1
|
Tanaka T, Chung HL. Exploiting fly models to investigate rare human neurological disorders. Neural Regen Res 2025; 20:21-28. [PMID: 38767473 PMCID: PMC11246155 DOI: 10.4103/nrr.nrr-d-23-01847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 03/02/2024] [Indexed: 05/22/2024] Open
Abstract
Rare neurological diseases, while individually are rare, collectively impact millions globally, leading to diverse and often severe neurological symptoms. Often attributed to genetic mutations that disrupt protein function or structure, understanding their genetic basis is crucial for accurate diagnosis and targeted therapies. To investigate the underlying pathogenesis of these conditions, researchers often use non-mammalian model organisms, such as Drosophila (fruit flies), which is valued for their genetic manipulability, cost-efficiency, and preservation of genes and biological functions across evolutionary time. Genetic tools available in Drosophila, including CRISPR-Cas9, offer a means to manipulate gene expression, allowing for a deep exploration of the genetic underpinnings of rare neurological diseases. Drosophila boasts a versatile genetic toolkit, rapid generation turnover, and ease of large-scale experimentation, making it an invaluable resource for identifying potential drug candidates. Researchers can expose flies carrying disease-associated mutations to various compounds, rapidly pinpointing promising therapeutic agents for further investigation in mammalian models and, ultimately, clinical trials. In this comprehensive review, we explore rare neurological diseases where fly research has significantly contributed to our understanding of their genetic basis, pathophysiology, and potential therapeutic implications. We discuss rare diseases associated with both neuron-expressed and glial-expressed genes. Specific cases include mutations in CDK19 resulting in epilepsy and developmental delay, mutations in TIAM1 leading to a neurodevelopmental disorder with seizures and language delay, and mutations in IRF2BPL causing seizures, a neurodevelopmental disorder with regression, loss of speech, and abnormal movements. And we explore mutations in EMC1 related to cerebellar atrophy, visual impairment, psychomotor retardation, and gain-of-function mutations in ACOX1 causing Mitchell syndrome. Loss-of-function mutations in ACOX1 result in ACOX1 deficiency, characterized by very-long-chain fatty acid accumulation and glial degeneration. Notably, this review highlights how modeling these diseases in Drosophila has provided valuable insights into their pathophysiology, offering a platform for the rapid identification of potential therapeutic interventions. Rare neurological diseases involve a wide range of expression systems, and sometimes common phenotypes can be found among different genes that cause abnormalities in neurons or glia. Furthermore, mutations within the same gene may result in varying functional outcomes, such as complete loss of function, partial loss of function, or gain-of-function mutations. The phenotypes observed in patients can differ significantly, underscoring the complexity of these conditions. In conclusion, Drosophila represents an indispensable and cost-effective tool for investigating rare neurological diseases. By facilitating the modeling of these conditions, Drosophila contributes to a deeper understanding of their genetic basis, pathophysiology, and potential therapies. This approach accelerates the discovery of promising drug candidates, ultimately benefiting patients affected by these complex and understudied diseases.
Collapse
Affiliation(s)
- Tomomi Tanaka
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
| | - Hyung-Lok Chung
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
2
|
Casas-Tintó S. Drosophila as a Model for Human Disease: Insights into Rare and Ultra-Rare Diseases. INSECTS 2024; 15:870. [PMID: 39590469 PMCID: PMC11594678 DOI: 10.3390/insects15110870] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024]
Abstract
Rare and ultra-rare diseases constitute a significant medical challenge due to their low prevalence and the limited understanding of their origin and underlying mechanisms. These disorders often exhibit phenotypic diversity and molecular complexity that represent a challenge to biomedical research. There are more than 6000 different rare diseases that affect nearly 300 million people worldwide. However, the prevalence of each rare disease is low, and in consequence, the biomedical resources dedicated to each rare disease are limited and insufficient to effectively achieve progress in the research. The use of animal models to investigate the mechanisms underlying pathogenesis has become an invaluable tool. Among the animal models commonly used in research, Drosophila melanogaster has emerged as an efficient and reliable experimental model for investigating a wide range of genetic disorders, and to develop therapeutic strategies for rare and ultra-rare diseases. It offers several advantages as a research model including short life cycle, ease of laboratory maintenance, rapid life cycle, and fully sequenced genome that make it highly suitable for studying genetic disorders. Additionally, there is a high degree of genetic conservation from Drosophila melanogaster to humans, which allows the extrapolation of findings at the molecular and cellular levels. Here, I examine the role of Drosophila melanogaster as a model for studying rare and ultra-rare diseases and highlight its significant contributions and potential to biomedical research. High-throughput next-generation sequencing (NGS) technologies, such as whole-exome sequencing and whole-genome sequencing (WGS), are providing massive amounts of information on the genomic modifications present in rare diseases and common complex traits. The sequencing of exomes or genomes of individuals affected by rare diseases has enabled human geneticists to identify rare variants and identify potential loci associated with novel gene-disease relationships. Despite these advances, the average rare disease patient still experiences significant delay until receiving a diagnosis. Furthermore, the vast majority (95%) of patients with rare conditions lack effective treatment or a cure. This scenario is enhanced by frequent misdiagnoses leading to inadequate support. In consequence, there is an urgent need to develop model organisms to explore the molecular mechanisms underlying these diseases and to establish the genetic origin of these maladies. The aim of this review is to discuss the advantages and limitations of Drosophila melanogaster, hereafter referred as Drosophila, as an experimental model for biomedical research, and the applications to study human disease. The main question to address is whether Drosophila is a valid research model to study human disease, and in particular, rare and ultra-rare diseases.
Collapse
Affiliation(s)
- Sergio Casas-Tintó
- Institute for Rare Diseases Research, Instituto de Salud Carlos III (ISCIII), 28222 Madrid, Spain
| |
Collapse
|
3
|
Huang Y, Jay KL, Yen-Wen Huang A, Wan J, Jangam SV, Chorin O, Rothschild A, Barel O, Mariani M, Iascone M, Xue H, Huang J, Mignot C, Keren B, Saillour V, Mah-Som AY, Sacharow S, Rajabi F, Costin C, Yamamoto S, Kanca O, Bellen HJ, Rosenfeld JA, Palmer CGS, Nelson SF, Wangler MF, Martinez-Agosto JA. Loss-of-function in RBBP5 results in a syndromic neurodevelopmental disorder associated with microcephaly. Genet Med 2024; 26:101218. [PMID: 39036895 PMCID: PMC11648989 DOI: 10.1016/j.gim.2024.101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
PURPOSE Epigenetic dysregulation has been associated with many inherited disorders. RBBP5 (HGNC:9888) encodes a core member of the protein complex that methylates histone 3 lysine-4 and has not been implicated in human disease. METHODS We identify 5 unrelated individuals with de novo heterozygous variants in RBBP5. Three nonsense/frameshift and 2 missense variants were identified in probands with neurodevelopmental symptoms, including global developmental delay, intellectual disability, microcephaly, and short stature. Here, we investigate the pathogenicity of the variants through protein structural analysis and transgenic Drosophila models. RESULTS Both missense p.(T232I) and p.(E296D) variants affect evolutionarily conserved amino acids located at the interface between RBBP5 and the nucleosome. In Drosophila, overexpression analysis identifies partial loss-of-function mechanisms when the variants are expressed using the fly Rbbp5 or human RBBP5 cDNA. Loss of Rbbp5 leads to a reduction in brain size. The human reference or variant transgenes fail to rescue this loss and expression of either missense variant in an Rbbp5 null background results in a less severe microcephaly phenotype than the human reference, indicating both missense variants are partial loss-of-function alleles. CONCLUSION Haploinsufficiency of RBBP5 observed through de novo null and hypomorphic loss-of-function variants is associated with a syndromic neurodevelopmental disorder.
