1
|
Zhao M, Li J, Wang R, Mi L, Gu Y, Chen R, Li Y, Shi W, Zhang Y. Ubiquitination-Binding Enzyme 2C is Associated with Cancer Development and Prognosis and is a Potential Therapeutic Target. Onco Targets Ther 2024; 17:1159-1171. [PMID: 39678016 PMCID: PMC11637980 DOI: 10.2147/ott.s485053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024] Open
Abstract
UBE2C (Ubiquitination-binding enzyme 2C), one of the E2 enzymes encoded in the human genome, is a component of the ubiquitin proteasome system and plays a pivotal role in regulating cell cycle progression. Moreover, UBE2C is highly expressed and may play a pivotal role in both high-incidence and high-mortality malignancies, including lung cancers, breast cancers, and esophageal cancers. UBE2C influences a number of key processes, including cell cycle progression, tumor invasion and metastasis, proliferation, and drug resistance. However, few articles have systematically summarized the role of UBE2C in cancer. The aim of this review is to describe the structure and function of UBE2C, focusing on the current status of UBE2C research in malignant tumors. Furthermore, this review presents the potential of UBE2C as a new therapeutic target and a diagnostic and prognostic biomarker. Finally, future research directions for UBE2C are proposed. It is of great value to explore the mechanism of action of UBE2C in the tumor microenvironment (TME). A comprehensive and coherent comprehension of UBE2C will undoubtedly facilitate its transition from fundamental research to clinical applications.
Collapse
Affiliation(s)
- Mengjie Zhao
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Jielong Li
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Rui Wang
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Lida Mi
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Yan Gu
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Rongjin Chen
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
| | - Yangyang Li
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Woda Shi
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Yajun Zhang
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| |
Collapse
|
2
|
Naderi Boldaji M, Shahbazi S, Reiisi S, Ahmadi K, Mahdevar M. Construction of a cell cycle-specific lncRNA-miRNA-mRNA network reveals novel key lncRNAs in colorectal cancer. Biomarkers 2024; 29:565-576. [PMID: 39552597 DOI: 10.1080/1354750x.2024.2431015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
OBJECTIVE The current study aimed to determine the roles of pivotal and novel lncRNAs associated with the cell cycle in the occurrence and development of Colorectal cancer (CRC). METHODS The TCGA-COAD project related to CRC was downloaded, and differential expression analysis was performed to identify differentially expressed lncRNAs, miRNAs, and mRNAs. A cell cycle-associated lncRNA-miRNA-mRNA regulatory network was constructed, and two novel lncRNAs were selected. Two subnetworks were constructed for selected lncRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were illustrated for the genes in each sub-network. qPCR analysis was used to validate the expression levels of the selected lncRNAs in CRC tissues compared to those adjacent normal tissues. RESULTS The differential expression analysis identified 416 lncRNAs, 317 miRNAs, and 117 mRNAs. The ceRNA subnetwork genes were associated with different pathways, including cellular senescence, DNA replication, human T-cell leukemia virus 1 infection, and oocyte meiosis. The bioinformatic results based on the TCGA project indicated the dysregulation of two novel lncRNAs, MIR29B2CHG and HELLPAR, in CRC tissues compared to adjacent normal tissues. Moreover, qPCR confirmed the dysregulation of lncRNAs in the CRC tissues. ROC curves revealed that both selected lncRNAs had acceptable specificity and sensitivity as biomarkers. CONCLUSION In conclusion, novel cell cycle-associated lncRNAs have the potential to be understood as the underlying molecular mechanisms that influence CRC. Therefore, these lncRNAs can be considered as promising biomarkers for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Marzieh Naderi Boldaji
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Shahrzad Shahbazi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Kambiz Ahmadi
- Department of Computer Sciences, Faculty of Mathematical Sciences, Shahrekord University, Shahrekord, Iran
| | - Mohammad Mahdevar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Genius Gene, Genetics and Biotechnology Company, Isfahan, Iran
| |
Collapse
|
3
|
Liu H, Wang J, Wang L, Tang W, Hou X, Zhu YZ, Chen X. Multi-Omics Exploration of the Mechanism of Curcumol to Reduce Invasion and Metastasis of Nasopharyngeal Carcinoma by Inhibiting NCL/EBNA1-Mediated UBE2C Upregulation. Biomolecules 2024; 14:1142. [PMID: 39334908 PMCID: PMC11430640 DOI: 10.3390/biom14091142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is closely linked to Epstein-Barr virus (EBV) infection. Curcumae Rhizoma, a traditional Chinese herb, has shown antitumor effects, primarily through its component curcumol (Cur), which has been shown to reduce NPC cell invasion and migration by targeting nucleolin (NCL) and Epstein-Barr Virus Nuclear Antigen 1 (EBNA1). We constructed an EBV-positive NPC cell model using C666-1 cells and performed transcriptomics studies after treatment with curcumol, which revealed a significant enrichment of ubiquitin-mediated proteolysis, the PI3K-AKT and mTOR signaling pathways, cell cycle and apoptosis involved in tumor invasion and migration. To investigate the importance of NCL and EBNA1 in curcumol-resistant EBV-positive NPC, we performed a multi-omics study using short hairpin NCL (shNCL) and shEBNA1 EBV-positive NPC cells, and the proteomics results showed enrichment in complement and coagulation cascades and ubiquitin-mediated proteolysis signaling pathways. Here, we focused on ubiquitin-conjugating enzyme E2C (UBE2C), which plays an important role in the ubiquitin-mediated proteolysis signaling pathway. In addition, metabolomics revealed that UBE2C is highly associated with 4-Aminobutanoic acid (GABA). In vitro studies further validated the function of the key targets, suggesting that UBE2C plays an important role in NCL and EBNA1-mediated curcumol resistance to nasopharyngeal carcinoma invasion and metastasis.
Collapse
Affiliation(s)
- Haiping Liu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China; (H.L.); (L.W.); (W.T.)
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China; (J.W.); (X.H.)
| | - Juan Wang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China; (J.W.); (X.H.)
| | - Lin Wang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China; (H.L.); (L.W.); (W.T.)
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China; (J.W.); (X.H.)
| | - Wei Tang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China; (H.L.); (L.W.); (W.T.)
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China; (J.W.); (X.H.)
| | - Xinyue Hou
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China; (J.W.); (X.H.)
| | - Yi Zhun Zhu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China; (H.L.); (L.W.); (W.T.)
| | - Xu Chen
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China; (J.W.); (X.H.)
| |
Collapse
|
4
|
Wang Z, Zheng Z, Wang B, Zhan C, Yuan X, Lin X, Xin Q, Zhong Z, Qiu X. Characterization of a G2M checkpoint-related gene model and subtypes associated with immunotherapy response for clear cell renal cell carcinoma. Heliyon 2024; 10:e29289. [PMID: 38617927 PMCID: PMC11015143 DOI: 10.1016/j.heliyon.2024.e29289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) presents challenges in early diagnosis and effective treatment. In this study, we aimed to establish a prognostic model based on G2M checkpoint-related genes and identify associated clusters in ccRCC through clinical bioinformatic analysis and experimental validation. Utilizing a single-cell RNA dataset (GSE159115) and bulk-sequencing data from The Cancer Genome Atlas (TCGA) database, we analyzed the G2M checkpoint pathway in ccRCC. Differential expression analysis identified 45 genes associated with the G2M checkpoint, leading to the construction of a predictive model with four key genes (E2F2, GTSE1, RAD54L, and UBE2C). The model demonstrated reliable predictive ability for 1-, 3-, and 5-year overall survival, with AUC values of 0.794, 0.790, and 0.794, respectively. Patients in the high-risk group exhibited a worse prognosis, accompanied by significant differences in immune cell infiltration, immune function, TIDE and IPS scores, and drug sensitivities. Two clusters of ccRCC were identified using the "ConsensusClusterPlus" package, cluster 1 exhibited a worse survival rate and was resistant to chemotherapeutic drugs of Axitinib, Erlotinib, Pazopanib, Sunitinib, and Temsirolimus, but not Sorafenib. Targeted experiments on RAD54L, a gene involved in DNA repair processes, revealed its crucial role in inhibiting proliferation, invasion, and migration in 786-O cells. In conclusion, our study offers valuable insights into the molecular mechanisms underlying ccRCC, identifying potential prognostic genes and molecular subtypes associated with the G2M checkpoint. These findings hold promise for guiding personalized treatment strategies in the management of ccRCC.
Collapse
Affiliation(s)
- Zhenwei Wang
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Zongtai Zheng
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Bangqi Wang
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Changxin Zhan
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Xuefeng Yuan
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoqi Lin
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Qifan Xin
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Zhihui Zhong
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, 525200, Guangdong, China
| | - Xiaofu Qiu
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
5
|
Cui Z, Cong M, Yin S, Li Y, Ye Y, Liu X, Tang J. Role of protein degradation systems in colorectal cancer. Cell Death Discov 2024; 10:141. [PMID: 38485957 PMCID: PMC10940631 DOI: 10.1038/s41420-023-01781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 03/18/2024] Open
Abstract
Protein degradation is essential for maintaining protein homeostasis. The ubiquitin‒proteasome system (UPS) and autophagy-lysosome system are the two primary pathways responsible for protein degradation and directly related to cell survival. In malignant tumors, the UPS plays a critical role in managing the excessive protein load caused by cancer cells hyperproliferation. In this review, we provide a comprehensive overview of the dual roles played by the UPS and autolysosome system in colorectal cancer (CRC), elucidating their impact on the initiation and progression of this disease while also highlighting their compensatory relationship. Simultaneously targeting both protein degradation pathways offers new promise for enhancing treatment efficacy against CRC. Additionally, apoptosis is closely linked to ubiquitination and autophagy, and caspases degrade proteins. A thorough comprehension of the interplay between various protein degradation pathways is highly important for clarifying the mechanism underlying the onset and progression of CRC.
Collapse
Affiliation(s)
- Zihan Cui
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Mingqi Cong
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Shengjie Yin
- Department of Oncology, Chifeng City Hospital, Chifeng, 024000, China
| | - Yuqi Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Yuguang Ye
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Xi Liu
- Cardiovascular Center, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, 010017, China.
| | - Jing Tang
- Department of Pathology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
6
|
Zafeiropoulou K, Kalampounias G, Alexis S, Anastasopoulos D, Symeonidis A, Katsoris P. Autophagy and oxidative stress modulation mediate Bortezomib resistance in prostate cancer. PLoS One 2024; 19:e0289904. [PMID: 38412186 PMCID: PMC10898778 DOI: 10.1371/journal.pone.0289904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/27/2024] [Indexed: 02/29/2024] Open
Abstract
Proteasome inhibitors such as Bortezomib represent an established type of targeted treatment for several types of hematological malignancies, including multiple myeloma, Waldenstrom's macroglobulinemia, and mantle cell lymphoma, based on the cancer cell's susceptibility to impairment of the proteasome-ubiquitin system. However, a major problem limiting their efficacy is the emergence of resistance. Their application to solid tumors is currently being studied, while simultaneously, a wide spectrum of hematological cancers, such as Myelodysplastic Syndromes show minimal or no response to Bortezomib treatment. In this study, we utilize the prostate cancer cell line DU-145 to establish a model of Bortezomib resistance, studying the underlying mechanisms. Evaluating the resulting resistant cell line, we observed restoration of proteasome chymotrypsin-like activity, regardless of drug presence, an induction of pro-survival pathways, and the substitution of the Ubiquitin-Proteasome System role in proteostasis by induction of autophagy. Finally, an estimation of the oxidative condition of the cells indicated that the resistant clones reduce the generation of reactive oxygen species induced by Bortezomib to levels even lower than those induced in non-resistant cells. Our findings highlight the role of autophagy and oxidative stress regulation in Bortezomib resistance and elucidate key proteins of signaling pathways as potential pharmaceutical targets, which could increase the efficiency of proteasome-targeting therapies, thus expanding the group of molecular targets for neoplastic disorders.
