1
|
Metsälä O, Wahlström G, Goel N, Miihkinen M, Taimen P, Schleutker J. Spatial profiling of ANO7 in prostate tissue: links to AR-signalling-associated lipid metabolism and inflammation. J Pathol 2025; 265:518-531. [PMID: 39978863 DOI: 10.1002/path.6405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/18/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025]
Abstract
Prostate cancer (PrCa) is highly prevalent in the Western world. Currently, however, there are many unmet needs in PrCa care, for example in distinguishing between clinically significant and indolent cases in early phases of the disease. ANO7 is a prostate-specific gene associated with PrCa risk and prognosis, but its exact function in the prostate remains unclear. This study investigates the role of ANO7 in benign prostatic epithelium using spatial transcriptomics by examining differences between ANO7-expressing and non-expressing epithelial regions and their corresponding stromal compartments. A total of 18,676 protein-coding genes were assessed from prostatectomy samples collected from patients with localised prostate cancer. In the collected sample cohort, ANO7 exhibited a distinct, heterogeneous, on-off epithelial expression pattern, enabling an in-depth analysis of ANO7-dependent processes. ANO7-positive epithelium was predominantly enriched with luminal epithelial cells and a specific NK cell subtype, CD56bright. In contrast, ANO7-negative regions were characterised by enrichment of club cells, inflammation, and features of proliferative inflammatory atrophy. Gene-set enrichment analysis revealed that ANO7 expression is associated with androgen receptor (AR) signalling and lipid metabolism. A detailed analysis of differentially expressed genes identified an ANO7- signature, which consisted of genes co-expressed with ANO7 in luminal cells, that demonstrated high consistency in bulk RNA-sequencing (RNA-seq) data. The ANO7-signature was enriched for AR-regulated genes, which highlighted lipid metabolism processes, particularly arachidonic acid metabolism, as a key metabolic feature of the ANO7-positive epithelium. Furthermore, the ANO7-signature demonstrated clinical significance in low-grade PrCa, correlating with a better response to therapy. In summary, these results highlight the potential role of ANO7 in regulating lipid metabolism associated with androgen signalling in benign luminal cells and low-grade cancer, reinforcing the hypothesis that ANO7 functions as a tumour suppressor. © 2025 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Olli Metsälä
- Institute of Biomedicine, University of Turku, Turku, Finland
- FICAN West Cancer Center, University of Turku and Turku University Hospital, Turku, Finland
| | - Gudrun Wahlström
- Institute of Biomedicine, University of Turku, Turku, Finland
- FICAN West Cancer Center, University of Turku and Turku University Hospital, Turku, Finland
| | - Neha Goel
- Institute of Biomedicine, University of Turku, Turku, Finland
- FICAN West Cancer Center, University of Turku and Turku University Hospital, Turku, Finland
| | - Mitro Miihkinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pekka Taimen
- Institute of Biomedicine, University of Turku, Turku, Finland
- FICAN West Cancer Center, University of Turku and Turku University Hospital, Turku, Finland
- Department of Pathology, Laboratory Division, Turku University Hospital, Turku, Finland
| | - Johanna Schleutker
- Institute of Biomedicine, University of Turku, Turku, Finland
- FICAN West Cancer Center, University of Turku and Turku University Hospital, Turku, Finland
- Department of Genomics, Laboratory Division, Turku University Hospital, Turku, Finland
| |
Collapse
|
2
|
Milner AR, Johnson AC, Attipoe EM, Wu W, Challagundla L, Garrett MR. Methylseq, single-nuclei RNAseq, and discovery proteomics identify pathways associated with nephron-deficit CKD in the HSRA rat model. Am J Physiol Renal Physiol 2025; 328:F470-F488. [PMID: 39982494 DOI: 10.1152/ajprenal.00258.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/01/2024] [Accepted: 02/12/2025] [Indexed: 02/22/2025] Open
Abstract
Low nephron numbers are associated with an increased risk of developing chronic kidney disease (CKD) and hypertension, which are significant global health problems. To investigate the impact of nephron deficiency, our laboratory developed a novel inbred rat model (HSRA rat). In this model, ∼75% of offspring are born with a single kidney (HSRA-S), compared with two-kidney littermates (HSRA-C). HSRA-S rats show impaired kidney development, resulting in ∼20% fewer nephrons. Our previous data and current findings demonstrate that nephron deficit (failure of one kidney to form and altered development in the remaining kidney) predisposes HSRA-S to CKD late in life (with increased proteinuria by 18 mo of age in HSRA-S = 51 ± 3.4 vs. HSRA-C = 8 ± 1.5 mg/24 h). To understand early molecular mechanisms contributing to the increased predisposition to CKD, Methylseq using reduced representation bisulfite sequencing, single-nuclei (sn)RNAseq, and discovery proteomics were performed in kidneys of 4-wk-old HSRA rats. Methylation analysis revealed a small number of differences, including five differentially methylated cytosines and six differentially methylated regions between groups. The snRNAseq analysis identified differentially expressed genes in most kidney cell types, with several hundred genes dysregulated depending on the analysis method (Seurat vs. DESeq2). Notably, many genes are involved in kidney development. Discovery proteomic analysis identified 366 differentially expressed proteins. A key finding was dysregulation of Deptor/DEPTOR and Amdhd2/AMDHD2 across omics layers, suggesting a potential role in compensatory mechanisms or the genetic basis of altered kidney development. Further understanding of these mechanisms may guide interventions to preserve nephron health and slow kidney disease progression.NEW & NOTEWORTHY The HSRA rat is a novel model of nephron deficiency and provides a unique opportunity to study the association between nephron number and chronic kidney disease (CKD). Previous work characterized the impact of age, hypertension, and diabetes on the development of CKD in HSRA animals. This study examined early changes in epigenetics, cell-type specific transcriptome, and proteomic changes in the kidney that likely predispose the model to CKD with age.
Collapse
Affiliation(s)
- Andrew R Milner
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Ashley C Johnson
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Esinam M Attipoe
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Wenjie Wu
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lavanya Challagundla
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Michael R Garrett
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Department of Medicine (Nephrology), University of Mississippi Medical Center, Jackson, Mississippi, United States
- Department of Pediatrics (Genetics), University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
3
|
Lin L, Li Z, Chen K, Shao Y, Li X. Uncovering somatic genetic drivers in prostate cancer through comprehensive genome-wide analysis. GeroScience 2025:10.1007/s11357-025-01623-8. [PMID: 40156736 DOI: 10.1007/s11357-025-01623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/16/2025] [Indexed: 04/01/2025] Open
Abstract
Given that hereditary prostate cancer (PCa) accounts for only a small fraction of PCa phenotypes, there is still a substantial journey ahead in exploring the somatic genetic drivers contributing to sporadic PCa. The expression quantitative trait loci (eQTLs) data were sourced from the GTEx dataset for prostate-specific genes, and the summary statistic information was collected for 5854 genes. Genetic associations with PCa were extracted from three well-established consortiums: the UK Biobank (9131 cases and 173,493 controls), the PRACTICAL study (79,148 cases and 61,106 controls), and the FinnGen cohort (13,216 cases and 119,948 controls). To prioritize potential causal targets, additional analysis, including the protein-protein interaction (PPI), The Cancer Genome Atlas (TCGA) dataset, and the single-cell-type expression analysis, was performed. Generally, a total of 150 common significant genes with the same causal association with PCa were identified. Out of the 150 genes examined, 67.33% (101/150) were found to have protein-coding functions, while only 30.67% (46/150) of these genes had prior mentions in the scientific literature. Notably, the analysis of the TCGA dataset showed that only 44.67% (67/150) of the genes produced consistent results with the Mendelian randomization (MR) analysis. Furthermore, the evaluation of single-cell RNA-seq data and colocalization analysis singled out MSMB as a critical gene associated with the occurrence of PCa. We pinpointed a range of prostate-specific genes that display causal associations with the onset of PCa. Among these, the MSMB gene emerged as a pivotal factor linked to PCa, demonstrating robust consistency across all four assessments, including the MR, TCGA dataset, single-cell RNA-seq data, and colocalization analysis. These findings provided fresh perspectives on the pathogenesis of PCa and presented potential targets for drug development.
Collapse
Affiliation(s)
- Lede Lin
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Li
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Kai Chen
- Department of Urology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yanxiang Shao
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xiang Li
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Hu W, Ding X, Wu X, Xi X, Xu J, Dai S, Chen J, Hu S, Zhao Q, Chen F. A Comprehensive Analysis of Epoxide Hydrolase 2 (EPHX2) in Pan-Cancer. Cancer Rep (Hoboken) 2025; 8:e70188. [PMID: 40129060 PMCID: PMC11932960 DOI: 10.1002/cnr2.70188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/28/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND AND AIMS Epoxide hydrolase 2 (EPHX2) regulates lipid signaling across various metabolites by encoding soluble epoxide hydrolase. However, its mechanisms and implications in human malignancies remain unknown. This research aimed to detail the prognostic landscape of EPHX2 in pan-cancer and explore its potential relationship with immune infiltration in the tumor microenvironment. METHODS Herein, multiple bioinformatics tools were used to comprehensively evaluate the expression, diagnostic, and prognostic significance of EPHX2 and its roles in the tumor immune microenvironment in human cancers. The underlying EPHX2-associated signaling pathways in cancers were investigated by gene set variation analysis (GSVA). TIDE, GDSC, and CTRP databases were applied to predict the response of EPHX2 to immunotherapy and sensitivity to small molecule drugs. Furthermore, EPHX2 expression was also validated by qPCR experiments in various cancer cell lines. RESULTS Overall results revealed significant down-regulation of EPHX2 mRNA expression in most tumors. Despite its high predictive significance across cancers, EPHX2 played a protective or detrimental effect in distinct types of cancers. EPHX2 proved to be a valuable diagnostic biomarker in a range of tumor types, particularly in kidney renal clear cell carcinoma, cervical squamous cell carcinoma, and endocervical adenocarcinoma. Genetic alterations of EPHX2 in 33 tumors were also investigated. EPHX2 expression was significantly linked to immune cell infiltrations (particularly tumor-associated macrophages), tumor mutation burden, microsatellite instability, immune modulators, and immunotherapeutic biomarkers. Single-cell sequencing and GSVA highlighted the relevance of EPHX2 in regulating various cancer-related biological processes, including cell cycle and apoptosis. In this view, targeting EPHX2-dependent signaling could be a promising therapeutic strategy for tumor immunotherapy. CONCLUSION EPHX2 may serve as a potential molecular biomarker for diagnosis and prognosis in pan-cancer and could become a novel therapeutic target for various cancers.
Collapse
Affiliation(s)
- Weiquan Hu
- Department of Joint SurgeryGanzhou People's HospitalGanzhouJiangxiChina
| | - Xiaoli Ding
- Department of Laboratory MedicineFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
| | - Xiangsheng Wu
- Department of Laboratory MedicineFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
| | - Xuxiang Xi
- Department of Laboratory MedicineFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
| | - Jing Xu
- Department of Orthopaedic SurgerySun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Shengyun Dai
- National Institutes for Food and Drug ControlBeijingChina
| | - Jing Chen
- Department of Laboratory MedicineFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
| | - Suping Hu
- Department of EmergencyFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
| | - Qinfei Zhao
- Department of Laboratory MedicineFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
| | - Fangfang Chen
- The First School of Clinical Medicine, Southern Medical UniversityGuangzhouGuangdongChina
- Jinling Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingJiangsuChina
| |
Collapse
|
5
|
Feng S, Zhou M, Huang Z, Xiao X, Zhong B. A colorectal liver metastasis prediction model based on the combination of lipoprotein-associated phospholipase A2 and serum biomarker levels. Clin Chim Acta 2025; 568:120143. [PMID: 39826573 DOI: 10.1016/j.cca.2025.120143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
OBJECTIVE This study aims to assess the predictive value of serum lipoprotein-associated phospholipase A2 (Lp-PLA2) in colorectal liver metastasis (CRLM) patients. METHODS A total of 507 participants were recruited for this study, comprising 162 healthy controls (HCs), 186 non-CRLM patients, and 159 CRLM patients. Serum Lp-PLA2 levels were measured across these three groups, and a CRLM prediction model was developed using machine learning (ML) algorithms in conjunction with traditional serological markers. The performance of each model was assessed using the area under the receiver operating characteristic (ROC) curve (AUC), sensitivity, specificity, and other relevant metrics. RESULTS The serum Lp-PLA2 levels in CRLM patients were significantly elevated compared to those in HCs group and the non-CRLM group (P < 0.0001). The CRLM prediction model developed using the Random forest algorithm demonstrated superior performance, incorporating six features: Lp-PLA2, ALB, GLB, ALT, LDH, and TC. This model achieved an AUC of 0.918, with a sensitivity of 0.823, specificity of 0.889, positive predictive value (PPV) of 0.861, and negative predictive value (NPV) of 0.857. CONCLUSION The Random forest model, incorporating serum Lp-PLA2 level and conventional laboratory parameters, demonstrates robust predictive capability for CRLM and holds promise for enhancing early detection in CRLM patients.
Collapse
Affiliation(s)
- Sisi Feng
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Manli Zhou
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Zixin Huang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaomin Xiao
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Baiyun Zhong
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
6
|
Bonnefont-Rousselot D. [Lipoprotein-associated phospholipase A 2 (Lp-PLA 2): Relevant biomarker and therapeutic target?]. ANNALES PHARMACEUTIQUES FRANÇAISES 2025; 83:45-57. [PMID: 39241907 DOI: 10.1016/j.pharma.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Over the last fifteen years, numerous studies have sought to decipher the role of lipoprotein-associated phospholipase A2 (Lp-PLA2) in vascular inflammation-related diseases, notably atherosclerosis. Despite the disappointing results of clinical trials using the Lp-PLA2 inhibitor darapladib, new pathophysiological, epidemiological and genetic data have enabled the development of new inhibitors. Recent studies also show that Lp-PLA2 is involved in vascular inflammation-related diseases other than atherosclerosis (ischemic stroke, Alzheimer's disease and vascular dementia, diabetes, cancers…), and inhibition of Lp-PLA2 could have beneficial therapeutic in these diseases. This review aims to present new data on Lp-PLA2 and to evaluate its current interest as a biomarker but also as a therapeutic target.