Collapse
Affiliation(s)
- Yue Huang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Kristy L Jay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston TX
| | - Alden Yen-Wen Huang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jijun Wan
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Sharayu V Jangam
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston TX
| | - Odelia Chorin
- Institute for Rare Diseases, Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel
| | - Annick Rothschild
- Institute for Rare Diseases, Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel
| | - Ortal Barel
- Genomics Unit, The Center for Cancer Research, Sheba Medical Center, Tel HaShomer, Israel; Sheba Medical Center, Wohl Institute of Translational Medicine, Ramat Gan, Israel
| | - Milena Mariani
- Pediatric Department, ASST Lariana, Santa Anna General Hospital, Italy
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Han Xue
- Shanghai Institute of Precision Medicine at Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Huang
- Shanghai Institute of Precision Medicine at Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cyril Mignot
- AP-HP Sorbonne Université, Département de Génétique, France; Centre de Référence Déficiences Intellectuelles de Causes Rares, France
| | - Boris Keren
- Genetic Department, GCS SeqOIA, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - Virginie Saillour
- Laboratoire de biologie médicale multisites Seqoia - FMG2025, Paris, France
| | | | - Stephanie Sacharow
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA
| | - Farrah Rajabi
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO
| | - Carrie Costin
- Division of Medical Genetics, Akron Children's Hospital, Akron, OH
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston TX
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston TX
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston TX
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Baylor Genetics Laboratories, Houston, TX
| | - Christina G S Palmer
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Stanley F Nelson
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston TX.
| | - Julian A Martinez-Agosto
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA.
| |
Collapse
|
4
|
Goodman LD, Ralhan I, Li X, Lu S, Moulton MJ, Park YJ, Zhao P, Kanca O, Ghaderpour Taleghani ZS, Jacquemyn J, Shulman JM, Ando K, Sun K, Ioannou MS, Bellen HJ. Tau is required for glial lipid droplet formation and resistance to neuronal oxidative stress. Nat Neurosci 2024; 27:1918-1933. [PMID: 39187706 PMCID: PMC11809452 DOI: 10.1038/s41593-024-01740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 07/29/2024] [Indexed: 08/28/2024]
Abstract
The accumulation of reactive oxygen species (ROS) is a common feature of tauopathies, defined by Tau accumulations in neurons and glia. High ROS in neurons causes lipid production and the export of toxic peroxidated lipids (LPOs). Glia uptake these LPOs and incorporate them into lipid droplets (LDs) for storage and catabolism. We found that overexpressing Tau in glia disrupts LDs in flies and rat neuron-astrocyte co-cultures, sensitizing the glia to toxic, neuronal LPOs. Using a new fly tau loss-of-function allele and RNA-mediated interference, we found that endogenous Tau is required for glial LD formation and protection against neuronal LPOs. Similarly, endogenous Tau is required in rat astrocytes and human oligodendrocyte-like cells for LD formation and the breakdown of LPOs. Behaviorally, flies lacking glial Tau have decreased lifespans and motor defects that are rescuable by administering the antioxidant N-acetylcysteine amide. Overall, this work provides insights into the important role that Tau has in glia to mitigate ROS in the brain.
Collapse
Affiliation(s)
- Lindsey D Goodman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Isha Ralhan
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Xin Li
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Matthew J Moulton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Ye-Jin Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, Houston, TX, USA
| | - Pinghan Zhao
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Ziyaneh S Ghaderpour Taleghani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Julie Jacquemyn
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Joshua M Shulman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Kanae Ando
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Kai Sun
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Integrative Biology and Pharmacology, Graduate Program in Cell and Regulatory Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Maria S Ioannou
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Her Y, Pascual DM, Goldstone-Joubert Z, Marcogliese PC. Variant functional assessment in Drosophila by overexpression: what can we learn? Genome 2024; 67:158-167. [PMID: 38412472 DOI: 10.1139/gen-2023-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The last decade has been highlighted by the increased use of next-generation DNA sequencing technology to identify novel human disease genes. A critical downstream part of this process is assigning function to a candidate gene variant. Functional studies in Drosophila melanogaster, the common fruit fly, have made a prominent contribution in annotating variant impact in an in vivo system. The use of patient-derived knock-in flies or rescue-based, "humanization", approaches are novel and valuable strategies in variant testing but have been recently widely reviewed. An often-overlooked strategy for determining variant impact has been GAL4/upstream activation sequence-mediated tissue-defined overexpression in Drosophila. This mini-review will summarize the recent contribution of ectopic overexpression of human reference and variant cDNA in Drosophila to assess variant function, interpret the consequence of the variant, and in some cases infer biological mechanisms.
Collapse
Affiliation(s)
- Yina Her
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, MB, Canada
| | - Danielle M Pascual
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, MB, Canada
| | - Zoe Goldstone-Joubert
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, MB, Canada
| | - Paul C Marcogliese
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, MB, Canada
- Excellence in Neurodevelopment and Rehabilitation Research in Child Health (ENRRICH) Theme, Winnipeg, MB, Canada
| |
Collapse
|
6
|
Yamamoto S, Kanca O, Wangler MF, Bellen HJ. Integrating non-mammalian model organisms in the diagnosis of rare genetic diseases in humans. Nat Rev Genet 2024; 25:46-60. [PMID: 37491400 DOI: 10.1038/s41576-023-00633-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/27/2023]
Abstract
Next-generation sequencing technology has rapidly accelerated the discovery of genetic variants of interest in individuals with rare diseases. However, showing that these variants are causative of the disease in question is complex and may require functional studies. Use of non-mammalian model organisms - mainly fruitflies (Drosophila melanogaster), nematode worms (Caenorhabditis elegans) and zebrafish (Danio rerio) - enables the rapid and cost-effective assessment of the effects of gene variants, which can then be validated in mammalian model organisms such as mice and in human cells. By probing mechanisms of gene action and identifying interacting genes and proteins in vivo, recent studies in these non-mammalian model organisms have facilitated the diagnosis of numerous genetic diseases and have enabled the screening and identification of therapeutic options for patients. Studies in non-mammalian model organisms have also shown that the biological processes underlying rare diseases can provide insight into more common mechanisms of disease and the biological functions of genes. Here, we discuss the opportunities afforded by non-mammalian model organisms, focusing on flies, worms and fish, and provide examples of their use in the diagnosis of rare genetic diseases.
Collapse
Affiliation(s)
- Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
7
|
Pan X, Alvarez AN, Ma M, Lu S, Crawford MW, Briere LC, Kanca O, Yamamoto S, Sweetser DA, Wilson JL, Napier RJ, Pruneda JN, Bellen HJ. Allelic strengths of encephalopathy-associated UBA5 variants correlate between in vivo and in vitro assays. eLife 2023; 12:RP89891. [PMID: 38079206 PMCID: PMC10712953 DOI: 10.7554/elife.89891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Protein UFMylation downstream of the E1 enzyme UBA5 plays essential roles in development and endoplasmic reticulum stress. Variants in the UBA5 gene are associated with developmental and epileptic encephalopathy 44 (DEE44), an autosomal recessive disorder characterized by early-onset encephalopathy, movement abnormalities, global developmental delay, intellectual disability, and seizures. DEE44 is caused by at least 12 different missense variants described as loss of function (LoF), but the relationships between genotypes and molecular or clinical phenotypes remain to be established. We developed a humanized UBA5 fly model and biochemical activity assays in order to describe in vivo and in vitro genotype-phenotype relationships across the UBA5 allelic series. In vivo, we observed a broad spectrum of phenotypes in viability, developmental timing, lifespan, locomotor activity, and bang sensitivity. A range of functional effects was also observed in vitro across comprehensive biochemical assays for protein stability, ATP binding, UFM1 activation, and UFM1 transthiolation. Importantly, there is a strong correlation between in vivo and in vitro phenotypes, establishing a classification of LoF variants into mild, intermediate, and severe allelic strengths. By systemically evaluating UBA5 variants across in vivo and in vitro platforms, this study provides a foundation for more basic and translational UBA5 research, as well as a basis for evaluating current and future individuals afflicted with this rare disease.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Albert N Alvarez
- Department of Molecular Microbiology & Immunology, Oregon Health & Science UniversityPortlandUnited States
| | - Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Michael W Crawford
- Department of Molecular Microbiology & Immunology, Oregon Health & Science UniversityPortlandUnited States
| | - Lauren C Briere
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - David A Sweetser
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Division of Medical Genetics & Metabolism, Massachusetts General Hospital for ChildrenBostonUnited States
| | - Jenny L Wilson
- Division of Pediatric Neurology, Department of Pediatrics, Oregon Health & Science UniversityPortlandUnited States
| | - Ruth J Napier
- Department of Molecular Microbiology & Immunology, Oregon Health & Science UniversityPortlandUnited States
- VA Portland Health Care SystemPortlandUnited States
- Division of Arthritis & Rheumatic Diseases, Oregon Health & Science UniversityPortlandUnited States
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science UniversityPortlandUnited States
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
8
|
Yang Y, Guo L, Chen L, Gong B, Jia D, Sun Q. Nuclear transport proteins: structure, function, and disease relevance. Signal Transduct Target Ther 2023; 8:425. [PMID: 37945593 PMCID: PMC10636164 DOI: 10.1038/s41392-023-01649-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023] Open
Abstract
Proper subcellular localization is crucial for the functioning of biomacromolecules, including proteins and RNAs. Nuclear transport is a fundamental cellular process that regulates the localization of many macromolecules within the nuclear or cytoplasmic compartments. In humans, approximately 60 proteins are involved in nuclear transport, including nucleoporins that form membrane-embedded nuclear pore complexes, karyopherins that transport cargoes through these complexes, and Ran system proteins that ensure directed and rapid transport. Many of these nuclear transport proteins play additional and essential roles in mitosis, biomolecular condensation, and gene transcription. Dysregulation of nuclear transport is linked to major human diseases such as cancer, neurodegenerative diseases, and viral infections. Selinexor (KPT-330), an inhibitor targeting the nuclear export factor XPO1 (also known as CRM1), was approved in 2019 to treat two types of blood cancers, and dozens of clinical trials of are ongoing. This review summarizes approximately three decades of research data in this field but focuses on the structure and function of individual nuclear transport proteins from recent studies, providing a cutting-edge and holistic view on the role of nuclear transport proteins in health and disease. In-depth knowledge of this rapidly evolving field has the potential to bring new insights into fundamental biology, pathogenic mechanisms, and therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| | - Qingxiang Sun
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu, China.
