1
|
Curovic I. The role of resistance exercise-induced local metabolic stress in mediating systemic health and functional adaptations: could condensed training volume unlock greater benefits beyond time efficiency? Front Physiol 2025; 16:1549609. [PMID: 40313877 PMCID: PMC12045103 DOI: 10.3389/fphys.2025.1549609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/07/2025] [Indexed: 05/03/2025] Open
Abstract
The majority of "specialised" exercise configurations (e.g., supersets, drop sets, blood flow restriction) are being assessed as "shortcuts" to hypertrophy and strength improvements. However, these advanced training techniques may also offer significant benefits for systemic health and functional outcomes across recreational and clinical populations via locally induced metabolic responses. Stress-regulating mechanisms are known to enhance the body's resilience by facilitating allostasis, the process of coordinating adaptive processes in reaction to stressors such as physical training. Yet, the role of the local metabolic stress provoked by resistance exercise has not gained much research attention despite its wide potential. Positive effects are not only linked to improved muscular endurance, hypertrophy and strength via primary and secondary mechanisms, but also to the release of myokines, hormones, microRNAs, immune factors, inflammatory substances and other endocrine molecules that initiate numerous health-promoting modifications on a systemic level. Resistance exercise strategies that maximise the local accumulation of metabolites are not well defined, although high volume, close proximity to failure and shorter rests seem to be a necessity. Additionally, blood flow restriction training provides a potent alternative for inducing local acidosis, thereby triggering several pathways associated with improved immunity and physical function even in remote muscle tissues. Future research is warranted to further explore advanced resistance training techniques, as these approaches may offer comparable benefits for physical and mental health to those seen with other forms of exercise such as high-intensity interval training and heavy resistance training.
Collapse
Affiliation(s)
- Ivan Curovic
- Institute of Coaching and Performance, University of Central Lancashire, Preston, United Kingdom
| |
Collapse
|
2
|
Johnson D, Ridolfo A, Mueller R, Chermack M, Brockhouse J, Tadiwala J, Jain A, Bertram K, Garg K. Biosponge-Encased Placental Stem Cells for Volumetric Muscle Loss Repair. Adv Wound Care (New Rochelle) 2025; 14:83-100. [PMID: 39171894 DOI: 10.1089/wound.2024.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Objective: Volumetric muscle loss (VML) leads to permanent muscle mass and functional impairments. While mesenchymal stromal cells (MSCs) and their secreted factors can aid muscle regeneration, MSCs exhibit limited persistence in injured tissue post-transplantation. Human placental-derived stem cells (hPDSCs), sharing surface markers with MSCs, demonstrate superior regenerative potential due to their fetal origin. Previously, a biosponge (BS) scaffold was shown to augment muscle regeneration post-VML. This study aims to coapply BS therapy and hPDSCs to further enhance muscle recovery following VML. Approach: A VML defect was created by removing ∼20% of the tibialis anterior muscle mass in male Lewis rats. Injured muscles were either left untreated or treated with BS or BS-encapsulated hPDSCs cultured under normoxic or hypoxic conditions. On day 28 postinjury, peak isometric torque was measured, and the muscle was harvested for analysis. Results: BS encapsulated hPDSCs subjected to hypoxic preconditioning persisted in larger quantities and enhanced muscle mass at day 28 postinjury. BS encapsulated hPDSCs cultured under normoxic or hypoxic conditions increased small myofibers (<500 µm2) percentage, MyoD protein expression, and both pro- and anti-inflammatory macrophage marker expression. BS encapsulated hPDSCs also reduced fibrosis and BS remodeling rate. Innovation: This study is the first to examine the therapeutic effects of hPDSCs in a rat VML model. A BS carrier and hypoxic preconditioning were investigated to mitigate low cell survival postimplantation. Conclusion: hPDSCs augment the regenerative effect of BS. Combining hPDSCs and BS emerges as a promising strategy worthy of further investigation.
Collapse
Affiliation(s)
- David Johnson
- Department of Biomedical Engineering, School of Sciences and Engineering, St. Louis, Saint Louis, Missouri, USA
| | - Amelia Ridolfo
- Department of Biomedical Engineering, School of Sciences and Engineering, St. Louis, Saint Louis, Missouri, USA
| | - Ryan Mueller
- Department of Biomedical Engineering, School of Sciences and Engineering, St. Louis, Saint Louis, Missouri, USA
| | - Megan Chermack
- Department of Biomedical Engineering, School of Sciences and Engineering, St. Louis, Saint Louis, Missouri, USA
| | - Julia Brockhouse
- Department of Biomedical Engineering, School of Sciences and Engineering, St. Louis, Saint Louis, Missouri, USA
| | - Jamshid Tadiwala
- Department of Biomedical Engineering, School of Sciences and Engineering, St. Louis, Saint Louis, Missouri, USA
| | - Avantika Jain
- Department of Pharmacology and Physiology, School of Medicine, St. Louis, Saint Louis, Missouri, USA
| | - Kenneth Bertram
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | - Koyal Garg
- Department of Biomedical Engineering, School of Sciences and Engineering, St. Louis, Saint Louis, Missouri, USA
- Department of Pharmacology and Physiology, School of Medicine, St. Louis, Saint Louis, Missouri, USA
| |
Collapse
|
3
|
Hu H, Yin Y, Zhou H, Jiang B, Cai T, Wu S, Guo S. Umbilical cord mesenchymal stem cell-derived exosomal Follistatin inhibits fibrosis and promotes muscle regeneration in mice by influencing Smad2 and AKT signaling. Exp Cell Res 2025; 444:114396. [PMID: 39732451 DOI: 10.1016/j.yexcr.2024.114396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 12/22/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND Promoting muscle regeneration through stem cell therapy has potential risks. We investigated the effect of umbilical cord mesenchymal stem cells (UMSCs) Exosomes (Exo) Follistatin on muscle regeneration. METHODS The Exo was derived from UMSCs cells and was utilized to affect the mice muscle injury model and C2C12 cells myotubes atrophy model. The Western blot, qRT-PCR and IF were utilized to determine the effects of Exo on the levels of Follistatin, MyHC, MyoD, Myostatin, MuRF1, MAFbx, α-SMA, Collagen I, Smad2, and AKT. In addition, HE and Masson staining were used to assess muscle tissue damage in mice. RESULTS The level of Follistatin in Exo was significantly higher than that in UMSCs. UMSCs-Exo increased the levels of Follistatin, MyHC, MyoD, and p-Smad2 and decreased the levels of Myostatin, MuRF1, MAFbx, α-SMA, Collagen I, p-AKT, and p-mTOR in mice or C2C12 cells. In addition, UMSCs-Exo decreased levels of inflammation and fibrosis in mice. However, UMSCs-Exo-si-Follistatin reversed the effect of UMSCs-Exo. Transfection of oe-Smad2 up-regulated the protein levels of Collagen I, α-SMA, and changed the ratio of p-Smad2/Smad2 expression to 0.33, and 0.34, 0.73. LY294002 decreased the levels of MyHC, MyoD, and the ratio of p-AKT/AKT and p-mTOR/mTOR expression to 0.12, 0.17, 0.33, and 0.41, increased the levels of MuRF1 and MAFbx to 0.36 and 0.34. CONCLUSION This study demonstrated that Follistatin in UMSCs-Exo inhibits fibrosis and promotes muscle regeneration in mice by regulating Smad and AKT signaling.
Collapse
Affiliation(s)
- Hai Hu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China; Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, China
| | - Yuesong Yin
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hecheng Zhou
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Binbin Jiang
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ting Cai
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, China
| | - Song Wu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Shuangfei Guo
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China.
| |
Collapse
|
4
|
Iio R, Manaka T, Takada N, Orita K, Nakazawa K, Hirakawa Y, Ito Y, Nakamura H. Parathyroid hormone promotes induction of beige adipocytes and reversibly ameliorates muscle quality and atrophy following chronic rotator cuff tear in a rat model. J Shoulder Elbow Surg 2025; 34:172-182. [PMID: 38810913 DOI: 10.1016/j.jse.2024.03.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Fatty infiltration (FI) and muscle atrophy (MA) in the rotator cuff muscles following rotator cuff tears (RCT) persist postrepair, increasing the risk of re-tears. Brown adipocyte-like "beige adipocytes" are expected to have a therapeutic effect on intramuscular FI and MA due to their lipolytic activity and the muscle regenerative effects of their secreted factors. However, whether parathyroid hormone (PTH) ameliorates the already advanced FI and MA remains unknown. Therefore, this study aimed to clarify whether PTH promotes the expression of beige adipocytes and ameliorates advanced FI and MA following chronic RCT in rats. METHODS Supraspinatus muscles were harvested from rats with chronic RCT after 4 or 8 weeks of PTH treatment and compared to those in the control group or to those at the start of treatment. FI was assessed by Oil Red O staining, and the staining area was evaluated as a percentage of the muscle cross-sectional area. MA was evaluated by measuring muscle wet weight and cross-sectional area of muscle fiber. Beige adipocyte expression was evaluated by immunostaining for uncoupling protein 1 (UCP1). Fibro-adipogenic progenitors (FAPs) were separated from muscle-injured mice. We assessed whether PTH could diminish fat droplet accumulation by promoting the differentiation of FAPs into beige adipocytes. RESULTS After 4 weeks, PTH reduced the area fraction of FI in the rat supraspinatus muscle following chronic RCT compared with that at the beginning of treatment (P = .028). In addition, PTH increased wet muscle mass (P < .001), and muscle fiber cross-sectional area (P = .018) compared with measurements at the start of treatment. PTH administration promoted the expression of UCP1, a beige adipocyte marker, in the supraspinatus muscle (P = .019). PTH increased gene expression of beige adipocyte-related markers and suppressed fat droplet accumulation even after adipogenic differentiation of FAPs (P = .004) but did not reduce fat droplets that had already accumulated in in vitro experiments. CONCLUSIONS PTH facilitated beige adipocyte expression and reversibly ameliorated muscle quality and atrophy following chronic RCT by hindering fat droplet accumulation and facilitating muscle regeneration. Therefore, PTH may be a medical treatment for FI and MA following RCT, leading to expanded rotator cuff repair indications.
Collapse
Affiliation(s)
- Ryosuke Iio
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, Osaka, Japan; Department of Orthopedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tomoya Manaka
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.
| | - Naoki Takada
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kumi Orita
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Katsumasa Nakazawa
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, Osaka, Japan; Department of Orthopedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yoshihiro Hirakawa
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yoichi Ito
- Ito Clinic, Osaka Shoulder Center, Matsubara-city, Osaka, Japan
| | - Hiroaki Nakamura
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
5
|
Erbakan AN, Mutlu HH, Uzunlulu M, Caştur L, Akbaş MM, Kaya FN, Erbakan M, İşman FK, Oğuz A. Follistatin as a Potential Biomarker for Identifying Metabolically Healthy and Unhealthy Obesity: A Cross-Sectional Study. J Pers Med 2024; 14:487. [PMID: 38793069 PMCID: PMC11122067 DOI: 10.3390/jpm14050487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Metabolically healthy obesity (MHO) refers to obese individuals with a favorable metabolic profile, without severe metabolic abnormalities. This study aimed to investigate the potential of follistatin, a regulator of metabolic balance, as a biomarker to distinguish between metabolically healthy and unhealthy obesity. This cross-sectional study included 30 metabolically healthy and 32 metabolically unhealthy individuals with obesity. Blood samples were collected to measure the follistatin levels using an enzyme-linked immunosorbent assay (ELISA). While follistatin did not significantly differentiate between metabolically healthy (median 41.84 [IQR, 37.68 to 80.09]) and unhealthy (median 42.44 [IQR, 39.54 to 82.55]) individuals with obesity (p = 0.642), other biochemical markers, such as HDL cholesterol, triglycerides, C-peptide, and AST, showed significant differences between the two groups. Insulin was the most significant predictor of follistatin levels, with a coefficient of 0.903, followed by C-peptide, which exerted a negative influence at -0.624. Quantile regression analysis revealed nuanced associations between the follistatin levels and metabolic parameters in different quantiles. Although follistatin may not serve as a biomarker for identifying MHO and metabolically unhealthy obesity, understanding the underlying mechanisms that contribute to metabolic dysfunction could provide personalized strategies for managing obesity and preventing associated complications.