Collapse
Affiliation(s)
- Kalliopi Zafeiropoulou
- Division of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece
- Hematology Division, Department of Internal Medicine, University of Patras Medical School-University Hospital, Patras, Greece
| | - Georgios Kalampounias
- Division of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece
| | - Spyridon Alexis
- Hematology Division, Department of Internal Medicine, University of Patras Medical School-University Hospital, Patras, Greece
| | - Daniil Anastasopoulos
- Division of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece
| | - Argiris Symeonidis
- Hematology Division, Department of Internal Medicine, University of Patras Medical School-University Hospital, Patras, Greece
| | - Panagiotis Katsoris
- Division of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece
| |
Collapse
|
7
|
Maleki EH, Bahrami AR, Matin MM. Cancer cell cycle heterogeneity as a critical determinant of therapeutic resistance. Genes Dis 2024; 11:189-204. [PMID: 37588236 PMCID: PMC10425754 DOI: 10.1016/j.gendis.2022.11.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/20/2022] [Accepted: 11/16/2022] [Indexed: 01/15/2023] Open
Abstract
Intra-tumor heterogeneity is now arguably one of the most-studied topics in tumor biology, as it represents a major obstacle to effective cancer treatment. Since tumor cells are highly diverse at genetic, epigenetic, and phenotypic levels, intra-tumor heterogeneity can be assumed as an important contributing factor to the nullification of chemotherapeutic effects, and recurrence of the tumor. Based on the role of heterogeneous subpopulations of cancer cells with varying cell-cycle dynamics and behavior during cancer progression and treatment; herein, we aim to establish a comprehensive definition for adaptation of neoplastic cells against therapy. We discuss two parallel and yet distinct subpopulations of tumor cells that play pivotal roles in reducing the effects of chemotherapy: "resistant" and "tolerant" populations. Furthermore, this review also highlights the impact of the quiescent phase of the cell cycle as a survival mechanism for cancer cells. Beyond understanding the mechanisms underlying the quiescence, it provides an insightful perspective on cancer stem cells (CSCs) and their dual and intertwined functions based on their cell cycle state in response to treatment. Moreover, CSCs, epithelial-mesenchymal transformed cells, circulating tumor cells (CTCs), and disseminated tumor cells (DTCs), which are mostly in a quiescent state of the cell cycle are proved to have multiple biological links and can be implicated in our viewpoint of cell cycle heterogeneity in tumors. Overall, increasing our knowledge of cell cycle heterogeneity is a key to identifying new therapeutic solutions, and this emerging concept may provide us with new opportunities to prevent the dreadful cancer recurrence.
Collapse
Affiliation(s)
- Ebrahim H. Maleki
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 31-007 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, 917751376 Mashhad, Iran
| |
Collapse
|
8
|
Domentean S, Paisana E, Cascão R, Faria CC. Role of UBE2C in Brain Cancer Invasion and Dissemination. Int J Mol Sci 2023; 24:15792. [PMID: 37958776 PMCID: PMC10650073 DOI: 10.3390/ijms242115792] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Glioblastoma (GB) and brain metastases (BM) are the most common brain tumors in adults and are invariably associated with a dismal outcome. These highly malignant tumors share common features including increased invasion and migration of the primary or metastatic brain cancer cells, whose triggering mechanisms are largely unknown. Emerging evidence has suggested that the ubiquitin-conjugating enzyme E2C (UBE2C), essential for controlling cell cycle progression, is overexpressed in diverse malignancies, including brain cancer. This review highlights the crucial role of UBE2C in brain tumorigenesis and its association with higher proliferative phenotype and histopathological grade, with autophagy and apoptosis suppression, epithelial-to-mesenchymal transition (EMT), invasion, migration, and dissemination. High expression of UBE2C has been associated with patients' poor prognosis and drug resistance. UBE2C has also been proven as a promising therapeutic target, despite the lack of specific inhibitors. Thus, there is a need to further explore the role of UBE2C in malignant brain cancer and to develop effective targeted therapies for patients with this deadly disease.
Collapse
Affiliation(s)
- Stefani Domentean
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (S.D.); (E.P.); (R.C.)
| | - Eunice Paisana
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (S.D.); (E.P.); (R.C.)
| | - Rita Cascão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (S.D.); (E.P.); (R.C.)
| | - Claudia C. Faria
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (S.D.); (E.P.); (R.C.)
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Clínica Universitária de Neurocirurgia, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
9
|
Liang K, Wang Q, Qiu L, Gong X, Chen Z, Zhang H, Ding K, Liu Y, Wei J, Lin S, Fu S, Du H. Combined Inhibition of UBE2C and PLK1 Reduce Cell Proliferation and Arrest Cell Cycle by Affecting ACLY in Pan-Cancer. Int J Mol Sci 2023; 24:15658. [PMID: 37958642 PMCID: PMC10650476 DOI: 10.3390/ijms242115658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Various studies have shown that the cell-cycle-related regulatory proteins UBE2C, PLK1, and BIRC5 promote cell proliferation and migration in different types of cancer. However, there is a lack of in-depth and systematic research on the mechanism of these three as therapeutic targets. In this study, we found a positive correlation between the expression of UBE2C and PLK1/BIRC5 in the Cancer Genome Atlas (TCGA) database, revealing a potential combination therapy candidate for pan-cancer. Quantitative real-time PCR (qRT-PCR), Western blotting (WB), cell phenotype detection, and RNA-seq techniques were used to evidence the effectiveness of the combination candidate. We found that combined interference of UBE2C with PLK1 and UBE2C with BIRC5 affected metabolic pathways by significantly downregulating the mRNA expression of IDH1 and ACLY, which was related to the synthesis of acetyl-CoA. By combining the PLK1 inhibitor volasertib and the ACLY inhibitor bempedoic acid, it showed a higher synergistic inhibition of cell viability and higher synergy scores in seven cell lines, compared with those of other combination treatments. Our study reveals the potential mechanisms through which cell-cycle-related genes regulate metabolism and proposes a potential combined targeted therapy for patients with higher PLK1 and ACLY expression in pan-cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (K.L.); (Q.W.); (L.Q.); (X.G.); (Z.C.); (H.Z.); (K.D.); (Y.L.); (J.W.); (S.L.); (S.F.)
| |
Collapse
|
10
|
Nousiainen R, Eloranta K, Isoaho N, Cairo S, Wilson DB, Heikinheimo M, Pihlajoki M. UBE2C expression is elevated in hepatoblastoma and correlates with inferior patient survival. Front Genet 2023; 14:1170940. [PMID: 37377594 PMCID: PMC10291054 DOI: 10.3389/fgene.2023.1170940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatoblastoma (HB) is the most common malignant liver tumor among children. To gain insight into the pathobiology of HB, we performed RNA sequence analysis on 5 patient-derived xenograft lines (HB-243, HB-279, HB-282, HB-284, HB-295) and 1 immortalized cell line (HUH6). Using cultured hepatocytes as a control, we found 2,868 genes that were differentially expressed in all of the HB lines on mRNA level. The most upregulated genes were ODAM, TRIM71, and IGDCC3, and the most downregulated were SAA1, SAA2, and NNMT. Protein-protein interaction analysis identified ubiquitination as a key pathway dysregulated in HB. UBE2C, encoding an E2 ubiquitin ligase often overexpressed in cancer cells, was markedly upregulated in 5 of the 6 HB cell lines. Validation studies confirmed UBE2C immunostaining in 20 of 25 HB tumor specimens versus 1 of 6 normal liver samples. The silencing of UBE2C in two HB cell models resulted in decreased cell viability. RNA sequencing analysis showed alterations in cell cycle regulation after UBE2C knockdown. UBE2C expression in HB correlated with inferior patient survival. We conclude that UBE2C may hold prognostic utility in HB and that the ubiquitin pathway is a potential therapeutic target in this tumor.
Collapse
Affiliation(s)
- Ruth Nousiainen
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Katja Eloranta
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Noora Isoaho
- Division of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Stefano Cairo
- Champions Oncology, Hackensack, NJ, United States
- Istituto di Ricerca Pediatrica, Padova, Italy
- XenTech, Evry, France
| | - David B. Wilson
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO, United States
| | - Markku Heikinheimo
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO, United States
- Faculty of Medicine and Health Technology, Center for Child, Adolescent and Maternal Health Research, Tampere University, Tampere, Finland
| | - Marjut Pihlajoki
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Lei X, Hu X, Lu Q, Fu W, Sun W, Ma Q, Huang D, Xu Q. Ubiquitin‑conjugating enzymes as potential biomarkers and therapeutic targets for digestive system cancers (Review). Oncol Rep 2023; 49:63. [PMID: 36799184 PMCID: PMC9944987 DOI: 10.3892/or.2023.8500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
Digestive system cancers are the leading cause of cancer‑related death worldwide due to their high morbidity and mortality rates. The current treatment methods include surgical treatment, chemotherapy, radiotherapy and endoscopic treatment, and the precisely targeted therapy of digestive system cancers requires to be further studied. The ubiquitin‑proteasome system is the main pathway for protein degradation in cells and the ubiquitin‑conjugating enzymes (E2s) have a decisive role in the specific selection of target proteins for degradation. The E2s have an important physiological role in digestive system cancers, which is related to the clinical tumor stage, differentiation degree and poor prognosis. Furthermore, they are involved in the physiological processes of digestive system tumor cell proliferation, migration, invasion, stemness, drug resistance and autophagy. In the present article, the progress and achievements of the E2s in gastric cancer, hepatocellular carcinoma, pancreatic cancer, colorectal cancer, intrahepatic cholangiocarcinoma, gallbladder cancer and esophageal squamous cell carcinoma were reviewed, which may provide early screening indicators and reliable therapeutic targets for digestive system cancers.
Collapse
Affiliation(s)
- Xiangxiang Lei
- Institute of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Xiaoge Hu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Qiliang Lu
- Qingdao Medical College, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Wen Fu
- Qingdao Medical College, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Wen Sun
- Second Clinical Medical Institute, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Qiancheng Ma
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China,Correspondence to: Dr Dongsheng Huang or Dr Qiuran Xu, The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Gongshu, Hangzhou, Zhejiang 310014, P.R. China, E-mail:
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China,Correspondence to: Dr Dongsheng Huang or Dr Qiuran Xu, The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Gongshu, Hangzhou, Zhejiang 310014, P.R. China, E-mail:
| |
Collapse
|
12
|
Miller KJ, Henry I, Maylin Z, Smith C, Arunachalam E, Pandha H, Asim M. A compendium of Androgen Receptor Variant 7 target genes and their role in Castration Resistant Prostate Cancer. Front Oncol 2023; 13:1129140. [PMID: 36937454 PMCID: PMC10014620 DOI: 10.3389/fonc.2023.1129140] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Persistent androgen receptor (AR) signalling is the main driver of prostate cancer (PCa). Truncated isoforms of the AR called androgen receptor variants (AR-Vs) lacking the ligand binding domain often emerge during treatment resistance against AR pathway inhibitors such as Enzalutamide. This review discusses how AR-Vs drive a more aggressive form of PCa through the regulation of some of their target genes involved in oncogenic pathways, enabling disease progression. There is a pressing need for the development of a new generation of AR inhibitors which can repress the activity of both the full-length AR and AR-Vs, for which the knowledge of differentially expressed target genes will allow evaluation of inhibition efficacy. This review provides a detailed account of the most common variant, AR-V7, the AR-V7 regulated genes which have been experimentally validated, endeavours to understand their relevance in aggressive AR-V driven PCa and discusses the utility of the downstream protein products as potential drug targets for PCa treatment.
Collapse
Affiliation(s)
| | | | - Zoe Maylin
- *Correspondence: Zoe Maylin, ; Mohammad Asim,
| | | | | | | | | |
Collapse
|
13
|
Lin CY, Yu CJ, Liu CY, Chao TC, Huang CC, Tseng LM, Lai JI. CDK4/6 inhibitors downregulate the ubiquitin-conjugating enzymes UBE2C/S/T involved in the ubiquitin-proteasome pathway in ER + breast cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:2120-2135. [PMID: 35917055 DOI: 10.1007/s12094-022-02881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/20/2022] [Indexed: 10/16/2022]
Abstract
Despite significant improvement in therapeutic development in the past decades, breast cancer remains a formidable cause of death for women worldwide. The hormone positive subtype (HR( +)) (also known as luminal type) is the most prevalent category of breast cancer, comprising ~ 70% of patients. The clinical success of the three CDK4/6 inhibitors palbociclib, ribociclib, and abemaciclib has revolutionized the treatment of choice for metastatic HR( +) breast cancer. Accumulating evidence demonstrate that the properties of CDK4/6 inhibitors extend beyond inhibition of the cell cycle, including modulation of immune function, sensitizing PI3K inhibitors, metabolism reprogramming, kinome rewiring, modulation of the proteasome, and many others. The ubiquitin-proteasome pathway (UPP) is a crucial cellular proteolytic system that maintains the homeostasis and turnover of proteins. By transcriptional profiling of the HR( +) breast cancer cell lines MCF7 and T47D treated with Palbociclib, we have uncovered a novel mechanism that demonstrates that the CDK4/6 inhibitors suppress the expression of three ubiquitin-conjugating enzymes UBE2C, UBE2S, UBE2T. Further validation in the HR( +) cell lines show that Palbociclib and ribociclib decrease UBE2C at both the mRNA and protein level, but this phenomenon was not shared with abemaciclib. These three E2 enzymes modulate several E3 ubiquitin ligases, including the APC/C complex which plays a role in G1/S progression. We further demonstrate that the UBE2C/UBE2T expression levels are associated with breast cancer survival, and HR( +) breast cancer cells demonstrate dependence on the UBE2C. Our study suggests a novel link between CDK4/6 inhibitor and UPP pathway, adding to the potential mechanisms of their clinical efficacy in cancer.
