1
|
Bonnefond A, Florez JC, Loos RJF, Froguel P. Dissection of type 2 diabetes: a genetic perspective. Lancet Diabetes Endocrinol 2025; 13:149-164. [PMID: 39818223 DOI: 10.1016/s2213-8587(24)00339-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/11/2024] [Accepted: 10/30/2024] [Indexed: 01/18/2025]
Abstract
Diabetes is a leading cause of global mortality and disability, and its economic burden is substantial. This Review focuses on type 2 diabetes, which makes up 90-95% of all diabetes cases. Type 2 diabetes involves a progressive loss of insulin secretion often alongside insulin resistance and metabolic syndrome. Although obesity and a sedentary lifestyle are considerable contributors, research over the last 25 years has shown that type 2 diabetes develops on a predisposing genetic background, with family and twin studies indicating considerable heritability (ie, 31-72%). This Review explores type 2 diabetes from a genetic perspective, highlighting insights into its pathophysiology and the implications for precision medicine. More specifically, the traditional understanding of type 2 diabetes genetics has focused on a dichotomy between monogenic and polygenic forms. However, emerging evidence suggests a continuum that includes monogenic, oligogenic, and polygenic contributions, revealing their complementary roles in type 2 diabetes pathophysiology. Recent genetic studies provide deeper insights into disease mechanisms and pave the way for precision medicine approaches that could transform type 2 diabetes management. Additionally, the effect of environmental factors on type 2 diabetes, particularly from epigenetic modifications, adds another layer of complexity to understanding and addressing this multifaceted disease.
Collapse
Affiliation(s)
- Amélie Bonnefond
- Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France; Department of Metabolism, Imperial College London, London, UK.
| | - Jose C Florez
- Center for Genomic Medicine and Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Programs in Metabolism and Medical and Population Genetics, Broad Institute, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ruth J F Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philippe Froguel
- Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France; Department of Metabolism, Imperial College London, London, UK.
| |
Collapse
|
2
|
Barbetti F, Deeb A, Suzuki S. Neonatal diabetes mellitus around the world: Update 2024. J Diabetes Investig 2024; 15:1711-1724. [PMID: 39344692 PMCID: PMC11615689 DOI: 10.1111/jdi.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Neonatal diabetes mellitus (NDM), defined as diabetes with an onset during the first 6 months of life, is a rare form of monogenic diabetes. The initial publications on this condition began appearing in the second half of the 1990s and quite surprisingly, the search for new NDM genes is still ongoing with great vigor. Between 2018 and early 2024, six brand new NDM-genes have been discovered (CNOT1, FICD, ONECUT1, PDIA6, YIPF5, ZNF808) and three genes known to cause different diseases were identified as NDM-genes (EIF2B1, NARS2, KCNMA1). In addition, NDM cases carrying mutations in three other genes known to give rise to diabetes during childhood have been also identified (AGPAT2, BSCL2, PIK3R1). As a consequence, the list of NDM genes now exceeds 40. This genetic heterogeneity translates into many different mechanism(s) of disease that are being investigated with state-of-the-art methodologies, such as induced pluripotent stem cells (iPSC) and human embryonic stem cells (hESC) manipulated with the CRISPR technique of genome editing. This diversity in genetic causes and the pathophysiology of diabetes dictate the need for a variety of therapeutic approaches. The aim of this paper is to provide an overview on recent achievements in all aspects of this area of research.
Collapse
Affiliation(s)
- Fabrizio Barbetti
- Monogenic Diabetes Clinic, Endocrinology and Diabetes UnitBambino Gesù Children's Hospital IRCCSRomeItaly
| | - Asma Deeb
- Pediatric Endocrine Division, Sheikh Shakhbout Medical City and College of Medicine and Health ScienceKhalifa UniversityAbu DhabiUAE
| | - Shigeru Suzuki
- Department of PediatricsAsahikawa Medical UniversityAsahikawaJapan
| |
Collapse
|
3
|
de Queiroz Júnior AF, Sanseverino MTV, Collares MVM, Fornari A, do Virmond LA, Filho JBO, Artigalás O, Félix TM. CNOT1 p.Arg535Cys variant in holoprosencephaly with late onset diabetes mellitus. Am J Med Genet A 2024; 194:e63836. [PMID: 39149840 DOI: 10.1002/ajmg.a.63836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
Holoprosencephaly (HPE) results from a lack of cleavage of the prosencephalon. It has a complex etiology, resulting from chromosome abnormalities or single gene variants in the Sonic hedgehog signaling pathway. A single variant, p.Arg535Cys in CNOT1, has been described in HPE in association with pancreatic agenesis and neonatal diabetes. Here, we report on a case of HPE and p.Arg535Cys in CNOT1 without pancreatic agenesis where the patient presented with diabetes mellitus in adolescence. This case reinforces the role of CNOT1 in pancreatic development. We suggest that individuals with p.Arg535Cys in CNOT1 with no pancreas abnormalities observed at birth should be screened for diabetes during follow-up.
Collapse
Affiliation(s)
| | - Maria Teresa Vieira Sanseverino
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Escola de Medicina da Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Adriana Fornari
- Instituto da Criança com Diabetes, Grupo Hospitalar Conceição, Porto Alegre, Brazil
| | | | | | - Osvaldo Artigalás
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Programa de Medicina Genômica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Têmis Maria Félix
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Instituto Nacional de Doenças Raras, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
4
|
Jäger R, Geyer SH, Kavirayani A, Kiss MG, Waltenberger E, Rülicke T, Binder CJ, Weninger WJ, Kralovics R. Effects of Tulp4 deficiency on murine embryonic development and adult phenotype. Microsc Res Tech 2024; 87:854-866. [PMID: 38115643 DOI: 10.1002/jemt.24476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Genetically engineered mouse models have the potential to unravel fundamental biological processes and provide mechanistic insights into the pathogenesis of human diseases. We have previously observed that germline genetic variation at the TULP4 locus influences clinical characteristics in patients with myeloproliferative neoplasms. To elucidate the role of TULP4 in pathological and physiological processes in vivo, we generated a Tulp4 knockout mouse model. Systemic Tulp4 deficiency exerted a strong impact on embryonic development in both Tulp4 homozygous null (Tulp4-/-) and heterozygous (Tulp4+/-) knockout mice, the former exhibiting perinatal lethality. High-resolution episcopic microscopy (HREM) of day 14.5 embryos allowed for the identification of multiple developmental defects in Tulp4-/- mice, including severe heart defects. Moreover, in Tulp4+/- embryos HREM revealed abnormalities of several organ systems, which per se do not affect prenatal or postnatal survival. In adult Tulp4+/- mice, extensive examinations of hematopoietic and cardiovascular features, involving histopathological surveys of multiple tissues as well as blood counts and immunophenotyping, did not provide evidence for anomalies as observed in corresponding embryos. Finally, evaluating a potential obesity-related phenotype as reported for other TULP family members revealed a trend for increased body weight of Tulp4+/- mice. RESEARCH HIGHLIGHTS: To study the role of the TULP4 gene in vivo, we generated a Tulp4 knockout mouse model. Correlative analyses involving HREM revealed a strong impact of Tulp4 deficiency on murine embryonic development.
Collapse
Affiliation(s)
- Roland Jäger
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Stefan H Geyer
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical Imaging Cluster, Medical University of Vienna, Vienna, Austria
| | - Anoop Kavirayani
- Vienna BioCenter Core Facilities GmbH, Austrian BioImaging/CMI, Vienna, Austria
| | - Máté G Kiss
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Waltenberger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Wolfgang J Weninger
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical Imaging Cluster, Medical University of Vienna, Vienna, Austria
| | - Robert Kralovics
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Abu-Toamih-Atamni HJ, Lone IM, Binenbaum I, Mott R, Pilalis E, Chatziioannou A, Iraqi FA. Mapping novel QTL and fine mapping of previously identified QTL associated with glucose tolerance using the collaborative cross mice. Mamm Genome 2024; 35:31-55. [PMID: 37978084 DOI: 10.1007/s00335-023-10025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/08/2023] [Indexed: 11/19/2023]
Abstract
A chronic metabolic illness, type 2 diabetes (T2D) is a polygenic and multifactorial complicated disease. With an estimated 463 million persons aged 20 to 79 having diabetes, the number is expected to rise to 700 million by 2045, creating a significant worldwide health burden. Polygenic variants of diabetes are influenced by environmental variables. T2D is regarded as a silent illness that can advance for years before being diagnosed. Finding genetic markers for T2D and metabolic syndrome in groups with similar environmental exposure is therefore essential to understanding the mechanism of such complex characteristic illnesses. So herein, we demonstrated the exclusive use of the collaborative cross (CC) mouse reference population to identify novel quantitative trait loci (QTL) and, subsequently, suggested genes associated with host glucose tolerance in response to a high-fat diet. In this study, we used 539 mice from 60 different CC lines. The diabetogenic effect in response to high-fat dietary challenge was measured by the three-hour intraperitoneal glucose tolerance test (IPGTT) test after 12 weeks of dietary challenge. Data analysis was performed using a statistical software package IBM SPSS Statistic 23. Afterward, blood glucose concentration at the specific and between different time points during the IPGTT assay and the total area under the curve (AUC0-180) of the glucose clearance was computed and utilized as a marker for the presence and severity of diabetes. The observed AUC0-180 averages for males and females were 51,267.5 and 36,537.5 mg/dL, respectively, representing a 1.4-fold difference in favor of females with lower AUC0-180 indicating adequate glucose clearance. The AUC0-180 mean differences between the sexes within each specific CC line varied widely within the CC population. A total of 46 QTL associated with the different studied phenotypes, designated as T2DSL and its number, for Type 2 Diabetes Specific Locus and its number, were identified during our study, among which 19 QTL were not previously mapped. The genomic interval of the remaining 27 QTL previously reported, were fine mapped in our study. The genomic positions of 40 of the mapped QTL overlapped (clustered) on 11 different peaks or close genomic positions, while the remaining 6 QTL were unique. Further, our study showed a complex pattern of haplotype effects of the founders, with the wild-derived strains (mainly PWK) playing a significant role in the increase of AUC values.
Collapse
Affiliation(s)
- Hanifa J Abu-Toamih-Atamni
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel
| | - Iqbal M Lone
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel
| | - Ilona Binenbaum
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou Str, 11527, Athens, Greece
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Richard Mott
- Department of Genetics, University College of London, London, UK
| | | | - Aristotelis Chatziioannou
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou Str, 11527, Athens, Greece
- e-NIOS Applications PC, 196 Syggrou Ave., 17671, Kallithea, Greece
| | - Fuad A Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel.
| |
Collapse
|
6
|
van Poppel MNM, Nolan CJ, Desoye G. Pancreas agenesis and fetal growth: a semi-quantitative analysis. Endocr Connect 2024; 13:EC-23-0500. [PMID: 38180040 PMCID: PMC10895321 DOI: 10.1530/ec-23-0500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/05/2024] [Indexed: 01/06/2024]
Abstract
Pancreas agenesis is a rare condition underlying a variant of permanent neonatal diabetes mellitus. Neonates with this condition are born small for gestational age, but less is known about which components of growth are impacted, the timing of the growth restriction and potential sex differences. Our objective was to assess in which periods in gestation complete pancreas agenesis restricts fetal growth and possible sex differences in susceptibility. Published cases (n=49) with pancreas agenesis providing relevant data (gestational age, fetal sex, birth weight, birth length, head circumference, placental weight) were identified by MEDLINE and secondary literature search covering the years 1950-January 2023. Semi-quantitative analysis of these case reports used centiles based on Intergrowth-21 reference charts. Neonates with pancreas agenesis were severely growth restricted, however, median centiles for birth weight, length and head circumference of those born before week 36 were significantly higher compared to those born from 36 weeks. Similar results were found when data were separated by before and from 38 weeks. Head circumference was less affected than birth weight or length. No sex differences were found. In conclusion, pancreas agenesis severely restricts fetal length and head circumference in addition to weight growth, with stronger effects evident from 36 weeks of gestation. In addition to the well-known effects of insulin on growth of fetal fat mass, the pronounced effect on birth length and head circumference indicates effects of insulin on fetal lean body growth as well. Lack of power may account for failure to find sex differences.
