1
|
Sabe H, Yahara Y, Ishii M. Cell fusion dynamics: mechanisms of multinucleation in osteoclasts and macrophages. Inflamm Regen 2024; 44:49. [PMID: 39605032 PMCID: PMC11600601 DOI: 10.1186/s41232-024-00360-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Cell-cell fusion is a vital biological process where the membranes of two or more cells merge to form a syncytium. This phenomenon is critical in various physiological and pathological contexts, including embryonic development, tissue repair, immune responses, and the progression of several diseases. Osteoclasts, which are cells from the monocyte/macrophage lineage responsible for bone resorption, have enhanced functionality due to cell fusion. Additionally, other multinucleated giant cells (MGCs) also arise from the fusion of monocytes and macrophages, typically during chronic inflammation and reactions to foreign materials such as prostheses or medical devices. Foreign body giant cells (FBGCs) and Langhans giant cells (LGCs) emerge only under pathological conditions and are involved in phagocytosis, antigen presentation, and the secretion of inflammatory mediators. This review provides a comprehensive overview of the mechanisms underlying the formation of multinucleated cells, with a particular emphasis on macrophages and osteoclasts. Elucidating the intracellular structures, signaling cascades, and fusion-mediating proteins involved in cell-cell fusion enhances our understanding of this fundamental biological process and helps identify potential therapeutic targets for disorders mediated by cell fusion.
Collapse
Affiliation(s)
- Hideaki Sabe
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yasuhito Yahara
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Cai F, Jiang B, He F. Formation and biological activities of foreign body giant cells in response to biomaterials. Acta Biomater 2024; 188:1-26. [PMID: 39245307 DOI: 10.1016/j.actbio.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
The integration of biomaterials in medical applications triggers the foreign body response (FBR), a multi-stage immune reaction characterized by the formation of foreign body giant cells (FBGCs). Originating from the fusion of monocyte/macrophage lineage cells, FBGCs are pivotal participants during tissue-material interactions. This review provides an in-depth examination of the molecular processes during FBGC formation, highlighting signaling pathways and fusion mediators in response to both exogenous and endogenous stimuli. Moreover, a wide range of material-specific characteristics, such as surface chemical and physical properties, has been proven to influence the fusion of macrophages into FBGCs. Multifaceted biological activities of FBGCs are also explored, with emphasis on their phagocytic capabilities and extracellular secretory functions, which profoundly affect the vascularization, degradation, and encapsulation of the biomaterials. This review further elucidates the heterogeneity of FBGCs and their diverse roles during FBR, as demonstrated by their distinct behaviors in response to different materials. By presenting a comprehensive understanding of FBGCs, this review intends to provide strategies and insights into optimizing biocompatibility and the therapeutic potential of biomaterials for enhanced stability and efficacy in clinical applications. STATEMENT OF SIGNIFICANCE: As a hallmark of the foreign body response (FBR), foreign body giant cells (FBGCs) significantly impact the success of implantable biomaterials, potentially leading to complications such as chronic inflammation, fibrosis, and device failure. Understanding the role of FBGCs and modulating their responses are vital for successful material applications. This review provides a comprehensive overview of the molecules and signaling pathways guiding macrophage fusion into FBGCs. By elucidating the physical and chemical properties of materials inducing distinct levels of FBGCs, potential strategies of materials in modulating FBGC formation are investigated. Additionally, the biological activities of FBGCs and their heterogeneity in responses to different material categories in vivo are highlighted in this review, offering crucial insights for improving the biocompatibility and efficacy of biomaterials.
Collapse
Affiliation(s)
- Fangyuan Cai
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Bulin Jiang
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Fuming He
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Shultes PV, Weaver DT, Tadele DS, Barker-Clarke RJ, Scott JG. Cell-cell fusion in cancer: The next cancer hallmark? Int J Biochem Cell Biol 2024; 175:106649. [PMID: 39186970 PMCID: PMC11752790 DOI: 10.1016/j.biocel.2024.106649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
In this review, we consider the role of cell-cell fusion in cancer development and progression through an evolutionary lens. We begin by summarizing the origins of fusion proteins (fusogens), of which there are many distinct classes that have evolved through convergent evolution. We then use an evolutionary framework to highlight how the persistence of fusion over generations and across different organisms can be attributed to traits that increase fitness secondary to fusion; these traits map well to the expanded hallmarks of cancer. By studying the tumor microenvironment, we can begin to identify the key selective pressures that may favor higher rates of fusion compared to healthy tissues. The paper concludes by discussing the increasing number of research questions surrounding fusion, recommendations for how to answer them, and the need for a greater interest in exploring cell fusion and evolutionary principles in oncology moving forward.
Collapse
Affiliation(s)
- Paulameena V Shultes
- Translational Hematology and Oncology (THOR), Cleveland Clinic, Cleveland, OH 44120, USA; School of Medicine, Case Western Reserve University, Cleveland, OH 44120, USA
| | - Davis T Weaver
- Translational Hematology and Oncology (THOR), Cleveland Clinic, Cleveland, OH 44120, USA; School of Medicine, Case Western Reserve University, Cleveland, OH 44120, USA
| | - Dagim S Tadele
- Translational Hematology and Oncology (THOR), Cleveland Clinic, Cleveland, OH 44120, USA; Oslo University Hospital, Ullevål, Department of Medical Genetics, Oslo, Norway
| | - Rowan J Barker-Clarke
- Translational Hematology and Oncology (THOR), Cleveland Clinic, Cleveland, OH 44120, USA
| | - Jacob G Scott
- Translational Hematology and Oncology (THOR), Cleveland Clinic, Cleveland, OH 44120, USA; School of Medicine, Case Western Reserve University, Cleveland, OH 44120, USA; Physics Department, Case Western Reserve University, Cleveland, OH 44120, USA.
| |
Collapse
|
4
|
Hong YK, Hwang DY, Yang CC, Cheng SM, Chen PC, Aala WJ, I-Chen Harn H, Evans ST, Onoufriadis A, Liu SL, Lin YC, Chang YH, Lo TK, Hung KS, Lee YC, Tang MJ, Lu KQ, McGrath JA, Hsu CK. Profibrotic Subsets of SPP1 + Macrophages and POSTN + Fibroblasts Contribute to Fibrotic Scarring in Acne Keloidalis. J Invest Dermatol 2024; 144:1491-1504.e10. [PMID: 38218364 DOI: 10.1016/j.jid.2023.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 01/15/2024]
Abstract
Acne keloidalis is a primary scarring alopecia characterized by longstanding inflammation in the scalp causing keloid-like scar formation and hair loss. Histologically, acne keloidalis is characterized by mixed leukocytic infiltrates in the acute stage followed by a granulomatous reaction and extensive fibrosis in the later stages. To further explore its pathogenesis, bulk RNA sequencing, single-cell RNA sequencing, and spatial transcriptomics were applied to occipital scalp biopsy specimens of lesional and adjacent no-lesional skin in patients with clinically active disease. Unbiased clustering revealed 19 distinct cell populations, including 2 notable populations: POSTN+ fibroblasts with enriched extracellular matrix signatures and SPP1+ myeloid cells with an M2 macrophage phenotype. Cell communication analyses indicated that fibroblasts and myeloid cells communicated by SPP1 signaling networks in lesional skin. A reverse transcriptomics in silico approach identified corticosteroids as possessing the capability to reverse the gene expression signatures of SPP1+ myeloid cells and POSTN+ fibroblasts. Intralesional corticosteroid injection greatly reduced SPP1 and POSTN gene expression as well as acne keloidalis disease activity. Spatial transcriptomics and immunofluorescence staining verified microanatomic specificity of SPP1+ myeloid cells and POSTN+ fibroblasts with disease activity. In summary, the communication between POSTN+ fibroblasts and SPP1+ myeloid cells by SPP1 axis may contribute to the pathogenesis of acne keloidalis.
Collapse
Affiliation(s)
- Yi-Kai Hong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Daw-Yang Hwang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Chao-Chun Yang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Siao Muk Cheng
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Peng-Chieh Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wilson Jr Aala
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hans I-Chen Harn
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Spencer T Evans
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alexandros Onoufriadis
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Si-Lin Liu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chen Lin
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Han Chang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Kun Lo
- Department of Dermatology, Tainan Municipal An-Nan Hospital, Tainan, Taiwan
| | - Kuo-Shu Hung
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Chao Lee
- PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ming-Jer Tang
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kurt Q Lu
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - John A McGrath
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
5
|
Sieler M, Dörnen J, Dittmar T. How Much Do You Fuse? A Comparison of Cell Fusion Assays in a Breast Cancer Model. Int J Mol Sci 2024; 25:5668. [PMID: 38891857 PMCID: PMC11172233 DOI: 10.3390/ijms25115668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Cell fusion is a biological process that is crucial for the development and homeostasis of different tissues, but it is also pathophysiologically associated with tumor progression and malignancy. The investigation of cell fusion processes is difficult because there is no standardized marker. Many studies therefore use different systems to observe and quantify cell fusion in vitro and in vivo. The comparability of the results must be critically questioned, because both the experimental procedure and the assays differ between studies. The comparability of the fluorescence-based fluorescence double reporter (FDR) and dual split protein (DSP) assay was investigated as part of this study, in which general conditions were kept largely constant. In order to be able to induce both a high and a low cell fusion rate, M13SV1 breast epithelial cells were modified with regard to the expression level of the fusogenic protein Syncytin-1 and its receptor ASCT2 and were co-cultivated for 72 h with different breast cancer cell lines. A high number of fused cells was found in co-cultures with Syncytin-1-overexpressing M13SV1 cells, but differences between the assays were also observed. This shows that the quantification of cell fusion events in particular is highly dependent on the assay selected, but the influence of fusogenic proteins can be visualized very well.
Collapse
Affiliation(s)
- Mareike Sieler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany; (M.S.); (J.D.)
| | - Jessica Dörnen
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany; (M.S.); (J.D.)
- Faculty of Medicine, Ruhr University Bochum, 44789 Bochum, Germany
| | - Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany; (M.S.); (J.D.)
| |
Collapse
|
6
|
Ghosh M, McGurk F, Norris R, Dong A, Nair S, Jellison E, Murphy P, Verma R, Shapiro LH. The Implant-Induced Foreign Body Response Is Limited by CD13-Dependent Regulation of Ubiquitination of Fusogenic Proteins. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:663-676. [PMID: 38149920 PMCID: PMC10828181 DOI: 10.4049/jimmunol.2300688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023]
Abstract
Implanted medical devices, from artificial heart valves and arthroscopic joints to implantable sensors, often induce a foreign body response (FBR), a form of chronic inflammation resulting from the inflammatory reaction to a persistent foreign stimulus. The FBR is characterized by a subset of multinucleated giant cells (MGCs) formed by macrophage fusion, the foreign body giant cells (FBGCs), accompanied by inflammatory cytokines, matrix deposition, and eventually deleterious fibrotic implant encapsulation. Despite efforts to improve biocompatibility, implant-induced FBR persists, compromising the utility of devices and making efforts to control the FBR imperative for long-term function. Controlling macrophage fusion in FBGC formation presents a logical target to prevent implant failure, but the actual contribution of FBGCs to FBR-induced damage is controversial. CD13 is a molecular scaffold, and in vitro induction of CD13KO bone marrow progenitors generates many more MGCs than the wild type, suggesting that CD13 regulates macrophage fusion. In the mesh implant model of FBR, CD13KO mice produced significantly more peri-implant FBGCs with enhanced TGF-β expression and increased collagen deposition versus the wild type. Prior to fusion, increased protrusion and microprotrusion formation accompanies hyperfusion in the absence of CD13. Expression of fusogenic proteins driving cell-cell fusion was aberrantly sustained at high levels in CD13KO MGCs, which we show is due to a novel CD13 function, to our knowledge, regulating ubiquitin/proteasomal protein degradation. We propose CD13 as a physiologic brake limiting aberrant macrophage fusion and the FBR, and it may be a novel therapeutic target to improve the success of implanted medical devices. Furthermore, our data directly implicate FBGCs in the detrimental fibrosis that characterizes the FBR.
