1
|
Pérez Baca MDR, Palomares-Bralo M, Vanhooydonck M, Hamerlinck L, D'haene E, Leimbacher S, Jacobs EZ, De Cock L, D'haenens E, Dheedene A, Malfait Z, Vantomme L, Silva A, Rooney K, Zhao X, Saeidian AH, Owen NM, Santos-Simarro F, Lleuger-Pujol R, García-Miñaúr S, Losantos-García I, Menten B, Gestri G, Ragge N, Sadikovic B, Bogaert E, Vleminckx K, Naert T, Syx D, Callewaert B, Vergult S. Loss of function of the zinc finger homeobox 4 gene, ZFHX4, underlies a neurodevelopmental disorder. Am J Hum Genet 2025:S0002-9297(25)00149-1. [PMID: 40367947 DOI: 10.1016/j.ajhg.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 04/18/2025] [Accepted: 04/18/2025] [Indexed: 05/16/2025] Open
Abstract
8q21.11 microdeletions involving ZFHX4 have previously been associated with a syndromic form of intellectual disability, hypotonia, unstable gait, and hearing loss. We report on 63 individuals-57 probands and 6 affected family members-with protein-truncating variants (n = 41), (micro)deletions (n = 21), or an inversion (n = 1) affecting ZFHX4. Probands display variable developmental delay and intellectual disability, distinctive facial characteristics, morphological abnormalities of the central nervous system, behavioral alterations, short stature, hypotonia, and occasionally cleft palate and anterior segment dysgenesis. The phenotypes associated with 8q21.11 microdeletions and ZFHX4 intragenic loss-of-function (LoF) variants largely overlap, although leukocyte-derived DNA shows a mild common methylation profile for (micro)deletions. ZFHX4 shows increased expression during human brain development and neuronal differentiation. Furthermore, ZFHX4-interacting factors identified via immunoprecipitation followed by mass spectrometry (IP-MS) suggest an important role for ZFHX4 in cellular pathways, especially during histone modifications, protein trafficking, signal transduction, cytosolic transport, and development. Additionally, using CUT&RUN, we observed that ZFHX4 binds the promoter of genes with crucial roles in embryonic, neuronal, and axonal development. Moreover, we investigated whether the disruption of zfhx4 causes craniofacial abnormalities in zebrafish. First-generation (F0) zfhx4 crispant zebrafish, a (mosaic) mutant for zfhx4 LoF variants, have significantly shorter Meckel's cartilage and smaller ethmoid plates compared to control zebrafish. Behavioral assays showed a decreased movement frequency in the zfhx4 crispant zebrafish in comparison with controls. Furthermore, structural abnormalities were found in the zebrafish hindbrain. In conclusion, our findings delineate a ZFHX4-associated neurodevelopmental disorder and suggest a role for zfhx4 in facial skeleton patterning, palatal development, and behavior.
Collapse
Affiliation(s)
- María Del Rocío Pérez Baca
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - María Palomares-Bralo
- CIBERER-ISCIII and INGEMM, Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, Madrid, Spain; ITHACA-European Reference Network, Madrid, Spain
| | - Michiel Vanhooydonck
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lisa Hamerlinck
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Eva D'haene
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sebastian Leimbacher
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Eva Z Jacobs
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Laurenz De Cock
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Erika D'haenens
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Annelies Dheedene
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Zoë Malfait
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lies Vantomme
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Ananilia Silva
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Xiaonan Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Baylor Genetics Laboratories, One Baylor Plaza, R806, Houston, TX 77030, USA
| | - Amir Hossein Saeidian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Baylor Genetics Laboratories, One Baylor Plaza, R806, Houston, TX 77030, USA
| | - Nichole Marie Owen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Baylor Genetics Laboratories, One Baylor Plaza, R806, Houston, TX 77030, USA
| | - Fernando Santos-Simarro
- Unit of Molecular Diagnostics and Clinical Genetics, Hospital Universitari Son Espases, Health Research Institute of the Balearic Islands (IdiSBa), Palma, Spain
| | - Roser Lleuger-Pujol
- Hereditary Cancer Program, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital, Precision Oncology Group (OncoGIR-Pro), Institut d'Investigació Biomèdica de Girona (IDIGBI), Girona, Spain
| | - Sixto García-Miñaúr
- CIBERER-ISCIII and INGEMM, Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, Madrid, Spain; ITHACA-European Reference Network, Madrid, Spain
| | | | - Björn Menten
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Gaia Gestri
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Nicola Ragge
- Birmingham Women's and Children's NHS Foundation Trust, Clinical Genetics Unit, Birmingham Womens Hospital, Lavender House, Mindelsohn Way, Edgbaston, Birmingham B15 2TG, UK
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada; Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Elke Bogaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Kris Vleminckx
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Thomas Naert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Delfien Syx
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| | - Sarah Vergult
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
2
|
Carvalho LML, Rzasa J, Kerkhof J, McConkey H, Fishman V, Koksharova G, de Lima Jorge AA, Branco EV, de Oliveira DF, Martinez-Delgado B, Barrero MJ, Kleefstra T, Sadikovic B, Haddad LA, Bertola DR, Rosenberg C, Krepischi ACV. EHMT2 as a Candidate Gene for an Autosomal Recessive Neurodevelopmental Syndrome. Mol Neurobiol 2025; 62:5977-5989. [PMID: 39674972 DOI: 10.1007/s12035-024-04655-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Neurodevelopmental disorders (NDD) comprise clinical conditions with high genetic heterogeneity and a notable enrichment of genes involved in regulating chromatin structure and function. The EHMT1/2 epigenetic complex plays a crucial role in repression of gene transcription in a highly tissue- and temporal-specific manner. Mutations resulting in heterozygous loss-of-function (LoF) of EHMT1 are implicated in Kleefstra syndrome 1 (KS1). EHMT2 is a gene acting in epigenetic regulation; however, the involvement of mutations in this gene in the etiology of NDDs has not been established thus far. A homozygous EHMT2 LoF variant [(NM_006709.5):c.328 + 2 T > G] was identified by exome sequencing in an adult female patient with a phenotype resembling KS1, presenting with intellectual disability, aggressive behavior, facial dysmorphisms, fused C2-C3 vertebrae, ventricular septal defect, supernumerary nipple, umbilical hernia, and fingers and toes abnormalities. The absence of homozygous LoF EHMT2 variants in population databases underscores the significant negative selection pressure exerted on these variants. In silico evaluation of the effect of the EHMT2(NM_006709.5):c.328 + 2 T > G variant predicted the abolishment of intron 3 splice donor site. However, manual inspection revealed potential cryptic donor splice sites at this EHMT2 region. To directly access the impact of this splice site variant, RNAseq analysis was employed and disclosed the usage of two cryptic donor sites within exon 3 in the patient's blood, which are predicted to result in either an out-of-frame or in-frame effect on the protein. Methylation analysis was conducted on DNA from blood samples using the clinically validated EpiSign assay, which revealed that the patient with the homozygous EHMT2(NM_006709.5):c.328 + 2 T > G splice site variant is conclusively positive for the KS1 episignature. Taken together, clinical, genetic, and epigenetic data pointed to a LoF mechanism for the EHMT2 splice variant and support this gene as a novel candidate for an autosomal recessive Kleefstra-like syndrome. The identification of additional cases with deleterious EHMT2 variants, alongside further functional validation studies, is required to substantiate EHMT2 as a novel NDD gene.
Collapse
Affiliation(s)
- Laura Machado Lara Carvalho
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Jessica Rzasa
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Veniamin Fishman
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Artificial Intelligence Research Institute, AIRI, Moscow, Russia
| | - Galina Koksharova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander Augusto de Lima Jorge
- Genetic Endocrinology Unit, Cellular and Molecular Endocrinology Laboratory (LIM/25), Faculty of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Elisa Varella Branco
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Danyllo Felipe de Oliveira
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Beatriz Martinez-Delgado
- Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Maria J Barrero
- Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), Madrid, Spain
| | | | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Luciana Amaral Haddad
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Débora Romeo Bertola
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
- Genetics Unit of Instituto da Criança, Faculty of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil.
| |
Collapse
|
3
|
Männistö JME, Hopkins JJ, Hewat TI, Nasser F, Burrage J, Dastamani A, Mirante A, Murphy N, Rzasa J, Kerkhof J, Relator R, Johnson MB, Laver TW, Weymouth L, Houghton JAL, Wakeling MN, Sadikovic B, Dempster EL, Flanagan SE. Congenital Hyperinsulinism and Novel KDM6A Duplications -Resolving Pathogenicity With Genome and Epigenetic Analyses. J Clin Endocrinol Metab 2025; 110:e1524-e1530. [PMID: 39078990 PMCID: PMC12012811 DOI: 10.1210/clinem/dgae524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Indexed: 04/24/2025]
Abstract
CONTEXT Hyperinsulinemic hypoglycemia (HI) can be the presenting feature of Kabuki syndrome (KS), which is caused by loss-of-function variants in KMT2D or KDM6A. As these genes play a critical role in maintaining methylation status in chromatin, individuals with pathogenic variants have a disease-specific epigenomic profile-an episignature. OBJECTIVE We evaluated the pathogenicity of 3 novel partial KDM6A duplications identified in 3 individuals presenting with neonatal-onset HI without typical features of KS at the time of genetic testing. METHODS Three different partial KDM6A duplications were identified by routine targeted next-generation sequencing for HI and initially classified as variants of uncertain significance (VUS) as their location, and hence their impact on the gene, was not known. Whole-genome sequencing (WGS) was undertaken to map the breakpoints of the duplications with DNA methylation profiling performed in 2 individuals to investigate the presence of a KS-specific episignature. RESULTS WGS confirmed the duplication in proband 1 as pathogenic as it caused a frameshift in the normal copy of the gene leading to a premature termination codon. The duplications identified in probands 2 and 3 did not alter the reading frame, and therefore their significance remained uncertain after WGS. Subsequent DNA methylation profiling identified a KS-specific episignature in proband 2 but not in proband 3. CONCLUSION Our findings confirm a role for KDM6A partial gene duplications in the etiology of KS and highlight the importance of performing in-depth molecular genetic analysis to properly assess the clinical significance of VUS' in the KDM6A gene.
Collapse
Affiliation(s)
- Jonna M E Männistö
- Department of Clinical and Biomedical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
- Kuopio Pediatric Research Unit, Faculty of Health Sciences, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jasmin J Hopkins
- Department of Clinical and Biomedical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Thomas I Hewat
- Department of Clinical and Biomedical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Fatima Nasser
- Department of Clinical and Biomedical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Joseph Burrage
- Department of Clinical and Biomedical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Antonia Dastamani
- Endocrinology Department, Great Ormond Street Hospital for Children, London WC1N 3JH, UK
| | - Alice Mirante
- Pediatric Endocrinology, Hospital Pediátrico de Coimbra, ULS de Coimbra, 3000-602 Coimbra, Portugal
| | - Nuala Murphy
- Department of Paediatric Endocrinology, CHI Temple St, Dublin, D01 XD99, Ireland
| | - Jessica Rzasa
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6C 2R6, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6C 2R6, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6C 2R6, Canada
| | - Matthew B Johnson
- Department of Clinical and Biomedical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Thomas W Laver
- Department of Clinical and Biomedical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Luke Weymouth
- Department of Clinical and Biomedical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Jayne A L Houghton
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Matthew N Wakeling
- Department of Clinical and Biomedical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6C 2R6, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5C1, Canada
| | - Emma L Dempster
- Department of Clinical and Biomedical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Sarah E Flanagan
- Department of Clinical and Biomedical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| |
Collapse
|
4
|
Lauzon-Young C, Silva A, Sadikovic B. Epigenomic insights and computational advances in hematologic malignancies. Mol Cytogenet 2025; 18:9. [PMID: 40221777 PMCID: PMC11993968 DOI: 10.1186/s13039-025-00712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
Hematologic malignancies (HMs) encompass a diverse spectrum of cancers originating from the blood, bone marrow, and lymphatic systems, with myeloid malignancies representing a significant and complex subset. This review provides a focused analysis of their classification, prevalence, and incidence, highlighting the persistent challenges posed by their intricate genetic and epigenetic landscapes in clinical diagnostics and therapeutics. The genetic basis of myeloid malignancies, including chromosomal translocations, somatic mutations, and copy number variations, is examined in detail, alongside epigenetic modifications with a specific emphasis on DNA methylation. We explore the dynamic interplay between genetic and epigenetic factors, demonstrating how these mechanisms collectively shape disease progression, therapeutic resistance, and clinical outcomes. Advances in diagnostic modalities, particularly those integrating epigenomic insights, are revolutionizing the precision diagnosis of HMs. Key approaches such as nano-based contrast agents, optical imaging, flow cytometry, circulating tumor DNA analysis, and somatic mutation testing are discussed, with particular attention to the transformative role of machine learning in epigenetic data analysis. DNA methylation episignatures have emerged as a pivotal tool, enabling the development of highly sensitive and specific diagnostic and prognostic assays that are now being adopted in clinical practice. We also review the impact of computational advancements and data integration in refining diagnostic and therapeutic strategies. By combining genomic and epigenomic profiling techniques, these innovations are accelerating biomarker discovery and clinical translation, with applications in precision oncology becoming increasingly evident. Comprehensive genomic datasets, coupled with artificial intelligence, are driving actionable insights into the biology of myeloid malignancies and facilitating the optimization of patient management strategies. Finally, this review emphasizes the translational potential of these advancements, focusing on their tangible benefits for patient care and outcomes. By synthesizing current knowledge and recent innovations, we underscore the critical role of precision medicine and epigenomic research in transforming the diagnosis and treatment of myeloid malignancies, setting the stage for ongoing advancements and broader clinical implementation.
Collapse
Affiliation(s)
- Carolyn Lauzon-Young
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Ananilia Silva
- Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada.
- Pathology and Laboratory Medicine, Western University, London, ON, Canada.
| |
Collapse
|
5
|
LaFlamme CW, Karimi K, Rastin C, Almanza Fuerte EP, Allan T, Russ‐Hall SJ, Schneider AL, Stobo D, Lesca G, Symonds JD, Brunklaus A, Sadleir LG, Scheffer IE, Sadikovic B, Mefford HC. SCN1A pathogenic variants do not have a distinctive blood-derived DNA methylation signature. Epilepsia 2025; 66:e66-e72. [PMID: 39932319 PMCID: PMC11997946 DOI: 10.1111/epi.18315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 04/16/2025]
Abstract
DNA methylation signatures ("episignatures") can be used as biomarkers of genetic aberrations, clinical phenotypes, and environmental exposures in rare diseases. Episignatures are utilized in molecular diagnostics and can clarify variants of uncertain significance. A growing number of disease genes, including epilepsy genes, exhibit robust and reproducible episignatures. However, whether SCN1A, the most prominent epilepsy gene, has one or more episignatures has not yet been determined. We generated genome-wide DNA methylation data and performed episignature analysis on 64 individuals with Dravet syndrome due to pathogenic loss-of-function (LOF) variants in SCN1A and seven individuals with early infantile SCN1A developmental and epileptic encephalopathy due to pathogenic gain-of-function (GOF) variants in SCN1A, relative to a large reference database of controls and rare disease episignature-positive cohorts. We analyzed all samples with LOF variants together and performed separate analyses for missense, nonsense, and GOF variant cohorts. A reproducible blood-derived episignature was not evident in any of the cohorts using current analytical approaches and reference data.
Collapse
Affiliation(s)
- Christy W. LaFlamme
- Department of Cell and Molecular Biology, Center for Pediatric Neurological Disease ResearchSt. Jude Children's Research HospitalMemphisTennesseeUSA
- Graduate School of Biomedical SciencesSt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Karim Karimi
- Department of Pathology and Laboratory MedicineWestern UniversityLondonOntarioCanada
- Verspeeten Clinical Genome CentreLondon Health Science CentreLondonOntarioCanada
| | - Cassandra Rastin
- Department of Pathology and Laboratory MedicineWestern UniversityLondonOntarioCanada
- Verspeeten Clinical Genome CentreLondon Health Science CentreLondonOntarioCanada
| | - Edith P. Almanza Fuerte
- Department of Cell and Molecular Biology, Center for Pediatric Neurological Disease ResearchSt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Talia Allan
- Department of Medicine, Epilepsy Research CentreUniversity of Melbourne, Austin HealthHeidelbergVictoriaAustralia
| | - Sophie J. Russ‐Hall
- Department of Medicine, Epilepsy Research CentreUniversity of Melbourne, Austin HealthHeidelbergVictoriaAustralia
| | - Amy L. Schneider
- Department of Medicine, Epilepsy Research CentreUniversity of Melbourne, Austin HealthHeidelbergVictoriaAustralia
| | - Daniel Stobo
- West of Scotland Centre for Genomic MedicineQueen Elizabeth University HospitalGlasgowUK
| | - Gaetan Lesca
- Department of Medical Genetics, member of the European Reference Network EpiCAREUniversity Hospital of Lyon and Claude Bernard Lyon I UniversityLyonFrance
- Pathophysiology and Genetics of Neuron and Muscle, UCBL, CNRS UMR5261—INSERM U1315LyonFrance
| | - Joseph D. Symonds
- School of Health and WellbeingUniversity of GlasgowGlasgowUK
- Paediatric Neurosciences Research GroupRoyal Hospital for ChildrenGlasgowUK
| | - Andreas Brunklaus
- School of Health and WellbeingUniversity of GlasgowGlasgowUK
- Paediatric Neurosciences Research GroupRoyal Hospital for ChildrenGlasgowUK
| | - Lynette G. Sadleir
- Department of Paediatrics and Child HealthUniversity of OtagoWellingtonNew Zealand
| | - Ingrid E. Scheffer
- Department of Medicine, Epilepsy Research CentreUniversity of Melbourne, Austin HealthHeidelbergVictoriaAustralia
- Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalMelbourneVictoriaAustralia
- Florey Institute and Murdoch Children's Research InstituteMelbourneVictoriaAustralia
| | - Bekim Sadikovic
- Department of Pathology and Laboratory MedicineWestern UniversityLondonOntarioCanada
- Verspeeten Clinical Genome CentreLondon Health Science CentreLondonOntarioCanada
| | - Heather C. Mefford
- Department of Cell and Molecular Biology, Center for Pediatric Neurological Disease ResearchSt. Jude Children's Research HospitalMemphisTennesseeUSA
| |
Collapse
|
6
|
Caner V, Tanir F. Investigation of Occupational Health and Safety Levels in Genetic Disease Centers in Istanbul. J Clin Lab Anal 2025; 39:e70015. [PMID: 40143510 PMCID: PMC11981950 DOI: 10.1002/jcla.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/25/2025] [Accepted: 03/02/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Genetic disorders significantly impact public health and quality of life, necessitating precise and timely diagnosis for effective risk management and treatment. Genetic diagnostic centers (GDCs) play a critical role in this process but face numerous occupational health and safety (OHS) challenges. The classification of GDCs based solely on biosafety levels is insufficient for assessing their overall OHS conditions. This study aims to systematically evaluate OHS practices in GDCs and propose a new classification approach based on hazard dimensions. METHODS This cross-sectional study was conducted in 15 GDCs in Istanbul, including two public and 13 private facilities with 75 employees. Data were collected through a structured survey with 49 statements covering seven hazard dimensions. Regression and correlation analyses were used to assess the impacts and interrelationships of these dimensions on risk management. Principal Component Analysis (PCA) was applied for dimensionality reduction, and the k-Nearest Neighbours (k-NN) algorithm classified laboratories into safety levels. RESULTS Personal protective equipment had the highest impact on risk management (56.3%), while physical security had the lowest (34.8%). Among the 21 identified hazard relationships, 18 were very strong and three were strong. PCA reduced the data into three primary components, explaining 81.9% of the variance. The k-NN algorithm achieved a classification accuracy of 93.33%, consolidating six hazard dimensions into three and categorizing centers into three safety levels. CONCLUSION The findings emphasize the need for an updated OHS classification for GDCs beyond biosafety levels. Integrating hazard dimensions into safety assessments can improve risk management and enhance laboratory safety standards.