Collapse
Affiliation(s)
- Mireille N M van Poppel
- M van Poppel, Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| | - Christopher J Nolan
- C Nolan, Department of Endocrinology at The Canberra Hospital, Australian National University, Canberra, Australia
| | - Gernot Desoye
- G Desoye, Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
7
|
De Franco E, Owens NDL, Montaser H, Wakeling MN, Saarimäki-Vire J, Triantou A, Ibrahim H, Balboa D, Caswell RC, Jennings RE, Kvist JA, Johnson MB, Muralidharan S, Ellard S, Wright CF, Maddirevula S, Alkuraya FS, Hanley NA, Flanagan SE, Otonkoski T, Hattersley AT, Imbeault M. Primate-specific ZNF808 is essential for pancreatic development in humans. Nat Genet 2023; 55:2075-2081. [PMID: 37973953 PMCID: PMC10703691 DOI: 10.1038/s41588-023-01565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Abstract
Identifying genes linked to extreme phenotypes in humans has the potential to highlight biological processes not shared with all other mammals. Here, we report the identification of homozygous loss-of-function variants in the primate-specific gene ZNF808 as a cause of pancreatic agenesis. ZNF808 is a member of the KRAB zinc finger protein family, a large and rapidly evolving group of epigenetic silencers which target transposable elements. We show that loss of ZNF808 in vitro results in aberrant activation of regulatory potential contained in the primate-specific transposable elements it represses during early pancreas development. This leads to inappropriate specification of cell fate with induction of genes associated with liver identity. Our results highlight the essential role of ZNF808 in pancreatic development in humans and the contribution of primate-specific regions of the human genome to congenital developmental disease.
Collapse
Affiliation(s)
- Elisa De Franco
- Institute of Clinical and Biomedical Sciences, University of Exeter Faculty of Health and Life Sciences, Exeter, UK
| | - Nick D L Owens
- Institute of Clinical and Biomedical Sciences, University of Exeter Faculty of Health and Life Sciences, Exeter, UK
| | - Hossam Montaser
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matthew N Wakeling
- Institute of Clinical and Biomedical Sciences, University of Exeter Faculty of Health and Life Sciences, Exeter, UK
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Athina Triantou
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Diego Balboa
- Regulatory Genomics and Diabetes, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Richard C Caswell
- Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Rachel E Jennings
- Division of Diabetes, Endocrinology & Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
- Endocrinology Department, Manchester University NHS Foundation Trust, Manchester, UK
| | - Jouni A Kvist
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matthew B Johnson
- Institute of Clinical and Biomedical Sciences, University of Exeter Faculty of Health and Life Sciences, Exeter, UK
| | - Sachin Muralidharan
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sian Ellard
- Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Caroline F Wright
- Institute of Clinical and Biomedical Sciences, University of Exeter Faculty of Health and Life Sciences, Exeter, UK
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Neil A Hanley
- Division of Diabetes, Endocrinology & Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
- Endocrinology Department, Manchester University NHS Foundation Trust, Manchester, UK
| | - Sarah E Flanagan
- Institute of Clinical and Biomedical Sciences, University of Exeter Faculty of Health and Life Sciences, Exeter, UK
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| | - Andrew T Hattersley
- Institute of Clinical and Biomedical Sciences, University of Exeter Faculty of Health and Life Sciences, Exeter, UK.
| | | |
Collapse
|
8
|
Dong Y, Li W, Meng J, Wang P, Sun M, Zhou F, Li D, Shu J, Cai C. Pathogenicity analysis and splicing rescue of a classical splice site variant (c.1343+1G>T) of CNOT1 gene associated with neurodevelopmental disorders. Am J Med Genet A 2023; 191:2775-2782. [PMID: 37507849 DOI: 10.1002/ajmg.a.63360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Mutations in the CNOT1 gene lead to an incurable rare neurological disorder mainly manifested as a clinical spectrum of intellectual disability, developmental delay, seizures, and behavioral problems. In this study, we investigated a classical splice site variant of CNOT1 (c.1343+1G>T) associated with neurodevelopmental disorders, which was a master regulator, orchestrating gene expression, RNA deadenylation, and protein ubiquitination. To link CNOT1 dysfunction with the neurodevelopmental phenotype observed in a patient, in vitro minigene assay was used to verify the effect of CNOT1 gene splice site variant c.1343+1G>T on mRNA splicing. We also explored the impact of transient transfection introducing modified U1 snRNA on correcting the splicing variant. Through minigene expression in mammalian cells, we demonstrated that the variant induced complete exon 12 skipping, which explained the patient's clinical condition and provided additional genetic diagnosis evidence for the clinical significance of the variant. Moreover, we confirmed that the aberrant splice pattern could be partially corrected by the modified U1 snRNA at the mRNA level, which provided strong evidence for the therapeutic potential of modified U1 snRNA in neutralizing the hazardous effect of incorrect splicing patterns.
Collapse
Affiliation(s)
- Yan Dong
- Graduate College of Tianjin Medical University, Tianjin, China
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
| | - Weiran Li
- Graduate College of Tianjin Medical University, Tianjin, China
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
| | - Jing Meng
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
- Department of Neurology, Tianjin Children's Hospital, Tianjin, China
| | - Ping Wang
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Mei Sun
- Graduate College of Tianjin Medical University, Tianjin, China
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
| | - Feiyu Zhou
- Graduate College of Tianjin Medical University, Tianjin, China
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
| | - Dong Li
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
- Department of Neurology, Tianjin Children's Hospital, Tianjin, China
| | - Jianbo Shu
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Chunquan Cai
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| |
Collapse
|
9
|
Vanheer L, Fantuzzi F, To SK, Schiavo A, Van Haele M, Ostyn T, Haesen T, Yi X, Janiszewski A, Chappell J, Rihoux A, Sawatani T, Roskams T, Pattou F, Kerr-Conte J, Cnop M, Pasque V. Inferring regulators of cell identity in the human adult pancreas. NAR Genom Bioinform 2023; 5:lqad068. [PMID: 37435358 PMCID: PMC10331937 DOI: 10.1093/nargab/lqad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Cellular identity during development is under the control of transcription factors that form gene regulatory networks. However, the transcription factors and gene regulatory networks underlying cellular identity in the human adult pancreas remain largely unexplored. Here, we integrate multiple single-cell RNA-sequencing datasets of the human adult pancreas, totaling 7393 cells, and comprehensively reconstruct gene regulatory networks. We show that a network of 142 transcription factors forms distinct regulatory modules that characterize pancreatic cell types. We present evidence that our approach identifies regulators of cell identity and cell states in the human adult pancreas. We predict that HEYL, BHLHE41 and JUND are active in acinar, beta and alpha cells, respectively, and show that these proteins are present in the human adult pancreas as well as in human induced pluripotent stem cell (hiPSC)-derived islet cells. Using single-cell transcriptomics, we found that JUND represses beta cell genes in hiPSC-alpha cells. BHLHE41 depletion induced apoptosis in primary pancreatic islets. The comprehensive gene regulatory network atlas can be explored interactively online. We anticipate our analysis to be the starting point for a more sophisticated dissection of how transcription factors regulate cell identity and cell states in the human adult pancreas.
Collapse
Affiliation(s)
- Lotte Vanheer
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Federica Fantuzzi
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - San Kit To
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Andrea Schiavo
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - Matthias Van Haele
- Department of Imaging and Pathology; Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven; Herestraat 49, B-3000 Leuven, Belgium
| | - Tessa Ostyn
- Department of Imaging and Pathology; Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven; Herestraat 49, B-3000 Leuven, Belgium
| | - Tine Haesen
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Xiaoyan Yi
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - Adrian Janiszewski
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Joel Chappell
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Adrien Rihoux
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Toshiaki Sawatani
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - Tania Roskams
- Department of Imaging and Pathology; Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven; Herestraat 49, B-3000 Leuven, Belgium
| | - Francois Pattou
- University of Lille, Inserm, CHU Lille, Institute Pasteur Lille, U1190-EGID, F-59000 Lille, France
- European Genomic Institute for Diabetes, F-59000 Lille, France
- University of Lille, F-59000 Lille, France
| | - Julie Kerr-Conte
- University of Lille, Inserm, CHU Lille, Institute Pasteur Lille, U1190-EGID, F-59000 Lille, France
- European Genomic Institute for Diabetes, F-59000 Lille, France
- University of Lille, F-59000 Lille, France
| | - Miriam Cnop
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
- Division of Endocrinology; Erasmus Hospital, Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - Vincent Pasque
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
10
|
Ottesen EW, Singh NN, Luo D, Kaas B, Gillette B, Seo J, Jorgensen H, Singh RN. Diverse targets of SMN2-directed splicing-modulating small molecule therapeutics for spinal muscular atrophy. Nucleic Acids Res 2023; 51:5948-5980. [PMID: 37026480 PMCID: PMC10325915 DOI: 10.1093/nar/gkad259] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Designing an RNA-interacting molecule that displays high therapeutic efficacy while retaining specificity within a broad concentration range remains a challenging task. Risdiplam is an FDA-approved small molecule for the treatment of spinal muscular atrophy (SMA), the leading genetic cause of infant mortality. Branaplam is another small molecule which has undergone clinical trials. The therapeutic merit of both compounds is based on their ability to restore body-wide inclusion of Survival Motor Neuron 2 (SMN2) exon 7 upon oral administration. Here we compare the transcriptome-wide off-target effects of these compounds in SMA patient cells. We captured concentration-dependent compound-specific changes, including aberrant expression of genes associated with DNA replication, cell cycle, RNA metabolism, cell signaling and metabolic pathways. Both compounds triggered massive perturbations of splicing events, inducing off-target exon inclusion, exon skipping, intron retention, intron removal and alternative splice site usage. Our results of minigenes expressed in HeLa cells provide mechanistic insights into how these molecules targeted towards a single gene produce different off-target effects. We show the advantages of combined treatments with low doses of risdiplam and branaplam. Our findings are instructive for devising better dosing regimens as well as for developing the next generation of small molecule therapeutics aimed at splicing modulation.
Collapse
Affiliation(s)
- Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Diou Luo
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Bailey Kaas
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Benjamin J Gillette
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Joonbae Seo
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Hannah J Jorgensen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
11
|
Holroyd NA, Walsh C, Gourmet L, Walker-Samuel S. Quantitative Image Processing for Three-Dimensional Episcopic Images of Biological Structures: Current State and Future Directions. Biomedicines 2023; 11:909. [PMID: 36979887 PMCID: PMC10045950 DOI: 10.3390/biomedicines11030909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Episcopic imaging using techniques such as High Resolution Episcopic Microscopy (HREM) and its variants, allows biological samples to be visualized in three dimensions over a large field of view. Quantitative analysis of episcopic image data is undertaken using a range of methods. In this systematic review, we look at trends in quantitative analysis of episcopic images and discuss avenues for further research. Papers published between 2011 and 2022 were analyzed for details about quantitative analysis approaches, methods of image annotation and choice of image processing software. It is shown that quantitative processing is becoming more common in episcopic microscopy and that manual annotation is the predominant method of image analysis. Our meta-analysis highlights where tools and methods require further development in this field, and we discuss what this means for the future of quantitative episcopic imaging, as well as how annotation and quantification may be automated and standardized across the field.
Collapse
Affiliation(s)
| | - Claire Walsh
- Centre for Computational Medicine, University College London, London WC1E 6DD, UK
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Lucie Gourmet
- Centre for Computational Medicine, University College London, London WC1E 6DD, UK
| | - Simon Walker-Samuel
- Centre for Computational Medicine, University College London, London WC1E 6DD, UK
| |
Collapse
|
12
|
Abstract
Monogenic diabetes includes several clinical conditions generally characterized by early-onset diabetes, such as neonatal diabetes, maturity-onset diabetes of the young (MODY) and various diabetes-associated syndromes. However, patients with apparent type 2 diabetes mellitus may actually have monogenic diabetes. Indeed, the same monogenic diabetes gene can contribute to different forms of diabetes with early or late onset, depending on the functional impact of the variant, and the same pathogenic variant can produce variable diabetes phenotypes, even in the same family. Monogenic diabetes is mostly caused by impaired function or development of pancreatic islets, with defective insulin secretion in the absence of obesity. The most prevalent form of monogenic diabetes is MODY, which may account for 0.5-5% of patients diagnosed with non-autoimmune diabetes but is probably underdiagnosed owing to insufficient genetic testing. Most patients with neonatal diabetes or MODY have autosomal dominant diabetes. More than 40 subtypes of monogenic diabetes have been identified to date, the most prevalent being deficiencies of GCK and HNF1A. Precision medicine approaches (including specific treatments for hyperglycaemia, monitoring associated extra-pancreatic phenotypes and/or following up clinical trajectories, especially during pregnancy) are available for some forms of monogenic diabetes (including GCK- and HNF1A-diabetes) and increase patients' quality of life. Next-generation sequencing has made genetic diagnosis affordable, enabling effective genomic medicine in monogenic diabetes.