Collapse
Affiliation(s)
- Mallika Ghosh
- Centers for Vascular Biology, University of Connecticut Medical School, Farmington, CT
| | - Fraser McGurk
- Centers for Vascular Biology, University of Connecticut Medical School, Farmington, CT
| | - Rachael Norris
- Department of Cell Biology, University of Connecticut Medical School, Farmington, CT
| | - Andy Dong
- Centers for Vascular Biology, University of Connecticut Medical School, Farmington, CT
| | - Sreenidhi Nair
- Centers for Vascular Biology, University of Connecticut Medical School, Farmington, CT
| | - Evan Jellison
- Department of Immunology, University of Connecticut Medical School, Farmington, CT
| | - Patrick Murphy
- Centers for Vascular Biology, University of Connecticut Medical School, Farmington, CT
| | - Rajkumar Verma
- Department of Neuroscience, University of Connecticut Medical School, Farmington, CT
| | - Linda H. Shapiro
- Centers for Vascular Biology, University of Connecticut Medical School, Farmington, CT
| |
Collapse
|
7
|
Patel RK, Parappilly M, Rahman S, Schwantes IR, Sewell M, Giske NR, Whalen RM, Durmus NG, Wong MH. The Hallmarks of Circulating Hybrid Cells. Results Probl Cell Differ 2024; 71:467-485. [PMID: 37996690 DOI: 10.1007/978-3-031-37936-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
While tumor metastases represent the primary driver of cancer-related mortality, our understanding of the mechanisms that underlie metastatic initiation and progression remains incomplete. Recent work identified a novel tumor-macrophage hybrid cell population, generated through the fusion between neoplastic and immune cells. These hybrid cells are detected in primary tumor tissue, peripheral blood, and in metastatic sites. In-depth analyses of hybrid cell biology indicate that they can exploit phenotypic properties of both parental tumor and immune cells, in order to intravasate into circulation, evade the immune response, and seed tumors at distant sites. Thus, it has become increasingly evident that the development and dissemination of tumor-immune hybrid cells play an intricate and fundamental role in the metastatic cascade and can provide invaluable information regarding tumor characteristics and patient prognostication. In this chapter, we review the current understanding of this novel hybrid cell population, the specific hallmarks of cancer that these cells exploit to promote cancer progression and metastasis, and discuss exciting new frontiers that remain to be explored.
Collapse
Affiliation(s)
- Ranish K Patel
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Michael Parappilly
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Shahrose Rahman
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Issac R Schwantes
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Marisa Sewell
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Nicole R Giske
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Riley M Whalen
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Naside Gozde Durmus
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Melissa H Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
8
|
Noubissi FK, Odubanjo OV, Ogle BM, Tchounwou PB. Mechanisms of Cell Fusion in Cancer. Results Probl Cell Differ 2024; 71:407-432. [PMID: 37996688 PMCID: PMC10893907 DOI: 10.1007/978-3-031-37936-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cell-cell fusion is a normal physiological mechanism that requires a well-orchestrated regulation of intracellular and extracellular factors. Dysregulation of this process could lead to diseases such as osteoporosis, malformation of muscles, difficulties in pregnancy, and cancer. Extensive literature demonstrates that fusion occurs between cancer cells and other cell types to potentially promote cancer progression and metastasis. However, the mechanisms governing this process in cancer initiation, promotion, and progression are less well-studied. Fusogens involved in normal physiological processes such as syncytins and associated factors such as phosphatidylserine and annexins have been observed to be critical in cancer cell fusion as well. Some of the extracellular factors associated with cancer cell fusion include chronic inflammation and inflammatory cytokines, hypoxia, and viral infection. The interaction between these extracellular factors and cell's intrinsic factors potentially modulates actin dynamics to drive the fusion of cancer cells. In this review, we have discussed the different mechanisms that have been identified or postulated to drive cancer cell fusion.
Collapse
Affiliation(s)
- Felicite K Noubissi
- Department of Biology, Jackson State University, Jackson, MS, USA.
- Research Centers in Minority Institutions (RCMI), Center for Health Disparity Research (RCMI-CHDR), Jackson State University, Jackson, MS, USA.
| | - Oluwatoyin V Odubanjo
- Department of Biology, Jackson State University, Jackson, MS, USA
- Research Centers in Minority Institutions (RCMI), Center for Health Disparity Research (RCMI-CHDR), Jackson State University, Jackson, MS, USA
| | - Brenda M Ogle
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Paul B Tchounwou
- Department of Biology, Jackson State University, Jackson, MS, USA
- Research Centers in Minority Institutions (RCMI), Center for Health Disparity Research (RCMI-CHDR), Jackson State University, Jackson, MS, USA
| |
Collapse
|
9
|
Sieler M, Dittmar T. Cell Fusion and Syncytia Formation in Cancer. Results Probl Cell Differ 2024; 71:433-465. [PMID: 37996689 DOI: 10.1007/978-3-031-37936-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The natural phenomenon of cell-cell fusion does not only take place in physiological processes, such as placentation, myogenesis, or osteoclastogenesis, but also in pathophysiological processes, such as cancer. More than a century ago postulated, today the hypothesis that the fusion of cancer cells with normal cells leads to the formation of cancer hybrid cells with altered properties is in scientific consensus. Some studies that have investigated the mechanisms and conditions for the fusion of cancer cells with other cells, as well as studies that have characterized the resulting cancer hybrid cells, are presented in this review. Hypoxia and the cytokine TNFα, for example, have been found to promote cell fusion. In addition, it has been found that both the protein Syncytin-1, which normally plays a role in placentation, and phosphatidylserine signaling on the cell membrane are involved in the fusion of cancer cells with other cells. In human cancer, cancer hybrid cells were detected not only in the primary tumor, but also in the circulation of patients as so-called circulating hybrid cells, where they often correlated with a worse outcome. Although some data are available, the questions of how and especially why cancer cells fuse with other cells are still not fully answered.
Collapse
Affiliation(s)
- Mareike Sieler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Witten, Germany.
| | - Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Witten, Germany
| |
Collapse
|
10
|
Dutta SD, Ganguly K, Patil TV, Randhawa A, Lim KT. Unraveling the potential of 3D bioprinted immunomodulatory materials for regulating macrophage polarization: State-of-the-art in bone and associated tissue regeneration. Bioact Mater 2023; 28:284-310. [PMID: 37303852 PMCID: PMC10248805 DOI: 10.1016/j.bioactmat.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/29/2023] [Accepted: 05/20/2023] [Indexed: 06/13/2023] Open
Abstract
Macrophage-assisted immunomodulation is an alternative strategy in tissue engineering, wherein the interplay between pro-inflammatory and anti-inflammatory macrophage cells and body cells determines the fate of healing or inflammation. Although several reports have demonstrated that tissue regeneration depends on spatial and temporal regulation of the biophysical or biochemical microenvironment of the biomaterial, the underlying molecular mechanism behind immunomodulation is still under consideration for developing immunomodulatory scaffolds. Currently, most fabricated immunomodulatory platforms reported in the literature show regenerative capabilities of a particular tissue, for example, endogenous tissue (e.g., bone, muscle, heart, kidney, and lungs) or exogenous tissue (e.g., skin and eye). In this review, we briefly introduced the necessity of the 3D immunomodulatory scaffolds and nanomaterials, focusing on material properties and their interaction with macrophages for general readers. This review also provides a comprehensive summary of macrophage origin and taxonomy, their diverse functions, and various signal transduction pathways during biomaterial-macrophage interaction, which is particularly helpful for material scientists and clinicians for developing next-generation immunomodulatory scaffolds. From a clinical standpoint, we briefly discussed the role of 3D biomaterial scaffolds and/or nanomaterial composites for macrophage-assisted tissue engineering with a special focus on bone and associated tissues. Finally, a summary with expert opinion is presented to address the challenges and future necessity of 3D bioprinted immunomodulatory materials for tissue engineering.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V. Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
11
|
Dittmar T, Hass R. Extracellular Events Involved in Cancer Cell-Cell Fusion. Int J Mol Sci 2022; 23:16071. [PMID: 36555709 PMCID: PMC9784959 DOI: 10.3390/ijms232416071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Fusion among different cell populations represents a rare process that is mediated by both intrinsic and extracellular events. Cellular hybrid formation is relayed by orchestrating tightly regulated signaling pathways that can involve both normal and neoplastic cells. Certain important cell merger processes are often required during distinct organismal and tissue development, including placenta and skeletal muscle. In a neoplastic environment, however, cancer cell fusion can generate new cancer hybrid cells. Following survival during a subsequent post-hybrid selection process (PHSP), the new cancer hybrid cells express different tumorigenic properties. These can include elevated proliferative capacity, increased metastatic potential, resistance to certain therapeutic compounds, and formation of cancer stem-like cells, all of which characterize significantly enhanced tumor plasticity. However, many parts within this multi-step cascade are still poorly understood. Aside from intrinsic factors, cell fusion is particularly affected by extracellular conditions, including an inflammatory microenvironment, viruses, pH and ionic stress, hypoxia, and exosome signaling. Accordingly, the present review article will primarily highlight the influence of extracellular events that contribute to cell fusion in normal and tumorigenic tissues.
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448 Witten, Germany
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
12
|
Hneda D, Gomes JR. Evaluation of the inflammatory process, collagen production, and MMP-2 and MMP-9 expressions produced by Luffa aegyptiaca Mill using the subcutaneous rat implanted model. Acta Histochem 2022; 124:151882. [PMID: 35339777 DOI: 10.1016/j.acthis.2022.151882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/01/2022]
Abstract
The subcutaneous rat implanted model is a preclinical approach used in studies to characterize the histocompatibility of materials that could be used as biomaterials. Biomaterials are obtained synthetically or from the environment, and they can be used to treat or replace any tissues or organs that the body has lost. To execute their roles, the biomaterials must present any level of histocompatibility and a lower level of inflammatory reaction. This work aimed to evaluate some aspects of histocompatibility, such as the inflammatory process, collagen production, and MMP-2 and 9 expression as responses to the Luffa aegyptiaca Mill using the subcutaneous rat implanted model. Luffa fragments were implanted into the dorsal subcutaneous region of twelve male Wistar rats, and the number of eosinophils, mast cells, the production of collagen to form the fibrous capsule, and the expression of MMP-2 and MMP-9 were evaluated on the 15th, 45th, and 90th days. Results showed statistical differences (p < 0.05) in the number of eosinophils and mast cells present inside and outside the fibrous capsule among the days evaluated. The permanent presence of macrophages and giant foreign body cells circumjacent to all implants was also observed. A progressive increase in the production of collagen was also detected, along with a significant reduction on day 90 (p < 0.05). The expression of MMP-9 was detected as being specifically expressed in the giant foreign body cells on all days evaluated, while the expression of MMP-2 was detected in fat cells present around the implants, mainly on day 90. Taken together, these results indicate a general reduction level for the inflammatory process during the days evaluated, which allows us to conclude that Luffa, being a natural product that is simple to obtain, could be a potential candidate to become a biomaterial to be tested in further approaches.