Collapse
Affiliation(s)
- Chih-Yi Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Jen Yu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Yu Liu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ta-Chung Chao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Cheng Huang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ling-Ming Tseng
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jiun-I Lai
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan. .,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan. .,Center of Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
14
|
A New Stemness-Related Prognostic Model for Predicting the Prognosis in Pancreatic Ductal Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6669570. [PMID: 34671679 PMCID: PMC8523240 DOI: 10.1155/2021/6669570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/17/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023]
Abstract
Objective This study is aimed at identifying stemness-related genes in pancreatic ductal adenocarcinoma (PDAC). Methods The RNA-seq data of PADC patients were downloaded from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. The mRNA expression-based stemness index (mRNAsi) and epigenetically regulated mRNAsi (EREG-mRNAsi) of PADC patients were evaluated. The mRNAsi-related gene sets in PADC were identified by weighted gene coexpression network analysis (WGCNA). The key genes were further analyzed using functional enrichment analysis. The Kaplan-Meier survival analysis and the Cox proportional hazards model were used to evaluate the prognostic value of the key genes. Prognostic hub genes were used to establish nomograms. The receiver operating characteristic (ROC) curves, concordance index (C-index), and calibration curves were used to assess the discrimination and accuracy of the nomogram. Finally, these results were validated in the Gene Expression Omnibus (GEO) database. Results A total of 36 key genes related to mRNAsi were identified by WGCNA. A prognostic gene signature compromising seven genes (TPX2, ZWINT, UBE2C, CCNB2, CDK1, BUB1, and BIRC5) was established to predict the overall survival (OS) of PADC patients. The Cox regression analysis revealed that the risk score was an independent prognostic factor for PADC. Patients were then divided into the high-risk and low-risk groups. The ROC curves, C-index, and calibration curves indicated good performance of the prognostic signature in the TCGA and GEO datasets. Moreover, the nomogram incorporating clinical parameters showed better sensitivity and specificity for predicting the OS of PADC patients. Conclusion The stemness-related prognostic model successfully predicted the OS of PADC patients and could be used for the treatment of PADC.
Collapse
|
15
|
Abstract
Background: Ubiquitin-conjugating enzyme E2C (UBE2C) has been shown to be associated with the occurrence of various cancers and involved in many tumorigenic processes. This study aimed to investigate the specific molecular mechanism through which UBE2C affects breast cancer (BC) proliferation. Methods: BC-related datasets were screened according to filter criteria in the Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA) database. Then differentially expressed genes (DEGs) were identified using Venn diagram analysis. By using DEGs, we conducted the following analyses including Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein–protein interaction (PPI), and survival analysis, and then validated the function of the hub gene UBE2C using quantitative reverse transcription-polymerase chain reaction (RT-qPCR), cell counting kit-8 (CCK-8) assay, transwell assay, and Western blot assay. Results: In total, 151 DEGs were identified from the GEO and TCGA databases. The results of GO analysis demonstrated that the DEGs were significantly enriched with mitotic nuclear division, lipid droplet, and organic acid-binding. KEGG analysis showed that the peroxisome proliferators-activated receptor (PPAR) signaling pathway, regulation of lipolysis in adipocytes, and proximal tubule bicarbonate reclamation were significantly enriched in the signal transduction pathway category. The top three hub genes that resulted from the PPI network were FOXM1, UBE2C, and CDKN3. The results of survival analysis showed a close relationship between UBE2C and BC. The results of CCK-8 and transwell assays suggested that the proliferation and invasion of UBE2C knockdown cells were significantly inhibited (P < 0.050). The results of Western blot assay showed that the level of phosphorylated phosphatase and tensin homology deleted on chromosome 10 (p-PTEN) was obviously increased (P < 0.050), whereas the levels of phosphorylated protein kinase B (p-AKT), phosphorylated mammalian target of rapamycin (p-mTOR), and hypoxia-inducible factor-1 alpha (HIF-1α) were dramatically decreased (P < 0.050) in the UBE2C knockdown cell. Conclusion: UBE2C can promote BC proliferation by activating the AKT/mTOR signaling pathway.
Collapse
|
16
|
UBE2C Drives Human Cervical Cancer Progression and Is Positively Modulated by mTOR. Biomolecules 2020; 11:biom11010037. [PMID: 33396624 PMCID: PMC7823929 DOI: 10.3390/biom11010037] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is a common gynecological malignancy, accounting for 10% of all gynecological cancers. Recently, targeted therapy for cervical cancer has shown unprecedented advantages. Several studies have shown that ubiquitin conjugating enzyme E2 (UBE2C) is highly expressed in a series of tumors, and participates in the progression of these tumors. However, the possible impact of UBE2C on the progression of cervical squamous cell carcinoma (CESC) remains unclear. Here, we carried out tissue microarray analysis of paraffin-embedded tissues from 294 cervical cancer patients with FIGO/TNM cancer staging records. The results indicated that UBE2C was highly expressed in human CESC tissues and its expression was related to the clinical characteristics of CESC patients. Overexpression and knockdown of UBE2C enhanced and reduced cervical cancer cell proliferation, respectively, in vitro. Furthermore, in vivo experiments showed that UBE2C regulated the expression and activity of the mTOR/PI3K/AKT pathway. In summary, we confirmed that UBE2C is involved in the process of CESC and that UBE2C may represent a molecular target for CESC treatment.
Collapse
|
17
|
Würtemberger J, Tchessalova D, Regina C, Bauer C, Schneider M, Wagers AJ, Hettmer S. Growth inhibition associated with disruption of the actin cytoskeleton by Latrunculin A in rhabdomyosarcoma cells. PLoS One 2020; 15:e0238572. [PMID: 32898143 PMCID: PMC7478754 DOI: 10.1371/journal.pone.0238572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 08/19/2020] [Indexed: 11/18/2022] Open
Abstract
Functional genomic screening of KRAS-driven mouse sarcomas was previously employed to identify proliferation-relevant genes. Genes identified included Ubiquitin-conjugating enzyme E2 (Ube2c), Centromere Protein E (Cenpe), Hyaluronan Synthase 2 (Has2), and CAMP Responsive Element Binding Protein 3 Like 2 (Creb3l2). This study examines the expression and chemical inhibition of these candidate genes, identifying variable levels of protein expression and significant contributions to rhabdomyosarcoma (RMS) cell proliferation. Chemical treatment of human and murine RMS cell lines with bortezomib, UA62784, latrunculin A and sorafenib inhibited growth with approximate EC50 concentrations of 15-30nM for bortezomib, 25-80nM for UA62784 and 80-220nM for latrunculin A. The multi-kinase inhibitor sorafenib increased in vitro proliferation of 4 of 6 sarcoma cell lines tested. Latrunculin A was further associated with disruption of the actin cytoskeleton and reduced ERK1/2 phosphorylation. Together, this work advances opportunities for developing therapies to block progression of soft-tissue sarcomas and demonstrates that disruption of the actin cytoskeleton in sarcoma cells by latrunculin A is associated with a reduction in RMS cell growth. (167 words).
Collapse
Affiliation(s)
- Julia Würtemberger
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Daria Tchessalova
- Joslin Diabetes Center, Boston, Massachusetts, United States of America
| | - Carla Regina
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Christoph Bauer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Michaela Schneider
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Amy J. Wagers
- Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, Massachusetts, United States of America
| | - Simone Hettmer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
18
|
Mi N, Cao J, Zhang J, Fu W, Huang C, Gao L, Yue P, Bai B, Lin Y, Meng W, Li X. Identification of hub genes involved in the occurrence and development of hepatocellular carcinoma via bioinformatics analysis. Oncol Lett 2020; 20:1695-1708. [PMID: 32724412 PMCID: PMC7377146 DOI: 10.3892/ol.2020.11752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 05/07/2020] [Indexed: 01/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous malignancy, which is a major cause of cancer morbidity and mortality worldwide. Thus, the aim of the present study was to identify the hub genes and underlying pathways of HCC via bioinformatics analyses. The present study screened three datasets, including GSE112790, GSE84402 and GSE74656 from the Gene Expression Omnibus (GEO) database, and downloaded the RNA-sequencing of HCC from The Cancer Genome Atlas (TCGA) database. The differentially expressed genes (DEGs) in both the GEO and TCGA datasets were filtered, and the screened DEGs were subsequently analyzed for functional enrichment pathways. A protein-protein interaction (PPI) network was constructed, and hub genes were further screened to create the Kaplan-Meier curve using cBioPortal. The expression levels of hub genes were then validated in different datasets using the Oncomine database. In addition, associations between expression and tumor grade, hepatitis virus infection status, satellites and vascular invasion were assessed. A total of 126 DEGs were identified, containing 70 upregulated genes and 56 downregulated genes from the GEO and TCGA databases. By constructing the PPI network, the present study identified hub genes, including cyclin B1 (CCNB1), cell-division cycle protein 20 (CDC20), cyclin-dependent kinase 1, BUB1 mitotic checkpoint serine/threonine kinase β (BUB1B), cyclin A2, nucleolar and spindle associated protein 1, ubiquitin-conjugating enzyme E2 C (UBE2C) and ZW10 interactor. Furthermore, upregulated CCNB1, CDC20, BUB1B and UBE2C expression levels indicated worse disease-free and overall survival. Moreover, a meta-analysis of tumor and healthy tissues in the Oncomine database demonstrated that BUB1B and UBE2C were highly expressed in HCC. The present study also analyzed the data of HCC in TCGA database using univariate and multivariate Cox analyses, and demonstrated that BUB1B and UBE2C may be used as independent prognostic factors. In conclusion, the present study identified several genes and the signaling pathways that were associated with tumorigenesis using bioinformatics analyses, which could be potential targets for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Ningning Mi
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Department of Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jie Cao
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Department of Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, Gansu 730000, P.R. China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, Gansu 730000, P.R. China.,Laboratory Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jinduo Zhang
- Department of Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, Gansu 730000, P.R. China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Wenkang Fu
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Department of Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, Gansu 730000, P.R. China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Chongfei Huang
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Department of Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, Gansu 730000, P.R. China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Long Gao
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Department of Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, Gansu 730000, P.R. China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Ping Yue
- Department of Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, Gansu 730000, P.R. China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Bing Bai
- Department of Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, Gansu 730000, P.R. China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Yanyan Lin
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Department of Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, Gansu 730000, P.R. China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Wenbo Meng
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Department of Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, Gansu 730000, P.R. China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Xun Li
- Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, Gansu 730000, P.R. China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, Gansu 730000, P.R. China.,The Fifth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
19
|
Ye CJ, Zhan Y, Yang R, Li Y, Dong R. Single-cell transcriptional profiling identifies a cluster of potential metastasis-associated UBE2C+ cells in immature ovarian teratoma. Biochem Biophys Res Commun 2020; 528:567-573. [PMID: 32505346 DOI: 10.1016/j.bbrc.2020.05.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
To dissect the disease heterogeneity and identify the underlying cellular and molecular events related to metastasis of immature ovarian teratoma in children, single-cell RNA sequencing was performed for a 2-year-old patient with liver metastases from immature ovarian teratoma. A total of 5976 cells were obtained for further analysis, with a median unique molecular identifier count of 6011 per cell and a median number of 1741 genes detected per cell. Fourteen clusters were recognized, with the main lineages comprising epithelial cells, macrophages, fibroblasts, glial cells, and dendritic cells. Ten subclusters of epithelial cells were further defined, originating from the urinary tract, esophagus, bronchus, lung, skin, and gastrointestinal tract. An undefined UBE2C + population in an active state of proliferation was also identified and its biological processes were related to meiosis and maturation of oocytes. Pseudotime analysis revealed different distributions of epithelial cells in the development trajectory. In conclusion, a cluster of UBE2C + epithelial cells in an active state of proliferation was identified in an immature ovarian teratoma in a child, and may contribute to metastasis by regulating epithelial-mesenchymal transition. These findings help toward understanding the origin of the malignant behaviors, offer a potential biomarker for early determination of the tumor nature, and provide new ideas for the therapy of immature ovarian teratoma in children.