Collapse
|
13
|
Mauxion F, Basquin J, Ozgur S, Rame M, Albrecht J, Schäfer I, Séraphin B, Conti E. The human CNOT1-CNOT10-CNOT11 complex forms a structural platform for protein-protein interactions. Cell Rep 2023; 42:111902. [PMID: 36586408 PMCID: PMC9902336 DOI: 10.1016/j.celrep.2022.111902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/27/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022] Open
Abstract
The evolutionary conserved CCR4-NOT complex functions in the cytoplasm as the main mRNA deadenylase in both constitutive mRNA turnover and regulated mRNA decay pathways. The versatility of this complex is underpinned by its modular multi-subunit organization, with distinct structural modules actuating different functions. The structure and function of all modules are known, except for that of the N-terminal module. Using different structural approaches, we obtained high-resolution data revealing the architecture of the human N-terminal module composed of CNOT1, CNOT10, and CNOT11. The structure shows how two helical domains of CNOT1 sandwich CNOT10 and CNOT11, leaving the most conserved domain of CNOT11 protruding into solvent as an antenna. We discovered that GGNBP2, a protein identified as a tumor suppressor and spermatogenic factor, is a conserved interacting partner of the CNOT11 antenna domain. Structural and biochemical analyses thus pinpoint the N-terminal CNOT1-CNOT10-CNOT11 module as a conserved protein-protein interaction platform.
Collapse
Affiliation(s)
- Fabienne Mauxion
- Institut de Génétique et de Biologie Moléculaire et cellulaire (IGBMC), Centre National de Recherche scientifique (CNRS) UMR 7104 - Institut National de santé et de Recherche Médicale (Inserm) U964 - Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France.
| | - Jérôme Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany.
| | - Sevim Ozgur
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany
| | - Marion Rame
- Institut de Génétique et de Biologie Moléculaire et cellulaire (IGBMC), Centre National de Recherche scientifique (CNRS) UMR 7104 - Institut National de santé et de Recherche Médicale (Inserm) U964 - Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France
| | - Jana Albrecht
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany
| | - Ingmar Schäfer
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany
| | - Bertrand Séraphin
- Institut de Génétique et de Biologie Moléculaire et cellulaire (IGBMC), Centre National de Recherche scientifique (CNRS) UMR 7104 - Institut National de santé et de Recherche Médicale (Inserm) U964 - Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France.
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany.
| |
Collapse
|
14
|
Doyle-Meyers L, Dong C, Xu EQ, Vallender EJ, Blair RV, Didier P, He F, Wang X. Cyclopia in a newborn rhesus macaque born to a dam infected with SIV and receiving antiretroviral therapy during pregnancy. CURRENT TRENDS IN IMMUNOLOGY 2023; 24:91-103. [PMID: 39640529 PMCID: PMC11620240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Cyclopia, a rare genetic anomaly and birth defect, was recently observed in our nonhuman primate study. A newborn rhesus macaque, delivered via cesarean section, exhibited facial abnormalities, including a single eye in the middle of the forehead. This macaque was born to a dam who had been inoculated with SIV in the first trimester and received antiretroviral therapy (ART) in the early third trimester of pregnancy. Prenatal ultrasound detected fetal defects, including the fusion of the thalami and absence of third ventricle during the third trimester of fetal development. Remarkably, the newborn macaque was diagnosed with severe alobar holoprosencephaly, characterized by a single eye located on the facial midline and proboscises positioned above and below the eye. This condition was accompanied by the absence of a nose, mouth, mandible, maxilla, nasal and oral cavities, tongue, as well as the esophagus. Subsequent genetic screening identified a significant down-regulation of craniofacial development-associated genes, although genetic mutations in the sonic hedgehog gene (SHH) were not present. As the fetal defects were identified prior to the initiation of antiretroviral therapy, it is possible that other environmental factors may have contributed to the development of cyclopia in this rhesus case. However, the etiology of this congenital HPE case remains essentially unknown.
Collapse
Affiliation(s)
- Lara Doyle-Meyers
- Division of Veterinary Medicine, Tulane National Primate
Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Chunming Dong
- Department of Cell and Molecular Biology, School of Science
and Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, LA, 70118,
USA
| | - Eddie Qidi Xu
- Department of Cell and Molecular Biology, School of Science
and Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, LA, 70118,
USA
- Tulane University School of Public Health and Tropical
Medicine, 1440 Canal Street, New Orleans, LA, 70112, USA
| | - Eric J. Vallender
- Division of Veterinary Medicine, Tulane National Primate
Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA
- Department of Psychiatry and Human Behavior, Division of
Neurobiology and Behavior Research, University of Mississippi Medical Center,
Jackson, MS, 39216, USA
| | - Robert V. Blair
- Pathology & Laboratory Medicine, Tulane University
School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
- Division of Comparative Pathology, Tulane National Primate
Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Peter Didier
- Pathology & Laboratory Medicine, Tulane University
School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
- Division of Comparative Pathology, Tulane National Primate
Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Fenglei He
- Department of Cell and Molecular Biology, School of Science
and Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, LA, 70118,
USA
| | - Xiaolei Wang
- Pathology & Laboratory Medicine, Tulane University
School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
- Division of Comparative Pathology, Tulane National Primate
Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA
| |
Collapse
|
15
|
Greeley SAW, Polak M, Njølstad PR, Barbetti F, Williams R, Castano L, Raile K, Chi DV, Habeb A, Hattersley AT, Codner E. ISPAD Clinical Practice Consensus Guidelines 2022: The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes 2022; 23:1188-1211. [PMID: 36537518 PMCID: PMC10107883 DOI: 10.1111/pedi.13426] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Siri Atma W. Greeley
- Section of Pediatric and Adult Endocrinology, Diabetes and Metabolism, Kovler Diabetes Center and Comer Children's HospitalUniversity of Chicago MedicineChicagoIllinoisUSA
| | - Michel Polak
- Hôpital Universitaire Necker‐Enfants MaladesUniversité de Paris Cité, INSERM U1016, Institut IMAGINEParisFrance
| | - Pål R. Njølstad
- Department of Clinical ScienceUniversity of Bergen, and Children and Youth Clinic, Hauk eland University HospitalBergenNorway
| | - Fabrizio Barbetti
- Clinical Laboratory UnitBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Rachel Williams
- National Severe Insulin Resistance ServiceCambridge University Hospitals NHS TrustCambridgeUK
| | - Luis Castano
- Endocrinology and Diabetes Research Group, Biocruces Bizkaia Health Research InstituteCruces University Hospital, CIBERDEM, CIBERER, Endo‐ERN, UPV/EHUBarakaldoSpain
| | - Klemens Raile
- Department of Paediatric Endocrinology and DiabetologyCharité – UniversitätsmedizinBerlinGermany
| | - Dung Vu Chi
- Center for Endocrinology, Metabolism, Genetics and Molecular Therapy, Departement of Pediatric Endocrinology and DiabetesVietnam National Children's HospitalHanoiVietnam
- Department of Pediatrics and Department of Biology and Medical GeneticsHanoi Medical UniversityHanoiVietnam
| | - Abdelhadi Habeb
- Department of PediatricsPrince Mohamed bin Abdulaziz Hopsital, National Guard Health AffairsMadinahSaudi Arabia
| | - Andrew T. Hattersley
- Institute of Biomedical and Clinical SciencesUniversity of Exeter Medical SchoolExeterUK
| | - Ethel Codner
- Institute of Maternal and Child ResearchSchool of Medicine, University of ChileSantiagoChile
| |
Collapse
|
16
|
Reissig LF, Geyer SH, Winkler V, Preineder E, Prin F, Wilson R, Galli A, Tudor C, White JK, Mohun TJ, Weninger WJ. Detailed characterizations of cranial nerve anatomy in E14.5 mouse embryos/fetuses and their use as reference for diagnosing subtle, but potentially lethal malformations in mutants. Front Cell Dev Biol 2022; 10:1006620. [PMID: 36438572 PMCID: PMC9682249 DOI: 10.3389/fcell.2022.1006620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/28/2022] [Indexed: 01/03/2024] Open
Abstract
Careful phenotype analysis of genetically altered mouse embryos/fetuses is vital for deciphering the function of pre- and perinatally lethal genes. Usually this involves comparing the anatomy of mutants with that of wild types of identical developmental stages. Detailed three dimensional information on regular cranial nerve (CN) anatomy of prenatal mice is very scarce. We therefore set out to provide such information to be used as reference data and selected mutants to demonstrate its potential for diagnosing CN abnormalities. Digital volume data of 152 wild type mice, harvested on embryonic day (E)14.5 and of 18 mutants of the Col4a2, Arid1b, Rpgrip1l and Cc2d2a null lines were examined. The volume data had been created with High Resolution Episcopic Microscopy (HREM) as part of the deciphering the mechanisms of developmental disorders (DMDD) program. Employing volume and surface models, oblique slicing and digital measuring tools, we provide highly detailed anatomic descriptions of the CNs and measurements of the diameter of selected segments. Specifics of the developmental stages of E14.5 mice and anatomic norm variations were acknowledged. Using the provided data as reference enabled us to objectively diagnose CN abnormalities, such as abnormal formation of CN3 (Col4a2), neuroma of the motor portion of CN5 (Arid1b), thinning of CN7 (Rpgrip1l) and abnormal topology of CN12 (Cc2d2a). Although, in a first glimpse perceived as unspectacular, defects of the motor CN5 or CN7, like enlargement or thinning can cause death of newborns, by hindering feeding. Furthermore, abnormal topology of CN12 was recently identified as a highly reliable marker for low penetrating, but potentially lethal defects of the central nervous system.
Collapse
Affiliation(s)
- Lukas F. Reissig
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Stefan H. Geyer
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Viola Winkler
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Ester Preineder
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Fabrice Prin
- The Francis Crick Institute, London, United Kingdom
| | | | | | | | | | | | - Wolfgang J. Weninger
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Schalk A, Cousin MA, Dsouza NR, Challman TD, Wain KE, Powis Z, Minks K, Trimouille A, Lasseaux E, Lacombe D, Angelini C, Michaud V, Van-Gils J, Spataro N, Ruiz A, Gabau E, Stolerman E, Washington C, Louie RJ, Lanpher BC, Kemppainen JL, Innes AM, Kooy RF, Meuwissen M, Goldenberg A, Lecoquierre F, Vera G, Diderich KEM, Sheidley BR, Achkar CME, Park M, Hamdan FF, Michaud JL, Lewis AJ, Zweier C, Reis A, Wagner M, Weigand H, Journel H, Keren B, Passemard S, Mignot C, van Gassen KL, Brilstra EH, Itzikowitz G, O’Heir E, Allen J, Donald KA, Korf BR, Skelton T, Thompson ML, Robin NH, Rudy N, Dobyns WB, Foss K, Zarate YA, Bosanko KA, Alembik Y, Durand B, Mau-Them FT, Ranza E, Blanc X, Antonarakis SE, McWalter K, Torti E, Millan F, Dameron A, Tokita MJ, Zimmermann MT, Klee EW, Piton A, Gerard B. De novo coding variants in the AGO1 gene cause a neurodevelopmental disorder with intellectual disability. J Med Genet 2022; 59:965-975. [PMID: 34930816 PMCID: PMC9241146 DOI: 10.1136/jmedgenet-2021-107751] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 11/09/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND High-impact pathogenic variants in more than a thousand genes are involved in Mendelian forms of neurodevelopmental disorders (NDD). METHODS This study describes the molecular and clinical characterisation of 28 probands with NDD harbouring heterozygous AGO1 coding variants, occurring de novo for all those whose transmission could have been verified (26/28). RESULTS A total of 15 unique variants leading to amino acid changes or deletions were identified: 12 missense variants, two in-frame deletions of one codon, and one canonical splice variant leading to a deletion of two amino acid residues. Recurrently identified variants were present in several unrelated individuals: p.(Phe180del), p.(Leu190Pro), p.(Leu190Arg), p.(Gly199Ser), p.(Val254Ile) and p.(Glu376del). AGO1 encodes the Argonaute 1 protein, which functions in gene-silencing pathways mediated by small non-coding RNAs. Three-dimensional protein structure predictions suggest that these variants might alter the flexibility of the AGO1 linker domains, which likely would impair its function in mRNA processing. Affected individuals present with intellectual disability of varying severity, as well as speech and motor delay, autistic behaviour and additional behavioural manifestations. CONCLUSION Our study establishes that de novo coding variants in AGO1 are involved in a novel monogenic form of NDD, highly similar to the recently reported AGO2-related NDD.