Collapse
Affiliation(s)
- Vedat Caner
- Istanbul Beykent University, Vocational School, Property Protection and Security DepartmentOccupational Health and Safety ProgramIstanbulTurkey
| | - Ferdi Tanir
- School of Medicine, Department of Internal Medicine, Department of Public HealthCukurova UniversityAdanaTurkey
| |
Collapse
|
7
|
Ramesh N, Evans A, Wojta K, Yang Z, Boks MM, Kahn RS, de Boer SCM, van der Lee SJ, Pijnenburg YAL, Reus LM, Ophoff RA. Accurate DNA Methylation Predictor for C9orf72 Repeat Expansion Alleles in the Pathogenic Range. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.643775. [PMID: 40196659 PMCID: PMC11974722 DOI: 10.1101/2025.03.20.643775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The hexanucleotide (G 4 C 2 ) repeat expansion in the promoter region of C9orf72 is the most frequent genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). In this study, we conducted a genome-wide DNA methylation (DNAm) analysis using EPIC version 2 (EPICv2) arrays on an FTD cohort comprising 27 carriers and 250 non-carriers of the pathogenic C9orf72 repeat expansion from the Amsterdam Dementia Cohort. We identified differentially methylated CpGs probes associated with the pathogenic C9orf72 expansion and used these findings to create a DNAm Least Absolute Shrinkage and Selection Operator (LASSO) predictor to identify repeat expansion carriers. Eight CpG sites at the C9orf72 locus were significantly differentially hypermethylated in repeat expansion carriers compared to non-carriers. The LASSO model predicted repeat expansion status with an average accuracy of 98.6%. The LASSO predictor was further validated in an independent cohort of 2,548 subjects with available EPICv2 data, identifying four C9orf72 repeat expansion carriers, subsequently confirmed by repeat-primed PCR. This result not only illustrates the accuracy of the DNAm predictor of C9orf72 repeat expansion carriers but also suggests that repeat expansion carriers may be more prevalent than expected. The identification of a highly accurate DNAm biomarker for a repeat expansion locus associated with neurodegenerative disorders may provide great value for studying this locus. The approach holds significant promise for investigating this and other repeat expansion loci, particularly given the growing interest in epigenetic epidemiological studies involving large cohorts with available DNAm data. Graphical abstract optional
Collapse
|
8
|
Lucain M, Vitobello A, Sadikovic B, Albuisson J, Gaudillat L, Chevarin M, Maraval J, Thauvin-Robinet C, Kerkhof J, Philippe C, Nambot S, Faivre L. Abnormal DNA Methylation Profile Suggests the Extension of the Clinical Spectrum of the SETD2-Related Disorders to a Syndromic Multiple Tumor Phenotype. Am J Med Genet A 2025:e64043. [PMID: 40104911 DOI: 10.1002/ajmg.a.64043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/27/2025] [Accepted: 02/21/2025] [Indexed: 03/20/2025]
Abstract
SETD2 has an essential role in epigenetic regulation. SETD2 pathogenic variants cause neurodevelopmental disorders (SETD2-NDDs) that most commonly include various degrees of intellectual disability and behavioral disorders, macrocephaly, brain malformations, and generalized overgrowth. A distinctive DNA methylation episignature has been identified for Luscan-Lumish syndrome. A less common phenotype, denoted SETD2-NDD with multiple congenital anomalies, failure to thrive, and profound intellectual disability, has been reported in association with a particular pathogenic variant (p.Arg1740Trp). To date, about 50 patients have been described in the literature with SETD2 causative variants. We report here an individual with a phenotype distinct from SETD2-NDDs, including normal cognition, distinctive facial features, and multiple tumor histories, including a sacral osteoblastoma at age 7, a benign femoral bone tumor at age 17, a peritoneal pseudomyxoma at age 27, and a hypophyseal macroadenoma and a low-grade optochiasmatic glioma at age 37 years. Trio exome sequencing identified a de novo heterozygous missense variant of unknown significance (p.Ser1658Leu) in the SETD2 gene. DNA methylation study by EpiSign assay confirmed the presence of an episignature profile compatible with SETD2-related disorders. Given the implication of somatic SETD2 variants in benign and malignant tumors, the implication of these SETD2 constitutional variants in tumorigenesis is discussed.
Collapse
Affiliation(s)
- Marie Lucain
- Unité Fonctionnelle Innovation en Diagnostic Génomique Des Maladies Rares, CHU Dijon-Bourgogne, Dijon, France
| | - Antonio Vitobello
- Unité Fonctionnelle Innovation en Diagnostic Génomique Des Maladies Rares, CHU Dijon-Bourgogne, Dijon, France
- INSERM UMR1231 GAD, Université de Bourgogne-Franche Comté, Dijon, France
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, Canada, Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | | | - Léa Gaudillat
- Centre de Génétique, Centre de Référence Maladies Rares "Anomalies du Développement et Syndromes Malformatifs", FHU TRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| | - Martin Chevarin
- Unité Fonctionnelle Innovation en Diagnostic Génomique Des Maladies Rares, CHU Dijon-Bourgogne, Dijon, France
- INSERM UMR1231 GAD, Université de Bourgogne-Franche Comté, Dijon, France
| | - Julien Maraval
- Centre de Génétique, Centre de Référence Maladies Rares "Anomalies du Développement et Syndromes Malformatifs", FHU TRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| | - Christel Thauvin-Robinet
- Unité Fonctionnelle Innovation en Diagnostic Génomique Des Maladies Rares, CHU Dijon-Bourgogne, Dijon, France
- INSERM UMR1231 GAD, Université de Bourgogne-Franche Comté, Dijon, France
- Centre de Référence Maladies Rares "Déficiences Intellectuelles de Causes Rares", FHU TRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, Canada, Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Christophe Philippe
- Unité Fonctionnelle Innovation en Diagnostic Génomique Des Maladies Rares, CHU Dijon-Bourgogne, Dijon, France
- INSERM UMR1231 GAD, Université de Bourgogne-Franche Comté, Dijon, France
| | - Sophie Nambot
- Unité Fonctionnelle Innovation en Diagnostic Génomique Des Maladies Rares, CHU Dijon-Bourgogne, Dijon, France
- INSERM UMR1231 GAD, Université de Bourgogne-Franche Comté, Dijon, France
- Centre de Référence Maladies Rares "Déficiences Intellectuelles de Causes Rares", FHU TRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| | - Laurence Faivre
- INSERM UMR1231 GAD, Université de Bourgogne-Franche Comté, Dijon, France
- Centre de Génétique, Centre de Référence Maladies Rares "Anomalies du Développement et Syndromes Malformatifs", FHU TRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| |
Collapse
|
9
|
Kouri C, Martinez de Lapiscina I, Naamneh-Elzenaty R, Sommer G, Sauter KS, Flück CE. Oligogenic analysis across broad phenotypes of 46,XY differences in sex development associated with NR5A1/SF-1 variants: findings from the international SF1next study. EBioMedicine 2025; 113:105624. [PMID: 40037090 PMCID: PMC11925193 DOI: 10.1016/j.ebiom.2025.105624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Oligogenic inheritance has been suggested as a possible mechanism to explain the broad phenotype observed in individuals with differences of sex development (DSD) harbouring NR5A1/SF-1 variants. METHODS We investigated genetic patterns of possible oligogenicity in a cohort of 30 individuals with NR5A1/SF-1 variants and 46,XY DSD recruited from the international SF1next study, using whole exome sequencing (WES) on family trios whenever available. WES data were analysed using a tailored filtering algorithm designed to identify rare variants in DSD and SF-1-related genes. Identified variants were subsequently tested using the Oligogenic Resource for Variant Analysis (ORVAL) bioinformatics platform for a possible combined pathogenicity with the individual NR5A1/SF-1 variant. FINDINGS In 73% (22/30) of the individuals with NR5A1/SF-1 related 46,XY DSD, we identified one to seven additional variants, predominantly in known DSD-related genes, that might contribute to the phenotype. We found identical variants in eight unrelated individuals with DSD in DSD-related genes (e.g., TBCE, FLNB, GLI3 and PDGFRA) and different variants in eight genes frequently associated with DSD (e.g., CDH23, FLNB, GLI2, KAT6B, MYO7A, PKD1, SPRY4 and ZFPM2) in 15 index cases. Our study also identified combinations with NR5A1/SF-1 variants and variants in novel candidate genes. INTERPRETATION These findings highlight the complex genetic landscape of DSD associated with NR5A1/SF-1, where in several cases, the use of advanced genetic testing and filtering with specific algorithms and machine learning tools revealed additional genetic hits that may contribute to the phenotype. FUNDING Swiss National Science Foundation and Boveri Foundation Zurich.
Collapse
Affiliation(s)
- Chrysanthi Kouri
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Idoia Martinez de Lapiscina
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland; Research into the Genetics and Control of Diabetes and Other Endocrine Disorders, Biobizkaia Health Research Institute, Cruces University Hospital, Barakaldo 48903, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain; Endo-ERN, Amsterdam 1081 HV, the Netherlands
| | - Rawda Naamneh-Elzenaty
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Grit Sommer
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Swiss Childhood Cancer Registry, Institute of Social and Preventive Medicine, University of Bern, Bern 3012, Switzerland
| | - Kay-Sara Sauter
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland.
| |
Collapse
|
10
|
Groopman E, Milo Rasouly H. Navigating Genetic Testing in Nephrology: Options and Decision-Making Strategies. Kidney Int Rep 2025; 10:673-695. [PMID: 40225372 PMCID: PMC11993218 DOI: 10.1016/j.ekir.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 04/15/2025] Open
Abstract
Technological advances such as next-generation sequencing (NGS) have enabled high-throughput assessment of the human genome, supporting the usage of genetic testing as a first-line tool across clinical medicine. Although individually rare, genetic causes account for end-stage renal disease in 10% to 15% of adults and 70% of children, and in many of these individuals, genetic testing can identify a specific etiology and meaningfully impact management. However, with numerous options for genetic testing available, nephrologists may feel uncomfortable integrating genetics into their clinical practice. Here, we aim to demystify the process of genetic test selection and highlight the opportunities for interdisciplinary collaboration between nephrologists and genetics professionals, thereby supporting precision medicine for patients with kidney disease. We first detail the various clinical genetic testing modalities, highlighting their technical advantages and limitations, and then discuss indications for their usage. Next, we provide a generalized workflow for genetic test selection among individuals with kidney disease and illustrate how this workflow can be applied to genetic test selection across diverse clinical contexts. We then discuss key areas related to the usage of genetic testing in clinical nephrology that merit further research and approaches to investigate them.
Collapse
Affiliation(s)
- Emily Groopman
- Pediatrics and Medical Genetics Combined Residency Program, Children’s National Hospital, Washington, DC, USA
| | - Hila Milo Rasouly
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
11
|
Mizuguchi T, Okamoto N, Hara T, Nishimura N, Sakamoto M, Fu L, Uchiyama Y, Tsuchida N, Hamanaka K, Koshimizu E, Fujita A, Misawa K, Nakabayashi K, Miyatake S, Matsumoto N. Diagnostic utility of single-locus DNA methylation mark in Sotos syndrome developed by nanopore sequencing-based episignature. Clin Epigenetics 2025; 17:27. [PMID: 39966947 PMCID: PMC11837588 DOI: 10.1186/s13148-025-01832-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND In various neurodevelopmental disorders (NDDs), sets of differential methylation marks (referred to as DNA methylation signatures or episignatures) are syndrome-specific and useful in evaluating the pathogenicity of detected genetic variants. These signatures have generally been tested using methylation arrays, requiring additional experimental and evaluation costs. As an alternative, long-read sequencing can simultaneously and accurately evaluate genetic and epigenetic changes. In addition, genome-wide DNA methylation profiling with more complete sets of CpG using long-read sequencing (than methylation arrays) may provide alternative but more comprehensive DNA methylation signatures, which have yet to be adequately investigated. METHODS Nine and seven cases of molecularly diagnosed Sotos syndrome and ATR-X syndrome, respectively, were sequenced using nanopore long-read sequencing, together with 22 controls. Genome-wide differential DNA methylation analysis was performed. Among these differential DNA methylation sites, a single-locus DNA methylation mark at part of the NSD1 CpG island (CpGi) was subsequently studied in an additional 22 cases with a NSD1 point mutation or a 5q35 submicroscopic deletion involving NSD1. To investigate the potential utility of a single-locus DNA methylation test at NSD1 CpGi for differential diagnosis, nine cases with NSD1-negative clinically overlapping overgrowth intellectual disability syndromes (OGIDs) were also tested. RESULTS Long-read sequencing enabled the successful extraction of two sets of differential methylation marks unique to each of Sotos syndrome and ATR-X syndrome, referred to as long-read-based DNA methylation signatures (LR-DNAm signatures), as alternatives to reported DNA methylation signatures (obtained by methylation array). Additionally, we found that a part, but not all, of the NSD1 CpGi were hypomethylated compared with the level in controls in both cases harboring NSD1 point mutations and those with a 5q35 submicroscopic deletion. This difference in methylation is specific to Sotos syndrome and lacking in other OGIDs. CONCLUSIONS Simultaneous evaluation of genetic and epigenetic alterations using long-read sequencing may improve the discovery of DNA methylation signatures, which may in turn increase the diagnostic yields. As an example of the outcomes of these analyses, we propose that a single-locus DNA methylation test at NSD1 CpGi may streamline the molecular diagnosis of Sotos syndrome, regardless of the type of NSD1 aberration.
Collapse
Affiliation(s)
- Takeshi Mizuguchi
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Taiki Hara
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Naoto Nishimura
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Masamune Sakamoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Li Fu
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kazuharu Misawa
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan.
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan.
| |
Collapse
|
12
|
Karimi K, Lichtenstein Y, Reilly J, McConkey H, Relator R, Levy MA, Kerkhof J, Bouman A, Symonds JD, Ghoumid J, Smol T, Clarkson K, Drazba K, Louie RJ, Miranda V, McCann C, Motta J, Lancaster E, Sallevelt S, Sidlow R, Morrison J, Hannibal M, O'Shea J, Marin V, Prasad C, Patel C, Raskin S, Maria-Noelia SM, Diaz de Bustamante A, Marom D, Barkan T, Keren B, Poirsier C, Cohen L, Colin E, Gorman K, Gallant E, Menke LA, Valenzuela Palafoll I, Hauser N, Wentzensen IM, Rankin J, Turnpenny PD, Campeau PM, Balci TB, Tedder ML, Sadikovic B, Weiss K. Discovery of a DNA methylation profile in individuals with Sifrim-Hitz-Weiss syndrome. Am J Hum Genet 2025; 112:414-427. [PMID: 39824190 PMCID: PMC11866970 DOI: 10.1016/j.ajhg.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025] Open
Abstract
Pathogenic heterozygous variants in CHD4 cause Sifrim-Hitz-Weiss syndrome, a neurodevelopmental disorder associated with brain anomalies, heart defects, macrocephaly, hypogonadism, and additional features with variable expressivity. Most individuals have non-recurrent missense variants, complicating variant interpretation. A few were reported with truncating variants, and their role in disease is unclear. DNA methylation episignatures have emerged as highly accurate diagnostic biomarkers in a growing number of rare diseases. We aimed to study evidence for the existence of a CHD4-related DNA methylation episignature. We collected blood DNA samples and/or clinical information from 39 individuals with CHD4 variants, including missense and truncating variants. Genomic DNA methylation analysis was performed on 28 samples. We identified a sensitive and specific DNA methylation episignature in samples with pathogenic missense variants within the ATPase/helicase domain. The same episignature was observed in a family with variable expressivity, a de novo variant near the PHD domain, variants of uncertain significance within the ATPase/helicase domain, and a sample with compound heterozygous variants. DNA methylation data revealed higher percentages of shared probes with BAFopathies, CHD8, and the terminal ADNP variants encoding a protein known to form the ChAHP complex with CHD4. Truncating variants, as well as a sample with a recurrent pathogenic missense variant, exhibited DNA methylation profiles distinct from the ATPase/helicase domain episignature. These DNA methylation differences, together with the distinct clinical features observed in those individuals, provide preliminary evidence for clinical and molecular sub-types in the CHD4-related disorder.
Collapse
Affiliation(s)
- Karim Karimi
- Molecular Diagnostics Program, and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | | | - Jack Reilly
- Molecular Diagnostics Program, and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Haley McConkey
- Molecular Diagnostics Program, and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Raissa Relator
- Molecular Diagnostics Program, and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Michael A Levy
- Molecular Diagnostics Program, and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Jennifer Kerkhof
- Molecular Diagnostics Program, and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Arjan Bouman
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Joseph D Symonds
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, and School of Health and Wellbeing, University of Glasgow, Member of the ERN EpiCARE, Glasgow, UK
| | - Jamal Ghoumid
- Université de Lille, CHU Lille, ULR 7364 - RADEME - Maladies Rares du Développement embryonnaire et du Métabolisme, 59000 Lille, France
| | - Thomas Smol
- Université de Lille, CHU Lille, ULR 7364 - RADEME - Maladies Rares du Développement embryonnaire et du Métabolisme, 59000 Lille, France
| | | | - Katy Drazba
- Greenwood Genetic Center, Greenwood, SC, USA
| | | | - Valancy Miranda
- Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Cathleen McCann
- Division of Genetic and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Jamie Motta
- Division of Genetic and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Emily Lancaster
- Division of Genetic and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Suzanne Sallevelt
- Paediatric and Reproductive Genetics Unit, Women's and Children's Hospital, Adelaide, SA, Australia
| | - Richard Sidlow
- Department of Medical Genetics and Metabolism, Valley Children's Hospital, Madera, CA, USA
| | - Jennifer Morrison
- Arnold Palmer Hospital for Children, Orlando Health, Orlando, FL, USA
| | - Mark Hannibal
- Division of Genetics, Metabolism, and Genomic Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jessica O'Shea
- Division of Genetics, Metabolism, and Genomic Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Victor Marin
- Medical Genetic Laboratory, CHU Bordeaux, 33000 Bordeaux, France
| | - Chitra Prasad
- Department of Pediatrics, Section of Genetics and Metabolism London Health Sciences Center, Western University, London, ON, Canada
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane & Women's Hospital, Brisbane, QLD 4029, Australia
| | - Salmo Raskin
- Postgraduate Program in Child and Adolescent, Department of Pediatrics, Federal University of Paraná, Curitiba, Parana, Brazil
| | | | | | - Daphna Marom
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tali Barkan
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Boris Keren
- La Pitié-Salpêtrière Hospital, Genetic Department, AP-HP Sorbonne University, Paris, France
| | - Celine Poirsier
- Department of Genetics, Reims University Hospital, Reims, France
| | - Lior Cohen
- Genetics Unit, Barzilai University Medical Center, Ashkelon, Israel; Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Estelle Colin
- Department of Medical Genetics, Angers University Hospital, Angers, France; Mitovasc Unit, UMR CNRS 6015 INSERM 1083, University of Angers, Angers, France
| | - Kathleen Gorman
- Department of Paediatric Neurology and Neurophysiology, Children's Health Ireland at Temple St., Dublin 1, Ireland; School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Emily Gallant
- Advocate Children's Pediatric Genetics, Oak Lawn, IL, USA
| | - Leonie A Menke
- Amsterdam UMC - location University of Amsterdam, Emma Children's Hospital, Department of Pediatrics, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands; Amsterdam Neuroscience - Cellular & Molecular Mechanisms, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | | | - Natalie Hauser
- Medical Genetics, Inova Fairfax Hospital, Falls Church, VA 22042, USA
| | | | - Julia Rankin
- Department of Clinical Genetics, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Peter D Turnpenny
- Department of Clinical Genetics, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | | | - Tugce B Balci
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - Bekim Sadikovic
- Molecular Diagnostics Program, and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.
| | - Karin Weiss
- Genetics Institute, Rambam Health Care Campus, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
13
|
Man A, Di Scipio M, McConkey H, Hough R, Stein N, Diehl E, Marshall CR, Sadikovic B, Ejaz R. Diagnosis of TET3-Related Beck-Fahrner Syndrome in an Individual With Chorioretinal and Iris Colobomata Using a DNA Methylation Signature. Am J Med Genet A 2025; 197:e63864. [PMID: 39324309 DOI: 10.1002/ajmg.a.63864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 09/27/2024]
Abstract
Disorders of developmental delay can occur from pathogenic variants in genes responsible for epigenetic regulation. Heterozygous and biallelic pathogenic variants in TET3 have recently been described in TET3-related Beck-Fahrner syndrome (TET3-BEFAHRS), representing an autosomal dominant disorder with variable expressivity. Typical features include intellectual disability and developmental delay. Patients can also present with facial dysmorphism, seizure disorder, ophthalmic findings, and other neurobehavioral features. As the condition has recently been described and few patients have been reported in literature, the full scope of the phenotypic spectrum and approaches to identify them are still emerging. We report an individual meeting the criteria for TET3-BEFAHRS confirmed through clinical, genetic, and DNA methylation episignature analysis, who uniquely presents with bilateral chorioretinal and unilateral right iris colobomata. This case suggests a broader ophthalmic phenotype to TET3-BEFAHRS and demonstrates the utility of episignatures for the diagnosis of Mendelian disorders of epigenetic machinery.