Collapse
|
13
|
Generation of Cancer Stem/Initiating Cells by Cell-Cell Fusion. Int J Mol Sci 2022; 23:ijms23094514. [PMID: 35562905 PMCID: PMC9101717 DOI: 10.3390/ijms23094514] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/10/2022] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
CS/ICs have raised great expectations in cancer research and therapy, as eradication of this key cancer cell type is expected to lead to a complete cure. Unfortunately, the biology of CS/ICs is rather complex, since no common CS/IC marker has yet been identified. Certain surface markers or ALDH1 expression can be used for detection, but some studies indicated that cancer cells exhibit a certain plasticity, so CS/ICs can also arise from non-CS/ICs. Another problem is intratumoral heterogeneity, from which it can be inferred that different CS/IC subclones must be present in the tumor. Cell–cell fusion between cancer cells and normal cells, such as macrophages and stem cells, has been associated with the generation of tumor hybrids that can exhibit novel properties, such as an enhanced metastatic capacity and even CS/IC properties. Moreover, cell–cell fusion is a complex process in which parental chromosomes are mixed and randomly distributed among daughter cells, resulting in multiple, unique tumor hybrids. These, if they have CS/IC properties, may contribute to the heterogeneity of the CS/IC pool. In this review, we will discuss whether cell–cell fusion could also lead to the origin of different CS/ICs that may expand the overall CS/IC pool in a primary tumor.
Collapse
|
14
|
Ahmadzadeh K, Vanoppen M, Rose CD, Matthys P, Wouters CH. Multinucleated Giant Cells: Current Insights in Phenotype, Biological Activities, and Mechanism of Formation. Front Cell Dev Biol 2022; 10:873226. [PMID: 35478968 PMCID: PMC9035892 DOI: 10.3389/fcell.2022.873226] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/17/2022] [Indexed: 12/21/2022] Open
Abstract
Monocytes and macrophages are innate immune cells with diverse functions ranging from phagocytosis of microorganisms to forming a bridge with the adaptive immune system. A lesser-known attribute of macrophages is their ability to fuse with each other to form multinucleated giant cells. Based on their morphology and functional characteristics, there are in general three types of multinucleated giant cells including osteoclasts, foreign body giant cells and Langhans giant cells. Osteoclasts are bone resorbing cells and under physiological conditions they participate in bone remodeling. However, under pathological conditions such as rheumatoid arthritis and osteoporosis, osteoclasts are responsible for bone destruction and bone loss. Foreign body giant cells and Langhans giant cells appear only under pathological conditions. While foreign body giant cells are found in immune reactions against foreign material, including implants, Langhans giant cells are associated with granulomas in infectious and non-infectious diseases. The functionality and fusion mechanism of osteoclasts are being elucidated, however, our knowledge on the functions of foreign body giant cells and Langhans giant cells is limited. In this review, we describe and compare the phenotypic aspects, biological and functional activities of the three types of multinucleated giant cells. Furthermore, we provide an overview of the multinucleation process and highlight key molecules in the different phases of macrophage fusion.
Collapse
Affiliation(s)
- Kourosh Ahmadzadeh
- Laboratory of Immunobiology, Department Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Leuven, Belgium
- *Correspondence: Kourosh Ahmadzadeh, ; Carine Helena Wouters,
| | - Margot Vanoppen
- Laboratory of Immunobiology, Department Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Leuven, Belgium
| | - Carlos D. Rose
- Division of Pediatric Rheumatology Nemours Children’s Hospital, Thomas Jefferson University, Philadelphia, PA, United States
| | - Patrick Matthys
- Laboratory of Immunobiology, Department Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Leuven, Belgium
| | - Carine Helena Wouters
- Laboratory of Immunobiology, Department Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Leuven, Belgium
- Division Pediatric Rheumatology, UZ Leuven, Leuven, Belgium
- European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) at University Hospital Leuven, Leuven, Belgium
- *Correspondence: Kourosh Ahmadzadeh, ; Carine Helena Wouters,
| |
Collapse
|
15
|
Dittmar T, Weiler J, Luo T, Hass R. Cell-Cell Fusion Mediated by Viruses and HERV-Derived Fusogens in Cancer Initiation and Progression. Cancers (Basel) 2021; 13:5363. [PMID: 34771528 PMCID: PMC8582398 DOI: 10.3390/cancers13215363] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/13/2022] Open
Abstract
Cell fusion is a well-known, but still scarcely understood biological phenomenon, which might play a role in cancer initiation, progression and formation of metastases. Although the merging of two (cancer) cells appears simple, the entire process is highly complex, energy-dependent and tightly regulated. Among cell fusion-inducing and -regulating factors, so-called fusogens have been identified as a specific type of proteins that are indispensable for overcoming fusion-associated energetic barriers and final merging of plasma membranes. About 8% of the human genome is of retroviral origin and some well-known fusogens, such as syncytin-1, are expressed by human (cancer) cells. Likewise, enveloped viruses can enable and facilitate cell fusion due to evolutionarily optimized fusogens, and are also capable to induce bi- and multinucleation underlining their fusion capacity. Moreover, multinucleated giant cancer cells have been found in tumors derived from oncogenic viruses. Accordingly, a potential correlation between viruses and fusogens of human endogenous retroviral origin in cancer cell fusion will be summarized in this review.
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany;
| | - Julian Weiler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany;
| | - Tianjiao Luo
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|
16
|
Hass R, von der Ohe J, Dittmar T. Hybrid Formation and Fusion of Cancer Cells In Vitro and In Vivo. Cancers (Basel) 2021; 13:4496. [PMID: 34503305 PMCID: PMC8431460 DOI: 10.3390/cancers13174496] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
The generation of cancer hybrid cells by intra-tumoral cell fusion opens new avenues for tumor plasticity to develop cancer stem cells with altered properties, to escape from immune surveillance, to change metastatic behavior, and to broaden drug responsiveness/resistance. Genomic instability and chromosomal rearrangements in bi- or multinucleated aneuploid cancer hybrid cells contribute to these new functions. However, the significance of cell fusion in tumorigenesis is controversial with respect to the low frequency of cancer cell fusion events and a clonal advantage of surviving cancer hybrid cells following a post-hybrid selection process. This review highlights alternative processes of cancer hybrid cell development such as entosis, emperipolesis, cannibalism, therapy-induced polyploidization/endoreduplication, horizontal or lateral gene transfer, and focusses on the predominant mechanisms of cell fusion. Based upon new properties of cancer hybrid cells the arising clinical consequences of the subsequent tumor heterogeneity after cancer cell fusion represent a major therapeutic challenge.
Collapse
Affiliation(s)
- Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| | - Juliane von der Ohe
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| | - Thomas Dittmar
- Institute of Immunology, Center of Biomedical Education and Research (ZABF), Witten/Herdecke University, 58448 Witten, Germany
| |
Collapse
|
17
|
Fibrin polymer on the surface of biomaterial implants drives the foreign body reaction. Biomaterials 2021; 277:121087. [PMID: 34478933 DOI: 10.1016/j.biomaterials.2021.121087] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022]
Abstract
Implantation of biomaterials and medical devices in the body triggers the foreign body reaction (FBR) which is characterized by macrophage fusion at the implant surface leading to the formation of foreign body giant cells and the development of the fibrous capsule enveloping the implant. While adhesion of macrophages to the surface is an essential step in macrophage fusion and implanted biomaterials are known to rapidly acquire a layer of host proteins, a biological substrate that is responsible for this process in vivo is unknown. Here we show that mice with genetically imposed fibrinogen deficiency display a dramatic reduction of macrophage fusion on biomaterials implanted intraperitoneally and subcutaneously and are protected from the formation of the fibrin-containing fibrous capsule. Furthermore, macrophage fusion on biomaterials implanted in FibAEK mice that express a mutated form of fibrinogen incapable of thrombin-mediated polymerization was strongly reduced. Despite the lack of fibrin, the capsule was formed in FibAEK mice, although it had a different composition and distinct mechanical properties than that in wild-type mice. Specifically, while mononuclear α-SMA-expressing macrophages embedded in the capsule of both strains of mice secreted collagen, the amount of collagen and its density in the tissue of FibAEK mice was reduced. These data identify fibrin polymer as a key biological substrate driving the development of the FBR.
Collapse
|
18
|
Sieler M, Weiler J, Dittmar T. Cell-Cell Fusion and the Roads to Novel Properties of Tumor Hybrid Cells. Cells 2021; 10:cells10061465. [PMID: 34207991 PMCID: PMC8230653 DOI: 10.3390/cells10061465] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
The phenomenon of cancer cell–cell fusion is commonly associated with the origin of more malignant tumor cells exhibiting novel properties, such as increased drug resistance or an enhanced metastatic capacity. However, the whole process of cell–cell fusion is still not well understood and seems to be rather inefficient since only a certain number of (cancer) cells are capable of fusing and only a rather small population of fused tumor hybrids will survive at all. The low survivability of tumor hybrids is attributed to post-fusion processes, which are characterized by the random segregation of mixed parental chromosomes, the induction of aneuploidy and further random chromosomal aberrations and genetic/epigenetic alterations in daughter cells. As post-fusion processes also run in a unique manner in surviving tumor hybrids, the occurrence of novel properties could thus also be a random event, whereby it might be speculated that the tumor microenvironment and its spatial habitats could direct evolving tumor hybrids towards a specific phenotype.
Collapse
|
19
|
Balabiyev A, Podolnikova NP, Mursalimov A, Lowry D, Newbern JM, Roberson RW, Ugarova TP. Transition of podosomes into zipper-like structures in macrophage-derived multinucleated giant cells. Mol Biol Cell 2020; 31:2002-2020. [PMID: 32579434 PMCID: PMC7543064 DOI: 10.1091/mbc.e19-12-0707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Macrophage fusion resulting in the formation of multinucleated giant cells (MGCs) is a multistage process that requires many adhesion-dependent steps and involves the rearrangement of the actin cytoskeleton. The diversity of actin-based structures and their role in macrophage fusion is poorly understood. In this study, we revealed hitherto unrecognized actin-based zipper-like structures (ZLSs) that arise between MGCs formed on the surface of implanted biomaterials. We established an in vitro model for the induction of these structures in mouse macrophages undergoing IL-4–mediated fusion. Using this model, we show that over time MGCs develop cell–cell contacts containing ZLSs. Live-cell imaging using macrophages isolated from mRFP- or eGFP-LifeAct mice demonstrated that ZLSs are dynamic formations undergoing continuous assembly and disassembly and that podosomes are precursors of these structures. Immunostaining experiments showed that vinculin, talin, integrin αMβ2, and other components of podosomes are present in ZLSs. Macrophages deficient in WASp or Cdc42, two key molecules involved in actin core organization in podosomes, as well as cells treated with the inhibitors of the Arp2/3 complex, failed to form ZLSs. Furthermore, E-cadherin and nectin-2 were found between adjoining membranes, suggesting that the transition of podosomes into ZLSs is induced by bridging plasma membranes by junctional proteins.