| |
Collapse
|
9
|
Nil Z, Deshwar AR, Huang Y, Barish S, Zhang X, Choufani S, Le Quesne Stabej P, Hayes I, Yap P, Haldeman-Englert C, Wilson C, Prescott T, Tveten K, Vøllo A, Haynes D, Wheeler PG, Zon J, Cytrynbaum C, Jobling R, Blyth M, Banka S, Afenjar A, Mignot C, Robin-Renaldo F, Keren B, Kanca O, Mao X, Wegner DJ, Sisco K, Shinawi M, Wangler MF, Weksberg R, Yamamoto S, Costain G, Bellen HJ. Rare de novo gain-of-function missense variants in DOT1L are associated with developmental delay and congenital anomalies. Am J Hum Genet 2023; 110:1919-1937. [PMID: 37827158 PMCID: PMC10645550 DOI: 10.1016/j.ajhg.2023.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Misregulation of histone lysine methylation is associated with several human cancers and with human developmental disorders. DOT1L is an evolutionarily conserved gene encoding a lysine methyltransferase (KMT) that methylates histone 3 lysine-79 (H3K79) and was not previously associated with a Mendelian disease in OMIM. We have identified nine unrelated individuals with seven different de novo heterozygous missense variants in DOT1L through the Undiagnosed Disease Network (UDN), the SickKids Complex Care genomics project, and GeneMatcher. All probands had some degree of global developmental delay/intellectual disability, and most had one or more major congenital anomalies. To assess the pathogenicity of the DOT1L variants, functional studies were performed in Drosophila and human cells. The fruit fly DOT1L ortholog, grappa, is expressed in most cells including neurons in the central nervous system. The identified DOT1L variants behave as gain-of-function alleles in flies and lead to increased H3K79 methylation levels in flies and human cells. Our results show that human DOT1L and fly grappa are required for proper development and that de novo heterozygous variants in DOT1L are associated with a Mendelian disease.
Collapse
Affiliation(s)
- Zelha Nil
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Ashish R Deshwar
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yan Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Scott Barish
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410005, China
| | - Sanaa Choufani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Polona Le Quesne Stabej
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Ian Hayes
- Genetic Health Service New Zealand- Northern Hub, Auckland District Health Board, Auckland, New Zealand
| | - Patrick Yap
- Genetic Health Service New Zealand- Northern Hub, Auckland District Health Board, Auckland, New Zealand
| | | | - Carolyn Wilson
- Mission Fullerton Genetics Center, Asheville, NC 28803, USA
| | - Trine Prescott
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Arve Vøllo
- Department of Pediatrics, Hospital of Østfold, 1714 Grålum, Norway
| | - Devon Haynes
- Division of Genetics, Arnold Palmer Hospital for Children - Orlando Health, Orlando, FL, USA; Clinical Genetics Service, Guy's Hospital, Guy's and St Thomas' NHS Trust, London, England, UK
| | - Patricia G Wheeler
- Division of Genetics, Arnold Palmer Hospital for Children - Orlando Health, Orlando, FL, USA
| | - Jessica Zon
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Cheryl Cytrynbaum
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rebekah Jobling
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Moira Blyth
- North of Scotland Regional Genetics Service, Clinical Genetics Centre, Ashgrove House, Foresterhill, Aberdeen, UK
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9WL Manchester, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, M13 9WL Manchester, UK
| | - Alexandra Afenjar
- Service de génétique, CRMR des malformations et maladies congénitales du cervelet et CRMR déficience intellectuelle, hôpital Trousseau, AP-HP, Paris, France
| | - Cyril Mignot
- Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière and Hôpital Trousseau, Paris, France; Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris, France
| | | | - Boris Keren
- AP-HP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, 75013 Paris, France
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Xiao Mao
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410005, China; Clinical Research Center for Placental Medicine in Hunan Province, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410005, China
| | - Daniel J Wegner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kathleen Sisco
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marwan Shinawi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada; Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Pan X, Alvarez AN, Ma M, Lu S, Crawford MW, Briere LC, Kanca O, Yamamoto S, Sweetser DA, Wilson JL, Napier RJ, Pruneda JN, Bellen HJ. Allelic strengths of encephalopathy-associated UBA5 variants correlate between in vivo and in vitro assays. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.17.23292782. [PMID: 37502976 PMCID: PMC10371176 DOI: 10.1101/2023.07.17.23292782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Protein UFMylation downstream of the E1 enzyme UBA5 plays essential roles in development and ER stress. Variants in the UBA5 gene are associated with developmental and epileptic encephalopathy 44 (DEE44), an autosomal recessive disorder characterized by early-onset encephalopathy, movement abnormalities, global developmental delay, intellectual disability, and seizures. DEE44 is caused by at least twelve different missense variants described as loss of function (LoF), but the relationships between genotypes and molecular or clinical phenotypes remains to be established. We developed a humanized UBA5 fly model and biochemical activity assays in order to describe in vivo and in vitro genotype-phenotype relationships across the UBA5 allelic series. In vivo, we observed a broad spectrum of phenotypes in viability, developmental timing, lifespan, locomotor activity, and bang sensitivity. A range of functional effects was also observed in vitro across comprehensive biochemical assays for protein stability, ATP binding, UFM1 activation, and UFM1 transthiolation. Importantly, there is a strong correlation between in vivo and in vitro phenotypes, establishing a classification of LoF variants into mild, intermediate, and severe allelic strengths. By systemically evaluating UBA5 variants across in vivo and in vitro platforms, this study provides a foundation for more basic and translational UBA5 research, as well as a basis for evaluating current and future individuals afflicted with this rare disease.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Albert N. Alvarez
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Michael W. Crawford
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lauren C. Briere
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - David A. Sweetser
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Division of Medical Genetics & Metabolism, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Jenny L. Wilson
- Division of Pediatric Neurology, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ruth J. Napier
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
- VA Portland Health Care System, Portland, OR 97239, USA
- Division of Arthritis & Rheumatic Diseases, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jonathan N. Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
11
|
Guichard A, Lu S, Kanca O, Bressan D, Huang Y, Ma M, Sanz Juste S, Andrews JC, Jay KL, Sneider M, Schwartz R, Huang MC, Bei D, Pan H, Ma L, Lin WW, Auradkar A, Bhagwat P, Park S, Wan KH, Ohsako T, Takano-Shimizu T, Celniker SE, Wangler MF, Yamamoto S, Bellen HJ, Bier E. A comprehensive Drosophila resource to identify key functional interactions between SARS-CoV-2 factors and host proteins. Cell Rep 2023; 42:112842. [PMID: 37480566 PMCID: PMC10962759 DOI: 10.1016/j.celrep.2023.112842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/18/2023] [Accepted: 07/05/2023] [Indexed: 07/24/2023] Open
Abstract
Development of effective therapies against SARS-CoV-2 infections relies on mechanistic knowledge of virus-host interface. Abundant physical interactions between viral and host proteins have been identified, but few have been functionally characterized. Harnessing the power of fly genetics, we develop a comprehensive Drosophila COVID-19 resource (DCR) consisting of publicly available strains for conditional tissue-specific expression of all SARS-CoV-2 encoded proteins, UAS-human cDNA transgenic lines encoding established host-viral interacting factors, and GAL4 insertion lines disrupting fly homologs of SARS-CoV-2 human interacting proteins. We demonstrate the utility of the DCR to functionally assess SARS-CoV-2 genes and candidate human binding partners. We show that NSP8 engages in strong genetic interactions with several human candidates, most prominently with the ATE1 arginyltransferase to induce actin arginylation and cytoskeletal disorganization, and that two ATE1 inhibitors can reverse NSP8 phenotypes. The DCR enables parallel global-scale functional analysis of SARS-CoV-2 components in a prime genetic model system.