Collapse
Affiliation(s)
- Alice Man
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Matteo Di Scipio
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Rebecca Hough
- Division of Genetics, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Nina Stein
- Department of Radiology, McMaster University, Hamilton, Ontario, Canada
| | - Eric Diehl
- Division of Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christian R Marshall
- Division of Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Resham Ejaz
- Division of Genetics, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster Children's Hospital, Hamilton, Ontario, Canada
| |
Collapse
|
14
|
van der Laan L, Silva A, Kleinendorst L, Rooney K, Haghshenas S, Lauffer P, Alanay Y, Bhai P, Brusco A, de Munnik S, de Vries BBA, Vega AD, Engelen M, Herkert JC, Hochstenbach R, Hopman S, Kant SG, Kira R, Kato M, Keren B, Kroes HY, Levy MA, Lock-Hock N, Maas SM, Mancini GMS, Marcelis C, Matsumoto N, Mizuguchi T, Mussa A, Mignot C, Närhi A, Nordgren A, Pfundt R, Polstra AM, Trajkova S, van Bever Y, José van den Boogaard M, van der Smagt JJ, Barakat TS, Alders M, Mannens MMAM, Sadikovic B, van Haelst MM, Henneman P. CUL3-related neurodevelopmental disorder: Clinical phenotype of 20 new individuals and identification of a potential phenotype-associated episignature. HGG ADVANCES 2025; 6:100380. [PMID: 39501558 PMCID: PMC11617854 DOI: 10.1016/j.xhgg.2024.100380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024] Open
Abstract
Neurodevelopmental disorder with or without autism or seizures (NEDAUS) is a neurodevelopmental disorder characterized by global developmental delay, speech delay, seizures, autistic features, and/or behavior abnormalities. It is caused by CUL3 (Cullin-3 ubiquitin ligase) haploinsufficiency. We collected clinical and molecular data from 26 individuals carrying pathogenic variants and variants of uncertain significance (VUS) in the CUL3 gene, including 20 previously unreported cases. By comparing their DNA methylation (DNAm) classifiers with those of healthy controls and other neurodevelopmental disorders characterized by established episignatures, we aimed to create a diagnostic biomarker (episignature) and gain more knowledge of the molecular pathophysiology. We discovered a sensitive and specific DNAm episignature for patients with pathogenic variants in CUL3 and utilized it to reclassify patients carrying a VUS in the CUL3 gene. Comparative epigenomic analysis revealed similarities between NEDAUS and several other rare genetic neurodevelopmental disorders with previously identified episignatures, highlighting the broader implication of our findings. In addition, we performed genotype-phenotype correlation studies to explain the variety in clinical presentation between the cases. We discovered a highly accurate DNAm episignature serving as a robust diagnostic biomarker for NEDAUS. Furthermore, we broadened the phenotypic spectrum by identifying 20 new individuals and confirming five previously reported cases of NEDAUS.
Collapse
Affiliation(s)
- Liselot van der Laan
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands; Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, the Netherlands
| | - Ananília Silva
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada; Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, the Netherlands
| | - Lotte Kleinendorst
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands
| | - Kathleen Rooney
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada; Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Peter Lauffer
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands
| | - Yasemin Alanay
- Division of Pediatric Genetics, Department of Pediatrics, Acibadem University, School of Medicine, Istanbul, Turkey; Rare Diseases and Orphan Drugs Application and Research Center-ACURARE, Acibadem University, Istanbul, Turkey
| | - Pratibha Bhai
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Torino, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, Italy
| | - Sonja de Munnik
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Angelica Delgado Vega
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Department of Molecular Medicine, Karolinska Undiagnosed Disease Program, Karolinska Institutet, Stockholm, Sweden
| | - Marc Engelen
- Department of Pediatric Neurology/Emma Children's Hospital, Amsterdam UMC, Amsterdam Leukodystrophy Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Johanna C Herkert
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ron Hochstenbach
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands
| | - Saskia Hopman
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sarina G Kant
- Department of Clinical Genetics, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ryutaro Kira
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Boris Keren
- Assistance Publique-Hopitaux de Paris, Sorbonne Université, Departement de Génétique, Groupe Hospitalier Pitie-Salpetriere et Hopital Trousseau, Paris, France
| | - Hester Y Kroes
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Ngu Lock-Hock
- Genetics Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Saskia M Maas
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Carlo Marcelis
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, Italy
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Alessandro Mussa
- Department of Public Health and Pediatrics, Pediatric Clinical Genetics, Regina Margherita Children's Hospital, University of Turin, Turin, Italy
| | - Cyril Mignot
- Assistance Publique-Hopitaux de Paris, Sorbonne Université, Departement de Génétique, Groupe Hospitalier Pitie-Salpetriere et Hopital Trousseau, Paris, France
| | - Anu Närhi
- Department of Clinical Genetics, Helsinki University Hospital, Helenski, Finland
| | - Ann Nordgren
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Department of Biomedicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Rolph Pfundt
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, Italy
| | - Abeltje M Polstra
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands
| | - Slavica Trajkova
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Yolande van Bever
- Department of Clinical Genetics, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | | | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Mariëlle Alders
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands
| | - Marcel M A M Mannens
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada; Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada.
| | - Mieke M van Haelst
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands; Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, the Netherlands
| | - Peter Henneman
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Tan JW, Blake EJ, Farris JD, Klee EW. Expanding Upon Genomics in Rare Diseases: Epigenomic Insights. Int J Mol Sci 2024; 26:135. [PMID: 39795993 PMCID: PMC11719497 DOI: 10.3390/ijms26010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
DNA methylation is an essential epigenetic modification that plays a crucial role in regulating gene expression and maintaining genomic stability. With the advancement in sequencing technology, methylation studies have provided valuable insights into the diagnosis of rare diseases through the various identification of episignatures, epivariation, epioutliers, and allele-specific methylation. However, current methylation studies are not without limitations. This mini-review explores the current understanding of DNA methylation in rare diseases, highlighting the key mechanisms and diagnostic potential, and emphasizing the need for advanced methodologies and integrative approaches to enhance the understanding of disease progression and design more personable treatment for patients, given the nature of rare diseases.
Collapse
Affiliation(s)
| | | | | | - Eric W. Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; (J.W.T.); (E.J.B.); (J.D.F.)
| |
Collapse
|
16
|
Sarli C, van der Laan L, Reilly J, Trajkova S, Carli D, Brusco A, Levy MA, Relator R, Kerkhof J, McConkey H, Tedder ML, Skinner C, Alders M, Henneman P, Hennekam RCM, Ciaccio C, D'Arrigo S, Vitobello A, Faivre L, Weber S, Vincent-Devulder A, Perrin L, Bourgois A, Yamamoto T, Metcalfe K, Zollino M, Kini U, Oliveira D, Sousa SB, Williams D, Cappuccio G, Sadikovic B, Brunetti-Pierri N. Blepharophimosis with intellectual disability and Helsmoortel-Van Der Aa Syndrome share episignature and phenotype. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2024; 196:e32089. [PMID: 38884529 DOI: 10.1002/ajmg.c.32089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/10/2024] [Accepted: 05/11/2024] [Indexed: 06/18/2024]
Abstract
Blepharophimosis with intellectual disability (BIS) is a recently recognized disorder distinct from Nicolaides-Baraister syndrome that presents with distinct facial features of blepharophimosis, developmental delay, and intellectual disability. BIS is caused by pathogenic variants in SMARCA2, that encodes the catalytic subunit of the superfamily II helicase group of the BRG1 and BRM-associated factors (BAF) forming the BAF complex, a chromatin remodeling complex involved in transcriptional regulation. Individuals bearing variants within the bipartite nuclear localization (BNL) signal domain of ADNP present with the neurodevelopmental disorder known as Helsmoortel-Van Der Aa Syndrome (HVDAS). Distinct DNA methylation profiles referred to as episignatures have been reported in HVDAS and BAF complex disorders. Due to molecular interactions between ADNP and BAF complex, and an overlapping craniofacial phenotype with narrowing of the palpebral fissures in a subset of patients with HVDAS and BIS, we hypothesized the possibility of a common phenotype-specific episignature. A distinct episignature was shared by 15 individuals with BIS-causing SMARCA2 pathogenic variants and 12 individuals with class II HVDAS caused by truncating pathogenic ADNP variants. This represents first evidence of a sensitive phenotype-specific episignature biomarker shared across distinct genetic conditions that also exhibit unique gene-specific episignatures.
Collapse
Affiliation(s)
- Camilla Sarli
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Liselot van der Laan
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Jack Reilly
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Slavica Trajkova
- Department of Medical Sciences, University of Torino, Turin, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, Italy
| | - Diana Carli
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Turin, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
- Department of Neurosciences Rita Levi-Montalcini, University of Turin, Turin, Italy
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada
| | - Haley McConkey
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada
| | | | - Cindy Skinner
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Mariëlle Alders
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Henneman
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Raoul C M Hennekam
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Claudia Ciaccio
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefano D'Arrigo
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Antonio Vitobello
- Department of Genetics, UNICAEN, Caen University Hospital, Normandy University, Caen, France
| | - Laurence Faivre
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, Centre de Génétique, Centre de Référence Maladies Rares "Anomalies du Développement et Syndromes Malformatifs", FHU-TRANSLDAD, Dijon, France
| | - Sacha Weber
- Service de Génétique, CHU de Caen-Normandie, Caen, France
- Service de Neurologie, CHU de Caen-Normandie, Caen, France
| | - Aline Vincent-Devulder
- Department of Genetics, UNICAEN, Caen University Hospital, Normandy University, Caen, France
| | - Laurence Perrin
- Department of Genetics, UNICAEN, Caen University Hospital, Normandy University, Caen, France
| | - Alexia Bourgois
- Department of Genetics, UNICAEN, Caen University Hospital, Normandy University, Caen, France
| | - Toshiyuki Yamamoto
- Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Kay Metcalfe
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Health Innovation Manchester, Manchester University Foundation NHS Trust, Manchester, UK
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Marcella Zollino
- Institute of Genomic Medicine, Department of Life Sciences and Public Health, 'Sacro Cuore' Catholic University of Rome, Rome, Italy
- Medical Genetics Unit, Foundation IRCCS AOU Policlinico 'A. Gemelli', Rome, Italy
| | - Usha Kini
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Daniela Oliveira
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Sergio B Sousa
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Denise Williams
- Department of Clinical Genetics, Birmingham Women's & Children's NHS Foundation Trust, Birmingham, UK
| | - Gerarda Cappuccio
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Bekim Sadikovic
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| |
Collapse
|
17
|
Haghshenas S, Putoux A, Reilly J, Levy MA, Relator R, Ghosh S, Kerkhof J, McConkey H, Edery P, Lesca G, Besson A, Coubes C, Willems M, Ruiz-Pallares N, Barat-Houari M, Tizzano EF, Valenzuela I, Sabbagh Q, Clayton-Smith J, Jackson A, O'Sullivan J, Bromley R, Banka S, Genevieve D, Sadikovic B. Discovery of DNA methylation signature in the peripheral blood of individuals with history of antenatal exposure to valproic acid. Genet Med 2024; 26:101226. [PMID: 39097820 DOI: 10.1016/j.gim.2024.101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024] Open
Abstract
PURPOSE Valproic acid or valproate is an effective antiepileptic drug; however, embryonic exposure to valproate can result in a teratogenic disorder referred to as fetal valproate syndrome (OMIM #609442). Currently there are no diagnostic biomarkers for the condition. This study aims to define an episignature biomarker for teratogenic antenatal exposure to valproate. METHODS DNA extracted from peripheral blood of individuals with teratogenic antenatal exposure to valproate was processed using DNA methylation microarrays. Subsequently, methylation profiling and construction of support vector machine classifiers were performed in R. RESULTS Genomic DNA methylation analysis was applied, and a distinct DNA methylation profile was identified in the majority of affected individuals. This profile was used to develop a diagnostic episignature classifier. The valproate exposure episignature exhibited high sensitivity and specificity relative to a large reference data set of unaffected controls and individuals with a wide spectrum of syndromic disorders with episignatures. Gene set enrichment analysis demonstrated an enrichment for terms associated with cell adhesion, including significant overrepresentation of the cadherin superfamily. CONCLUSION This study provides evidence of a robust peripheral blood-based diagnostic epigenetic biomarker for a prenatal teratogenic disorder.
Collapse
Affiliation(s)
- Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Audrey Putoux
- Hospices Civils de Lyon, Service de Génétique, Bron, France; Centre de Recherche en Neurosciences de Lyon, Equipe GENDEV, INSERM U1028, UMR CNRS 5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Jack Reilly
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Sourav Ghosh
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Patrick Edery
- Hospices Civils de Lyon, Service de Génétique, Bron, France; Centre de Recherche en Neurosciences de Lyon, Equipe GENDEV, INSERM U1028, UMR CNRS 5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Gaetan Lesca
- Hospices Civils de Lyon, Service de Génétique, Bron, France; Institut NeuroMyoGène, CNRS UMR 5310 - INSERM U1217, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Alicia Besson
- Institut NeuroMyoGène, CNRS UMR 5310 - INSERM U1217, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Christine Coubes
- Reference Centre for Rare Disease Developmental Anomaly and Malformative Syndromes, Genetic Clinic Unit, CHU Montpellier, Montpellier, France
| | - Marjolaine Willems
- Reference Centre for Rare Disease Developmental Anomaly and Malformative Syndromes, Genetic Clinic Unit, CHU Montpellier, Montpellier, France
| | - Nathalie Ruiz-Pallares
- Laboratoire de Génétique des Maladies Rares et Autoinflammatoires, CHU Montpellier, Montpellier, France
| | - Mouna Barat-Houari
- Laboratoire de Génétique des Maladies Rares et Autoinflammatoires, CHU Montpellier, Montpellier, France
| | - Eduardo F Tizzano
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Medicine Genetics Group Vall d'Hebron Research Institute (VHIR), Barcelona, Spain; European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Medicine Genetics Group Vall d'Hebron Research Institute (VHIR), Barcelona, Spain; European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA
| | - Quentin Sabbagh
- Reference Centre for Rare Disease Developmental Anomaly and Malformative Syndromes, Genetic Clinic Unit, CHU Montpellier, Montpellier, France
| | - Jill Clayton-Smith
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Adam Jackson
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - James O'Sullivan
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Rebecca Bromley
- Division of Neuroscience, School of Biological Sciences, Faculty of Medicine, Biology and Health, University of Manchester, UK; Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, UK
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - David Genevieve
- Reference Centre for Rare Disease Developmental Anomaly and Malformative Syndromes, Genetic Clinic Unit, CHU Montpellier, Montpellier, France; Montpellier University, Inserm U1183, Montpellier, France; European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA.
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.
| |
Collapse
|
18
|
Suzuki E, Nakabayashi K, Aoto S, Ogata T, Kuroki Y, Miyado M, Fukami M, Matsubara K. DNA methylation changes in the genome of patients with hypogonadotropic hypogonadism. Heliyon 2024; 10:e37648. [PMID: 39309794 PMCID: PMC11416509 DOI: 10.1016/j.heliyon.2024.e37648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/14/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Although some Mendelian neurodevelopmental disorders have been shown to entail specific DNA methylation changes designated as epi-signatures, it remains unknown whether epi-signatures are consistent features of other genetic disorders. Here, we analyzed DNA methylation profiles of patients with hypogonadotropic hypogonadism (HH), a rare neuroendocrine disorder typically caused by monogenic or oligogenic mutations. First, we performed microarray-based genome-wide methylation analyses of nine patients with HH due to ANOS1, SOX2, or SOX10 variants and 12 control individuals. The results showed that 1118 probes were differentially methylated in one or more patients. The differentially methylated probes were highly variable among patients. No significant methylation changes were observed in genes functionally associated with ANOS1, SOX2, or SOX10. Then, we performed pyrosequencing of six selected CpG sites in the nine patients and 35 additional HH patients. The results of the patients were compared with those of 48 fertile men. There were no common methylation changes among these patients, with the exception of hypermethylation of two CpG sites in the ZNF245 promoter of three patients. Hypermethylation of the promoter has previously been reported as a very rare epigenetic polymorphism in the general population. These results indicate that genomes of HH patients have considerable DNA methylation changes; however, these changes are more likely to be physiological epigenetic variations than disease-specific epi-signatures. Our data suggest a possible association between hypermethylation of the ZNF254 promoter and HH, which needs to be examined in future studies.
Collapse
Affiliation(s)
- Erina Suzuki
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Saki Aoto
- Medical Genome Center, National Center for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoko Kuroki
- Department of Genome Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
19
|
Scheffer IE, Zuberi S, Mefford HC, Guerrini R, McTague A. Developmental and epileptic encephalopathies. Nat Rev Dis Primers 2024; 10:61. [PMID: 39237642 DOI: 10.1038/s41572-024-00546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
Developmental and epileptic encephalopathies, the most severe group of epilepsies, are characterized by seizures and frequent epileptiform activity associated with developmental slowing or regression. Onset typically occurs in infancy or childhood and includes many well-defined epilepsy syndromes. Patients have wide-ranging comorbidities including intellectual disability, psychiatric features, such as autism spectrum disorder and behavioural problems, movement and musculoskeletal disorders, gastrointestinal and sleep problems, together with an increased mortality rate. Problems change with age and patients require substantial support throughout life, placing a high psychosocial burden on parents, carers and the community. In many patients, the aetiology can be identified, and a genetic cause is found in >50% of patients using next-generation sequencing technologies. More than 900 genes have been identified as monogenic causes of developmental and epileptic encephalopathies and many cell components and processes have been implicated in their pathophysiology, including ion channels and transporters, synaptic proteins, cell signalling and metabolism and epigenetic regulation. Polygenic risk score analyses have shown that common variants also contribute to phenotypic variability. Holistic management, which encompasses antiseizure therapies and care for multimorbidities, is determined both by epilepsy syndrome and aetiology. Identification of the underlying aetiology enables the development of precision medicines to improve the long-term outcome of patients with these devastating diseases.
Collapse
Affiliation(s)
- Ingrid E Scheffer
- Epilepsy Research Centre, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.
- Florey and Murdoch Children's Research Institutes, Melbourne, Victoria, Australia.
- Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.
| | - Sameer Zuberi
- Paediatric Neurosciences Research Group, School of Health & Wellbeing, University of Glasgow, Glasgow, UK
- Paediatric Neurosciences, Royal Hospital for Children, Glasgow, UK
| | - Heather C Mefford
- Center for Paediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Renzo Guerrini
- Neuroscience Department, Children's Hospital Meyer IRCCS, Florence, Italy
- University of Florence, Florence, Italy
| | - Amy McTague
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
20
|
María Del Rocío PB, Palomares Bralo M, Vanhooydonck M, Hamerlinck L, D'haene E, Leimbacher S, Jacobs EZ, De Cock L, D'haenens E, Dheedene A, Malfait Z, Vantomme L, Silva A, Rooney K, Santos-Simarro F, Lleuger-Pujol R, García-Miñaúr S, Losantos-García I, Menten B, Gestri G, Ragge N, Sadikovic B, Bogaert E, Syx D, Callewaert B, Vergult S. Loss-of-function of the Zinc Finger Homeobox 4 ( ZFHX4) gene underlies a neurodevelopmental disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.07.24311381. [PMID: 39148819 PMCID: PMC11326360 DOI: 10.1101/2024.08.07.24311381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
8q21.11 microdeletions encompassing the gene encoding transcription factor ZFHX4, have previously been associated by us with a syndromic form of intellectual disability, hypotonia, decreased balance and hearing loss. Here, we report on 57 individuals, 52 probands and 5 affected family members, with protein truncating variants (n=36), (micro)deletions (n=20) or an inversion (n=1) affecting ZFHX4 with variable developmental delay and intellectual disability, distinctive facial characteristics, morphological abnormalities of the central nervous system, behavioral alterations, short stature, hypotonia, and occasionally cleft palate and anterior segment dysgenesis. The phenotypes associated with 8q21.11 microdeletions and ZFHX4 intragenic loss-of-function variants largely overlap, identifying ZFHX4 as the main driver for the microdeletion syndrome, although leukocyte-derived DNA shows a mild common methylation profile for (micro)deletions only. We identify ZFHX4 as a transcription factor that is increasingly expressed during human brain development and neuronal differentiation. Furthermore, ZFHX4 interacting factors identified via IP-MS in neural progenitor cells, suggest an important role for ZFHX4 in cellular and developmental pathways, especially during histone modifications, cytosolic transport and development. Additionally, using CUT&RUN, we observed that ZFHX4 binds with the promoter regions of genes with crucial roles in embryonic, neuron and axon development. Since loss-of-function variants in ZFHX4 are found with consistent dysmorphic facial features, we investigated whether the disruption of zfhx4 causes craniofacial abnormalities in zebrafish. First-generation (F0) zfhx4 crispant zebrafish, (mosaic) mutant for zfhx4 loss-of-function variants, have significantly shorter Meckel's cartilages and smaller ethmoid plates compared to control zebrafish. Furthermore, behavioral assays show a decreased movement frequency in the zfhx4 crispant zebrafish in comparison with control zebrafish larvae. Although further research is needed, our in vivo work suggests a role for zfhx4 in facial skeleton patterning, palatal development and behavior.
