Leibniz Research Institute for Environmental Medicine, Dusseldorf, Germany
| | - Fan Liu
- Key laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Andres Ruiz-Linares
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, United Kingdom
| | - Kun Tang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Shuhua Xu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming China
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- SIBS (Institute of Health Sciences) Changzheng Hospital Joint Center for Translational Research, Institutes for Translational Research (CAS-SMMU), Shanghai, China
| | - Li Jin
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, China
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming China
| |
Collapse
|
31
|
Schaid DJ, Chen W, Larson NB. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat Rev Genet 2018; 19:491-504. [PMID: 29844615 PMCID: PMC6050137 DOI: 10.1038/s41576-018-0016-z] [Citation(s) in RCA: 562] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advancing from statistical associations of complex traits with genetic markers to understanding the functional genetic variants that influence traits is often a complex process. Fine-mapping can select and prioritize genetic variants for further study, yet the multitude of analytical strategies and study designs makes it challenging to choose an optimal approach. We review the strengths and weaknesses of different fine-mapping approaches, emphasizing the main factors that affect performance. Topics include interpreting results from genome-wide association studies (GWAS), the role of linkage disequilibrium, statistical fine-mapping approaches, trans-ethnic studies, genomic annotation and data integration, and other analysis and design issues.
Collapse
Affiliation(s)
- Daniel J Schaid
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA.
| | - Wenan Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nicholas B Larson
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
32
|
Yasukochi Y, Sakuma J, Takeuchi I, Kato K, Oguri M, Fujimaki T, Horibe H, Yamada Y. Identification of nine novel loci related to hematological traits in a Japanese population. Physiol Genomics 2018; 50:758-769. [PMID: 29958078 PMCID: PMC6172615 DOI: 10.1152/physiolgenomics.00088.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Recent genome-wide association studies have identified various genetic variants associated with hematological traits. Although it is possible that quantitative data of hematological traits are varied among the years examined, conventional genome-wide association studies have been conducted in a cross-sectional manner that measures traits at a single point in time. To address this issue, we have traced blood profiles in 4,884 Japanese individuals who underwent annual health check-ups for several years. In the present study, longitudinal exome-wide association studies were conducted to identify genetic variants related to 13 hematological phenotypes. The generalized estimating equation model showed that a total of 67 single nucleotide polymorphisms (SNPs) were significantly [false discovery rate (FDR) of <0.01] associated with hematological phenotypes. Of the 67 SNPs, nine SNPs were identified as novel hematological markers: rs4686683 of SENP2 for red blood cell count (FDR = 0.008, P = 5.5 × 10−6); rs3917688 of SELP for mean corpuscular volume (FDR = 0.005, P = 2.4 × 10−6); rs3133745 of C8orf37-AS1 for white blood cell count (FDR = 0.003, P = 1.3 × 10−6); rs13121954 at 4q31.2 for basophil count (FDR = 0.007, P = 3.1 × 10−5); rs7584099 at 2q22.3 (FDR = 2.6 × 10−5, P = 8.8 × 10−8), rs1579219 of HCG17 (FDR = 0.003, P = 2.0 × 10−5), and rs10757049 of DENND4C (FDR = 0.008, P = 5.6 × 10−5) for eosinophil count; rs12338 of CTSB for neutrophil count (FDR = 0.007, P = 2.9 × 10−5); and rs395967 of OSMR-AS1 for monocyte count (FDR = 0.008, P = 3.2 × 10−5).