Collapse
Affiliation(s)
- Arnat Balabiyev
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | | | - Aibek Mursalimov
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | - David Lowry
- Eyring Materials Center, Arizona State University, Tempe, AZ 85287
| | - Jason M Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | | | | |
Collapse
|
20
|
Mukherjee S, Darzi S, Paul K, Cousins FL, Werkmeister JA, Gargett CE. Electrospun Nanofiber Meshes With Endometrial MSCs Modulate Foreign Body Response by Increased Angiogenesis, Matrix Synthesis, and Anti-Inflammatory Gene Expression in Mice: Implication in Pelvic Floor. Front Pharmacol 2020; 11:353. [PMID: 32265721 PMCID: PMC7107042 DOI: 10.3389/fphar.2020.00353] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/09/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose Transvaginal meshes for the treatment of Pelvic Organ Prolapse (POP) have been associated with severe adverse events and have been banned for clinical use in many countries. We recently reported the design of degradable poly L-lactic acid-co-poly ε-caprolactone nanofibrous mesh (P nanomesh) bioengineered with endometrial mesenchymal stem/stromal cells (eMSC) for POP repair. We showed that such bioengineered meshes had high tissue integration as well as immunomodulatory effects in vivo. This study aimed to determine the key molecular players enabling eMSC-based foreign body response modulation. Methods SUSD2+ eMSC were purified from single cell suspensions obtained from endometrial biopsies from cycling women by magnetic bead sorting. Electrospun P nanomeshes with and without eMSC were implanted in a NSG mouse skin wound repair model for 1 and 6 weeks. Quantitative PCR was used to assess the expression of extracellular matrix (ECM), cell adhesion, angiogenesis and inflammation genes as log2 fold changes compared to sham controls. Histology and immunostaining were used to visualize the ECM, blood vessels, and multinucleated foreign body giant cells around implants. Results Bioengineered P nanomesh/eMSC constructs explanted after 6 weeks showed significant increase in 35 genes associated with ECM, ECM regulation, cell adhesion angiogenesis, and immune response in comparison to P nanomesh alone. In the absence of eMSC, acute inflammatory genes were significantly elevated at 1 week. However, in the presence of eMSC, there was an increased expression of anti-inflammatory genes including Mrc1 and Arg1 by 6 weeks. There was formation of multinucleated foreign body giant cells around both implants at 6 weeks that expressed CD206, a M2 macrophage marker. Conclusion This study reveals that eMSC modulate the foreign body response to degradable P nanomeshes in vivo by altering the expression profile of mouse genes. eMSC reduce acute inflammatory and increase ECM synthesis, angiogenesis and anti-inflammatory gene expression at 6 weeks while forming newly synthesized collagen within the nanomeshes and neo-vasculature in close proximity. From a tissue engineering perspective, this is a hallmark of a highly successful implant, suggesting significant potential as alternative surgical constructs for the treatment of POP.
Collapse
Affiliation(s)
- Shayanti Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Saeedeh Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Kallyanashis Paul
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Fiona L Cousins
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Jerome A Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
21
|
Dörnen J, Sieler M, Weiler J, Keil S, Dittmar T. Cell Fusion-Mediated Tissue Regeneration as an Inducer of Polyploidy and Aneuploidy. Int J Mol Sci 2020; 21:E1811. [PMID: 32155721 PMCID: PMC7084716 DOI: 10.3390/ijms21051811] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
The biological phenomenon of cell fusion plays a crucial role in several physiological processes, including wound healing and tissue regeneration. Here, it is assumed that bone marrow-derived stem cells (BMSCs) could adopt the specific properties of a different organ by cell fusion, thereby restoring organ function. Cell fusion first results in the production of bi- or multinucleated hybrid cells, which either remain as heterokaryons or undergo ploidy reduction/heterokaryon-to-synkaryon transition (HST), thereby giving rise to mononucleated daughter cells. This process is characterized by a merging of the chromosomes from the previously discrete nuclei and their subsequent random segregation into daughter cells. Due to extra centrosomes concomitant with multipolar spindles, the ploidy reduction/HST could also be associated with chromosome missegregation and, hence, induction of aneuploidy, genomic instability, and even putative chromothripsis. However, while the majority of such hybrids die or become senescent, aneuploidy and genomic instability appear to be tolerated in hepatocytes, possibly for stress-related adaption processes. Likewise, cell fusion-induced aneuploidy and genomic instability could also lead to a malignant conversion of hybrid cells. This can occur during tissue regeneration mediated by BMSC fusion in chronically inflamed tissue, which is a cell fusion-friendly environment, but is also enriched for mutagenic reactive oxygen and nitrogen species.
Collapse
Affiliation(s)
| | | | | | | | - Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany; (J.D.); (M.S.); (J.W.); (S.K.)
| |
Collapse
|
22
|
Cao C, Tarlé S, Kaigler D. Characterization of the immunomodulatory properties of alveolar bone-derived mesenchymal stem cells. Stem Cell Res Ther 2020; 11:102. [PMID: 32138791 PMCID: PMC7059346 DOI: 10.1186/s13287-020-01605-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/22/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Background Recently, mesenchymal stem cells (MSCs) have been shown to have immunomodulatory properties which hold promise for their clinical use to treat inflammatory conditions. Relative to bone marrow-derived MSCs (BMSCs), which are typically isolated from the iliac crest, we have recently demonstrated that MSCs can be predictably isolated from the alveolar bone (aBMSCs) by less invasive means. As such, the aim of this study was to characterize the immunomodulatory properties of aBMSCs relative to BMSCs. Methods aBMSCs isolated from the human alveolar bone and BMSCs isolated from the human bone marrow of the iliac crest were cultured in the same conditions. Cytokine arrays and enzyme-linked immunosorbent assays (ELISA) of a conditioned medium were used to evaluate differences in the secretion of cytokines. In different functional assays, aBMSCs and BMSCs were cocultured with different types of immune cells including THP-1 monocytes, macrophages, and peripheral blood mononuclear cells (PBMCs) to evaluate their effects on important immune cell functions including proliferation, differentiation, and activation. Results The protein arrays identified interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1 to be the major cytokines secreted by aBMSCs and BMSCs. ELISA determined that aBMSCs secreted 268.64 ± 46.96 pg/mL of IL-6 and 196.14 ± 97.31 pg/mL of MCP-1 per microgram of DNA, while BMSCs secreted 774.86 ± 414.29 pg/mL of IL-6 and 856.37 ± 433.03 pg/mL of MCP-1 per microgram of DNA. The results of the coculture studies showed that aBMSCs exhibited immunosuppressive effects on monocyte activation and T cell activation and proliferation similar to BMSCs. Both aBMSCs and BMSCs drove macrophages into an anti-inflammatory phenotype with increased phagocytic ability. Taken together, these data suggest that aBMSCs have potent immunomodulatory properties comparable to those of BMSCs. Conclusions The findings of this study have important implications for the development of immunomodulatory stem cell therapies aimed to treat inflammatory conditions using aBMSCs, a more feasible tissue source of MSCs.
Collapse
Affiliation(s)
- Chen Cao
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, 1011 N. University, Ann Arbor, MI, 48109, USA
| | - Susan Tarlé
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, 1011 N. University, Ann Arbor, MI, 48109, USA
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, 1011 N. University, Ann Arbor, MI, 48109, USA. .,Department of Biomedical Engineering, College of Engineering, University of Michigan, 1011 N. University, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
23
|
Frazão LP, Vieira de Castro J, Neves NM. In Vivo Evaluation of the Biocompatibility of Biomaterial Device. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1250:109-124. [PMID: 32601941 DOI: 10.1007/978-981-15-3262-7_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biomaterials are widely used to produce devices for regenerative medicine. After its implantation, an interaction between the host immune system and the implanted biomaterial occurs, leading to biomaterial-specific cellular and tissue responses. These responses may include inflammatory, wound healing responses, immunological and foreign-body reactions, and even fibrous encapsulation of the implanted biomaterial device. In fact, the cellular and molecular events that regulate the success of the implant and tissue regeneration are played at the interface between the foreign body and the host inflammation, determined by innate and adaptive immune responses. This chapter focuses on host responses that must be taken into consideration in determining the biocompatibility of biomaterial devices when implanted in vivo of animal models.
Collapse
Affiliation(s)
- L P Frazão
- I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho: 3Bs Research Group, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Vieira de Castro
- I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho: 3Bs Research Group, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno M Neves
- I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho: 3Bs Research Group, Guimarães, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
24
|
Trout KL, Holian A. Factors influencing multinucleated giant cell formation in vitro. Immunobiology 2019; 224:834-842. [PMID: 31439452 PMCID: PMC6874761 DOI: 10.1016/j.imbio.2019.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/18/2019] [Accepted: 08/03/2019] [Indexed: 12/11/2022]
Abstract
Macrophages fuse together to form multinucleated giant cells (MGC) in granulomas associated with various pathological conditions. Improved in vitro methods are required to better enable investigations of MGC biology and potential contribution to disease. There is a need for standardization of MGC quantification, purification of MGC populations, and characterization of how cell culture variables influence MGC formation. This study examined solutions to address these needs while providing context with other current and alternative methods. Primary mouse bone marrow-derived macrophages were treated with interleukin-4, a cytokine known to induce fusion into MGC. This model was used to systematically assess the influence of cell stimulant timing, cell seeding density, colony stimulating factors, and culture vessel type. Results indicated that MGC formation is greatly impacted by alterations in certain culture variables. An assessment of previously published research showed that these culture conditions varied widely between different laboratories, which may explain inconsistencies in the literature. A particularly novel and unexpected observation was that MGC formation appears to be greatly increased by silicone, which is a component of a chamber slide system commonly used for MGC studies. The most successful quantification method was fluorescent staining with semi-automated morphological evaluation. The most successful enrichment method was microfiltration. Overall, this study takes steps toward standardizing in vitro methods, enhancing replicability, and guiding investigators attempting to culture, quantify, and enrich MGC.
Collapse
Affiliation(s)
- Kevin L Trout
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States.
| |
Collapse
|
25
|
Jin L, Yuan F, Chen C, Wu J, Gong R, Yuan G, Zeng H, Pei J, Chen T. Degradation Products of Polydopamine Restrained Inflammatory Response of LPS-Stimulated Macrophages Through Mediation TLR-4-MYD88 Dependent Signaling Pathways by Antioxidant. Inflammation 2019; 42:658-671. [PMID: 30484006 DOI: 10.1007/s10753-018-0923-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Polydopamine (PDA) has a promising application as coating of biomaterials due to its favorable degradability and bioadaptability. However, its bioactivity, such as anti-inflammatory capacity, was still little known. Herein, we investigated whether degradable products of PDA could affect inflammatory response in lipopolysaccharide (LPS)-stimulated human THP-1-derived macrophages. The supernatants containing degradation products of PDA, annotated as PDA extracts, were collected after PDA being immersed in cell culture medium for 3 days. Wherein, the composition of the degradation products was analyzed by HPLC assay. Collected PDA extracts were diluted into 100%, 50%, and 25% of original concentration, respectively, to evaluate their anti-inflammatory ability on LPS-induced macrophages from the expression levels of pro-inflammatory cytokines to associated molecular mechanism. Our results showed that the PDA extracts were mainly composed of dopamine, quinine, and PDA segments. Furthermore, macrophages showed no cytotoxicity after PDA extract treatment with or without LPS, while the release levels of TNF-α and IL-6 by LPS-induced macrophages were decreased in dose-dependent by PDA extract treatment. Additionally, TLR-4 and MYD88 expression in protein and RNA level were downregulated by PDA extracts in LPS-induced macrophages. Similarly, PDA extracts effectively inhibited LPS-induced NF-κB trans-locating into nuclear by inactivation of the phosphorylation of IKK-α/β and IKβ-α. Of note, the production of LPS-induced ROS was reduced by PDA extracts in macrophages, while HO-1 expression, a critical protein of antioxidant signaling pathway, was increased. Based on these results, we proposed a potential mechanism by which degradation products of PDA suppressed inflammation of macrophages via downregulation TLR-4-MYD88-NFκB pathway and simultaneous activation HO-1 pathway, which might be a possible therapeutic target.