Collapse
Affiliation(s)
- Pérez Baca María Del Rocío
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - María Palomares Bralo
- CIBERER-ISCIII and INGEMM, Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, Madrid, Spain
- ITHACA- European Reference Network, Spain
| | - Michiel Vanhooydonck
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lisa Hamerlinck
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Eva D'haene
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sebastian Leimbacher
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Eva Z Jacobs
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Laurenz De Cock
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Erika D'haenens
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Annelies Dheedene
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Zoë Malfait
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lies Vantomme
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Ananilia Silva
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Fernando Santos-Simarro
- Unit of Molecular Diagnostics and Clinical Genetics, Hospital Universitari Son Espases, Health Research Institute of the Balearic Islands (IdiSBa), Palma, Spain
| | - Roser Lleuger-Pujol
- Hereditary Cancer Program, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital; Precision Oncology Group (OncoGIR-Pro), Institut d'Investigació Biomèdica de Girona (IDIGBI), Girona, Spain
| | - Sixto García-Miñaúr
- CIBERER-ISCIII and INGEMM, Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, Madrid, Spain
- ITHACA- European Reference Network, Spain
| | | | - Björn Menten
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Gaia Gestri
- University College London, London, England, Great Britain
| | - Nicola Ragge
- Birmingham Women's and Children's NHS Foundation Trust, Clinical Genetics Unit, Birmingham Womens Hospital, Lavender House, Mindelsohn Way, Edgbaston, Birmingham B15 2TG
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Elke Bogaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Delfien Syx
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sarah Vergult
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
LaFlamme CW, Rastin C, Sengupta S, Pennington HE, Russ-Hall SJ, Schneider AL, Bonkowski ES, Almanza Fuerte EP, Allan TJ, Zalusky MPG, Goffena J, Gibson SB, Nyaga DM, Lieffering N, Hebbar M, Walker EV, Darnell D, Olsen SR, Kolekar P, Djekidel MN, Rosikiewicz W, McConkey H, Kerkhof J, Levy MA, Relator R, Lev D, Lerman-Sagie T, Park KL, Alders M, Cappuccio G, Chatron N, Demain L, Genevieve D, Lesca G, Roscioli T, Sanlaville D, Tedder ML, Gupta S, Jones EA, Weisz-Hubshman M, Ketkar S, Dai H, Worley KC, Rosenfeld JA, Chao HT, Neale G, Carvill GL, Wang Z, Berkovic SF, Sadleir LG, Miller DE, Scheffer IE, Sadikovic B, Mefford HC. Diagnostic utility of DNA methylation analysis in genetically unsolved pediatric epilepsies and CHD2 episignature refinement. Nat Commun 2024; 15:6524. [PMID: 39107278 PMCID: PMC11303402 DOI: 10.1038/s41467-024-50159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/28/2024] [Indexed: 08/09/2024] Open
Abstract
Sequence-based genetic testing identifies causative variants in ~ 50% of individuals with developmental and epileptic encephalopathies (DEEs). Aberrant changes in DNA methylation are implicated in various neurodevelopmental disorders but remain unstudied in DEEs. We interrogate the diagnostic utility of genome-wide DNA methylation array analysis on peripheral blood samples from 582 individuals with genetically unsolved DEEs. We identify rare differentially methylated regions (DMRs) and explanatory episignatures to uncover causative and candidate genetic etiologies in 12 individuals. Using long-read sequencing, we identify DNA variants underlying rare DMRs, including one balanced translocation, three CG-rich repeat expansions, and four copy number variants. We also identify pathogenic variants associated with episignatures. Finally, we refine the CHD2 episignature using an 850 K methylation array and bisulfite sequencing to investigate potential insights into CHD2 pathophysiology. Our study demonstrates the diagnostic yield of genome-wide DNA methylation analysis to identify causal and candidate variants as 2% (12/582) for unsolved DEE cases.
Collapse
Affiliation(s)
- Christy W LaFlamme
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Cassandra Rastin
- Department of Pathology & Laboratory Medicine, Western University, London, ON, N5A 3K7, Canada
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Soham Sengupta
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Helen E Pennington
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Mathematics & Statistics, Rhodes College, Memphis, TN, 38112, USA
| | - Sophie J Russ-Hall
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Amy L Schneider
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Emily S Bonkowski
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Edith P Almanza Fuerte
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Talia J Allan
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Miranda Perez-Galey Zalusky
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
| | - Joy Goffena
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
| | - Sophia B Gibson
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Denis M Nyaga
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | - Nico Lieffering
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | - Malavika Hebbar
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
| | - Emily V Walker
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital Memphis, Memphis, TN, 38105, USA
| | - Daniel Darnell
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital Memphis, Memphis, TN, 38105, USA
| | - Scott R Olsen
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital Memphis, Memphis, TN, 38105, USA
| | - Pandurang Kolekar
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Mohamed Nadhir Djekidel
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Dorit Lev
- Institute of Medical Genetics, Wolfson Medical Center, Holon, 58100, Israel
| | - Tally Lerman-Sagie
- Fetal Neurology Clinic, Pediatric Neurology Unit, Wolfson Medical Center, Holon, 58100, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Kristen L Park
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Marielle Alders
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Gerarda Cappuccio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Nicolas Chatron
- Department of Medical Genetics, Member of the ERN EpiCARE, University Hospital of Lyon and Claude Bernard Lyon I University, Lyon, France
- Pathophysiology and Genetics of Neuron and Muscle (PNMG), UCBL, CNRS UMR5261 - INSERM, U1315, Lyon, France
| | - Leigh Demain
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - David Genevieve
- Montpellier University, Inserm Unit 1183, Reference Center for Rare Diseases Developmental Anomaly and Malformative Syndrome, Clinical Genetic Department, CHU Montpellier, Montpellier, France
| | - Gaetan Lesca
- Department of Medical Genetics, Member of the ERN EpiCARE, University Hospital of Lyon and Claude Bernard Lyon I University, Lyon, France
- Pathophysiology and Genetics of Neuron and Muscle (PNMG), UCBL, CNRS UMR5261 - INSERM, U1315, Lyon, France
| | - Tony Roscioli
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Damien Sanlaville
- Department of Medical Genetics, Member of the ERN EpiCARE, University Hospital of Lyon and Claude Bernard Lyon I University, Lyon, France
- Pathophysiology and Genetics of Neuron and Muscle (PNMG), UCBL, CNRS UMR5261 - INSERM, U1315, Lyon, France
| | | | - Sachin Gupta
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Elizabeth A Jones
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Monika Weisz-Hubshman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Children's Hospital, Genetic Department, Houston, TX, 77030, USA
| | - Shamika Ketkar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kim C Worley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hsiao-Tuan Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Cain Pediatric Neurology Research Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Texas Children's Hospital, Houston, TX, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, TX, 77030, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital Memphis, Memphis, TN, 38105, USA
| | - Gemma L Carvill
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | - Danny E Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, VIC, Australia
- Florey Institute and Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Bekim Sadikovic
- Department of Pathology & Laboratory Medicine, Western University, London, ON, N5A 3K7, Canada.
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada.
| | - Heather C Mefford
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
22
|
Holthöfer L, Diederich S, Haug V, Lehmann L, Hewel C, Paul NW, Schweiger S, Gerber S, Linke M. A case of an Angelman-syndrome caused by an intragenic duplication of UBE3A uncovered by adaptive nanopore sequencing. Clin Epigenetics 2024; 16:101. [PMID: 39095842 PMCID: PMC11297752 DOI: 10.1186/s13148-024-01711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Adaptive nanopore sequencing as a diagnostic method for imprinting disorders and episignature analysis revealed an intragenic duplication of Exon 6 and 7 in UBE3A (NM_000462.5) in a patient with relatively mild Angelman-like syndrome. In an all-in-one nanopore sequencing analysis DNA hypomethylation of the SNURF:TSS-DMR, known contributing deletions on the maternal allele and point mutations in UBE3A could be ruled out as disease drivers. In contrast, breakpoints and orientation of the tandem duplication could clearly be defined. Segregation analysis in the family showed that the duplication derived de novo in the maternal grandfather. Our study shows the benefits of an all-in-one nanopore sequencing approach for the diagnostics of Angelman syndrome and other imprinting disorders.
Collapse
Affiliation(s)
- Laura Holthöfer
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Diederich
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Verena Haug
- Neuropediatrics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lioba Lehmann
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Charlotte Hewel
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Norbert W Paul
- Institute for History, Philosophy, and Ethics of Medicine, Johannes Gutenberg-University Medical Center Mainz, Mainz, Germany
| | - Susann Schweiger
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Gerber
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias Linke
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
23
|
Bosch E, Güse E, Kirchner P, Winterpacht A, Walther M, Alders M, Kerkhof J, Ekici AB, Sticht H, Sadikovic B, Reis A, Vasileiou G. The missing link: ARID1B non-truncating variants causing Coffin-Siris syndrome due to protein aggregation. Hum Genet 2024; 143:965-978. [PMID: 39028335 PMCID: PMC11303441 DOI: 10.1007/s00439-024-02688-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
ARID1B is the most frequently mutated gene in Coffin-Siris syndrome (CSS). To date, the vast majority of causative variants reported in ARID1B are truncating, leading to nonsense-mediated mRNA decay. In the absence of experimental data, only few ARID1B amino acid substitutions have been classified as pathogenic, mainly based on clinical data and their de novo occurrence, while most others are currently interpreted as variants of unknown significance. The present study substantiates the pathogenesis of ARID1B non-truncating/NMD-escaping variants located in the SMARCA4-interacting EHD2 and DNA-binding ARID domains. Overexpression assays in cell lines revealed that the majority of EHD2 variants lead to protein misfolding and formation of cytoplasmic aggresomes surrounded by vimentin cage-like structures and co-localizing with the microtubule organisation center. ARID domain variants exhibited not only aggresomes, but also nuclear aggregates, demonstrating robust pathological effects. Protein levels were not compromised, as shown by quantitative western blot analysis. In silico structural analysis predicted the exposure of amylogenic segments in both domains due to the nearby variants, likely causing this aggregation. Genome-wide transcriptome and methylation analysis in affected individuals revealed expression and methylome patterns consistent with those of the pathogenic haploinsufficiency ARID1B alterations in CSS cases. These results further support pathogenicity and indicate two approaches for disambiguation of such variants in everyday practice. The few affected individuals harbouring EHD2 non-truncating variants described to date exhibit mild CSS clinical traits. In summary, this study paves the way for the re-evaluation of previously unclear ARID1B non-truncating variants and opens a new era in CSS genetic diagnosis.
Collapse
Affiliation(s)
- Elisabeth Bosch
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Esther Güse
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Philipp Kirchner
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Andreas Winterpacht
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Mona Walther
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Marielle Alders
- Amsterdam University Medical Center, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Arif B Ekici
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Centre for Rare Diseases Erlangen (ZSEER), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georgia Vasileiou
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.
- Centre for Rare Diseases Erlangen (ZSEER), Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
24
|
Haghshenas S, Bout HJ, Schijns JM, Levy MA, Kerkhof J, Bhai P, McConkey H, Jenkins ZA, Williams EM, Halliday BJ, Huisman SA, Lauffer P, de Waard V, Witteveen L, Banka S, Brady AF, Galazzi E, van Gils J, Hurst ACE, Kaiser FJ, Lacombe D, Martinez-Monseny AF, Fergelot P, Monteiro FP, Parenti I, Persani L, Santos-Simarro F, Simpson BN, Alders M, Robertson SP, Sadikovic B, Menke LA. Menke-Hennekam syndrome; delineation of domain-specific subtypes with distinct clinical and DNA methylation profiles. HGG ADVANCES 2024; 5:100287. [PMID: 38553851 PMCID: PMC11040166 DOI: 10.1016/j.xhgg.2024.100287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/18/2024] Open
Abstract
CREB-binding protein (CBP, encoded by CREBBP) and its paralog E1A-associated protein (p300, encoded by EP300) are involved in histone acetylation and transcriptional regulation. Variants that produce a null allele or disrupt the catalytic domain of either protein cause Rubinstein-Taybi syndrome (RSTS), while pathogenic missense and in-frame indel variants in parts of exons 30 and 31 cause phenotypes recently described as Menke-Hennekam syndrome (MKHK). To distinguish MKHK subtypes and define their characteristics, molecular and extended clinical data on 82 individuals (54 unpublished) with variants affecting CBP (n = 71) or p300 (n = 11) (NP_004371.2 residues 1,705-1,875 and NP_001420.2 residues 1,668-1,833, respectively) were summarized. Additionally, genome-wide DNA methylation profiles were assessed in DNA extracted from whole peripheral blood from 54 individuals. Most variants clustered closely around the zinc-binding residues of two zinc-finger domains (ZZ and TAZ2) and within the first α helix of the fourth intrinsically disordered linker (ID4) of CBP/p300. Domain-specific methylation profiles were discerned for the ZZ domain in CBP/p300 (found in nine out of 10 tested individuals) and TAZ2 domain in CBP (in 14 out of 20), while a domain-specific diagnostic episignature was refined for the ID4 domain in CBP/p300 (in 21 out of 21). Phenotypes including intellectual disability of varying degree and distinct physical features were defined for each of the regions. These findings demonstrate existence of at least three MKHK subtypes, which are domain specific (MKHK-ZZ, MKHK-TAZ2, and MKHK-ID4) rather than gene specific (CREBBP/EP300). DNA methylation episignatures enable stratification of molecular pathophysiologic entities within a gene or across a family of paralogous genes.
Collapse
Affiliation(s)
- Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London ON N6A 5W9, Canada
| | - Hidde J Bout
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, 1105 Amsterdam, AZ, the Netherlands
| | - Josephine M Schijns
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, 1105 Amsterdam, AZ, the Netherlands
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London ON N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London ON N6A 5W9, Canada
| | - Pratibha Bhai
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London ON N6A 5W9, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London ON N6A 5W9, Canada
| | - Zandra A Jenkins
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Ella M Williams
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Benjamin J Halliday
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Sylvia A Huisman
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, 1105 Amsterdam, AZ, the Netherlands; Zodiak, Prinsenstichting, Purmerend, JE 1444, the Netherlands
| | - Peter Lauffer
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, Amsterdam 1105 AZ, the Netherlands
| | - Vivian de Waard
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, AZ 1105, the Netherlands
| | - Laura Witteveen
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, 1105 Amsterdam, AZ, the Netherlands
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Angela F Brady
- North West Thames Regional Genetics Service, Northwick Park Hospital, Harrow HA1 3UJ, UK
| | - Elena Galazzi
- Department of Endocrine & Metabolic Diseases, San Luca Hospital, IRCCS Istituto Auxologico Italiano, 20100 Milan, Italy
| | - Julien van Gils
- Centre Hospitalier Universitaire Bordeaux, 33404 Bordeaux, France
| | - Anna C E Hurst
- Department of Genetics, University of Alabama, Birmingham, AL 35294-0024, USA
| | - Frank J Kaiser
- Institute of Human Genetics, University of Duisburg-Essen, 45122 Essen, Germany; Center for Rare Diseases, University Hospital Essen, 45122 Essen, Germany
| | - Didier Lacombe
- Centre Hospitalier Universitaire Bordeaux, 33404 Bordeaux, France
| | - Antonio F Martinez-Monseny
- Genètica Clínica, Servei de Medicina Genètica i Molecular, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | | | | | - Ilaria Parenti
- Institute of Human Genetics, University of Duisburg-Essen, 45122 Essen, Germany
| | - Luca Persani
- Department of Endocrine & Metabolic Diseases, San Luca Hospital, IRCCS Istituto Auxologico Italiano, 20100 Milan, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, 20100 Milan, Italy
| | - Fernando Santos-Simarro
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, CIBERER, ISCIII, 28029 Madrid, Spain; Unit of Molecular Diagnostics and Clinical Genetics, Hospital Universitari Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Brittany N Simpson
- Department of Pediatrics, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH 45206, USA
| | - Mariëlle Alders
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, Amsterdam 1105 AZ, the Netherlands
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A3K7, Canada.
| | - Leonie A Menke
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, 1105 Amsterdam, AZ, the Netherlands.
| |
Collapse
|
25
|
van der Laan L, Lauffer P, Rooney K, Silva A, Haghshenas S, Relator R, Levy MA, Trajkova S, Huisman SA, Bijlsma EK, Kleefstra T, van Bon BW, Baysal Ö, Zweier C, Palomares-Bralo M, Fischer J, Szakszon K, Faivre L, Piton A, Mesman S, Hochstenbach R, Elting MW, van Hagen JM, Plomp AS, Mannens MMAM, Alders M, van Haelst MM, Ferrero GB, Brusco A, Henneman P, Sweetser DA, Sadikovic B, Vitobello A, Menke LA. DNA methylation episignature and comparative epigenomic profiling for Pitt-Hopkins syndrome caused by TCF4 variants. HGG ADVANCES 2024; 5:100289. [PMID: 38571311 PMCID: PMC11087720 DOI: 10.1016/j.xhgg.2024.100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Pitt-Hopkins syndrome (PTHS) is a neurodevelopmental disorder caused by pathogenic variants in TCF4, leading to intellectual disability, specific morphological features, and autonomic nervous system dysfunction. Epigenetic dysregulation has been implicated in PTHS, prompting the investigation of a DNA methylation (DNAm) "episignature" specific to PTHS for diagnostic purposes and variant reclassification and functional insights into the molecular pathophysiology of this disorder. A cohort of 67 individuals with genetically confirmed PTHS and three individuals with intellectual disability and a variant of uncertain significance (VUS) in TCF4 were studied. The DNAm episignature was developed with an Infinium Methylation EPIC BeadChip array analysis using peripheral blood cells. Support vector machine (SVM) modeling and clustering methods were employed to generate a DNAm classifier for PTHS. Validation was extended to an additional cohort of 11 individuals with PTHS. The episignature was assessed in relation to other neurodevelopmental disorders and its specificity was examined. A specific DNAm episignature for PTHS was established. The classifier exhibited high sensitivity for TCF4 haploinsufficiency and missense variants in the basic-helix-loop-helix domain. Notably, seven individuals with TCF4 variants exhibited negative episignatures, suggesting complexities related to mosaicism, genetic factors, and environmental influences. The episignature displayed degrees of overlap with other related disorders and biological pathways. This study defines a DNAm episignature for TCF4-related PTHS, enabling improved diagnostic accuracy and VUS reclassification. The finding that some cases scored negatively underscores the potential for multiple or nested episignatures and emphasizes the need for continued investigation to enhance specificity and coverage across PTHS-related variants.
Collapse
Affiliation(s)
- Liselot van der Laan
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| | - Peter Lauffer
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Ananília Silva
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Slavica Trajkova
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Sylvia A Huisman
- Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Department of Pediatrics, Amsterdam, the Netherlands; Zodiak, Prinsenstichting, Purmerend, the Netherlands
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bregje W van Bon
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Özlem Baysal
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christiane Zweier
- Department of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Department of Human Genetics, University of Bern, Inselspital Universitätsspital Bern, Bern, Switzerland
| | - María Palomares-Bralo
- Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain
| | - Jan Fischer
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Katalin Szakszon
- Institute of Paediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laurence Faivre
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD «Génétique des Anomalies du Développement», FHUTRANSLAD, Dijon, France; CHU Dijon Bourgogne, Centre de Génétique, Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs», FHU-TRANSLDAD, Dijon, France
| | - Amélie Piton
- Genetic Diagnosis Laboratories, Strasbourg University Hospital, Strasbourg 67000, France
| | - Simone Mesman
- Swammerdam Institute for Life Sciences, FNWI, University of Amsterdam, Amsterdam, the Netherlands
| | - Ron Hochstenbach
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| | - Mariet W Elting
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| | - Johanna M van Hagen
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| | - Astrid S Plomp
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| | - Marcel M A M Mannens
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| | - Mariëlle Alders
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| | - Mieke M van Haelst
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| | - Giovanni B Ferrero
- Department of Public Health and Pediatrics, University of Torino, Turin, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Peter Henneman
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| | - David A Sweetser
- Division of Medical Genetics and Metabolism and Center for Genomic Medicine, Massachusetts General for Children, Boston, MA, USA
| | - Bekim Sadikovic
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands; Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Antonio Vitobello
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Leonie A Menke
- Amsterdam Reproduction & Development, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Department of Pediatrics, Amsterdam, the Netherlands; Amsterdam Neuroscience - Cellular & Molecular Mechanisms, Amsterdam, the Netherlands.
| |
Collapse
|
26
|
Karayol R, Borroto MC, Haghshenas S, Namasivayam A, Reilly J, Levy MA, Relator R, Kerkhof J, McConkey H, Shvedunova M, Petersen AK, Magnussen K, Zweier C, Vasileiou G, Reis A, Savatt JM, Mulligan MR, Bicknell LS, Poke G, Abu-El-Haija A, Duis J, Hannig V, Srivastava S, Barkoudah E, Hauser NS, van den Born M, Hamiel U, Henig N, Baris Feldman H, McKee S, Krapels IPC, Lei Y, Todorova A, Yordanova R, Atemin S, Rogac M, McConnell V, Chassevent A, Barañano KW, Shashi V, Sullivan JA, Peron A, Iascone M, Canevini MP, Friedman J, Reyes IA, Kierstein J, Shen JJ, Ahmed FN, Mao X, Almoguera B, Blanco-Kelly F, Platzer K, Treu AB, Quilichini J, Bourgois A, Chatron N, Januel L, Rougeot C, Carere DA, Monaghan KG, Rousseau J, Myers KA, Sadikovic B, Akhtar A, Campeau PM. MSL2 variants lead to a neurodevelopmental syndrome with lack of coordination, epilepsy, specific dysmorphisms, and a distinct episignature. Am J Hum Genet 2024; 111:1330-1351. [PMID: 38815585 PMCID: PMC11267526 DOI: 10.1016/j.ajhg.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Epigenetic dysregulation has emerged as an important etiological mechanism of neurodevelopmental disorders (NDDs). Pathogenic variation in epigenetic regulators can impair deposition of histone post-translational modifications leading to aberrant spatiotemporal gene expression during neurodevelopment. The male-specific lethal (MSL) complex is a prominent multi-subunit epigenetic regulator of gene expression and is responsible for histone 4 lysine 16 acetylation (H4K16ac). Using exome sequencing, here we identify a cohort of 25 individuals with heterozygous de novo variants in MSL complex member MSL2. MSL2 variants were associated with NDD phenotypes including global developmental delay, intellectual disability, hypotonia, and motor issues such as coordination problems, feeding difficulties, and gait disturbance. Dysmorphisms and behavioral and/or psychiatric conditions, including autism spectrum disorder, and to a lesser extent, seizures, connective tissue disease signs, sleep disturbance, vision problems, and other organ anomalies, were observed in affected individuals. As a molecular biomarker, a sensitive and specific DNA methylation episignature has been established. Induced pluripotent stem cells (iPSCs) derived from three members of our cohort exhibited reduced MSL2 levels. Remarkably, while NDD-associated variants in two other members of the MSL complex (MOF and MSL3) result in reduced H4K16ac, global H4K16ac levels are unchanged in iPSCs with MSL2 variants. Regardless, MSL2 variants altered the expression of MSL2 targets in iPSCs and upon their differentiation to early germ layers. Our study defines an MSL2-related disorder as an NDD with distinguishable clinical features, a specific blood DNA episignature, and a distinct, MSL2-specific molecular etiology compared to other MSL complex-related disorders.