Collapse
Affiliation(s)
- Ayşe N. Erbakan
- Department of Internal Medicine, Istanbul Medeniyet University, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Kadikoy, 34722 Istanbul, Turkey; (A.N.E.); (M.U.); (M.M.A.); (F.N.K.); (A.O.)
| | - H. Hicran Mutlu
- Department of Family Medicine, Istanbul Medeniyet University, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Kadikoy, 34722 Istanbul, Turkey;
| | - Mehmet Uzunlulu
- Department of Internal Medicine, Istanbul Medeniyet University, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Kadikoy, 34722 Istanbul, Turkey; (A.N.E.); (M.U.); (M.M.A.); (F.N.K.); (A.O.)
| | - Lütfullah Caştur
- Department of Internal Medicine, Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, 34303 Istanbul, Turkey;
| | - Muhammet Mikdat Akbaş
- Department of Internal Medicine, Istanbul Medeniyet University, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Kadikoy, 34722 Istanbul, Turkey; (A.N.E.); (M.U.); (M.M.A.); (F.N.K.); (A.O.)
| | - Fatoş N. Kaya
- Department of Internal Medicine, Istanbul Medeniyet University, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Kadikoy, 34722 Istanbul, Turkey; (A.N.E.); (M.U.); (M.M.A.); (F.N.K.); (A.O.)
| | - Mehmet Erbakan
- Department of Family Medicine, Health Sciences University, Kartal Dr. Lutfi Kirdar City Hospital, Kartal, 34865 Istanbul, Turkey
| | - Ferruh K. İşman
- Department of Biochemistry, Istanbul Medeniyet University, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Kadikoy, 34722 Istanbul, Turkey;
| | - Aytekin Oğuz
- Department of Internal Medicine, Istanbul Medeniyet University, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Kadikoy, 34722 Istanbul, Turkey; (A.N.E.); (M.U.); (M.M.A.); (F.N.K.); (A.O.)
| |
Collapse
|
6
|
Shahidi B, Anderson B, Ordaz A, Berry DB, Ruoss S, Zlomislic V, Allen RT, Garfin SR, Farshad M, Schenk S, Ward SR. Paraspinal muscles in individuals undergoing surgery for lumbar spine pathology lack a myogenic response to an acute bout of resistance exercise. JOR Spine 2024; 7:e1291. [PMID: 38222805 PMCID: PMC10782077 DOI: 10.1002/jsp2.1291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 01/16/2024] Open
Abstract
Background Lumbar spine pathology (LSP) is a common source of low back or leg pain, and paraspinal muscle in these patients demonstrates fatty and fibrotic infiltration, and cellular degeneration that do not reverse with exercise-based rehabilitation. However, it is unclear of this lack of response is due to insufficient exercise stimulus, or an inability to mount a growth response. The purpose of this study was to compare paraspinal muscle gene expression between individuals with LSP who do and do not undergo an acute bout of resistance exercise. Methods Paraspinal muscle biopsies were obtained from 64 individuals with LSP undergoing spinal surgery. Eight participants performed an acute bout of machine-based lumbar extension resistance exercise preoperatively. Gene expression for 42 genes associated with adipogenic/metabolic, atrophic, fibrogenic, inflammatory, and myogenic pathways was measured, and differential expression between exercised and non-exercised groups was evaluated for (a) the full cohort, and (b) an age, gender, acuity, and etiology matched sub-cohort. Principal components analyses were used to identify gene expression clustering across clinical phenotypes. Results The exercised cohort demonstrated upregulation of inflammatory gene IL1B, inhibition of extracellular matrix components (increased MMP3&9, decreased TIMP1&3, COL1A1) and metabolic/adipogenic genes (FABP4, PPARD, WNT10B), and downregulation of myogenic (MYOD, ANKRD2B) and atrophic (FOXO3) genes compared to the non-exercised cohort, with similar patterns in the matched sub-analysis. There were no clinical phenotypes significantly associated with gene expression profiles. Conclusion An acute bout of moderate-high intensity resistance exercise did not result in upregulation of myogenic genes in individuals with LSP. The response was characterized by mixed metabolic and fibrotic gene expression, upregulation of inflammation, and downregulation of myogenesis.
Collapse
Affiliation(s)
- Bahar Shahidi
- UC San Diego Department of Orthopaedic SurgeryLa JollaCaliforniaUSA
| | - Bradley Anderson
- UC San Diego Department of Orthopaedic SurgeryLa JollaCaliforniaUSA
| | - Angel Ordaz
- UC San Diego Department of Orthopaedic SurgeryLa JollaCaliforniaUSA
| | - David B. Berry
- UC San Diego Department of Orthopaedic SurgeryLa JollaCaliforniaUSA
- UC San Diego Department of RadiologyLa JollaCaliforniaUSA
| | - Severin Ruoss
- UC San Diego Department of Orthopaedic SurgeryLa JollaCaliforniaUSA
| | - Vinko Zlomislic
- UC San Diego Department of Orthopaedic SurgeryLa JollaCaliforniaUSA
| | - R. Todd Allen
- UC San Diego Department of Orthopaedic SurgeryLa JollaCaliforniaUSA
| | - Steven R. Garfin
- UC San Diego Department of Orthopaedic SurgeryLa JollaCaliforniaUSA
| | - Mazda Farshad
- Balgrist University HospitalUniversity of ZurichZürichSwitzerland
| | - Simon Schenk
- UC San Diego Department of Orthopaedic SurgeryLa JollaCaliforniaUSA
| | - Samuel R. Ward
- UC San Diego Department of Orthopaedic SurgeryLa JollaCaliforniaUSA
- UC San Diego Department of RadiologyLa JollaCaliforniaUSA
- UC San Diego Department of BioengineeringLa JollaCaliforniaUSA
| |
Collapse
|
7
|
Takahashi Y, Fujita H, Seino Y, Hattori S, Hidaka S, Miyakawa T, Suzuki A, Waki H, Yabe D, Seino Y, Yamada Y. Gastric inhibitory polypeptide receptor antagonism suppresses intramuscular adipose tissue accumulation and ameliorates sarcopenia. J Cachexia Sarcopenia Muscle 2023; 14:2703-2718. [PMID: 37897141 PMCID: PMC10751449 DOI: 10.1002/jcsm.13346] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/10/2023] [Accepted: 09/11/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Intramuscular adipose tissue (IMAT) formation derived from muscle fibro-adipogenic progenitors (FAPs) has been recognized as a pathological feature of sarcopenia. This study aimed to explore whether genetic and pharmacological gastric inhibitory polypeptide (GIP) receptor antagonism suppresses IMAT accumulation and ameliorates sarcopenia in mice. METHODS Whole body composition, grip strength, skeletal muscle weight, tibialis anterior (TA) muscle fibre cross-sectional area (CSA) and TA muscle IMAT area were measured in young and aged male C57BL/6 strain GIP receptor (Gipr)-knockout (Gipr-/- ) and wild-type (Gipr+/+ ) mice. FAPs isolated from lower limb muscles of 12-week-old Gipr+/+ mice were cultured with GIP, and their differentiation into mature adipocytes was examined. Furthermore, TA muscle IMAT area and fibre CSA were measured in untreated Gipr-/- mice and GIP receptor antagonist-treated Gipr+/+ mice after glycerol injection into the TA muscles. RESULTS Body composition analysis revealed that 104-week-old Gipr-/- mice had a greater proportion of lean tissue mass (73.7 ± 1.2% vs. 66.5 ± 2.7%, P < 0.05 vs. 104-week-old Gipr+/+ mice) and less adipose tissue mass (13.1 ± 1.3% vs. 19.4 ± 2.6%, P < 0.05 vs. 104-week-old Gipr+/+ mice). Eighty-four-week-old Gipr-/- mice exhibited increases in grip strength (P < 0.05), weights of TA (P < 0.05), soleus (P < 0.01), gastrocnemius (P < 0.05) and quadriceps femoris (P < 0.01) muscles, and average TA muscle fibre CSA (P < 0.05) along with a reduction in TA muscle IMAT area assessed by the number of perilipin-positive cells (P < 0.0001) compared with 84-week-old Gipr+/+ mice. Oil Red O staining analysis revealed 1.6- and 1.7-fold increased adipogenesis in muscle FAPs cultured with 10 and 100 nM of GIP (P < 0.01 and P < 0.001 vs. 0 nM of GIP, respectively). Furthermore, both untreated Gipr-/- mice and GIP receptor antagonist-treated Gipr+/+ mice for 14 days after glycerol injection into the TA muscles at 12 weeks of age showed reduced TA muscle IMAT area (1.39 ± 0.38% and 2.65 ± 0.36% vs. 6.54 ± 1.30%, P < 0.001 and P < 0.01 vs. untreated Gipr+/+ mice, respectively) and increased average TA muscle fibre CSA (P < 0.01 and P < 0.05 vs. untreated Gipr+/+ mice, respectively). CONCLUSIONS GIP promotes the differentiation of muscle FAPs into adipocytes and its receptor antagonism suppresses IMAT accumulation and promotes muscle regeneration. Pharmacological GIP receptor antagonism may serve as a novel therapeutic approach for sarcopenia.
Collapse
Affiliation(s)
- Yuya Takahashi
- Department of Metabolism and EndocrinologyAkita University Graduate School of MedicineAkitaJapan
| | - Hiroki Fujita
- Department of Metabolism and EndocrinologyAkita University Graduate School of MedicineAkitaJapan
| | - Yusuke Seino
- Department of Endocrinology, Diabetes and MetabolismFujita Health UniversityToyoakeJapan
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoJapan
| | - Satoko Hattori
- Division of Systems Medical Science, Center for Medical ScienceFujita Health UniversityToyoakeJapan
| | - Shihomi Hidaka
- Department of Endocrinology, Diabetes and MetabolismFujita Health UniversityToyoakeJapan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical ScienceFujita Health UniversityToyoakeJapan
| | - Atsushi Suzuki
- Department of Endocrinology, Diabetes and MetabolismFujita Health UniversityToyoakeJapan
| | - Hironori Waki
- Department of Metabolism and EndocrinologyAkita University Graduate School of MedicineAkitaJapan
| | - Daisuke Yabe
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoJapan
- Department of Diabetes, Endocrinology and Metabolism/Department of Rheumatology and Clinical ImmunologyGifu University Graduate School of MedicineGifuJapan
- Center for One Medicine Innovative Translational ResearchGifu UniversityGifuJapan
| | - Yutaka Seino
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoJapan
- Center for Diabetes, Endocrinology and MetabolismKansai Electric Power HospitalOsakaJapan
| | - Yuichiro Yamada
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoJapan
- Center for Diabetes, Endocrinology and MetabolismKansai Electric Power HospitalOsakaJapan
| |
Collapse
|
8
|
Sheng R, Cao M, Song M, Wang M, Zhang Y, Shi L, Xie T, Li Y, Wang J, Rui Y. Muscle-bone crosstalk via endocrine signals and potential targets for osteosarcopenia-related fracture. J Orthop Translat 2023; 43:36-46. [PMID: 38021216 PMCID: PMC10654153 DOI: 10.1016/j.jot.2023.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Osteosarcopenia is a syndrome coexisting sarcopenia and osteopenia/osteoporosis, with a high fracture risk. Recently, skeletal muscle and bone have been recognized as endocrine organs capable of communication through secreting myokines and osteokines, respectively. With a deeper understanding of the muscle-bone crosstalk, these endocrine signals exhibit an important role in osteosarcopenia development and fracture healing. METHODS This review summarizes the role of myokines and osteokines in the development and treatment of osteosarcopenia and fracture, and discusses their potential for osteosarcopenia-related fracture treatment. RESULTS Several well-defined myokines (myostatin and irisin) and osteokines (RANKL and SOST) are found to not only regulate skeletal muscle and bone metabolism but also influence fracture healing processes. Systemic interventions targeting these biochemical signals has shown promising results in improving the mass and functions of skeletal muscle and bone, as well as accelerating fracture healing processes. CONCLUSION The regulation of muscle-bone crosstalk via biochemical signals presents a novel and promising strategy for treating osteosarcopenia and fracture by simultaneously enhancing bone and muscle anabolism. We propose that myostatin, irisin, RANKL, and SOST may serve as potential targets to treat fracture patients with osteosarcopenia. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Osteosarcopenia is an emerging geriatric syndrome where sarcopenia and osteoporosis coexist, with high fracture risk, delayed fracture healing, and increased mortality. However, no pharmacological agent is available to treat fracture patients with osteosarcopenia. This review summarizes the role of several myokines and osteokines in the development and treatment of osteosacropenia and fracture, as well as discusses their potential as intervention targets for osteosarcopenia-related fracture, which provides a novel and promising strategy for future osteosarcopenia-related fracture treatment.