Collapse
Affiliation(s)
- Dominique Bonnefont-Rousselot
- Service de biochimie métabolique, hôpitaux universitaires Pitié-Salpêtrière-Charles-Foix, AP-HP, 47-83, boulevard de l'Hôpital, 75651 Paris, France; Inserm, CNRS, UFR de pharmacie, UTCBS, université Paris Cité, Paris, France.
| |
Collapse
|
7
|
Leahy C, Osborne N, Shirota L, Rote P, Lee YK, Song BJ, Yin L, Zhang Y, Garcia V, Hardwick JP. The fatty acid omega hydroxylase genes (CYP4 family) in the progression of metabolic dysfunction-associated steatotic liver disease (MASLD): An RNA sequence database analysis and review. Biochem Pharmacol 2024; 228:116241. [PMID: 38697309 PMCID: PMC11774579 DOI: 10.1016/j.bcp.2024.116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024]
Abstract
Fatty acid omega hydroxylase P450s consist of enzymes that hydroxylate various chain-length saturated and unsaturated fatty acids (FAs) and bioactive eicosanoid lipids. The human cytochrome P450 gene 4 family (CYP4) consists of 12 members that are associated with several human diseases. However, their role in the progression of metabolic dysfunction-associated fatty liver disease (MASLD) remains largely unknown. It has long been thought that the induction of CYP4 family P450 during fasting and starvation prevents FA-related lipotoxicity through FA metabolism to dicarboxylic acids that are chain-shortened in peroxisomes and then transported to the mitochondria for complete oxidation. Several studies have revealed that peroxisome succinate transported to the mitochondria is used for gluconeogenesis during fasting and starvation, and recent evidence suggests that peroxisome acetate can be utilized for lipogenesis and lipid droplet formation as well as epigenetic modification of gene transcription. In addition, omega hydroxylation of the bioactive eicosanoid arachidonic acid to 20-Hydroxyeicosatetraenoic acid (20-HETE) is essential for activating the GPR75 receptor, leading to vasoconstriction and cell proliferation. Several mouse models of diet-induced MASLD have revealed the induction of selective CYP4A members and the suppression of CYP4F during steatosis and steatohepatitis, suggesting a critical metabolic role in the progression of fatty liver disease. Thus, to further investigate the functional roles of CYP4 genes, we analyzed the differential gene expression of 12 members of CYP4 gene family in datasets from the Gene Expression Omnibus (GEO) from patients with steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. We also observed the differential expression of various CYP4 genes in the progression of MASLD, indicating that different CYP4 members may have unique functional roles in the metabolism of specific FAs and eicosanoids at various stages of fatty liver disease. These results suggest that targeting selective members of the CYP4A family is a viable therapeutic approach for treating and managing MASLD.
Collapse
Affiliation(s)
- Charles Leahy
- Department of Integrative Medical Sciences Liver focus group, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Nicholas Osborne
- Department of Integrative Medical Sciences Liver focus group, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Leticia Shirota
- Department of Integrative Medical Sciences Liver focus group, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Paula Rote
- Department of Integrative Medical Sciences Liver focus group, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Yoon-Kwang Lee
- Department of Integrative Medical Sciences Liver focus group, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Liya Yin
- Department of Integrative Medical Sciences Liver focus group, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences Liver focus group, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, 15 Dana Road Science Building, Rm. 530, Valhalla, NY 10595, USA
| | - James P Hardwick
- Department of Integrative Medical Sciences Liver focus group, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA.
| |
Collapse
|
8
|
Li H, Zhou T, Zhang Q, Yao Y, Hua T, Zhang J, Wang H. Characterization and validation of fatty acid metabolism-related genes predicting prognosis, immune infiltration, and drug sensitivity in endometrial cancer. Biotechnol Appl Biochem 2024; 71:909-928. [PMID: 38616327 DOI: 10.1002/bab.2586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/15/2024] [Indexed: 04/16/2024]
Abstract
Endometrial cancer is considered to be the second most common tumor of the female reproductive system, and patients diagnosed with advanced endometrial cancer have a poor prognosis. The influence of fatty acid metabolism in the prognosis of patients with endometrial cancer remains unclear. We constructed a prognostic risk model using transcriptome sequencing data of endometrial cancer and clinical information of patients from The Cancer Genome Atlas (TCGA) database via least absolute shrinkage and selection operator regression analysis. The tumor immune microenvironment was analyzed using the CIBERSORT algorithm, followed by functional analysis and immunotherapy efficacy prediction by gene set variation analysis. The role of model genes in regulating endometrial cancer in vitro was verified by CCK-8, colony formation, wound healing, and transabdominal invasion assays, and verified in vivo by subcutaneous tumor transplantation in nude mice. A prognostic model containing 14 genes was constructed and validated in 3 cohorts and clinical samples. The results showed differences in the infiltration of immune cells between the high-risk and low-risk groups, and that the high-risk group may respond better to immunotherapy. Experiments in vitro confirmed that knockdown of epoxide hydrolase 2 (EPHX2) and acyl-CoA oxidase like (ACOXL) had an inhibitory effect on EC cells, as did overexpression of hematopoietic prostaglandin D synthase (HPGDS). The same results were obtained in experiments in vivo. Prognostic models related to fatty acid metabolism can be used for the risk assessment of endometrial cancer patients. Experiments in vitro and in vivo confirmed that the key genes HPGDS, EPHX2, and ACOXL in the prognostic model may affect the development of endometrial cancer.
Collapse
Affiliation(s)
- Haojia Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuwei Yao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Teng Hua
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Research Center of Cancer Immunotherapy, Wuhan, Hubei, China
| |
Collapse
|
9
|
Montecillo-Aguado M, Soca-Chafre G, Antonio-Andres G, Morales-Martinez M, Tirado-Rodriguez B, Rocha-Lopez AG, Hernandez-Cueto D, Sánchez-Ceja SG, Alcala-Mota-Velazco B, Gomez-Garcia A, Gutiérrez-Castellanos S, Huerta-Yepez S. Upregulated Nuclear Expression of Soluble Epoxide Hydrolase Predicts Poor Outcome in Breast Cancer Patients: Importance of the Digital Pathology Approach. Int J Mol Sci 2024; 25:8024. [PMID: 39125591 PMCID: PMC11312095 DOI: 10.3390/ijms25158024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Breast cancer (BC) is the most common cancer in women, with incidence rates increasing globally in recent years. Therefore, it is important to find new molecules with prognostic and therapeutic value to improve therapeutic response and quality of life. The polyunsaturated fatty acids (PUFAs) metabolic pathway participates in various physiological processes, as well as in the development of malignancies. Although aberrancies in the PUFAs metabolic pathway have been implicated in carcinogenesis, the functional and clinical relevance of this pathway has not been well explored in BC. To evaluate the clinical significance of soluble epoxide hydrolase (EPHX2) expression in Mexican patients with BC using tissue microarrays (TMAs) and digital pathology (DP). Immunohistochemical analyses were performed on 11 TMAs with 267 BC samples to quantify this enzyme. Using DP, EPHX2 protein expression was evaluated solely in tumor areas. The association of EPHX2 with overall survival (OS) was detected through bioinformatic analysis in public databases and confirmed in our cohort via Cox regression analysis. Clear nuclear expression of EPHX2 was identified. Receiver operating characteristics (ROC) curves revealed the optimal cutoff point at 2.847062 × 10-3 pixels, with sensitivity of 69.2% and specificity of 67%. Stratification based on this cutoff value showed elevated EPHX2 expression in multiple clinicopathological features, including older age and nuclear grade, human epidermal growth factor receptor 2 (HER2) and triple negative breast cancer (TNBC) subtypes, and recurrence. Kaplan-Meier curves demonstrated how higher nuclear expression of EPHX2 predicts shorter OS. Consistently, multivariate analysis confirmed EPHX2 as an independent predictor of OS, with a hazard ratio (HR) of 3.483 and a 95% confidence interval of 1.804-6.724 (p < 0.001). Our study demonstrates for the first time that nuclear overexpression of EPHX2 is a predictor of poor prognosis in BC patients. The DP approach was instrumental in identifying this significant association. Our study provides valuable insights into the potential clinical utility of EPHX2 as a prognostic biomarker and therapeutic target in BC.
Collapse
Affiliation(s)
- Mayra Montecillo-Aguado
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico; (M.M.-A.); (G.S.-C.); (G.A.-A.)
| | - Giovanny Soca-Chafre
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico; (M.M.-A.); (G.S.-C.); (G.A.-A.)
| | - Gabriela Antonio-Andres
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico; (M.M.-A.); (G.S.-C.); (G.A.-A.)
| | - Mario Morales-Martinez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico; (M.M.-A.); (G.S.-C.); (G.A.-A.)
| | - Belen Tirado-Rodriguez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico; (M.M.-A.); (G.S.-C.); (G.A.-A.)
| | - Angelica G. Rocha-Lopez
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas Dr. Ignacio Chávez, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58060, Mexico
| | - Daniel Hernandez-Cueto
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico; (M.M.-A.); (G.S.-C.); (G.A.-A.)
| | - Sandra G. Sánchez-Ceja
- Laboratorio de Patología, Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58060, Mexico;
| | - Berenice Alcala-Mota-Velazco
- Departamento de Patología, Facultad de Odontología, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58060, Mexico;
| | - Anel Gomez-Garcia
- Centro de investigación Biomédica de Michoacán, División de Investigación Clínica, Instituto Mexicano del Seguro Social, Morelia 58060, Mexico;
| | - Sergio Gutiérrez-Castellanos
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas Dr. Ignacio Chávez, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58060, Mexico
- Centro de investigación Biomédica de Michoacán, División de Investigación Clínica, Instituto Mexicano del Seguro Social, Morelia 58060, Mexico;
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico; (M.M.-A.); (G.S.-C.); (G.A.-A.)
| |
Collapse
|
10
|
Vermonden P, Martin M, Glowacka K, Neefs I, Ecker J, Höring M, Liebisch G, Debier C, Feron O, Larondelle Y. Phospholipase PLA2G7 is complementary to GPX4 in mitigating punicic-acid-induced ferroptosis in prostate cancer cells. iScience 2024; 27:109774. [PMID: 38711443 PMCID: PMC11070704 DOI: 10.1016/j.isci.2024.109774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/08/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Ferroptosis is a cell death pathway that can be promoted by peroxidizable polyunsaturated fatty acids in cancer cells. Here, we investigated the mechanisms underlying the toxicity of punicic acid (PunA), an isomer of conjugated linolenic acids (CLnAs) bearing three conjugated double bonds highly prone to peroxidation, on prostate cancer (PCa) cells. PunA induced ferroptosis in PCa cells and triggered massive lipidome remodeling, more strongly in PC3 androgen-negative cells than in androgen-positive cells. The greater sensitivity of androgen-negative cells to PunA was associated with lower expression of glutathione peroxidase 4 (GPX4). We then identified the phospholipase PLA2G7 as a PunA-induced ferroptosis suppressor in PCa cells. Overexpressing PLA2G7 decreased lipid peroxidation levels, suggesting that PLA2G7 hydrolyzes hydroperoxide-containing phospholipids, thus preventing ferroptosis. Importantly, overexpressing both PLA2G7 and GPX4 strongly prevented PunA-induced ferroptosis in androgen-negative PCa cells. This study shows that PLA2G7 acts complementary to GPX4 to protect PCa cells from CLnA-induced ferroptosis.
Collapse
Affiliation(s)
- Perrine Vermonden
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Manon Martin
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Katarzyna Glowacka
- FATH, Institut de recherche Expérimentale et Clinique, UCLouvain, 1200 Woluwe Saint-Lambert, Belgium
| | - Ineke Neefs
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Josef Ecker
- Functional Lipidomics and Metabolism Research, Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Marcus Höring
- Lipidomics Lab, Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Lipidomics Lab, Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Cathy Debier
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Olivier Feron
- FATH, Institut de recherche Expérimentale et Clinique, UCLouvain, 1200 Woluwe Saint-Lambert, Belgium
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
11
|
Maksymchuk O, Gerashchenko G, Rosohatska I, Kononenko O, Tymoshenko A, Stakhovsky E, Kashuba V. Cytochrome P450 genes expression in human prostate cancer. Mol Genet Metab Rep 2024; 38:101049. [PMID: 38469085 PMCID: PMC10926225 DOI: 10.1016/j.ymgmr.2024.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 03/13/2024] Open
Abstract
CYP-dependent metabolites play a critical role in regulating the cell cycle, as well as the proliferative, invasive, and migratory activity of cancer cells. We conducted a study to analyze the relative gene expression of various CYPs (CYP7B1, CYP27A1, CYP39A1, CYP51, CYP1B1, CYP3A5, CYP4F8, CYP5A1, CYP4F2, CYP2J2, CYP2E1, CYP2R1, CYP27B1, CYP24A1) in 41 pairs of prostate samples (tumor and conventional normal tissues) using qPCR. Our analysis determined significant individual variability in the expression levels of all studied CYPs, both in the tumor and in conventionally normal groups. However, when we performed a paired test between the tumor and normal groups, we found no significant difference in the expression of the studied genes. We did observe a tendency to increase the level of CYP1B1 expression in the tumor group. We also did not find any significant difference between the levels of the studied CYPs in the tumor and conventional normal groups at different stages of prostate cancer and pathomorphological indicators. Correlation analysis revealed the presence of a positive relationship between the expressions of some cholesterol-metabolizing CYP genes, as well as between genes responsible for vitamin D biosynthesis and cholesterol biosynthesis. We observed significant correlative relationships between the expression of CYPs and some prostate cancer-related genes (CDH2, MMP9, SCHLAP1, GCR, CYP17A1, ACTA2, CXCL14, FAP, CCL17, MSMB, IRF1, VDR). Therefore, the expression of CYPs is not directly associated with prostate cancer but is largely determined by genetic, epigenetic factors, as well as endogenous substrates and xenobiotics. The significant correlative relationship between CYPs and genes associated with cancer may indicate common regulatory pathways that may have a synergistic effect on the tumor, ensuring the survival of cancer cells.