Collapse
Affiliation(s)
- Chun-Jing Ye
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, 201102, China
| | - Yong Zhan
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, 201102, China
| | - Ran Yang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, 201102, China
| | - Yi Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, 201102, China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, 201102, China.
| |
Collapse
|
20
|
Jin Z, Zhao X, Cui L, Xu X, Zhao Y, Younai F, Messadi D, Hu S. UBE2C promotes the progression of head and neck squamous cell carcinoma. Biochem Biophys Res Commun 2019; 523:389-397. [PMID: 31870550 DOI: 10.1016/j.bbrc.2019.12.064] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022]
Abstract
The development of head and neck squamous cell carcinoma (HNSCC) is a complex pathological process and many cellular and molecular events may occur. The ubiquitin conjugating enzyme E2 (UBE2C) was found to play an oncogenic role in several human cancers. However, its functional role in HNSCC tumorigenesis remains unknown. In this study, UBE2C gene expression in HNSCC was first evaluated using the data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The connection between UBE2C gene expression and patients' survival rates of HNSCC and other human cancers was also investigated. Liquid chromatography with tandem mass spectrometry was used to identify differentially expressed proteins, including UBE2C, between UMSCC1 oral cancer cells and normal human oral keratinocytes (NHOKs). Immunohistochemistry (IHC) was used to verify the differential expression of UBE2C protein between HNSCC and adjacent control tissues. Cell cycle analysis, MTT, colony formation, Transwell migration, and Matrigel invasion assays were used to study the effect of UBE2C downregulation on the malignant phenotypes of HNSCC cells. The bioinformatic analysis of the proteins interacting with UBE2C in HNSCC cells was also performed. Based on the data obtained from the cancer databases and our in vitro studies, we found that UBE2C was overexpressed in HNSCC and patients with high UBE2C expression suffered a remarkably worse overall survival rate than those with low UBE2C expression, and a similar observation was found in a number of other human cancers. UBE2C was also found to be overexpressed in HNSCC cells versus normal human oral keratinocytes and inhibition of UBE2C expression significantly suppressed the malignant phenotypes of HNSCC cells in vitro. The bioinformatic analysis indicated that UBE2C may be involved in head and neck tumorigenesis through the mediation of important pathways such as ubiquitin mediated proteolysis, proteasome, and cell cycle. In conclusion, our results suggest that UBE2C is consistently upregulated in many human solid tumors. It promotes HNSCC progression and may serve as a potential prognostic biomarker in HNSCC. Future studies are warranted to unveil the underlying molecular pathways of UBE2C in HNSCC.
Collapse
Affiliation(s)
- Zhenning Jin
- UCLA School of Dentistry and Jonsson Comprehensive Cancer Center, Los Angeles, CA, 90095, USA
| | - Xinyuan Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Li Cui
- UCLA School of Dentistry and Jonsson Comprehensive Cancer Center, Los Angeles, CA, 90095, USA
| | - Xiangdong Xu
- UCLA School of Dentistry and Jonsson Comprehensive Cancer Center, Los Angeles, CA, 90095, USA
| | - Yutian Zhao
- UCLA School of Dentistry and Jonsson Comprehensive Cancer Center, Los Angeles, CA, 90095, USA
| | - Fariba Younai
- UCLA School of Dentistry and Jonsson Comprehensive Cancer Center, Los Angeles, CA, 90095, USA
| | - Diana Messadi
- UCLA School of Dentistry and Jonsson Comprehensive Cancer Center, Los Angeles, CA, 90095, USA
| | - Shen Hu
- UCLA School of Dentistry and Jonsson Comprehensive Cancer Center, Los Angeles, CA, 90095, USA.
| |
Collapse
|
21
|
Wang X, Yin L, Yang L, Zheng Y, Liu S, Yang J, Cui H, Wang H. Silencing ubiquitin-conjugating enzyme 2C inhibits proliferation and epithelial-mesenchymal transition in pancreatic ductal adenocarcinoma. FEBS J 2019; 286:4889-4909. [PMID: 31715067 DOI: 10.1111/febs.15134] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/08/2019] [Accepted: 11/09/2019] [Indexed: 12/19/2022]
Abstract
Ubiquitin-conjugating enzyme 2C (UBE2C) is a core ubiquitin-conjugating enzyme in the ubiquitin-proteasome system that promotes cell cycle progression. Previous studies have indicated that UBE2C mediates tumorigenesis and progression in various cancers, but its role in pancreatic ductal adenocarcinoma (PDAC) remains unclear. This study elucidated the function of UBE2C in PDAC tumorigenesis and progression by determining UBE2C expression via real-time qPCR, western blotting and immunohistochemistry. The associations between UBE2C expression and clinicopathological characteristics and survival were assessed using a tissue microarray based on a multicentre PDAC cohort. We found that UBE2C was strongly expressed in PDAC patient tissues and was negatively associated with clinical stage, lymph node metastasis, perineural invasion and survival (all P < 0.05). Multivariate analysis revealed that high UBE2C expression is an independent risk factor for PDAC (P = 0.001). In the PDAC cell lines CFPAC-1 and Panc-1, silencing UBE2C suppressed cell proliferation by inducing G1/S arrest mediated by downregulation of cyclin D1. Furthermore, UBE2C knockdown decreased the migration of PDAC cells in vitro by downregulating epithelial-mesenchymal transition (EMT). RNA-seq analysis showed that upon silencing UBE2C in CFPAC-1 cells, cyclin D1 and vimentin were downregulated by approximately 3.5-fold and 2.6-fold, respectively, and the major enriched pathways were related to cell cycle progression. Experiments on tumour-bearing mice injected with CFPAC-1 cells indicated that UBE2C depletion significantly inhibits tumour growth in vivo. These results suggest that UBE2C is involved in the development and progression of PDAC by regulating cell proliferation and EMT. UBE2C is a novel potential therapeutic target for pancreatic cancer. DATABASE: Data are available in the GEO database under accession number GSE137172.
Collapse
Affiliation(s)
- Xianxing Wang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liangyu Yin
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Ludi Yang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Yao Zheng
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Songsong Liu
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Jiali Yang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
22
|
Luo Y, Shen D, Chen L, Wang G, Liu X, Qian K, Xiao Y, Wang X, Ju L. Identification of 9 key genes and small molecule drugs in clear cell renal cell carcinoma. Aging (Albany NY) 2019; 11:6029-6052. [PMID: 31422942 PMCID: PMC6738436 DOI: 10.18632/aging.102161] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/05/2019] [Indexed: 01/02/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a heterogeneous tumor that the underlying molecular mechanisms are largely unclear. This study aimed to elucidate the key candidate genes and pathways in ccRCC by integrated bioinformatics analysis. 1387 differentially expressed genes were identified based on three expression profile datasets, including 673 upregulated genes and 714 downregulated genes. Then we used weighted correlation network analysis to identify 6 modules associated with pathological stage and grade, blue module was the most relevant module. GO and KEGG pathway analyses showed that genes in blue module were enriched in cell cycle and metabolic related pathways. Further, 25 hub genes in blue module were identified as hub genes. Based on GEPIA database, 9 genes were associated with progression and prognosis of ccRCC patients, including PTTG1, RRM2, TOP2A, UHRF1, CEP55, BIRC5, UBE2C, FOXM1 and CDC20. Then multivariate Cox regression showed that the risk score base on 9 key genes signature was a clinically independent prognostic factor for ccRCC patients. Moreover, we screened out several new small molecule drugs that have the potential to treat ccRCC. Few of them were identified as biomarkers in ccRCC. In conclusion, our research identified 9 potential prognostic genes and several candidate small molecule drugs for ccRCC treatment.
Collapse
Affiliation(s)
- Yongwen Luo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dexin Shen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuefeng Liu
- Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Washington, DC 20007, USA
| | - Kaiyu Qian
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Medical Research Institute, Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| |
Collapse
|
23
|
Liu G, Zhao J, Pan B, Ma G, Liu L. UBE2C overexpression in melanoma and its essential role in G2/M transition. J Cancer 2019; 10:2176-2184. [PMID: 31258721 PMCID: PMC6584412 DOI: 10.7150/jca.32731] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/07/2019] [Indexed: 12/21/2022] Open
Abstract
Ubiquitin‑conjugating enzyme E2C (UBE2C) is a key regulator of cell cycle progression, and its aberrant expression has been implicated in various malignancies. However, its clinical and biological roles in malignant melanoma is still unclear. In this study, we found a significant high expression level of UBE2C in melanoma by an in silico analysis of The Cancer Genome Atlas (TCGA) database, which was further validated using fresh melanoma samples. The KM plotter showed that UBE2C level was statistically related to the overall survival (OS) of melanoma patients (p<0.01). RNA interference of UBE2C inhibited the growth of melanoma cells via deactivating ERK/Akt signaling pathways, and blocked the G2/M transition through downregulation of both the level and the activity of mitosis promoting factor (MPF), triggering the apoptosis of melanoma cells. Further, silencing of UBE2C significantly inhibited the xenografted tumor growth on nude mice, indicating an important role of UBE2C in melanoma growth in vivo. Together, our results show that UBE2C may serve as a novel prognostic biomarker as well as a potential therapeutic target for melanoma.
Collapse
Affiliation(s)
- Guolong Liu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Jun Zhao
- Department of Bone & Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Boyu Pan
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Gang Ma
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Liren Liu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| |
Collapse
|
24
|
MEF2B is a member of the BCL6 gene transcriptional complex and induces its expression in diffuse large B-cell lymphoma of the germinal center B-cell-like type. J Transl Med 2019; 99:539-550. [PMID: 30446717 DOI: 10.1038/s41374-018-0152-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 01/08/2023] Open
Abstract
Myocyte enhancer-binding factor 2B (MEF2B) has been implicated as a transcriptional regulator for BCL6. However, details about the interaction between MEF2B and BCL6 during expression, as well as the relationship of MEF2B to the expression of other germinal center (GC) markers, have not yet been fully explained. Using germinal center B-cell-like diffuse large B-cell lymphoma (GC-DLBCL) and activated B-cell diffuse large B-cell lymphoma (ABC-DLBCL) cell lines, we analyzed the expression of MEF2B and its associations with BCL6, CD10, and ERK. Furthermore, small interfering RNA (siRNA) was used to study the possible effects of MEF2B knockdown on these proteins and cell growth. Analysis of the BCL6 transcriptional complex was performed using electrophoretic mobility shift assay. The correlation between MEF2B expression and the genetic type of DLBCL was assessed using immunohistochemistry on 111 patient samples, and via in silico analysis of publicly available microarray (Gene Expression Omnibus (GEO)) datasets. Our results indicate that the expression of MEF2B protein is important for the growth of GC-DLBCL cells, as evidenced by MEF2B knockdown inhibition of cell growth and the subsequent suppression of BCL6, CD10, and ERK phosphorylation. Analysis of BCL6 transcription factors in nuclear extracts of MEF2-expressing DLBCL cells showed involvement of MEF2B with AP-2α and BCL6 proteins in the formation of the BCL6 gene transcriptional complex. Indeed, differential expression of MEF2B in the GC-DLBCL is statistically significant compared to the ABC-DLBCL in the GEO datasets, as well as in tissue microarray, as indicated via immunohistochemistry (Visco-Young algorithm). Our findings indicate that MEF2B is an essential component of the BCL6 gene transcriptional complex for the regulation of DLBCL growth via the promotion of BCL6 expression. Beyond its regulatory role in DLBCL growth, MEF2B expression correlated positively with BCL6 and CD10 expression, and was preferentially expressed in the GBC-DLBCL group.
Collapse
|
25
|
Hong AL, Tseng YY, Wala JA, Kim WJ, Kynnap BD, Doshi MB, Kugener G, Sandoval GJ, Howard TP, Li J, Yang X, Tillgren M, Ghandi M, Sayeed A, Deasy R, Ward A, McSteen B, Labella KM, Keskula P, Tracy A, Connor C, Clinton CM, Church AJ, Crompton BD, Janeway KA, Van Hare B, Sandak D, Gjoerup O, Bandopadhayay P, Clemons PA, Schreiber SL, Root DE, Gokhale PC, Chi SN, Mullen EA, Roberts CW, Kadoch C, Beroukhim R, Ligon KL, Boehm JS, Hahn WC. Renal medullary carcinomas depend upon SMARCB1 loss and are sensitive to proteasome inhibition. eLife 2019; 8:44161. [PMID: 30860482 PMCID: PMC6436895 DOI: 10.7554/elife.44161] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/03/2019] [Indexed: 12/11/2022] Open
Abstract
Renal medullary carcinoma (RMC) is a rare and deadly kidney cancer in patients of African descent with sickle cell trait. We have developed faithful patient-derived RMC models and using whole-genome sequencing, we identified loss-of-function intronic fusion events in one SMARCB1 allele with concurrent loss of the other allele. Biochemical and functional characterization of these models revealed that RMC requires the loss of SMARCB1 for survival. Through integration of RNAi and CRISPR-Cas9 loss-of-function genetic screens and a small-molecule screen, we found that the ubiquitin-proteasome system (UPS) was essential in RMC. Inhibition of the UPS caused a G2/M arrest due to constitutive accumulation of cyclin B1. These observations extend across cancers that harbor SMARCB1 loss, which also require expression of the E2 ubiquitin-conjugating enzyme, UBE2C. Our studies identify a synthetic lethal relationship between SMARCB1-deficient cancers and reliance on the UPS which provides the foundation for a mechanism-informed clinical trial with proteasome inhibitors. Renal medullary carcinoma (RMC for short) is a rare type of kidney cancer that affects teenagers and young adults. These patients are usually of African descent and carry one of the two genetic changes that cause sickle cell anemia. RMC is an aggressive disease without effective treatments and patients survive, on average, for only six to eight months after their diagnosis. Recent genetic studies found that most RMC cells have mutations that prevent them from producing a protein called SMARCB1. SMARCB1 normally acts as a so-called tumor suppressor, preventing cells from becoming cancerous. However, it was not clear whether RMCs always have to lose SMARCB1 if they are to survive and grow. Often, diseases are studied using laboratory-grown cells and tissues that have certain features of the disease. No such models had been created for RMC, which has slowed efforts to understand how the disease develops and find new treatments for it. Hong et al. therefore worked with patients to develop new lines of cells that can be used to study RMC in the laboratory. These RMC cells started dying when they were given copies of the SMARCB1 gene, which supports the theory that RMCs have to lose SMARCB1 in order to grow. Hong et al. then used a set of genetic reagents that can suppress or delete genes that are targeted by drugs, and followed this by testing a range of drugs on the RMC cells. Drugs and genetic reagents that reduced the activity of the proteasome – the structure inside cells that gets rid of old or unwanted proteins – caused the RMC cells to die. These proteasome inhibitor drugs also killed other kinds of cancer cells with SMARCB1 mutations. Proteasome inhibitors are already used to treat different types of cancer. Potentially, a clinical trial could be run to see if they will treat patients whose cancers lack SMARCB1. Further work is also needed to determine the exact link between SMARCB1 and the proteasome.