Collapse
Affiliation(s)
- Renwang Sheng
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Mumin Cao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Mingyuan Song
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Mingyue Wang
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Yuanwei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Liu Shi
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Tian Xie
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Yingjuan Li
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Jinyu Wang
- Department of Rehabilitation, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| |
Collapse
|
9
|
Park MJ, Choi KM. Interplay of skeletal muscle and adipose tissue: sarcopenic obesity. Metabolism 2023; 144:155577. [PMID: 37127228 DOI: 10.1016/j.metabol.2023.155577] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Sarcopenic obesity is becoming a global health concern, owing to the rising older population, causing cardiometabolic morbidity and mortality. Loss of muscle exceeding normal age-related changes has been revealed to be associated with obesity, aggravating each other through complex interactions. Physiological regeneration and proliferation of muscle tissue are achieved through harmonious processes of regulated inflammation, autophagy, muscle satellite cell proliferation, and signaling molecule function. Adipokines and myokines are signaling molecules from adipose tissue and muscle, respectively, that exert autocrine, paracrine, and endocrine effects on fat and muscle tissues. These signaling molecules interact with each other to regulate metabolic homeostasis. However, excessive adiposity creates pro-inflammatory conditions, leading to metabolic disorders and the disorganization of systemic homeostasis. Therefore, obesity impedes muscle tissue regeneration and induces the loss of muscle mass and function. Numerous studies have attempted to demonstrate the pathophysiological interaction between sarcopenia and obesity, but the interwoven matrix of the relationship between myokines and adipokines has made it difficult for researchers to understand them. This review briefly describes updated information about the crosstalk between muscle and adipose tissue.
Collapse
Affiliation(s)
- Min Jeong Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Liu X, Zhang N, Sung B, Wang B. Time-specific effects of acute eccentric exercise on myostatin, follistatin and decorin in the circulation and skeletal muscle in rats. Physiol Res 2022. [DOI: 10.33549/physiolres.934833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Myostatin (MSTN), an important negative regulator of skeletal muscle, plays an important role in skeletal muscle health. In previous study, we found that the expression of MSTN was different during skeletal muscle injury repair. Therefore, we explored the expression changes of MSTN at different time points during skeletal muscle injury repair after eccentric exercise. In addition, MSTN is regulated by follistatin (FST) and decorin (DCN) in vivo, so our study examined the time-specific changes of FST, DCN and MSTN in the circulation and skeletal muscle during skeletal muscle injury repair after eccentric exercise, and to explore the reasons for the changes of MSTN in the process of exercise-induced muscle injury repair, to provide a basis for promoting muscle injury repair. The rats performed one-time eccentric exercise. Blood and skeletal muscle were collected at the corresponding time points, respectively immediate after exercise (D0), one day (D1), two days (D2), three days (D3), seven days (W1) and fourteen days (W2) after exercise (n=8). The levels of MSTN, FST, DCN in serum and mRNA and protein expression in muscle were detected. MSTN changes in the blood and changes in DCN and FST showed the opposite trend, except immediately after exercise. The change trends of mRNA and protein of gastrocnemius DCN and MSTN are inconsistent, there is post-transcriptional regulation of MSTN and DCN in gastrocnemius. Acute eccentric exercise might stimulate the secretion of DCN and FST into the circulation and inhibit MSTN. MSTN may be regulated by FST and DCN after acute eccentric exercise.
Collapse
Affiliation(s)
| | | | | | - B Wang
- Department of Sports and Health, Nanjing Sports Institute, Nanjing, China.
| |
Collapse
|
11
|
Nawaz A, Bilal M, Fujisaka S, Kado T, Aslam MR, Ahmed S, Okabe K, Igarashi Y, Watanabe Y, Kuwano T, Tsuneyama K, Nishimura A, Nishida Y, Yamamoto S, Sasahara M, Imura J, Mori H, Matzuk MM, Kudo F, Manabe I, Uezumi A, Nakagawa T, Oishi Y, Tobe K. Depletion of CD206 + M2-like macrophages induces fibro-adipogenic progenitors activation and muscle regeneration. Nat Commun 2022; 13:7058. [PMID: 36411280 PMCID: PMC9678897 DOI: 10.1038/s41467-022-34191-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Muscle regeneration requires the coordination of muscle stem cells, mesenchymal fibro-adipogenic progenitors (FAPs), and macrophages. How macrophages regulate the paracrine secretion of FAPs during the recovery process remains elusive. Herein, we systemically investigated the communication between CD206+ M2-like macrophages and FAPs during the recovery process using a transgenic mouse model. Depletion of CD206+ M2-like macrophages or deletion of CD206+ M2-like macrophages-specific TGF-β1 gene induces myogenesis and muscle regeneration. We show that depletion of CD206+ M2-like macrophages activates FAPs and activated FAPs secrete follistatin, a promyogenic factor, thereby boosting the recovery process. Conversely, deletion of the FAP-specific follistatin gene results in impaired muscle stem cell function, enhanced fibrosis, and delayed muscle regeneration. Mechanistically, CD206+ M2-like macrophages inhibit the secretion of FAP-derived follistatin via TGF-β signaling. Here we show that CD206+ M2-like macrophages constitute a microenvironment for FAPs and may regulate the myogenic potential of muscle stem/satellite cells.
Collapse
Affiliation(s)
- Allah Nawaz
- grid.267346.20000 0001 2171 836XDepartment of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan ,grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan ,grid.16694.3c0000 0001 2183 9479Present Address: Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215 USA
| | - Muhammad Bilal
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Shiho Fujisaka
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Tomonobu Kado
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Muhammad Rahil Aslam
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Saeed Ahmed
- grid.415712.40000 0004 0401 3757Department of Medicine and Surgery, Rawalpindi Medical University, Rawalpindi, Punjab 46000 Pakistan
| | - Keisuke Okabe
- grid.267346.20000 0001 2171 836XDepartment of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan ,grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Yoshiko Igarashi
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Yoshiyuki Watanabe
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Takahide Kuwano
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Koichi Tsuneyama
- grid.267335.60000 0001 1092 3579Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503 Japan
| | - Ayumi Nishimura
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Yasuhiro Nishida
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Seiji Yamamoto
- grid.267346.20000 0001 2171 836XDepartment of Pathology, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Masakiyo Sasahara
- grid.267346.20000 0001 2171 836XDepartment of Pathology, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Johji Imura
- grid.267346.20000 0001 2171 836XDepartment of Diagnostic Pathology, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Hisashi Mori
- grid.267346.20000 0001 2171 836XDepartment of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Martin M. Matzuk
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030-3411 USA
| | - Fujimi Kudo
- grid.136304.30000 0004 0370 1101Department of Systems Medicine, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 Japan
| | - Ichiro Manabe
- grid.136304.30000 0004 0370 1101Department of Systems Medicine, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 Japan
| | - Akiyoshi Uezumi
- grid.267335.60000 0001 1092 3579Department of Nutritional Physiology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Takashi Nakagawa
- grid.267346.20000 0001 2171 836XDepartment of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Yumiko Oishi
- grid.410821.e0000 0001 2173 8328Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Kazuyuki Tobe
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| |
Collapse
|
12
|
Torregrosa C, Chorin F, Beltran EEM, Neuzillet C, Cardot-Ruffino V. Physical Activity as the Best Supportive Care in Cancer: The Clinician's and the Researcher's Perspectives. Cancers (Basel) 2022; 14:5402. [PMID: 36358820 PMCID: PMC9655932 DOI: 10.3390/cancers14215402] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 08/11/2023] Open
Abstract
Multidisciplinary supportive care, integrating the dimensions of exercise alongside oncological treatments, is now regarded as a new paradigm to improve patient survival and quality of life. Its impact is important on the factors that control tumor development, such as the immune system, inflammation, tissue perfusion, hypoxia, insulin resistance, metabolism, glucocorticoid levels, and cachexia. An increasing amount of research has been published in the last years on the effects of physical activity within the framework of oncology, marking the appearance of a new medical field, commonly known as "exercise oncology". This emerging research field is trying to determine the biological mechanisms by which, aerobic exercise affects the incidence of cancer, the progression and/or the appearance of metastases. We propose an overview of the current state of the art physical exercise interventions in the management of cancer patients, including a pragmatic perspective with tips for routine practice. We then develop the emerging mechanistic views about physical exercise and their potential clinical applications. Moving toward a more personalized, integrated, patient-centered, and multidisciplinary management, by trying to understand the different interactions between the cancer and the host, as well as the impact of the disease and the treatments on the different organs, this seems to be the most promising method to improve the care of cancer patients.
Collapse
Affiliation(s)
- Cécile Torregrosa
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
- Département de Chirurgie Digestive et Oncologique, Hôpital Universitaire Ambroise Paré, Assistance Publique-Hôpitaux de Paris, 9 avenue Charles de Gaulle, 92100 Boulogne Billancourt, France
| | - Frédéric Chorin
- Laboratoire Motricité Humaine, Expertise, Sport, Santé (LAMHESS), HEALTHY Graduate School, Université Côte d’Azur, 06205 Nice, France
- Clinique Gériatrique du Cerveau et du Mouvement, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06205 Nice, France
| | - Eva Ester Molina Beltran
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
| | - Cindy Neuzillet
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
- GERCOR, 151 rue du Faubourg Saint-Antoine, 75011 Paris, France
| | - Victoire Cardot-Ruffino
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
13
|
LIU X, ZHANG N, SUN B, WANG B. Time-specific effects of acute eccentric exercise on myostatin, follistatin and decorin in the circulation and skeletal muscle in rats. Physiol Res 2022; 71:783-790. [PMID: 36281727 PMCID: PMC9814985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Myostatin (MSTN), an important negative regulator of skeletal muscle, plays an important role in skeletal muscle health. In previous study, we found that the expression of MSTN was different during skeletal muscle injury repair. Therefore, we explored the expression changes of MSTN at different time points during skeletal muscle injury repair after eccentric exercise. In addition, MSTN is regulated by follistatin (FST) and decorin (DCN) in vivo, so our study examined the time-specific changes of FST, DCN and MSTN in the circulation and skeletal muscle during skeletal muscle injury repair after eccentric exercise, and to explore the reasons for the changes of MSTN in the process of exercise-induced muscle injury repair, to provide a basis for promoting muscle injury repair. The rats performed one-time eccentric exercise. Blood and skeletal muscle were collected at the corresponding time points, respectively immediate after exercise (D0), one day (D1), two days (D2), three days (D3), seven days (W1) and fourteen days (W2) after exercise (n=8). The levels of MSTN, FST, DCN in serum and mRNA and protein expression in muscle were detected. MSTN changes in the blood and changes in DCN and FST showed the opposite trend, except immediately after exercise. The change trends of mRNA and protein of gastrocnemius DCN and MSTN are inconsistent, there is post-transcriptional regulation of MSTN and DCN in gastrocnemius. Acute eccentric exercise might stimulate the secretion of DCN and FST into the circulation and inhibit MSTN. MSTN may be regulated by FST and DCN after acute eccentric exercise.