Collapse
Affiliation(s)
- Oksana Maksymchuk
- Institute of Molecular Biology and Genetics, Department of Molecular Oncogenetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
| | - Ganna Gerashchenko
- Institute of Molecular Biology and Genetics, Department of Molecular Oncogenetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
| | - Inna Rosohatska
- Institute of Molecular Biology and Genetics, Department of Molecular Oncogenetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
| | - Oleksiy Kononenko
- State Institution "National Cancer Institute", Department of Plastic and Reconstructive Oncourology, Kyiv 03022, Ukraine
| | - Andriy Tymoshenko
- State Institution "National Cancer Institute", Department of Plastic and Reconstructive Oncourology, Kyiv 03022, Ukraine
| | - Eduard Stakhovsky
- State Institution "National Cancer Institute", Department of Plastic and Reconstructive Oncourology, Kyiv 03022, Ukraine
| | - Volodymyr Kashuba
- Institute of Molecular Biology and Genetics, Department of Molecular Oncogenetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo Street, Kyiv 03143, Ukraine
| |
Collapse
|
12
|
Kelly AG, Wang W, Rothenberger E, Yang J, Gilligan MM, Kipper FC, Attaya A, Gartung A, Hwang SH, Gillespie MJ, Bayer RL, Quinlivan KM, Torres KL, Huang S, Mitsiades N, Yang H, Hammock BD, Panigrahy D. Enhancing cancer immunotherapy via inhibition of soluble epoxide hydrolase. Proc Natl Acad Sci U S A 2024; 121:e2314085121. [PMID: 38330013 PMCID: PMC10873624 DOI: 10.1073/pnas.2314085121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/22/2023] [Indexed: 02/10/2024] Open
Abstract
Cancer therapy, including immunotherapy, is inherently limited by chronic inflammation-induced tumorigenesis and toxicity within the tumor microenvironment. Thus, stimulating the resolution of inflammation may enhance immunotherapy and improve the toxicity of immune checkpoint inhibition (ICI). As epoxy-fatty acids (EpFAs) are degraded by the enzyme soluble epoxide hydrolase (sEH), the inhibition of sEH increases endogenous EpFA levels to promote the resolution of cancer-associated inflammation. Here, we demonstrate that systemic treatment with ICI induces sEH expression in multiple murine cancer models. Dietary omega-3 polyunsaturated fatty acid supplementation and pharmacologic sEH inhibition, both alone and in combination, significantly enhance anti-tumor activity of ICI in these models. Notably, pharmacological abrogation of the sEH pathway alone or in combination with ICI counter-regulates an ICI-induced pro-inflammatory and pro-tumorigenic cytokine storm. Thus, modulating endogenous EpFA levels through dietary supplementation or sEH inhibition may represent a unique strategy to enhance the anti-tumor activity of paradigm cancer therapies.
Collapse
Affiliation(s)
- Abigail G. Kelly
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Weicang Wang
- Department of Entomology and Nematology, University of California, Davis,CA95616
- University of California Davis Comprehensive Cancer Center, Sacramento, CA95817
- Department of Food Science, Purdue University, West Lafayette, IN47907
| | - Eva Rothenberger
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Jun Yang
- Department of Entomology and Nematology, University of California, Davis,CA95616
- University of California Davis Comprehensive Cancer Center, Sacramento, CA95817
| | - Molly M. Gilligan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Franciele C. Kipper
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Ahmed Attaya
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Allison Gartung
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Sung Hee Hwang
- Department of Entomology and Nematology, University of California, Davis,CA95616
- University of California Davis Comprehensive Cancer Center, Sacramento, CA95817
| | - Michael J. Gillespie
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Rachel L. Bayer
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Katherine M. Quinlivan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Kimberly L. Torres
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Sui Huang
- Institute of Systems Biology, Seattle, WA98109
| | - Nicholas Mitsiades
- University of California Davis Comprehensive Cancer Center, Sacramento, CA95817
- Department of Internal Medicine, University of CaliforniaDavis,CA95817
| | - Haixia Yang
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Food Nutrition and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing100083, China
| | - Bruce D. Hammock
- Department of Entomology and Nematology, University of California, Davis,CA95616
- University of California Davis Comprehensive Cancer Center, Sacramento, CA95817
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| |
Collapse
|
13
|
Zhou Z, Jiang WJ, Li L, Si JQ. The effects of noise exposure on hippocampal cognition in C57BL/6 mice via transcriptomics. Biochem Biophys Res Commun 2024; 690:149257. [PMID: 38016245 DOI: 10.1016/j.bbrc.2023.149257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Noise is an important environmental stressor in the industrialized world and has received increasing attention in recent years. Although epidemiological research has extensively demonstrated the relationship between noise and cognitive impairment, the specific molecular mechanisms and targets remain to be fully explored and understood. METHODS To address this issue, 5-month-old C57BL/6 mice were divided into two groups, with one group exposed to white noise at 98 dB. The effects of noise on cognition in mice were investigated through molecular biology and behavioral experiments. Subsequently, transcriptomic sequencing of the hippocampus in both groups of mice was performed and enrichment analysis of differentially expressed genes (DEGs) was conducted using KEGG and GO databases. Furthermore, LASSO analysis was used to further narrow down the relevant DEGs, followed by enrichment analysis of these genes using KEGG and GO databases. The DEGs were further validated by rt-qPCR. RESULTS Following noise exposure, the hippocampus levels of inflammation-related factors increased, the phosphorylation of Tau protein increased, the postsynaptic density protein decreased, the number of Nissl bodies decreased, and cell shrinkage in the hippocampus increased. Moreover, the behavioral experiments manifest characteristics indicative of a decline in cognitive.A total of 472 DEGs were identified through transcriptomic analysis, and seven relevant genes were screened by the LASSO algorithm, which were further validated by PCR to confirm their consistency with the omics results. CONCLUSION In conclusion, noise exposure affects cognitive function in mice through multiple pathways, and the omics results provide new evidence for the cognitive impairment induced by noise exposure.
Collapse
Affiliation(s)
- Zan Zhou
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China; Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, China; The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Wen-Jun Jiang
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, China; Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310051, China
| | - Li Li
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, China.
| | - Jun-Qiang Si
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China; The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
14
|
Oh M, Jang SY, Lee JY, Kim JW, Jung Y, Kim J, Seo J, Han TS, Jang E, Son HY, Kim D, Kim MW, Park JS, Song KH, Oh KJ, Kim WK, Bae KH, Huh YM, Kim SH, Kim D, Han BS, Lee SC, Hwang GS, Lee EW. The lipoprotein-associated phospholipase A2 inhibitor Darapladib sensitises cancer cells to ferroptosis by remodelling lipid metabolism. Nat Commun 2023; 14:5728. [PMID: 37714840 PMCID: PMC10504358 DOI: 10.1038/s41467-023-41462-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/29/2023] [Indexed: 09/17/2023] Open
Abstract
Arachidonic and adrenic acids in the membrane play key roles in ferroptosis. Here, we reveal that lipoprotein-associated phospholipase A2 (Lp-PLA2) controls intracellular phospholipid metabolism and contributes to ferroptosis resistance. A metabolic drug screen reveals that darapladib, an inhibitor of Lp-PLA2, synergistically induces ferroptosis in the presence of GPX4 inhibitors. We show that darapladib is able to enhance ferroptosis under lipoprotein-deficient or serum-free conditions. Furthermore, we find that Lp-PLA2 is located in the membrane and cytoplasm and suppresses ferroptosis, suggesting a critical role for intracellular Lp-PLA2. Lipidomic analyses show that darapladib treatment or deletion of PLA2G7, which encodes Lp-PLA2, generally enriches phosphatidylethanolamine species and reduces lysophosphatidylethanolamine species. Moreover, combination treatment of darapladib with the GPX4 inhibitor PACMA31 efficiently inhibits tumour growth in a xenograft model. Our study suggests that inhibition of Lp-PLA2 is a potential therapeutic strategy to enhance ferroptosis in cancer treatment.
Collapse
Affiliation(s)
- Mihee Oh
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Seo Young Jang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, Korea
| | - Ji-Yoon Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Jong Woo Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea
| | - Youngae Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, Korea
| | - Jiwoo Kim
- Therapeutics and Biotechnology Department, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 305-764, Korea
| | - Jinho Seo
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Tae-Su Han
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Eunji Jang
- MediBio-Informatics Research Center, Novomics Co., Ltd., Seoul, Korea
| | - Hye Young Son
- YUHS-KRIBB Medical Convergence Research Institute, Seoul, 03722, Korea
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722, Korea
| | - Dain Kim
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, Korea
- Department of Life Science, Ewha Womans University, Seoul, 03760, Korea
| | - Min Wook Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | | | - Kwon-Ho Song
- Department of Cell Biology, Daegu Catholic University School of Medicine, Daegu, 42472, Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea
| | - Yong-Min Huh
- MediBio-Informatics Research Center, Novomics Co., Ltd., Seoul, Korea
- YUHS-KRIBB Medical Convergence Research Institute, Seoul, 03722, Korea
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722, Korea
| | - Soon Ha Kim
- MitoImmune Therapeutics Inc., Seoul, 06123, Korea
| | - Doyoun Kim
- Therapeutics and Biotechnology Department, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
| | - Baek-Soo Han
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea.
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, Korea.
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Korea.
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, Korea.
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
15
|
Chu M, Ji H, Li K, Liu H, Peng M, Wang Z, Zhu X. Investigating the potential mechanism of quercetin against cervical cancer. Discov Oncol 2023; 14:170. [PMID: 37704909 PMCID: PMC10499770 DOI: 10.1007/s12672-023-00788-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Cervical cancer is emerging as a potential target of increased susceptibility to coronavirus disease-2019 (COVID-19), leading to compromised survival rates. Despite this critical link, efficacious anti-cervical cancer/COVID-19 interventions remain limited. Quercetin, known for its efficacy against both cancer and viral infections, holds promise as a therapeutic agent. This study aims to elucidate quercetin's anti-cervical cancer/COVID-19 mechanisms and potential targets. METHODS We initiated our investigation with differential gene expression analysis using cervical cancer transcriptome data from The Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx), focusing on intersections with COVID-19-related genes. Network pharmacology was employed to identify the shared targets between cervical cancer/COVID-19 DEGs and quercetin's targets. Subsequently, Cox proportional hazards analyses were employed to establish a risk score based on these genes. Molecular docking techniques were applied to predict quercetin's therapeutic targets and mechanisms for mitigating cervical cancer and COVID-19. RESULTS Our findings unveiled 45 potential quercetin targets with anti-cervical cancer/COVID-19 actions. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses highlighted significant enrichment in immune pathways and COVID-19-related pathways. A refined risk score model, comprising PLA2G7, TNF, TYK2, F2, and NRP1, effectively stratified cervical cancer patients into distinct risk groups. Importantly, molecular docking analyses illuminated quercetin's remarkable binding affinity to the primary protease of the coronavirus. CONCLUSIONS In summation, our study suggests that quercetin holds promise as a potential therapeutic agent for mitigating coronavirus function, specifically through its interaction with the primary protease. This research offers novel insights into exploring COVID-19 susceptibility and enhancing survival in cervical cancer patients.
Collapse
Affiliation(s)
- Man Chu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China
| | - Huihui Ji
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China
| | - Kehan Li
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hejing Liu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China
| | - Mengjia Peng
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhiwei Wang
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Xueqiong Zhu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
16
|
Yu K, Basu A, Yau C, Wolf DM, Goodarzi H, Bandyopadhyay S, Korkola JE, Hirst GL, Asare S, DeMichele A, Hylton N, Yee D, Esserman L, van ‘t Veer L, Sirota M. Computational drug repositioning for the identification of new agents to sensitize drug-resistant breast tumors across treatments and receptor subtypes. Front Oncol 2023; 13:1192208. [PMID: 37384294 PMCID: PMC10294228 DOI: 10.3389/fonc.2023.1192208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Drug resistance is a major obstacle in cancer treatment and can involve a variety of different factors. Identifying effective therapies for drug resistant tumors is integral for improving patient outcomes. Methods In this study, we applied a computational drug repositioning approach to identify potential agents to sensitize primary drug resistant breast cancers. We extracted drug resistance profiles from the I-SPY 2 TRIAL, a neoadjuvant trial for early stage breast cancer, by comparing gene expression profiles of responder and non-responder patients stratified into treatments within HR/HER2 receptor subtypes, yielding 17 treatment-subtype pairs. We then used a rank-based pattern-matching strategy to identify compounds in the Connectivity Map, a database of cell line derived drug perturbation profiles, that can reverse these signatures in a breast cancer cell line. We hypothesize that reversing these drug resistance signatures will sensitize tumors to treatment and prolong survival. Results We found that few individual genes are shared among the drug resistance profiles of different agents. At the pathway level, however, we found enrichment of immune pathways in the responders in 8 treatments within the HR+HER2+, HR+HER2-, and HR-HER2- receptor subtypes. We also found enrichment of estrogen response pathways in the non-responders in 10 treatments primarily within the hormone receptor positive subtypes. Although most of our drug predictions are unique to treatment arms and receptor subtypes, our drug repositioning pipeline identified the estrogen receptor antagonist fulvestrant as a compound that can potentially reverse resistance across 13/17 of the treatments and receptor subtypes including HR+ and triple negative. While fulvestrant showed limited efficacy when tested in a panel of 5 paclitaxel resistant breast cancer cell lines, it did increase drug response in combination with paclitaxel in HCC-1937, a triple negative breast cancer cell line. Conclusion We applied a computational drug repurposing approach to identify potential agents to sensitize drug resistant breast cancers in the I-SPY 2 TRIAL. We identified fulvestrant as a potential drug hit and showed that it increased response in a paclitaxel-resistant triple negative breast cancer cell line, HCC-1937, when treated in combination with paclitaxel.