Collapse
Affiliation(s)
- Audrey Schalk
- Laboratoire de Diagnostic Génétique, Institut
de génétique médicale d’Alsace (IGMA), Hôpitaux
Universitaires de Strasbourg, Strasbourg, France
| | - Margot A. Cousin
- Department of Health Sciences Research, Mayo Clinic,
Rochester, MN, 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester,
MN, 55905, United States
| | - Nikita R. Dsouza
- Bioinformatics Research and Development Laboratory,
Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin,
Milwaukee, WI 53226, USA
| | - Thomas D. Challman
- Autism & Developmental Medicine Institute, Geisinger,
Lewisburg, Pennsylvania, PA 17837, United States
| | - Karen E. Wain
- Autism & Developmental Medicine Institute, Geisinger,
Lewisburg, Pennsylvania, PA 17837, United States
| | - Zöe Powis
- Department of Clinical Genomics, Ambry Genetics, Aliso
Viejo, California, CA 92656, United States
| | - Kelly Minks
- Department of Clinical Genomics, Ambry Genetics, Aliso
Viejo, California, CA 92656, United States
| | - Aurélien Trimouille
- Service de Génétique Médicale, Centre
de Référence Anomalies du Développement et Syndrome
Malformatifs, CHU de Bordeaux, Bordeaux, France
- Maladies rares: Génétique et
Métabolisme (MRGM), INSERM U1211, Université de Bordeaux,
Bordeaux
| | - Eulalie Lasseaux
- Service de Génétique Médicale, Centre
de Référence Anomalies du Développement et Syndrome
Malformatifs, CHU de Bordeaux, Bordeaux, France
| | - Didier Lacombe
- Laboratoire de Diagnostic Génétique, Institut
de génétique médicale d’Alsace (IGMA), Hôpitaux
Universitaires de Strasbourg, Strasbourg, France
| | - Chloé Angelini
- Service de Génétique Médicale, Centre
de Référence Anomalies du Développement et Syndrome
Malformatifs, CHU de Bordeaux, Bordeaux, France
- Maladies rares: Génétique et
Métabolisme (MRGM), INSERM U1211, Université de Bordeaux,
Bordeaux
| | - Vincent Michaud
- Service de Génétique Médicale, Centre
de Référence Anomalies du Développement et Syndrome
Malformatifs, CHU de Bordeaux, Bordeaux, France
- Maladies rares: Génétique et
Métabolisme (MRGM), INSERM U1211, Université de Bordeaux,
Bordeaux
| | - Julien Van-Gils
- Service de Génétique Médicale, Centre
de Référence Anomalies du Développement et Syndrome
Malformatifs, CHU de Bordeaux, Bordeaux, France
| | - Nino Spataro
- Genetics Laboratory, UDIAT-Centre Diagnòstic. Parc
Taulí Hospital Universitari. Institut d’Investigació i
Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona.
Sabadell, Spain
| | - Anna Ruiz
- Genetics Laboratory, UDIAT-Centre Diagnòstic. Parc
Taulí Hospital Universitari. Institut d’Investigació i
Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona.
Sabadell, Spain
| | - Elizabeth Gabau
- Paediatric Unit. ParcTaulí Hospital Universitari.
Institut d’Investigació i Innovació Parc Taulí I3PT.
Universitat Autònoma de Barcelona. Sabadell, Spain
| | - Elliot Stolerman
- Greenwood Genetic Center, 106 Gregor Mendel Cir,
Greenwood, SC 29646, USA
| | - Camerun Washington
- Greenwood Genetic Center, 106 Gregor Mendel Cir,
Greenwood, SC 29646, USA
| | - Raymond J. Louie
- Greenwood Genetic Center, 106 Gregor Mendel Cir,
Greenwood, SC 29646, USA
| | - Brendan C Lanpher
- Center for Individualized Medicine, Mayo Clinic, Rochester,
MN, 55905, United States
- Department of Clinical Genomics, Mayo Clinic, Rochester,
Minnesota, MN 55905, United States
| | - Jennifer L. Kemppainen
- Center for Individualized Medicine, Mayo Clinic, Rochester,
MN, 55905, United States
- Department of Clinical Genomics, Mayo Clinic, Rochester,
Minnesota, MN 55905, United States
| | - A. Micheil Innes
- Department of Medical Genetics and Alberta
Children’s Hospital Research Institute, Cumming School of Medicine,
University of Calgary, Calgary, AB, Canada
| | - R. Frank Kooy
- Department of Medical Genetics, University and University
Hospital Antwerp, Antwerp, Belgium
| | - Marije Meuwissen
- Department of Medical Genetics, University and University
Hospital Antwerp, Antwerp, Belgium
| | - Alice Goldenberg
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen
University Hospital, Department of Genetics and Reference Center for Developmental
Disorders, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen,
France
| | - François Lecoquierre
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen
University Hospital, Department of Genetics and Reference Center for Developmental
Disorders, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen,
France
| | - Gabriella Vera
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen
University Hospital, Department of Genetics and Reference Center for Developmental
Disorders, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen,
France
| | - Karin E M Diderich
- Department of Clinical Genetics, Erasmus Medical Center,
Rotterdam, The Netherlands
| | - Beth Rosen Sheidley
- Division of Epilepsy and Clinical Neurophysiology,
Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts,
MA 02115, United States
| | - Christelle Moufawad El Achkar
- Division of Epilepsy and Clinical Neurophysiology,
Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts,
MA 02115, United States
| | - Meredith Park
- Division of Epilepsy and Clinical Neurophysiology,
Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts,
MA 02115, United States
| | - Fadi F. Hamdan
- Division of Medical Genetics, Department of Pediatrics,
CHU Sainte-Justine and University of Montreal, Montreal, QC, Canada
| | - Jacques L. Michaud
- Division of Medical Genetics, Department of Pediatrics,
CHU Sainte-Justine and University of Montreal, Montreal, QC, Canada
| | - Ann J. Lewis
- Pediatric Neurology, Kaiser Permanente Santa Clara
Homestead, Santa Clara, United States
| | - Christiane Zweier
- Department of Human Genetics, Inselspital, Bern
University Hospital, University of Bern, Bern, Switzerland
- Institute of Human Genetics,
Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen,
Germany
| | - André Reis
- Department of Human Genetics, Inselspital, Bern
University Hospital, University of Bern, Bern, Switzerland
- Institute of Human Genetics,
Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen,
Germany
| | - Matias Wagner
- Institute of Human Genetics, Technical University Munich,
Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum
München, Neuherberg, Germany
| | - Heike Weigand
- Department of Pediatric Neurology, Developmental Medicine
and Social Pediatrics, Dr. von Hauner’s Children’s Hospital,
University of Munich, Munich, Germany
| | - Hubert Journel
- Service de Génétique Médicale,
Hôpital Chubert, Vannes, France
| | - Boris Keren
- Département de Génétique et de
Cytogénétique, Centre de Reference Déficience Intellectuelle de
Causes Rares, GRC UPMC « Déficience Intellectuelle et Autisme
», Hôpital Pitié-Salpêtrière, AP-HP, Paris,
France
- INSERM U 1127, CNRS UMR 7225, Sorbonne
Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la
Moelle épinière, ICM, Paris, France
| | | | - Cyril Mignot
- Département de Génétique et de
Cytogénétique, Centre de Reference Déficience Intellectuelle de
Causes Rares, GRC UPMC « Déficience Intellectuelle et Autisme
», Hôpital Pitié-Salpêtrière, AP-HP, Paris,
France
- INSERM U 1127, CNRS UMR 7225, Sorbonne
Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la
Moelle épinière, ICM, Paris, France
| | | | - Eva H. Brilstra
- Department of Genetics, Center for Molecular Medicine,
University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gina Itzikowitz
- Department of Paediatrics and Child Health, Red Cross War
Memorial Children’s Hospital, University of Cape Town, SA
| | - Emily O’Heir
- Center for Mendelian Genomics and Program in Medical and
Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston
Children’s Hospital, Boston, MA, USA
| | - Jake Allen
- Stanley Center for Psychiatric Research, Broad Institute
of MIT and Harvard, Cambridge, MA, USA
| | - Kirsten A. Donald
- Department of Paediatrics and Child Health, Red Cross War
Memorial Children’s Hospital, University of Cape Town, SA
- Neuroscience Institute, University of Cape Town, SA
| | - Bruce R. Korf
- Department of Genetics, University of Alabama at
Birmingham, Birmingham, AL 35294, USA
| | - Tammi Skelton
- Department of Genetics, University of Alabama at
Birmingham, Birmingham, AL 35294, USA
| | - Michelle L Thompson
- Department of Pediatrics (Genetics) and Neurology,
University of Washington, and Seattle Children’s Research Institute, Seattle,
Washington, USA
- HudsonAlpha Institute for Biotechnology, Huntsville,
Alabama, USA
| | - Nathaniel H. Robin
- Department of Pediatrics (Genetics) and Neurology,
University of Washington, and Seattle Children’s Research Institute, Seattle,
Washington, USA
| | - Natasha Rudy
- Department of Pediatrics (Genetics) and Neurology,
University of Washington, and Seattle Children’s Research Institute, Seattle,
Washington, USA
| | - William B. Dobyns
- Department of Pediatrics (Genetics) and Neurology,
University of Washington, and Seattle Children’s Research Institute, Seattle,
Washington, USA
| | - Kimberly Foss
- Department of Pediatrics (Genetics) and Neurology,
University of Washington, and Seattle Children’s Research Institute, Seattle,
Washington, USA
| | - Yuri A Zarate
- Section of Genetics and Metabolism, University of
Arkansas for Medical Sciences, Little Rock, USA
| | - Katherine A. Bosanko
- Section of Genetics and Metabolism, University of
Arkansas for Medical Sciences, Little Rock, USA
| | - Yves Alembik
- Service de Génétique Médicale,
Institut de génétique médicale d’Alsace (IGMA),
Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Benjamin Durand
- Service de Génétique Médicale,
Institut de génétique médicale d’Alsace (IGMA),
Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Frédéric Tran Mau-Them
- Laboratoire de Diagnostic Génétique, Institut
de génétique médicale d’Alsace (IGMA), Hôpitaux
Universitaires de Strasbourg, Strasbourg, France
| | - Emmanuelle Ranza
- Medigenome, Swiss Institute of Genomic Medicine, 1207
Geneva, Switzerland
| | - Xavier Blanc
- Medigenome, Swiss Institute of Genomic Medicine, 1207
Geneva, Switzerland
| | | | | | | | | | | | | | - Michael T. Zimmermann
- Bioinformatics Research and Development Laboratory,
Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin,
Milwaukee, WI 53226, USA
- Clinical and Translational Sciences Institute, Medical
College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin,
Milwaukee, WI 53226, USA
| | - Eric W. Klee
- Department of Health Sciences Research, Mayo Clinic,
Rochester, MN, 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester,
MN, 55905, United States
- Greenwood Genetic Center, 106 Gregor Mendel Cir,
Greenwood, SC 29646, USA
| | - Amélie Piton
- Laboratoire de Diagnostic Génétique, Institut
de génétique médicale d’Alsace (IGMA), Hôpitaux
Universitaires de Strasbourg, Strasbourg, France
- Institut de Genetique et de Biologie Moleculaire et
Cellulaire, Illkirch 67400, France
| | - Bénédicte Gerard
- Laboratoire de Diagnostic Génétique, Institut
de génétique médicale d’Alsace (IGMA), Hôpitaux
Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
18
|
Cospain A, Faoucher M, Cauchois A, Carre W, Quelin C, Dubourg C. Fetal Description of the Pancreatic Agenesis and Holoprosencephaly Syndrome Associated to a Specific CNOT1 Variant. Pediatr Dev Pathol 2022; 25:548-552. [PMID: 35481434 DOI: 10.1177/10935266221095305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Holoprosencephaly (HPE) is a clinically and genetically heterogeneous disease, which can be associated with various prenatal comorbidities not always detectable on prenatal ultrasound. We report on the case of a foetus carrying a semi-lobar HPE diagnosed at ultrasound, for which a fetal autopsy and a whole exome sequencing were performed following a medical termination of pregnancy. Neuropathological examination confirmed the semi-lobar HPE and general autopsy disclosed a total pancreas agenesis. Whole exome sequencing found the CNOT1 missense c.1603C>T, p.(Arg535Cys), occurring de novo in the foetus. The same variant was previously reported in 5 unrelated children. All individuals had HPE, and 4 out of 5 presented endo- and exocrine pancreatic insufficiency or total pancreas agenesis. CNOT1 encodes a subunit of the CCRN4-NOT complex, expressed at the early stage of embryonic development. This report is the first fetal description of the phenotype associating HPE and pancreatic agenesis linked to the recurrent CNOT1 missense c.1603C>T, p.(Arg535Cys). This finding strengthens the hypothesis of a specific recurrent variant associated with a particular phenotype of HPE and pancreas agenesis. The fetal autopsy that revealed the pancreas agenesis was crucial in guiding the genetic diagnosis and enabling accurate genetic counselling.