Collapse
Affiliation(s)
- Xiujuan LIU
- Department of Sports and Health, Nanjing Sports Institute, Nanjing, China
| | - Nianyun ZHANG
- Department Science Experiment Center, Nanjing Sports Institute, Nanjing, China
| | - Biao SUN
- Department of Sports and Health, Nanjing Sports Institute, Nanjing, China
| | - Bin WANG
- Department of Sports and Health, Nanjing Sports Institute, Nanjing, China
| |
Collapse
|
14
|
Volpatti JR, Ghahramani-Seno MM, Mansat M, Sabha N, Sarikaya E, Goodman SJ, Chater-Diehl E, Celik A, Pannia E, Froment C, Combes-Soia L, Maani N, Yuki KE, Chicanne G, Uusküla-Reimand L, Monis S, Alvi SA, Genetti CA, Payrastre B, Beggs AH, Bonnemann CG, Muntoni F, Wilson MD, Weksberg R, Viaud J, Dowling JJ. X-linked myotubular myopathy is associated with epigenetic alterations and is ameliorated by HDAC inhibition. Acta Neuropathol 2022; 144:537-563. [PMID: 35844027 PMCID: PMC9381459 DOI: 10.1007/s00401-022-02468-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 12/29/2022]
Abstract
X-linked myotubular myopathy (XLMTM) is a fatal neuromuscular disorder caused by loss of function mutations in MTM1. At present, there are no directed therapies for XLMTM, and incomplete understanding of disease pathomechanisms. To address these knowledge gaps, we performed a drug screen in mtm1 mutant zebrafish and identified four positive hits, including valproic acid, which functions as a potent suppressor of the mtm1 zebrafish phenotype via HDAC inhibition. We translated these findings to a mouse XLMTM model, and showed that valproic acid ameliorates the murine phenotype. These observations led us to interrogate the epigenome in Mtm1 knockout mice; we found increased DNA methylation, which is normalized with valproic acid, and likely mediated through aberrant 1-carbon metabolism. Finally, we made the unexpected observation that XLMTM patients share a distinct DNA methylation signature, suggesting that epigenetic alteration is a conserved disease feature amenable to therapeutic intervention.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Epigenesis, Genetic
- Mice
- Muscle, Skeletal/metabolism
- Myopathies, Structural, Congenital/drug therapy
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/metabolism
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Protein Tyrosine Phosphatases, Non-Receptor/metabolism
- Valproic Acid/metabolism
- Valproic Acid/pharmacology
- Zebrafish/metabolism
Collapse
Affiliation(s)
- Jonathan R Volpatti
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Mehdi M Ghahramani-Seno
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Mélanie Mansat
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM, UMR-S U1297 and University of Toulouse III, CHU-Rangueil, Toulouse, France
| | - Nesrin Sabha
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Ege Sarikaya
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Sarah J Goodman
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Eric Chater-Diehl
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Alper Celik
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Emanuela Pannia
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Carine Froment
- Institut de Pharmacologie Et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lucie Combes-Soia
- Institut de Pharmacologie Et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nika Maani
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Kyoko E Yuki
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Gaëtan Chicanne
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM, UMR-S U1297 and University of Toulouse III, CHU-Rangueil, Toulouse, France
| | - Liis Uusküla-Reimand
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Simon Monis
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Sana Akhtar Alvi
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
| | - Casie A Genetti
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bernard Payrastre
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM, UMR-S U1297 and University of Toulouse III, CHU-Rangueil, Toulouse, France
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire (CHU) de Toulouse, Toulouse Cedex, France
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carsten G Bonnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, NIH, Bethesda, MD, USA
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Michael D Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Rosanna Weksberg
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Julien Viaud
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM, UMR-S U1297 and University of Toulouse III, CHU-Rangueil, Toulouse, France
| | - James J Dowling
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada.
- Program for Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 0A4, Canada.
- Department of Paediatrics, University of Toronto, Toronto, ON, M5S 1A1, Canada.
- Division of Neurology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
15
|
Vieira JMF, Zamproni LN, Wendt CHC, Rocha de Miranda K, Lindoso RS, Won Han S. Overexpression of mir-135b and mir-210 in mesenchymal stromal cells for the enrichment of extracellular vesicles with angiogenic factors. PLoS One 2022; 17:e0272962. [PMID: 35972944 PMCID: PMC9380919 DOI: 10.1371/journal.pone.0272962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/31/2022] [Indexed: 12/02/2022] Open
Abstract
Extracellular vesicles (EVs) are known as molecular carriers involved in cell communication and the regulation of (patho)physiological processes. miRNAs and growth factors are the main contents of EVs which make them a good candidate for the treatment of diseases caused by ischemia, but the low production of EVs by a cell producer and a significant variation of the molecular contents in EVs according to the cell source are the main limitations of their widespread use. Here, we show how to improve the therapeutic properties of mesenchymal stromal cell (MSC)-derived EVs (MSC-EVs) by modifying MSCs to enrich these EVs with specific angiomiRs (miR-135b or miR-210) using lentiviral vectors carrying miR-135b or miR-210. MSCs were obtained from the mouse bone marrow and transduced with a corresponding lentivector to overexpress miR-135b or miR-210. The EVs were then isolated by ultracentrifugation and characterized using a flow cytometer and a nanoparticle tracking analyzer. The levels of 20 genes in the MSCs and 12 microRNAs in both MSCs and EVs were assessed by RT‒qPCR. The proangiogenic activity of EVs was subsequently assessed in human umbilical vein endothelial cells (HUVECs). The results confirmed the overexpression of the respective microRNA in modified MSCs. Moreover, miR-135b overexpression upregulated miR-210-5p and follistatin, whereas the overexpression of miR-210 downregulated miR-221 and upregulated miR-296. The tube formation assay showed that EVs from MSCs overexpressing miR-210-5p (EVmiR210) significantly promoted tubular structure formation in HUVECs. A significant increase in angiogenic proteins (PGF, endothelin 1, and artemin) and genes (VEGF, activin A, and IGFBP1) in HUVECs treated with VEmiR210 justifies the better tubular structure formation of these cells compared with that of EVmiR135b-treated HUVECs, which showed upregulated expression of only artemin. Collectively, our results show that the EV cargo can be modified by lentiviral vectors to enrich specific miRNAs to achieve a specific angiogenic potential.
Collapse
Affiliation(s)
| | | | - Camila H. C. Wendt
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kildare Rocha de Miranda
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Soares Lindoso
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sang Won Han
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Emerging therapies for Duchenne muscular dystrophy. Lancet Neurol 2022; 21:814-829. [DOI: 10.1016/s1474-4422(22)00125-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/21/2022] [Accepted: 03/18/2022] [Indexed: 12/11/2022]
|
17
|
Therapeutic Benefit in Rheumatoid Cachexia Illustrated Using a Novel Primary Human Triple Cell Coculture Model. Int J Inflam 2022; 2022:1524913. [PMID: 35693848 PMCID: PMC9184217 DOI: 10.1155/2022/1524913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Background The loss of muscle mass in rheumatoid arthritis (RA), termed rheumatoid cachexia, is predicted to result from the complex interactions between different cell types involved in the maintenance of skeletal muscle mass, namely, myoblasts, fibroblasts, and macrophages. The complexity within the muscle is further highlighted by the incidence of nonresponsiveness to current RA treatment strategies. Method This study aimed at determining differences in the cellular responses in a novel human primary cell triple coculture model exposed to serum collected from nonarthritic controls (NC), RA treatment naïve (RATN), and RA treatment-nonresponding (RATNR) patients. Bone morphogenetic protein-7 (BMP-7) was investigated as a treatment option. Results Plasma analysis indicated that samples were indeed representative of healthy and RA patients—notably, the RATNR patients additionally exhibited dysregulated IL-6/IL-10 correlations. Coculture exposure to serum from RATNR patients demonstrated increased cellular growth (p < 0.001), while both hepatocyte growth factor (p < 0.01) and follistatin (p < 0.001) were reduced when compared to NC. Furthermore, decreased concentration of markers of extracellular matrix formation, transforming growth factor-β (TGF-β; p < 0.05) and fibronectin (p < 0.001), but increased collagen IV (p < 0.01) was observed following RATNR serum exposure. Under healthy conditions, BMP-7 exhibited potentially beneficial results in reducing fibrosis-generating TGF-β (p < 0.05) and fibronectin (p < 0.05). BMP-7 further exhibited protective potential in the RA groups through reversing the aberrant tendencies observed especially in the RATNR serum-exposed group. Conclusion Exposure of the triple coculture to RATN and RATNR serum resulted in dysregulated myoblast proliferation and growth, and ECM impairment, which was reversed by BMP-7 treatment.
Collapse
|
18
|
Li RF, Wang YS, Lu FI, Huang YS, Chiu CC, Tai MH, Wu CY. Identification of Novel Vascular Genes Downstream of Islet2 and Nr2f1b Transcription Factors. Biomedicines 2022; 10:biomedicines10061261. [PMID: 35740282 PMCID: PMC9220758 DOI: 10.3390/biomedicines10061261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 12/10/2022] Open
Abstract
The genetic regulation of vascular development is not elucidated completely. We previously characterized the transcription factors Islet2 (Isl2) and Nr2f1b as being critical for vascular growth. In this study, we further performed combinatorial microarrays to identify genes that are potentially regulated by these factors. We verified the changed expression of several targets in isl2/nr2f1b morphants. Those genes expressed in vessels during embryogenesis suggested their functions in vascular development. We selectively assayed a potential target follistatin a (fsta). Follistatin is known to inhibit BMP, and BMP signaling has been shown to be important for angiogenesis. However, the fsta’s role in vascular development has not been well studied. Here, we showed the vascular defects in ISV growth and CVP patterning while overexpressing fsta in the embryo, which mimics the phenotype of isl2/nr2f1b morphants. The vascular abnormalities are likely caused by defects in migration and proliferation. We further observed the altered expression of vessel markers consistent with the vascular defects in (fli:fsta) embryos. We showed that the knockdown of fsta can rescue the vascular defects in (fli:fsta) fish, suggesting the functional specificity of fsta. Moreover, the decreased expression of fsta rescues abnormal vessel growth in isl2 and nr2f1b morphants, indicating that fsta functions downstream of isl2/nr2f1b. Lastly, we showed that Isl2/Nr2f1b control vascular development, via Fsta–BMP signaling in part. Collectively, our microarray data identify many interesting genes regulated by isl2/nr2f1b, which likely function in the vasculature. Our research provides useful information on the genetic control of vascular development.
Collapse
Affiliation(s)
- Ru-Fang Li
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (R.-F.L.); (Y.-S.W.); (Y.-S.H.); (C.-C.C.); (M.-H.T.)
| | - Yi-Shan Wang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (R.-F.L.); (Y.-S.W.); (Y.-S.H.); (C.-C.C.); (M.-H.T.)
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 115, Taiwan
| | - Fu-I Lu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan;
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Yi-Shan Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (R.-F.L.); (Y.-S.W.); (Y.-S.H.); (C.-C.C.); (M.-H.T.)
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chien-Chih Chiu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (R.-F.L.); (Y.-S.W.); (Y.-S.H.); (C.-C.C.); (M.-H.T.)
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Hong Tai
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (R.-F.L.); (Y.-S.W.); (Y.-S.H.); (C.-C.C.); (M.-H.T.)
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (R.-F.L.); (Y.-S.W.); (Y.-S.H.); (C.-C.C.); (M.-H.T.)