Collapse
Affiliation(s)
- Liang Jin
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China.,Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.,Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Feng Yuan
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenxin Chen
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Wu
- Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ruolan Gong
- Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.,Department of Allergy and Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China.,Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Hui Zeng
- Department of Orthopaedics, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China.
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Tongxin Chen
- Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China. .,Department of Allergy and Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
26
|
Mukherjee S, Darzi S, Paul K, Werkmeister JA, Gargett CE. Mesenchymal stem cell-based bioengineered constructs: foreign body response, cross-talk with macrophages and impact of biomaterial design strategies for pelvic floor disorders. Interface Focus 2019; 9:20180089. [PMID: 31263531 PMCID: PMC6597526 DOI: 10.1098/rsfs.2018.0089] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
An excessive foreign body response (FBR) has contributed to the adverse events associated with polypropylene mesh usage for augmenting pelvic organ prolapse surgery. Consequently, current biomaterial research considers the critical role of the FBR and now focuses on developing better biocompatible biomaterials rather than using inert implants to improve the clinical outcomes of their use. Tissue engineering approaches using mesenchymal stem cells (MSCs) have improved outcomes over traditional implants in other biological systems through their interaction with macrophages, the main cellular player in the FBR. The unique angiogenic, immunomodulatory and regenerative properties of MSCs have a direct impact on the FBR following biomaterial implantation. In this review, we focus on key aspects of the FBR to tissue-engineered MSC-based implants for supporting pelvic organs and beyond. We also discuss the immunomodulatory effects of the recently discovered endometrial MSCs on the macrophage response to new biomaterials designed for use in pelvic floor reconstructive surgery. We conclude with a focus on considerations in biomaterial design that take into account the FBR and will likely influence the development of the next generation of biomaterials for gynaecological applications.
Collapse
Affiliation(s)
- Shayanti Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria 3168, Australia.,CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| | - Saeedeh Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Kallyanashis Paul
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria 3168, Australia
| | - Jerome A Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria 3168, Australia.,CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| | - Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
27
|
Cancer cell fusion: a potential target to tackle drug-resistant and metastatic cancer cells. Drug Discov Today 2019; 24:1836-1844. [PMID: 31163272 DOI: 10.1016/j.drudis.2019.05.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/22/2019] [Accepted: 05/28/2019] [Indexed: 12/27/2022]
Abstract
Cell fusion is an integral, established phenomenon underlying various physiological processes in the cell cycle. Although research in cancer metastasis has hypothesised numerous molecular mechanisms and signalling pathways responsible for invasion and metastasis, the origin and progression of metastatic cells within primary tumours remains unclear. Recently, the role of cancer cell fusion in cancer metastasis and development of multidrug resistance (MDR) in tumours has gained prominence. However, evidence remains lacking to justify the role of cell fusion in cancer metastasis and drug resistance. Here, we highlight plausible mechanisms governing cell fusion with different cell types in the tumour microenvironment (TME), the clinical relevance of cancer cell fusion, its potential as a target for overcoming MDR and inhibiting metastasis, and putative modes of treatment.
Collapse
|
28
|
Weiler J, Dittmar T. Cell Fusion in Human Cancer: The Dark Matter Hypothesis. Cells 2019; 8:E132. [PMID: 30736482 PMCID: PMC6407028 DOI: 10.3390/cells8020132] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Current strategies to determine tumor × normal (TN)-hybrid cells among human cancer cells include the detection of hematopoietic markers and other mesodermal markers on tumor cells or the presence of donor DNA in cancer samples from patients who had previously received an allogenic bone marrow transplant. By doing so, several studies have demonstrated that TN-hybrid cells could be found in human cancers. However, a prerequisite of this cell fusion search strategy is that such markers are stably expressed by TN-hybrid cells over time. However, cell fusion is a potent inducer of genomic instability, and TN-hybrid cells may lose these cell fusion markers, thereby becoming indistinguishable from nonfused tumor cells. In addition, hybrid cells can evolve from homotypic fusion events between tumor cells or from heterotypic fusion events between tumor cells and normal cells possessing similar markers, which would also be indistinguishable from nonfused tumor cells. Such indistinguishable or invisible hybrid cells will be referred to as dark matter hybrids, which cannot as yet be detected and quantified, but which contribute to tumor growth and progression.
Collapse
Affiliation(s)
- Julian Weiler
- Chair of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448 Witten, Germany.
| | - Thomas Dittmar
- Chair of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448 Witten, Germany.
| |
Collapse
|
29
|
Witherel CE, Abebayehu D, Barker TH, Spiller KL. Macrophage and Fibroblast Interactions in Biomaterial-Mediated Fibrosis. Adv Healthc Mater 2019; 8:e1801451. [PMID: 30658015 PMCID: PMC6415913 DOI: 10.1002/adhm.201801451] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/07/2018] [Indexed: 01/08/2023]
Abstract
Biomaterial-mediated inflammation and fibrosis remain a prominent challenge in designing materials to support tissue repair and regeneration. Despite the many biomaterial technologies that have been designed to evade or suppress inflammation (i.e., delivery of anti-inflammatory drugs, hydrophobic coatings, etc.), many materials are still subject to a foreign body response, resulting in encapsulation of dense, scar-like extracellular matrix. The primary cells involved in biomaterial-mediated fibrosis are macrophages, which modulate inflammation, and fibroblasts, which primarily lay down new extracellular matrix. While macrophages and fibroblasts are implicated in driving biomaterial-mediated fibrosis, the signaling pathways and spatiotemporal crosstalk between these cell types remain loosely defined. In this review, the role of M1 and M2 macrophages (and soluble cues) involved in the fibrous encapsulation of biomaterials in vivo is investigated, with additional focus on fibroblast and macrophage crosstalk in vitro along with in vitro models to study the foreign body response. Lastly, several strategies that have been used to specifically modulate macrophage and fibroblast behavior in vitro and in vivo to control biomaterial-mediated fibrosis are highlighted.
Collapse
Affiliation(s)
- Claire E. Witherel
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA
| | - Daniel Abebayehu
- University of Virginia, Department of Biomedical Engineering, School of Engineering & School of Medicine, 415 Lane Road, Charlottesville, Virginia 22904, USA
| | - Thomas H. Barker
- University of Virginia, Department of Biomedical Engineering, School of Engineering & School of Medicine, 415 Lane Road, Charlottesville, Virginia 22904, USA
| | - Kara L. Spiller
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA,
| |
Collapse
|
30
|
The ectoenzyme-side of matrix metalloproteinases (MMPs) makes inflammation by serum amyloid A (SAA) and chemokines go round. Immunol Lett 2018; 205:1-8. [PMID: 29870759 DOI: 10.1016/j.imlet.2018.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/16/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022]
Abstract
During an inflammatory response, a large number of distinct mediators appears in the affected tissues or in the blood circulation. These include acute phase proteins such as serum amyloid A (SAA), cytokines and chemokines and proteolytic enzymes. Although these molecules are generated within a cascade sequence in specific body compartments allowing for independent action, their co-appearance in space and time during acute or chronic inflammation points toward important mutual interactions. Pathogen-associated molecular patterns lead to fast induction of the pro-inflammatory endogenous pyrogens, which are evoking the acute phase response. Interleukin-1, tumor necrosis factor-α and interferons simultaneously trigger different cell types, including leukocytes, endothelial cells and fibroblasts for tissue-specific or systemic production of chemokines and matrix metalloproteinases (MMPs). In addition, SAA induces chemokines and both stimulate secretion of MMPs from multiple cell types. As a consequence, these mediators may cooperate to enhance the inflammatory response. Indeed, SAA synergizes with chemokines to increase chemoattraction of monocytes and granulocytes. On the other hand, MMPs post-translationally modify chemokines and SAA to reduce their activity. Indeed, MMPs internally cleave SAA with loss of its cytokine-inducing and direct chemotactic potential whilst retaining its capacity to synergize with chemokines in leukocyte migration. Finally, MMPs truncate chemokines at their NH2- or COOH-terminal end, resulting in reduced or enhanced chemotactic activity. Therefore, the complex interactions between chemokines, SAA and MMPs either maintain or dampen the inflammatory response.
Collapse
|
31
|
Saleh LS, Bryant SJ. In Vitro and In Vivo Models for Assessing the Host Response to Biomaterials. ACTA ACUST UNITED AC 2018; 24:13-21. [PMID: 30479632 DOI: 10.1016/j.ddmod.2018.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The foreign body response (FBR) occurs ubiquitously to essentially all non-biological materials that are implanted into higher organisms. The FBR is characterized by inflammation followed by fibrosis and is mediated largely by macrophages. While many current medical devices tolerate the FBR, the FBR is responsible for many asceptic device failures and is hindering advancements of new devices that rely on device-host communication to function. To this end, in vitro and in vivo models are critical to studying how a biomaterial, via its chemistry and properties, affect the FBR. This short review highlights the main in vitro and in vivo models that are used to study the FBR. In vitro models that capture macrophage interrogation of a biomaterial and evaluation of macrophage attachment, polarization and fusion are described. In vivo models using rodents, which provide a relatively simple model of the complex FBR process, and human-relevant nonhuman primate models are described. Collectively, the combination of in vitro and in vivo models will help advance our fundmental understanding of the FBR and enable new biomaterials to be developed that can effectively modulate the FBR to achieve a desire device-host outcome.