Collapse
Affiliation(s)
- Annabel Guichard
- Section of Cell and Developmental Biology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Daniel Bressan
- Section of Cell and Developmental Biology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA; Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Yan Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Sara Sanz Juste
- Section of Cell and Developmental Biology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA; Department of Epigenetics & Molecular Carcinogenesis at MD Anderson, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Center for Cancer Epigenetics, MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan C Andrews
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Kristy L Jay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Marketta Sneider
- Section of Cell and Developmental Biology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Ruth Schwartz
- Section of Cell and Developmental Biology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Mei-Chu Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Danqing Bei
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hongling Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Liwen Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Wen-Wen Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Ankush Auradkar
- Section of Cell and Developmental Biology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Pranjali Bhagwat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Soo Park
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kenneth H Wan
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Takashi Ohsako
- Advanced Technology Center, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Toshiyuki Takano-Shimizu
- Kyoto Drosophila Stock Center and Faculty of Applied Biology, Kyoto Institute of Technology, Kyoto 616-8354, Japan
| | - Susan E Celniker
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA; Tata Institute for Genetics and Society - UCSD, La Jolla, CA 92093, USA.
| |
Collapse
|
12
|
Liu Y, Xu G, Fu H, Li P, Li D, Deng K, Gao W, Shang Y, Wu M. Membrane-bound transcription factor LRRC4 inhibits glioblastoma cell motility. Int J Biol Macromol 2023; 246:125590. [PMID: 37385320 DOI: 10.1016/j.ijbiomac.2023.125590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/13/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Membrane-bound transcription factors (MTFs) have been observed in many types of organisms, such as plants, animals and microorganisms. However, the routes of MTF nuclear translocation are not well understood. Here, we reported that LRRC4 is a novel MTF that translocates to the nucleus as a full-length protein via endoplasmic reticulum-Golgi transport, which is different from the previously described nuclear entry mechanism. A ChIP-seq assay showed that LRRC4 target genes were mainly involved in cell motility. We confirmed that LRRC4 bound to the enhancer element of the RAP1GAP gene to activate its transcription and inhibited glioblastoma cell movement by affecting cell contraction and polarization. Furthermore, atomic force microscopy (AFM) confirmed that LRRC4 or RAP1GAP altered cellular biophysical properties, such as the surface morphology, adhesion force and cell stiffness. Thus, we propose that LRRC4 is an MTF with a novel route of nuclear translocation. Our observations demonstrate that LRRC4-null glioblastoma led to disordered RAP1GAP gene expression, which increased cellular movement. Re-expression of LRRC4 enabled it to suppress tumors, and this is a potential for targeted treatment in glioblastoma.
Collapse
Affiliation(s)
- Yang Liu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Gang Xu
- Diagnostics Department, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Haijuan Fu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Peiyao Li
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Danyang Li
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Kun Deng
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Wei Gao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Yujie Shang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Minghua Wu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
13
|
Gonzalez A, Kim HJ, Freibaum BD, Fung HYJ, Brautigam CA, Taylor JP, Chook YM. A new Karyopherin-β2 binding PY-NLS epitope of HNRNPH2 linked to neurodevelopmental disorders. Structure 2023; 31:924-934.e4. [PMID: 37279758 PMCID: PMC10524338 DOI: 10.1016/j.str.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 06/08/2023]
Abstract
The HNRNPH2 proline-tyrosine nuclear localization signal (PY-NLS) is mutated in HNRNPH2-related X-linked neurodevelopmental disorder, causing the normally nuclear HNRNPH2 to accumulate in the cytoplasm. We solved the cryoelectron microscopy (cryo-EM) structure of Karyopherin-β2/Transportin-1 bound to the HNRNPH2 PY-NLS to understand importin-NLS recognition and disruption in disease. HNRNPH2 206RPGPY210 is a typical R-X2-4-P-Y motif comprising PY-NLS epitopes 2 and 3, followed by an additional Karyopherin-β2-binding epitope, we term epitope 4, at residues 211DRP213; no density is present for PY-NLS epitope 1. Disease variant mutations at epitopes 2-4 impair Karyopherin-β2 binding and cause aberrant cytoplasmic accumulation in cells, emphasizing the role of nuclear import defect in disease. Sequence/structure analysis suggests that strong PY-NLS epitopes 4 are rare and thus far limited to close paralogs of HNRNPH2, HNRNPH1, and HNRNPF. Epitope 4-binidng hotspot Karyopherin-β2 W373 corresponds to close paralog Karyopherin-β2b/Transportin-2 W370, a pathological variant site in neurodevelopmental abnormalities, suggesting that Karyopherin-β2b/Transportin-2-HNRNPH2/H1/F interactions may be compromised in the abnormalities.
Collapse
Affiliation(s)
- Abner Gonzalez
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children's Hospital, Memphis, TN, USA
| | - Brian D Freibaum
- Department of Cell and Molecular Biology, St. Jude Children's Hospital, Memphis, TN, USA
| | - Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chad A Brautigam
- Departments of Biophysics and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Hospital, Memphis, TN, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
14
|
Matsuura Y. Defective recognition of a nonclassical nuclear localization signal in neurodevelopmental disorders. Structure 2023; 31:891-892. [PMID: 37541190 DOI: 10.1016/j.str.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 08/06/2023]
Abstract
In this issue of Structure, Gonzalez et al. present the cryo-EM structure of Karyopherin-β2 bound to the proline-tyrosine nuclear localization signal (PY-NLS) of heterogeneous nuclear ribonucleoprotein H2 (HNRNPH2). The structure advances our understanding of not only the diversity of PY-NLSs but also the pathogenic mechanisms arising from HNRNPH2 variants.
Collapse
Affiliation(s)
- Yoshiyuki Matsuura
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Tochigi 324-8501, Japan.
| |
Collapse
|
15
|
Sun X, Niu Q, Jiang J, Wang G, Zhou P, Li J, Chen C, Liu L, Xu L, Ren H. Identifying Candidate Genes for Litter Size and Three Morphological Traits in Youzhou Dark Goats Based on Genome-Wide SNP Markers. Genes (Basel) 2023; 14:1183. [PMID: 37372363 DOI: 10.3390/genes14061183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to reveal the potential genetic basis for litter size, coat colour, black middorsal stripe and skin colour by combining genome-wide association analysis (GWAS) and selection signature analysis and ROH detection within the Youzhou dark (YZD) goat population (n = 206) using the Illumina GoatSNP54 BeadChip. In the GWAS, we identified one SNP (snp54094-scaffold824-899720) on chromosome 11 for litter size, two SNPs on chromosome 26 (snp11508-scaffold142-1990450, SORCS3) and chromosome 12 (snp55048-scaffold842-324525, LOC102187779) for coat colour and one SNP on chromosome 18 (snp56013-scaffold873-22716, TCF25) for the black middorsal stripe. In contrast, no SNPs were identified for skin colour. In selection signature analysis, 295 significant iHS genomic regions with a mean |iHS| score > 2.66, containing selection signatures encompassing 232 candidate genes were detected. In particular, 43 GO terms and one KEGG pathway were significantly enriched in the selected genes, which may contribute to the excellent environmental adaptability and characteristic trait formation during the domestication of YZD goats. In ROH detection, we identified 4446 ROH segments and 282 consensus ROH regions, among which nine common genes overlapped with those detected using the iHS method. Some known candidate genes for economic traits such as reproduction (TSHR, ANGPT4, CENPF, PIBF1, DACH1, DIS3, CHST1, COL4A1, PRKD1 and DNMT3B) and development and growth (TNPO2, IFT80, UCP2, UCP3, GHRHR, SIM1, CCM2L, CTNNA3 and CTNNA1) were revealed by iHS and ROH detection. Overall, this study is limited by the small population size, which affects the results of GWAS to a certain extent. Nevertheless, our findings could provide the first overview of the genetic mechanism underlying these important traits and provide novel insights into the future conservation and utilisation of Chinese goat germplasm resources.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Chongqing Academy of Animal Sciences, Rongchang 402460, China
| | - Qunhao Niu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jing Jiang
- Chongqing Academy of Animal Sciences, Rongchang 402460, China
| | - Gaofu Wang
- Chongqing Academy of Animal Sciences, Rongchang 402460, China
| | - Peng Zhou
- Chongqing Academy of Animal Sciences, Rongchang 402460, China
| | - Jie Li
- Chongqing Academy of Animal Sciences, Rongchang 402460, China