Collapse
Affiliation(s)
- Remzi Karayol
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Maria Carla Borroto
- Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Anoja Namasivayam
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jack Reilly
- Department of Pediatrics, Clinical Neurological Sciences and Epidemiology, Western University, London, ON N6A 3K7, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Maria Shvedunova
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Andrea K Petersen
- Department of Genetics and Metabolism, Randall Children's and Legacy Emanuel Hospitals, Portland, OR 97227, USA
| | - Kari Magnussen
- Department of Genetics and Metabolism, Randall Children's and Legacy Emanuel Hospitals, Portland, OR 97227, USA
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Georgia Vasileiou
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Juliann M Savatt
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, USA
| | - Meghan R Mulligan
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Louise S Bicknell
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Gemma Poke
- Genetic Health Service New Zealand, Wellington, New Zealand
| | - Aya Abu-El-Haija
- Division of Genetics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Jessica Duis
- Section of Genetics & Metabolism, Department of Pediatrics, University of Colorado, Children's Hospital Colorado, Aurora, CO, USA
| | - Vickie Hannig
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Siddharth Srivastava
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Natalie S Hauser
- Medical Genetics, Inova Fairfax Hospital, Falls Church, VA 22042, USA
| | - Myrthe van den Born
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Uri Hamiel
- Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center & Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Noa Henig
- Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Hagit Baris Feldman
- Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center & Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Shane McKee
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast Health & Social Care Trust, Belfast BT9 7AB, UK
| | - Ingrid P C Krapels
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Yunping Lei
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Albena Todorova
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, Sofia, Bulgaria; Genetic Medico-Diagnostic Laboratory "Genica", Sofia, Bulgaria
| | - Ralitsa Yordanova
- Department of pediatrics "Prof. Ivan Andreev", Medical university - Plovdiv, Plovdiv, Bulgaria; Department of Pediatrics, University Hospital "St. George", Plovdiv, Bulgaria
| | - Slavena Atemin
- Genetic Medico-Diagnostic Laboratory "Genica", Sofia, Bulgaria
| | - Mihael Rogac
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vivienne McConnell
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast Health & Social Care Trust, Belfast BT9 7AB, UK
| | - Anna Chassevent
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Kristin W Barañano
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vandana Shashi
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jennifer A Sullivan
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Angela Peron
- SOC Genetica Medica, Meyer Children's Hospital IRCCS, Florence, Italy; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", Università degli Studi di Firenze, Florence, Italy
| | - Maria Iascone
- Department of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Maria P Canevini
- Epilepsy Center - Sleep Medicine Center, Childhood and Adolescence Neuropsychiatry Unit, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy; Department of Health Sciences, University of Milan, Milan, Italy
| | - Jennifer Friedman
- Departments of Neurosciences and Pediatrics, University of California, San Diego, La Jolla, CA, USA; Rady Children's Institute for Genomic Medicine and Rady Children's Hospital, San Diego, CA, USA
| | - Iris A Reyes
- Rady Children's Institute for Genomic Medicine and Rady Children's Hospital, San Diego, CA, USA
| | - Janell Kierstein
- Section of Genetics & Metabolism, Department of Pediatrics, University of Colorado, Children's Hospital Colorado, Aurora, CO, USA
| | - Joseph J Shen
- Division of Genomic Medicine, Department of Pediatrics, MIND Institute, UC Davis, Sacramento, CA 95817, USA
| | - Faria N Ahmed
- Division of Genomic Medicine, Department of Pediatrics, UC Davis, Sacramento, CA 95817, USA
| | - Xiao Mao
- National Health Commission Key Laboratory of Birth Defects Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Hunan, China; Nanhua University, Chiayi County, Taiwan
| | - Berta Almoguera
- Department of Genetics and Genomics, Fundacion Jimenez Diaz University Hospital, Health Research Institute-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Fiona Blanco-Kelly
- Department of Genetics and Genomics, Fundacion Jimenez Diaz University Hospital, Health Research Institute-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, German
| | | | - Juliette Quilichini
- Service de Médecine Génomique des maladies de système et d'organe, APHP, Centre Université Paris Cité, Paris, France
| | - Alexia Bourgois
- Normandy University, UNICAEN, Caen University Hospital, Department of Genetics, UR 7450 BioTARGen, FHU G4 Genomics, Caen, France
| | - Nicolas Chatron
- Department of Genetics, Lyon University Hospital, Lyon, France; Pathophysiology and Genetics of Neuron and Muscle (PGNM, UCBL - CNRS UMR5261 - INSERM U1315), Université Claude Bernard Lyon 1, Lyon, France
| | - Louis Januel
- Department of Genetics, Lyon University Hospital, Lyon, France
| | | | | | | | - Justine Rousseau
- Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Kenneth A Myers
- Child Health and Human Development, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada.
| | - Asifa Akhtar
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - Philippe M Campeau
- Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada; Department of Pediatrics, University of Montreal, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
27
|
Niceta M, Ciolfi A, Ferilli M, Pedace L, Cappelletti C, Nardini C, Hildonen M, Chiriatti L, Miele E, Dentici ML, Gnazzo M, Cesario C, Pisaneschi E, Baban A, Novelli A, Maitz S, Selicorni A, Squeo GM, Merla G, Dallapiccola B, Tumer Z, Digilio MC, Priolo M, Tartaglia M. DNA methylation profiling in Kabuki syndrome: reclassification of germline KMT2D VUS and sensitivity in validating postzygotic mosaicism. Eur J Hum Genet 2024; 32:819-826. [PMID: 38528056 PMCID: PMC11220151 DOI: 10.1038/s41431-024-01597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 03/27/2024] Open
Abstract
Autosomal dominant Kabuki syndrome (KS) is a rare multiple congenital anomalies/neurodevelopmental disorder caused by heterozygous inactivating variants or structural rearrangements of the lysine-specific methyltransferase 2D (KMT2D) gene. While it is often recognizable due to a distinctive gestalt, the disorder is clinically variable, and a phenotypic scoring system has been introduced to help clinicians to reach a clinical diagnosis. The phenotype, however, can be less pronounced in some patients, including those carrying postzygotic mutations. The full spectrum of pathogenic variation in KMT2D has not fully been characterized, which may hamper the clinical classification of a portion of these variants. DNA methylation (DNAm) profiling has successfully been used as a tool to classify variants in genes associated with several neurodevelopmental disorders, including KS. In this work, we applied a KS-specific DNAm signature in a cohort of 13 individuals with KMT2D VUS and clinical features suggestive or overlapping with KS. We succeeded in correctly classifying all the tested individuals, confirming diagnosis for three subjects and rejecting the pathogenic role of 10 VUS in the context of KS. In the latter group, exome sequencing allowed to identify the genetic cause underlying the disorder in three subjects. By testing five individuals with postzygotic pathogenic KMT2D variants, we also provide evidence that DNAm profiling has power to recognize pathogenic variants at different levels of mosaicism, identifying 15% as the minimum threshold for which DNAm profiling can be applied as an informative diagnostic tool in KS mosaics.
Collapse
Affiliation(s)
- Marcello Niceta
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Marco Ferilli
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
- Department of Computer, Control and Management Engineering, Sapienza University, 00185, Rome, Italy
| | - Lucia Pedace
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Camilla Cappelletti
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Claudia Nardini
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Mathis Hildonen
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshopsitalet, 2600, Glostrup, Denmark
| | - Luigi Chiriatti
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Evelina Miele
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Maria Lisa Dentici
- Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Maria Gnazzo
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Claudia Cesario
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Elisa Pisaneschi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Anwar Baban
- Pediatric Cardiology and Cardiac Arrhythmias Unit, Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Silvia Maitz
- Genetica Clinica Pediatrica, Fondazione MBBM, ASST Monza Ospedale San Gerardo, 20900, Monza, Italy
| | | | - Gabriella Maria Squeo
- Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013, Foggia, Italy
| | - Giuseppe Merla
- Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013, Foggia, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
| | - Bruno Dallapiccola
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Zeynep Tumer
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshopsitalet, 2600, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | | | - Manuela Priolo
- Medical and Laboratory Genetics, Antonio Cardarelli Hospital, 80131, Naples, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy.
| |
Collapse
|
28
|
Pagnamenta AT, Yu J, Walker S, Noble AJ, Lord J, Dutta P, Hashim M, Camps C, Green H, Devaiah S, Nashef L, Parr J, Fratter C, Ibnouf Hussein R, Lindsay SJ, Lalloo F, Banos-Pinero B, Evans D, Mallin L, Waite A, Evans J, Newman A, Allen Z, Perez-Becerril C, Ryan G, Hart R, Taylor J, Bedenham T, Clement E, Blair E, Hay E, Forzano F, Higgs J, Canham N, Majumdar A, McEntagart M, Lahiri N, Stewart H, Smithson S, Calpena E, Jackson A, Banka S, Titheradge H, McGowan R, Rankin J, Shaw-Smith C, Evans DG, Burghel GJ, Smith MJ, Anderson E, Madhu R, Firth H, Ellard S, Brennan P, Anderson C, Taupin D, Rogers MT, Cook JA, Durkie M, East JE, Fowler D, Wilson L, Igbokwe R, Gardham A, Tomlinson I, Baralle D, Uhlig HH, Taylor JC. The impact of inversions across 33,924 families with rare disease from a national genome sequencing project. Am J Hum Genet 2024; 111:1140-1164. [PMID: 38776926 PMCID: PMC11179413 DOI: 10.1016/j.ajhg.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Detection of structural variants (SVs) is currently biased toward those that alter copy number. The relative contribution of inversions toward genetic disease is unclear. In this study, we analyzed genome sequencing data for 33,924 families with rare disease from the 100,000 Genomes Project. From a database hosting >500 million SVs, we focused on 351 genes where haploinsufficiency is a confirmed disease mechanism and identified 47 ultra-rare rearrangements that included an inversion (24 bp to 36.4 Mb, 20/47 de novo). Validation utilized a number of orthogonal approaches, including retrospective exome analysis. RNA-seq data supported the respective diagnoses for six participants. Phenotypic blending was apparent in four probands. Diagnostic odysseys were a common theme (>50 years for one individual), and targeted analysis for the specific gene had already been performed for 30% of these individuals but with no findings. We provide formal confirmation of a European founder origin for an intragenic MSH2 inversion. For two individuals with complex SVs involving the MECP2 mutational hotspot, ambiguous SV structures were resolved using long-read sequencing, influencing clinical interpretation. A de novo inversion of HOXD11-13 was uncovered in a family with Kantaputra-type mesomelic dysplasia. Lastly, a complex translocation disrupting APC and involving nine rearranged segments confirmed a clinical diagnosis for three family members and resolved a conundrum for a sibling with a single polyp. Overall, inversions play a small but notable role in rare disease, likely explaining the etiology in around 1/750 families across heterogeneous clinical cohorts.
Collapse
Affiliation(s)
- Alistair T Pagnamenta
- Oxford Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Jing Yu
- Oxford Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford, UK; Novo Nordisk Oxford Research Centre, Oxford, UK
| | | | - Alexandra J Noble
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, UK
| | - Jenny Lord
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
| | - Prasun Dutta
- Oxford Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Mona Hashim
- Oxford Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Carme Camps
- Oxford Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Hannah Green
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Smrithi Devaiah
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Lina Nashef
- Department of Neurology, King's College Hospital, London, UK
| | - Jason Parr
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Carl Fratter
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Rana Ibnouf Hussein
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Sarah J Lindsay
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Fiona Lalloo
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Benito Banos-Pinero
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - David Evans
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Lucy Mallin
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Adrian Waite
- Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, UK
| | - Julie Evans
- Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, UK
| | - Andrew Newman
- The All Wales Medical Genomics Service, University Hospital of Wales, Cardiff, UK
| | - Zoe Allen
- North Thames Rare and Inherited Disease Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Cristina Perez-Becerril
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Gavin Ryan
- West Midlands Regional Genetics Laboratory, Central and South Genomic Laboratory Hub, Birmingham, UK
| | - Rachel Hart
- Liverpool Centre for Genomic Medicine, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - John Taylor
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Tina Bedenham
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Emma Clement
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ed Blair
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Eleanor Hay
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Francesca Forzano
- Clinical Genetics Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jenny Higgs
- Liverpool Centre for Genomic Medicine, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Natalie Canham
- Liverpool Centre for Genomic Medicine, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Anirban Majumdar
- Department of Paediatric Neurology, Bristol Children's Hospital, Bristol, UK
| | - Meriel McEntagart
- SW Thames Centre for Genomic Medicine, University of London & St George's University Hospitals NHS Foundation Trust, St George's, London, UK
| | - Nayana Lahiri
- SW Thames Centre for Genomic Medicine, University of London & St George's University Hospitals NHS Foundation Trust, St George's, London, UK
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sarah Smithson
- Department of Clinical Genetics, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Eduardo Calpena
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Unidad CIBERER (CB06/07/1030), Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Adam Jackson
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hannah Titheradge
- Department of Clinical Genetics, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Ruth McGowan
- West of Scotland Centre for Genomic Medicine, Glasgow, UK
| | - Julia Rankin
- Department of Clinical Genetics, Royal Devon University Healthcare NHS Trust, Exeter, UK
| | - Charles Shaw-Smith
- Department of Clinical Genetics, Royal Devon University Healthcare NHS Trust, Exeter, UK
| | - D Gareth Evans
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - George J Burghel
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Miriam J Smith
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Emily Anderson
- Liverpool Centre for Genomic Medicine, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Rajesh Madhu
- Paediatric Neurosciences Department, Alder Hey Children's Hospital NHS Foundation Trust, Liverpool, UK
| | - Helen Firth
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Sian Ellard
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Paul Brennan
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle University, Newcastle, UK
| | - Claire Anderson
- Canberra Clinical Genomics, Canberra Health Services and The Australian National University, Canberra, ACT, Australia
| | - Doug Taupin
- Cancer Research, Canberra Hospital, Canberra, ACT, Australia
| | - Mark T Rogers
- The All Wales Medical Genomics Service, University Hospital of Wales, Cardiff, UK
| | - Jackie A Cook
- Department of Clinical Genetics, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Miranda Durkie
- Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust, North East and Yorkshire Genomic Laboratory Hub, Sheffield, UK
| | - James E East
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, UK
| | - Darren Fowler
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Louise Wilson
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Rebecca Igbokwe
- Department of Clinical Genetics, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Alice Gardham
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ian Tomlinson
- Department of Oncology, University of Oxford, Oxford, UK
| | - Diana Baralle
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Holm H Uhlig
- Oxford Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, UK
| | - Jenny C Taylor
- Oxford Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
29
|
Vos N, Haghshenas S, van der Laan L, Russel PKM, Rooney K, Levy MA, Relator R, Kerkhof J, McConkey H, Maas SM, Vissers LELM, de Vries BBA, Pfundt R, Elting MW, van Hagen JM, Verbeek NE, Jongmans MCJ, Lakeman P, Rumping L, Bosch DGM, Vitobello A, Thauvin-Robinet C, Faivre L, Nambot S, Garde A, Willems M, Genevieve D, Nicolas G, Busa T, Toutain A, Gérard M, Bizaoui V, Isidor B, Merla G, Accadia M, Schwartz CE, Ounap K, Hoffer MJV, Nezarati MM, van den Boogaard MJH, Tedder ML, Rogers C, Brusco A, Ferrero GB, Spodenkiewicz M, Sidlow R, Mussa A, Trajkova S, McCann E, Mroczkowski HJ, Jansen S, Donker-Kaat L, Duijkers FAM, Stuurman KE, Mannens MMAM, Alders M, Henneman P, White SM, Sadikovic B, van Haelst MM. The detection of a strong episignature for Chung-Jansen syndrome, partially overlapping with Börjeson-Forssman-Lehmann and White-Kernohan syndromes. Hum Genet 2024; 143:761-773. [PMID: 38787418 PMCID: PMC11186873 DOI: 10.1007/s00439-024-02679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Chung-Jansen syndrome is a neurodevelopmental disorder characterized by intellectual disability, behavioral problems, obesity and dysmorphic features. It is caused by pathogenic variants in the PHIP gene that encodes for the Pleckstrin homology domain-interacting protein, which is part of an epigenetic modifier protein complex. Therefore, we hypothesized that PHIP haploinsufficiency may impact genome-wide DNA methylation (DNAm). We assessed the DNAm profiles of affected individuals with pathogenic and likely pathogenic PHIP variants with Infinium Methylation EPIC arrays and report a specific and sensitive DNAm episignature biomarker for Chung-Jansen syndrome. In addition, we observed similarities between the methylation profile of Chung-Jansen syndrome and that of functionally related and clinically partially overlapping genetic disorders, White-Kernohan syndrome (caused by variants in DDB1 gene) and Börjeson-Forssman-Lehmann syndrome (caused by variants in PHF6 gene). Based on these observations we also proceeded to develop a common episignature biomarker for these disorders. These newly defined episignatures can be used as part of a multiclass episignature classifier for screening of affected individuals with rare disorders and interpretation of genetic variants of unknown clinical significance, and provide further insights into the common molecular pathophysiology of the clinically-related Chung-Jansen, Börjeson-Forssman-Lehmann and White-Kernohan syndromes.
Collapse
Affiliation(s)
- Niels Vos
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Liselot van der Laan
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Perle K M Russel
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
| | - Saskia M Maas
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Mariet W Elting
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Johanna M van Hagen
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Nienke E Verbeek
- Department of Genetics, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Marjolijn C J Jongmans
- Department of Genetics, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Phillis Lakeman
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Lynne Rumping
- Center for Medical Genetics, Antwerp University Hospital, University of Antwerp, Drie Eikenstraat 655, 2650, Edegem, Belgium
| | - Danielle G M Bosch
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Antonio Vitobello
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, FHU-TRANSLAD, Unité Fonctionnelle Innovation en Diagnostic Génomique Des Maladies Rares, 21000, Dijon, France
| | - Christel Thauvin-Robinet
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, FHU-TRANSLAD, Unité Fonctionnelle Innovation en Diagnostic Génomique Des Maladies Rares, 21000, Dijon, France
- CHU Dijon Bourgogne, Centre de Génétique, Centre de Référence Maladies Rares «Déficiences Intellectuelles de Causes Rares», FHU-TRANSLAD, Dijon, France
| | - Laurence Faivre
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, Centre de Génétique, Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs», FHU-TRANSLAD, Dijon, France
| | - Sophie Nambot
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, FHU-TRANSLAD, Unité Fonctionnelle Innovation en Diagnostic Génomique Des Maladies Rares, 21000, Dijon, France
- CHU Dijon Bourgogne, Centre de Génétique, Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs», FHU-TRANSLAD, Dijon, France
| | - Aurore Garde
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, Centre de Génétique, Centre de Référence Maladies Rares «Déficiences Intellectuelles de Causes Rares», FHU-TRANSLAD, Dijon, France
| | - Marjolaine Willems
- INserm U1183, Department of Clinical Genetics, Montpellier University, 34090 CHU Montpellier, Montpellier, France
| | - David Genevieve
- INserm U1183, Department of Clinical Genetics, Montpellier University, 34090 CHU Montpellier, Montpellier, France
| | - Gaël Nicolas
- Inserm U1245 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, Univ Rouen Normandie, 76000, Rouen, France
| | - Tiffany Busa
- Department of Medical Genetics, Timone Hospital, Marseille, France
| | - Annick Toutain
- Genetics Department, University Hospital, UMR 1253, iBrain, University of Tours, Inserm, Tours, France
| | - Marion Gérard
- APHP, Department of Genetics, Robert Debré Hospital, 75019, Paris, France
| | - Varoona Bizaoui
- Clinical Genetics and Neurodevelopmental Disorders, Centre Hospitalier de L'Estran, 50170, Pontorson, France
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, 44000, Nantes, France
| | - Giuseppe Merla
- Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Foggia, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Maria Accadia
- Servizio di Genetica Medica, Ospedale Cardinale G. Panico, Tricase, LE, Italy
| | - Charles E Schwartz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Katrin Ounap
- Department of Clinical Genetics, Genetic and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Mariëtte J V Hoffer
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjan M Nezarati
- Genetics Program, North York General Hospital, Toronto, ON, M2K 1E1, Canada
| | | | | | | | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
- Unit of Medical Genetics, Città Della Salute e Della Scienza Hospital, Turin, Italy
| | - Giovanni B Ferrero
- Department of Clinical and Biological Science, University of Torino, Turin, Italy
| | | | - Richard Sidlow
- Department of Medical Genetics and Metabolism, Valley Children's Hospital, Madera, CA, USA
| | - Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, Turin, Italy
- Pediatric Clinical Genetics Unit, Regina Margherita Childrens' Hospital, Turin, Italy
| | - Slavica Trajkova
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Emma McCann
- Liverpool Center for Genomic Medicine, Liverpool Women's Hospital, Liverpool, UK
| | - Henry J Mroczkowski
- Department of Pediatrics, Le Bonheur Children's Hospital, Memphis, TN, USA
- Division of Genetics, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sandra Jansen
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Laura Donker-Kaat
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Floor A M Duijkers
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Kyra E Stuurman
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marcel M A M Mannens
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Mariëlle Alders
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Peter Henneman
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada.