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 115, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Correspondence: ; Tel.: +886-7-5252000 (ext. 3627)
| |
Collapse
|
19
|
Myokines and Resistance Training: A Narrative Review. Int J Mol Sci 2022; 23:ijms23073501. [PMID: 35408868 PMCID: PMC8998961 DOI: 10.3390/ijms23073501] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023] Open
Abstract
In the last few years, the muscular system has gained attention due to the discovery of the muscle-secretome and its high potency for retaining or regaining health. These cytokines, described as myokines, released by the working muscle, are involved in anti-inflammatory, metabolic and immunological processes. These are able to influence human health in a positive way and are a target of research in metabolic diseases, cancer, neurological diseases, and other non-communicable diseases. Therefore, different types of exercise training were investigated in the last few years to find associations between exercise, myokines and their effects on human health. Particularly, resistance training turned out to be a powerful stimulus to enhance myokine release. As there are different types of resistance training, different myokines are stimulated, depending on the mode of training. This narrative review gives an overview about resistance training and how it can be utilized to stimulate myokine production in order to gain a certain health effect. Finally, the question of why resistance training is an important key regulator in human health will be discussed.
Collapse
|
20
|
Feger MA, Isaacs J, Mallu S, Yager D, Shall M, Patel G, Protzuk O, Bokkisam AS. Follistatin Protein Enhances Satellite Cell Counts in Reinnervated Muscle. J Brachial Plex Peripher Nerve Inj 2022; 17:e12-e21. [PMID: 35747585 PMCID: PMC9213116 DOI: 10.1055/s-0042-1748535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/18/2021] [Indexed: 11/18/2022] Open
Abstract
Background Muscle recovery following peripheral nerve repair is sup-optimal. Follistatin (FST), a potent muscle stimulant, enhances muscle size and satellite cell counts following reinnervation when administered as recombinant FST DNA via viral vectors. Local administration of recombinant FST protein, if effective, would be more clinically translatable but has yet to be investigated following muscle reinnervation. Objective The aim of this study is to assess the effect of direct delivery of recombinant FST protein on muscle recovery following muscle reinnervation. Materials and Methods In total, 72 Sprague-Dawley rats underwent temporary (3 or 6 months) denervation or sham denervation. After reinnervation, rats received FST protein (isoform FS-288) or sham treatment via a subcutaneous osmotic pump delivery system. Outcome measures included muscle force, muscle histomorphology, and FST protein quantification. Results Follistatin treatment resulted in smaller muscles after 3 months denervation ( p = 0.019) and reduced force after 3 months sham denervation ( p < 0.001). Conversely, after 6 months of denervation, FST treatment trended toward increased force output ( p = 0.066). Follistatin increased satellite cell counts after denervation ( p < 0.001) but reduced satellite cell counts after sham denervation ( p = 0.037). Conclusion Follistatin had mixed effects on muscle weight and force. Direct FST protein delivery enhanced satellite cell counts following reinnervation. The positive effect on the satellite cell population is intriguing and warrants further investigation.
Collapse
Affiliation(s)
- Mark A. Feger
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jonathan Isaacs
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia, United States
| | - Satya Mallu
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia, United States
| | - Dorne Yager
- Divison of Plastic Surgery, Department of General Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia, United States
| | - Mary Shall
- Department of Physical Therapy, Virginia Commonwealth University Medical Center, Richmond, Virginia, United States
| | - Gaurangkumar Patel
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia, United States
| | - Omar Protzuk
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia, United States
| | - Akhil S. Bokkisam
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia, United States
| |
Collapse
|
21
|
Fix DK, Mahmassani ZS, Petrocelli JJ, de Hart NMMP, Ferrara PJ, Painter JS, Nistor G, Lane TE, Keirstead HS, Drummond MJ. Reversal of deficits in aged skeletal muscle during disuse and recovery in response to treatment with a secrotome product derived from partially differentiated human pluripotent stem cells. GeroScience 2021; 43:2635-2652. [PMID: 34427856 PMCID: PMC8602548 DOI: 10.1007/s11357-021-00423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
Aged individuals are at risk to experience slow and incomplete muscle recovery following periods of disuse atrophy. While several therapies have been employed to mitigate muscle mass loss during disuse and improve recovery, few have proven effective at both. Therefore, the purpose of this study was to examine the effectiveness of a uniquely developed secretome product (STEM) on aged skeletal muscle mass and function during disuse and recovery. Aged (22 months) male C57BL/6 were divided into PBS or STEM treatment (n = 30). Mice within each treatment were assigned to either ambulatory control (CON; 14 days of normal cage ambulation), 14 days of hindlimb unloading (HU), or 14 days of hindlimb unloading followed by 7 days of recovery (recovery). Mice were given an intramuscular delivery into the hindlimb muscle of either PBS or STEM every other day for the duration of their respective treatment group. We found that STEM-treated mice compared to PBS had greater soleus muscle mass, fiber cross-sectional area (CSA), and grip strength during CON and recovery experimental conditions and less muscle atrophy and weakness during HU. Muscle CD68 +, CD11b + and CD163 + macrophages were more abundant in STEM-treated CON mice compared to PBS, while only CD68 + and CD11b + macrophages were more abundant during HU and recovery conditions with STEM treatment. Moreover, STEM-treated mice had lower collagen IV and higher Pax7 + cell content compared to PBS across all experimental conditions. As a follow-up to examine the cell autonomous role of STEM on muscle, C2C12 myotubes were given STEM or horse serum media to examine myotube fusion/size and effects on muscle transcriptional networks. STEM-treated C2C12 myotubes were larger and had a higher fusion index and were related to elevated expression of transcripts associated with extracellular matrix remodeling. Our results demonstrate that STEM is a unique cocktail that possesses potent immunomodulatory and cytoskeletal remodeling properties that may have translational potential to improve skeletal muscle across a variety of conditions that adversely effect aging muscle.
Collapse
Affiliation(s)
- Dennis K Fix
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, UT, 84108, Salt Lake City, USA
| | - Ziad S Mahmassani
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, UT, 84108, Salt Lake City, USA
| | - Jonathan J Petrocelli
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, UT, 84108, Salt Lake City, USA
| | - Naomi M M P de Hart
- Department of Nutrition and Integrative Physiology, University of Utah, UT, Salt Lake City, USA
| | - Patrick J Ferrara
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, UT, 84108, Salt Lake City, USA
| | | | | | - Thomas E Lane
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | | | - Micah J Drummond
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, UT, 84108, Salt Lake City, USA
- Department of Nutrition and Integrative Physiology, University of Utah, UT, Salt Lake City, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
22
|
Li J, Fredericks M, Cannell M, Wang K, Sako D, Maguire MC, Grenha R, Liharska K, Krishnan L, Bloom T, Belcheva EP, Martinez PA, Castonguay R, Keates S, Alexander MJ, Choi H, Grinberg AV, Pearsall RS, Oh P, Kumar R, Suragani RN. ActRIIB:ALK4-Fc alleviates muscle dysfunction and comorbidities in murine models of neuromuscular disorders. J Clin Invest 2021; 131:138634. [PMID: 33586684 DOI: 10.1172/jci138634] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 12/29/2020] [Indexed: 01/06/2023] Open
Abstract
Patients with neuromuscular disorders suffer from a lack of treatment options for skeletal muscle weakness and disease comorbidities. Here, we introduce as a potential therapeutic agent a heterodimeric ligand-trapping fusion protein, ActRIIB:ALK4-Fc, which comprises extracellular domains of activin-like kinase 4 (ALK4) and activin receptor type IIB (ActRIIB), a naturally occurring pair of type I and II receptors belonging to the TGF-β superfamily. By surface plasmon resonance (SPR), ActRIIB:ALK4-Fc exhibited a ligand binding profile distinctly different from that of its homodimeric variant ActRIIB-Fc, sequestering ActRIIB ligands known to inhibit muscle growth but not trapping the vascular regulatory ligand bone morphogenetic protein 9 (BMP9). ActRIIB:ALK4-Fc and ActRIIB-Fc administered to mice exerted differential effects - concordant with SPR results - on vessel outgrowth in a retinal explant assay. ActRIIB:ALK4-Fc induced a systemic increase in muscle mass and function in wild-type mice and in murine models of Duchenne muscular dystrophy (DMD), amyotrophic lateral sclerosis (ALS), and disuse atrophy. Importantly, ActRIIB:ALK4-Fc improved neuromuscular junction abnormalities in murine models of DMD and presymptomatic ALS and alleviated acute muscle fibrosis in a DMD model. Furthermore, in combination therapy ActRIIB:ALK4-Fc increased the efficacy of antisense oligonucleotide M12-PMO on dystrophin expression and skeletal muscle endurance in an aged DMD model. ActRIIB:ALK4-Fc shows promise as a therapeutic agent, alone or in combination with dystrophin rescue therapy, to alleviate muscle weakness and comorbidities of neuromuscular disorders.
Collapse
Affiliation(s)
- Jia Li
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | | | | | - Kathryn Wang
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | - Dianne Sako
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | | | - Rosa Grenha
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | | | | | - Troy Bloom
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | | | | | | | - Sarah Keates
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | | | - Hyunwoo Choi
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | | | - Paul Oh
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | | |
Collapse
|
23
|
Lu A, Guo P, Pan H, Tseng C, Sinha KM, Yang F, Scibetta A, Cui Y, Huard M, Zhong L, Ravuri S, Huard J. Enhancement of myogenic potential of muscle progenitor cells and muscle healing during pregnancy. FASEB J 2021; 35:e21378. [PMID: 33565161 DOI: 10.1096/fj.202001914r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 11/11/2022]
Abstract
The decline of muscle regenerative potential with age has been attributed to a diminished responsiveness of muscle progenitor cells (MPCs). Heterochronic parabiosis has been used as a model to study the effects of aging on stem cells and their niches. These studies have demonstrated that, by exposing old mice to a young systemic environment, aged progenitor cells can be rejuvenated. One interesting idea is that pregnancy represents a unique biological model of a naturally shared circulatory system between developing and mature organisms. To test this hypothesis, we evaluated the muscle regeneration potential of pregnant mice using a cardiotoxin (CTX) injury mouse model. Our results indicate that the pregnant mice demonstrate accelerated muscle healing compared to nonpregnant control mice following muscle injury based on improved muscle histology, superior muscle regeneration, and a reduction in inflammation and necrosis. Additionally, we found that MPCs isolated from pregnant mice display a significant improvement of myogenic differentiation capacity in vitro and muscle regeneration in vivo when compared to the MPCs from nonpregnant mice. Furthermore, MPCs from nonpregnant mice display enhanced myogenic capacity when cultured in the presence of serum obtained from pregnant mice. Our proteomics data from these studies provides potential therapeutic targets to enhance the myogenic potential of progenitor cells and muscle repair.
Collapse
Affiliation(s)
- Aiping Lu
- Steadman Philippon Research Institute, Vail, CO, USA
| | - Ping Guo
- Steadman Philippon Research Institute, Vail, CO, USA
| | - Haiying Pan
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chieh Tseng
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Krishna M Sinha
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fan Yang
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alex Scibetta
- Steadman Philippon Research Institute, Vail, CO, USA
| | - Yan Cui
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Ling Zhong
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Johnny Huard
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Recent terminations of clinical trials of myostatin inhibitors in muscular dystrophy have raised questions about the predictiveness of mouse models for this therapeutic strategy. RECENT FINDINGS A variety of myostatin inhibitors have been developed for preclinical and clinical studies. These inhibitors have ameliorated the phenotype of many but not all mouse models of muscular dystrophy. However, randomized double-blinded placebo controlled trials in both pediatric and adult muscular dystrophies have, as of yet, not demonstrated functional improvement. SUMMARY The present article will review the preclinical promise of myostatin inhibitors, the clinical trial experience to date of these inhibitors in muscular dystrophy, and the potential reasons for the lack of observed translation.