| | - Cancan Chen
- Chongqing Academy of Animal Sciences, Rongchang 402460, China
| | - Liangjia Liu
- Chongqing Academy of Animal Sciences, Rongchang 402460, China
| | - Lingyang Xu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hangxing Ren
- Chongqing Academy of Animal Sciences, Rongchang 402460, China
| |
Collapse
|
16
|
Accogli A, Lu S, Musante I, Scudieri P, Rosenfeld JA, Severino M, Baldassari S, Iacomino M, Riva A, Balagura G, Piccolo G, Minetti C, Roberto D, Xia F, Razak R, Lawrence E, Hussein M, Chang EYH, Holick M, Calì E, Aliberto E, De-Sarro R, Gambardella A, Network UD, Group SYNS, Emrick L, McCaffery PJA, Clagett-Dame M, Marcogliese PC, Bellen HJ, Lalani SR, Zara F, Striano P, Salpietro V. Loss of Neuron Navigator 2 Impairs Brain and Cerebellar Development. CEREBELLUM (LONDON, ENGLAND) 2023; 22:206-222. [PMID: 35218524 PMCID: PMC9985553 DOI: 10.1007/s12311-022-01379-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Cerebellar hypoplasia and dysplasia encompass a group of clinically and genetically heterogeneous disorders frequently associated with neurodevelopmental impairment. The Neuron Navigator 2 (NAV2) gene (MIM: 607,026) encodes a member of the Neuron Navigator protein family, widely expressed within the central nervous system (CNS), and particularly abundant in the developing cerebellum. Evidence across different species supports a pivotal function of NAV2 in cytoskeletal dynamics and neurite outgrowth. Specifically, deficiency of Nav2 in mice leads to cerebellar hypoplasia with abnormal foliation due to impaired axonal outgrowth. However, little is known about the involvement of the NAV2 gene in human disease phenotypes. In this study, we identified a female affected with neurodevelopmental impairment and a complex brain and cardiac malformations in which clinical exome sequencing led to the identification of NAV2 biallelic truncating variants. Through protein expression analysis and cell migration assay in patient-derived fibroblasts, we provide evidence linking NAV2 deficiency to cellular migration deficits. In model organisms, the overall CNS histopathology of the Nav2 hypomorphic mouse revealed developmental anomalies including cerebellar hypoplasia and dysplasia, corpus callosum hypo-dysgenesis, and agenesis of the olfactory bulbs. Lastly, we show that the NAV2 ortholog in Drosophila, sickie (sick) is widely expressed in the fly brain, and sick mutants are mostly lethal with surviving escapers showing neurobehavioral phenotypes. In summary, our results unveil a novel human neurodevelopmental disorder due to genetic loss of NAV2, highlighting a critical conserved role of the NAV2 gene in brain and cerebellar development across species.
Collapse
Affiliation(s)
- Andrea Accogli
- Division of Medical Genetics, Department of Specialized Medicine, McGill University, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Childrens Hospital, Houston, TX, 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ilaria Musante
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Paolo Scudieri
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Simona Baldassari
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Ganna Balagura
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gianluca Piccolo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Carlo Minetti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Denis Roberto
- Child Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | | | - Emily Lawrence
- Department of Cardiology, Texas Childrens Hospital, Houston, USA
| | - Mohamed Hussein
- Department of Ophthalmology, Texas Childrens Hospital, Houston, USA
| | | | - Michelle Holick
- Texas Childrens Hospital, Houston, TX, USA
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Elisa Calì
- Department of Neuromuscular Diseases, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | | | - Rosalba De-Sarro
- Department of Clinical and Experimental Medicine, Policlinic "G. Martino", University of Messina, 98100, Messina, Italy
| | - Antonio Gambardella
- Department of Medical and Surgical Sciences, Universita' Degli Studi "Magna Graecia" Viale Europa, 88100, CATANZARO, Italy
| | | | | | - Lisa Emrick
- Jan and Dan Duncan Neurological Research Institute, Texas Childrens Hospital, Houston, TX, 77030, USA
- Texas Childrens Hospital, Houston, TX, USA
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Peter J A McCaffery
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Margaret Clagett-Dame
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, WI, 53706, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, 53706, USA
| | - Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Childrens Hospital, Houston, TX, 77030, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Childrens Hospital, Houston, TX, 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Childrens Hospital, Houston, TX, USA
| | - Federico Zara
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Vincenzo Salpietro
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy.
- Department of Neuromuscular Diseases, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK.
| |
Collapse
|
17
|
Ma M, Zhang X, Zheng Y, Lu S, Pan X, Mao X, Pan H, Chung HL, Wang H, Guo H, Bellen HJ. The fly homolog of SUPT16H, a gene associated with neurodevelopmental disorders, is required in a cell-autonomous fashion for cell survival. Hum Mol Genet 2023; 32:984-997. [PMID: 36255738 PMCID: PMC9991001 DOI: 10.1093/hmg/ddac259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/22/2022] [Accepted: 10/14/2022] [Indexed: 11/14/2022] Open
Abstract
SUPT16H encodes the large subunit of the FAcilitate Chromatin Transcription (FACT) complex, which functions as a nucleosome organizer during transcription. We identified two individuals from unrelated families carrying de novo missense variants in SUPT16H. The probands exhibit global developmental delay, intellectual disability, epilepsy, facial dysmorphism and brain structural abnormalities. We used Drosophila to characterize two variants: p.T171I and p.G808R. Loss of the fly ortholog, dre4, causes lethality at an early developmental stage. RNAi-mediated knockdown of dre4 in either glia or neurons causes severely reduced eclosion and longevity. Tissue-specific knockdown of dre4 in the eye or wing leads to the loss of these tissues, whereas overexpression of SUPT16H has no dominant effect. Moreover, expression of the reference SUPT16H significantly rescues the loss-of-function phenotypes in the nervous system as well as wing and eye. In contrast, expression of SUPT16H p.T171I or p.G808R rescues the phenotypes poorly, indicating that the variants are partial loss-of-function alleles. While previous studies argued that the developmental arrest caused by loss of dre4 is due to impaired ecdysone production in the prothoracic gland, our data show that dre4 is required for proper cell growth and survival in multiple tissues in a cell-autonomous manner. Altogether, our data indicate that the de novo loss-of-function variants in SUPT16H are indeed associated with developmental and neurological defects observed in the probands.
Collapse
Affiliation(s)
- Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Xi Zhang
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yiming Zheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Xiao Mao
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, China
| | - Hongling Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hyung-lok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hua Wang
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
- Department of Medical Genetics, Hunan Children’s Hospital, Changsha, Hunan 410007, China
| | - Hong Guo
- Department of Medical Genetics, Army Medical University, Chongqing 400038, China
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| |
Collapse
|
18
|
Gonzalez A, Kim HJ, Freibaum BD, Joyce Fung HY, Brautigam CA, Taylor JP, Chook YM. A new Karyopherin-β2 binding PY-NLS epitope of HNRNPH2 is linked to neurodevelopmental disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524964. [PMID: 36711837 PMCID: PMC9882364 DOI: 10.1101/2023.01.20.524964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The normally nuclear HNRNPH2 is mutated in HNRNPH2 -related X-linked neurodevelopmental disorder causing the protein to accumulate in the cytoplasm. Interactions of HNRNPH2 with its importin Karyopherin-β2 (Transportin-1) had not been studied. We present a structure that shows Karyopherin-β2 binding HNRNPH2 residues 204-215, a proline-tyrosine nuclear localization signal or PY-NLS that contains a typical R-X 2-4 -P-Y motif, 206 RPGPY 210 , followed a new Karyopherin-β2 binding epitope at 211 DRP 213 that make many interactions with Karyopherin-β2 W373. Mutations at each of these sites decrease Karyopherin-β2 binding affinities by 70-100 fold, explaining aberrant accumulation in cells and emphasizing the role of nuclear import defects in the disease. Sequence/structure analysis suggests that the new epitope C-terminal of the PY-motif, which binds Karyopherin-β2 W373, is rare and thus far limited to close paralogs HNRNPH2, HNRNPH1 and HNRNPF. Karyopherin-β2 W373, a HNRNPH2-binding hotspot, corresponds to W370 of close paralog Transportin-2, a site of pathological variants in patients with neurodevelopmental abnormalities, suggesting that Transportin-2-HNRNPH2/H1/F interactions may be compromised in the abnormalities. Summary HNRNPH2 variants in HNRNPH2 -related X-linked neurodevelopmental disorder aberrantly accumulate in the cytoplasm. A structure of Karyopherin-β2•HNRNPH2 explains nuclear import defects of the variants, reveals a new NLS epitope that suggests mechanistic changes in pathological variants of Karyopherin-β2 paralog Transportin-2.