Collapse
Affiliation(s)
- Andrew L Hong
- Boston Children's Hospital, Boston, United States.,Dana-Farber Cancer Institute, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States
| | - Yuen-Yi Tseng
- Broad Institute of Harvard and MIT, Cambridge, United States
| | - Jeremiah A Wala
- Broad Institute of Harvard and MIT, Cambridge, United States
| | - Won-Jun Kim
- Dana-Farber Cancer Institute, Boston, United States
| | | | - Mihir B Doshi
- Broad Institute of Harvard and MIT, Cambridge, United States
| | | | - Gabriel J Sandoval
- Dana-Farber Cancer Institute, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States
| | | | - Ji Li
- Dana-Farber Cancer Institute, Boston, United States
| | - Xiaoping Yang
- Broad Institute of Harvard and MIT, Cambridge, United States
| | | | - Mahmhoud Ghandi
- Broad Institute of Harvard and MIT, Cambridge, United States
| | - Abeer Sayeed
- Broad Institute of Harvard and MIT, Cambridge, United States
| | - Rebecca Deasy
- Broad Institute of Harvard and MIT, Cambridge, United States
| | - Abigail Ward
- Boston Children's Hospital, Boston, United States.,Dana-Farber Cancer Institute, Boston, United States
| | - Brian McSteen
- Rare Cancer Research Foundation, Durham, United States
| | | | - Paula Keskula
- Broad Institute of Harvard and MIT, Cambridge, United States
| | - Adam Tracy
- Broad Institute of Harvard and MIT, Cambridge, United States
| | - Cora Connor
- RMC Support, North Charleston, United States
| | - Catherine M Clinton
- Boston Children's Hospital, Boston, United States.,Dana-Farber Cancer Institute, Boston, United States
| | | | - Brian D Crompton
- Boston Children's Hospital, Boston, United States.,Dana-Farber Cancer Institute, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States
| | - Katherine A Janeway
- Boston Children's Hospital, Boston, United States.,Dana-Farber Cancer Institute, Boston, United States
| | | | - David Sandak
- Rare Cancer Research Foundation, Durham, United States
| | - Ole Gjoerup
- Dana-Farber Cancer Institute, Boston, United States
| | - Pratiti Bandopadhayay
- Boston Children's Hospital, Boston, United States.,Dana-Farber Cancer Institute, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States
| | - Paul A Clemons
- Broad Institute of Harvard and MIT, Cambridge, United States
| | | | - David E Root
- Broad Institute of Harvard and MIT, Cambridge, United States
| | | | - Susan N Chi
- Boston Children's Hospital, Boston, United States.,Dana-Farber Cancer Institute, Boston, United States
| | - Elizabeth A Mullen
- Boston Children's Hospital, Boston, United States.,Dana-Farber Cancer Institute, Boston, United States
| | | | - Cigall Kadoch
- Dana-Farber Cancer Institute, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States
| | - Rameen Beroukhim
- Dana-Farber Cancer Institute, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States.,Brigham and Women's Hospital, Boston, United States
| | - Keith L Ligon
- Dana-Farber Cancer Institute, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States.,Brigham and Women's Hospital, Boston, United States
| | - Jesse S Boehm
- Broad Institute of Harvard and MIT, Cambridge, United States
| | - William C Hahn
- Dana-Farber Cancer Institute, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States.,Brigham and Women's Hospital, Boston, United States
| |
Collapse
|
26
|
Esmerats JF, Villa-Roel N, Kumar S, Gu L, Salim MT, Ohh M, Taylor WR, Nerem RM, Yoganathan AP, Jo H. Disturbed Flow Increases UBE2C (Ubiquitin E2 Ligase C) via Loss of miR-483-3p, Inducing Aortic Valve Calcification by the pVHL (von Hippel-Lindau Protein) and HIF-1α (Hypoxia-Inducible Factor-1α) Pathway in Endothelial Cells. Arterioscler Thromb Vasc Biol 2019; 39:467-481. [PMID: 30602302 PMCID: PMC6393167 DOI: 10.1161/atvbaha.118.312233] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022]
Abstract
Objective- Calcific aortic valve (AV) disease, characterized by AV sclerosis and calcification, is a major cause of death in the aging population; however, there are no effective medical therapies other than valve replacement. AV calcification preferentially occurs on the fibrosa side, exposed to disturbed flow (d-flow), whereas the ventricularis side exposed to predominantly stable flow remains protected by unclear mechanisms. Here, we tested the role of novel flow-sensitive UBE2C (ubiquitin E2 ligase C) and microRNA-483-3p (miR-483) in flow-dependent AV endothelial function and AV calcification. Approach and Results- Human AV endothelial cells and fresh porcine AV leaflets were exposed to stable flow or d-flow. We found that UBE2C was upregulated by d-flow in human AV endothelial cells in the miR-483-dependent manner. UBE2C mediated OS-induced endothelial inflammation and endothelial-mesenchymal transition by increasing the HIF-1α (hypoxia-inducible factor-1α) level. UBE2C increased HIF-1α by ubiquitinating and degrading its upstream regulator pVHL (von Hippel-Lindau protein). These in vitro findings were corroborated by immunostaining studies using diseased human AV leaflets. In addition, we found that reduction of miR-483 by d-flow led to increased UBE2C expression in human AV endothelial cells. The miR-483 mimic protected against endothelial inflammation and endothelial-mesenchymal transition in human AV endothelial cells and calcification of porcine AV leaflets by downregulating UBE2C. Moreover, treatment with the HIF-1α inhibitor (PX478) significantly reduced porcine AV calcification in static and d-flow conditions. Conclusions- These results suggest that miR-483 and UBE2C and pVHL are novel flow-sensitive anti- and pro-calcific AV disease molecules, respectively, that regulate the HIF-1α pathway in AV. The miR-483 mimic and HIF-1α pathway inhibitors may serve as potential therapeutics of calcific AV disease.
Collapse
Affiliation(s)
- Joan Fernandez Esmerats
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Nicolas Villa-Roel
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Lina Gu
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Md Tausif Salim
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology
| | - Michael Ohh
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, CA
| | - W. Robert Taylor
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
- Division of Cardiology, Department of Medicine, Emory University
| | - Robert M. Nerem
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology. Atlanta, GA, USA
| | - Ajit P. Yoganathan
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
- Division of Cardiology, Department of Medicine, Emory University
| |
Collapse
|
27
|
Ni M, Liu X, Wu J, Zhang D, Tian J, Wang T, Liu S, Meng Z, Wang K, Duan X, Zhou W, Zhang X. Identification of Candidate Biomarkers Correlated With the Pathogenesis and Prognosis of Non-small Cell Lung Cancer via Integrated Bioinformatics Analysis. Front Genet 2018; 9:469. [PMID: 30369945 PMCID: PMC6194157 DOI: 10.3389/fgene.2018.00469] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/24/2018] [Indexed: 01/10/2023] Open
Abstract
Background and Objective: Non-small cell lung cancer (NSCLC) accounts for 80-85% of all patients with lung cancer and 5-year relative overall survival (OS) rate is less than 20%, so that identifying novel diagnostic and prognostic biomarkers is urgently demanded. The present study attempted to identify potential key genes associated with the pathogenesis and prognosis of NSCLC. Methods: Four GEO datasets (GSE18842, GSE19804, GSE43458, and GSE62113) were obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) between NSCLC samples and normal ones were analyzed using limma package, and RobustRankAggreg (RRA) package was used to conduct gene integration. Moreover, Search Tool for the Retrieval of Interacting Genes database (STRING), Cytoscape, and Molecular Complex Detection (MCODE) were utilized to establish protein-protein interaction (PPI) network of these DEGs. Furthermore, functional enrichment and pathway enrichment analyses for DEGs were performed by Funrich and OmicShare. While the expressions and prognostic values of top genes were carried out through Gene Expression Profiling Interactive Analysis (GEPIA) and Kaplan Meier-plotter (KM) online dataset. Results: A total of 249 DEGs (113 upregulated and 136 downregulated) were identified after gene integration. Moreover, the PPI network was established with 166 nodes and 1784 protein pairs. Topoisomerase II alpha (TOP2A), a top gene and hub node with higher node degrees in module 1, was significantly enriched in mitotic cell cycle pathway. In addition, Interleukin-6 (IL-6) was enriched in amb2 integrin signaling pathway. The mitotic cell cycle was the most significant pathway in module 1 with the highest P-value. Besides, five hub genes with high degree of connectivity were selected, including TOP2A, CCNB1, CCNA2, UBE2C, and KIF20A, and they were all correlated with worse OS in NSCLC. Conclusion: The results showed that TOP2A, CCNB1, CCNA2, UBE2C, KIF20A, and IL-6 may be potential key genes, while the mitotic cell cycle pathway may be a potential pathway contribute to progression in NSCLC. Further, it could be used as a new biomarker for diagnosis and to direct the synthesis medicine of NSCLC.
Collapse
Affiliation(s)
- Mengwei Ni
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jinhui Tian
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Ting Wang
- Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuyu Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Kaihuan Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojiao Duan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaomeng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
28
|
Guo J, Jin D, Wu Y, Yang L, Du J, Gong K, Chen W, Dai J, Miao S, Xi S. The miR 495-UBE2C-ABCG2/ERCC1 axis reverses cisplatin resistance by downregulating drug resistance genes in cisplatin-resistant non-small cell lung cancer cells. EBioMedicine 2018; 35:204-221. [PMID: 30146342 PMCID: PMC6419862 DOI: 10.1016/j.ebiom.2018.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022] Open
Abstract
Cisplatin (DDP) resistance has become the leading cause
of mortality in non-small cell lung cancer (NSCLC). miRNA dysregulation
significantly contributes to tumor progression. In this study, we found that
miR-495 was significantly downregulated in lung cancer tissue specimens. This
study aimed to elucidate the functions, direct target genes, and molecular
mechanisms of miR-495 in lung cancer. miR-495 downregulated its substrate UBE2C
through direct interaction with UBE2C 3′- untranslated region. UBE2C is a
proto-oncogene activated in lung cancer; however, its role in chemotherapeutic
resistance is unclear. Herein, UBE2C expression levels were higher in
DDP-resistant NSCLC cells; this was associated with the proliferation, invasion,
and DDP resistance in induced cisplatin-resistant NSCLC cells. Furthermore,
epithelial–mesenchymal transitions (EMT) contributed to DDP resistance.
Moreover, UBE2C knockdown downregulated vimentin. In contrast, E-cadherin was
upregulated. Importantly, miR-495 and UBE2C were associated with cisplatin
resistance. We attempted to evaluate their effects on cell proliferation and
cisplatin resistance. We also performed EMT, cell migration, and invasion assays
in DDP-resistant NSCLC cells overexpressing miR-495 and under-expressing UBE2C.
Furthermore, in silico assays coupled with western blotting and luciferase
assays revealed that UBE2C directly binds to the 5′-UTR of the drug-resistance
genes ABCG2 and ERCC1.
Furthermore, miR-495 downregulated ABCG2 and
ERCC1 via regulation of UBE2C. Together, the present
results indicate that the miR495-UBE2C-ABCG2/ERCC1 axis reverses DDP resistance
via downregulation of anti-drug genes and reducing EMT in DDP-resistant NSCLC
cells.