Collapse
Affiliation(s)
- Auriane Cospain
- Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, ERN ITHACA, Hôpital Sud, 36684CHU Rennes, Rennes, France.,Service de Génétique Moléculaire et Génomique, 36684CHU, Rennes, France
| | - Marie Faoucher
- Service de Génétique Moléculaire et Génomique, 36684CHU, Rennes, France.,CNRS, IGDR, UMR 6290, Univ Rennes, Rennes, France
| | - Aurélie Cauchois
- Anatomie et cytologie pathologiques, CHU de Rennes, Rennes, France
| | - Wilfrid Carre
- Service de Génétique Moléculaire et Génomique, 36684CHU, Rennes, France.,CNRS, IGDR, UMR 6290, Univ Rennes, Rennes, France
| | - Chloé Quelin
- Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, ERN ITHACA, Hôpital Sud, 36684CHU Rennes, Rennes, France.,Anatomie et cytologie pathologiques, CHU de Rennes, Rennes, France
| | - Christèle Dubourg
- Service de Génétique Moléculaire et Génomique, 36684CHU, Rennes, France.,CNRS, IGDR, UMR 6290, Univ Rennes, Rennes, France
| |
Collapse
|
19
|
Brain Organization and Human Diseases. Cells 2022; 11:cells11101642. [PMID: 35626679 PMCID: PMC9139716 DOI: 10.3390/cells11101642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
The cortex is a highly organized structure that develops from the caudal regions of the segmented neural tube. Its spatial organization sets the stage for future functional arealization. Here, we suggest using a developmental perspective to describe and understand the etiology of common cortical malformations and their manifestation in the human brain.
Collapse
|
20
|
Quan Y, Wang M, Xu C, Wang X, Wu Y, Qin D, Lin Y, Lu X, Lu F, Li L. Cnot8 eliminates naïve regulation networks and is essential for naïve-to-formative pluripotency transition. Nucleic Acids Res 2022; 50:4414-4435. [PMID: 35390160 PMCID: PMC9071485 DOI: 10.1093/nar/gkac236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 03/11/2022] [Accepted: 03/26/2022] [Indexed: 11/14/2022] Open
Abstract
Mammalian early epiblasts at different phases are characterized by naïve, formative, and primed pluripotency states, involving extensive transcriptome changes. Here, we report that deadenylase Cnot8 of Ccr4-Not complex plays essential roles during the transition from naïve to formative state. Knock out (KO) Cnot8 resulted in early embryonic lethality in mice, but Cnot8 KO embryonic stem cells (ESCs) could be established. Compared with the cells differentiated from normal ESCs, Cnot8 KO cells highly expressed a great many genes during their differentiation into the formative state, including several hundred naïve-like genes enriched in lipid metabolic process and gene expression regulation that may form the naïve regulation networks. Knockdown expression of the selected genes of naïve regulation networks partially rescued the differentiation defects of Cnot8 KO ESCs. Cnot8 depletion led to the deadenylation defects of its targets, increasing their poly(A) tail lengths and half-life, eventually elevating their expression levels. We further found that Cnot8 was involved in the clearance of targets through its deadenylase activity and the binding of Ccr4-Not complex, as well as the interacting with Tob1 and Pabpc1. Our results suggest that Cnot8 eliminates naïve regulation networks through mRNA clearance, and is essential for naïve-to-formative pluripotency transition.
Collapse
Affiliation(s)
- Yujun Quan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meijiao Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengpeng Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxiao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dandan Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuxuan Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xukun Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Falong Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Barbetti F, Rapini N, Schiaffini R, Bizzarri C, Cianfarani S. The application of precision medicine in monogenic diabetes. Expert Rev Endocrinol Metab 2022; 17:111-129. [PMID: 35230204 DOI: 10.1080/17446651.2022.2035216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/25/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Monogenic diabetes, a form of diabetes mellitus, is caused by a mutation in a single gene and may account for 1-2% of all clinical forms of diabetes. To date, more than 40 loci have been associated with either isolated or syndromic monogenic diabetes. AREAS COVERED While the request of a genetic test is mandatory for cases with diabetes onset in the first 6 months of life, a decision may be difficult for childhood or adolescent diabetes. In an effort to assist the clinician in this task, we have grouped monogenic diabetes genes according to the age of onset (or incidental discovery) of hyperglycemia and described the additional clinical features found in syndromic diabetes. The therapeutic options available are reviewed. EXPERT OPINION Technical improvements in DNA sequencing allow for rapid, simultaneous analysis of all genes involved in monogenic diabetes, progressively shrinking the area of unsolved cases. However, the complexity of the analysis of genetic data requires close cooperation between the geneticist and the diabetologist, who should play a proactive role by providing a detailed clinical phenotype that might match a specific disease gene.
Collapse
Affiliation(s)
- Fabrizio Barbetti
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Novella Rapini
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Riccardo Schiaffini
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carla Bizzarri
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano Cianfarani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Dipartimento Pediatrico Universitario Ospedaliero, IRCCS "Bambino Gesù" Children's Hospital, Rome, Italy
- Department of Women's and Children Health, Karolisnska Institute and University Hospital, Sweden
| |
Collapse
|
22
|
Barratt KS, Drover KA, Thomas ZM, Arkell RM. Patterning of the antero-ventral mammalian brain: Lessons from holoprosencephaly comparative biology in man and mouse. WIREs Mech Dis 2022; 14:e1552. [PMID: 35137563 DOI: 10.1002/wsbm.1552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
Adult form and function are dependent upon the activity of specialized signaling centers that act early in development at the embryonic midline. These centers instruct the surrounding cells to adopt a positional fate and to form the patterned structures of the phylotypic embryo. Abnormalities in these processes have devastating consequences for the individual, as exemplified by holoprosencephaly in which anterior midline development fails, leading to structural defects of the brain and/or face. In the 25 years since the first association between human holoprosencephaly and the sonic hedgehog gene, a combination of human and animal genetic studies have enhanced our understanding of the genetic and embryonic causation of this congenital defect. Comparative biology has extended the holoprosencephaly network via the inclusion of gene mutations from multiple signaling pathways known to be required for anterior midline formation. It has also clarified aspects of holoprosencephaly causation, showing that it arises when a deleterious variant is present within a permissive genome, and that environmental factors, as well as embryonic stochasticity, influence the phenotypic outcome of the variant. More than two decades of research can now be distilled into a framework of embryonic and genetic causation. This framework means we are poised to move beyond our current understanding of variants in signaling pathway molecules. The challenges now at the forefront of holoprosencephaly research include deciphering how the mutation of genes involved in basic cell processes can also cause holoprosencephaly, determining the important constituents of the holoprosencephaly permissive genome, and identifying environmental compounds that promote holoprosencephaly. This article is categorized under: Congenital Diseases > Stem Cells and Development Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Molecular and Cellular Physiology Congenital Diseases > Environmental Factors.
Collapse
Affiliation(s)
- Kristen S Barratt
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kyle A Drover
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Zoe M Thomas
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ruth M Arkell
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
23
|
Geyer SH, Maurer‐Gesek B, Reissig LF, Rose J, Prin F, Wilson R, Galli A, Tudor C, White JK, Mohun TJ, Weninger WJ. The venous system of E14.5 mouse embryos-reference data and examples for diagnosing malformations in embryos with gene deletions. J Anat 2022; 240:11-22. [PMID: 34435363 PMCID: PMC8655187 DOI: 10.1111/joa.13536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022] Open
Abstract
Approximately one-third of randomly produced knockout mouse lines produce homozygous offspring, which fail to survive the perinatal period. The majority of these die around or after embryonic day (E)14.5, presumably from cardiovascular insufficiency. For diagnosing structural abnormalities underlying death and diseases and for researching gene function, the phenotype of these individuals has to be analysed. This makes the creation of reference data, which define normal anatomy and normal variations the highest priority. While such data do exist for the heart and arteries, they are still missing for the venous system. Here we provide high-quality descriptive and metric information on the normal anatomy of the venous system of E14.5 embryos. Using high-resolution digital volume data and 3D models from 206 genetically normal embryos, bred on the C57BL/6N background, we present precise descriptive and metric information of the venous system as it presents itself in each of the six developmental stages of E14.5. The resulting data shed new light on the maturation and remodelling of the venous system at transition of embryo to foetal life and provide a reference that can be used for detecting venous abnormalities in mutants. To explore this capacity, we analysed the venous phenotype of embryos from 7 knockout lines (Atp11a, Morc2a, 1700067K01Rik, B9d2, Oaz1, Celf4 and Coro1c). Careful comparisons enabled the diagnosis of not only simple malformations, such as dual inferior vena cava, but also complex and subtle abnormalities, which would have escaped diagnosis in the absence of detailed, stage-specific referenced data.
Collapse
Affiliation(s)
- Stefan H. Geyer
- Division of AnatomyMICBioImaging Austria/CMIMedical University of ViennaViennaAustria
| | - Barbara Maurer‐Gesek
- Division of AnatomyMICBioImaging Austria/CMIMedical University of ViennaViennaAustria
| | - Lukas F. Reissig
- Division of AnatomyMICBioImaging Austria/CMIMedical University of ViennaViennaAustria
| | - Julia Rose
- Division of AnatomyMICBioImaging Austria/CMIMedical University of ViennaViennaAustria
| | - Fabrice Prin
- Crick Advanced Light Microscopy FacilityThe Francis Crick InstituteLondonUK
| | | | - Antonella Galli
- Wellcome Trust Sanger InstituteWellcome Genome CampusCambridgeUK
| | - Catherine Tudor
- Wellcome Trust Sanger InstituteWellcome Genome CampusCambridgeUK
| | | | | | - Wolfgang J. Weninger
- Division of AnatomyMICBioImaging Austria/CMIMedical University of ViennaViennaAustria
| |
Collapse
|
24
|
De Franco E. Neonatal diabetes caused by disrupted pancreatic and β-cell development. Diabet Med 2021; 38:e14728. [PMID: 34665882 DOI: 10.1111/dme.14728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
Neonatal diabetes is diagnosed before the age of 6 months and is usually caused by single-gene mutations. More than 30 genetic causes of neonatal diabetes have been described to date, resulting in severely reduced β-cell number or function. Seven of these genes are known to cause neonatal diabetes through disrupted development of the whole pancreas, resulting in diabetes and exocrine pancreatic insufficiency. Pathogenic variants in five transcription factors essential for β-cell development cause neonatal diabetes without other pancreatic phenotypes. However, additional extra-pancreatic features are common. This review will focus on the genes causing neonatal diabetes through disrupted β-cell development, discussing what is currently known about the genetic and phenotypic features of these genetic conditions, and what discoveries may come in the future.
Collapse
Affiliation(s)
- Elisa De Franco
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| |
Collapse
|
25
|
Hughes AE, De Franco E, Globa E, Zelinska N, Hilgard D, Sifianou P, Hattersley AT, Flanagan SE. Identification of GCK-maturity-onset diabetes of the young in cases of neonatal hyperglycemia: A case series and review of clinical features. Pediatr Diabetes 2021; 22:876-881. [PMID: 34085361 PMCID: PMC7611537 DOI: 10.1111/pedi.13239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/03/2021] [Accepted: 05/24/2021] [Indexed: 01/04/2023] Open
Abstract
Heterozygous mutations in GCK result in a persistent, mildly raised glucose from birth, but it is usually diagnosed in adulthood as maturity-onset diabetes of the young (MODY), where hyperglycemia is often an incidental finding. The hyperglycemia of GCK-MODY is benign and does not require treatment, but is important to be aware of, particularly in females where it has implications for managing pregnancy. We present three cases of neonatal hyperglycemia resulting from a heterozygous mutation in GCK, illustrating its clinical presentation and evolution in early life. In summary, as with adults, neonatal hyperglycemia is an incidental finding, does not require treatment and has no adverse consequences for health. Neonates and their parents should be referred for genetic testing to confirm the diagnosis, avoid a label of diabetes and enable pregnancy counseling for females found to be affected.
Collapse
Affiliation(s)
- Alice E Hughes
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Elisa De Franco
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Evgenia Globa
- Department of Pediatric Endocrinology, Ukrainian Center of Endocrine Surgery, MoH of Ukraine, Kyiv, Ukraine
| | - Nataliya Zelinska
- Department of Pediatric Endocrinology, Ukrainian Center of Endocrine Surgery, MoH of Ukraine, Kyiv, Ukraine
| | - Dörte Hilgard
- Pediatric Practice, Pediatric Endocrinology and Diabetology, Witten, Germany
| | - Popi Sifianou
- Department of Neonatology, General Hospital ''Elena Venizelou'', Athens, Greece
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
26
|
Ikle JM, Gloyn AL. 100 YEARS OF INSULIN: A brief history of diabetes genetics: insights for pancreatic beta-cell development and function. J Endocrinol 2021; 250:R23-R35. [PMID: 34196608 PMCID: PMC9037733 DOI: 10.1530/joe-21-0067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/30/2021] [Indexed: 12/30/2022]
Abstract
Since the discovery of insulin 100 years ago, our knowledge and understanding of diabetes have grown exponentially. Specifically, with regards to the genetics underlying diabetes risk, our discoveries have paralleled developments in our understanding of the human genome and our ability to study genomics at scale; these advancements in genetics have both accompanied and led to those in diabetes treatment. This review will explore the timeline and history of gene discovery and how this has coincided with progress in the fields of genomics. Examples of genetic causes of monogenic diabetes are presented and the continuing expansion of allelic series in these genes and the challenges these now cause for diagnostic interpretation along with opportunities for patient stratification are discussed.