Collapse
Affiliation(s)
- Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie , Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Saitama , Japan
| | - Jun Sakuma
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama , Japan.,Computer Science Department, College of Information Science, University of Tsukuba, Tsukuba, Ibaraki , Japan.,RIKEN Center for Advanced Intelligence Project , Tokyo , Japan
| | - Ichiro Takeuchi
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama , Japan.,RIKEN Center for Advanced Intelligence Project , Tokyo , Japan.,Department of Computer Science, Nagoya Institute of Technology, Nagoya, Aichi , Japan
| | - Kimihiko Kato
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie , Japan.,Department of Internal Medicine, Meitoh Hospital, Nagoya, Aichi , Japan
| | - Mitsutoshi Oguri
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie , Japan.,Department of Cardiology, Kasugai Municipal Hospital, Kasugai, Aichi , Japan
| | - Tetsuo Fujimaki
- Department of Cardiovascular Medicine, Inabe General Hospital, Inabe, Mie , Japan
| | - Hideki Horibe
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Gifu , Japan
| | - Yoshiji Yamada
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie , Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Saitama , Japan
| |
Collapse
|
33
|
Jo Hodonsky C, Schurmann C, Schick UM, Kocarnik J, Tao R, van Rooij FJ, Wassel C, Buyske S, Fornage M, Hindorff LA, Floyd JS, Ganesh SK, Lin DY, North KE, Reiner AP, Loos RJ, Kooperberg C, Avery CL. Generalization and fine mapping of red blood cell trait genetic associations to multi-ethnic populations: The PAGE Study. Am J Hematol 2018; 93:10.1002/ajh.25161. [PMID: 29905378 PMCID: PMC6300146 DOI: 10.1002/ajh.25161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022]
Abstract
Red blood cell (RBC) traits provide insight into a wide range of physiological states and exhibit moderate to high heritability, making them excellent candidates for genetic studies to inform underlying biologic mechanisms. Previous RBC trait genome-wide association studies were performed primarily in European- or Asian-ancestry populations, missing opportunities to inform understanding of RBC genetic architecture in diverse populations and reduce intervals surrounding putative functional SNPs through fine-mapping. Here, we report the first fine-mapping of six correlated (Pearson's r range: |0.04 - 0.92|) RBC traits in up to 19,036 African Americans and 19,562 Hispanic/Latinos participants of the Population Architecture using Genomics and Epidemiology (PAGE) consortium. Trans-ethnic meta-analysis of race/ethnic- and study-specific estimates for approximately 11,000 SNPs flanking 13 previously identified association signals as well as 150,000 additional array-wide SNPs was performed using inverse-variance meta-analysis after adjusting for study and clinical covariates. Approximately half of previously reported index SNP-RBC trait associations generalized to the trans-ethnic study population (p<1.7x10-4 ); previously unreported independent association signals within the ABO region reinforce the potential for multiple functional variants affecting the same locus. Trans-ethnic fine-mapping did not reveal additional signals at the HFE locus independent of the known functional variants. Finally, we identified a potential novel association in the Hispanic/Latino study population at the HECTD4/RPL6 locus for RBC count (p=1.9x10-7 ). The identification of a previously unknown association, generalization of a large proportion of known association signals, and refinement of known association signals all exemplify the benefits of genetic studies in diverse populations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chani Jo Hodonsky
- Department of Epidemiology, University of North Carolina Gillings School of Public Health, Chapel Hill, NC
| | - Claudia Schurmann
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- The Genetics of Obesity and Related Metabolic Traits Program, The Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ursula M Schick
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- The Genetics of Obesity and Related Metabolic Traits Program, The Icahn School of Medicine at Mount Sinai, New York, NY
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jonathan Kocarnik
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Frank Ja van Rooij
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3000, the Netherlands
| | - Christina Wassel
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, VT
| | - Steve Buyske
- Department of Statistics and Biostatistics, Hill Center, Rutgers, The State University of New Jersey, 110 Frelinghuysen Rd. Piscataway, NY
| | - Myriam Fornage
- Institute of Molecular Medicine and Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX
| | - Lucia A Hindorff
- Division of Genomic Medicine, National Human Genome Research Institute, National institutes of Health, Bethesda, MD
| | - James S Floyd
- Departments of Medicine, University of Washington, Seattle, WA
- Department of Epidemiology, University of Washington, Seattle, WA
| | - Santhi K Ganesh
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Dan-Yu Lin
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC
| | - Kari E North
- Department of Epidemiology, University of North Carolina Gillings School of Public Health, Chapel Hill, NC