Collapse
Affiliation(s)
- Jiwei Guo
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China.
| | - Dan Jin
- Department of Pain Management, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Yan Wu
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Lijuan Yang
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Jing Du
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Kaikai Gong
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Weiwei Chen
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Juanjuan Dai
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Shuang Miao
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Sichuan Xi
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| |
Collapse
|
29
|
Huang Z, Yang Q, Huang Z. Identification of Critical Genes and Five Prognostic Biomarkers Associated with Colorectal Cancer. Med Sci Monit 2018; 24:4625-4633. [PMID: 29973580 PMCID: PMC6065283 DOI: 10.12659/msm.907224] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common malignant tumor with high incidence and mortality worldwide. The aim of this study was to evaluate the association between differentially expressed genes (DEGs), which may function as biomarkers for CRC prognosis and therapies, and the clinical outcome in patients with CRC. MATERIAL AND METHODS A total of 116 normal mucous tissue and 930 CRC tissue datasets were downloaded from the Gene Expression Omnibus database (GEO) and The Cancer Genome Atlas (TCGA). After screening DEGs based on limma package in R. Gene Ontology (GO) and KEGG enrichment analysis as well as the protein-protein interaction (PPI) networks were performed to predict the function of these DEGs. Meanwhile, Cox proportional hazards regression was used to build a prognostic model of these DEGs. Then, Kaplan-Meier risk analysis was used to test the model in TCGA datasets and validation datasets. RESULTS In the present study, 300 DEGs with 100 upregulated genes and 200 downregulated genes were identified. The PPI networks including 162 DEGs and 256 nodes were constructed and 2 modules with high degree were selected. Moreover, 5 genes (MMP1, ACSL6, SMPD1, PPARGC1A, and HEPACAM2) were identified using the Cox proportional hazards stepwise regression. Kaplan-Meier risk curve in the TCGA and validation cohorts showed that high-risk group had significantly poor overall survival than the low-risk group. CONCLUSIONS Our study provided insights into the mechanisms of CRC formation and found 5 prognostic genes, which could potentially inform further studies and clinical therapies.
Collapse
Affiliation(s)
- Zuoliang Huang
- School of Medical Laboratory, Shao Yang University, Shaoyang, Hunan, China (mainland)
| | - Qin Yang
- School of Medical Laboratory, Shao Yang University, Shaoyang, Hunan, China (mainland)
| | - Zezhi Huang
- School of Medical Laboratory, Shao Yang University, Shaoyang, Hunan, China (mainland)
| |
Collapse
|
30
|
Zhou Z, Cheng Y, Jiang Y, Liu S, Zhang M, Liu J, Zhao Q. Ten hub genes associated with progression and prognosis of pancreatic carcinoma identified by co-expression analysis. Int J Biol Sci 2018; 14:124-136. [PMID: 29483831 PMCID: PMC5821034 DOI: 10.7150/ijbs.22619] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/21/2017] [Indexed: 12/16/2022] Open
Abstract
Since the five-year survival rate is less than 5%, pancreatic ductal adenocarcinoma (PDAC) remains the 4th cause of cancer-related death. Although PDAC has been repeatedly researched in recent years, it is still predicted to be the second leading cause of cancer death by year 2030. In our study, the differentially expressed genes in dataset GSE62452 were used to construct a co-expression network by WGCNA. The yellow module related to grade of PDAC was screened. Combined with co-expression network and PPI network, 36 candidates were screened. After survival and regression analysis by using GSE62452 and TCGA dataset, we identified 10 real hub genes (CCNA2, CCNB1, CENPF, DLGAP5, KIF14, KIF23, NEK2, RACGAP1, TPX2 and UBE2C) tightly related to progression of PDAC. According to Oncomine database and The Human Protein Atlas (HPA), we found that all real hub genes were overexpressed in pancreatic carcinoma compared with normal tissues on transcriptional and translational level. ROC curve was plotted and AUC was calculated to distinguish recurrent and non-recurrent PDAC and every AUC of the real hub gene was greater than 0.5. Finally, functional enrichment analysis and gene set enrichment (GSEA) was performed and both of them showed the cell cycle played a vital role in PDAC.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Gastroenterology, Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University
| | - Yian Cheng
- Department of Gastroenterology, Renming Hospital of Wuhan University
| | - Yinan Jiang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University
| | - Shi Liu
- Department of Gastroenterology, Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University
| | - Meng Zhang
- Department of Gastroenterology, Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University
| | - Jing Liu
- Department of Gastroenterology, Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University
| | - Qiu Zhao
- Department of Gastroenterology, Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University
| |
Collapse
|
31
|
Umbaugh CS, Diaz-Quiñones A, Neto MF, Shearer JJ, Figueiredo ML. A dock derived compound against laminin receptor (37 LR) exhibits anti-cancer properties in a prostate cancer cell line model. Oncotarget 2017; 9:5958-5978. [PMID: 29464047 PMCID: PMC5814187 DOI: 10.18632/oncotarget.23236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/16/2017] [Indexed: 11/25/2022] Open
Abstract
Laminin receptor (67 LR) is a 67 kDa protein derived from a 37 kDa precursor (37 LR). 37/67 LR is a strong clinical correlate for progression, aggression, and chemotherapeutic relapse of several cancers including breast, prostate, and colon. The ability of 37/67 LR to promote cancer cell aggressiveness is further increased by its ability to transduce physiochemical and mechanosensing signals in endothelial cells and modulate angiogenesis. Recently, it was demonstrated that 37/67 LR modulates the anti-angiogenic potential of the secreted glycoprotein pigment epithelium-derived factor (PEDF). Restoration of PEDF balance is a desirable therapeutic outcome, and we sought to identify a small molecule that could recapitulate known signaling properties of PEDF but without the additional complications of peptide formulation or gene delivery safety validation. We used an in silico drug discovery approach to target the interaction interface between PEDF and 37 LR. Following cell based counter screening and binding validation, we characterized a hit compound's anti-viability, activation of PEDF signaling-related genes, anti-wound healing, and anti-cancer signaling properties. This hit compound has potential for future development as a lead compound for treating tumor growth and inhibiting angiogenesis.
Collapse
Affiliation(s)
- Charles Samuel Umbaugh
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| | - Adriana Diaz-Quiñones
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| | - Manoel Figueiredo Neto
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| | - Joseph J Shearer
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| | - Marxa L Figueiredo
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| |
Collapse
|
32
|
Leucovorin Enhances the Anti-cancer Effect of Bortezomib in Colorectal Cancer Cells. Sci Rep 2017; 7:682. [PMID: 28386133 PMCID: PMC5429730 DOI: 10.1038/s41598-017-00839-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/15/2017] [Indexed: 01/06/2023] Open
Abstract
Colorectal cancer is a major cancer type worldwide. 5-fluorouracil, often given with leucovorin, is the most commonly used drug in colorectal cancer chemotherapy, yet development of drug resistance to 5-fluorouracil in colorectal cancer cells is the primary cause of chemotherapy failure. Most patients receiving intravenous 5-fluorouracil develop side effects. Leucovorin, due to its vitamin-like profile, has few side-effects. Drug repurposing is the application of approved drugs to treat new indications. In this study, we performed a novel drug-repurposing screening to identify Food and Drug Administration-approved chemotherapeutic compounds possessing synergistic activity with leucovorin against colorectal cancer cells. We found that the combination of bortezomib and leucovorin enhanced caspase activation and increased apoptosis in colorectal cancer cells better than either agent alone. Further, the synergistic induction of apoptosis and inhibition of tumor growth were also observed in mouse colorectal cancer xenografts. These data support leucovorin enhances the anti-cancer effect of bortezomib and present this novel combinatorial treatment against colorectal cancer.
Collapse
|
33
|
Zhang YX, Li XF, Yuan GQ, Hu H, Song XY, Li JY, Miao XK, Zhou TX, Yang WL, Zhang XW, Mou LY, Wang R. β-Arrestin 1 has an essential role in neurokinin-1 receptor-mediated glioblastoma cell proliferation and G 2/M phase transition. J Biol Chem 2017; 292:8933-8947. [PMID: 28341744 DOI: 10.1074/jbc.m116.770420] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/22/2017] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma is the most common malignant brain tumor and has a poor prognosis. Tachykinin receptor neurokinin-1 (NK1R) is a promising target in glioblastoma therapy because of its overexpression in human glioblastoma. NK1R agonists promote glioblastoma cell growth, whereas NK1R antagonists efficiently inhibit cell growth both in vitro and in vivo However, the molecular mechanisms involved in these effects are incompletely understood. β-Arrestins (ARRBs) serve as scaffold proteins and adapters to mediate intracellular signal transduction. Here we show that the ARRB1-mediated signaling pathway is essential for NK1-mediated glioblastoma cell proliferation. ARRB1 knockdown significantly inhibited NK1-mediated glioblastoma cell proliferation and induced G2/M phase cell cycle arrest. ARRB1 knockdown cells showed remarkable down-regulation of CDC25C/CDK1/cyclin B1 activity. We also demonstrated that ARRB1 mediated prolonged phosphorylation of ERK1/2 and Akt in glioblastoma cells induced by NK1R activation. ERK1/2 and Akt phosphorylation are involved in regulating CDC25C/CDK1/cyclin B1 activity. The lack of long-term ERK1/2 and Akt activation in ARRB1 knockdown cells was at least partly responsible for the delayed cell cycle progression and proliferation. Moreover, we found that ARRB1-mediated ERK1/2 and Akt phosphorylation regulated the transcriptional activity of both NF-κB and AP-1, which were involved in cyclin B1 expression. ARRB1 deficiency increased the sensitivity of glioblastoma cells to the treatment of NK1R antagonists. Taken together, our results suggest that ARRB1 plays an essential role in NK1R-mediated cell proliferation and G2/M transition in glioblastoma cells. Interference with ARRB1-mediated signaling via NK1R may have potential significance for therapeutic strategies targeting glioblastoma.
Collapse
Affiliation(s)
- Yi-Xin Zhang
- From the Institute of Biochemistry and Molecular Biology, School of Life Sciences and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China and
| | - Xiao-Fang Li
- From the Institute of Biochemistry and Molecular Biology, School of Life Sciences and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China and
| | - Guo-Qiang Yuan
- the Department of Neurosurgery, Second Affiliated Hospital of Lanzhou University, Lanzhou 730000, China
| | - Hui Hu
- From the Institute of Biochemistry and Molecular Biology, School of Life Sciences and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China and
| | - Xiao-Yun Song
- From the Institute of Biochemistry and Molecular Biology, School of Life Sciences and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China and
| | - Jing-Yi Li
- From the Institute of Biochemistry and Molecular Biology, School of Life Sciences and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China and
| | - Xiao-Kang Miao
- From the Institute of Biochemistry and Molecular Biology, School of Life Sciences and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China and
| | - Tian-Xiong Zhou
- From the Institute of Biochemistry and Molecular Biology, School of Life Sciences and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China and
| | - Wen-Le Yang
- From the Institute of Biochemistry and Molecular Biology, School of Life Sciences and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China and
| | - Xiao-Wei Zhang
- From the Institute of Biochemistry and Molecular Biology, School of Life Sciences and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China and
| | - Ling-Yun Mou
- From the Institute of Biochemistry and Molecular Biology, School of Life Sciences and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China and
| | - Rui Wang
- From the Institute of Biochemistry and Molecular Biology, School of Life Sciences and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China and
| |
Collapse
|
34
|
Gu JJ, Kaufman GP, Mavis C, Czuczman MS, Hernandez-Ilizaliturri FJ. Mitotic catastrophe and cell cycle arrest are alternative cell death pathways executed by bortezomib in rituximab resistant B-cell lymphoma cells. Oncotarget 2017; 8:12741-12753. [PMID: 28055975 PMCID: PMC5355050 DOI: 10.18632/oncotarget.14405] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022] Open
Abstract
The ubiqutin-proteasome system (UPS) plays a role in rituximab-chemotherapy resistance and bortezomib (BTZ) possesses caspase-dependent (i.e. Bak stabilization) and a less characterized caspase-independent mechanism-of-action(s). Here, we define BTZ-induced caspase-independent cell death pathways. A panel of rituximab-sensitive (RSCL), rituximab-resistant cell lines (RRCL) and primary tumor cells derived from lymphoma patients (N = 13) were exposed to BTZ. Changes in cell viability, cell-cycle, senescence, and mitotic index were quantified. In resting conditions, RRCL exhibits a low-proliferation rate, accumulation of cells in S-phase and senescence. Exposure of RRCL to BTZ reduces cell senescence, induced G2-M phase cell-cycle arrest, and is associated with mitotic catastrophe. BTZ stabilized p21, CDC2, and cyclin B in RRCL and in primary tumor cells. Transient p21 knockdown alleviates BTZ-induced senescence inhibition, G2-M cell cycle blockade, and mitotic catastrophe. Our data suggest that BTZ can induce apoptosis or mitotic catastrophe and that p21 has a pivotal role in BTZ activity against RRCL.