Collapse
|
25
|
Starosta A, Konieczny P. Therapeutic aspects of cell signaling and communication in Duchenne muscular dystrophy. Cell Mol Life Sci 2021; 78:4867-4891. [PMID: 33825942 PMCID: PMC8233280 DOI: 10.1007/s00018-021-03821-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/26/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating chromosome X-linked disease that manifests predominantly in progressive skeletal muscle wasting and dysfunctions in the heart and diaphragm. Approximately 1/5000 boys and 1/50,000,000 girls suffer from DMD, and to date, the disease is incurable and leads to premature death. This phenotypic severity is due to mutations in the DMD gene, which result in the absence of functional dystrophin protein. Initially, dystrophin was thought to be a force transducer; however, it is now considered an essential component of the dystrophin-associated protein complex (DAPC), viewed as a multicomponent mechanical scaffold and a signal transduction hub. Modulating signal pathway activation or gene expression through epigenetic modifications has emerged at the forefront of therapeutic approaches as either an adjunct or stand-alone strategy. In this review, we propose a broader perspective by considering DMD to be a disease that affects myofibers and muscle stem (satellite) cells, as well as a disorder in which abrogated communication between different cell types occurs. We believe that by taking this systemic view, we can achieve safe and holistic treatments that can restore correct signal transmission and gene expression in diseased DMD tissues.
Collapse
Affiliation(s)
- Alicja Starosta
- Faculty of Biology, Institute of Human Biology and Evolution, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Patryk Konieczny
- Faculty of Biology, Institute of Human Biology and Evolution, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
26
|
Kim Y. Emerging Treatment Options for Sarcopenia in Chronic Liver Disease. Life (Basel) 2021; 11:life11030250. [PMID: 33803020 PMCID: PMC8002763 DOI: 10.3390/life11030250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Sarcopenia is characterized by a skeletal muscle disorder with progressive and generalized loss of muscle mass and function, and it increases the risk of adverse outcomes with considerable prevalence in patients with chronic liver disease. Sarcopenia in chronic liver disease underlies complicated and multifactorial mechanisms for pathogenesis, including alterations in protein turnover, hyperammonemia, energy disposal, hormonal changes, and chronic inflammation. The key contribution to sarcopenia in patients with chronic liver diseases can be the hyperammonemia-induced upregulation of myostatin, which causes muscle atrophy via the expression of atrophy-related genes. Several clinical studies on emerging treatment options for sarcopenia have been reported, but only a few have focused on patients with chronic liver diseases, with mostly nutritional and behavioral interventions being carried out. The inhibition of the myostatin-activin receptor signaling pathway and hormonal therapy might be the most promising therapeutic options in combination with an ammonia-lowering approach in sarcopenic patients with chronic liver diseases. This review focuses on current and emerging treatment options for sarcopenia in chronic liver diseases with underlying mechanisms to counteract this condition.
Collapse
Affiliation(s)
- Yun Kim
- Hanyang Medicine-Engineering-Bio Collaborative & Comprehensive Center for Drug Development, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
27
|
Rugowska A, Starosta A, Konieczny P. Epigenetic modifications in muscle regeneration and progression of Duchenne muscular dystrophy. Clin Epigenetics 2021; 13:13. [PMID: 33468200 PMCID: PMC7814631 DOI: 10.1186/s13148-021-01001-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a multisystemic disorder that affects 1:5000 boys. The severity of the phenotype varies dependent on the mutation site in the DMD gene and the resultant dystrophin expression profile. In skeletal muscle, dystrophin loss is associated with the disintegration of myofibers and their ineffective regeneration due to defective expansion and differentiation of the muscle stem cell pool. Some of these phenotypic alterations stem from the dystrophin absence-mediated serine-threonine protein kinase 2 (MARK2) misplacement/downregulation in activated muscle stem (satellite) cells and neuronal nitric oxide synthase loss in cells committed to myogenesis. Here, we trace changes in DNA methylation, histone modifications, and expression of regulatory noncoding RNAs during muscle regeneration, from the stage of satellite cells to myofibers. Furthermore, we describe the abrogation of these epigenetic regulatory processes due to changes in signal transduction in DMD and point to therapeutic treatments increasing the regenerative potential of diseased muscles based on this acquired knowledge.
Collapse
Affiliation(s)
- Anna Rugowska
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Alicja Starosta
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Patryk Konieczny
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
28
|
Berardi E, Madaro L, Lozanoska-Ochser B, Adamo S, Thorrez L, Bouche M, Coletti D. A Pound of Flesh: What Cachexia Is and What It Is Not. Diagnostics (Basel) 2021; 11:diagnostics11010116. [PMID: 33445790 PMCID: PMC7828214 DOI: 10.3390/diagnostics11010116] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
Body weight loss, mostly due to the wasting of skeletal muscle and adipose tissue, is the hallmark of the so-called cachexia syndrome. Cachexia is associated with several acute and chronic disease states such as cancer, chronic obstructive pulmonary disease (COPD), heart and kidney failure, and acquired and autoimmune diseases and also pharmacological treatments such as chemotherapy. The clinical relevance of cachexia and its impact on patients’ quality of life has been neglected for decades. Only recently did the international community agree upon a definition of the term cachexia, and we are still awaiting the standardization of markers and tests for the diagnosis and staging of cancer-related cachexia. In this review, we discuss cachexia, considering the evolving use of the term for diagnostic purposes and the implications it has for clinical biomarkers, to provide a comprehensive overview of its biology and clinical management. Advances and tools developed so far for the in vitro testing of cachexia and drug screening will be described. We will also evaluate the nomenclature of different forms of muscle wasting and degeneration and discuss features that distinguish cachexia from other forms of muscle wasting in the context of different conditions.
Collapse
Affiliation(s)
- Emanuele Berardi
- Department of Development and Regeneration, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium; (E.B.); (L.T.)
- Faculty of Rehabilitation Sciences, REVAL, Hasselt University (UHasselt), 3590 Diepenbeek, Belgium
| | - Luca Madaro
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
| | - Biliana Lozanoska-Ochser
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
| | - Sergio Adamo
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
| | - Lieven Thorrez
- Department of Development and Regeneration, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium; (E.B.); (L.T.)
| | - Marina Bouche
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
- Correspondence: ; Tel.: +39-(6)-4976-6755/6573
| | - Dario Coletti
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Institut de Biologie Paris-Seine, Sorbonne Université, 75006 Paris, France
| |
Collapse
|
29
|
Pleiotropic actions of Vitamin D in composite musculoskeletal trauma. Injury 2020; 51:2099-2109. [PMID: 32624209 DOI: 10.1016/j.injury.2020.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/21/2020] [Accepted: 06/13/2020] [Indexed: 02/02/2023]
Abstract
Composite tissue injuries are the result of high energy impacts caused by motor vehicle accidents, gunshot wounds or blasts. These are highly traumatic injuries characterized by wide-spread, penetrating wounds affecting the entire musculoskeletal system, and are generally defined by frank volumetric muscle loss with concomitant segmental bone defects. At the tissue level, the breadth of damage to multiple tissue systems, and potential for infection from penetration, have been shown to lead to an exaggerated, often chronic inflammatory response with subsequent dysregulation of normal musculoskeletal healing mechanisms. Aside from the direct effects of inflammation on myogenesis and osteogenesis, frank muscle loss has been shown to directly impair fracture union and ultimately contribute to failed wound regeneration. Care for these injuries requires extensive surgical intervention and acute care strategies. However, often these interventions do not adequately mitigate inflammation or promote proper musculoskeletal injury repair and force amputation of the limb. Therefore, identification of factors that can promote tissue regeneration and mitigate inflammation could be key to restoring wound healing after composite tissue injury. One such factor that may directly affect both inflammation and tissue regeneration in response to these multi-tissue injuries may be Vitamin D. Beyond traditional roles, the pleiotropic and localized actions of Vitamin D are increasingly being recognized in most aspects of wound healing in complex tissue injuries - e.g., regulation of inflammation, myogenesis, fracture callus mineralization and remodeling. Conversely, pre-existing Vitamin D deficiency leads to musculoskeletal dysfunction, increased fracture risk or fracture non-unions, decreased strength/function and reduced capacity to heal wounds through increased inflammation. This Vitamin D deficient state requires acute supplementation in order to quickly restore circulating levels to an optimal level, thereby facilitating a robust wound healing response. Herein, the purpose of this review is to address the roles and critical functions of Vitamin D throughout the wound healing process. Findings from this review suggest that careful monitoring and/or supplementation of Vitamin D may be critical for wound regeneration in composite tissue injuries.
Collapse
|
30
|
Myostatin as a Biomarker of Muscle Wasting and other Pathologies-State of the Art and Knowledge Gaps. Nutrients 2020; 12:nu12082401. [PMID: 32796600 PMCID: PMC7469036 DOI: 10.3390/nu12082401] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022] Open
Abstract
Sarcopenia is a geriatric syndrome with a significant impact on older patients’ quality of life, morbidity and mortality. Despite the new available criteria, its early diagnosis remains difficult, highlighting the necessity of looking for a valid muscle wasting biomarker. Myostatin, a muscle mass negative regulator, is one of the potential candidates. The aim of this work is to point out various factors affecting the potential of myostatin as a biomarker of muscle wasting. Based on the literature review, we can say that recent studies produced conflicting results and revealed a number of potential confounding factors influencing their use in sarcopenia diagnosing. These factors include physiological variables (such as age, sex and physical activity) as well as a variety of disorders (including heart failure, metabolic syndrome, kidney failure and inflammatory diseases) and differences in laboratory measurement methodology. Our conclusion is that although myostatin alone might not prove to be a feasible biomarker, it could become an important part of a recently proposed panel of muscle wasting biomarkers. However, a thorough understanding of the interrelationship of these markers, as well as establishing a valid measurement methodology for myostatin and revising current research data in the light of new criteria of sarcopenia, is needed.
Collapse
|
31
|
Kerschan-Schindl K, Tiefenböck TM, Föger-Samwald U, Payr S, Frenzel S, Marculescu R, Gleiss A, Sarahrudi K, Pietschmann P. Circulating Myostatin Levels Decrease Transiently after Implantation of a Hip Hemi-Arthroplasty. Gerontology 2020; 66:393-400. [PMID: 32454508 DOI: 10.1159/000507731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/03/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Muscle and bone metabolism are both important for the healing of fractures and the regeneration of injured muscle tissue. The aim of this investigation was to evaluate myostatin and other regulating factors in patients with hip fractures who underwent hemi-arthroplasty. METHODS Serum levels of myostatin (MSTN), follistatin (FSTN), dickkopf-1 (Dkk1), and periostin (PSTN) as well as markers of bone turnover were evaluated in patients with hip fractures before surgery and twice in the 2 weeks after surgery. These parameters were also evaluated in age- and gender-matched subjects without major musculoskeletal injury. RESULTS MSTN was transiently reduced; its opponent FSTN was transiently increased. Dkk1, the negative regulator of bone mass, and PSTN, a marker of subperiosteal bone formation, increased after surgery. With regard to markers of bone turnover, resorption was elevated during the entire period of observation whereas the early bone formation marker N-terminal propeptide of type I collagen was elevated 12 days after surgery. CONCLUSIONS Unexpectedly, MSTN, a negative regulator of muscle growth, was reduced after surgery compared with before surgery. As musculoskeletal markers are altered during bone healing, they do not reflect general bone metabolism after fracture or joint arthroplasty. This is important because many elderly patients receive treatment for osteoporosis.