Collapse
Affiliation(s)
- Katharine Yu
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Amrita Basu
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Christina Yau
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Denise M. Wolf
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Hani Goodarzi
- University of California, San Francisco, San Francisco, CA, United States
| | | | - James E. Korkola
- Oregon Health and Science University, Portland, OR, United States
| | - Gillian L. Hirst
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Smita Asare
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States
- QuantumLeap Healthcare Collaborative, San Francisco, CA, United States
| | | | - Nola Hylton
- University of California, San Francisco, San Francisco, CA, United States
| | - Douglas Yee
- University of Minnesota, Minneapolis, MN, United States
| | - Laura Esserman
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Laura van ‘t Veer
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
17
|
An Investigation of the Prognostic Role of Genes Related to Lipid Metabolism in Head and Neck Squamous Cell Carcinoma. Int J Genomics 2023; 2023:9708282. [PMID: 36818393 PMCID: PMC9937776 DOI: 10.1155/2023/9708282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/06/2023] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) has become a prevalent malignancy, and its incidence and mortality rate are increasing worldwide. Accumulating evidence has indicated that lipid metabolism-related genes (LMRGs) are involved in the occurrence and development of HNSCC. This study investigated the latent association of lipid metabolism with HNSCC and established a prognostic signature based on LMRGs. A prognostic risk model composed of eight differentially expressed LMRGs (PHYH, CYP4F8, INMT, ELOVL6, PLPP3, BCHE, TPTE, and STAR) was constructed through The Cancer Genome Atlas database. Then, ELOVL6 expression was validated in oral squamous cell carcinoma (OSCC), which is a common type of HNSCC, by immunohistochemical analysis. ELOVL6 expression in the OSCC II/III group was significantly higher than that in the other three groups (normal, dysplasia, and OSCC I), and OSCC patients with high ELOVL6 expression had poorer survival than those with low ELOVL6 expression. In summary, the LMRG-based prognostic feature had prognostic predictive capacity. ELOVL6 may be a potential prognostic factor for HNSCC patients.
Collapse
|
18
|
Zheng Y, Yang W, Jia Y, Ji J, Wu L, Feng J, Li Y, Cheng Z, Zhang J, Li J, Dai W, Xu X, Wu J, Zhou Y, Guo C. Promotion of colorectal cancer cell death by ezetimibe via mTOR signaling-dependent mitochondrial dysfunction. Front Pharmacol 2023; 14:1081980. [PMID: 36843944 PMCID: PMC9946110 DOI: 10.3389/fphar.2023.1081980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction: Colorectal cancer (CRC) is the fourth most common cancer worldwide, with high morbidity and mortality rates. In recent years, high-fat diet has been shown to increase CRC morbidity, highlighting the possibility of the application of hypolipidemic drugs for CRC treatment. In this study, we preliminarily evaluated the effects and mechnisms of ezetimibe against CRC through the blockage of lipid absorption in small intesine. Methods: In this study, CRC cell proliferation, invasion, apoptosis, and autophagy were evaluated using cellular and molecular assays. Fluorescent microscopy, and a flow cytometric assay were used to assess mitochondrial activity in vitro. A subcutaneous xenograft mouse model was used to evaluate the effects of ezetimibe in vivo. Results: We found that ezetimibe inhibited CRC cell proliferation, and migration, and facilitated autophage-associated apoptosis in HCT116 and Caco2 cells. Ezetimibe-induced mitochondrial dysfunction in CRC cells was found to be correlated with mTOR signaling activity. Discussion: Ezetimibe exhibits effects against CRC through the promotion of cancer cell death via mTOR signaling-dependent mitochondrial dysfunction, highlighting its potential value in CRC therapy.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenjuan Yang
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine, Shanghai, China
| | - Yewei Jia
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ziqi Cheng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingjing Li
- Department of Gastroenterology, Shidong Hospital, Shanghai, China
| | - Weiqi Dai
- Department of Gastroenterology, Shidong Hospital, Shanghai, China
| | - Xuanfu Xu
- Department of Gastroenterology, Shidong Hospital, Shanghai, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University, Shanghai, China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Su Z, Wang G, Li L. CHRDL1, NEFH, TAGLN and SYNM as novel diagnostic biomarkers of benign prostatic hyperplasia and prostate cancer. Cancer Biomark 2023; 38:143-159. [PMID: 37781794 DOI: 10.3233/cbm-230028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
BACKGROUND Prostate cancer (PCa) and benign prostatic hyperplasia (BPH) are common male diseases whose incidence rates gradually increase with age. They seriously affect men's physical health and quality of life. This study aimed to identify new biomarkers for the diagnosis of BPH and PCa. METHODS Two datasets, GSE28204 and GSE134051 (including human PCa and BPH), were downloaded from the GEO database. The batch effect was removed for merging, and then differential gene expression analysis was conducted to identify BPH and PCa cases. The diagnostic biomarkers of BPH and PCa were further screened using machine learning and bioinformatics. ROC curves were drawn to evaluate the diagnostic accuracy of the selected biomarkers. An online website and qPCR were used to preliminarily explore the expression levels of PCa biomarkers. The correlations between the expression of biomarkers and the tumor microenvironment, tumor mutation load and immunotherapy drugs were evaluated. RESULTS We identified fifteen genes (CHRDL1, DES, FLNC, GSTP1, MYL9, TGFB3, NEFH, TAGLN, SPARCL1, SYNM, TRPM8, HPN, PLA2G7, ENTPD5 and GPR160) as critical diagnostic biomarkers. After reviewing the literature on all selected biomarkers, we found few studies on the four genes CHRDL1, NEFH, TAGLN and SYNM in BPH or PCa. We defined these four genes as new potential diagnostic biomarkers (NPDBs) of BPH and PCa. All NPDBs were downregulated in PCa patients and PCa cell lines and upregulated in BPH patients and cell lines. When the immune landscape and mutation frequencies were analyzed, the results showed that the tumor microenvironment (TME), immune landscape, tumor mutation burden, and drug response were significantly correlated with NPDB expressions. CONCLUSIONS We found four new diagnostic markers of BPH and PCa, which may facilitate the early diagnosis, treatment, and immunotherapeutic responses assessment and may be of major value in guiding clinical practice.
Collapse
Affiliation(s)
- Zhiyong Su
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Guanghui Wang
- Department of Breast Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Leilei Li
- Department of Pathology, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
20
|
Shi C, Li Y, Wan E, Zhang E, Sun L. Construction of an lncRNA model for prognostic prediction of bladder cancer. BMC Med Genomics 2022; 15:257. [PMID: 36514150 DOI: 10.1186/s12920-022-01414-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE We aimed to investigate the role and potential mechanisms of long non-coding RNAs (lncRNAs) in bladder cancer (BC), as well as determine their prognostic value. METHODS LncRNA expression data and clinical data from BC patients were downloaded from The Cancer Genome Atlas (TCGA) database. R software was used to carry out principal component analysis (PCA), differential analysis, and prognostic analysis. Lasso regression and multivariate Cox regression analyses were performed to identify potential prognostic genes. The expression of five identified genes and their correlation with prognosis were verified using TCGA and GSE13507 datasets. In addition, quantitative real-time polymerase chain reaction (qRT-PCR) was used to confirm the expression of these five genes in cell lines (two human BC cell lines and one human bladder epithelial cell line) and tissues (84 pairs of BC tissues and the corresponding paracancerous tissues). Risk scores that had been generated from the five genes and their prognostic ability were assessed by receiver operating characteristic (ROC) and Kaplan-Meier (KM) curves. Co-expressed genes were screened by WGCNA and analyzed by GO and KEGG, while functional enrichment and immune infiltration analyses were performed using STRING ( https://cn.string-db.org/ ) and TIMER2.0 ( http://timer.cistrome.org/ ) online tools, respectively. RESULTS CYP4F8, FAR2P1, LINC01518, LINC01764, and DTNA were identified as potential prognostic genes. We found that these five genes were differentially expressed in BC tissue, as well as in BC cell lines, and were significantly correlated with the prognosis of BC patients. KM analysis considering risk scores as independent parameters revealed differences in overall survival (OS) by subgroups. The ROC curve revealed that a combined model consisting of all five genes had good predictive ability at 1, 3, and 5 years. GO and KEGG analyses of 567 co-expressed genes revealed that these genes were significantly associated with muscle function. CONCLUSION LncRNAs can be good predictors of BC development and prognosis, and may act as potential tumor markers and therapeutic targets that may be beneficial in helping clinicians decide the most effective treatment strategies.
Collapse
Affiliation(s)
- Changlong Shi
- Department of Urology, Huishan District People's Hospital, Wuxi City, Jiangsu, China
| | - Yifei Li
- Department of Urology, Huishan District People's Hospital, Wuxi City, Jiangsu, China
| | - Enming Wan
- Department of Urology, Huishan District People's Hospital, Wuxi City, Jiangsu, China
| | - Enchong Zhang
- Department of Second Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Li Sun
- Department of Breast Surgery, Huishan District People's Hospital, Wuxi City, Jiangsu, China.
| |
Collapse
|
21
|
Yang R, Liu Z, Cao H, Shi Y. LINC01089, suppressed by YY1, inhibits lung cancer progression by targeting miR-301b-3p/HPDG axis. Cell Biol Toxicol 2022; 38:1063-1077. [PMID: 34561789 DOI: 10.1007/s10565-021-09643-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 08/09/2021] [Indexed: 01/25/2023]
Abstract
PURPOSE LINC01089 is a newly identified lncRNA and rarely reported in human cancers. Our study aimed to investigate its role in lung cancer. METHODS YY1, LINC01089, and miR-301b-3p levels in lung cancer tissues and cells were assessed using qRT-PCR. Bioinformatics analysis and luciferase reporter, ChIP, and RIP assays were carried out for determining the relationships among YY1, LINC01089, miR-301b-3p, and HPGD. Gain- and loss-of-function assays were carried out to confirm the impacts of LINC01089 and HPDG in lung cancer cells. CCK-8 assay was used to assess cell proliferation rate, and Transwell assay was applied to measure cell invasion and migration. An in vivo tumor model was applied for validating the role of LINC01089. RESULTS LINC01089 was decreased in lung cancer tissues and cells, and low LINC01089 level predicted a poor clinical outcome. YY1 directly bound to LINC01089 promoter region and inhibited its transcription. LINC01089 knockdown thwarted the proliferation, invasion, and migration capacity of H1299 and A549 cells and aggravated tumor growth. Specifically, LINC01089 functioned as a competing endogenous RNA of miR-301b-3p to modulate HPGD and thereby affected lung cancer progression. CONCLUSION Our data revealed that LINC01089, directly suppressed by YY1, inhibited lung cancer progression by targeting the miR-301b-3p/HPGD axis. Graphical abstract 1. LINC01089 expression was downregulated in lung cancer tisuues and cell lines, and low LINC01089 levels predicted a poor clinical outcome. 2. LINC01089 knockdown enhanced proliferation, invasion, and migration of H1299 and A549 cells in vitro and promoted lung cancer cell tumorigenesis and metastasis in vivo. 3. LINC01089, directly suppressed by YY1, functioned as a competing endogenous RNA against miR-301b-3p to increase HPGD expression.
Collapse
Affiliation(s)
- Rusong Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanjing Medical University, No.121 Jiangjiayuan Road, Gulou District, Nanjing, Jiangsu, 210011, People's Republic of China.
| | - Zhengcheng Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanjing Medical University, No.121 Jiangjiayuan Road, Gulou District, Nanjing, Jiangsu, 210011, People's Republic of China
| | - Hui Cao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanjing Medical University, No.121 Jiangjiayuan Road, Gulou District, Nanjing, Jiangsu, 210011, People's Republic of China
| | - Ye Shi
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanjing Medical University, No.121 Jiangjiayuan Road, Gulou District, Nanjing, Jiangsu, 210011, People's Republic of China
| |
Collapse
|
22
|
Chen Y, Zhang P, Liao J, Cheng J, Zhang Q, Li T, Zhang H, Jiang Y, Zhang F, Zeng Y, Mo L, Yan H, Liu D, Zhang Q, Zou C, Wei GH, Mo Z. Single-cell transcriptomics reveals cell type diversity of human prostate. J Genet Genomics 2022; 49:1002-1015. [PMID: 35395421 DOI: 10.1016/j.jgg.2022.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/06/2022] [Accepted: 03/16/2022] [Indexed: 12/29/2022]
Abstract
Extensive studies have been performed to describe the phenotypic changes occurring during malignant transformation of the prostate. However, the cell types and associated changes that contribute to the development of prostate diseases and cancer remain elusive, largely due to the heterogeneous composition of prostatic tissues. Here, we conduct a comprehensive evaluation of four human prostate tissues by single-cell RNA sequencing (scRNA-seq) to analyze their cellular compositions. We identify 18 clusters of cell types, each with distinct gene expression profiles and unique features; of these, one cluster of epithelial cells (Ep) is found to be associated with immune function. In addition, we characterize a special cluster of fibroblasts and aberrant signaling changes associated with prostate cancer (PCa). Moreover, we provide insights into the epithelial changes that occur during the cellular senescence and aging. These results expand our understanding of the unique functional associations between the diverse prostatic cell types and the contributions of specific cell clusters to the malignant transformation of prostate tissues and PCa development.