Collapse
Affiliation(s)
- Jennifer M Ikle
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Anna L Gloyn
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, California, USA
| |
Collapse
|
27
|
Latypova X, Vincent M, Mollé A, Adebambo OA, Fourgeux C, Khan TN, Caro A, Rosello M, Orellana C, Niyazov D, Lederer D, Deprez M, Capri Y, Kannu P, Tabet AC, Levy J, Aten E, den Hollander N, Splitt M, Walia J, Immken LL, Stankiewicz P, McWalter K, Suchy S, Louie RJ, Bell S, Stevenson RE, Rousseau J, Willem C, Retiere C, Yang XJ, Campeau PM, Martinez F, Rosenfeld JA, Le Caignec C, Küry S, Mercier S, Moradkhani K, Conrad S, Besnard T, Cogné B, Katsanis N, Bézieau S, Poschmann J, Davis EE, Isidor B. Haploinsufficiency of the Sin3/HDAC corepressor complex member SIN3B causes a syndromic intellectual disability/autism spectrum disorder. Am J Hum Genet 2021; 108:929-941. [PMID: 33811806 DOI: 10.1016/j.ajhg.2021.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/18/2021] [Indexed: 11/28/2022] Open
Abstract
Proteins involved in transcriptional regulation harbor a demonstrated enrichment of mutations in neurodevelopmental disorders. The Sin3 (Swi-independent 3)/histone deacetylase (HDAC) complex plays a central role in histone deacetylation and transcriptional repression. Among the two vertebrate paralogs encoding the Sin3 complex, SIN3A variants cause syndromic intellectual disability, but the clinical consequences of SIN3B haploinsufficiency in humans are uncharacterized. Here, we describe a syndrome hallmarked by intellectual disability, developmental delay, and dysmorphic facial features with variably penetrant autism spectrum disorder, congenital malformations, corpus callosum defects, and impaired growth caused by disruptive SIN3B variants. Using chromosomal microarray or exome sequencing, and through international data sharing efforts, we identified nine individuals with heterozygous SIN3B deletion or single-nucleotide variants. Five individuals harbor heterozygous deletions encompassing SIN3B that reside within a ∼230 kb minimal region of overlap on 19p13.11, two individuals have a rare nonsynonymous substitution, and two individuals have a single-nucleotide deletion that results in a frameshift and predicted premature termination codon. To test the relevance of SIN3B impairment to measurable aspects of the human phenotype, we disrupted the orthologous zebrafish locus by genome editing and transient suppression. The mutant and morphant larvae display altered craniofacial patterning, commissural axon defects, and reduced body length supportive of an essential role for Sin3 function in growth and patterning of anterior structures. To investigate further the molecular consequences of SIN3B variants, we quantified genome-wide enhancer and promoter activity states by using H3K27ac ChIP-seq. We show that, similar to SIN3A mutations, SIN3B disruption causes hyperacetylation of a subset of enhancers and promoters in peripheral blood mononuclear cells. Together, these data demonstrate that SIN3B haploinsufficiency leads to a hitherto unknown intellectual disability/autism syndrome, uncover a crucial role of SIN3B in the central nervous system, and define the epigenetic landscape associated with Sin3 complex impairment.
Collapse
Affiliation(s)
- Xenia Latypova
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27701, USA; L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Marie Vincent
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Alice Mollé
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France
| | | | - Cynthia Fourgeux
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France
| | - Tahir N Khan
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27701, USA; Department of Biological Sciences, National University of Medical Sciences, 46000 Rawalpindi, Pakistan
| | - Alfonso Caro
- Unidad de Genética, Grupo de Investigación Traslacional en Genética, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Monica Rosello
- Unidad de Genética, Grupo de Investigación Traslacional en Genética, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Carmen Orellana
- Unidad de Genética, Grupo de Investigación Traslacional en Genética, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Dmitriy Niyazov
- Department of Pediatrics, Ochsner Clinic, New Orleans, LA 70128, USA
| | - Damien Lederer
- Centre de Génétique Humaine, IPG, 6041 Gosselies, Belgium
| | - Marie Deprez
- Service de Neuropédiatrie, Clinique Saint Elizabeth, 5000 Namur, Belgium
| | - Yline Capri
- Service de Génétique Médicale, Hôpital Robert Debré, 75019 Paris, France
| | - Peter Kannu
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | | | - Jonathan Levy
- Service de Cytogénétique, Hôpital Robert Debré, 75019 Paris, France
| | - Emmelien Aten
- Department of Clinical Genetics, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Nicolette den Hollander
- Department of Clinical Genetics, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Miranda Splitt
- Northern Genetics Service, Institute of Genetic Medicine, Newcastle Upon Tyne NE1 3BZ, UK
| | - Jagdeep Walia
- Kingston General Hospital Research Institute, 76 Stuart Street, Kingston, ON K7L 2V7, Canada
| | - Ladonna L Immken
- Clinical Genetics, Dell Children's Medical Group, Austin, TX 78731, USA
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Sharon Suchy
- GeneDx, 207 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Raymond J Louie
- Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC 29646, USA
| | - Shannon Bell
- Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC 29646, USA
| | - Roger E Stevenson
- Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC 29646, USA
| | - Justine Rousseau
- Sainte-Justine Hospital, 3175, Cote-Sainte-Catherine, Montreal, QC, Canada
| | | | - Christelle Retiere
- Etablissement Français du Sang, 44000 Nantes, France; CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44000 Nantes, France; LabEx IGO, Nantes 44000, France
| | - Xiang-Jiao Yang
- Rosalind & Morris Goodman Cancer Research Center and Department of Medicine, McGill University, Montreal, QC H3A 1A3, Canada
| | - Philippe M Campeau
- Sainte-Justine Hospital, 3175, Cote-Sainte-Catherine, Montreal, QC, Canada
| | - Francisco Martinez
- Unidad de Genética, Grupo de Investigación Traslacional en Genética, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cédric Le Caignec
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Sébastien Küry
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Sandra Mercier
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Kamran Moradkhani
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France
| | - Solène Conrad
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France
| | - Thomas Besnard
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Benjamin Cogné
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27701, USA; Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Stéphane Bézieau
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Jeremie Poschmann
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France.
| | - Erica E Davis
- Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France.
| |
Collapse
|
28
|
Hughes AE, Hattersley AT, Flanagan SE, Freathy RM. Two decades since the fetal insulin hypothesis: what have we learned from genetics? Diabetologia 2021; 64:717-726. [PMID: 33569631 PMCID: PMC7940336 DOI: 10.1007/s00125-021-05386-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022]
Abstract
In 1998 the fetal insulin hypothesis proposed that lower birthweight and adult-onset type 2 diabetes are two phenotypes of the same genotype. Since then, advances in research investigating the role of genetics affecting insulin secretion and action have furthered knowledge of fetal insulin-mediated growth and the biology of type 2 diabetes. In this review, we discuss the historical research context from which the fetal insulin hypothesis originated and consider the position of the hypothesis in light of recent evidence. In summary, there is now ample evidence to support the idea that variants of certain genes which result in impaired pancreatic beta cell function and reduced insulin secretion contribute to both lower birthweight and higher type 2 diabetes risk in later life when inherited by the fetus. There is also evidence to support genetic links between type 2 diabetes secondary to reduced insulin action and lower birthweight but this applies only to loci implicated in body fat distribution and not those influencing insulin resistance via obesity or lipid metabolism by the liver. Finally, we also consider how advances in genetics are being used to explore alternative hypotheses, namely the role of the maternal intrauterine environment, in the relationship between lower birthweight and adult cardiometabolic disease.
Collapse
Affiliation(s)
- Alice E Hughes
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Rachel M Freathy
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
29
|
Sanchez Caballero L, Gorgogietas V, Arroyo MN, Igoillo-Esteve M. Molecular mechanisms of β-cell dysfunction and death in monogenic forms of diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:139-256. [PMID: 33832649 DOI: 10.1016/bs.ircmb.2021.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monogenetic forms of diabetes represent 1%-5% of all diabetes cases and are caused by mutations in a single gene. These mutations, that affect genes involved in pancreatic β-cell development, function and survival, or insulin regulation, may be dominant or recessive, inherited or de novo. Most patients with monogenic diabetes are very commonly misdiagnosed as having type 1 or type 2 diabetes. The severity of their symptoms depends on the nature of the mutation, the function of the affected gene and, in some cases, the influence of additional genetic or environmental factors that modulate severity and penetrance. In some patients, diabetes is accompanied by other syndromic features such as deafness, blindness, microcephaly, liver and intestinal defects, among others. The age of diabetes onset may also vary from neonatal until early adulthood manifestations. Since the different mutations result in diverse clinical presentations, patients usually need different treatments that range from just diet and exercise, to the requirement of exogenous insulin or other hypoglycemic drugs, e.g., sulfonylureas or glucagon-like peptide 1 analogs to control their glycemia. As a consequence, awareness and correct diagnosis are crucial for the proper management and treatment of monogenic diabetes patients. In this chapter, we describe mutations causing different monogenic forms of diabetes associated with inadequate pancreas development or impaired β-cell function and survival, and discuss the molecular mechanisms involved in β-cell demise.
Collapse
Affiliation(s)
- Laura Sanchez Caballero
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Vyron Gorgogietas
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Maria Nicol Arroyo
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/.
| |
Collapse
|
30
|
Mutations in genes encoding regulators of mRNA decapping and translation initiation: links to intellectual disability. Biochem Soc Trans 2021; 48:1199-1211. [PMID: 32412080 PMCID: PMC7329352 DOI: 10.1042/bst20200109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Intellectual disability (ID) affects at least 1% of the population, and typically presents in the first few years of life. ID is characterized by impairments in cognition and adaptive behavior and is often accompanied by further delays in language and motor skills, as seen in many neurodevelopmental disorders (NDD). Recent widespread high-throughput approaches that utilize whole-exome sequencing or whole-genome sequencing have allowed for a considerable increase in the identification of these pathogenic variants in monogenic forms of ID. Notwithstanding this progress, the molecular and cellular consequences of the identified mutations remain mostly unknown. This is particularly important as the associated protein dysfunctions are the prerequisite to the identification of targets for novel drugs of these rare disorders. Recent Next-Generation sequencing-based studies have further established that mutations in genes encoding proteins involved in RNA metabolism are a major cause of NDD. Here, we review recent studies linking germline mutations in genes encoding factors mediating mRNA decay and regulators of translation, namely DCPS, EDC3, DDX6 helicase and ID. These RNA-binding proteins have well-established roles in mRNA decapping and/or translational repression, and the mutations abrogate their ability to remove 5′ caps from mRNA, diminish their interactions with cofactors and stabilize sub-sets of transcripts. Additional genes encoding RNA helicases with roles in translation including DDX3X and DHX30 have also been linked to NDD. Given the speed in the acquisition, analysis and sharing of sequencing data, and the importance of post-transcriptional regulation for brain development, we anticipate mutations in more such factors being identified and functionally characterized.
Collapse
|
31
|
De Franco E, Lytrivi M, Ibrahim H, Montaser H, Wakeling MN, Fantuzzi F, Patel K, Demarez C, Cai Y, Igoillo-Esteve M, Cosentino C, Lithovius V, Vihinen H, Jokitalo E, Laver TW, Johnson MB, Sawatani T, Shakeri H, Pachera N, Haliloglu B, Ozbek MN, Unal E, Yıldırım R, Godbole T, Yildiz M, Aydin B, Bilheu A, Suzuki I, Flanagan SE, Vanderhaeghen P, Senée V, Julier C, Marchetti P, Eizirik DL, Ellard S, Saarimäki-Vire J, Otonkoski T, Cnop M, Hattersley AT. YIPF5 mutations cause neonatal diabetes and microcephaly through endoplasmic reticulum stress. J Clin Invest 2021; 130:6338-6353. [PMID: 33164986 PMCID: PMC7685733 DOI: 10.1172/jci141455] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Neonatal diabetes is caused by single gene mutations reducing pancreatic β cell number or impairing β cell function. Understanding the genetic basis of rare diabetes subtypes highlights fundamental biological processes in β cells. We identified 6 patients from 5 families with homozygous mutations in the YIPF5 gene, which is involved in trafficking between the endoplasmic reticulum (ER) and the Golgi. All patients had neonatal/early-onset diabetes, severe microcephaly, and epilepsy. YIPF5 is expressed during human brain development, in adult brain and pancreatic islets. We used 3 human β cell models (YIPF5 silencing in EndoC-βH1 cells, YIPF5 knockout and mutation knockin in embryonic stem cells, and patient-derived induced pluripotent stem cells) to investigate the mechanism through which YIPF5 loss of function affects β cells. Loss of YIPF5 function in stem cell–derived islet cells resulted in proinsulin retention in the ER, marked ER stress, and β cell failure. Partial YIPF5 silencing in EndoC-βH1 cells and a patient mutation in stem cells increased the β cell sensitivity to ER stress–induced apoptosis. We report recessive YIPF5 mutations as the genetic cause of a congenital syndrome of microcephaly, epilepsy, and neonatal/early-onset diabetes, highlighting a critical role of YIPF5 in β cells and neurons. We believe this is the first report of mutations disrupting the ER-to-Golgi trafficking, resulting in diabetes.