Collapse
Affiliation(s)
- Katharina Kerschan-Schindl
- Department of Physical Medicine, Rehabilitation and Occupational Therapy, Medical University of Vienna, Vienna, Austria
| | - Thomas M Tiefenböck
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Ursula Föger-Samwald
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Stephan Payr
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Stephan Frenzel
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Rodrig Marculescu
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Andreas Gleiss
- Center of Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Kambiz Sarahrudi
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria, .,Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria,
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
32
|
6-Bromoindirubin-3'-oxime intercepts GSK3 signaling to promote and enhance skeletal muscle differentiation affecting miR-206 expression in mice. Sci Rep 2019; 9:18091. [PMID: 31792344 PMCID: PMC6889408 DOI: 10.1038/s41598-019-54574-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 11/12/2019] [Indexed: 12/17/2022] Open
Abstract
Dystrophies are characterized by progressive skeletal muscle degeneration and weakness as consequence of their molecular abnormalities. Thus, new drugs for restoring skeletal muscle deterioration are critically needed. To identify new and alternative compounds with a functional role in skeletal muscle myogenesis, we screened a library of pharmacologically active compounds and selected the small molecule 6-bromoindirubin-3′-oxime (BIO) as an inhibitor of myoblast proliferation. Using C2C12 cells, we examined BIO’s effect during myoblast proliferation and differentiation showing that BIO treatment promotes transition from cell proliferation to myogenic differentiation through the arrest of cell cycle. Here, we show that BIO is able to promote myogenic differentiation in damaged myotubes in-vitro by enriching the population of newly formed skeletal muscle myotubes. Moreover, in-vivo experiments in CTX-damaged TA muscle confirmed the pro-differentiation capability of BIO as shown by the increasing of the percentage of myofibers with centralized nuclei as well as by the increasing of myofibers number. Additionally, we have identified a strong correlation of miR-206 with BIO treatment both in-vitro and in-vivo: the enhanced expression of miR-206 was observed in-vitro in BIO-treated proliferating myoblasts, miR-206 restored expression was observed in a forced miR-206 silencing conditions antagomiR-mediated upon BIO treatment, and in-vivo in CTX-injured muscles miR-206 enhanced expression was observed upon BIO treatment. Taken together, our results highlight the capacity of BIO to act as a positive modulator of skeletal muscle differentiation in-vitro and in-vivo opening up a new perspective for novel therapeutic targets to correct skeletal muscle defects.
Collapse
|
33
|
Song T, Sadayappan S. Featured characteristics and pivotal roles of satellite cells in skeletal muscle regeneration. J Muscle Res Cell Motil 2019; 41:341-353. [PMID: 31494813 DOI: 10.1007/s10974-019-09553-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/04/2019] [Indexed: 01/12/2023]
Abstract
Skeletal muscle, the essential organ for locomotion, as well as energy reservoir and expenditure, has robust regenerative capacity in response to mechanical stress and injury. As muscle-specific stem cells, satellite cells are responsible for providing new myoblasts during the process of muscle growth and regeneration. Self-renewal capacity and the fate of satellite cells are highly regulated and influenced by their surrounding factors, such as extracellular matrix and soluble proteins. The strong myogenic potential of satellite cells makes them a potential resource for stem cell therapy to cure genetic muscle disease and repair injured muscle. Here, we both review key features of satellite cells during skeletal muscle development and regeneration and summarize recent outcomes of satellite cell transplantation studies.
Collapse
Affiliation(s)
- Taejeong Song
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, 45267, USA.
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, 45267, USA
| |
Collapse
|
34
|
Isaacs J, Feger MA, Mallu S, Yager D, Shall M, Patel G, Protzuk O, Graham L. Viral vector delivery of follistatin enhances recovery of reinnervated muscle. Muscle Nerve 2019; 60:474-483. [PMID: 31365129 DOI: 10.1002/mus.26653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/17/2019] [Accepted: 07/28/2019] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Poor recovery following nerve repair is due to progressive temporal loss of muscle function. Follistatin (FS), a glycoprotein with anabolic properties, may enhance muscle recovery following reinnervation. METHODS Seventy-two male Sprague-Dawley rats underwent temporary (3 or 6 month) denervation or sham denervation. After reinnervation, rats were administered adeno-associated viral vectors expressing FS deoxyribonucleic acid (isoform FS-317) injected into the target muscle or sham treatment. Final assessment included muscle function testing, muscle histomorphology, nerve histomorphology, and FS protein quantification. RESULTS FS improved muscle mass and type IIB muscle fiber size, and increased G-ratios and mean axon diameter in the 6-month temporary denervation group (P < .05). Elevated FS protein levels were detected in treated muscle (P < .05). FS increased satellite cell counts following temporary denervation and repair (P < .05). DISCUSSION FS treatment had anabolic, neurotrophic, and satellite cell stimulatory effects when administered following prolonged (6-month) temporary denervation and repair.
Collapse
Affiliation(s)
- Jonathan Isaacs
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Mark A Feger
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Satya Mallu
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Dorne Yager
- Divison of Plastic Surgery, Department of General Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Mary Shall
- Department of Physical Therapy, Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Gaurangkumar Patel
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Omar Protzuk
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Lindsay Graham
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia
| |
Collapse
|
35
|
Pearsall RS, Davies MV, Cannell M, Li J, Widrick J, Mulivor AW, Wallner S, Troy ME, Spaits M, Liharska K, Sako D, Castonguay R, Keates S, Grinberg AV, Suragani RNVS, Kumar R. Follistatin-based ligand trap ACE-083 induces localized hypertrophy of skeletal muscle with functional improvement in models of neuromuscular disease. Sci Rep 2019; 9:11392. [PMID: 31388039 PMCID: PMC6684588 DOI: 10.1038/s41598-019-47818-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle is under inhibitory homeostatic regulation by multiple ligands of the transforming growth factor-β (TGFβ) superfamily. Follistatin is a secreted protein that promotes muscle growth and function by sequestering these ligands extracellularly. In the present study, we evaluated the potential of ACE-083 – a locally acting, follistatin-based fusion protein – as a novel therapeutic agent for focal or asymmetric myopathies. Characterization of ACE-083 in vitro revealed its high affinity for heparin and extracellular matrix while surface plasmon resonance and cell-based assays confirmed that ACE-083 binds and potently neutralizes myostatin, activin A, activin B and growth differentiation factor 11 (GDF11). Intramuscular administration of ACE-083 caused localized, dose-dependent hypertrophy of the injected muscle in wild-type mice and mouse models of Charcot-Marie-Tooth disease (CMT) and Duchenne muscular dystrophy, with no evidence of systemic muscle effects or endocrine perturbation. Importantly, ACE-083 also increased the force of isometric contraction in situ by the injected tibialis anterior muscle in wild-type mice and disease models and increased ankle dorsiflexion torque in CMT mice. Our results demonstrate the potential of ACE-083 as a therapeutic agent for patients with CMT, muscular dystrophy and other disorders with focal or asymmetric muscle atrophy or weakness.
Collapse
Affiliation(s)
| | | | - M Cannell
- Acceleron Pharma, Cambridge, MA, USA
| | - J Li
- Acceleron Pharma, Cambridge, MA, USA
| | - J Widrick
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - A W Mulivor
- Acceleron Pharma, Cambridge, MA, USA.,The Hospital for Sick Children, Toronto, Ontario, Canada
| | - S Wallner
- Acceleron Pharma, Cambridge, MA, USA.,NovaRock Biotherapeutics, Princeton, NJ, USA
| | - M E Troy
- Acceleron Pharma, Cambridge, MA, USA
| | - M Spaits
- Acceleron Pharma, Cambridge, MA, USA
| | - K Liharska
- Acceleron Pharma, Cambridge, MA, USA.,Dragonfly Therapeutics, Waltham, MA, USA
| | - D Sako
- Acceleron Pharma, Cambridge, MA, USA
| | | | - S Keates
- Acceleron Pharma, Cambridge, MA, USA
| | - A V Grinberg
- Acceleron Pharma, Cambridge, MA, USA.,Dragonfly Therapeutics, Waltham, MA, USA
| | | | - R Kumar
- Acceleron Pharma, Cambridge, MA, USA
| |
Collapse
|
36
|
|
37
|
Kim MM, Schlussel L, Zhao L, Himburg HA. Dickkopf-1 Treatment Stimulates Hematopoietic Regenerative Function in Infused Endothelial Progenitor Cells. Radiat Res 2019; 192:53-62. [PMID: 31081743 DOI: 10.1667/rr15361.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Acute high-dose radiation injury damages the bone marrow hematopoietic stem and progenitor cell compartment. This damage compromises the functional ability of the bone marrow to produce mature blood cells and results in an increased risk of death due to hematopoietic complications. Past work has shown that the bone marrow endothelium provides critical cues, which promote hematopoietic stem cell regeneration after injury. Additionally, transfusion of endothelial cells after radiation injury has been shown to promote recovery of both the bone marrow vasculature and hematopoietic systems. In this work, we examined the regenerative capacity of intravenous infusion of umbilical cord-blood derived endothelial progenitor cells (EPCs) since this is a cell source which is easy to obtain, expand and cryopreserve. We show that pre-treatment with the Wnt-antagonist Dickkopf1 (Dkk1) augments EPC regenerative function in an allogeneic mouse transplant model. Here, hematopoietic recovery was assessed in Balb/c mice after 5 Gy total-body irradiation and transplantation with C57/BL6-derived EPCs either with or without Dkk1 pre-treatment. The Dkk1-treated EPC group had significantly faster recovery of peripheral white blood cells, total bone marrow cellularity, bone marrow progenitors and BM endothelial cells compared to EPC treatment alone or saline controls. Importantly, after an LD50/30 dose of 8 Gy in the Balb/c mouse, Dkk1-treated EPCs were able to rescue 100% of irradiated mice versus 80% in the EPC control group and only 33% in the saline-treated group. To understand how Dkk1 induces regenerative function in the EPCs, we screened for pro-regenerative factors secreted by the EPC in response to Dkk1. Dkk1-treated EPCs were observed to secrete high levels of the anti-fibrotic protein follistatin as well as several proteins known to promote regeneration including EGF, VEGF and G-CSF. This work demonstrates the potential for Dkk1-treated EPCs as a rescue therapeutic for victims of acute radiation injury.
Collapse
Affiliation(s)
- Mindy M Kim
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Lauren Schlussel
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Liman Zhao
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Heather A Himburg
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| |
Collapse
|
38
|
Teng S, Huang P. The effect of type 2 diabetes mellitus and obesity on muscle progenitor cell function. Stem Cell Res Ther 2019; 10:103. [PMID: 30898146 PMCID: PMC6427880 DOI: 10.1186/s13287-019-1186-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In addition to its primary function to provide movement and maintain posture, the skeletal muscle plays important roles in energy and glucose metabolism. In healthy humans, skeletal muscle is the major site for postprandial glucose uptake and impairment of this process contributes to the pathogenesis of type 2 diabetes mellitus (T2DM). A key component to the maintenance of skeletal muscle integrity and plasticity is the presence of muscle progenitor cells, including satellite cells, fibroadipogenic progenitors, and some interstitial progenitor cells associated with vessels (myo-endothelial cells, pericytes, and mesoangioblasts). In this review, we aim to discuss the emerging concepts related to these progenitor cells, focusing on the identification and characterization of distinct progenitor cell populations, and the impact of obesity and T2DM on these cells. The recent advances in stem cell therapies by targeting diabetic and obese muscle are also discussed.
Collapse
Affiliation(s)
- Shuzhi Teng
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, People's Republic of China.
| | - Ping Huang
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
39
|
Forcina L, Miano C, Scicchitano BM, Musarò A. Signals from the Niche: Insights into the Role of IGF-1 and IL-6 in Modulating Skeletal Muscle Fibrosis. Cells 2019; 8:E232. [PMID: 30862132 PMCID: PMC6468756 DOI: 10.3390/cells8030232] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Abstract
Muscle regeneration, characterized by the activation and proliferation of satellite cells and other precursors, is accompanied by an inflammatory response and the remodeling of the extracellular matrix (ECM), necessary to remove cellular debris and to mechanically support newly generated myofibers and activated satellite cells. Muscle repair can be considered concluded when the tissue architecture, vascularization, and innervation have been restored. Alterations in these connected mechanisms can impair muscle regeneration, leading to the replacement of functional muscle tissue with a fibrotic scar. In the present review, we will discuss the cellular mediators of fibrosis and how the altered expression and secretion of soluble mediators, such as IL-6 and IGF-1, can modulate regulatory networks involved in the altered regeneration and fibrosis during aging and diseases.