Collapse
|
19
|
Wang W, Miyamoto Y, Chen B, Shi J, Diao F, Zheng W, Li Q, Yu L, Li L, Xu Y, Wu L, Mao X, Fu J, Li B, Yan Z, Shi R, Xue X, Mu J, Zhang Z, Wu T, Zhao L, Wang W, Zhou Z, Dong J, Li Q, Jin L, He L, Sun X, Lin G, Kuang Y, Wang L, Sang Q. Karyopherin α deficiency contributes to human preimplantation embryo arrest. J Clin Invest 2023; 133:159951. [PMID: 36647821 PMCID: PMC9843055 DOI: 10.1172/jci159951] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/02/2022] [Indexed: 01/18/2023] Open
Abstract
Preimplantation embryo arrest (PREMBA) is a common cause of female infertility and recurrent failure of assisted reproductive technology. However, the genetic basis of PREMBA is largely unrevealed. Here, using whole-exome sequencing data from 606 women experiencing PREMBA compared with 2,813 controls, we performed a population and gene-based burden test and identified a candidate gene, karyopherin subunit α7 (KPNA7). In vitro studies showed that identified sequence variants reduced KPNA7 protein levels, impaired KPNA7 capacity for binding to its substrate ribosomal L1 domain-containing protein 1 (RSL1D1), and affected KPNA7 nuclear transport activity. Comparison between humans and mice suggested that mouse KPNA2, rather than mouse KPNA7, acts as an essential karyopherin in embryonic development. Kpna2-/- female mice showed embryo arrest due to zygotic genome activation defects, recapitulating the phenotype of human PREMBA. In addition, female mice with an oocyte-specific knockout of Rsl1d1 recapitulated the phenotype of Kpna2-/- mice, demonstrating the vital role of substrate RSL1D1. Finally, complementary RNA (cRNA) microinjection of human KPNA7, but not mouse Kpna7, was able to rescue the embryo arrest phenotype in Kpna2-/- mice, suggesting mouse KPNA2 might be a homologue of human KPNA7. Our findings uncovered a mechanistic understanding for the pathogenesis of PREMBA, which acts by impairing nuclear protein transport, and provide a diagnostic marker for PREMBA patients.
Collapse
Affiliation(s)
- Wenjing Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Juanzi Shi
- Reproductive Medicine Center, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Feiyang Diao
- Reproductive Medicine Center, Jiangsu Province Hospital, Jiangsu, China
| | - Wei Zheng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Qun Li
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Lan Yu
- Reproductive Medicine Center, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Lin Li
- Key Laboratory of Human Reproduction and Genetics, Department of Reproductive Medicine, Nanchang Reproductive Hospital, Nanchang, China
| | - Yao Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ling Wu
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Mao
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Fu
- Shanghai Ji’ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, and
| | - Bin Li
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Yan
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Shi
- Reproductive Medicine Center, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Xia Xue
- Reproductive Medicine Center, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Jian Mu
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Zhihua Zhang
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Tianyu Wu
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Lin Zhao
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Weijie Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Zhou Zhou
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Jie Dong
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Qiaoli Li
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Lin He
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxi Sun
- Shanghai Ji’ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, and
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yanping Kuang
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Qing Sang
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Lu S, Ma M, Mao X, Bacino CA, Jankovic J, Sutton VR, Bartley JA, Wang X, Rosenfeld JA, Beleza-Meireles A, Chauhan J, Pan X, Li M, Liu P, Prescott K, Amin S, Davies G, Wangler MF, Dai Y, Bellen HJ. De novo variants in FRMD5 are associated with developmental delay, intellectual disability, ataxia, and abnormalities of eye movement. Am J Hum Genet 2022; 109:1932-1943. [PMID: 36206744 PMCID: PMC9606480 DOI: 10.1016/j.ajhg.2022.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/09/2022] [Indexed: 01/25/2023] Open
Abstract
Proteins containing the FERM (four-point-one, ezrin, radixin, and moesin) domain link the plasma membrane with cytoskeletal structures at specific cellular locations and have been implicated in the localization of cell-membrane-associated proteins and/or phosphoinositides. FERM domain-containing protein 5 (FRMD5) localizes at cell adherens junctions and stabilizes cell-cell contacts. To date, variants in FRMD5 have not been associated with a Mendelian disease in OMIM. Here, we describe eight probands with rare heterozygous missense variants in FRMD5 who present with developmental delay, intellectual disability, ataxia, seizures, and abnormalities of eye movement. The variants are de novo in all for whom parental testing was available (six out of eight probands), and human genetic datasets suggest that FRMD5 is intolerant to loss of function (LoF). We found that the fly ortholog of FRMD5, CG5022 (dFrmd), is expressed in the larval and adult central nervous systems where it is present in neurons but not in glia. dFrmd LoF mutant flies are viable but are extremely sensitive to heat shock, which induces severe seizures. The mutants also exhibit defective responses to light. The human FRMD5 reference (Ref) cDNA rescues the fly dFrmd LoF phenotypes. In contrast, all the FRMD5 variants tested in this study (c.340T>C, c.1051A>G, c.1053C>G, c.1054T>C, c.1045A>C, and c.1637A>G) behave as partial LoF variants. In addition, our results indicate that two variants that were tested have dominant-negative effects. In summary, the evidence supports that the observed variants in FRMD5 cause neurological symptoms in humans.
Collapse
Affiliation(s)
- Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Xiao Mao
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China; Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, China
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - James A Bartley
- Loma Linda University Children's Hospital, Loma Linda, CA 92354, USA
| | - Xueying Wang
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics Laboratories, Houston, TX 77021, USA
| | - Ana Beleza-Meireles
- Clinical Genetics Department, St Michael's Hospital, University Hospitals Bristol and Weston, Bristol BS1 3NU, UK
| | - Jaynee Chauhan
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Chapel Allerton Hospital, Leeds LS7 4SA, UK
| | - Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Megan Li
- Invitae, San Francisco, CA 94103, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics Laboratories, Houston, TX 77021, USA
| | - Katrina Prescott
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Chapel Allerton Hospital, Leeds LS7 4SA, UK
| | - Sam Amin
- Paediatric Neurology Department, Bristol Royal Pediatric Hospital, University Hospitals Bristol and Weston, Bristol BS1 3NU, UK
| | | | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Yuwei Dai
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China; Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Barish S, Senturk M, Schoch K, Minogue AL, Lopergolo D, Fallerini C, Harland J, Seemann JH, Stong N, Kranz PG, Kansagra S, Mikati MA, Jasien J, El-Dairi M, Galluzzi P, Ariani F, Renieri A, Mari F, Wangler MF, Arur S, Jiang YH, Yamamoto S, Shashi V, Bellen HJ. The microRNA processor DROSHA is a candidate gene for a severe progressive neurological disorder. Hum Mol Genet 2022; 31:2934-2950. [PMID: 35405010 PMCID: PMC9433733 DOI: 10.1093/hmg/ddac085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/14/2022] [Accepted: 04/05/2022] [Indexed: 11/15/2022] Open
Abstract
DROSHA encodes a ribonuclease that is a subunit of the Microprocessor complex and is involved in the first step of microRNA (miRNA) biogenesis. To date, DROSHA has not yet been associated with a Mendelian disease. Here, we describe two individuals with profound intellectual disability, epilepsy, white matter atrophy, microcephaly and dysmorphic features, who carry damaging de novo heterozygous variants in DROSHA. DROSHA is constrained for missense variants and moderately intolerant to loss-of-function (o/e = 0.24). The loss of the fruit fly ortholog drosha causes developmental arrest and death in third instar larvae, a severe reduction in brain size and loss of imaginal discs in the larva. Loss of drosha in eye clones causes small and rough eyes in adult flies. One of the identified DROSHA variants (p.Asp1219Gly) behaves as a strong loss-of-function allele in flies, while another variant (p.Arg1342Trp) is less damaging in our assays. In worms, a knock-in that mimics the p.Asp1219Gly variant at a worm equivalent residue causes loss of miRNA expression and heterochronicity, a phenotype characteristic of the loss of miRNA. Together, our data show that the DROSHA variants found in the individuals presented here are damaging based on functional studies in model organisms and likely underlie the severe phenotype involving the nervous system.