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada.
| | - Mieke M van Haelst
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands.
- Amsterdam UMC, Department of Paediatrics, Emma Children's Hospital, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Caraffi SG, van der Laan L, Rooney K, Trajkova S, Zuntini R, Relator R, Haghshenas S, Levy MA, Baldo C, Mandrile G, Lauzon C, Cordelli DM, Ivanovski I, Fetta A, Sukarova E, Brusco A, Pavinato L, Pullano V, Zollino M, McConkey H, Tartaglia M, Ferrero GB, Sadikovic B, Garavelli L. Identification of the DNA methylation signature of Mowat-Wilson syndrome. Eur J Hum Genet 2024; 32:619-629. [PMID: 38351292 PMCID: PMC11153515 DOI: 10.1038/s41431-024-01548-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 06/07/2024] Open
Abstract
Mowat-Wilson syndrome (MOWS) is a rare congenital disease caused by haploinsufficiency of ZEB2, encoding a transcription factor required for neurodevelopment. MOWS is characterized by intellectual disability, epilepsy, typical facial phenotype and other anomalies, such as short stature, Hirschsprung disease, brain and heart defects. Despite some recognizable features, MOWS rarity and phenotypic variability may complicate its diagnosis, particularly in the neonatal period. In order to define a novel diagnostic biomarker for MOWS, we determined the genome-wide DNA methylation profile of DNA samples from 29 individuals with confirmed clinical and molecular diagnosis. Through multidimensional scaling and hierarchical clustering analysis, we identified and validated a DNA methylation signature involving 296 differentially methylated probes as part of the broader MOWS DNA methylation profile. The prevalence of hypomethylated CpG sites agrees with the main role of ZEB2 as a transcriptional repressor, while differential methylation within the ZEB2 locus supports the previously proposed autoregulation ability. Correlation studies compared the MOWS cohort with 56 previously described DNA methylation profiles of other neurodevelopmental disorders, further validating the specificity of this biomarker. In conclusion, MOWS DNA methylation signature is highly sensitive and reproducible, providing a useful tool to facilitate diagnosis.
Collapse
Grants
- MNESYS (PE0000006) Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- 20203P8C3X Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- FOE 2020 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- RCR-2022-23682289 Ministero della Salute (Ministry of Health, Italy)
- PNRR-MR1-2022-12376811 Ministero della Salute (Ministry of Health, Italy)
- OGI-188 Ontario Genomics Institute (OGI)
- Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
Collapse
Affiliation(s)
| | - Liselot van der Laan
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Slavica Trajkova
- Department of Medical Sciences, University of Torino, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126, Torino, Italy
| | - Roberta Zuntini
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42122, Reggio Emilia, Italy
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Chiara Baldo
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Giorgia Mandrile
- Medical Genetics Unit and Thalassemia Center, San Luigi University Hospital, University of Torino, 10043, Orbassano (Torino), Italy
| | - Carolyn Lauzon
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Duccio Maria Cordelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'Età Pediatrica, 40139, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy
| | - Ivan Ivanovski
- Institute of Medical Genetics, University of Zürich, Zürich, Switzerland
| | - Anna Fetta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'Età Pediatrica, 40139, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy
| | - Elena Sukarova
- Department of Endocrinology and Genetics, University Clinic for Pediatric Diseases, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, 1000, Skopje, Republic of North Macedonia
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Torino, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, Italy
| | - Lisa Pavinato
- Department of Medical Sciences, University of Torino, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126, Torino, Italy
| | - Verdiana Pullano
- Department of Medical Sciences, University of Torino, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126, Torino, Italy
| | - Marcella Zollino
- Institute of Genomic Medicine, Department of Life Sciences and Public Health, 'Sacro Cuore' Catholic University of Rome, 00168, Rome, Italy
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | | | - Bekim Sadikovic
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada.
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.
| | - Livia Garavelli
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42122, Reggio Emilia, Italy.
| |
Collapse
|
31
|
Kernohan KD, Boycott KM. The expanding diagnostic toolbox for rare genetic diseases. Nat Rev Genet 2024; 25:401-415. [PMID: 38238519 DOI: 10.1038/s41576-023-00683-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 05/23/2024]
Abstract
Genomic technologies, such as targeted, exome and short-read genome sequencing approaches, have revolutionized the care of patients with rare genetic diseases. However, more than half of patients remain without a diagnosis. Emerging approaches from research-based settings such as long-read genome sequencing and optical genome mapping hold promise for improving the identification of disease-causal genetic variants. In addition, new omic technologies that measure the transcriptome, epigenome, proteome or metabolome are showing great potential for variant interpretation. As genetic testing options rapidly expand, the clinical community needs to be mindful of their individual strengths and limitations, as well as remaining challenges, to select the appropriate diagnostic test, correctly interpret results and drive innovation to address insufficiencies. If used effectively - through truly integrative multi-omics approaches and data sharing - the resulting large quantities of data from these established and emerging technologies will greatly improve the interpretative power of genetic and genomic diagnostics for rare diseases.
Collapse
Affiliation(s)
- Kristin D Kernohan
- CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada
- Newborn Screening Ontario, CHEO, Ottawa, ON, Canada
| | - Kym M Boycott
- CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada.
- Department of Genetics, CHEO, Ottawa, ON, Canada.
| |
Collapse
|
32
|
Harris JR, Gao CW, Britton JF, Applegate CD, Bjornsson HT, Fahrner JA. Five years of experience in the Epigenetics and Chromatin Clinic: what have we learned and where do we go from here? Hum Genet 2024; 143:607-624. [PMID: 36952035 PMCID: PMC10034257 DOI: 10.1007/s00439-023-02537-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/20/2023] [Indexed: 03/24/2023]
Abstract
The multidisciplinary Epigenetics and Chromatin Clinic at Johns Hopkins provides comprehensive medical care for individuals with rare disorders that involve disrupted epigenetics. Initially centered on classical imprinting disorders, the focus shifted to the rapidly emerging group of genetic disorders resulting from pathogenic germline variants in epigenetic machinery genes. These are collectively called the Mendelian disorders of the epigenetic machinery (MDEMs), or more broadly, Chromatinopathies. In five years, 741 clinic visits have been completed for 432 individual patients, with 153 having confirmed epigenetic diagnoses. Of these, 115 individuals have one of 26 MDEMs with every single one exhibiting global developmental delay and/or intellectual disability. This supports prior observations that intellectual disability is the most common phenotypic feature of MDEMs. Additional common phenotypes in our clinic include growth abnormalities and neurodevelopmental issues, particularly hypotonia, attention-deficit/hyperactivity disorder (ADHD), and anxiety, with seizures and autism being less common. Overall, our patient population is representative of the broader group of MDEMs and includes mostly autosomal dominant disorders impacting writers more so than erasers, readers, and remodelers of chromatin marks. There is an increased representation of dual function components with a reader and an enzymatic domain. As expected, diagnoses were made mostly by sequencing but were aided in some cases by DNA methylation profiling. Our clinic has helped to facilitate the discovery of two new disorders, and our providers are actively developing and implementing novel therapeutic strategies for MDEMs. These data and our high follow-up rate of over 60% suggest that we are achieving our mission to diagnose, learn from, and provide optimal care for our patients with disrupted epigenetics.
Collapse
Affiliation(s)
- Jacqueline R Harris
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kennedy Krieger Institute, Baltimore, MD, USA
| | - Christine W Gao
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Johns Hopkins Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacquelyn F Britton
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carolyn D Applegate
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hans T Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Landspitali University Hospital, Reykjavik, Iceland
| | - Jill A Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
33
|
Kawai T, Kinoshita S, Takayama Y, Ohnishi E, Kamura H, Kojima K, Kikuchi H, Terao M, Sugawara T, Migita O, Kagami M, Isojima T, Yamaguchi Y, Wakui K, Ohashi H, Shimizu K, Mizuno S, Okamoto N, Fukushima Y, Takada F, Kosaki K, Takada S, Akutsu H, Ura K, Nakabayashi K, Hata K. Loss of function in NSD2 causes DNA methylation signature similar to that in Wolf-Hirschhorn syndrome. GENETICS IN MEDICINE OPEN 2024; 2:101838. [PMID: 39669601 PMCID: PMC11613750 DOI: 10.1016/j.gimo.2024.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 12/14/2024]
Abstract
Purpose Wolf-Hirschhorn syndrome (WHS), a contiguous gene syndrome caused by heterozygous deletions of the distal short arm of chromosome 4 that includes NSD2, reportedly causes specific DNA methylation signatures in peripheral blood cells. However, the genomic loci responsible for these signatures have not been elucidated. The present study aims to define the loci underlying WHS-related DNA methylation signatures and explore the role of NSD2 in these signatures. Methods We conducted genome-wide methylation analysis of individuals with WHS or NSD2 variants using an array method. We studied genome-edited knockin mice and induced pluripotent stem cells to explore the function of NSD2 variants. Results Three undiagnosed cases with NSD2 variants showed WHS-related DNA methylation signatures. In patient-derived induced pluripotent stem cells and genome-edited knockin mice, these variants cause NSD2 loss of function, respectively. The p.Pro905Leu variant caused decreased Nsd2 protein levels and altered histone H3-lysine 36 dimethylation levels similarly to what was observed in Nsd2 knockout mice. Nsd2 knockout and p.Pro905Leu knockin mice exhibited common DNA methylation changes. Conclusion These results revealed that WHS-related DNA methylation signatures are dependent on NSD2 dysfunction and could be useful in identifying NSD2 variants of uncertain significance.
Collapse
Affiliation(s)
- Tomoko Kawai
- Division of Fetal Development, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shiori Kinoshita
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yuka Takayama
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Eriko Ohnishi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiromi Kamura
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuaki Kojima
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroki Kikuchi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Miho Terao
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tohru Sugawara
- Department of Reproductive Medicine, Center for Regenerative Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Ohsuke Migita
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Laboratory Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsuyoshi Isojima
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | | | - Keiko Wakui
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hirofumi Ohashi
- Division of Medical Genetics, Saitama Children’s Medical Center, Saitama, Japan
| | - Kenji Shimizu
- Division of Medical Genetics, Saitama Children’s Medical Center, Saitama, Japan
| | - Seiji Mizuno
- Department of Pediatrics, Central Hospital, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Yoshimitsu Fukushima
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Fumio Takada
- Department of Medical Genetics and Genomics, Kitasato University Graduate School of Medical Sciences, Kanagawa, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hidenori Akutsu
- Department of Reproductive Medicine, Center for Regenerative Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kiyoe Ura
- Laboratory of Chromatin Metabolism and Epigenetics, Department of Biology, Chiba University, Chiba, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Human Molecular Genetics, Gunma University Graduate School of Medicine, Gunma, Japan
| |
Collapse
|
34
|
Olivucci G, Iovino E, Innella G, Turchetti D, Pippucci T, Magini P. Long read sequencing on its way to the routine diagnostics of genetic diseases. Front Genet 2024; 15:1374860. [PMID: 38510277 PMCID: PMC10951082 DOI: 10.3389/fgene.2024.1374860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The clinical application of technological progress in the identification of DNA alterations has always led to improvements of diagnostic yields in genetic medicine. At chromosome side, from cytogenetic techniques evaluating number and gross structural defects to genomic microarrays detecting cryptic copy number variants, and at molecular level, from Sanger method studying the nucleotide sequence of single genes to the high-throughput next-generation sequencing (NGS) technologies, resolution and sensitivity progressively increased expanding considerably the range of detectable DNA anomalies and alongside of Mendelian disorders with known genetic causes. However, particular genomic regions (i.e., repetitive and GC-rich sequences) are inefficiently analyzed by standard genetic tests, still relying on laborious, time-consuming and low-sensitive approaches (i.e., southern-blot for repeat expansion or long-PCR for genes with highly homologous pseudogenes), accounting for at least part of the patients with undiagnosed genetic disorders. Third generation sequencing, generating long reads with improved mappability, is more suitable for the detection of structural alterations and defects in hardly accessible genomic regions. Although recently implemented and not yet clinically available, long read sequencing (LRS) technologies have already shown their potential in genetic medicine research that might greatly impact on diagnostic yield and reporting times, through their translation to clinical settings. The main investigated LRS application concerns the identification of structural variants and repeat expansions, probably because techniques for their detection have not evolved as rapidly as those dedicated to single nucleotide variants (SNV) identification: gold standard analyses are karyotyping and microarrays for balanced and unbalanced chromosome rearrangements, respectively, and southern blot and repeat-primed PCR for the amplification and sizing of expanded alleles, impaired by limited resolution and sensitivity that have not been significantly improved by the advent of NGS. Nevertheless, more recently, with the increased accuracy provided by the latest product releases, LRS has been tested also for SNV detection, especially in genes with highly homologous pseudogenes and for haplotype reconstruction to assess the parental origin of alleles with de novo pathogenic variants. We provide a review of relevant recent scientific papers exploring LRS potential in the diagnosis of genetic diseases and its potential future applications in routine genetic testing.
Collapse
Affiliation(s)
- Giulia Olivucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | - Emanuela Iovino
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giovanni Innella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Daniela Turchetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tommaso Pippucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pamela Magini
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
35
|
Karimi K, Mol MO, Haghshenas S, Relator R, Levy MA, Kerkhof J, McConkey H, Brooks A, Zonneveld-Huijssoon E, Gerkes EH, Tedder ML, Vissers L, Salzano E, Piccione M, Asaftei SD, Carli D, Mussa A, Shukarova-Angelovska E, Trajkova S, Brusco A, Merla G, Alders MM, Bouman A, Sadikovic B. Identification of DNA methylation episignature for the intellectual developmental disorder, autosomal dominant 21 syndrome, caused by variants in the CTCF gene. Genet Med 2024; 26:101041. [PMID: 38054406 DOI: 10.1016/j.gim.2023.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
PURPOSE The main objective of this study was to assess clinical features and genome-wide DNA methylation profiles in individuals affected by intellectual developmental disorder, autosomal dominant 21 (IDD21) syndrome, caused by variants in the CCCTC-binding factor (CTCF) gene. METHODS DNA samples were extracted from peripheral blood of 16 individuals with clinical features and genetic findings consistent with IDD21. DNA methylation analysis was performed using the Illumina Infinium Methylation EPIC Bead Chip microarrays. The methylation levels were fitted in a multivariate linear regression model to identify the differentially methylated probes. A binary support vector machine classification model was constructed to differentiate IDD21 samples from controls. RESULTS We identified a highly specific, reproducible, and sensitive episignature associated with CTCF variants. Six variants of uncertain significance were tested, of which 2 mapped to the IDD21 episignature and clustered alongside IDD21 cases in both heatmap and multidimensional scaling plots. Comparison of the genomic DNA methylation profile of IDD21 with that of 56 other neurodevelopmental disorders provided insights into the underlying molecular pathophysiology of this disorder. CONCLUSION The robust and specific CTCF/IDD21 episignature expands the growing list of neurodevelopmental disorders with distinct DNA methylation profiles, which can be applied as supporting evidence in variant classification.
Collapse
Affiliation(s)
- Karim Karimi
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Canada
| | - Merel O Mol
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Canada
| | - Alice Brooks
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Evelien Zonneveld-Huijssoon
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Erica H Gerkes
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Lisenka Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Emanuela Salzano
- Medical Genetics Unit, AOOR Villa Sofia-Cervello Hospitals, Palermo, Italy
| | - Maria Piccione
- Medical Genetics Unit, AOOR Villa Sofia-Cervello Hospitals, Palermo, Italy; Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Sebastian Dorin Asaftei
- Pediatric Onco-Hematology, Regina Margherita Children's Hospital, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Diana Carli
- Department of Medical Sciences, University of Turin, Turin, Italy; Immunogenetics and Transplant Biology Service, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Alessandro Mussa
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Elena Shukarova-Angelovska
- Department of Endocrinology and Genetics, University Clinic for Children's Diseases, Medical Faculty, University Sv. Kiril i Metodij, Skopje, North Macedonia
| | - Slavica Trajkova
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Turin, Turin, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Giuseppe Merla
- Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (Foggia), Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Marielle M Alders
- Amsterdam UMC, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Arjan Bouman
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Canada.
| |
Collapse
|
36
|
Kaur A, Chaudhry C, Kaur P, Daniel R, Srivastava P. Pattern Recognition of Common Multiple Congenital Malformation Syndromes with Underlying Chromatinopathy. J Pediatr Genet 2024; 13:6-14. [PMID: 38567171 PMCID: PMC10984715 DOI: 10.1055/s-0042-1748019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/07/2022] [Indexed: 10/17/2022]
Abstract
Chromatinopathy is an emerging category of multiple malformation syndromes caused by disruption in global transcriptional regulation with imbalances in the chromatin states (i.e., open or closed chromatin). These syndromes are caused by pathogenic variants in genes coding for the writers, erasers, readers, and remodelers of the epigenetic machinery. Majority of these disorders (93%) show neurological dysfunction in the form of intellectual disability. Other overlapping features are growth abnormalities, limb deformities, and immune dysfunction. In this study, we describe a series of children with six common chromatinopathy syndromes with an aim to develop pattern recognition of this emerging category of multiple malformation syndromes.
Collapse
Affiliation(s)
- Anupriya Kaur
- Department of Paediatrics, Genetic Metabolic Unit, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Chakshu Chaudhry
- Department of Paediatrics, Genetic Metabolic Unit, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Parminder Kaur
- Department of Paediatrics, Genetic Metabolic Unit, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Roshan Daniel
- Department of Paediatrics, Genetic Metabolic Unit, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Priyanka Srivastava
- Department of Paediatrics, Genetic Metabolic Unit, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
37
|
van der Laan L, Karimi K, Rooney K, Lauffer P, McConkey H, Caro P, Relator R, Levy MA, Bhai P, Mignot C, Keren B, Briuglia S, Sobering AK, Li D, Vissers LELM, Dingemans AJM, Valenzuela I, Verberne EA, Misra-Isrie M, Zwijnenburg PJG, Waisfisz Q, Alders M, Sailer S, Schaaf CP, Mannens MMAM, Sadikovic B, van Haelst MM, Henneman P. DNA methylation episignature, extension of the clinical features, and comparative epigenomic profiling of Hao-Fountain syndrome caused by variants in USP7. Genet Med 2024; 26:101050. [PMID: 38126281 DOI: 10.1016/j.gim.2023.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
PURPOSE Hao-Fountain syndrome (HAFOUS) is a neurodevelopmental disorder caused by pathogenic variants in USP7. HAFOUS is characterized by developmental delay, intellectual disability, speech delay, behavioral abnormalities, autism spectrum disorder, seizures, hypogonadism, and mild dysmorphic features. We investigated the phenotype of 18 participants with HAFOUS and performed DNA methylation (DNAm) analysis, aiming to generate a diagnostic biomarker. Furthermore, we performed comparative analysis with known episignatures to gain more insight into the molecular pathophysiology of HAFOUS. METHODS We assessed genomic DNAm profiles of 18 individuals with pathogenic variants and variants of uncertain significance (VUS) in USP7 to map and validate a specific episignature. The comparison between the USP7 cohort and 56 rare genetic disorders with earlier reported DNAm episignatures was performed with statistical and functional correlation. RESULTS We mapped a sensitive and specific DNAm episignature for pathogenic variants in USP7 and utilized this to reclassify the VUS. Comparative epigenomic analysis showed evidence of HAFOUS similarity to a number of other rare genetic episignature disorders. CONCLUSION We discovered a sensitive and specific DNAm episignature as a robust diagnostic biomarker for HAFOUS that enables VUS reclassification in USP7. We also expand the phenotypic spectrum of 9 new and 5 previously reported individuals with HAFOUS.