Collapse
Affiliation(s)
- Yang Chen
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Peng Zhang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education & Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 201114, China
| | - Jinling Liao
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jiwen Cheng
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qin Zhang
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Tianyu Li
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Haiying Zhang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yonghua Jiang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Fangxing Zhang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yanyu Zeng
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Linjian Mo
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Haibiao Yan
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Deyun Liu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qinyun Zhang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chunlin Zou
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Gong-Hong Wei
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education & Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 201114, China; Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
23
|
Shahrear S, Zinnia MA, Ahmed T, Islam ABMMK. Deciphering the role of predicted miRNAs of polyomaviruses in carcinogenesis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166537. [PMID: 36089125 DOI: 10.1016/j.bbadis.2022.166537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/13/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022]
Abstract
Human polyomaviruses are relatively common in the general population. Polyomaviruses maintain a persistent infection after initial infection in childhood, acting as an opportunistic pathogen in immunocompromised populations and their association has been linked to carcinogenesis. A comprehensive understanding of the underlying molecular mechanisms of carcinogenesis in consequence of polyomavirus infection remains elusive. However, the critical role of viral miRNAs and their potential targets in modifying the transcriptome profile of the host remains largely unknown. Polyomavirus-derived miRNAs have the potential to play a substantial role in carcinogenesis. Employing computational approaches, putative viral miRNAs along with their target genes have been predicted and possible roles of the targeted genes in many significant biological processes have been obtained. Polyomaviruses have been observed to target intracellular signal transduction pathways through miRNA-mediated epigenetic regulation, which may contribute to cancer development. In addition, BKPyV-infected human renal cell microarray data was coupled with predicted target genes and analysis of the downregulated genes indicated that viruses target multiple signaling pathways (e.g. MAPK signaling pathway, PI3K-Akt signaling pathway, PPAR signaling pathway) in the host as well as turning off several tumor suppression genes (e.g. FGGY, EPHX2, CACNA2D3, CDH16) through miRNA-induced mechanisms, assuring cell transformation. This study provides a conceptual framework for the underlying molecular mechanisms involved in the course of carcinogenesis upon polyomavirus infection.
Collapse
Affiliation(s)
- Sazzad Shahrear
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | | - Tasnim Ahmed
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
24
|
Gao X, Liu Y, Li Y, Fan H, Wu R, Zhang R, Faubert B, He YY, Bissonnette MB, Xia S, Chen D, Mao H, Boggon TJ, Chen J. Lyso-PAF, a biologically inactive phospholipid, contributes to RAF1 activation. Mol Cell 2022; 82:1992-2005.e9. [PMID: 35417664 DOI: 10.1016/j.molcel.2022.03.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 02/09/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022]
Abstract
Phospholipase A2, group VII (PLA2G7) is widely recognized as a secreted, lipoprotein-associated PLA2 in plasma that converts phospholipid platelet-activating factor (PAF) to a biologically inactive product Lyso-PAF during inflammatory response. We report that intracellular PLA2G7 is selectively important for cell proliferation and tumor growth potential of melanoma cells expressing mutant NRAS, but not cells expressing BRAF V600E. Mechanistically, PLA2G7 signals through its product Lyso-PAF to contribute to RAF1 activation by mutant NRAS, which is bypassed by BRAF V600E. Intracellular Lyso-PAF promotes p21-activated kinase 2 (PAK2) activation by binding to its catalytic domain and altering ATP kinetics, while PAK2 significantly contributes to S338-phosphorylation of RAF1 in addition to PAK1. Furthermore, the PLA2G7-PAK2 axis is also required for full activation of RAF1 in cells stimulated by epidermal growth factor (EGF) or cancer cells expressing mutant KRAS. Thus, PLA2G7 and Lyso-PAF exhibit intracellular signaling functions as key elements of RAS-RAF1 signaling.
Collapse
Affiliation(s)
- Xue Gao
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA; Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| | - Yijie Liu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yuancheng Li
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hao Fan
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA; Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Rong Wu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA; Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Rukang Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA; Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Brandon Faubert
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Yu-Ying He
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Marc B Bissonnette
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Siyuan Xia
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dong Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jing Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA; Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
25
|
An advanced network pharmacology study to explore the novel molecular mechanism of Compound Kushen Injection for treating hepatocellular carcinoma by bioinformatics and experimental verification. BMC Complement Med Ther 2022; 22:54. [PMID: 35236335 PMCID: PMC8892752 DOI: 10.1186/s12906-022-03530-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Background Compound Kushen Injection (CKI) is a Chinese patent drug that exerts curative effects in the clinical treatment of hepatocellular carcinoma (HCC). This study aimed to explore the targets and potential pharmacological mechanisms of CKI in the treatment of HCC. Methods In this study, network pharmacology was used in combination with molecular biology experiments to predict and verify the molecular mechanism of CKI in the treatment of HCC. The constituents of CKI were identified by UHPLC-MS/MS and literature search. The targets corresponding to these compounds and the targets related to HCC were collected based on public databases. To screen out the potential hub targets of CKI in the treatment of HCC, a compound-HCC target network was constructed. The underlying pharmacological mechanism was explored through the subsequent enrichment analysis. Interactive Gene Expression Profiling Analysis and Kaplan-Meier plotter were used to examine the expression and prognostic value of hub genes. Furthermore, the effects of CKI on HCC were verified through molecular docking simulations and cell experiments in vitro. Results Network analysis revealed that BCHE, SRD5A2, EPHX2, ADH1C, ADH1A and CDK1 were the key targets of CKI in the treatment of HCC. Among them, only CDK1 was highly expressed in HCC tissues, while the other 5 targets were lowly expressed. Furthermore, the six hub genes were all closely related to the prognosis of HCC patients in survival analysis. Molecular docking revealed that there was an efficient binding potential between the constituents of CKI and BCHE. Experiments in vitro proved that CKI inhibited the proliferation of HepG2 cells and up-regulated SRD5A2 and ADH1A, while down-regulated CDK1 and EPHX2. Conclusions This study revealed and verified the targets of CKI on HCC based on network pharmacology and experiments and provided a scientific reference for further mechanism research. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03530-3.
Collapse
|
26
|
Establishment and clinical application of time-resolved immunofluorescence assay of lipoprotein-associated phospholipase A2. Anal Biochem 2022; 648:114674. [PMID: 35351395 DOI: 10.1016/j.ab.2022.114674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/16/2022]
|
27
|
Osakunor DNM, Ishida K, Lamanna OK, Rossi M, Dwomoh L, Hsieh MH. Host tissue proteomics reveal insights into the molecular basis of Schistosoma haematobium-induced bladder pathology. PLoS Negl Trop Dis 2022; 16:e0010176. [PMID: 35167594 PMCID: PMC8846513 DOI: 10.1371/journal.pntd.0010176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/17/2022] [Indexed: 12/25/2022] Open
Abstract
Urogenital schistosomiasis remains a major public health concern worldwide. In response to egg deposition, the host bladder undergoes gross and molecular morphological changes relevant for disease manifestation. However, limited mechanistic studies to date imply that the molecular mechanisms underlying pathology are not well-defined. We leveraged a mouse model of urogenital schistosomiasis to perform for the first time, proteome profiling of the early molecular events that occur in the bladder after exposure to S. haematobium eggs, and to elucidate the protein pathways involved in urogenital schistosomiasis-induced pathology. Purified S. haematobium eggs or control vehicle were microinjected into the bladder walls of mice. Mice were sacrificed seven days post-injection and bladder proteins isolated and processed for proteome profiling using mass spectrometry. We demonstrate that biological processes including carcinogenesis, immune and inflammatory responses, increased protein translation or turnover, oxidative stress responses, reduced cell adhesion and epithelial barrier integrity, and increased glucose metabolism were significantly enriched in S. haematobium infection. S. haematobium egg deposition in the bladder results in significant changes in proteins and pathways that play a role in pathology. Our findings highlight the potential bladder protein indicators for host-parasite interplay and provide new insights into the complex dynamics of pathology and characteristic bladder tissue changes in urogenital schistosomiasis. The findings will be relevant for development of improved interventions for disease control.
Collapse
Affiliation(s)
- Derick N. M. Osakunor
- Division of Urology, Department of Surgery, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia, United States of America
| | - Kenji Ishida
- Division of Urology, Department of Surgery, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia, United States of America
| | - Olivia K. Lamanna
- Division of Urology, Department of Surgery, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia, United States of America
| | - Mario Rossi
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Louis Dwomoh
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Michael H. Hsieh
- Division of Urology, Department of Surgery, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia, United States of America
- Departments of Urology, Department of Pediatrics, and Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, United States of America
| |
Collapse
|
28
|
Construction and validation of a metabolic gene-associated prognostic model for cervical carcinoma and the role on tumor microenvironment and immunity. Aging (Albany NY) 2021; 13:25072-25088. [PMID: 34852326 PMCID: PMC8714137 DOI: 10.18632/aging.203723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
Metabolic reprogramming is a common feature of tumor cells and is associated with tumorigenesis and progression. In this study, a metabolic gene-associated prognostic model (MGPM) was constructed using multiple bioinformatics analysis methods in cervical carcinoma (CC) tissues from The Cancer Genome Atlas (TCGA) database, which comprised fifteen differentially expressed metabolic genes (DEMGs). Patients were divided into a high-risk group with shorter overall survival (OS) and a low-risk group with better survival. Receiver operating characteristic (ROC) curve analysis showed that the MGPM precisely predicted the 1-, 3- and 5-year survival of CC patients. As expected, MGPM exhibited a favorable prognostic significance in the training and testing datasets of TCGA. And the clinicopathological parameters including stage, tumor (T) and metastasis (M) classifications had significant differences in low- and high-risk groups, which further demonstrated the MGPM had a favorite prognostic prediction ability. Additionally, patients with low-ESTMATEScore had a shorter OS and when those combined with high-risk scores presented a worse prognosis. Through “CIBERSORT” package and Wilcoxon rank-sum test, patients in the high-risk group with a poor prognosis showed lower levels of infiltration of T cell CD8 (P < 0.001), T cells memory activated (P = 0.010) and mast cells resting (P < 0.001), and higher levels of mast cells activated (P < 0.001), and we also found these patients had a worse response for immunosuppressive therapy. These findings demonstrate that MGPM accurately predicts survival outcomes in CC patients, which will be helpful for further optimizing immunotherapies for cancer by reprogramming its cell metabolism.
Collapse
|
29
|
Thomas-Jardin SE, Kanchwala MS, Dahl H, Liu V, Ahuja R, Soundharrajan R, Roos N, Diep S, Sandhu A, Xing C, Delk NA. Chronic IL-1 Exposed AR + PCa Cell Lines Show Conserved Loss of IL-1 Sensitivity and Evolve Both Conserved and Unique Differential Gene Expression Profiles. JOURNAL OF CELLULAR SIGNALING 2021; 2:248-260. [PMID: 34988553 PMCID: PMC8725614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Inflammation drives prostate cancer (PCa) progression. While inflammation is a cancer hallmark, the underlying mechanisms mediating inflammation-induced PCa are still under investigation. Interleukin-1 (IL-1) is an inflammatory cytokine that promotes cancer progression, including PCa metastasis and castration resistance. We previously found that acute IL-1 exposure represses PCa androgen receptor (AR) expression concomitant with the upregulation of pro-survival proteins, causing de novo accumulation of castration-resistant PCa cells. However, acute inflammation is primarily anti-tumorigenic, while chronic inflammation is pro-tumorigenic. Thus, using the LNCaP PCa cell line as model, we found that PCa cells can evolve insensitivity to chronic IL-1 exposure, restoring AR and AR activity and acquiring castration resistance. In this paper we expanded our chronic IL-1 model to include the MDA-PCa-2b PCa cell line to investigate the response to acute versus chronic IL-1 exposure and to compare the gene expression patterns that evolve in the LNCaP and MDA-PCa-2b cells chronically exposed to IL-1. METHODS We chronically exposed MDA-PCa-2b cells to IL-1α or IL-1β for several months to establish sublines. Once established, we determined subline sensitivity to exogenous IL-1 using cell viability assay, RT-qPCR and western blot. RNA sequencing was performed for parental and subline cells and over representation analysis (ORA) for geneset enrichment of biological process/pathway was performed. RESULTS MDA-PCa-2b cells repress AR and AR activity in response to acute IL-1 exposure and evolve insensitivity to chronic IL-1 exposure. While cell biological and molecular response to acute IL-1 signaling is primarily conserved in LNCaP and MDA-PCa-2b cells, including upregulation of NF-κB signaling and downregulation of cell proliferation, the LNCaP and MDA-PCa-2b cells evolve conserved and unique molecular responses to chronic IL-1 signaling that may promote or support tumor progression. CONCLUSIONS Our chronic IL-1 subline models can be used to identify underlying molecular mechanisms that mediate IL-1-induced PCa progression.