Collapse
Affiliation(s)
- Leila S Saleh
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Avenue, Boulder, CO 80303, USA
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Avenue, Boulder, CO 80303, USA.,BioFrontiers Institute, University of Colorado, 3415 Colorado Avenue, Boulder, CO 80303, USA.,Material Science and Engineering Program, University of Colorado, 3415 Colorado Avenue, Boulder, CO 80303, USA
| |
Collapse
|
32
|
Weiler J, Mohr M, Zänker KS, Dittmar T. Matrix metalloproteinase-9 (MMP9) is involved in the TNF-α-induced fusion of human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells. Cell Commun Signal 2018; 16:14. [PMID: 29636110 PMCID: PMC5894245 DOI: 10.1186/s12964-018-0226-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/02/2018] [Indexed: 01/07/2023] Open
Abstract
Background In addition to physiological events such as fertilisation, placentation, osteoclastogenesis, or tissue regeneration/wound healing, cell fusion is involved in pathophysiological conditions such as cancer. Cell fusion, which applies to both the proteins and conditions that induce the merging of two or more cells, is not a fully understood process. Inflammation/pro-inflammatory cytokines might be a positive trigger for cell fusion. Using a Cre-LoxP-based cell fusion assay we demonstrated that the fusion between human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells was induced by the pro-inflammatory cytokine tumour necrosis factor-α (TNF-α). Methods The gene expression profile of the cells in the presence of TNF-α and under normoxic and hypoxic conditions was analysed by cDNA microarray analysis. cDNA microarray data were verified by qPCR, PCR, Western blot and zymography. Quantification of cell fusion events was determined by flow cytometry. Proteins of interest were either blocked or knocked-down using a specific inhibitor, siRNA or a blocking antibody. Results The data showed an up-regulation of various genes, including claudin-1 (CLDN1), ICAM1, CCL2 and MMP9 in M13SV1-Cre and/or MDA-MB-435-pFDR1 cells. Inhibition of these proteins using a blocking ICAM1 antibody, CLDN1 siRNA or an MMP9 inhibitor showed that only the blockage of MMP9 was correlated with a decreased fusion rate of the cells. Likewise, the tetracycline-based antibiotic minocycline, which exhibits anti-inflammatory properties, was also effective in both inhibiting the TNF-α-induced MMP9 expression in M13SV1-Cre cells and blocking the TNF-α-induced fusion frequency of human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells. Conclusions The matrix metalloproteinase-9 (MMP9) is most likely involved in the TNF-α-mediated fusion of human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells. Likewise, our data indicate that the tetracycline-based antibiotic minocycline might exhibit anti-fusogenic properties because it inhibits a cell fusion-related mechanism. Electronic supplementary material The online version of this article (10.1186/s12964-018-0226-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julian Weiler
- Institute of Immunology, Centre of Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany
| | - Marieke Mohr
- BioGenes GmbH, Köpenicker Str. 325, 12555, Berlin, Germany
| | - Kurt S Zänker
- Institute of Immunology, Centre of Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany
| | - Thomas Dittmar
- Institute of Immunology, Centre of Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany.
| |
Collapse
|
33
|
Klueh U, Czajkowski C, Ludzinska I, Qiao Y, Frailey J, Kreutzer DL. Impact of CCL2 and CCR2 chemokine/receptor deficiencies on macrophage recruitment and continuous glucose monitoring in vivo. Biosens Bioelectron 2016; 86:262-269. [PMID: 27376197 DOI: 10.1016/j.bios.2016.06.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/26/2016] [Accepted: 06/10/2016] [Indexed: 01/11/2023]
Abstract
The accumulation of macrophages (MΦ) at the sensor-tissue interface is thought to be a major player in controlling tissue reactions and sensor performance in vivo. Nevertheless until recently no direct demonstration of the causal relationship between MΦ aggregation and loss of sensor function existed. Using a Continuous Glucose Monitoring (CGM) murine model we previously demonstrated that genetic deficiencies of MΦ or depletion of MΦ decreased MΦ accumulation at sensor implantation sites, which led to significantly enhanced CGM performance, when compared to normal mice. Additional studies in our laboratories have also demonstrated that MΦ can act as "metabolic sinks" by depleting glucose levels at the implanted sensors in vitro and in vivo. In the present study we extended these observations by demonstrating that MΦ chemokine (CCL2) and receptor (CCR2) knockout mice displayed a decrease in inflammation and MΦ recruitment at sensor implantation sites, when compared to normal mice. This decreased MΦ recruitment significantly enhanced CGM performance when compared to control mice. These studies demonstrated the importance of the CCL2 family of chemokines and related receptors in MΦ recruitment and sensor performance and suggest chemokine targets for enhancing CGM in vivo.
Collapse
Affiliation(s)
- Ulrike Klueh
- Center for Molecular Tissue Engineering, University of Connecticut, School of Medicine, Farmington, CT 06030, USA; Department of Surgery, University of Connecticut, School of Medicine, Farmington, CT 06030, USA.
| | - Caroline Czajkowski
- Center for Molecular Tissue Engineering, University of Connecticut, School of Medicine, Farmington, CT 06030, USA; Department of Surgery, University of Connecticut, School of Medicine, Farmington, CT 06030, USA
| | - Izabela Ludzinska
- Center for Molecular Tissue Engineering, University of Connecticut, School of Medicine, Farmington, CT 06030, USA; Department of Surgery, University of Connecticut, School of Medicine, Farmington, CT 06030, USA
| | - Yi Qiao
- Center for Molecular Tissue Engineering, University of Connecticut, School of Medicine, Farmington, CT 06030, USA; Department of Surgery, University of Connecticut, School of Medicine, Farmington, CT 06030, USA
| | - Jackman Frailey
- Center for Molecular Tissue Engineering, University of Connecticut, School of Medicine, Farmington, CT 06030, USA; Department of Surgery, University of Connecticut, School of Medicine, Farmington, CT 06030, USA
| | - Donald L Kreutzer
- Center for Molecular Tissue Engineering, University of Connecticut, School of Medicine, Farmington, CT 06030, USA; Department of Surgery, University of Connecticut, School of Medicine, Farmington, CT 06030, USA
| |
Collapse
|
34
|
Tosun S, Fried S, Niggemann B, Zänker KS, Dittmar T. Hybrid Cells Derived from Human Breast Cancer Cells and Human Breast Epithelial Cells Exhibit Differential TLR4 and TLR9 Signaling. Int J Mol Sci 2016; 17:ijms17050726. [PMID: 27187369 PMCID: PMC4881548 DOI: 10.3390/ijms17050726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/15/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023] Open
Abstract
TLRs are important receptors of cells of the innate immune system since they recognize various structurally conserved molecular patterns of different pathogens as well as endogenous ligands. In cancer, the role of TLRs is still controversial due to findings that both regression and progression of tumors could depend on TLR signaling. In the present study, M13SV1-EGFP-Neo human breast epithelial cells, MDA-MB-435-Hyg human breast cancer cells and two hybrids M13MDA435-1 and -3 were investigated for TLR4 and TLR9 expression and signaling. RT-PCR data revealed that LPS and CpG-ODN induced the expression of pro-inflammatory cytokines, like IFN-β, TNF-α, IL-1β and IL-6 in hybrid cells, but not parental cells. Interestingly, validation of RT-PCR data by Western blot showed detectable protein levels solely after LPS stimulation, suggesting that regulatory mechanisms are also controlled by TLR signaling. Analysis of pAKT and pERK1/2 levels upon LPS and CpG-ODN stimulation revealed a differential phosphorylation pattern in all cells. Finally, the migratory behavior of the cells was investigated showing that both LPS and CpG-ODN potently blocked the locomotory activity of the hybrid cells in a dose-dependent manner. In summary, hybrid cells exhibit differential TLR4 and TLR9 signaling.
Collapse
Affiliation(s)
- Songül Tosun
- Institute of Immunology & Experimental Oncology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Stockumer Str. 10, 58448 Witten, Germany.
| | - Sabrina Fried
- Institute of Immunology & Experimental Oncology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Stockumer Str. 10, 58448 Witten, Germany.
- Faculty of Medicine, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Bernd Niggemann
- Institute of Immunology & Experimental Oncology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Stockumer Str. 10, 58448 Witten, Germany.
| | - Kurt S Zänker
- Institute of Immunology & Experimental Oncology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Stockumer Str. 10, 58448 Witten, Germany.
| | - Thomas Dittmar
- Institute of Immunology & Experimental Oncology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Stockumer Str. 10, 58448 Witten, Germany.
| |
Collapse
|
35
|
Fiorino C, Harrison RE. E-cadherin is important for cell differentiation during osteoclastogenesis. Bone 2016; 86:106-18. [PMID: 26959175 DOI: 10.1016/j.bone.2016.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/29/2016] [Accepted: 03/04/2016] [Indexed: 01/05/2023]
Abstract
E-cadherin, a protein responsible for intercellular adhesion between epithelial cells, is also expressed in the monocyte/macrophage lineage. In this study we have explored the involvement of E-cadherin during receptor activator of nuclear factor-κB ligand (RANKL)-stimulated osteoclast differentiation. Osteoclastogenesis involves a period of precursor expansion followed by multiple fusion events to generate a multinuclear osteoclast that is capable of bone resorption. We asked whether E-cadherin participated in early precursor interactions and recognition or was a component of the osteoclast fusion machinery. Here, we show that endogenous E-cadherin expression is the highest during early stages of osteoclast differentiation, with surface expression visible on small precursor cells (fewer than four nuclei per cell) in both RAW 264.7 cells and primary macrophages. Blocking E-cadherin function with neutralizing antibodies prior to the onset of fusion delayed the expression of TRAP, Cathepsin K, DC-STAMP and NFATc1 and significantly diminished multinucleated osteoclast formation. Conversely, E-cadherin-GFP overexpressing macrophages displayed earlier NFATc1 nuclear translocation along with faster formation of multinucleated osteoclasts compared to control macrophages. Through live imaging we identified that disrupting E-cadherin function prolonged the proliferative phase of the precursor population while concomitantly decreasing the proportion of migrating precursors. The lamellipodium and polarized membrane extensions appeared to be the principal sites of fusion, indicating precursor migration was a critical factor contributing to osteoclast fusion. These findings demonstrate that E-cadherin-mediated cell-cell contacts can modulate osteoclast-specific gene expression and prompt differentiating osteoclast precursors toward migratory and fusion activities.
Collapse
Affiliation(s)
- Cara Fiorino
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M1C 1A4, Canada; Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Rene E Harrison
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M1C 1A4, Canada; Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada.
| |
Collapse
|
36
|
Moore LB, Sawyer AJ, Saucier-Sawyer J, Saltzman WM, Kyriakides TR. Nanoparticle delivery of miR-223 to attenuate macrophage fusion. Biomaterials 2016; 89:127-35. [PMID: 26967647 DOI: 10.1016/j.biomaterials.2016.02.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 01/12/2023]
Abstract
The foreign body response (FBR) begins with injury acquired during implantation of a biomaterial (BM) and is detrimental due to the eventual encapsulation of the implant. Fusion of macrophages to form foreign body giant cells (FBGC), a hallmark of the FBR, is the consequence of a multistep mechanism induced by interleukin (IL)-4 that includes the acquisition of a fusion competent state and subsequent cytoskeletal rearrangements. However, the precise mechanism, regulation, and interplay among molecular mediators to generate FBGCs are insufficiently understood. Seeking novel mediators of fusion that might be regulated at the post-transcriptional level, we examined the role of microRNAs (miRs) in this process. A miR microarray was screened and identified miR-223 as a negative regulator of macrophage fusion. In addition, transfection of primary macrophages with a mir-223 mimic attenuated IL-4-induced fusion. Furthermore, miR-223 KO mice and mir-223 deficient cells displayed increased fusion in vivo and in vitro, respectively. Finally, we developed a method for in vivo delivery of miR-223 mimic utilizing PLGA nanoparticles, which inhibited FBGC formation in a biomaterial implant model. Our results identify miR-223 as a negative regulator of fusion and demonstrate miR-223 mimic-loaded nanoparticles as a therapeutic inhibitor of macrophage fusion.