Collapse
Affiliation(s)
- Liselot van der Laan
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Karim Karimi
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Peter Lauffer
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Pilar Caro
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada
| | - Pratibha Bhai
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada
| | - Cyril Mignot
- APHP Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Hôpital Armand Trousseau, Paris, France AND Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris, France
| | - Boris Keren
- APHP Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Silvana Briuglia
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Andrew K Sobering
- AU/UGA Medical Partnership Campus of the Medical College of Georgia, Athens, Georgia; Windward Islands Research and Education Foundation, True Blue, St. George's, Grenada; St. George's University School of Medicine, Department of Biochemistry, Grenada
| | - Dong Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania Perelman school of Medicine, Philadelphia, PA
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Irene Valenzuela
- Àrea de Genètica Clínica i Malalties Minoritàries, Hospital Vall d'Hebron, Barcelona, Spain
| | - Eline A Verberne
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mala Misra-Isrie
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Petra J G Zwijnenburg
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Quinten Waisfisz
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mariëlle Alders
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sebastian Sailer
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Marcel M A M Mannens
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.
| | - Mieke M van Haelst
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Henneman
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
38
|
Bouhamdani N, McConkey H, Leblanc A, Sadikovic B, Amor MB. Diagnostic utility of DNA methylation episignature analysis for early diagnosis of KMT2B-related disorders: case report. Front Genet 2024; 15:1346044. [PMID: 38425714 PMCID: PMC10902455 DOI: 10.3389/fgene.2024.1346044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The lysine methyltransferase 2B (KMT2B) gene product is important for epigenetic modifications associated with active gene transcription in normal development and in maintaining proper neural function. Pathogenic variants in KMT2B have been associated with childhood-onset Dystonia-28 and Intellectual developmental disorder, autosomal dominant 68 (MRD 68) for cases of neurodevelopmental impairment without dystonia (DYT28; OMIM 617284 and MRD68; OMIM 619934, respectively). Since its first description in 2016, approximately one hundred KMT2B genetic variants have been reported with heterogeneous phenotypes, including atypical patterns of dystonia evolution and non-dystonic neurodevelopmental phenotypes. KMT2B-related disorders share many overlapping phenotypic characteristics with other neurodevelopmental disorders and delayed dystonia, that can appear later in childhood, often delaying clinical diagnosis. Furthermore, conventional genetic testing may not always provide actionable information (e.g., gene panel selection based on early clinical presentation or variants of uncertain significance), which prevents patients and families from obtaining early access to treatments and support. Herein, we describe the early diagnosis of KMT2B-related neurodevelopmental disorder by DNA methylation episignature testing in a 4-year-old patient without features of dystonia at diagnosis, which is reported to develop in more than 80% of KMT2B-related disorder cases. The proband, a 4-year-old female of Jewish-Israeli descent, presented with speech delay, microcephaly, poor weight gain, attention-deficit and hyperactivity disorder, dysmorphism, intellectual disabilities and joint hyperlaxity, but presented no signs of dystonia at initial evaluation. Episignature screening in this pre-symptomatic patient enabled accurate genetic diagnosis and timely and actionable intervention earlier in the natural history of Childhood-onset Dystonia-28.
Collapse
Affiliation(s)
- Nadia Bouhamdani
- Vitalité Health Network, Moncton, NB, Canada
- Faculty of medicine and health sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Formation Médicale du Nouveau-Brunswick, Université de Moncton, Moncton, NB, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry Western University, London, ON, Canada
| | - Amélie Leblanc
- Vitalité Health Network, Moncton, NB, Canada
- Faculty of medicine and health sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Formation Médicale du Nouveau-Brunswick, Université de Moncton, Moncton, NB, Canada
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry Western University, London, ON, Canada
| | - Mouna Ben Amor
- Vitalité Health Network, Moncton, NB, Canada
- Faculty of medicine and health sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Formation Médicale du Nouveau-Brunswick, Université de Moncton, Moncton, NB, Canada
| |
Collapse
|
39
|
Sabbagh Q, Haghshenas S, Piard J, Trouvé C, Amiel J, Attié-Bitach T, Balci T, Barat-Houari M, Belonis A, Boute O, Brightman DS, Bruel AL, Caraffi SG, Chatron N, Collet C, Dufour W, Edery P, Fong CT, Fusco C, Gatinois V, Gouy E, Guerrot AM, Heide S, Joshi A, Karp N, Keren B, Lesieur-Sebellin M, Levy J, Levy MA, Lozano C, Lyonnet S, Margot H, Marzin P, McConkey H, Michaud V, Nicolas G, Nizard M, Paulet A, Peluso F, Pernin V, Perrin L, Philippe C, Prasad C, Prasad M, Relator R, Rio M, Rondeau S, Ruault V, Ruiz-Pallares N, Sanchez E, Shears D, Siu VM, Sorlin A, Tedder M, Tharreau M, Mau-Them FT, van der Laan L, Van Gils J, Verloes A, Whalen S, Willems M, Yauy K, Zuntini R, Kerkhof J, Sadikovic B, Geneviève D. Clinico-biological refinement of BCL11B-related disorder and identification of an episignature: A series of 20 unreported individuals. Genet Med 2024; 26:101007. [PMID: 37860968 DOI: 10.1016/j.gim.2023.101007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
PURPOSE BCL11B-related disorder (BCL11B-RD) arises from rare genetic variants within the BCL11B gene, resulting in a distinctive clinical spectrum encompassing syndromic neurodevelopmental disorder, with or without intellectual disability, associated with facial features and impaired immune function. This study presents an in-depth clinico-biological analysis of 20 newly reported individuals with BCL11B-RD, coupled with a characterization of genome-wide DNA methylation patterns of this genetic condition. METHODS Through an international collaboration, clinical and molecular data from 20 individuals were systematically gathered, and a comparative analysis was conducted between this series and existing literature. We further scrutinized peripheral blood DNA methylation profile of individuals with BCL11B-RD, contrasting them with healthy controls and other neurodevelopmental disorders marked by established episignature. RESULTS Our findings unveil rarely documented clinical manifestations, notably including Rubinstein-Taybi-like facial features, craniosynostosis, and autoimmune disorders, all manifesting within the realm of BCL11B-RD. We refine the intricacies of T cell compartment alterations of BCL11B-RD, revealing decreased levels naive CD4+ T cells and recent thymic emigrants while concurrently observing an elevated proportion of effector-memory expressing CD45RA CD8+ T cells (TEMRA). Finally, a distinct DNA methylation episignature exclusive to BCL11B-RD is unveiled. CONCLUSION This study serves to enrich our comprehension of the clinico-biological landscape of BCL11B-RD, potentially furnishing a more precise framework for diagnosis and follow-up of individuals carrying pathogenic BCL11B variant. Moreover, the identification of a unique DNA methylation episignature offers a valuable diagnosis tool for BCL11B-RD, thereby facilitating routine clinical practice by empowering physicians to reevaluate variants of uncertain significance within the BCL11B gene.
Collapse
Affiliation(s)
- Quentin Sabbagh
- Montpellier University, Inserm UMR1183, Centre de Référence « Anomalies du Développement et Syndromes Malformatifs », ERN-ITHACA, Department of Clinical Genetics, University Hospital of Montpellier, Montpellier, France
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, Londo, ON N6A 5W9, Canada
| | - Juliette Piard
- University Hospital of Besançon, Department of Clinical Genetics, Besançon, France
| | - Chloé Trouvé
- University Hospital of Besançon, Department of Clinical Genetics, Besançon, France
| | - Jeanne Amiel
- Paris Cité University, Necker-Enfants Malades University Hospital, Department of Genomic Medicine of Rare Diseases, Imagine Institute, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Tania Attié-Bitach
- Paris Cité University, Necker-Enfants Malades University Hospital, Department of Genomic Medicine of Rare Diseases, Imagine Institute, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Tugce Balci
- University of Western Ontario, London Health Sciences Centre, Department of Pediatrics, London, Ontario, Canada
| | - Mouna Barat-Houari
- University Hospital of Montpellier, Department of Molecular Genetics and Cytogenomics, Montpellier, France
| | - Alyce Belonis
- Cincinnati Children's Hospital Medical Center, Division of Human Genetics, Cincinnati, OH; University of Cincinnati College of Medicine, Department of Pediatrics, Cincinnati, OH
| | - Odile Boute
- University Hospital of Lille, Department of Clinical Genetics, Lille, France
| | - Diana S Brightman
- Cincinnati Children's Hospital Medical Center, Division of Human Genetics, Cincinnati, OH
| | - Ange-Line Bruel
- University Hospital of Dijon, Laboratory of Molecular Genetics and Cytogenetics, Inserm UMR 1231 GAD, Dijon, France
| | | | - Nicolas Chatron
- University Hospital of Lyon, Laboratory of Medical Genetics, AURAGEN Platform, Lyon, France
| | - Corinne Collet
- Robert Debré University Hospital, Department of Clinical Genetics, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - William Dufour
- University Hospital of Lille, Department of Clinical Genetics, Lille, France
| | - Patrick Edery
- University Hospital of Lyon, Department of Clinical Genetics, Lyon, France
| | - Chin-To Fong
- University of Rochester, Department of Genetics, Rochester, NY
| | - Carlo Fusco
- Azienda USL-IRCCS di Reggio Emilia, Child Neurology and Psychiatry Unit, 42123 Reggio Emilia, Italy
| | - Vincent Gatinois
- University Hospital of Montpellier, Department of Molecular Genetics and Cytogenomics, Montpellier, France
| | - Evan Gouy
- University Hospital of Lyon, Department of Clinical Genetics, Lyon, France
| | - Anne-Marie Guerrot
- Rouen-Normandie University, University Hospital of Rouen, Department of Genetics, Reference Center for Developmental Disorders, Inserm UMR1245, F-76000 Rouen, France
| | - Solveig Heide
- Pitié-Salpêtrière University Hospital, Department of Clinical Genetics, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Aakash Joshi
- Churchill Hospital, Department of Clinical Genetics, ERN-ITHACA, Oxford, United Kingdom
| | - Natalya Karp
- University of Western Ontario, London Health Sciences Centre, Department of Pediatrics, London, Ontario, Canada
| | - Boris Keren
- Pitié-Salpêtrière University Hospital, Laboratory of Molecular Genetics and Cytogenetics, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Marion Lesieur-Sebellin
- Paris Cité University, Necker-Enfants Malades University Hospital, Department of Genomic Medicine of Rare Diseases, Imagine Institute, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jonathan Levy
- Robert Debré University Hospital, Laboratory of Cytogenetics, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, Londo, ON N6A 5W9, Canada
| | - Claire Lozano
- University Hospital of Montpellier, Department of Immunology, Montpellier, France
| | - Stanislas Lyonnet
- Paris Cité University, Necker-Enfants Malades University Hospital, Department of Genomic Medicine of Rare Diseases, Imagine Institute, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Henri Margot
- University of Bordeaux, University Hospital of Bordeaux, Department of Medical Genetics, MRGM Inserm UMR1211, F-33000 Bordeaux, France
| | - Pauline Marzin
- Paris Cité University, Necker-Enfants Malades University Hospital, Department of Genomic Medicine of Rare Diseases, Imagine Institute, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, Londo, ON N6A 5W9, Canada
| | - Vincent Michaud
- University of Bordeaux, University Hospital of Bordeaux, Department of Medical Genetics, MRGM Inserm UMR1211, F-33000 Bordeaux, France
| | - Gaël Nicolas
- Rouen-Normandie University, University Hospital of Rouen, Department of Genetics, Reference Center for Developmental Disorders, Inserm UMR1245, F-76000 Rouen, France
| | - Mevyn Nizard
- Necker-Enfants Malades University Hospital, Department of Pediatric Endocrinology, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Alix Paulet
- Paris Cité University, Necker-Enfants Malades University Hospital, Department of Genomic Medicine of Rare Diseases, Imagine Institute, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Francesca Peluso
- Azienda USL-IRCCS di Reggio Emilia, Medical Genetics Unit, 42123 Reggio Emilia, Italy
| | - Vincent Pernin
- University of Montpellier, Department of Nephrology, Montpellier, France
| | - Laurence Perrin
- Robert Debré University Hospital, Department of Clinical Genetics, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Christophe Philippe
- University Hospital of Dijon, Laboratory of Molecular Genetics and Cytogenetics, Inserm UMR 1231 GAD, Dijon, France; Hospital of Metz-Thionville, Mercy Hospital, Laboratory of Genetics, Metz, France
| | - Chitra Prasad
- University of Western Ontario, London Health Sciences Centre, Department of Pediatrics, London, Ontario, Canada
| | - Madhavi Prasad
- University of Western Ontario, London Health Sciences Centre, Department of Pediatrics, London, Ontario, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, Londo, ON N6A 5W9, Canada
| | - Marlène Rio
- Paris Cité University, Necker-Enfants Malades University Hospital, Department of Genomic Medicine of Rare Diseases, Imagine Institute, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Sophie Rondeau
- Paris Cité University, Necker-Enfants Malades University Hospital, Department of Genomic Medicine of Rare Diseases, Imagine Institute, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Valentin Ruault
- Montpellier University, Inserm UMR1183, Centre de Référence « Anomalies du Développement et Syndromes Malformatifs », ERN-ITHACA, Department of Clinical Genetics, University Hospital of Montpellier, Montpellier, France
| | - Nathalie Ruiz-Pallares
- University Hospital of Montpellier, Department of Molecular Genetics and Cytogenomics, Montpellier, France
| | - Elodie Sanchez
- University Hospital of Montpellier, Department of Molecular Genetics and Cytogenomics, Montpellier, France
| | - Debbie Shears
- Churchill Hospital, Department of Clinical Genetics, ERN-ITHACA, Oxford, United Kingdom
| | - Victoria Mok Siu
- University of Western Ontario, London Health Sciences Centre, Department of Pediatrics, London, Ontario, Canada
| | - Arthur Sorlin
- University Hospital of Dijon, Laboratory of Molecular Genetics and Cytogenetics, Inserm UMR 1231 GAD, Dijon, France
| | | | - Mylène Tharreau
- University Hospital of Montpellier, Department of Molecular Genetics and Cytogenomics, Montpellier, France
| | - Frédéric Tran Mau-Them
- University Hospital of Dijon, Laboratory of Molecular Genetics and Cytogenetics, Inserm UMR 1231 GAD, Dijon, France
| | - Liselot van der Laan
- University of Amsterdam, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, AUMC Department of Human Genetics, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Julien Van Gils
- University of Bordeaux, University Hospital of Bordeaux, Department of Medical Genetics, MRGM Inserm UMR1211, F-33000 Bordeaux, France
| | - Alain Verloes
- Robert Debré University Hospital, Department of Clinical Genetics, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Sandra Whalen
- Pitié-Salpêtrière University Hospital, Department of Clinical Genetics, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Marjolaine Willems
- Montpellier University, Inserm UMR1183, Centre de Référence « Anomalies du Développement et Syndromes Malformatifs », ERN-ITHACA, Department of Clinical Genetics, University Hospital of Montpellier, Montpellier, France
| | - Kévin Yauy
- Montpellier University, Inserm UMR1183, Centre de Référence « Anomalies du Développement et Syndromes Malformatifs », ERN-ITHACA, Department of Clinical Genetics, University Hospital of Montpellier, Montpellier, France
| | - Roberta Zuntini
- Azienda USL-IRCCS di Reggio Emilia, Medical Genetics Unit, 42123 Reggio Emilia, Italy
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, Londo, ON N6A 5W9, Canada
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, Londo, ON N6A 5W9, Canada
| | - David Geneviève
- Montpellier University, Inserm UMR1183, Centre de Référence « Anomalies du Développement et Syndromes Malformatifs », ERN-ITHACA, Department of Clinical Genetics, University Hospital of Montpellier, Montpellier, France.
| |
Collapse
|
40
|
Read JL, Davies KC, Thompson GC, Delatycki MB, Lockhart PJ. Challenges facing repeat expansion identification, characterisation, and the pathway to discovery. Emerg Top Life Sci 2023; 7:339-348. [PMID: 37888797 PMCID: PMC10754332 DOI: 10.1042/etls20230019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Tandem repeat DNA sequences constitute a significant proportion of the human genome. While previously considered to be functionally inert, these sequences are now broadly accepted as important contributors to genetic diversity. However, the polymorphic nature of these sequences can lead to expansion beyond a gene-specific threshold, causing disease. More than 50 pathogenic repeat expansions have been identified to date, many of which have been discovered in the last decade as a result of advances in sequencing technologies and associated bioinformatic tools. Commonly utilised diagnostic platforms including Sanger sequencing, capillary array electrophoresis, and Southern blot are generally low throughput and are often unable to accurately determine repeat size, composition, and epigenetic signature, which are important when characterising repeat expansions. The rapid advances in bioinformatic tools designed specifically to interrogate short-read sequencing and the development of long-read single molecule sequencing is enabling a new generation of high throughput testing for repeat expansion disorders. In this review, we discuss some of the challenges surrounding the identification and characterisation of disease-causing repeat expansions and the technological advances that are poised to translate the promise of genomic medicine to individuals and families affected by these disorders.
Collapse
Affiliation(s)
- Justin L Read
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Kayli C Davies
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Genevieve C Thompson
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
- Victorian Clinical Genetics Services, Parkville, Victoria, Australia
| | - Paul J Lockhart
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
41
|
Pagliara D, Ciolfi A, Pedace L, Haghshenas S, Ferilli M, Levy MA, Miele E, Nardini C, Cappelletti C, Relator R, Pitisci A, De Vito R, Pizzi S, Kerkhof J, McConkey H, Nazio F, Kant SG, Di Donato M, Agolini E, Matraxia M, Pasini B, Pelle A, Galluccio T, Novelli A, Barakat TS, Andreani M, Rossi F, Mecucci C, Savoia A, Sadikovic B, Locatelli F, Tartaglia M. Identification of a robust DNA methylation signature for Fanconi anemia. Am J Hum Genet 2023; 110:1938-1949. [PMID: 37865086 PMCID: PMC10645556 DOI: 10.1016/j.ajhg.2023.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/23/2023] Open
Abstract
Fanconi anemia (FA) is a clinically variable and genetically heterogeneous cancer-predisposing disorder representing the most common bone marrow failure syndrome. It is caused by inactivating predominantly biallelic mutations involving >20 genes encoding proteins with roles in the FA/BRCA DNA repair pathway. Molecular diagnosis of FA is challenging due to the wide spectrum of the contributing gene mutations and structural rearrangements. The assessment of chromosomal fragility after exposure to DNA cross-linking agents is generally required to definitively confirm diagnosis. We assessed peripheral blood genome-wide DNA methylation (DNAm) profiles in 25 subjects with molecularly confirmed clinical diagnosis of FA (FANCA complementation group) using Illumina's Infinium EPIC array. We identified 82 differentially methylated CpG sites that allow to distinguish subjects with FA from healthy individuals and subjects with other genetic disorders, defining an FA-specific DNAm signature. The episignature was validated using a second cohort of subjects with FA involving different complementation groups, documenting broader genetic sensitivity and demonstrating its specificity using the EpiSign Knowledge Database. The episignature properly classified DNA samples obtained from bone marrow aspirates, demonstrating robustness. Using the selected probes, we trained a machine-learning model able to classify EPIC DNAm profiles in molecularly unsolved cases. Finally, we show that the generated episignature includes CpG sites that do not undergo functional selective pressure, allowing diagnosis of FA in individuals with reverted phenotype due to gene conversion. These findings provide a tool to accelerate diagnostic testing in FA and broaden the clinical utility of DNAm profiling in the diagnostic setting.
Collapse
Affiliation(s)
- Daria Pagliara
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Lucia Pedace
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Marco Ferilli
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Evelina Miele
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Claudia Nardini
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Camilla Cappelletti
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Angela Pitisci
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Rita De Vito
- Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Simone Pizzi
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Francesca Nazio
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Sarina G Kant
- Department of Clinical Genetics, Erasmus MC University Medical Center, 3015 Rotterdam, the Netherlands
| | - Maddalena Di Donato
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy
| | - Marta Matraxia
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy
| | - Barbara Pasini
- AOU Città della salute e della scienza di Torino, Molinette's Hospital, 10126 Torino, Italy
| | - Alessandra Pelle
- AOU Città della salute e della scienza di Torino, Molinette's Hospital, 10126 Torino, Italy
| | - Tiziana Galluccio
- Laboratory of Transplant Immunogenetics, Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00146 Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, 3015 Rotterdam, the Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, 3015 Rotterdam, the Netherlands
| | - Marco Andreani
- Laboratory of Transplant Immunogenetics, Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00146 Rome, Italy
| | - Francesca Rossi
- Department of Woman, Child and of General and Specialist Surgery, University of Campania "Luigi Vanvitelli," 80138 Naples, Italy
| | - Cristina Mecucci
- Institute of Hematology and Center for Hemato-Oncology Research, University and Hospital of Perugia, 06123 Perugia, Italy
| | - Anna Savoia
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Franco Locatelli
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy; Department of Pediatrics, Catholic University of the Sacred Hearth, 00168 Rome, Italy.