Collapse
Affiliation(s)
- Elisa De Franco
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | - Maria Lytrivi
- ULB Center for Diabetes Research and.,Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hossam Montaser
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matthew N Wakeling
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | - Federica Fantuzzi
- ULB Center for Diabetes Research and.,Endocrinology and Metabolism, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Kashyap Patel
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | | | - Ying Cai
- ULB Center for Diabetes Research and
| | | | | | - Väinö Lithovius
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Thomas W Laver
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | - Matthew B Johnson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | | | | | | | | | | | - Edip Unal
- Dicle University, Faculty of Medicine, Department of Pediatric Endocrinology, Diyarbakır, Turkey
| | - Ruken Yıldırım
- Dicle University, Faculty of Medicine, Department of Pediatric Endocrinology, Diyarbakır, Turkey
| | | | - Melek Yildiz
- Istanbul University, Istanbul Faculty of Medicine, Department of Pediatric Endocrinology, Istanbul, Turkey
| | - Banu Aydin
- Kanuni Sultan Suleyman Training and Research Hospital, Department of Pediatric Endocrinology, Istanbul, Turkey
| | - Angeline Bilheu
- Institute of Interdisciplinary Research (IRIBHM), ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Ikuo Suzuki
- Institute of Interdisciplinary Research (IRIBHM), ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium.,VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | - Pierre Vanderhaeghen
- Institute of Interdisciplinary Research (IRIBHM), ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium.,VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Welbio, Université Libre de Bruxelles, Brussels, Belgium
| | - Valérie Senée
- Université de Paris, Faculté de Médecine Paris-Diderot, U958, Paris, France
| | - Cécile Julier
- Université de Paris, Faculté de Médecine Paris-Diderot, U958, Paris, France
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Decio L Eizirik
- ULB Center for Diabetes Research and.,Welbio, Université Libre de Bruxelles, Brussels, Belgium.,Indiana Biosciences Research Institute, Indianapolis, Indiana, USA
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Miriam Cnop
- ULB Center for Diabetes Research and.,Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| |
Collapse
|
32
|
Johnson MB, Patel KA, De Franco E, Hagopian W, Killian M, McDonald TJ, Tree TIM, Domingo-Vila C, Hudson M, Hammersley S, Dobbs R, Ellard S, Flanagan SE, Hattersley AT, Oram RA. Type 1 diabetes can present before the age of 6 months and is characterised by autoimmunity and rapid loss of beta cells. Diabetologia 2020; 63:2605-2615. [PMID: 33029656 PMCID: PMC7641942 DOI: 10.1007/s00125-020-05276-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/26/2020] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Diabetes diagnosed at <6 months of age is usually monogenic. However, 10-15% of affected infants do not have a pathogenic variant in one of the 26 known neonatal diabetes genes. We characterised infants diagnosed at <6 months of age without a pathogenic variant to assess whether polygenic type 1 diabetes could arise at early ages. METHODS We studied 166 infants diagnosed with type 1 diabetes at <6 months of age in whom pathogenic variants in all 26 known genes had been excluded and compared them with infants with monogenic neonatal diabetes (n = 164) or children with type 1 diabetes diagnosed at 6-24 months of age (n = 152). We assessed the type 1 diabetes genetic risk score (T1D-GRS), islet autoantibodies, C-peptide and clinical features. RESULTS We found an excess of infants with high T1D-GRS: 38% (63/166) had a T1D-GRS >95th centile of healthy individuals, whereas 5% (8/166) would be expected if all were monogenic (p < 0.0001). Individuals with a high T1D-GRS had a similar rate of autoantibody positivity to that seen in individuals with type 1 diabetes diagnosed at 6-24 months of age (41% vs 58%, p = 0.2), and had markedly reduced C-peptide levels (median <3 pmol/l within 1 year of diagnosis), reflecting rapid loss of insulin secretion. These individuals also had reduced birthweights (median z score -0.89), which were lowest in those diagnosed with type 1 diabetes at <3 months of age (median z score -1.98). CONCLUSIONS/INTERPRETATION We provide strong evidence that type 1 diabetes can present before the age of 6 months based on individuals with this extremely early-onset diabetes subtype having the classic features of childhood type 1 diabetes: high genetic risk, autoimmunity and rapid beta cell loss. The early-onset association with reduced birthweight raises the possibility that for some individuals there was reduced insulin secretion in utero. Comprehensive genetic testing for all neonatal diabetes genes remains essential for all individuals diagnosed with diabetes at <6 months of age. Graphical abstract.
Collapse
Affiliation(s)
- Matthew B Johnson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Kashyap A Patel
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Elisa De Franco
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | | | | | - Timothy J McDonald
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
- Blood Sciences, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | - Timothy I M Tree
- Department of Immunobiology, School of Immunobiology & Microbial Sciences, Kings College London, London, UK
- NIHR Biomedical Research Centre Guys and St Thomas' NHS Foundation Trust and Kings College London, London, UK
| | - Clara Domingo-Vila
- Department of Immunobiology, School of Immunobiology & Microbial Sciences, Kings College London, London, UK
| | - Michelle Hudson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
- National Institute for Health Exeter Research Clinical Research Facility, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | - Suzanne Hammersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
- National Institute for Health Exeter Research Clinical Research Facility, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | - Rebecca Dobbs
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
- National Institute for Health Exeter Research Clinical Research Facility, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | | | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Richard A Oram
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
33
|
Yang Y, Wang C, Wei N, Hong T, Sun Z, Xiao J, Yao J, Li Z, Liu T. Identification of prognostic chromatin-remodeling genes in clear cell renal cell carcinoma. Aging (Albany NY) 2020; 12:25614-25642. [PMID: 33232269 PMCID: PMC7803503 DOI: 10.18632/aging.104170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
Abstract
The aim of this study was to investigate the effects of chromatin-remodeling genes on the prognosis of patients with clear cell renal cell carcinoma (ccRCC). In TCGA-KIRC patients, two subgroups based on 86 chromatin-remodeling genes were established. The random forest algorithm was used for feature selection to identify BPTF, SIN3A and CNOT1 as characterized chromatin remodelers in ccRCC with good prognostic value. YY1 was indicated to be a transcription factor of genes highly related to BPTF, SIN3A and CNOT1. Functional annotations indicated that BPTF, SIN3A, CNOT1 and YY1 are all involved in the ubiquitin-mediated proteolysis process and that high expression of any of the five associated E3 ubiquitin ligases found in the pathway suggests a good prognosis. Protein network analysis indicated that BPTF has a targeted regulatory effect on YY1. Another independent dataset from International Cancer Genome Consortium (ICGC) showed a strong consistency with results in TCGA. In conclusion, we demonstrate that BPTF, SIN3A and CNOT1 are novel prognostic factors that predict good survival in ccRCC. We predicted that the good prognostic value of chromatin-remodeling genes BPTF and SIN3A is related to the regulation of YY1 and that YY1 regulates E3 ubiquitin ligases for further degradation of oncoproteins in ccRCC.
Collapse
Affiliation(s)
- Yujing Yang
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Chengyuan Wang
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Ningde Wei
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Ting Hong
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Zuyu Sun
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Jiawen Xiao
- Department of Medical Oncology, Shenyang Fifth People Hospital, Tiexi District, Shenyang 110001, P.R. China
| | - Jiaxi Yao
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Zhi Li
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Tao Liu
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| |
Collapse
|
34
|
The Regulatory Properties of the Ccr4-Not Complex. Cells 2020; 9:cells9112379. [PMID: 33138308 PMCID: PMC7692201 DOI: 10.3390/cells9112379] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
The mammalian Ccr4–Not complex, carbon catabolite repression 4 (Ccr4)-negative on TATA-less (Not), is a large, highly conserved, multifunctional assembly of proteins that acts at different cellular levels to regulate gene expression. In the nucleus, it is involved in the regulation of the cell cycle, chromatin modification, activation and inhibition of transcription initiation, control of transcription elongation, RNA export, nuclear RNA surveillance, and DNA damage repair. In the cytoplasm, the Ccr4–Not complex plays a central role in mRNA decay and affects protein quality control. Most of our original knowledge of the Ccr4–Not complex is derived, primarily, from studies in yeast. More recent studies have shown that the mammalian complex has a comparable structure and similar properties. In this review, we summarize the evidence for the multiple roles of both the yeast and mammalian Ccr4–Not complexes, highlighting their similarities.
Collapse
|
35
|
Jennings RE, Scharfmann R, Staels W. Transcription factors that shape the mammalian pancreas. Diabetologia 2020; 63:1974-1980. [PMID: 32894307 PMCID: PMC7476910 DOI: 10.1007/s00125-020-05161-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022]
Abstract
Improving our understanding of mammalian pancreas development is crucial for the development of more effective cellular therapies for diabetes. Most of what we know about mammalian pancreas development stems from mouse genetics. We have learnt that a unique set of transcription factors controls endocrine and exocrine cell differentiation. Transgenic mouse models have been instrumental in studying the function of these transcription factors. Mouse and human pancreas development are very similar in many respects, but the devil is in the detail. To unravel human pancreas development in greater detail, in vitro cellular models (including directed differentiation of stem cells, human beta cell lines and human pancreatic organoids) are used; however, in vivo validation of these results is still needed. The current best 'model' for studying human pancreas development are individuals with monogenic forms of diabetes. In this review, we discuss mammalian pancreas development, highlight some discrepancies between mouse and human, and discuss selected transcription factors that, when mutated, cause permanent neonatal diabetes. Graphical abstract.
Collapse
Affiliation(s)
- Rachel E Jennings
- Division of Diabetes, Endocrinology & Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK.
- Endocrinology Department, Manchester University NHS Foundation Trust, Manchester, UK.
| | - Raphael Scharfmann
- Institut Cochin, INSERM, U1016, CNRS, UMR8104, Université de Paris, 75014, Paris, France.
| | - Willem Staels
- Institut Cochin, INSERM, U1016, CNRS, UMR8104, Université de Paris, 75014, Paris, France.
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
- Department of Pediatrics, Division of Pediatric Endocrinology, University Hospital of Brussels, Jette, Belgium.