| | - Alex P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Epidemiology, University of Washington, Seattle, WA
| | - Ruth Jf Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- The Genetics of Obesity and Related Metabolic Traits Program, The Icahn School of Medicine at Mount Sinai, New York, NY
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Christy L Avery
- Department of Epidemiology, University of North Carolina Gillings School of Public Health, Chapel Hill, NC
- Carolina Population Center, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
34
|
Verma A, Lucas A, Verma SS, Zhang Y, Josyula N, Khan A, Hartzel DN, Lavage DR, Leader J, Ritchie MD, Pendergrass SA. PheWAS and Beyond: The Landscape of Associations with Medical Diagnoses and Clinical Measures across 38,662 Individuals from Geisinger. Am J Hum Genet 2018; 102:592-608. [PMID: 29606303 PMCID: PMC5985339 DOI: 10.1016/j.ajhg.2018.02.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/20/2018] [Indexed: 01/23/2023] Open
Abstract
Most phenome-wide association studies (PheWASs) to date have used a small to moderate number of SNPs for association with phenotypic data. We performed a large-scale single-cohort PheWAS, using electronic health record (EHR)-derived case-control status for 541 diagnoses using International Classification of Disease version 9 (ICD-9) codes and 25 median clinical laboratory measures. We calculated associations between these diagnoses and traits with ∼630,000 common frequency SNPs with minor allele frequency > 0.01 for 38,662 individuals. In this landscape PheWAS, we explored results within diseases and traits, comparing results to those previously reported in genome-wide association studies (GWASs), as well as previously published PheWASs. We further leveraged the context of functional impact from protein-coding to regulatory regions, providing a deeper interpretation of these associations. The comprehensive nature of this PheWAS allows for novel hypothesis generation, the identification of phenotypes for further study for future phenotypic algorithm development, and identification of cross-phenotype associations.
Collapse
Affiliation(s)
- Anurag Verma
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Anastasia Lucas
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shefali S Verma
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yu Zhang
- Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Navya Josyula
- Biomedical and Translational Informatics Institute, Geisinger Health System, Danville, PA 17822, USA
| | - Anqa Khan
- Mount Holyoke College, South Hadley, MA 01075, USA
| | - Dustin N Hartzel
- Biomedical and Translational Informatics Institute, Geisinger Health System, Danville, PA 17822, USA
| | - Daniel R Lavage
- Biomedical and Translational Informatics Institute, Geisinger Health System, Danville, PA 17822, USA
| | - Joseph Leader
- Biomedical and Translational Informatics Institute, Geisinger Health System, Danville, PA 17822, USA
| | - Marylyn D Ritchie
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sarah A Pendergrass
- Biomedical and Translational Informatics Institute, Geisinger Health System, Danville, PA 17822, USA.
| |
Collapse
|
35
|
Suarez-Kurtz G, Parra EJ. Population Diversity in Pharmacogenetics: A Latin American Perspective. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2018; 83:133-154. [PMID: 29801573 DOI: 10.1016/bs.apha.2018.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pharmacogenetics/pharmacogenomics (PGx) relies on human genetic diversity. In this review we initially examine the PGx implications of human demographic history and genetic diversity, and highlight results from recent studies on the worldwide distribution of common and rare variants in pharmacogenes. The abundance of rare variants implies that a substantial effort will be required to identify their putative functional effects and to develop reliable algorithms for PGx-guided prescription. Furthermore, variants in all pharmacogenes relevant to a drug treatment must be considered. This implies a shift of the current paradigm of PGx-informed prescription based on genotyping a few common variants in selected genes toward comprehensive sequencing approaches. The following sections deal with the impact of population admixture on PGx diversity focusing on Latin America, where a kaleidoscopic combination of individual proportions of Native American, European, and sub-Saharan African ancestries prevails. We illustrate this diversity by contrasting Brazil and Mexico, the two most populous countries in Latin America, and show that population average admixture proportions are not predictive of the corresponding proportions at the individual level. As a consequence of admixture, the genetic differentiation of common pharmacogenetic variants in Latin Americans is much attenuated in comparison to their most relevant ancestral populations. Finally, we review data for tacrolimus and warfarin to illustrate the opportunities and challenges presented by Latin American populations for PGx studies and clinical implementation.
Collapse
Affiliation(s)
- Guilherme Suarez-Kurtz
- Instituto Nacional de Câncer and Rede Nacional de Farmacogenética, Rio de Janeiro, Brazil.
| | - Esteban J Parra
- University of Toronto at Mississauga, Mississauga, ON, Canada
| |
Collapse
|