Collapse
Affiliation(s)
- Juan J Gu
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Gregory P Kaufman
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, Celgene Corporation, Summit, NJ, USA
| | - Cory Mavis
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Francisco J Hernandez-Ilizaliturri
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
35
|
Wang R, Song Y, Liu X, Wang Q, Wang Y, Li L, Kang C, Zhang Q. UBE2C induces EMT through Wnt/β‑catenin and PI3K/Akt signaling pathways by regulating phosphorylation levels of Aurora-A. Int J Oncol 2017; 50:1116-1126. [PMID: 28260026 PMCID: PMC5363887 DOI: 10.3892/ijo.2017.3880] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/11/2017] [Indexed: 12/13/2022] Open
Abstract
The ubiquitin-conjugating enzyme 2C (UBE2C) is the key component in the ubiquitin proteasome system (UPS) by partnering with the anaphase‑promoting complex (APC/C). A high UBE2C protein expression level has been reported in various types of human tumors. However, little is known about the precise mechanism by which UBE2C expression is downregulated in gastric cancer. We found in MGC‑803 and SGC‑7901 gastric cancer cells UBE2C‑deficient G2/M phase arrest in the cell cycle and subsequently decreased gastric adenocarcinoma tumorigenesis. In the previous study, we identified Aurora-A (AURKA) as the hub gene of the gastric cancer linkage network based genome‑wide association study (eGWAS). Furthermore, knockdown of UBE2C using siRNA markedly reduced the level of phosphorylation AURKA (p‑AURKA) via Wnt/β‑catenin and PI3K/Akt signaling pathways suppressed the occurrence and development of gastric cancer. Additionally, the expression of E‑cadherin was up‑regulated and N-cadherin was downregulated in response to UBE2C knockdown and inhibits epithelial-mesenchymal transition (EMT). Collectively, our data suggest that the activity of AURKA might be regulated by UBE2C through regulating the activity of APC/C. UBE2C may be a new marker in the diagnosis of gastric cancer and may be a potential therapeutic target for the treatment of gastric adenocarcinoma.
Collapse
Affiliation(s)
- Rui Wang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yue Song
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xi Liu
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Qixue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yunfei Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Liwei Li
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Qingyu Zhang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
36
|
Li X, Li M, Ruan H, Qiu W, Xu X, Zhang L, Yu J. Co-targeting translation and proteasome rapidly kills colon cancer cells with mutant RAS/RAF via ER stress. Oncotarget 2017; 8:9280-9292. [PMID: 28030835 PMCID: PMC5354731 DOI: 10.18632/oncotarget.14063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/13/2016] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancers with mutant RAS/RAF are therapy refractory. Deregulated mRNA translation has become an emerging target in cancer treatment. We recently reported that mTOR inhibitors induce apoptosis via ER stress and the extrinsic pathway upon acute inhibition of the eIF4F complex in colon cancer cells and xenografts, while mutant BRAF600E leads to therapeutic resistance via ERK-mediated Mcl-1 stabilization. In this study, we demonstrated that several other translation inhibitors also activate ER stress and the extrinsic apoptotic pathway. Co-targeting translation and proteasome using the combination of Episilvestrol and Bortezomib promoted strong ER stress and rapid killing of colon cancer cells with mutant RAS/RAF in culture and mice. This combination led to marked induction of ER stress and ATF4/CHOP, followed by DR5- and BAX-dependent apoptosis, but unexpectedly with maintained or even increased levels of prosurvival factors such as p-AKT, p-4E-BP1, Mcl-1, and eiF4E targets c-Myc and Bcl-xL. Our study supports that targeting deregulated proteostasis is a promising approach for treating advanced colon cancer via induction of destructive ER stress that overcomes multiple resistance mechanisms associated with translation inhibition.
Collapse
Affiliation(s)
- Xiangyun Li
- First department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Daping, Yu Zhong District, Chongqing 400042, P.R. China
- Department of Pathology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Mei Li
- Department of Animal Genetics, Breeding and Reproduction, Nanjing Agricultural University, Weigang, Nanjing 210095, P.R. China
- Department of Pathology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Hang Ruan
- Department of Pathology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Wei Qiu
- First department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Daping, Yu Zhong District, Chongqing 400042, P.R. China
| | - Xiang Xu
- First department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Daping, Yu Zhong District, Chongqing 400042, P.R. China
| | - Lin Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Jian Yu
- Department of Pathology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| |
Collapse
|
37
|
Beaumont KA, Hill DS, Daignault SM, Lui GYL, Sharp DM, Gabrielli B, Weninger W, Haass NK. Cell Cycle Phase-Specific Drug Resistance as an Escape Mechanism of Melanoma Cells. J Invest Dermatol 2016; 136:1479-1489. [PMID: 26970356 DOI: 10.1016/j.jid.2016.02.805] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/06/2016] [Accepted: 02/25/2016] [Indexed: 12/19/2022]
Abstract
The tumor microenvironment is characterized by cancer cell subpopulations with heterogeneous cell cycle profiles. For example, hypoxic tumor zones contain clusters of cancer cells that arrest in G1 phase. It is conceivable that neoplastic cells exhibit differential drug sensitivity based on their residence in specific cell cycle phases. In this study, we used two-dimensional and organotypic melanoma culture models in combination with fluorescent cell cycle indicators to investigate the effects of cell cycle phases on clinically used drugs. We demonstrate that G1-arrested melanoma cells, irrespective of the underlying cause mediating G1 arrest, are resistant to apoptosis induced by the proteasome inhibitor bortezomib or the alkylating agent temozolomide. In contrast, G1-arrested cells were more sensitive to mitogen-activated protein kinase pathway inhibitor-induced cell death. Of clinical relevance, pretreatment of melanoma cells with a mitogen-activated protein kinase pathway inhibitor, which induced G1 arrest, resulted in resistance to temozolomide or bortezomib. On the other hand, pretreatment with temozolomide, which induced G2 arrest, did not result in resistance to mitogen-activated protein kinase pathway inhibitors. In summary, we established a model to study the effects of the cell cycle on drug sensitivity. Cell cycle phase-specific drug resistance is an escape mechanism of melanoma cells that has implications on the choice and timing of drug combination therapies.
Collapse
Affiliation(s)
- Kimberley A Beaumont
- The Centenary Institute, Newtown, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - David S Hill
- The Centenary Institute, Newtown, NSW, Australia; Dermatological Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Sheena M Daignault
- The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Goldie Y L Lui
- The Centenary Institute, Newtown, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Danae M Sharp
- The Centenary Institute, Newtown, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Brian Gabrielli
- The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Wolfgang Weninger
- The Centenary Institute, Newtown, NSW, Australia; Discipline of Dermatology, University of Sydney, Sydney, NSW, Australia; Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Nikolas K Haass
- The Centenary Institute, Newtown, NSW, Australia; The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia; Discipline of Dermatology, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
38
|
Ma R, Kang X, Zhang G, Fang F, DU Y, Lv H. High expression of UBE2C is associated with the aggressive progression and poor outcome of malignant glioma. Oncol Lett 2016; 11:2300-2304. [PMID: 26998166 DOI: 10.3892/ol.2016.4171] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 12/18/2015] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin-conjugating enzyme E2C (UBE2C) is a key regulator of cell cycle progression and is involved in the tumorigenesis of a variety of cancers. Previous studies have demonstrated that UBE2C is an important factor in the malignant progression of astrocytic tumors. However, the association between UBE2C expression and clinical prognosis of glioma patients has not been defined. In the present study, the expression of UBE2C in gliomas and non-cancerous brain tissues were detected by microarray and immunohistochemical analysis. The association between UBE2C expression and clinicopathological characteristics of the glioma patients was evaluated. The Kaplan-Meier method and multivariate Cox's proportional hazards model were used to analyze the survival time of the patients. The results demonstrated that the expression levels of UBE2C in anaplastic gliomas and glioblastoma (GBM) patients were significantly higher compared to low-grade gliomas, in microarray and immunohistochemistry analysis. A higher UBE2C expression was associated with a significantly decreased overall survival time in patients possessing anaplastic gliomas (P<0.01) and GBMs (P<0.05). Multivariate analysis of 80 GBM patients revealed that UBE2C expression was an independent prognostic factor. To the best of our knowledge, the present data suggest for the first time that UBE2C overexpression is strongly associated with an aggressive progression and poor outcome of malignant glioma. Therefore, UBE2C overexpression may be used as a predictor of poor prognosis in patients with malignant glioma.
Collapse
Affiliation(s)
- Ruimin Ma
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China; Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100050, P.R. China
| | - Xixiong Kang
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China; Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100050, P.R. China
| | - Guojun Zhang
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China; Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100050, P.R. China
| | - Fang Fang
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China; Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100050, P.R. China
| | - Yamei DU
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China; Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100050, P.R. China
| | - Hong Lv
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China; Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100050, P.R. China
| |
Collapse
|
39
|
Lü L, Liu X, Wang C, Hu F, Wang J, Huang H. Dissociation of E-cadherin/β-catenin complex by MG132 and bortezomib enhances CDDP induced cell death in oral cancer SCC-25 cells. Toxicol In Vitro 2015; 29:1965-76. [DOI: 10.1016/j.tiv.2015.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/04/2015] [Accepted: 07/08/2015] [Indexed: 11/30/2022]
|
40
|
Zhang Z, Liu P, Wang J, Gong T, Zhang F, Ma J, Han N. Ubiquitin-conjugating enzyme E2C regulates apoptosis-dependent tumor progression of non-small cell lung cancer via ERK pathway. Med Oncol 2015; 32:149. [PMID: 25832867 DOI: 10.1007/s12032-015-0609-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 11/29/2022]
Abstract
The oncogenic role of ubiquitin-conjugating enzyme E2C (UBE2C) had been identified in some types of human tumors, while the clinical and biological role of UBE2C in non-small cell lung cancer (NSCLC) is still elusive. Here, we have determined the specific role of UBE2C in NSCLC. Western blot and qRT-PCR were used for detecting the mRNA level and protein level of UBE2C in NSCLC samples and cell lines, respectively. Lentivirus product was used to conduct loss of function assay. qRT-PCR array was employed to detect potential downstream genes regulated by UBE2C. As the result, UBE2C mRNA level was approximately threefold overexpression in NSCLC tissues compared with normal tissues, while a sharp change was detected at protein level. Overexpression of UBE2C in lung cancer samples was correlated with advanced pathological stage. UBE2C regulated cell growth in an apoptosis-dependent way. PCR Array analysis revealed that UBE2C regulated the expression of genes associated with tumor growth, apoptosis, and angiogenesis. Furthermore, UBE2C could regulate phospho-ERK1/2 level but not STAT3, YAP, or AKT pathway, which was accompanied with the classic function of ERK pathway in cell growth and apoptosis. In conclusion, our results indicated UBE2C might be a novel therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Zhongmian Zhang
- Department of Oncology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University School of Medicine, Central Laboratory, No. 2, Jingba Rd, Zhengzhou, 450000, Henan, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Tang XK, Wang KJ, Tang YK, Chen L. Effects of ubiquitin-conjugating enzyme 2C on invasion, proliferation and cell cycling of lung cancer cells. Asian Pac J Cancer Prev 2015; 15:3005-9. [PMID: 24815438 DOI: 10.7314/apjcp.2014.15.7.3005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The aims of this study were to investigate the influence of ubiquitin- conjugating enzyme E2C (UBE2C) on biological behavior of lung cancer cells. Using MTT, flow cytometry and invasion assays, we detected UBE2C expression and evaluated its biological properties in these cells, including effects on proliferation, the cell cycle profile and invasive capability. Compared with control cells, the UBE2C transfected cells demonstrated increased cellular proliferation (p<0.05). UBE2C transfected cells also had a lower percentage in G1 phase and a higher percentage in S phase (p<0.05). Importantly, the UBE2C transfected cells had a notable enhancement of cell numbers penetrating the basement membrane compared with the control group (p<0.05). Ectopic up- regulation UBE2C promoted the growth of lung cancer cells in vivo. Furthermore, we found UBE2C increased the expression of cyclin D1 and MMP-2. These results show UBE2C may represent a potential therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Xiao-Kui Tang
- Department of Respiratory Disease, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China E-mail :
| | | | | | | |
Collapse
|
42
|
Temporal gene expression analysis of Sjögren’s syndrome in C57BL/6.NOD-Aec1Aec2 mice based on microarray time-series data using an improved empirical Bayes approach. Mol Biol Rep 2014; 41:5953-60. [DOI: 10.1007/s11033-014-3471-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 06/14/2014] [Indexed: 10/25/2022]
|
43
|
Chou CP, Huang NC, Jhuang SJ, Pan HB, Peng NJ, Cheng JT, Chen CF, Chen JJ, Chang TH. Ubiquitin-conjugating enzyme UBE2C is highly expressed in breast microcalcification lesions. PLoS One 2014; 9:e93934. [PMID: 24699941 PMCID: PMC3974821 DOI: 10.1371/journal.pone.0093934] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/08/2014] [Indexed: 01/07/2023] Open
Abstract
Ubiquitin-conjugating enzyme 2C (UBE2C) contributes to ubiquitin-mediated proteasome degradation of cell cycle progression in breast cancer. Microcalcification (MC) is the most common mammographic feature of early breast cancer. In this study, we evaluated whether UBE2C could be a tumor marker of early breast cancer with MC found on screening mammography. UBE2C protein and mRNA expression were measured in breast core biopsy pairs of MC and adjacent non-MC breast tissue from each subject. Immunohistochemistry revealed UBE2C positivity in 69.4% of MC samples and 77.6% negativity in non-MC samples (p<0.0001). On RT-qPCR, 56.1% of malignant MC lesion samples showed high mRNA level of UBE2C and 80% of benign MC lesion samples showed a low level of UBE2C (p = 0.1766). We investigated the carcinogenic role of UBE2C in MCF-7 breast cancer cells with UBE2C knockdown; UBE2C knockdown downregulated cell proliferation and activated the cellular apoptosis pathway to inhibit cell colony formation. Furthermore, UBE2C expression was associated with that of carcinogenic genes human epidermal growth factor receptor type 2 (HER2), cellular c-Ki-ras2 proto-oncogene (KRAS), vascular endothelial growth factor (VEGF), CXC chemokine receptor 4 (CXCR4), C-C motif chemokine 5 (CCL5), neural precursor cell expressed, developmentally downregulated 9 (NEDD9) and Ras homolog family member C (RhoC). UBE2C may be a marker for diagnosis of nonpalpable breast lesions but not benign or malignant tumors in mammography core biopsies. Suppression of UBE2C may be a potential therapy target in breast cancer.