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy.
| |
Collapse
|
42
|
Muñoz-Pujol G, Ugarteburu O, Segur-Bailach E, Moliner S, Jurado S, Garrabou G, Guitart-Mampel M, García-Villoria J, Artuch R, Fons C, Ribes A, Tort F. CRISPR/Cas9-based functional genomics strategy to decipher the pathogenicity of genetic variants in inherited metabolic disorders. J Inherit Metab Dis 2023; 46:1029-1042. [PMID: 37718653 DOI: 10.1002/jimd.12681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/19/2023]
Abstract
The determination of the functional impact of variants of uncertain significance (VUS) is one of the major bottlenecks in the diagnostic workflow of inherited genetic diseases. To face this problem, we set up a CRISPR/Cas9-based strategy for knock-in cellular model generation, focusing on inherited metabolic disorders (IMDs). We selected variants in seven IMD-associated genes, including seven reported disease-causing variants and four benign/likely benign variants. Overall, 11 knock-in cell models were generated via homology-directed repair in HAP1 haploid cells using CRISPR/Cas9. The functional impact of the variants was determined by analyzing the characteristic biochemical alterations of each disorder. Functional studies performed in knock-in cell models showed that our approach accurately distinguished the functional effect of pathogenic from non-pathogenic variants in a reliable manner in a wide range of IMDs. Our study provides a generic approach to assess the functional impact of genetic variants to improve IMD diagnosis and this tool could emerge as a promising alternative to invasive tests, such as muscular or skin biopsies. Although the study has been performed only in IMDs, this strategy is generic and could be applied to other genetic disorders.
Collapse
Affiliation(s)
- Gerard Muñoz-Pujol
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Olatz Ugarteburu
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Eulàlia Segur-Bailach
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Sonia Moliner
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Susana Jurado
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Glòria Garrabou
- Inherited Metabolic diseases and Muscle Disorder's lab, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences, University of Barcelona, Internal Medicine Service-Hospital Clinic of Barcelona and CIBERER, Barcelona, Spain
| | - Mariona Guitart-Mampel
- Inherited Metabolic diseases and Muscle Disorder's lab, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences, University of Barcelona, Internal Medicine Service-Hospital Clinic of Barcelona and CIBERER, Barcelona, Spain
| | - Judit García-Villoria
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Rafael Artuch
- Clinical Biochemistry and Molecular Medicine and Genetics Departments, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, and CIBERER, Esplúgues de Llobregat, Barcelona, Spain
| | - Carme Fons
- Neurology Department, Fetal, Neonatal Neurology and Early Epilepsy Unit, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Antonia Ribes
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Frederic Tort
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| |
Collapse
|
43
|
LaFlamme CW, Rastin C, Sengupta S, Pennington HE, Russ-Hall SJ, Schneider AL, Bonkowski ES, Almanza Fuerte EP, Galey M, Goffena J, Gibson SB, Allan TJ, Nyaga DM, Lieffering N, Hebbar M, Walker EV, Darnell D, Olsen SR, Kolekar P, Djekidel N, Rosikiewicz W, McConkey H, Kerkhof J, Levy MA, Relator R, Lev D, Lerman-Sagie T, Park KL, Alders M, Cappuccio G, Chatron N, Demain L, Genevieve D, Lesca G, Roscioli T, Sanlaville D, Tedder ML, Hubshman MW, Ketkar S, Dai H, Worley KC, Rosenfeld JA, Chao HT, Neale G, Carvill GL, Wang Z, Berkovic SF, Sadleir LG, Miller DE, Scheffer IE, Sadikovic B, Mefford HC. Diagnostic Utility of Genome-wide DNA Methylation Analysis in Genetically Unsolved Developmental and Epileptic Encephalopathies and Refinement of a CHD2 Episignature. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.11.23296741. [PMID: 37873138 PMCID: PMC10592992 DOI: 10.1101/2023.10.11.23296741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Sequence-based genetic testing currently identifies causative genetic variants in ∼50% of individuals with developmental and epileptic encephalopathies (DEEs). Aberrant changes in DNA methylation are implicated in various neurodevelopmental disorders but remain unstudied in DEEs. Rare epigenetic variations ("epivariants") can drive disease by modulating gene expression at single loci, whereas genome-wide DNA methylation changes can result in distinct "episignature" biomarkers for monogenic disorders in a growing number of rare diseases. Here, we interrogate the diagnostic utility of genome-wide DNA methylation array analysis on peripheral blood samples from 516 individuals with genetically unsolved DEEs who had previously undergone extensive genetic testing. We identified rare differentially methylated regions (DMRs) and explanatory episignatures to discover causative and candidate genetic etiologies in 10 individuals. We then used long-read sequencing to identify DNA variants underlying rare DMRs, including one balanced translocation, three CG-rich repeat expansions, and two copy number variants. We also identify pathogenic sequence variants associated with episignatures; some had been missed by previous exome sequencing. Although most DEE genes lack known episignatures, the increase in diagnostic yield for DNA methylation analysis in DEEs is comparable to the added yield of genome sequencing. Finally, we refine an episignature for CHD2 using an 850K methylation array which was further refined at higher CpG resolution using bisulfite sequencing to investigate potential insights into CHD2 pathophysiology. Our study demonstrates the diagnostic yield of genome-wide DNA methylation analysis to identify causal and candidate genetic causes as ∼2% (10/516) for unsolved DEE cases.
Collapse
|
44
|
Tesi B, Boileau C, Boycott KM, Canaud G, Caulfield M, Choukair D, Hill S, Spielmann M, Wedell A, Wirta V, Nordgren A, Lindstrand A. Precision medicine in rare diseases: What is next? J Intern Med 2023; 294:397-412. [PMID: 37211972 DOI: 10.1111/joim.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Molecular diagnostics is a cornerstone of modern precision medicine, broadly understood as tailoring an individual's treatment, follow-up, and care based on molecular data. In rare diseases (RDs), molecular diagnoses reveal valuable information about the cause of symptoms, disease progression, familial risk, and in certain cases, unlock access to targeted therapies. Due to decreasing DNA sequencing costs, genome sequencing (GS) is emerging as the primary method for precision diagnostics in RDs. Several ongoing European initiatives for precision medicine have chosen GS as their method of choice. Recent research supports the role for GS as first-line genetic investigation in individuals with suspected RD, due to its improved diagnostic yield compared to other methods. Moreover, GS can detect a broad range of genetic aberrations including those in noncoding regions, producing comprehensive data that can be periodically reanalyzed for years to come when further evidence emerges. Indeed, targeted drug development and repurposing of medicines can be accelerated as more individuals with RDs receive a molecular diagnosis. Multidisciplinary teams in which clinical specialists collaborate with geneticists, genomics education of professionals and the public, and dialogue with patient advocacy groups are essential elements for the integration of precision medicine into clinical practice worldwide. It is also paramount that large research projects share genetic data and leverage novel technologies to fully diagnose individuals with RDs. In conclusion, GS increases diagnostic yields and is a crucial step toward precision medicine for RDs. Its clinical implementation will enable better patient management, unlock targeted therapies, and guide the development of innovative treatments.
Collapse
Affiliation(s)
- Bianca Tesi
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Catherine Boileau
- Département de Génétique, APHP, Hôpital Bichat-Claude Bernard, Université Paris Cité, Paris, France
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Guillaume Canaud
- INSERM U1151, Unité de médecine translationnelle et thérapies ciblées, Hôpital Necker-Enfants Malades, Université Paris Cité, AP-HP, Paris, France
| | - Mark Caulfield
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Daniela Choukair
- Division of Pediatric Endocrinology and Diabetes, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany and Center for Rare Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Sue Hill
- Chief Scientific Officer, NHS England, London, UK
| | - Malte Spielmann
- Institute of Human Genetics, University Hospitals Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Kiel, Germany
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Valtteri Wirta
- Science for Life Laboratory, Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institutet of Technology, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
45
|
Strong E, Mervis CB, Tam E, Morris CA, Klein-Tasman BP, Velleman SL, Osborne LR. DNA methylation profiles in individuals with rare, atypical 7q11.23 CNVs correlate with GTF2I and GTF2IRD1 copy number. NPJ Genom Med 2023; 8:25. [PMID: 37709781 PMCID: PMC10502022 DOI: 10.1038/s41525-023-00368-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
Williams-Beuren syndrome (WBS) and 7q11.23 duplication syndrome (Dup7) are rare neurodevelopmental disorders caused by deletion and duplication of a 1.5 Mb region that includes at least five genes with a known role in epigenetic regulation. We have shown that CNV of this chromosome segment causes dose-dependent, genome-wide changes in DNA methylation, but the specific genes driving these changes are unknown. We measured genome-wide whole blood DNA methylation in six participants with atypical CNV of 7q11.23 (three with deletions and three with duplications) using the Illumina HumanMethylation450k array and compared their profiles with those from groups of individuals with classic WBS or classic Dup7 and with typically developing (TD) controls. Across the top 1000 most variable positions we found that only the atypical rearrangements that changed the copy number of GTF2IRD1 and/or GTF2I (coding for the TFII-IRD1 and TFII-I proteins) clustered with their respective syndromic cohorts. This finding was supported by results from hierarchical clustering across a selection of differentially methylated CpGs, in addition to pyrosequencing validation. These findings suggest that CNV of the GTF2I genes at the telomeric end of the 7q11.23 interval is a key contributor to the large changes in DNA methylation that are seen in blood DNA from our WBS and Dup7 cohorts, compared to TD controls. Our findings suggest that members of the TFII-I protein family are involved in epigenetic processes that alter DNA methylation on a genome-wide level.
Collapse
Affiliation(s)
- Emma Strong
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Division of Genome Diagnostics, Department of Pathology and Laboratory Medicine, BC Children's and Women's Hospital, Vancouver, BC, Canada
| | - Carolyn B Mervis
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, USA
| | - Elaine Tam
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Colleen A Morris
- Department of Pediatrics, Kirk Kerkorian School of Medicine at University of Nevada Las Vegas, Las Vegas, NV, USA
| | | | - Shelley L Velleman
- Department of Communication Sciences and Disorders, University of Vermont, Burlington, VT, USA
| | - Lucy R Osborne
- Departments of Medicine and Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
46
|
Forwood C, Ashton K, Zhu Y, Zhang F, Dias K, Standen K, Evans C, Carey L, Cardamone M, Shalhoub C, Katf H, Riveros C, Hsieh T, Krawitz P, Robinson PN, Dudding‐Byth T, Sadikovic B, Pinner J, Buckley MF, Roscioli T. Integration of EpiSign, facial phenotyping, and likelihood ratio interpretation of clinical abnormalities in the re-classification of an ARID1B missense variant. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2023; 193:e32056. [PMID: 37654076 PMCID: PMC10952833 DOI: 10.1002/ajmg.c.32056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 09/02/2023]
Abstract
Heterozygous ARID1B variants result in Coffin-Siris syndrome. Features may include hypoplastic nails, slow growth, characteristic facial features, hypotonia, hypertrichosis, and sparse scalp hair. Most reported cases are due to ARID1B loss of function variants. We report a boy with developmental delay, feeding difficulties, aspiration, recurrent respiratory infections, slow growth, and hypotonia without a clinical diagnosis, where a previously unreported ARID1B missense variant was classified as a variant of uncertain significance. The pathogenicity of this variant was refined through combined methodologies including genome-wide methylation signature analysis (EpiSign), Machine Learning (ML) facial phenotyping, and LIRICAL. Trio exome sequencing and EpiSign were performed. ML facial phenotyping compared facial images using FaceMatch and GestaltMatcher to syndrome-specific libraries to prioritize the trio exome bioinformatic pipeline gene list output. Phenotype-driven variant prioritization was performed with LIRICAL. A de novo heterozygous missense variant, ARID1B p.(Tyr1268His), was reported as a variant of uncertain significance. The ACMG classification was refined to likely pathogenic by a supportive methylation signature, ML facial phenotyping, and prioritization through LIRICAL. The ARID1B genotype-phenotype has been expanded through an extended analysis of missense variation through genome-wide methylation signatures, ML facial phenotyping, and likelihood-ratio gene prioritization.
Collapse
Affiliation(s)
- Caitlin Forwood
- NSW Health Pathology Randwick GenomicsPrince of Wales HospitalSydneyAustralia
- Centre for Clinical GeneticsSydney Children's HospitalRandwickAustralia
- Neuroscience Research Australia (NeuRA)University of New South WalesSydneyAustralia
| | - Katie Ashton
- NSW Health Pathology Randwick GenomicsPrince of Wales HospitalSydneyAustralia
| | - Ying Zhu
- NSW Health Pathology Randwick GenomicsPrince of Wales HospitalSydneyAustralia
| | - Futao Zhang
- NSW Health Pathology Randwick GenomicsPrince of Wales HospitalSydneyAustralia
| | - Kerith‐Rae Dias
- Neuroscience Research Australia (NeuRA)University of New South WalesSydneyAustralia
| | - Krystle Standen
- NSW Health Pathology Randwick GenomicsPrince of Wales HospitalSydneyAustralia
| | - Carey‐Anne Evans
- Neuroscience Research Australia (NeuRA)University of New South WalesSydneyAustralia
| | - Louise Carey
- NSW Health Pathology Randwick GenomicsPrince of Wales HospitalSydneyAustralia
| | - Michael Cardamone
- Sydney Children's HospitalRandwickAustralia
- School of Women's and Children's HealthUNSWSydneyAustralia
| | - Carolyn Shalhoub
- Centre for Clinical GeneticsSydney Children's HospitalRandwickAustralia
| | - Hala Katf
- Sydney Children's HospitalRandwickAustralia
| | - Carlos Riveros
- Bioinformatics, Hunter Medical Research InstituteNewcastleAustralia
| | - Tzung‐Chien Hsieh
- Institute for Genomic Statistics and BioinformaticsUniversity Hospital BonnBonnGermany
| | - Peter Krawitz
- Institute for Genomic Statistics and BioinformaticsUniversity Hospital BonnBonnGermany
| | - Peter N Robinson
- JAX Center for Precision GeneticsThe JAX Cancer CenterFarmingtonConnecticutUSA
| | | | - Bekim Sadikovic
- London Health Sciences Centre, Verspeeten Clinical Genome CentreWestern UniversityLondonCanada
| | - Jason Pinner
- Centre for Clinical GeneticsSydney Children's HospitalRandwickAustralia
- School of Women's and Children's HealthUNSWSydneyAustralia
| | - Michael F. Buckley
- NSW Health Pathology Randwick GenomicsPrince of Wales HospitalSydneyAustralia
| | - Tony Roscioli
- NSW Health Pathology Randwick GenomicsPrince of Wales HospitalSydneyAustralia
- Neuroscience Research Australia (NeuRA)University of New South WalesSydneyAustralia
- School of Clinical MedicineUNSWSydneyAustralia
| |
Collapse
|
47
|
Wojcik MH, Reuter CM, Marwaha S, Mahmoud M, Duyzend MH, Barseghyan H, Yuan B, Boone PM, Groopman EE, Délot EC, Jain D, Sanchis-Juan A, Starita LM, Talkowski M, Montgomery SB, Bamshad MJ, Chong JX, Wheeler MT, Berger SI, O'Donnell-Luria A, Sedlazeck FJ, Miller DE. Beyond the exome: What's next in diagnostic testing for Mendelian conditions. Am J Hum Genet 2023; 110:1229-1248. [PMID: 37541186 PMCID: PMC10432150 DOI: 10.1016/j.ajhg.2023.06.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 08/06/2023] Open
Abstract
Despite advances in clinical genetic testing, including the introduction of exome sequencing (ES), more than 50% of individuals with a suspected Mendelian condition lack a precise molecular diagnosis. Clinical evaluation is increasingly undertaken by specialists outside of clinical genetics, often occurring in a tiered fashion and typically ending after ES. The current diagnostic rate reflects multiple factors, including technical limitations, incomplete understanding of variant pathogenicity, missing genotype-phenotype associations, complex gene-environment interactions, and reporting differences between clinical labs. Maintaining a clear understanding of the rapidly evolving landscape of diagnostic tests beyond ES, and their limitations, presents a challenge for non-genetics professionals. Newer tests, such as short-read genome or RNA sequencing, can be challenging to order, and emerging technologies, such as optical genome mapping and long-read DNA sequencing, are not available clinically. Furthermore, there is no clear guidance on the next best steps after inconclusive evaluation. Here, we review why a clinical genetic evaluation may be negative, discuss questions to be asked in this setting, and provide a framework for further investigation, including the advantages and disadvantages of new approaches that are nascent in the clinical sphere. We present a guide for the next best steps after inconclusive molecular testing based upon phenotype and prior evaluation, including when to consider referral to research consortia focused on elucidating the underlying cause of rare unsolved genetic disorders.
Collapse
Affiliation(s)
- Monica H Wojcik
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chloe M Reuter
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shruti Marwaha
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Michael H Duyzend
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hayk Barseghyan
- Center for Genetics Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC 20010, USA; Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Bo Yuan
- Department of Molecular and Human Genetics and Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Philip M Boone
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emily E Groopman
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emmanuèle C Délot
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA; Center for Genetics Medicine Research, Children's National Research and Innovation Campus, Washington, DC, USA; Department of Pediatrics, George Washington University, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Deepti Jain
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lea M Starita
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Michael Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephen B Montgomery
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael J Bamshad
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jessica X Chong
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Matthew T Wheeler
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Seth I Berger
- Center for Genetics Medicine Research and Rare Disease Institute, Children's National Hospital, Washington, DC 20010, USA
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Danny E Miller
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
48
|
Haghshenas S, Foroutan A, Bhai P, Levy MA, Relator R, Kerkhof J, McConkey H, Skinner CD, Caylor RC, Tedder ML, Stevenson RE, Sadikovic B, Schwartz CE. Identification of a DNA methylation signature for Renpenning syndrome (RENS1), a spliceopathy. Eur J Hum Genet 2023; 31:879-886. [PMID: 36797465 PMCID: PMC10400603 DOI: 10.1038/s41431-023-01313-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The challenges and ambiguities in providing an accurate diagnosis for patients with neurodevelopmental disorders have led researchers to apply epigenetics as a technique to validate the diagnosis provided based on the clinical examination and genetic testing results. Genome-wide DNA methylation analysis has recently been adapted for clinical testing of patients with genetic neurodevelopmental disorders. In this paper, preliminary data demonstrating a DNA methylation signature for Renpenning syndrome (RENS1 - OMIM 309500), which is an X-linked recessive neurodevelopmental disorder caused by variants in polyglutamine-binding protein 1 (PQBP1) is reported. The identified episignature was then utilized to construct a highly sensitive and specific binary classification model. Besides providing evidence for the existence of a DNA methylation episignature for Renpenning syndrome, this study increases the knowledge of the molecular mechanisms related to the disease. Moreover, the availability of more subjects in future may facilitate the establishment of an episignature that can be utilized for diagnosis in a clinical setting and for reclassification of variants of unknown clinical significance.
Collapse
Affiliation(s)
- Sadegheh Haghshenas
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Aidin Foroutan
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
| | - Pratibha Bhai
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Haley McConkey
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | | | | | | | | | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada.
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada.
| | - Charles E Schwartz
- Greenwood Genetic Center, Greenwood, SC, 29646, USA.
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
49
|
Li C. Correspondence: Perspectives on the future of dysmorphology. Am J Med Genet A 2023; 191:2252-2253. [PMID: 37219025 DOI: 10.1002/ajmg.a.63305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Affiliation(s)
- Chumei Li
- McMaster University Medical Center, Hamilton, Ontario, Canada
| |
Collapse
|
50
|
Hasegawa K, Nakabayashi K, Ishiwata K, Kasuga Y, Hata K, Tanaka M. A capture methyl-seq protocol with improved efficiency and cost-effectiveness using pre-pooling and enzymatic conversion. BMC Res Notes 2023; 16:141. [PMID: 37415255 DOI: 10.1186/s13104-023-06401-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/18/2023] [Indexed: 07/08/2023] Open
Abstract
OBJECTIVE The opportunities for sequencing-based methylome analysis of clinical samples are increasing. To reduce its cost and the amount of genomic DNA required for library preparation, we aimed to establish a capture methyl-seq protocol, which adopts pre-pooling of multiple libraries before hybridization capture and TET2/APOBEC-mediated conversion of unmethylated cytosine to thymine. RESULTS We compared a publicly available dataset generated by the standard Agilent protocol of SureSelect XT Human Methyl-Seq Kit and our dataset obtained by our modified protocol, EMCap, that adopted sample pre-pooling and enzymatic conversion. We confirmed that the quality of DNA methylation data was comparable between the two datasets. As our protocol, EMCap, is more cost-effective and reduces the amount of input genomic DNA, it would serve as a better choice for clinical methylome sequencing.
Collapse
Affiliation(s)
- Keita Hasegawa
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku, Tokyo, 160-0016, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
| | - Keisuke Ishiwata
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Yoshifumi Kasuga
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku, Tokyo, 160-0016, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
- Department of Human Molecular Genetics, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku, Tokyo, 160-0016, Japan
| |
Collapse
|