Collapse
Affiliation(s)
- Laura Beth Moore
- Department of Genetics, Yale University, New Haven, CT 06520, USA; Interdepartmental Program in Vascular Biology and Therapeutics, Yale University, New Haven, CT 06520, USA
| | - Andrew J Sawyer
- Department of Pathology, Yale University, New Haven, CT 06520, USA; Interdepartmental Program in Vascular Biology and Therapeutics, Yale University, New Haven, CT 06520, USA
| | | | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Themis R Kyriakides
- Department of Pathology, Yale University, New Haven, CT 06520, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Interdepartmental Program in Vascular Biology and Therapeutics, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
37
|
Abstract
Mammalian life begins with a cell-cell fusion event, i.e. the fusion of the spermatozoid with the oocyte and needs further cell-cell fusion processes for the development, growth, and maintenance of tissues and organs over the whole life span. Furthermore, cellular fusion plays a role in infection, cancer, and stem cell-dependent regeneration as well as including an expanded meaning of partial cellular fusion, nanotube formation, and microparticle-cell fusion. The cellular fusion process is highly regulated by proteins which carry the information to organize and regulate membranes allowing the merge of two separate lipid bilayers into one. The regulation of this genetically and epigenetically controlled process is achieved by different kinds of signals leading to communication of fusing cells. The local cellular and extracellular environment additionally initiates specific cell signaling necessary for the induction of the cell-cell fusion process. Common motifs exist in distinct cell-cell fusion processes and their regulation. However, there is specific regulation of different cell-cell fusion processes, e.g. myoblast, placental, osteoclast, and stem cell fusion. Hence, specialized fusion events vary between cell types and species. Molecular mechanisms remain largely unknown, especially limited knowledge is present for cancer and stem cell fusion mechanisms and regulation. More research is necessary for the understanding of cellular fusion processes which can lead to development of new therapeutic strategies grounding on cellular fusion regulation.
Collapse
Affiliation(s)
- Lena Willkomm
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | | |
Collapse
|
38
|
Mohr M, Tosun S, Arnold WH, Edenhofer F, Zänker KS, Dittmar T. Quantification of cell fusion events human breast cancer cells and breast epithelial cells using a Cre-LoxP-based double fluorescence reporter system. Cell Mol Life Sci 2015; 72:3769-82. [PMID: 25900663 PMCID: PMC11113140 DOI: 10.1007/s00018-015-1910-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/17/2015] [Accepted: 04/17/2015] [Indexed: 12/21/2022]
Abstract
The biological phenomenon of cell fusion plays an important role in several physiological processes, like fertilization, placentation, or wound healing/tissue regeneration, as well as pathophysiological processes, such as cancer. Despite this fact, considerably less is still known about the factors and conditions that will induce the merging of two plasma membranes. Inflammation and proliferation has been suggested as a positive trigger for cell fusion, but it remains unclear, which of the factor(s) of the inflamed microenvironment are being involved. To clarify this we developed a reliable assay to quantify the in vitro fusion frequency of cells using a fluorescence double reporter vector (pFDR) containing a LoxP-flanked HcRed/DsRed expression cassette followed by an EGFP expression cassette. Because cell fusion has been implicated in cancer progression four human breast cancer cell lines were stably transfected with a pFDR vector and were co-cultured with the stably Cre-expressing human breast epithelial cell line. Cell fusion is associated with a Cre-mediated recombination resulting in induction of EGFP expression in hybrid cells, which can be quantified by flow cytometry. By testing a panel of different cytokines, chemokines, growth factors and other compounds, including exosomes, under normoxic and hypoxic conditions our data indicate that the proinflammatory cytokine TNF-α together with hypoxia is a strong inducer of cell fusion in human MDA-MB-435 and MDA-MB-231 breast cancer cells.
Collapse
Affiliation(s)
- Marieke Mohr
- Institute of Immunology and Experimental Oncology, Center for Biomedical Education and Research, Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany
| | - Songül Tosun
- Institute of Immunology and Experimental Oncology, Center for Biomedical Education and Research, Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany
| | - Wolfgang H Arnold
- Department of Biological and Material Sciences in Dentistry, School of Dentistry, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Frank Edenhofer
- Stem Cell and Regenerative Medicine Group, Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Kurt S Zänker
- Institute of Immunology and Experimental Oncology, Center for Biomedical Education and Research, Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany
| | - Thomas Dittmar
- Institute of Immunology and Experimental Oncology, Center for Biomedical Education and Research, Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany.
| |
Collapse
|
39
|
Hoseini SM, Kalantari A, Afarideh M, Noshad S, Behdadnia A, Nakhjavani M, Esteghamati A. Evaluation of plasma MMP-8, MMP-9 and TIMP-1 identifies candidate cardiometabolic risk marker in metabolic syndrome: results from double-blinded nested case-control study. Metabolism 2015; 64:527-38. [PMID: 25633268 DOI: 10.1016/j.metabol.2014.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/11/2014] [Accepted: 12/22/2014] [Indexed: 12/21/2022]
Abstract
AIMS Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) are dysregulated in metabolic syndrome (MetS) and associated with atherosclerosis and cardiovascular disease (CVD). Previous studies on the association between MMPs/TIMPs and MetS are controversial. We aimed to evaluate circulating MMP-8, MMP-9 and TIMP-1 in a group of MetS individuals and healthy controls to find the potential marker associated with MetS and its components. METHODS 243 MetS individuals participated in a nested case-control design, of whom 63 were excluded (study subjects for analysis n=180; 87 MetS cases, 93 controls). We employed the International Diabetes Federation criteria using national waist circumference cutoffs for case definition. Anthropometric and biochemical measurements were done using standard methods. RESULTS Plasma MMP-8, TIMP-1, tumor necrosis factor-alpha (TNF-α), highly sensitive C-reactive protein (hs-CRP) and MMP-8/TIMP-1 ratio were significantly higher in MetS cases (P for all < 0.05). Each component of MetS except raised fasting plasma glucose positively correlated with MMP-8 and numbers of MetS components increased with higher MMP-8. In all regression models, MMP-8 was a significant predictor of MetS and in the final model the relationship persisted even after adjusting for pro-inflammatory cytokines hs-CRP and TNF-α (odds ratio=6.008, 95% confidence interval: 1.612-22.389, P=0.008). CONCLUSION Strong associations of MMP-8 with components of MetS in univariate, bivariate and multivariate models suggest plasma MMP-8 as a potential cardiometabolic risk marker for MetS. Higher MMP-8 in MetS is possibly mediated through mechanisms both dependent and independent of chronic low grade inflammation.
Collapse
Affiliation(s)
- Seyed Mehdi Hoseini
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ali Kalantari
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohsen Afarideh
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sina Noshad
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Aram Behdadnia
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Manouchehr Nakhjavani
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Esteghamati
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Moore LB, Sawyer AJ, Charokopos A, Skokos EA, Kyriakides TR. Loss of monocyte chemoattractant protein-1 alters macrophage polarization and reduces NFκB activation in the foreign body response. Acta Biomater 2015; 11:37-47. [PMID: 25242651 PMCID: PMC4278755 DOI: 10.1016/j.actbio.2014.09.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/26/2014] [Accepted: 09/11/2014] [Indexed: 12/22/2022]
Abstract
Implantation of biomaterials elicits a foreign body response characterized by fusion of macrophages to form foreign body giant cells and fibrotic encapsulation. Studies of the macrophage polarization involved in this response have suggested that alternative (M2) activation is associated with more favorable outcomes. Here we investigated this process in vivo by implanting mixed cellulose ester filters or polydimethylsiloxane disks in the peritoneal cavity of wild-type (WT) and monocyte chemoattractant protein-1 (MCP-1) knockout mice. We analyzed classical (M1) and alternative (M2) gene expression via quantitative polymerase chain reaction, immunohistochemistry and enzyme-linked immunosorbent assay in both non-adherent cells isolated by lavage and implant-adherent cells. Our results show that macrophages undergo unique activation that displays features of both M1 and M2 polarization including induction of tumor necrosis factor α (TNF), which induces the expression and nuclear translocation of p50 and RelA determined by immunofluorescence and Western blot. Both processes were compromised in fusion-deficient MCP-1 KO macrophages in vitro and in vivo. Furthermore, inclusion of BAY 11-7028, an inhibitor of NFκB activation, reduced nuclear translocation of RelA and fusion in WT macrophages. Our studies suggest that peritoneal implants elicit a unique macrophage polarization phenotype leading to induction of TNF and activation of the NFκB pathway.
Collapse
Affiliation(s)
- Laura Beth Moore
- Department of Genetics, Yale University, New Haven, CT 06520, USA; Interdepartmental Program in Vascular Biology and Therapeutics, Yale University, New Haven, CT 06520, USA
| | - Andrew J Sawyer
- Department of Pathology, Yale University, New Haven, CT 06520, USA; Interdepartmental Program in Vascular Biology and Therapeutics, Yale University, New Haven, CT 06520, USA
| | - Antonios Charokopos
- Interdepartmental Program in Vascular Biology and Therapeutics, Yale University, New Haven, CT 06520, USA
| | - Eleni A Skokos
- Department of Pathology, Yale University, New Haven, CT 06520, USA; Interdepartmental Program in Vascular Biology and Therapeutics, Yale University, New Haven, CT 06520, USA
| | - Themis R Kyriakides
- Department of Pathology, Yale University, New Haven, CT 06520, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Interdepartmental Program in Vascular Biology and Therapeutics, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
41
|
Moore LB, Kyriakides TR. Molecular Characterization of Macrophage-Biomaterial Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 865:109-22. [PMID: 26306446 DOI: 10.1007/978-3-319-18603-0_7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Implantation of biomaterials in vascularized tissues elicits the sequential engagement of molecular and cellular elements that constitute the foreign body response. Initial events include the non-specific adsorption of proteins to the biomaterial surface that render it adhesive for cells such as neutrophils and macrophages. The latter undergo unique activation and in some cases undergo cell-cell fusion to form foreign body giant cells that contribute to implant damage and fibrotic encapsulation. In this review, we discuss the molecular events that contribute to macrophage activation and fusion with a focus on the role of the inflammasome, signaling pathways such as JAK/STAT and NF-κB, and the putative involvement of micro RNAs in the regulation of these processes.
Collapse
|
42
|
Castro PR, Marques SM, Viana CT, Campos PP, Ferreira MA, Barcelos LS, Andrade SP. Deletion of the chemokine receptor CCR2 attenuates foreign body reaction to implants in mice. Microvasc Res 2014; 95:37-45. [DOI: 10.1016/j.mvr.2014.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 01/08/2023]
|
43
|
Sawyer AJ, Tian W, Saucier-Sawyer JK, Rizk PJ, Saltzman WM, Bellamkonda RV, Kyriakides TR. The effect of inflammatory cell-derived MCP-1 loss on neuronal survival during chronic neuroinflammation. Biomaterials 2014; 35:6698-706. [PMID: 24881026 DOI: 10.1016/j.biomaterials.2014.05.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 05/01/2014] [Indexed: 01/22/2023]
Abstract
Intracranial implants elicit neurodegeneration via the foreign body response (FBR) that includes BBB leakage, macrophage/microglia accumulation, and reactive astrogliosis, in addition to neuronal degradation that limit their useful lifespan. Previously, monocyte chemoattractant protein 1 (MCP-1, also CCL2), which plays an important role in monocyte recruitment and propagation of inflammation, was shown to be critical for various aspects of the FBR in a tissue-specific manner. However, participation of MCP-1 in the brain FBR has not been evaluated. Here we examined the FBR to intracortical silicon implants in MCP-1 KO mice at 1, 2, and 8 weeks after implantation. MCP-1 KO mice had a diminished FBR compared to WT mice, characterized by reductions in BBB leakage, macrophage/microglia accumulation, and astrogliosis, and an increased neuronal density. Moreover, pharmacological inhibition of MCP-1 in implant-bearing WT mice maintained the increased neuronal density. To elucidate the relative contribution of microglia and macrophages, bone marrow chimeras were generated between MCP-1 KO and WT mice. Increased neuronal density was observed only in MCP-1 knockout mice transplanted with MCP-1 knockout marrow, which indicates that resident cells in the brain are major contributors. We hypothesized that these improvements are the result of a phenotypic switch of the macrophages/microglia polarization state, which we confirmed using PCR for common activation markers. Our observations suggest that MCP-1 influences neuronal loss, which is integral to the progression of neurological disorders like Alzheimer's and Parkinson disease, via BBB leakage and macrophage polarization.