Collapse
Affiliation(s)
- Chen-Pin Chou
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Nan-Chieh Huang
- Department of Family Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Shu-Jhen Jhuang
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Huay-Ben Pan
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung, Taiwan
| | - Nan-Jing Peng
- Section of Nuclear Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jiin-Tsuey Cheng
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chian-Feng Chen
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jih-Jung Chen
- Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung, Taiwan
| | - Tsung-Hsien Chang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung, Taiwan
- * E-mail:
| |
Collapse
|
44
|
Bavi P, Jehan Z, Bu R, Prabhakaran S, Al-Sanea N, Al-Dayel F, Al-Assiri M, Al-Halouly T, Sairafi R, Uddin S, Al-Kuraya KS. ALK gene amplification is associated with poor prognosis in colorectal carcinoma. Br J Cancer 2013; 109:2735-2743. [PMID: 24129244 PMCID: PMC3833224 DOI: 10.1038/bjc.2013.641] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 09/14/2013] [Accepted: 09/23/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Recently, the anaplastic lymphoma kinase (ALK) has been found to be altered in several solid and haematological tumours. ALK gene copy number changes and mutations in colorectal cancers (CRCs) are not well characterised. We aimed to study the prevalence of ALK copy number changes, translocations, gene mutations and protein expression in 770 CRC patients, and correlate these findings with molecular and clinico-pathological data. METHODS ALK gene copy number variations and ALK expression were evaluated by fluorescence in situ hybridisation (FISH) and immunohistochemistry, respectively. RESULTS Translocations of the ALK gene were not observed; 3.4% (26 out of 756) of the CRC patients tested had an increase in ALK gene copy number either amplification or gain. Interestingly, increased ALK gene copy number alteration was associated with poor prognosis (P=0.0135) and was an independent prognostic marker in multivariate Cox proportional hazards model. The study reveals a significant impact of ALK gene copy number alterations on the outcome of patients with CRC. CONCLUSION The findings of our study highlight a potential role of targeting ALK in advanced CRCs by using ALK FISH and ALK IHC as a screening tool to detect ALK alterations. Based on these findings, a potential role of ALK inhibitor as a therapeutic agent in a subset of CRC merits further investigation.
Collapse
Affiliation(s)
- P Bavi
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Z Jehan
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - R Bu
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - S Prabhakaran
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - N Al-Sanea
- Colorectal Unit, Department of Surgery, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - F Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - M Al-Assiri
- Department of Surgery, Security Forces Hospital, Riyadh, Saudi Arabia
| | - T Al-Halouly
- Department of Pathology, Security Forces Hospital, Riyadh, Saudi Arabia
| | - R Sairafi
- Department of Surgery, Security Forces Hospital, Riyadh, Saudi Arabia
| | - S Uddin
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - K S Al-Kuraya
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- Department of Pathology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
45
|
Targeting neuroblastoma stem cells with retinoic acid and proteasome inhibitor. PLoS One 2013; 8:e76761. [PMID: 24116151 PMCID: PMC3792090 DOI: 10.1371/journal.pone.0076761] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/28/2013] [Indexed: 11/24/2022] Open
Abstract
Background Neuroblastma cell lines contain a side-population of cells which express stemness markers. These stem-like cells may represent the potential underlying mechanism for resistance to conventional therapy and recurrence of neuroblastoma in patients. Methodology/Principal Findings To develop novel strategies for targeting the side-population of neurobastomas, we analyzed the effects of 13-cis-retinoic acid (RA) combined with the proteasome inhibitor MG132. The short-term action of the treatment was compared with effects after a 5-day recovery period during which both chemicals were withdrawn. RA induced growth arrest and differentiation of SH-SY5Y and SK-N-BE(2) neuroblastoma cell lines. Inhibition of the proteasome caused apoptosis in both cell lines, thus, revealing the critical role of this pathway in the regulated degradation of proteins involved in neuroblastoma proliferation and survival. The combination of RA with MG132 induced apoptosis in a dose-dependent manner, in addition to promoting G2/M arrest in treated cultures. Interestingly, expression of stem cell markers such as Nestin, Sox2, and Oct4 were reduced after the recovery period of combined treatment as compared with untreated cells or treated cells with either compound alone. Consistent with this, neurosphere formation was significantly impaired by the combined treatment of RA and MG132. Conclusions Given that stem-like cells are associated with resistant to conventional therapy and are thought to be responsible for relapse, our results suggest that dual therapy of RA and proteasome inhibitor might be beneficial for targeting the side-population of cells associated residual disease in high-risk neuroblastoma.
Collapse
|
46
|
Morikawa T, Kawai T, Abe H, Kume H, Homma Y, Fukayama M. UBE2C is a marker of unfavorable prognosis in bladder cancer after radical cystectomy. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:1367-1374. [PMID: 23826418 PMCID: PMC3693202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/28/2013] [Indexed: 06/02/2023]
Abstract
It has been suggested that ubiquitin-conjugating enzyme E2C (UBE2C, also known as UBCH10) represents a promising cancer biomarker. However, the clinicopathological or prognostic significance as well as the functions of UBE2C in bladder cancer are largely unknown. To investigate the significance of UBE2C expression in bladder cancer, immunohistochemical analysis was performed using a tissue microarray. UBE2C positivity was observed in 51 of 82 (62%) bladder urothelial carcinoma cases treated with radical cystectomy. In contrast, UBE2C was negative in all of the non-neoplastic urothelium examined. UBE2C positivity was significantly associated with higher tumor stage (p=0.0061) and presence of lymphovascular invasion (p=0.0045). In addition, UBE2C positivity was significantly associated with shorter cancer-specific survival after cystectomy (log rank p=0.0017; multivariate hazard ratio, 2.49; 95% confidence interval, 1.09-5.71). Small interfering RNA-mediated suppression of UBE2C in UM-UC-3 bladder cancer cells inhibited cell proliferation in vitro. Taken together, our results suggest that UBE2C is a novel prognostic biomarker as well as a potential therapeutic target in bladder cancer.
Collapse
Affiliation(s)
- Teppei Morikawa
- Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
47
|
Shen Z, Jiang X, Zeng C, Zheng S, Luo B, Zeng Y, Ding R, Jiang H, He Q, Guo J, Jie W. High expression of ubiquitin-conjugating enzyme 2C (UBE2C) correlates with nasopharyngeal carcinoma progression. BMC Cancer 2013; 13:192. [PMID: 23587173 PMCID: PMC3637393 DOI: 10.1186/1471-2407-13-192] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/12/2013] [Indexed: 01/01/2023] Open
Abstract
Background Overexpression of ubiquitin-conjugating enzyme 2C (UBE2C) has been detected in many types of human cancers, and is correlated with tumor malignancy. However, the role of UBE2C in human nasopharyngeal carcinoma (NPC) is unclear. In this study, we investigated the role of aberrant UBE2C expression in the progression of human NPC. Methods Immunohistochemical analysis was performed to detect UBE2C protein in clinical samples of NPC and benign nasopharyngeal tissues, and the association of UBE2C expression with patient clinicopathological characteristics was analyzed. UBEC2 expression profiles were evaluated in cell lines representing varying differentiated stages of NPC and immortalized nasopharyngeal epithelia NP-69 cells using quantitative RT-PCR, western blotting and fluorescent staining. Furthermore, UBE2C was knocked down using RNA interference in these cell lines and proliferation and cell cycle distribution was investigated. Results Immunohistochemical analysis revealed that UBE2C protein expression levels were higher in NPC tissues than in benign nasopharyngeal tissues (P<0.001). Moreover, high UBE2C protein expression was positively correlated with tumor size (P=0.017), lymph node metastasis (P=0.016) and distant metastasis (P=0.015) in NPC patients. In vitro experiments demonstrated that UBE2C expression levels were inversely correlated with the degree of differentiation of NPC cell lines, whereas UBE2C displayed low level of expression in NP-69 cells. Knockdown of UBE2C led to significant arrest at the S and G2/M phases of the cell cycle, and decreased cell proliferation was observed in poorly-differentiated CNE2Z NPC cells and undifferentiated C666-1 cells, but not in well-differentiated CNE1 and immortalized NP-69 cells. Conclusions Our findings suggest that high expression of UBE2C in human NPC is closely related to tumor malignancy, and may be a potential marker for NPC progression.
Collapse
Affiliation(s)
- Zhihua Shen
- Department of Pathology & Pathophysiology, School of Basic Medicine Science, Guangdong Medical College, Zhanjiang 524023, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Rastogi N, Mishra DP. Therapeutic targeting of cancer cell cycle using proteasome inhibitors. Cell Div 2012; 7:26. [PMID: 23268747 PMCID: PMC3584802 DOI: 10.1186/1747-1028-7-26] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 11/15/2012] [Indexed: 12/21/2022] Open
Abstract
Proteasomes are multicatalytic protease complexes in the cell, involved in the non-lysosomal recycling of intra-cellular proteins. Proteasomes play a critical role in regulation of cell division in both normal as well as cancer cells. In cancer cells this homeostatic function is deregulated leading to the hyperactivation of the proteasomes. Proteasome inhibitors (PIs) are a class of compounds, which either reversibly or irreversibly block the activity of proteasomes and induce cancer cell death. Interference of PIs with the ubiquitin proteasome pathway (UPP) involved in protein turnover in the cell leads to the accumulation of proteins engaged in cell cycle progression, which ultimately put a halt to cancer cell division and induce apoptosis. Upregulation of many tumor suppressor proteins involved in cell cycle arrest are known to play a role in PI induced cell cycle arrest in a variety of cancer cells. Although many PIs target the proteasomes, not all of them are effective in cancer therapy. Some cancers develop resistance against proteasome inhibition by possibly activating compensatory signaling pathways. However, the details of the activation of these pathways and their contribution to resistance to PI therapy remain obscure. Delineation of these pathways may help in checking resistance against PIs and deducing effective combinational approaches for improved treatment strategies. This review will discuss some of the signaling pathways related to proteasome inhibition and cell division that may help explain the basis of resistance of some cancers to proteasome inhibitors and underline the need for usage of PIs in combination with traditional chemotherapy.
Collapse
Affiliation(s)
- Namrata Rastogi
- Cell Death Research Laboratory, Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226001, India.
| | | |
Collapse
|
49
|
Grande E, Earl J, Fuentes R, Carrato A. New targeted approaches against the ubiquitin–proteasome system in gastrointestinal malignancies. Expert Rev Anticancer Ther 2012; 12:457-467. [DOI: 10.1586/era.12.26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
50
|
Hao Z, Zhang H, Cowell J. Ubiquitin-conjugating enzyme UBE2C: molecular biology, role in tumorigenesis, and potential as a biomarker. Tumour Biol 2011; 33:723-30. [PMID: 22170434 DOI: 10.1007/s13277-011-0291-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 12/01/2011] [Indexed: 01/28/2023] Open
Abstract
Ubiquitin-conjugating enzyme 2C (UBE2C) participates in cell cycle progression and checkpoint control by targeted degradation of short-lived proteins. As a conjugating enzyme, it directs polyubiquitination to preferred lysine in the substrates. In addition to its well-known role in cyclin B destruction that is essential for exit from mitosis, UBE2C also plays an important role in mitotic spindle checkpoint control. Cells overexpressing UBE2C ignore the mitotic spindle checkpoint signals and lose genomic stability, which is a hallmark of cancer. UBE2C expression is upregulated upon malignant transformation, and amplification of UBE2C is often seen at the chromosome level in cancers in a manner similar to c-Myc, which is directly upstream of UBE2C. UBE2C levels are upregulated in a wide range of solid tumors and hematological malignancies. The level of expression correlates with the aggressiveness of the tumor. High UBE2C expression is predictive of poor survival and perhaps high risk for relapse. UBE2C immunochemistry may be integrated into the diagnosis of thyroid malignancy and gliomas. This minireview summarizes what is known about the function of UBE2C focusing on its role in the regulation of spindle assembly checkpoint, its part in tumorigenesis, and its potential as a tumor marker for various cancers.
Collapse
Affiliation(s)
- Zhonglin Hao
- Georgia Health Sciences University Cancer Center, Georgia Health Sciences University, 1120 15th street, Augusta, GA 30912, USA.
| | | | | |
Collapse
|