Collapse
Affiliation(s)
- Shayna E. Thomas-Jardin
- Biological Sciences Department, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Mohammed S. Kanchwala
- McDermott Center of Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Haley Dahl
- Biological Sciences Department, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Vivian Liu
- Biological Sciences Department, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Rohan Ahuja
- Biological Sciences Department, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Reshma Soundharrajan
- Biological Sciences Department, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Nicole Roos
- Biological Sciences Department, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Sydney Diep
- Biological Sciences Department, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Amrit Sandhu
- Biological Sciences Department, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Chao Xing
- McDermott Center of Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA,Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA,Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nikki A. Delk
- Biological Sciences Department, The University of Texas at Dallas, Richardson, TX 75080, USA,Correspondence should be addressed to Nikki A. Delk;
| |
Collapse
|
30
|
Lee B, Li JL, Marchica J, Mercola M, Patel V, Perera RJ. Mapping genetic variability in mature miRNAs and miRNA binding sites in prostate cancer. J Hum Genet 2021; 66:1127-1137. [PMID: 34099864 PMCID: PMC11849141 DOI: 10.1038/s10038-021-00934-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 01/23/2023]
Abstract
MicroRNAs (miRNAs) regulate diverse cancer hallmarks through sequence-specific regulation of gene expression, so genetic variability in their seed sequences or target sites could be responsible for cancer initiation or progression. While several efforts have been made to predict the locations of single nucleotide variants (SNVs) at miRNA target sites and associate them with cancer risk and susceptibility, there have been few direct assessments of SNVs in both mature miRNAs and their target sites to assess their impact on miRNA function in cancers. Using genome-wide target capture of miRNAs and miRNA-binding sites followed by deep sequencing in prostate cancer cell lines, here we identified prostate cancer-specific SNVs in mature miRNAs and their target binding sites. SNV rs9860655 in the mature sequence of miR-570 was not present in benign prostate hyperplasia (BPH) tissue or cell lines but was detectable in clinical prostate cancer tissue samples and adjacent normal tissue. SLC45A3 (prostein), a putative oncogene target of miR-1178, was highly upregulated in PC3 cells harboring an miR-1178 seed sequence SNV. Finally, systematic assessment of losses and gains of miRNA targets through 3'UTR SNVs revealed SNV-associated changes in target oncogene and tumor suppressor gene expression that might be associated with prostate carcinogenesis. Further work is required to systematically assess the functional effects of miRNA SNVs.
Collapse
Affiliation(s)
- Bongyong Lee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Jian-Liang Li
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - John Marchica
- Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Mark Mercola
- Department Medicine, Stanford University, Palo Alto, CA, USA
| | - Vipul Patel
- AdventHealth 410 Celebration Pl Suite 200, Kissimmee, FL, USA
| | - Ranjan J Perera
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.
| |
Collapse
|
31
|
Zheng W, Lin Q, Issah MA, Liao Z, Shen J. Identification of PLA2G7 as a novel biomarker of diffuse large B cell lymphoma. BMC Cancer 2021; 21:927. [PMID: 34404374 PMCID: PMC8369790 DOI: 10.1186/s12885-021-08660-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 08/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma is the most common form of non-Hodgkin lymphoma globally, and patients with relapsed or refractory DLBCL typically experience poor long-term outcomes. METHODS Differentially expressed genes associated with DLBCL were identified using two GEO datasets in an effort to detect novel diagnostic or prognostic biomarkers of this cancer type, after which receiver operating characteristic curve analyses were conducted. Genes associated with DLBCL patient prognosis were additionally identified via WCGNA analyses of the TCGA database. The expression of PLA2G7 in DLBCL patient clinical samples was further assessed, and the functional role of this gene in DLBCL was assessed through in vitro and bioinformatics analyses. RESULTS DLBCL-related DEGs were found to be most closely associated with immune responses, cell proliferation, and angiogenesis. WCGNA analyses revealed that PLA2G7 exhibited prognostic value in DLBCL patients, and the upregulation of this gene in DLBCL patient samples was subsequently validated. PLA2G7 was also found to be closely linked to tumor microenvironmental composition such that DLBCL patients expressing higher levels of this gene exhibited high local monocyte and gamma delta T cell levels. In vitro experiments also revealed that knocking down PLA2G7 expression was sufficient to impair the migration and proliferation of DLBCL cells while promoting their apoptotic death. Furthmore, the specific inhibitor of PLA2G7, darapladib, could noticeably restrained the DLBCL cell viability and induced apoptosis. CONCLUSIONS PLA2G7 may represent an important diagnostic, prognostic, or therapeutic biomarker in patients with DLBCL.
Collapse
Affiliation(s)
- Weili Zheng
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Fujian Provincial Key Laboratory on Hematology; Fujian Medical University Union Hospital, Fuzhou, China
| | - Qiaochu Lin
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Fujian Provincial Key Laboratory on Hematology; Fujian Medical University Union Hospital, Fuzhou, China
| | - Mohammed Awal Issah
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Fujian Provincial Key Laboratory on Hematology; Fujian Medical University Union Hospital, Fuzhou, China
| | - Ziyuan Liao
- Meng Chao Hepatobiliary Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Jianzhen Shen
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Fujian Provincial Key Laboratory on Hematology; Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
32
|
Machalz D, Pach S, Bermudez M, Bureik M, Wolber G. Structural insights into understudied human cytochrome P450 enzymes. Drug Discov Today 2021; 26:2456-2464. [PMID: 34161845 DOI: 10.1016/j.drudis.2021.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/06/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023]
Abstract
Human cytochrome P450 (CYP) enzymes are widely known for their pivotal role in the metabolism of drugs and other xenobiotics as well as of endogenous chemicals. In addition, CYPs are involved in numerous pathophysiological pathways and, hence, are therapeutically relevant. Remarkably, a portion of promising CYP targets is still understudied and, as a consequence, untargeted, despite their huge therapeutic potential. An increasing number of X-ray and cryo-electron microscopy (EM) structures for CYPs have recently provided new insights into the structural basis of CYP function and potential ligand binding. This structural knowledge of CYP functionality is essential for both understanding metabolism and exploiting understudied CYPs as drug targets. In this review, we summarize and highlight structural knowledge about this enzyme class, with a focus on understudied CYPs and resulting opportunities for structure-based drug design. Teaser: This review summarizes recent structural insights into understudied cytochrome P450 enzymes. We highlight the impact of molecular modeling for mechanistically explaining pathophysiological effects establishing understudied CYPs as promising drug targets.
Collapse
Affiliation(s)
- David Machalz
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Szymon Pach
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Marcel Bermudez
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 30072, China.
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
33
|
Khalid M, Paracha RZ, Nisar M, Malik S, Tariq S, Arshad I, Siddiqa A, Hussain Z, Ahmad J, Ali A. Long non-coding RNAs and their targets as potential biomarkers in breast cancer. IET Syst Biol 2021; 15:137-147. [PMID: 33991433 PMCID: PMC8675856 DOI: 10.1049/syb2.12020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 01/09/2023] Open
Abstract
Breast cancer is among the lethal types of cancer with a high mortality rate, globally. Its high prevalence can be controlled through improved analysis and identification of disease-specific biomarkers. Recently, long non-coding RNAs (lncRNAs) have been reported as key contributors of carcinogenesis and regulate various cellular pathways through post-transcriptional regulatory mechanisms. The specific aim of this study was to identify the novel interactions of aberrantly expressed genetic components in breast cancer by applying integrative analysis of publicly available expression profiles of both lncRNAs and mRNAs. Differential expression patterns were identified by comparing the breast cancer expression profiles of samples with controls. Significant co-expression networks were identified through WGCNA analysis. WGCNA is a systems biology approach used to elucidate the pattern of correlation between genes across microarray samples. It is also used to identify the highly correlated modules. The results obtained from this study revealed significantly differentially expressed and co-expressed lncRNAs and their cis- and trans-regulating mRNA targets which include RP11-108F13.2 targeting TAF5L, RPL23AP2 targeting CYP4F3, CYP4F8 and AL022324.2 targeting LRP5L, AL022324.3, and Z99916.3, respectively. Moreover, pathway analysis revealed the involvement of identified mRNAs and lncRNAs in major cell signalling pathways, and target mRNAs expression is also validated through cohort data. Thus, the identified lncRNAs and their target mRNAs represent novel biomarkers that could serve as potential therapeutics for breast cancer and their roles could also be further validated through wet labs to employ them as potential therapeutic targets in future.
Collapse
Affiliation(s)
- Maryam Khalid
- Research Centre for Modeling and Simulation - RCMS, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rehan Zafar Paracha
- Research Centre for Modeling and Simulation - RCMS, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Maryum Nisar
- Research Centre for Modeling and Simulation - RCMS, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Sumaira Malik
- Research Centre for Modeling and Simulation - RCMS, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Salma Tariq
- Research Centre for Modeling and Simulation - RCMS, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Iqra Arshad
- Research Centre for Modeling and Simulation - RCMS, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Amnah Siddiqa
- The Jackson Laboratory for Genomic Medicine, Connecticut, USA
| | - Zamir Hussain
- Research Centre for Modeling and Simulation - RCMS, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Jamil Ahmad
- Department of Computer Science and Information Technology, University of Malakand, Chakdara, Pakistan
| | - Amjad Ali
- Atta-ur-Rahman School of Applied Biosciences - ASAB, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
34
|
Hou Y, Hu J, Zhou L, Liu L, Chen K, Yang X. Integrative Analysis of Methylation and Copy Number Variations of Prostate Adenocarcinoma Based on Weighted Gene Co-expression Network Analysis. Front Oncol 2021; 11:647253. [PMID: 33869043 PMCID: PMC8047072 DOI: 10.3389/fonc.2021.647253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/12/2021] [Indexed: 12/27/2022] Open
Abstract
Prostate adenocarcinoma (PRAD) is the most pervasive carcinoma diagnosed in men with over 170,000 new cases every year in the United States and is the second leading cause of death from cancer in men despite its indolent clinical course. Prostate-specific antigen testing, which is the most commonly used non-invasive diagnostic method for PRAD, has improved early detection rates in the past decade, but its effectiveness for monitoring disease progression and predicting prognosis is controversial. To identify novel biomarkers for these purposes, we carried out weighted gene co-expression network analysis of the top 10,000 variant genes in PRAD from The Cancer Genome Atlas in order to identify gene modules associated with clinical outcomes. Methylation and copy number variation analysis were performed to screen aberrantly expressed genes, and the Kaplan-Meier survival and gene set enrichment analyses were conducted to evaluate the prognostic value and potential mechanisms of the identified genes. Cyclin E2 (CCNE2), rhophilin Rho GTPase-binding protein (RHPN1), enhancer of zeste homolog 2 (EZH2), tonsoku-like DNA repair protein (TONSL), epoxide hydrolase 2 (EPHX2), fibromodulin (FMOD), and solute carrier family 7 member (SLC7A4) were identified as potential prognostic indicators and possible therapeutic targets as well. These findings can improve diagnosis and disease monitoring to achieve better clinical outcomes in PRAD.
Collapse
Affiliation(s)
- Yaxin Hou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| | - Junyi Hu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| | - Lijie Zhou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| | - Lilong Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| | - Xiong Yang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Lp-PLA2, a potential protector of lung cancer patients complicated with pleural effusion from lung diseases, proves effective for the diagnosis and pathological classification of lung cancer. Transl Oncol 2021; 14:101030. [PMID: 33550206 PMCID: PMC7868612 DOI: 10.1016/j.tranon.2021.101030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 11/24/2022] Open
Abstract
Abnormal lipid metabolism plays a crucial role in cancers, but few studies have investigated the relationship between lipoprotein-associated phospholipase A2 (Lp-PLA2) and lung cancer. In this study, 58 benign lung disease (LB) and 57 lung cancer (LC) patients complicated with pleural effusion (PE) were included, and their fasting serum and PE samples were collected. Results showed that serum Lp-PLA2 in the LC group was lower than that in the LB group, and other serum lipids were higher (P < 0.05). Tumor markers from serum and the PE samples of LC patients were higher than those in the LB group (P < 0.05). Serum prealbumin (PA) in LC patients was higher than that in the LB group, and serum C-reactive protein (CRP) and procalcitonin (PCT) were lower (P < 0.05). In the LC group, serum Lp-PLA2 concentration was positively correlated with serum triglyceride (TG), Lp (a), carbohydrate antigen 199 (CA199), nutritional markers, and Lp-PLA2 in PE and negatively correlated with serum high-density lipoprotein cholesterol (HDLC), Apolipoprotein A1 (APOA1), CRP, PCT, and alpha fetoprotein (AFP) and LDH in PE. The ROC curve showed that the cutoff level of serum Lp-PLA2 for diagnosing LC was 226.685 (U/L) (sensitivity: 0.632, specificity: 0.793), while the C-index of the nomogram model combined with serum Lp-PLA2, age, and gender was 0.750. In LC patients, the higher serum Lp-PLA2 indicated higher probability of adenocarcinoma and lower probability of squamous cell carcinoma (SCC). In conclusion, Lp-PLA2 may be a protective factor of lung cancer among lung disease patients complicated with pleural effusion, and it would facilitate the diagnosis and pathological classification of lung cancer.