Collapse
Affiliation(s)
- Andrew J Sawyer
- Department of Pathology, Yale School of Medicine, 310 Cedar Street LH 108, New Haven, CT 06520-8023, USA
| | - Weiming Tian
- Bio-X Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| | | | - Paul J Rizk
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ravi V Bellamkonda
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Themis R Kyriakides
- Department of Pathology, Yale School of Medicine, 310 Cedar Street LH 108, New Haven, CT 06520-8023, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
44
|
Amini-Nik S, Cambridge E, Yu W, Guo A, Whetstone H, Nadesan P, Poon R, Hinz B, Alman BA. β-Catenin-regulated myeloid cell adhesion and migration determine wound healing. J Clin Invest 2014; 124:2599-610. [PMID: 24837430 DOI: 10.1172/jci62059] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 03/27/2014] [Indexed: 01/28/2023] Open
Abstract
A β-catenin/T cell factor-dependent transcriptional program is critical during cutaneous wound repair for the regulation of scar size; however, the relative contribution of β-catenin activity and function in specific cell types in the granulation tissue during the healing process is unknown. Here, cell lineage tracing revealed that cells in which β-catenin is transcriptionally active express a gene profile that is characteristic of the myeloid lineage. Mice harboring a macrophage-specific deletion of the gene encoding β-catenin exhibited insufficient skin wound healing due to macrophage-specific defects in migration, adhesion to fibroblasts, and ability to produce TGF-β1. In irradiated mice, only macrophages expressing β-catenin were able to rescue wound-healing deficiency. Evaluation of scar tissue collected from patients with hypertrophic and normal scars revealed a correlation between the number of macrophages within the wound, β-catenin levels, and cellularity. Our data indicate that β-catenin regulates myeloid cell motility and adhesion and that β-catenin-mediated macrophage motility contributes to the number of mesenchymal cells and ultimate scar size following cutaneous injury.
Collapse
|
45
|
Yabluchanskiy A, Ma Y, Chiao YA, Lopez EF, Voorhees AP, Toba H, Hall ME, Han HC, Lindsey ML, Jin YF. Cardiac aging is initiated by matrix metalloproteinase-9-mediated endothelial dysfunction. Am J Physiol Heart Circ Physiol 2014; 306:H1398-407. [PMID: 24658018 DOI: 10.1152/ajpheart.00090.2014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aging is linked to increased matrix metalloproteinase-9 (MMP-9) expression and extracellular matrix turnover, as well as a decline in function of the left ventricle (LV). Previously, we demonstrated that C57BL/6J wild-type (WT) mice > 18 mo of age show impaired diastolic function, which was attenuated by MMP-9 deletion. To evaluate mechanisms that initiate the development of cardiac dysfunction, we compared the LVs of 6-9- and 15-18-mo-old WT and MMP-9 null (Null) mice. All groups showed similar LV function by echocardiography, indicating that dysfunction had not yet developed in the older group. Myocyte nuclei numbers and cross-sectional areas increased in both WT and Null 15-18-mo mice compared with young controls, indicating myocyte hypertrophy. Myocyte hypertrophy leads to an increased oxygen demand, and both WT and Null 15-18-mo mice showed an increase in angiogenic signaling. Plasma proteomic profiling and LV analysis revealed a threefold increase in von Willebrand factor and fivefold increase in vascular endothelial growth factor in WT 15-18-mo mice, which were further elevated in Null mice. In contrast to the upregulation of angiogenic stimulating factors, actual LV vessel numbers increased only in the 15-18-mo Null LV. The 15-18-mo WT showed amplified expression of inflammatory genes related to angiogenesis, including C-C chemokine receptor (CCR)7, CCR10, interleukin (IL)-1f8, IL-13, and IL-20 (all, P < 0.05), and these increases were blunted by MMP-9 deletion (all, P < 0.05). To measure vascular permeability as an index of endothelial function, we injected mice with FITC-labeled dextran. The 15-18-mo WT LV showed increased vascular permeability compared with young WT controls and 15-18-mo Null mice. Combined, our findings revealed that MMP-9 deletion improves angiogenesis, attenuates inflammation, and prevents vascular leakiness in the setting of cardiac aging.
Collapse
Affiliation(s)
- Andriy Yabluchanskiy
- San Antonio Cardiovascular Proteomics Center, San Antonio, Texas; Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Yonggang Ma
- San Antonio Cardiovascular Proteomics Center, San Antonio, Texas; Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ying Ann Chiao
- Department of Pathology, University of Washington, Seattle, Washington
| | | | - Andrew P Voorhees
- San Antonio Cardiovascular Proteomics Center, San Antonio, Texas; Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Hiroe Toba
- San Antonio Cardiovascular Proteomics Center, San Antonio, Texas; Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi; Division of Pathological Sciences, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Michael E Hall
- San Antonio Cardiovascular Proteomics Center, San Antonio, Texas; Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi; Division of Cardiology, University of Mississippi Medical Center; Jackson, Mississippi
| | - Hai-Chao Han
- San Antonio Cardiovascular Proteomics Center, San Antonio, Texas; Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Merry L Lindsey
- San Antonio Cardiovascular Proteomics Center, San Antonio, Texas; Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi; Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center; Jackson, Mississippi; and
| | - Yu-Fang Jin
- San Antonio Cardiovascular Proteomics Center, San Antonio, Texas; Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, Texas
| |
Collapse
|
46
|
Macrophage fusion is controlled by the cytoplasmic protein tyrosine phosphatase PTP-PEST/PTPN12. Mol Cell Biol 2013; 33:2458-69. [PMID: 23589331 DOI: 10.1128/mcb.00197-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Macrophages can undergo cell-cell fusion, leading to the formation of multinucleated giant cells and osteoclasts. This process is believed to promote the proteolytic activity of macrophages toward pathogens, foreign bodies, and extracellular matrices. Here, we examined the role of PTP-PEST (PTPN12), a cytoplasmic protein tyrosine phosphatase, in macrophage fusion. Using a macrophage-targeted PTP-PEST-deficient mouse, we determined that PTP-PEST was not needed for macrophage differentiation or cytokine production. However, it was necessary for interleukin-4-induced macrophage fusion into multinucleated giant cells in vitro. It was also needed for macrophage fusion following implantation of a foreign body in vivo. Moreover, in the RAW264.7 macrophage cell line, PTP-PEST was required for receptor activator of nuclear factor kappa-B ligand (RANKL)-triggered macrophage fusion into osteoclasts. PTP-PEST had no impact on expression of fusion mediators such as β-integrins, E-cadherin, and CD47, which enable macrophages to become fusion competent. However, it was needed for polarization of macrophages, migration induced by the chemokine CC chemokine ligand 2 (CCL2), and integrin-induced spreading, three key events in the fusion process. PTP-PEST deficiency resulted in specific hyperphosphorylation of the protein tyrosine kinase Pyk2 and the adaptor paxillin. Moreover, a fusion defect was induced upon treatment of normal macrophages with a Pyk2 inhibitor. Together, these data argue that macrophage fusion is critically dependent on PTP-PEST. This function is seemingly due to the ability of PTP-PEST to control phosphorylation of Pyk2 and paxillin, thereby regulating cell polarization, migration, and spreading.
Collapse
|
47
|
Aguilar PS, Baylies MK, Fleissner A, Helming L, Inoue N, Podbilewicz B, Wang H, Wong M. Genetic basis of cell-cell fusion mechanisms. Trends Genet 2013; 29:427-37. [PMID: 23453622 DOI: 10.1016/j.tig.2013.01.011] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 01/15/2013] [Accepted: 01/25/2013] [Indexed: 12/22/2022]
Abstract
Cell-cell fusion in sexually reproducing organisms is a mechanism to merge gamete genomes and, in multicellular organisms, it is a strategy to sculpt organs, such as muscle, bone, and placenta. Moreover, this mechanism has been implicated in pathological conditions, such as infection and cancer. Studies of genetic model organisms have uncovered a unifying principle: cell fusion is a genetically programmed process. This process can be divided in three stages: competence (cell induction and differentiation); commitment (cell determination, migration, and adhesion); and cell fusion (membrane merging and cytoplasmic mixing). Recent work has led to the discovery of fusogens, which are cell fusion proteins that are necessary and sufficient to fuse cell membranes. Two unrelated families of fusogens have been discovered, one in mouse placenta and one in Caenorhabditis elegans (syncytins and F proteins, respectively). Current research aims to identify new fusogens and determine the mechanisms by which they merge membranes.
Collapse
Affiliation(s)
- Pablo S Aguilar
- Cellular Membranes Laboratory, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Regulation and function of the E-cadherin/catenin complex in cells of the monocyte-macrophage lineage and DCs. Blood 2011; 119:1623-33. [PMID: 22174153 DOI: 10.1182/blood-2011-10-384289] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
E-cadherin is best characterized as adherens junction protein, which through homotypic interactions contributes to the maintenance of the epithelial barrier function. In epithelial cells, the cytoplasmic tail of E-cadherin forms a dynamic complex with catenins and regulates several intracellular signal transduction pathways, including Wnt/β-catenin, PI3K/Akt, Rho GTPase, and NF-κB signaling. Recent progress uncovered a novel and critical role for this adhesion molecule in mononuclear phagocyte functions. E-cadherin regulates the maturation and migration of Langerhans cells, and its ligation prevents the induction of a tolerogenic state in bone marrow-derived dendritic cells (DCs). In this respect, the functionality of β-catenin could be instrumental in determining the balance between immunogenicity and tolerogenicity of DCs in vitro and in vivo. Fusion of alternatively activated macrophages and osteoclasts is also E-cadherin-dependent. In addition, the E-cadherin ligands CD103 and KLRG1 are expressed on DC-, T-, and NK-cell subsets and contribute to their interaction with E-cadherin-expressing DCs and macrophages. Here we discuss the regulation, function, and implications of E-cadherin expression in these central orchestrators of the immune system.
Collapse
|
49
|
Hamlet S, Alfarsi M, George R, Ivanovski S. The effect of hydrophilic titanium surface modification on macrophage inflammatory cytokine gene expression. Clin Oral Implants Res 2011; 23:584-90. [DOI: 10.1111/j.1600-0501.2011.02325.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2011] [Indexed: 01/26/2023]
Affiliation(s)
- Stephen Hamlet
- School of Dentistry and Oral Health; Centre for Medicine and Oral Health; Griffith University; Gold Coast Campus; Gold Coast; QLD; Australia
| | | | - Roy George
- School of Dentistry and Oral Health; Centre for Medicine and Oral Health; Griffith University; Gold Coast Campus; Gold Coast; QLD; Australia
| | - Saso Ivanovski
- School of Dentistry and Oral Health; Centre for Medicine and Oral Health; Griffith University; Gold Coast Campus; Gold Coast; QLD; Australia
| |
Collapse
|