Collapse
Affiliation(s)
- Scott Barish
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Mumine Senturk
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Howard Hughes Medical Institute, BCM, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kelly Schoch
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amanda L Minogue
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Diego Lopergolo
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
- Medical Genetics, University of Siena, Siena 53100, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena 53100, Italy
| | - Chiara Fallerini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
- Medical Genetics, University of Siena, Siena 53100, Italy
| | - Jake Harland
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Jacob H Seemann
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Peter G Kranz
- Division of Neuroradiology, Department of Radiology, Duke Health, Durham, NC 27710, USA
| | - Sujay Kansagra
- Division of Pediatric Neurology, Department of Pediatrics, Duke Health, Durham, NC 27710, USA
| | - Mohamad A Mikati
- Division of Pediatric Neurology, Department of Pediatrics, Duke Health, Durham, NC 27710, USA
| | - Joan Jasien
- Division of Pediatric Neurology, Department of Pediatrics, Duke Health, Durham, NC 27710, USA
| | - Mays El-Dairi
- Department of Ophthalmology, Duke Health, Durham, NC 27710, USA
| | - Paolo Galluzzi
- Department of Medical Genetics, NeuroImaging and NeuroInterventional Unit, Azienda Ospedaliera e Universitaria, Senese, Siena 53100, Italy
| | - Francesca Ariani
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
- Medical Genetics, University of Siena, Siena 53100, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena 53100, Italy
| | - Alessandra Renieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
- Medical Genetics, University of Siena, Siena 53100, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena 53100, Italy
| | - Francesca Mari
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
- Medical Genetics, University of Siena, Siena 53100, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena 53100, Italy
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Swathi Arur
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yong-Hui Jiang
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
- Yale School of Medicine, New Haven, CT 06510, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Howard Hughes Medical Institute, BCM, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
22
|
Rosina E, Pezzani L, Pezzoli L, Marchetti D, Bellini M, Pilotta A, Calabrese O, Nicastro E, Cirillo F, Cereda A, Scatigno A, Milani D, Iascone M. Atypical, Composite, or Blended Phenotypes: How Different Molecular Mechanisms Could Associate in Double-Diagnosed Patients. Genes (Basel) 2022; 13:genes13071275. [PMID: 35886058 PMCID: PMC9319862 DOI: 10.3390/genes13071275] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 12/10/2022] Open
Abstract
In the last few years, trio-Whole Exome Sequencing (WES) analysis has revolutionized the diagnostic process for patients with rare genetic syndromes, demonstrating its potential even in non-specific clinical pictures and in atypical presentations of known diseases. Multiple disorders in a single patient have been estimated to occur in approximately 2–7.5% of diagnosed cases, with higher frequency in consanguineous families. Here, we report the clinical and molecular characterisation of eight illustrative patients for whom trio-WES allowed for identifing more than one genetic condition. Double homozygosity represented the causal mechanism in only half of them, whereas the other half showed peculiar multilocus combinations. The paper takes into consideration difficulties and learned lessons from our experience and therefore supports the powerful role of wide analyses for ascertaining multiple genetic diseases in complex patients, especially when a clinical suspicion could account for the majority of clinical signs. It finally makes clear how a patient’s “deep phenotyping” might not be sufficient to suggest the presence of multiple genetic diagnoses but remains essential to validate an unexpected multilocus result from genetic tests.
Collapse
Affiliation(s)
- Erica Rosina
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (E.R.); (L.P.); (D.M.); (M.B.); (M.I.)
| | - Lidia Pezzani
- Paediatric Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (L.P.); (E.N.); (A.C.); (A.S.)
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Laura Pezzoli
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (E.R.); (L.P.); (D.M.); (M.B.); (M.I.)
| | - Daniela Marchetti
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (E.R.); (L.P.); (D.M.); (M.B.); (M.I.)
| | - Matteo Bellini
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (E.R.); (L.P.); (D.M.); (M.B.); (M.I.)
| | - Alba Pilotta
- Auxo-Endocrinology, Diabetology and Medical Genetic Unit, Department of Paediatrics, ASST Spedali Civili, 25123 Brescia, Italy;
| | - Olga Calabrese
- Medical Genetics Unit, Azienda Ospedaliera Universitaria di Modena, 41125 Modena, Italy;
| | - Emanuele Nicastro
- Paediatric Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (L.P.); (E.N.); (A.C.); (A.S.)
| | - Francesco Cirillo
- Pediatric Hepatology and Paediatric Liver Transplantation, Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, 90127 Palermo, Italy;
| | - Anna Cereda
- Paediatric Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (L.P.); (E.N.); (A.C.); (A.S.)
| | - Agnese Scatigno
- Paediatric Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (L.P.); (E.N.); (A.C.); (A.S.)
| | - Donatella Milani
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
- Correspondence: ; Tel.: +39-02-55032560
| | - Maria Iascone
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (E.R.); (L.P.); (D.M.); (M.B.); (M.I.)
| |
Collapse
|
23
|
Lu S, Hernan R, Marcogliese PC, Huang Y, Gertler TS, Akcaboy M, Liu S, Chung HL, Pan X, Sun X, Oguz MM, Oztoprak U, de Baaij JH, Ivanisevic J, McGinnis E, Guillen Sacoto MJ, Chung WK, Bellen HJ. Loss-of-function variants in TIAM1 are associated with developmental delay, intellectual disability, and seizures. Am J Hum Genet 2022; 109:571-586. [PMID: 35240055 DOI: 10.1016/j.ajhg.2022.01.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
TIAM Rac1-associated GEF 1 (TIAM1) regulates RAC1 signaling pathways that affect the control of neuronal morphogenesis and neurite outgrowth by modulating the actin cytoskeletal network. To date, TIAM1 has not been associated with a Mendelian disorder. Here, we describe five individuals with bi-allelic TIAM1 missense variants who have developmental delay, intellectual disability, speech delay, and seizures. Bioinformatic analyses demonstrate that these variants are rare and likely pathogenic. We found that the Drosophila ortholog of TIAM1, still life (sif), is expressed in larval and adult central nervous system (CNS) and is mainly expressed in a subset of neurons, but not in glia. Loss of sif reduces the survival rate, and the surviving adults exhibit climbing defects, are prone to severe seizures, and have a short lifespan. The TIAM1 reference (Ref) cDNA partially rescues the sif loss-of-function (LoF) phenotypes. We also assessed the function associated with three TIAM1 variants carried by two of the probands and compared them to the TIAM1 Ref cDNA function in vivo. TIAM1 p.Arg23Cys has reduced rescue ability when compared to TIAM1 Ref, suggesting that it is a partial LoF variant. In ectopic expression studies, both wild-type sif and TIAM1 Ref are toxic, whereas the three variants (p.Leu862Phe, p.Arg23Cys, and p.Gly328Val) show reduced toxicity, suggesting that they are partial LoF variants. In summary, we provide evidence that sif is important for appropriate neural function and that TIAM1 variants observed in the probands are disruptive, thus implicating loss of TIAM1 in neurological phenotypes in humans.
Collapse
|
24
|
Marcogliese PC, Deal SL, Andrews J, Harnish JM, Bhavana VH, Graves HK, Jangam S, Luo X, Liu N, Bei D, Chao YH, Hull B, Lee PT, Pan H, Bhadane P, Huang MC, Longley CM, Chao HT, Chung HL, Haelterman NA, Kanca O, Manivannan SN, Rossetti LZ, German RJ, Gerard A, Schwaibold EMC, Fehr S, Guerrini R, Vetro A, England E, Murali CN, Barakat TS, van Dooren MF, Wilke M, van Slegtenhorst M, Lesca G, Sabatier I, Chatron N, Brownstein CA, Madden JA, Agrawal PB, Keren B, Courtin T, Perrin L, Brugger M, Roser T, Leiz S, Mau-Them FT, Delanne J, Sukarova-Angelovska E, Trajkova S, Rosenhahn E, Strehlow V, Platzer K, Keller R, Pavinato L, Brusco A, Rosenfeld JA, Marom R, Wangler MF, Yamamoto S. Drosophila functional screening of de novo variants in autism uncovers damaging variants and facilitates discovery of rare neurodevelopmental diseases. Cell Rep 2022; 38:110517. [PMID: 35294868 PMCID: PMC8983390 DOI: 10.1016/j.celrep.2022.110517] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/23/2021] [Accepted: 02/18/2022] [Indexed: 12/30/2022] Open
Abstract
Individuals with autism spectrum disorder (ASD) exhibit an increased burden of de novo mutations (DNMs) in a broadening range of genes. While these studies have implicated hundreds of genes in ASD pathogenesis, which DNMs cause functional consequences in vivo remains unclear. We functionally test the effects of ASD missense DNMs using Drosophila through "humanization" rescue and overexpression-based strategies. We examine 79 ASD variants in 74 genes identified in the Simons Simplex Collection and find 38% of them to cause functional alterations. Moreover, we identify GLRA2 as the cause of a spectrum of neurodevelopmental phenotypes beyond ASD in 13 previously undiagnosed subjects. Functional characterization of variants in ASD candidate genes points to conserved neurobiological mechanisms and facilitates gene discovery for rare neurodevelopmental diseases.