| |
Collapse
|
36
|
Vissers LE, Kalvakuri S, de Boer E, Geuer S, Oud M, van Outersterp I, Kwint M, Witmond M, Kersten S, Polla DL, Weijers D, Begtrup A, McWalter K, Ruiz A, Gabau E, Morton JE, Griffith C, Weiss K, Gamble C, Bartley J, Vernon HJ, Brunet K, Ruivenkamp C, Kant SG, Kruszka P, Larson A, Afenjar A, Billette de Villemeur T, Nugent K, Raymond FL, Venselaar H, Demurger F, Soler-Alfonso C, Li D, Bhoj E, Hayes I, Hamilton NP, Ahmad A, Fisher R, van den Born M, Willems M, Sorlin A, Delanne J, Moutton S, Christophe P, Mau-Them FT, Vitobello A, Goel H, Massingham L, Phornphutkul C, Schwab J, Keren B, Charles P, Vreeburg M, De Simone L, Hoganson G, Iascone M, Milani D, Evenepoel L, Revencu N, Ward DI, Burns K, Krantz I, Raible SE, Murrell JR, Wood K, Cho MT, van Bokhoven H, Muenke M, Kleefstra T, Bodmer R, de Brouwer AP, de Brouwer APM. De Novo Variants in CNOT1, a Central Component of the CCR4-NOT Complex Involved in Gene Expression and RNA and Protein Stability, Cause Neurodevelopmental Delay. Am J Hum Genet 2020; 107:164-172. [PMID: 32553196 DOI: 10.1016/j.ajhg.2020.05.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/26/2020] [Indexed: 11/27/2022] Open
Abstract
CNOT1 is a member of the CCR4-NOT complex, which is a master regulator, orchestrating gene expression, RNA deadenylation, and protein ubiquitination. We report on 39 individuals with heterozygous de novo CNOT1 variants, including missense, splice site, and nonsense variants, who present with a clinical spectrum of intellectual disability, motor delay, speech delay, seizures, hypotonia, and behavioral problems. To link CNOT1 dysfunction to the neurodevelopmental phenotype observed, we generated variant-specific Drosophila models, which showed learning and memory defects upon CNOT1 knockdown. Introduction of human wild-type CNOT1 was able to rescue this phenotype, whereas mutants could not or only partially, supporting our hypothesis that CNOT1 impairment results in neurodevelopmental delay. Furthermore, the genetic interaction with autism-spectrum genes, such as ASH1L, DYRK1A, MED13, and SHANK3, was impaired in our Drosophila models. Molecular characterization of CNOT1 variants revealed normal CNOT1 expression levels, with both mutant and wild-type alleles expressed at similar levels. Analysis of protein-protein interactions with other members indicated that the CCR4-NOT complex remained intact. An integrated omics approach of patient-derived genomics and transcriptomics data suggested only minimal effects on endonucleolytic nonsense-mediated mRNA decay components, suggesting that de novo CNOT1 variants are likely haploinsufficient hypomorph or neomorph, rather than dominant negative. In summary, we provide strong evidence that de novo CNOT1 variants cause neurodevelopmental delay with a wide range of additional co-morbidities. Whereas the underlying pathophysiological mechanism warrants further analysis, our data demonstrate an essential and central role of the CCR4-NOT complex in human brain development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Arjan P M de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| |
Collapse
|
37
|
Che X, Zhao R, Xu H, Liu X, Zhao S, Ma H. Differently Expressed Genes (DEGs) Relevant to Type 2 Diabetes Mellitus Identification and Pathway Analysis via Integrated Bioinformatics Analysis. Med Sci Monit 2019; 25:9237-9244. [PMID: 31797865 PMCID: PMC6909911 DOI: 10.12659/msm.918407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The aim of this study was to evaluate the differently expressed genes (DEGs) relevant to type 2 diabetes mellitus (T2DM) and pathway by performing integrated bioinformatics analysis. MATERIAL AND METHODS The gene expression datasets GSE7014 and GSE29221 were downloaded in GEO database, and DEGs from type 2 diabetes mellitus and normal skeletal muscle tissues were identified. Biological function analysis of the DEGs was enriched by GO and KEEG pathway. A PPI network for the identified DEGs was built using the STRING database. RESULTS Thirty top DEGs were identified from 2 datasets: GSE7014 and GSE29221. Of the 30 top DEGs, 20 were up-regulated and 10 were down-regulated. The 20 up-regulated genes were enriched in regulation of mRNA, protein biding, and phospholipase D signaling pathway. The 10 down-regulated genes were enriched in telomere maintenance via semi-conservative replication, AGE-RAGE signaling pathway in diabetic complications, and insulin resistance pathway. In the PPI network of 20 up-regulated DEGs, there were 40 nodes and 84 edges, with an average node degree of 4.2. For the 10 down-regulated DEGs, we found a total of 30 nodes and 105 edges, with an average node degree of 7.0 and local clustering coefficient of 0.812. Among the 30 DEGs, 10 hub genes (CNOT6L, CNOT6, CNOT1, CNOT7, RQCD1, RFC2, PRIM1, RFC4, RFC5, and RFC1) were also identified through Cytoscape. CONCLUSIONS DEGs of T2DM may play an essential role in disease development and may be potential pathogeneses of T2DM.
Collapse
Affiliation(s)
- Xuanqiang Che
- Department of Endocrinology, Fifth People's Hospital of Jinan, Jinan, Shandong, China (mainland)
| | - Ran Zhao
- Department of Endocrinology, Fifth People's Hospital of Jinan, Jinan, Shandong, China (mainland)
| | - Hua Xu
- Department of Endocrinology, Fifth People's Hospital of Jinan, Jinan, Shandong, China (mainland)
| | - Xue Liu
- Department of Endocrinology, Fifth People's Hospital of Jinan, Jinan, Shandong, China (mainland)
| | - Shumiao Zhao
- Department of Endocrinology, Fifth People's Hospital of Jinan, Jinan, Shandong, China (mainland)
| | - Hongwei Ma
- Department of Endocrinology, Fifth People's Hospital of Jinan, Jinan, Shandong, China (mainland)
| |
Collapse
|
38
|
Lee S, Chen DY, Zaki MS, Maroofian R, Houlden H, Di Donato N, Abdin D, Morsy H, Mirzaa GM, Dobyns WB, McEvoy-Venneri J, Stanley V, James KN, Mancini GM, Schot R, Kalayci T, Altunoglu U, Karimiani EG, Brick L, Kozenko M, Jamshidi Y, Manzini MC, Beiraghi Toosi M, Gleeson JG. Bi-allelic Loss of Human APC2, Encoding Adenomatous Polyposis Coli Protein 2, Leads to Lissencephaly, Subcortical Heterotopia, and Global Developmental Delay. Am J Hum Genet 2019; 105:844-853. [PMID: 31585108 DOI: 10.1016/j.ajhg.2019.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Lissencephaly is a severe brain malformation in which failure of neuronal migration results in agyria or pachygyria and in which the brain surface appears unusually smooth. It is often associated with microcephaly, profound intellectual disability, epilepsy, and impaired motor abilities. Twenty-two genes are associated with lissencephaly, accounting for approximately 80% of disease. Here we report on 12 individuals with a unique form of lissencephaly; these individuals come from eight unrelated families and have bi-allelic mutations in APC2, encoding adenomatous polyposis coli protein 2. Brain imaging studies demonstrate extensive posterior predominant lissencephaly, similar to PAFAH1B1-associated lissencephaly, as well as co-occurrence of subcortical heterotopia posterior to the caudate nuclei, "ribbon-like" heterotopia in the posterior frontal region, and dysplastic in-folding of the mesial occipital cortex. The established role of APC2 in integrating the actin and microtubule cytoskeletons to mediate cellular morphological changes suggests shared function with other lissencephaly-encoded cytoskeletal proteins such as α-N-catenin (CTNNA2) and platelet-activating factor acetylhydrolase 1b regulatory subunit 1 (PAFAH1B1, also known as LIS1). Our findings identify APC2 as a radiographically distinguishable recessive form of lissencephaly.
Collapse
|
39
|
High-Resolution Episcopic Microscopy (HREM): Looking Back on 13 Years of Successful Generation of Digital Volume Data of Organic Material for 3D Visualisation and 3D Display. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
High-resolution episcopic microscopy (HREM) is an imaging technique that permits the simple and rapid generation of three-dimensional (3D) digital volume data of histologically embedded and physically sectioned specimens. The data can be immediately used for high-detail 3D analysis of a broad variety of organic materials with all modern methods of 3D visualisation and display. Since its first description in 2006, HREM has been adopted as a method for exploring organic specimens in many fields of science, and it has recruited a slowly but steadily growing user community. This review aims to briefly introduce the basic principles of HREM data generation and to provide an overview of scientific publications that have been published in the last 13 years involving HREM imaging. The studies to which we refer describe technical details and specimen-specific protocols, and provide examples of the successful use of HREM in biological, biomedical and medical research. Finally, the limitations, potentials and anticipated further improvements are briefly outlined.
Collapse
|
40
|
Kruszka P, Berger SI, Casa V, Dekker MR, Gaesser J, Weiss K, Martinez AF, Murdock DR, Louie RJ, Prijoles EJ, Lichty AW, Brouwer OF, Zonneveld-Huijssoon E, Stephan MJ, Hogue J, Hu P, Tanima-Nagai M, Everson JL, Prasad C, Cereda A, Iascone M, Schreiber A, Zurcher V, Corsten-Janssen N, Escobar L, Clegg NJ, Delgado MR, Hajirnis O, Balasubramanian M, Kayserili H, Deardorff M, Poot RA, Wendt KS, Lipinski RJ, Muenke M. Cohesin complex-associated holoprosencephaly. Brain 2019; 142:2631-2643. [PMID: 31334757 PMCID: PMC7245359 DOI: 10.1093/brain/awz210] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022] Open
Abstract
Marked by incomplete division of the embryonic forebrain, holoprosencephaly is one of the most common human developmental disorders. Despite decades of phenotype-driven research, 80-90% of aneuploidy-negative holoprosencephaly individuals with a probable genetic aetiology do not have a genetic diagnosis. Here we report holoprosencephaly associated with variants in the two X-linked cohesin complex genes, STAG2 and SMC1A, with loss-of-function variants in 10 individuals and a missense variant in one. Additionally, we report four individuals with variants in the cohesin complex genes that are not X-linked, SMC3 and RAD21. Using whole mount in situ hybridization, we show that STAG2 and SMC1A are expressed in the prosencephalic neural folds during primary neurulation in the mouse, consistent with forebrain morphogenesis and holoprosencephaly pathogenesis. Finally, we found that shRNA knockdown of STAG2 and SMC1A causes aberrant expression of HPE-associated genes ZIC2, GLI2, SMAD3 and FGFR1 in human neural stem cells. These findings show the cohesin complex as an important regulator of median forebrain development and X-linked inheritance patterns in holoprosencephaly.
Collapse
Affiliation(s)
- Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Seth I Berger
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Valentina Casa
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Mike R Dekker
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Jenna Gaesser
- Department of Pediatrics, Division of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Karin Weiss
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ariel F Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David R Murdock
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Raymond J Louie
- Greenwood Genetic Center, JC Self Research Institute of Human Genetics, Greenwood, SC, USA
| | - Eloise J Prijoles
- Greenwood Genetic Center, JC Self Research Institute of Human Genetics, Greenwood, SC, USA
| | - Angie W Lichty
- Greenwood Genetic Center, JC Self Research Institute of Human Genetics, Greenwood, SC, USA
| | - Oebele F Brouwer
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Evelien Zonneveld-Huijssoon
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mark J Stephan
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Jacob Hogue
- Division of Clinical Genetics, Department of Pediatrics, Madigan Army Hospital, Tacoma, WA, USA
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Momoko Tanima-Nagai
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joshua L Everson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Chitra Prasad
- Children’s Health Research Institute, London, ON, Canada
| | - Anna Cereda
- Department of Pediatrics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | | | - Vickie Zurcher
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nicole Corsten-Janssen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Luis Escobar
- Peyton Manning Children’s Hospital at St. Vincent, Medical Genetics and Neurodevelopment Center, Indianapolis, IN, USA
| | - Nancy J Clegg
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA
| | - Mauricio R Delgado
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA
- Department of Neurology and Neurotherapeutics UT Southwestern Medical Center Dallas, TX, USA
| | - Omkar Hajirnis
- Pediatric Neurology, Synapses Child Neurology and Development Centre, Thane, Maharashtra, India
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children’s, NHS Foundation Trust, Sheffield, UK
- Academic Unit of Child Health, University of Sheffield, Sheffield, UK
| | - Hülya Kayserili
- Medical Genetics, Medical Faculty, Koç University, Istanbul, Turkey
| | - Matthew Deardorff
- The Division of Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- The Department of Pediatrics, The Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Raymond A Poot
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Kerstin S Wendt
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
41
|
De Franco E. From Biology to Genes and Back Again: Gene Discovery for Monogenic Forms of Beta-Cell Dysfunction in Diabetes. J Mol Biol 2019; 432:1535-1550. [PMID: 31479665 DOI: 10.1016/j.jmb.2019.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022]
Abstract
This review focuses on gene discovery strategies used to identify monogenic forms of diabetes caused by reduced pancreatic beta-cell number (due to destruction or defective development) or impaired beta-cell function. Gene discovery efforts in monogenic diabetes have identified 36 genes so far. These genetic causes have been identified using four main approaches: linkage analysis, candidate gene sequencing and most recently, exome and genome sequencing. The advent of next-generation sequencing has allowed researchers to move away from linkage analysis (relying on large pedigrees and/or multiple families with the same genetic condition) and candidate gene (relying on previous knowledge on the gene's role) strategies to use a gene agnostic approach, utilizing genetic evidence (such as variant frequency, predicted variant effect on protein function, and predicted mode of inheritance) to identify the causative mutation. This approach led to the identification of seven novel genetic causes of monogenic diabetes, six by exome sequencing and one by genome sequencing. In many of these cases, the disease-causing gene was not known to be important for beta-cell function prior to the gene discovery study. These novel findings highlight a new role for gene discovery studies in furthering our understanding of beta-cell function and dysfunction in diabetes. While many gene discovery studies in the past were led by knowledge in the field (through the candidate gene strategy), now they often lead the scientific advances in the field by identifying new important biological players to be further characterized by in vitro and in vivo studies.
Collapse
Affiliation(s)
- Elisa De Franco
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, EX2 5DW Exeter, UK; Institute of Biomedical and Clinical Science, Level 3, RILD Building, Barrack Road, EX2 5DW Exeter, United Kingdom.
| |
Collapse
|