Collapse
|
36
|
Liu MS, Zhao H, Xu CX, Xie PB, Wang W, Yang YY, Lee WH, Jin Y, Zhou HQ. Clinical significance of EPHX2 deregulation in prostate cancer. Asian J Androl 2021; 23:109-115. [PMID: 32687069 PMCID: PMC7831821 DOI: 10.4103/aja.aja_34_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The arachidonic acid (AA) metabolic pathway participates in various physiological processes as well as in the development of malignancies. We analyzed genomic alterations in AA metabolic enzymes in the Cancer Genome Atlas (TCGA) prostate cancer (PCa) dataset and found that the gene encoding soluble epoxide hydrolase (EPHX2) is frequently deleted in PCa. EPHX2 mRNA and protein expression in PCa was examined in multiple datasets by differential gene expression analysis and in a tissue microarray by immunohistochemistry. The expression data were analyzed in conjunction with clinicopathological variables. Both the mRNA and protein expression levels of EPHX2 were significantly decreased in tumors compared with normal prostate tissues and were inversely correlated with the Gleason grade and disease-free survival time. Furthermore, EPHX2 mRNA expression was significantly decreased in metastatic and recurrent PCa compared with localized and primary PCa, respectively. In addition, EPHX2 protein expression correlated negatively with Ki67 expression. In conclusion, EPHX2 deregulation is significantly correlated with the clinical characteristics of PCa progression and may serve as a prognostic marker for PCa.
Collapse
Affiliation(s)
- Ming-Sheng Liu
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing 655000, China
| | - Hui Zhao
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming 650332, China
| | - Chen-Xiang Xu
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing 655000, China
| | - Ping-Bo Xie
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing 655000, China
| | - Wei Wang
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing 655000, China
| | - Ying-Yu Yang
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing 655000, China
| | - Wen-Hui Lee
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing 655000, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yang Jin
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo 0379, Norway
| | - Hong-Qing Zhou
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing 655000, China
| |
Collapse
|
37
|
Increased prostaglandin-D2 in male STAT3-deficient hearts shifts cardiac progenitor cells from endothelial to white adipocyte differentiation. PLoS Biol 2020; 18:e3000739. [PMID: 33370269 PMCID: PMC7793290 DOI: 10.1371/journal.pbio.3000739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 01/08/2021] [Accepted: 12/03/2020] [Indexed: 11/19/2022] Open
Abstract
Cardiac levels of the signal transducer and activator of transcription factor-3 (STAT3) decline with age, and male but not female mice with a cardiomyocyte-specific STAT3 deficiency conditional knockout (CKO) display premature age-related heart failure associated with reduced cardiac capillary density. In the present study, isolated male and female CKO-cardiomyocytes exhibit increased prostaglandin (PG)-generating cyclooxygenase-2 (COX-2) expression. The PG-degrading hydroxyprostaglandin-dehydrogenase-15 (HPGD) expression is only reduced in male cardiomyocytes, which is associated with increased prostaglandin D2 (PGD2) secretion from isolated male but not female CKO-cardiomyocytes. Reduced HPGD expression in male cardiomyocytes derive from impaired androgen receptor (AR)–signaling due to loss of its cofactor STAT3. Elevated PGD2 secretion in males is associated with increased white adipocyte accumulation in aged male but not female hearts. Adipocyte differentiation is enhanced in isolated stem cell antigen-1 (SCA-1)+ cardiac progenitor cells (CPC) from young male CKO-mice compared with the adipocyte differentiation of male wild-type (WT)-CPC and CPC isolated from female mice. Epigenetic analysis in freshly isolated male CKO-CPC display hypermethylation in pro-angiogenic genes (Fgfr2, Epas1) and hypomethylation in the white adipocyte differentiation gene Zfp423 associated with up-regulated ZFP423 expression and a shift from endothelial to white adipocyte differentiation compared with WT-CPC. The expression of the histone-methyltransferase EZH2 is reduced in male CKO-CPC compared with male WT-CPC, whereas no differences in the EZH2 expression in female CPC were observed. Clonally expanded CPC can differentiate into endothelial cells or into adipocytes depending on the differentiation conditions. ZFP423 overexpression is sufficient to induce white adipocyte differentiation of clonal CPC. In isolated WT-CPC, PGD2 stimulation reduces the expression of EZH2, thereby up-regulating ZFP423 expression and promoting white adipocyte differentiation. The treatment of young male CKO mice with the COX inhibitor Ibuprofen or the PGD2 receptor (DP)2 receptor antagonist BAY-u 3405 in vivo increased EZH2 expression and reduced ZFP423 expression and adipocyte differentiation in CKO-CPC. Thus, cardiomyocyte STAT3 deficiency leads to age-related and sex-specific cardiac remodeling and failure in part due to sex-specific alterations in PGD2 secretion and subsequent epigenetic impairment of the differentiation potential of CPC. Causally involved is the impaired AR signaling in absence of STAT3, which reduces the expression of the PG-degrading enzyme HPGD. Impaired androgen-receptor-signaling due to STAT3-deficiency promotes increased prostaglandin-D2-secretion from male but not female cardiomyocytes; this induces an epigenetic switch in cardiac progenitor cells from endothelial to white adipocyte differentiation, associated with reduced cardiac capillary density, increased cardiac white fat deposits and heart failure in aged male but not female mice.
Collapse
|
38
|
Wu X, Lv D, Eftekhar M, Khan A, Cai C, Zhao Z, Gu D, Liu Y. A new risk stratification system of prostate cancer to identify high-risk biochemical recurrence patients. Transl Androl Urol 2020; 9:2572-2586. [PMID: 33457230 PMCID: PMC7807327 DOI: 10.21037/tau-20-1019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Biochemical recurrence (BCR) is considered a decisive risk factor for clinical recurrence and the metastasis of prostate cancer (PCa). Therefore, we developed and validated a signature which could be used to accurately predict BCR risk and aid in the selection of PCa treatments. Methods A comprehensive genome-wide analysis of data concerning PCa from previous datasets of the Cancer Genome Atlas (TCGA) and the gene expression omnibus (GEO) was performed. Lasso and Cox regression analyses were performed to develop and validate a novel signature to help predict BCR risk. Moreover, a nomogram was constructed by combining the signature and clinical variables. Results A total of 977 patients were involved in the study. This consisted of patients from the TCGA (n=405), GSE21034 (n=131), GSE70770 (n=193) and GSE116918 (n=248) datasets. A 9-mRNA signature was identified in the TCGA dataset (composed of C9orf152, EPHX2, ASPM, MMP11, CENPF, KIF4A, COL1A1, ASPN, and FANCI) which was significantly associated with BCR (HR =3.72, 95% CI: 2.30-6.00, P<0.0001). This signature was validated in the GSE21034 (HR =7.54, 95% CI: 3.15-18.06, P=0.019), GSE70770 (HR =2.52, 95% CI: 1.50-4.22, P=0.0025) and GSE116918 datasets (HR =4.75, 95% CI: 2.51-9.02, P=0.0035). Multivariate Cox regression and stratified analysis showed that the 9-mRNA signature was a clinical factor independent of prostate-specific antigen (PSA), Gleason score (GS), or AJCC T staging. The mean AUC for 5-year BCR-free survival predictions of the 9-mRNA signature (0.81) was higher than the AUC for PSA, GS, or AJCC T staging (0.52-0.73). Furthermore, we combined the 9-mRNA signature with PSA, GS, or AJCC T staging and demonstrated that this could enhance prognostic accuracy. Conclusions The proposed 9-mRNA signature is a promising biomarker for predicting BCR-free survival in PCa. However, further controlled trials are needed to validate our results and explore a role in individualized management of PCa.
Collapse
Affiliation(s)
- Xiangkun Wu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, China
| | - Daojun Lv
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, China
| | - Md Eftekhar
- Department of Family Medicine, CanAm International Medical Center, Shenzhen, China
| | - Aisha Khan
- Department of Family Medicine, Yunshan Medical Hospital, Shenzhen, China
| | - Chao Cai
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, China
| | - Zhijian Zhao
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, China
| | - Di Gu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, China
| | - Yongda Liu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, China
| |
Collapse
|
39
|
Transcriptome-wide analysis and modelling of prognostic alternative splicing signatures in invasive breast cancer: a prospective clinical study. Sci Rep 2020; 10:16504. [PMID: 33020551 PMCID: PMC7536242 DOI: 10.1038/s41598-020-73700-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Aberrant alternative splicing (AS) has been highly involved in the tumorigenesis and progression of most cancers. The potential role of AS in invasive breast cancer (IBC) remains largely unknown. In this study, RNA sequencing of IBC samples from The Cancer Genome Atlas was acquired. AS events were screened by conducting univariate and multivariate Cox analysis and least absolute shrinkage and selection operator regression. In total, 2146 survival-related AS events were identified from 1551 parental genes, of which 93 were related to prognosis, and a prognostic marker model containing 14 AS events was constructed. We also constructed the regulatory network of splicing factors (SFs) and AS events, and identified DDX39B as the node SF gene, and verified the accuracy of the network through experiments. Next, we performed quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) in triple negative breast cancer patients with different responses to neoadjuvant chemotherapy, and found that the exon-specific expression of EPHX2, C6orf141, and HERC4 was associated with the different status of patients that received neoadjuvant chemotherapy. In conclusion, this study found that DDX39B, EPHX2 (exo7), and HERC4 (exo23) can be used as potential targets for the treatment of breast cancer, which provides a new idea for the treatment of breast cancer.
Collapse
|
40
|
Wang YJ, Chang SB, Wang CY, Huang HT, Tzeng SF. The selective lipoprotein-associated phospholipase A2 inhibitor darapladib triggers irreversible actions on glioma cell apoptosis and mitochondrial dysfunction. Toxicol Appl Pharmacol 2020; 402:115133. [DOI: 10.1016/j.taap.2020.115133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/20/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022]
|
41
|
Screening and identification of potential prognostic biomarkers in bladder urothelial carcinoma: Evidence from bioinformatics analysis. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Copy number alterations are associated with metastatic-lethal progression in prostate cancer. Prostate Cancer Prostatic Dis 2020; 23:494-506. [PMID: 32071439 DOI: 10.1038/s41391-020-0212-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUNDS Aside from Gleason score few factors accurately identify the subset of prostate cancer (PCa) patients at high risk for metastatic progression. We hypothesized that copy number alterations (CNAs), assessed using CpG methylation probes on Illumina Infinium® Human Methylation450 (HM450K) BeadChip arrays, could identify primary prostate tumors with potential to develop metastatic progression. METHODS Epigenome-wide DNA methylation profiling was performed in surgically resected primary tumor tissues from two cohorts of PCa patients with clinically localized disease who underwent radical prostatectomy (RP) as primary therapy and were followed prospectively for at least 5 years: (1) a Fred Hutchinson (FH) Cancer Research Center-based cohort (n = 323 patients); and (2) an Eastern Virginia (EV) Medical School-based cohort (n = 78 patients). CNAs were identified using the R package ChAMP. Metastasis was confirmed by positive bone scan, MRI, CT or biopsy, and death certificates confirmed cause of death. RESULTS We detected 15 recurrent CNAs were associated with metastasis in the FH cohort and replicated in the EV cohort (p < 0.05) without adjusting for Gleason score in the model. Eleven of the recurrent CNAs were associated with metastatic progression in the FH cohort and validated in the EV cohort (p < 0.05) when adjusting for Gleason score. CONCLUSIONS This study shows that CNAs can be reliably detected from HM450K-based DNA methylation data. There are 11 recurrent CNAs showing association with metastatic-lethal events following RP and improving prediction over Gleason score. Genes affected by these CNAs may functionally relate to tumor aggressiveness and metastatic progression.
Collapse
|
43
|
Zhang E, Hou X, Hou B, Zhang M, Song Y. A risk prediction model of DNA methylation improves prognosis evaluation and indicates gene targets in prostate cancer. Epigenomics 2020; 12:333-352. [PMID: 32027524 DOI: 10.2217/epi-2019-0349] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: Prostate cancer (PCa) is the most common malignancy found in males worldwide. Although it is mostly indolent, PCa still poses a serious threat to long-term health. Materials & methods: The Cancer Genome Atlas data were randomly divided into training and validation groups. Least absolute shrinkage and selection operator regression on DNA methylation data in the training group was conducted to build the model, which was validated in the validation group. Weighted correlation network analysis was conducted on RNA-seq data to identify the therapy target. Functional validation (western blot, quantitative real-time PCR, cell transfection, Cell Counting Kit-8 assay, colony formation assay, wound healing assay and transwell invasion assay) for the target was conducted. Results: The model is an independent predictor of prognosis. The knockdown of FOXD1 inhibits cell proliferation, migration and invasion of PCa. Conclusion: The risk of patients could be evaluated by the model, which revealed that FOXD1 might promote poor prognosis.