Collapse
Affiliation(s)
- Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Samantha L Deal
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA; Program in Developmental Biology, BCM, Houston, TX 77030, USA
| | - Jonathan Andrews
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - J Michael Harnish
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - V Hemanjani Bhavana
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Hillary K Graves
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Sharayu Jangam
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Xi Luo
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA; Department of Pediatrics, Division of Hematology/Oncology, BCM, Houston, TX 77030, USA
| | - Ning Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA; Baylor Genetics Laboratories, Houston, TX 77021, USA
| | - Danqing Bei
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Yu-Hsin Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Brooke Hull
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Pei-Tseng Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Hongling Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Pradnya Bhadane
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Mei-Chu Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Colleen M Longley
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA; Program in Developmental Biology, BCM, Houston, TX 77030, USA
| | - Hsiao-Tuan Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA; Department of Pediatrics, Division of Neurology and Developmental Neuroscience, BCM, Houston, TX 77030, USA; Department of Neuroscience, BCM, Houston, TX 77030, USA; McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, TX 77030, USA; TCH, Houston, TX 77030, USA; Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, TX 77030, USA
| | - Hyung-Lok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA; Howard Hughes Medical Institute, Houston, TX 77030, USA
| | - Nele A Haelterman
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Sathiya N Manivannan
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Linda Z Rossetti
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA
| | - Ryan J German
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA
| | - Amanda Gerard
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; TCH, Houston, TX 77030, USA
| | | | - Sarah Fehr
- Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Renzo Guerrini
- Neuroscience Department, Children's Hospital Meyer-University of Florence, Florence, Italy
| | - Annalisa Vetro
- Neuroscience Department, Children's Hospital Meyer-University of Florence, Florence, Italy
| | - Eleina England
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chaya N Murali
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; TCH, Houston, TX 77030, USA
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Marieke F van Dooren
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Martina Wilke
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Gaetan Lesca
- Department of Medical Genetics, Lyon University Hospital, Université Claude Bernard Lyon 1, Lyon, France; Institut NeuroMyoGène, CNRS UMR 5310 - INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Isabelle Sabatier
- Department of Pediatric Neurology, Lyon University Hospitals, Lyon, France
| | - Nicolas Chatron
- Department of Medical Genetics, Lyon University Hospital, Université Claude Bernard Lyon 1, Lyon, France; Institut NeuroMyoGène, CNRS UMR 5310 - INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Catherine A Brownstein
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jill A Madden
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Boris Keren
- Genetic Department, Pitié-Salpêtrière Hospital, APHP.Sorbonne Université, Paris 75013, France
| | - Thomas Courtin
- Genetic Department, Pitié-Salpêtrière Hospital, APHP.Sorbonne Université, Paris 75013, France
| | - Laurence Perrin
- Genetic Department, Robert Debré Hospital, APHP.Nord-Université de Paris, Paris 75019, France
| | - Melanie Brugger
- Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - Timo Roser
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstraße 4, 80337 Munich, Germany
| | - Steffen Leiz
- Department of Pediatrics and Adolescent Medicine, Hospital Dritter Orden, Munich, Germany
| | - Frederic Tran Mau-Them
- INSERM U1231, LNC UMR1231 GAD, Burgundy University, 21000 Dijon, France; Laboratoire de Génétique, Innovation en Diagnostic Génomique des Maladies Rares UF6254, Plateau Technique de Biologie, CHU Dijon, 14 Rue Paul Gaffarel, BP 77908, 21079 Dijon, France
| | - Julian Delanne
- INSERM U1231, LNC UMR1231 GAD, Burgundy University, 21000 Dijon, France
| | - Elena Sukarova-Angelovska
- Department of Endocrinology and Genetics, University Clinic for Children's Diseases, Medical Faculty, University Sv. Kiril i Metodij, Skopje, Republic of Macedonia
| | - Slavica Trajkova
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Erik Rosenhahn
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Vincent Strehlow
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Roberto Keller
- Adult Autism Center, Mental Health Department, Health Unit ASL Città di Torino, Turin, Italy
| | - Lisa Pavinato
- Department of Medical Sciences, University of Torino, Turin, Italy; Institute of Human Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Turin, Italy; Medical Genetics Unit, Città della Salute e della Scienza, University Hospital, Turin, Italy
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Baylor Genetics Laboratories, Houston, TX 77021, USA
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; TCH, Houston, TX 77030, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA; TCH, Houston, TX 77030, USA; Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, TX 77030, USA.
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA; Program in Developmental Biology, BCM, Houston, TX 77030, USA; Department of Neuroscience, BCM, Houston, TX 77030, USA; Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, TX 77030, USA.
| |
Collapse
|
25
|
Lee JH. Invertebrate Model Organisms as a Platform to Investigate Rare Human Neurological Diseases. Exp Neurobiol 2022; 31:1-16. [PMID: 35256540 PMCID: PMC8907251 DOI: 10.5607/en22003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 01/16/2023] Open
Abstract
Patients suffering from rare human diseases often go through a painful journey for finding a definite molecular diagnosis prerequisite of appropriate cures. With a novel variant isolated from a single patient, determination of its pathogenicity to end such "diagnostic odyssey" requires multi-step processes involving experts in diverse areas of interest, including clinicians, bioinformaticians and research scientists. Recent efforts in building large-scale genomic databases and in silico prediction platforms have facilitated identification of potentially pathogenic variants causative of rare human diseases of a Mendelian basis. However, the functional significance of individual variants remains elusive in many cases, thus requiring incorporation of versatile and rapid model organism (MO)-based platforms for functional analyses. In this review, the current scope of rare disease research is briefly discussed. In addition, an overview of invertebrate MOs for their key features relevant to rare neurological diseases is provided, with the characteristics of two representative invertebrate MOs, Drosophila melanogaster and Caenorhabditis elegans, as well as the challenges against them. Finally, recently developed research networks integrating these MOs in collaborative research are portraited with an array of bioinformatical analyses embedded. A comprehensive survey of MO-based research activities provided in this review will help us to design a wellstructured analysis of candidate genes or potentially pathogenic variants for their roles in rare neurological diseases in future.
Collapse
Affiliation(s)
- Ji-Hye Lee
- Department of Oral Pathology & Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea.,Dental Life Science Institute, Pusan National University, Yangsan 50612, Korea.,Periodontal Disease Signaling Network Research Center, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|
26
|
Odeh HM, Fare CM, Shorter J. Nuclear-Import Receptors Counter Deleterious Phase Transitions in Neurodegenerative Disease. J Mol Biol 2022; 434:167220. [PMID: 34464655 PMCID: PMC8748273 DOI: 10.1016/j.jmb.2021.167220] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 01/17/2023]
Abstract
Nuclear-import receptors (NIRs) engage nuclear-localization signals (NLSs) of polypeptides in the cytoplasm and transport these cargo across the size-selective barrier of the nuclear-pore complex into the nucleoplasm. Beyond this canonical role in nuclear transport, NIRs operate in the cytoplasm to chaperone and disaggregate NLS-bearing clients. Indeed, NIRs can inhibit and reverse functional and deleterious phase transitions of their cargo, including several prominent neurodegenerative disease-linked RNA-binding proteins (RBPs) with prion-like domains (PrLDs), such as TDP-43, FUS, EWSR1, TAF15, hnRNPA1, and hnRNPA2. Importantly, elevated NIR expression can mitigate degenerative phenotypes connected to aberrant cytoplasmic aggregation of RBPs with PrLDs. Here, we review recent discoveries that NIRs can also antagonize aberrant interactions and toxicity of arginine-rich, dipeptide-repeat proteins that are associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) caused by G4C2 hexanucleotide repeat expansions in the first intron of C9ORF72. We also highlight recent findings that multiple NIR family members can prevent and reverse liquid-liquid phase separation of specific clients bearing RGG motifs in an NLS-independent manner. Finally, we discuss strategies to enhance NIR activity or expression, which could have therapeutic utility for several neurodegenerative disorders, including ALS, FTD, multisystem proteinopathy, limbic-predominant age-related TDP-43 encephalopathy, tauopathies, and related diseases.
Collapse
Affiliation(s)
- Hana M Odeh
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charlotte M Fare
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. https://twitter.com/CharlotteFare
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|