Collapse
Affiliation(s)
- Enchong Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China.,School of Postgraduate, China Medical University, Shenyang 110122, Liaoning, People's Republic of China
| | - Xueying Hou
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, People's Republic of China.,School of Postgraduate, China Medical University, Shenyang 110122, Liaoning, People's Republic of China
| | - Baoxian Hou
- Department of Orthopedic Surgery, Shenyang Orthopaedics Hospital, Shenyang 110044, Liaoning, People's Republic of China
| | - Mo Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Yongsheng Song
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| |
Collapse
|
44
|
Li J, Luo J, Zhang Y, Tang C, Wang J, Chen C. Silencing of soluble epoxide hydrolase 2 gene reduces H 2O 2-induced oxidative damage in rat intestinal epithelial IEC-6 cells via activating PI3K/Akt/GSK3β signaling pathway. Cytotechnology 2020; 72:23-36. [PMID: 31907700 PMCID: PMC7002799 DOI: 10.1007/s10616-019-00354-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/03/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress plays a vital role in the occurrence and development of intestinal injury. Soluble epoxide hydrolase 2 gene (EPHX2) is a class of hydrolytic enzymes. We aim to explore the effects and molecular mechanism of siEPHX2 on H2O2-induced oxidative damage in rat intestinal epithelial IEC-6 cells. IEC-6 cells were transfected with EPHX2-siRNA and control si RNA plasmids by lipofectamine™ 2000 transfection reagent. The transfected samples were treated with H2O2 (50, 100, 200, 300, 400, and 500 µmol/L) for 12, 24, and 48 h, respectively. Cell viability was determined by cell counting kit-8 (CCK-8). Lactate dehydrogenase (LDH), malondialdehyde (MDA), and superoxide dismutase (SOD) were assessed by respective detection kits. Mitochondrial membrane potential (MMP), cell apoptosis and reactive oxygen species (ROS) and the levels of factors were determined by flow cytometer, quantitative real-time PCR (qRT-PCR) and western blot assays, respectively. We found that the IC50 of H2O2 was 200 µmol/L at 24 h, and the transfection of siEHPX2 in H2O2-induced IEC-6 cells significantly promoted the cell viability, SOD activity and MMP rate, and reduced the rates of ROS and apoptosis as well as LDH and MDA contents. siEHPX2 up-regulated the B-cell lymphoma-2 (Bcl-2) level and down-regulated the levels of fibroblast-associated (Fas), Fas ligand (Fasl), Bcl-2 associated X protein (Bax), and Caspase-3. Moreover, the phosphorylation levels of phosphoinositide 3 kinase (PI3K), protein kinase B (Akt), and glycogen synthase kinase3β (GSK3β) were up-regulated. We proved that siEPHX2 had a protective effect on H2O2-induced oxidative damage in IEC-6 cells through activating PI3K/Akt/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Jun Li
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital, No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan, China
| | - Jihui Luo
- Department of Surgical Oncology, Chenzhou No.1 People's Hospital, Chenzhou, China
| | - Yang Zhang
- Department of Burn Plastic Surgery, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Chunming Tang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Jiang Wang
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital, No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan, China
| | - Chaowu Chen
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital, No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan, China.
| |
Collapse
|
45
|
Maksymchuk O, Kashuba V. Dietary lipids and environmental xenobiotics as risk factors for prostate cancer: The role of cytochrome P450. Pharmacol Rep 2019; 71:826-832. [PMID: 31382168 DOI: 10.1016/j.pharep.2019.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/08/2019] [Accepted: 04/13/2019] [Indexed: 01/31/2023]
Abstract
Prostate cancer is one of the most common malignant neoplasms in men. Because of the increase in the number of cases as well as development of cancers resistant to conventional therapy, identification of the new molecular targets for the treatment and prevention is of great importance. For this purpose, many studies are aimed on revealing of molecular mechanisms of prostate cancer development. In this process, dietary lipids and environmental xenobiotics are largely involved and are considered as risk factors. A wide range of endogenous (cholesterol, polyunsaturated fatty acids, etc.) and exogenous (pollutants, drugs) compounds are metabolized in the human organism by cytochrome P450. From other hand, these compounds may alter cytochrome P450 expression levels, especially in prostate, which, in turn, affects cell metabolism. Cytochrome P450 is a member of signaling pathways, regulating cell cycle, apoptosis, invasion and adhesion. Hence, cytochrome P450 most probably plays the important role in initiation and progression of prostate cancer. Based on that, cytochrome P450 enzymes are considered as potential targets for the targeted therapy and prevention, and might serve as specific markers of malignant growth.
Collapse
Affiliation(s)
- Oksana Maksymchuk
- Department of Molecular Oncogenetics, Institute of Molecular Biology and Genetics NAS Ukraine, Kyiv, Ukraine.
| | - Vladimir Kashuba
- Department of Molecular Oncogenetics, Institute of Molecular Biology and Genetics NAS Ukraine, Kyiv, Ukraine; Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
46
|
Guo C, Xu LF, Li HM, Wang W, Guo JH, Jia MQ, Jia R, Jia J. Transcriptomic study of the mechanism of anoikis resistance in head and neck squamous carcinoma. PeerJ 2019; 7:e6978. [PMID: 31198634 PMCID: PMC6535219 DOI: 10.7717/peerj.6978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/15/2019] [Indexed: 12/18/2022] Open
Abstract
Background Normal epithelial cells rapidly undergo apoptosis as soon as they lose contact with the extracellular matrix (ECM), which is termed as anoikis. However, cancer cells tend to develop a resistance mechanism to anoikis. This acquired ability is termed as anoikis resistance. Cancer cells, with anoikis resistance, can spread to distant tissues or organs via the peripheral circulatory system and cause cancer metastasis. Thus, inhibition of anoikis resistance blocks the metastatic ability of cancer cells. Methods Anoikis-resistant CAL27 (CAL27AR) cells were induced from CAL27 cells using the suspension culture approach. Transcriptome analysis was performed using RNA-Seq to study the differentially expressed genes (DEGs) between the CAL27ARcells and the parental CAL27 cells. Gene function annotation and Gene Ontology (GO) enrichment analysis were performed using DAVID database. Signaling pathways involved in DEGs were analyzed using Gene Set Enrichment Analysis (GSEA) software. Analysis results were confirmed by reverse transcription PCR (RT-PCR), western blotting, and gene correlation analysis based on the TCGA database. Results GO enrichment analysis indicated that the biological process (BP) of the DEGs was associated with epidermal development, DNA replication, and G1/S transition of the mitotic cell cycle. The analysis of cellular component (CC) showed that the most significant up-regulated genes were related to extracellular exosome. KEGG Pathway analysis revealed that 23 signaling pathways were activated (p-value ≤ 0.05, FDR q-value ≤ 0.05) and 22 signaling pathways were suppressed (p-value ≤ 0.05, FDR q-value ≤ 0.05). The results from the GSEA indicated that in contrast to the inhibition of EGFR signaling pathway, the VEGF signaling pathway was activated. The VEGF signaling pathway possibly activates STAT3 though induction of STAT3 phosphorylation. Gene correlation analysis revealed that the VEGFA- STAT3-KLF4-CDKN1A signal axis was not only present in head and neck squamous carcinoma (HNSCC) but also two other epithelial-derived carcinomas that highly express VEGFA, including kidney renal clear cell carcinoma (KIRC) and ovarian serous cystadenocarcinoma (OV).
Collapse
Affiliation(s)
- Chen Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| | - Ling-Feng Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| | - Hui-Min Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| | - Wei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| | - Ji-Hua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| | - Meng-Qi Jia
- Department of Oral and Maxillofacial Surgery, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| | - Jun Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China.,Department of Oral and Maxillofacial Surgery, Wuhan University, School and Hospital of Stomatology, Wuhan, Hubei, China
| |
Collapse
|
47
|
Huang F, Wang K, Shen J. Lipoprotein-associated phospholipase A2: The story continues. Med Res Rev 2019; 40:79-134. [PMID: 31140638 PMCID: PMC6973114 DOI: 10.1002/med.21597] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022]
Abstract
Inflammation is thought to play an important role in the pathogenesis of vascular diseases. Lipoprotein-associated phospholipase A2 (Lp-PLA2) mediates vascular inflammation through the regulation of lipid metabolism in blood, thus, it has been extensively investigated to identify its role in vascular inflammation-related diseases, mainly atherosclerosis. Although darapladib, the most advanced Lp-PLA2 inhibitor, failed to meet the primary endpoints of two large phase III trials in atherosclerosis patients cotreated with standard medical care, the research on Lp-PLA2 has not been terminated. Novel pathogenic, epidemiologic, genetic, and crystallographic studies regarding Lp-PLA2 have been reported recently, while novel inhibitors were identified through a fragment-based lead discovery strategy. More strikingly, recent clinical and preclinical studies revealed that Lp-PLA2 inhibition showed promising therapeutic effects in diabetic macular edema and Alzheimer's disease. In this review, we not only summarized the knowledge of Lp-PLA2 established in the past decades but also emphasized new findings in recent years. We hope this review could be valuable for helping researchers acquire a much deeper insight into the nature of Lp-PLA2, identify more potent and selective Lp-PLA2 inhibitors, and discover the potential indications of Lp-PLA2 inhibitors.
Collapse
Affiliation(s)
- Fubao Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Kai Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
| | - Jianhua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
48
|
Liu J, Nie S, Gao M, Jiang Y, Wan Y, Ma X, Zhou S, Cheng W. Identification of EPHX2 and RMI2 as two novel key genes in cervical squamous cell carcinoma by an integrated bioinformatic analysis. J Cell Physiol 2019; 234:21260-21273. [PMID: 31041817 DOI: 10.1002/jcp.28731] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/27/2022]
Abstract
Cervical cancer is the fourth most common malignancy in women worldwide and cervical squamous cell carcinoma (CESC) is the most common histological type of cervical cancer. The dysregulation of genes plays a significant role in cancer. In the present study, we screened out differentially expressed genes (DEGs) of CESC in the GSE63514 data set from the Gene Expression Omnibus database. An integrated bioinformatics analysis was used to select hub genes, as well as to investigate their related prognostic signature, functional annotation, methylation mechanism, and candidate molecular drugs. As a result, a total of 1907 DEGs were identified (944 were upregulated and 963 were downregulated). In the protein-protein interaction network, three hub modules and 30 hub genes were identified. And two hub modules and 116 hub genes were screened out from four CESC-related modules by the weighted gene coexpression network analysis. The gene ontology term enrichment analysis and Kyoto encyclopedia of genes and genomes pathway analysis were performed to better understand functions and pathways. Genes with a significant prognostic value were found by prognostic signature analysis. And there were five genes (EPHX2, CHAF1B, KIAA1524, CDC45, and RMI2) identified as significant CESC-associated genes after expression validation and survival analysis. Among them, EPHX2 and RMI2 were noted as two novel key genes for the CESC-associated methylation and expression. In addition, four candidate small molecule drugs for CESC (camptothecin, resveratrol, vorinostat, and trichostatin A) were defined. Further studies are required to explore these significant CESC-associated genes for their potentiality in diagnosis, prognosis, and targeted therapy.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sipei Nie
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mei Gao
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yicong Wan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoling Ma
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shulin Zhou
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
49
|
Yang X, Huang WT, Wu HY, He RQ, Ma J, Liu AG, Chen G. Novel drug candidate for the treatment of several soft‑tissue sarcoma histologic subtypes: A computational method using survival‑associated gene signatures for drug repurposing. Oncol Rep 2019; 41:2241-2253. [PMID: 30816547 PMCID: PMC6412453 DOI: 10.3892/or.2019.7033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
Systemic treatment options for soft tissue sarcomas (STSs) have remained unchanged despite the need for novel drug candidates to improve STS outcomes. Drug repurposing involves the application of clinical drugs to different diseases, reducing development time, and cost. It has also become a fast and effective way to identify drug candidates. The present study used a computational method to screen three drug-gene interaction databases for novel drug candidates for the treatment of several common STS histologic subtypes through drug repurposing. STS survival-associated genes were generated by conducting a univariate cox regression analysis using The Cancer Genome Atlas survival data. These genes were then applied to three databases (the Connectivity Map, the Drug Gene Interaction Database and the L1000 Fireworks Display) to identify drug candidates for STS treatment. Additionally, pathway analysis and molecular docking were conducted to evaluate the molecular mechanisms of the candidate drug. Bepridil was identified as a potential candidate for several STS histologic subtype treatments by overlapping the screening results from three drug-gene interaction databases. The pathway analysis with the Kyoto Encyclopedia of Genes and Genomes predicted that Bepridil may target CRK, fibroblast growth factor receptor 4 (FGFR4), laminin subunit β1 (LAMB1), phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2), WNT5A, cluster of differentiation 47 (CD47), elastase, neutrophil expressed (ELANE), 15-hydroxyprostaglandin dehydrogenase (HPGD) and protein kinase cβ (PRKCB) to suppress STS development. Further molecular docking simulation suggested a relatively stable binding selectivity between Bepridil and eight proteins (CRK, FGFR4, LAMB1, PIK3R2, CD47, ELANE, HPGD, and PRKCB). In conclusion, a computational method was used to identify Bepridil as a potential candidate for the treatment of several common STS histologic subtypes. Experimental validation of these in silico results is necessary before clinical translation can occur.
Collapse
Affiliation(s)
- Xia Yang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wen-Ting Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hua-Yu Wu
- Department of Cell Biology and Genetics, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - An-Gui Liu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
50
|
Jahagirdar S, Suarez-Diez M, Saccenti E. Simulation and Reconstruction of Metabolite-Metabolite Association Networks Using a Metabolic Dynamic Model and Correlation Based Algorithms. J Proteome Res 2019; 18:1099-1113. [PMID: 30663881 DOI: 10.1021/acs.jproteome.8b00781] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biological networks play a paramount role in our understanding of complex biological phenomena, and metabolite-metabolite association networks are now commonly used in metabolomics applications. In this study we evaluate the performance of several network inference algorithms (PCLRC, MRNET, GENIE3, TIGRESS, and modifications of the MRNET algorithm, together with standard Pearson's and Spearman's correlation) using as a test case data generated using a dynamic metabolic model describing the metabolism of arachidonic acid (consisting of 83 metabolites and 131 reactions) and simulation individual metabolic profiles of 550 subjects. The quality of the reconstructed metabolite-metabolite association networks was assessed against the original metabolic network taking into account different degrees of association among the metabolites and different sample sizes and noise levels. We found that inference algorithms based on resampling and bootstrapping perform better when correlations are used as indexes to measure the strength of metabolite-metabolite associations. We also advocate for the use of data generated using dynamic models to test the performance of algorithms for network inference since they produce correlation patterns that are more similar to those observed in real metabolomics data.
Collapse
Affiliation(s)
- Sanjeevan Jahagirdar
- Laboratory of Systems and Synthetic Biology , Wageningen University & Research , Stippeneng 4 , 6708WE Wageningen , The Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology , Wageningen University & Research , Stippeneng 4 , 6708WE Wageningen , The Netherlands
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology , Wageningen University & Research , Stippeneng 4 , 6708WE Wageningen , The Netherlands
| |
Collapse
|