Collapse
Affiliation(s)
- Laura Forcina
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Via A. Scarpa, 14, 00161 Rome, Italy.
| | - Carmen Miano
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Via A. Scarpa, 14, 00161 Rome, Italy.
| | - Bianca Maria Scicchitano
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy.
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Via A. Scarpa, 14, 00161 Rome, Italy.
| |
Collapse
|
40
|
Castonguay R, Lachey J, Wallner S, Strand J, Liharska K, Watanabe AE, Cannell M, Davies MV, Sako D, Troy ME, Krishnan L, Mulivor AW, Li H, Keates S, Alexander MJ, Pearsall RS, Kumar R. Follistatin-288-Fc Fusion Protein Promotes Localized Growth of Skeletal Muscle. J Pharmacol Exp Ther 2019; 368:435-445. [PMID: 30563942 DOI: 10.1124/jpet.118.252304] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022] Open
Abstract
Follistatin is an endogenous glycoprotein that promotes growth and repair of skeletal muscle by sequestering inhibitory ligands of the transforming growth factor-β superfamily and may therefore have therapeutic potential for neuromuscular diseases. Here, we sought to determine the suitability of a newly engineered follistatin fusion protein (FST288-Fc) to promote localized, rather than systemic, growth of skeletal muscle by capitalizing on the intrinsic heparin-binding ability of the follistatin-288 isoform. As determined by surface plasmon resonance and cell-based assays, FST288-Fc binds to activin A, activin B, myostatin (growth differentiation factor GDF8), and GDF11 with high affinity and neutralizes their activity in vitro. Intramuscular administration of FST288-Fc in mice induced robust, dose-dependent growth of the targeted muscle but not of surrounding or contralateral muscles, in contrast to the systemic effects of a locally administered fusion protein incorporating activin receptor type IIB (ActRIIB-Fc). Furthermore, systemic administration of FST288-Fc in mice did not alter muscle mass or body composition as determined by NMR, which again contrasts with the pronounced systemic activity of ActRIIB-Fc when administered by the same route. Subsequent analysis revealed that FST288-Fc in the circulation undergoes rapid proteolysis, thereby restricting its activity to individual muscles targeted by intramuscular administration. These results indicate that FST288-Fc can produce localized growth of skeletal muscle in a targeted manner with reduced potential for undesirable systemic effects. Thus, FST288-Fc and similar agents may be beneficial in the treatment of disorders with muscle atrophy that is focal, asymmetric, or otherwise heterogeneous.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Huiming Li
- Acceleron Pharma, Cambridge, Massachusetts
| | | | | | | | - Ravi Kumar
- Acceleron Pharma, Cambridge, Massachusetts
| |
Collapse
|
41
|
Fahmy-Garcia S, Farrell E, Witte-Bouma J, Robbesom-van den Berge I, Suarez M, Mumcuoglu D, Walles H, Kluijtmans SGJM, van der Eerden BCJ, van Osch GJVM, van Leeuwen JPTM, van Driel M. Follistatin Effects in Migration, Vascularization, and Osteogenesis in vitro and Bone Repair in vivo. Front Bioeng Biotechnol 2019; 7:38. [PMID: 30881954 PMCID: PMC6405513 DOI: 10.3389/fbioe.2019.00038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
The use of biomaterials and signaling molecules to induce bone formation is a promising approach in the field of bone tissue engineering. Follistatin (FST) is a glycoprotein able to bind irreversibly to activin A, a protein that has been reported to inhibit bone formation. We investigated the effect of FST in critical processes for bone repair, such as cell recruitment, osteogenesis and vascularization, and ultimately its use for bone tissue engineering. In vitro, FST promoted mesenchymal stem cell (MSC) and endothelial cell (EC) migration as well as essential steps in the formation and expansion of the vasculature such as EC tube-formation and sprouting. FST did not enhance osteogenic differentiation of MSCs, but increased committed osteoblast mineralization. In vivo, FST was loaded in an in situ gelling formulation made by alginate and recombinant collagen-based peptide microspheres and implanted in a rat calvarial defect model. Two FST variants (FST288 and FST315) with major differences in their affinity to cell-surface proteoglycans, which may influence their effect upon in vivo bone repair, were tested. In vitro, most of the loaded FST315 was released over 4 weeks, contrary to FST288, which was mostly retained in the biomaterial. However, none of the FST variants improved in vivo bone healing compared to control. These results demonstrate that FST enhances crucial processes needed for bone repair. Further studies need to investigate the optimal FST carrier for bone regeneration.
Collapse
Affiliation(s)
- Shorouk Fahmy-Garcia
- Department of Orthopedics, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Janneke Witte-Bouma
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | | | - Melva Suarez
- Institute of Tissue Engineering and Regenerative Medicine, Julius-Maximillians University Würzburg, Würzburg, Germany
| | - Didem Mumcuoglu
- Department of Orthopedics, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Fujifilm Manufacturing Europe B.V., Tilburg, Netherlands
| | - Heike Walles
- Institute of Tissue Engineering and Regenerative Medicine, Julius-Maximillians University Würzburg, Würzburg, Germany
| | | | - Bram C J van der Eerden
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Gerjo J V M van Osch
- Department of Orthopedics, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | | | - Marjolein van Driel
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
42
|
Bloise E, Ciarmela P, Dela Cruz C, Luisi S, Petraglia F, Reis FM. Activin A in Mammalian Physiology. Physiol Rev 2019; 99:739-780. [DOI: 10.1152/physrev.00002.2018] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Activins are dimeric glycoproteins belonging to the transforming growth factor beta superfamily and resulting from the assembly of two beta subunits, which may also be combined with alpha subunits to form inhibins. Activins were discovered in 1986 following the isolation of inhibins from porcine follicular fluid, and were characterized as ovarian hormones that stimulate follicle stimulating hormone (FSH) release by the pituitary gland. In particular, activin A was shown to be the isoform of greater physiological importance in humans. The current understanding of activin A surpasses the reproductive system and allows its classification as a hormone, a growth factor, and a cytokine. In more than 30 yr of intense research, activin A was localized in female and male reproductive organs but also in other organs and systems as diverse as the brain, liver, lung, bone, and gut. Moreover, its roles include embryonic differentiation, trophoblast invasion of the uterine wall in early pregnancy, and fetal/neonate brain protection in hypoxic conditions. It is now recognized that activin A overexpression may be either cytostatic or mitogenic, depending on the cell type, with important implications for tumor biology. Activin A also regulates bone formation and regeneration, enhances joint inflammation in rheumatoid arthritis, and triggers pathogenic mechanisms in the respiratory system. In this 30-yr review, we analyze the evidence for physiological roles of activin A and the potential use of activin agonists and antagonists as therapeutic agents.
Collapse
Affiliation(s)
- Enrrico Bloise
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Pasquapina Ciarmela
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Cynthia Dela Cruz
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Stefano Luisi
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Felice Petraglia
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Fernando M. Reis
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| |
Collapse
|
43
|
Skeletal muscle fibrosis: an overview. Cell Tissue Res 2018; 375:575-588. [DOI: 10.1007/s00441-018-2955-2] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/11/2018] [Indexed: 12/20/2022]
|
44
|
Srikuea R, Suhatcho K. Impact of intramuscular administration of lipid-soluble and water-soluble vehicles into regenerating muscle at the distinct phases of skeletal muscle regeneration. J Physiol Sci 2018; 68:647-661. [PMID: 29134575 PMCID: PMC10717534 DOI: 10.1007/s12576-017-0576-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/28/2017] [Indexed: 12/30/2022]
Abstract
Interpretation on the effectiveness of potential substances to enhance skeletal muscle regeneration is difficult if an inappropriate vehicle is administered, since vehicle administration can directly enhance or suppress regenerative capacity. In the current study, intramuscular administration of lipid-soluble and water-soluble vehicles into regenerating muscle at the distinct phases of skeletal muscle regeneration (regenerative vs. remodeling) were investigated. Tested vehicles included lipid-soluble [olive oil, (0.1, 1, 5, and 40%) dimethyl sulfoxide (DMSO), and 40% propylene glycol (PG)] and water-soluble [0.9% NaCl, PBS, 0.1% ethanol, and distilled water]. Skeletal muscle regeneration was induced by 1.2% BaCl2 injection to the tibialis anterior muscle of 10-week-old C57BL/6 male mice. Histological features, skeletal muscle stem cell activity, regenerating muscle fiber formation, angiogenesis, extracellular matrix remodeling, and macrophage infiltration were examined. The results revealed repeated administration of 40% DMSO and 40% PG causes significant recurrent muscle injury, which is pronounced during the remodeling phase compared to the regenerative phase. These findings were supported by (1) massive infiltration of F4/80+ macrophages; (2) significant increase of skeletal muscle stem cell re-activation and nascent regenerating muscle fiber formation; (3) excess fibrous formation; and (4) decreased regenerating muscle fiber cross-sectional area. These deleterious effects were comparable to 2% trypsin (degenerative substance) administration and less pronounced with a single administration. Nevertheless, recurrent muscle injury was still presented with 5% DMSO administration but it can be alleviated when 0.1% DMSO was administered during the remodeling phase. In contrast, none of the tested vehicles enhanced regenerative capacity compared with IGF-1 administration. Altogether, intramuscular administration of vehicle containing high concentration of DMSO or PG could impair skeletal muscle regenerative capacity and potentially affect validation of the investigational substance.
Collapse
Affiliation(s)
- Ratchakrit Srikuea
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Kanokwan Suhatcho
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
45
|
|
46
|
Current Progress and Challenges for Skeletal Muscle Differentiation from Human Pluripotent Stem Cells Using Transgene-Free Approaches. Stem Cells Int 2018; 2018:6241681. [PMID: 29760730 PMCID: PMC5924987 DOI: 10.1155/2018/6241681] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/11/2018] [Accepted: 02/18/2018] [Indexed: 12/13/2022] Open
Abstract
Neuromuscular diseases are caused by functional defects of skeletal muscles, directly via muscle pathology or indirectly via disruption of the nervous system. Extensive studies have been performed to improve the outcomes of therapies; however, effective treatment strategies have not been fully established for any major neuromuscular disease. Human pluripotent stem cells have a great capacity to differentiate into myogenic progenitors and skeletal myocytes for use in treating and modeling neuromuscular diseases. Recent advances have allowed the creation of patient-derived stem cells, which can be used as a unique platform for comprehensive study of disease mechanisms, in vitro drug screening, and potential new cell-based therapies. In the last decade, a number of methods have been developed to derive skeletal muscle cells from human pluripotent stem cells. By controlling the process of myogenesis using transcription factors and signaling molecules, human pluripotent stem cells can be directed to differentiate into cell types observed during muscle development. In this review, we highlight signaling pathways relevant to the formation of muscle tissue during embryonic development. We then summarize current methods to differentiate human pluripotent stem cells toward the myogenic lineage, specifically focusing on transgene-free approaches. Lastly, we discuss existing challenges for deriving skeletal myocytes and myogenic progenitors from human pluripotent stem cells.
Collapse
|
47
|
Jin Q, Qiao C, Li J, Li J, Xiao X. Neonatal Systemic AAV-Mediated Gene Delivery of GDF11 Inhibits Skeletal Muscle Growth. Mol Ther 2018; 26:1109-1117. [PMID: 29503194 DOI: 10.1016/j.ymthe.2018.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 12/19/2022] Open
Abstract
Growth and differentiation factor 11 (GDF11; BMP11) is a circulating cytokine in the transforming growth factor beta (TGF-β) superfamily. Treatment with recombinant GDF11 (rGDF11) protein has previously been shown to reverse skeletal muscle dysfunction in aged mice. However, the actions of GDF11 in skeletal muscle are still not fully understood. Because GDF11 activates the TGF-β-SMAD2/3 pathway, we hypothesized that GDF11 overexpression would inhibit skeletal muscle growth. To test this hypothesis, we generated recombinant adeno-associated virus serotype 9 (AAV9) vectors harboring the gene for either human GDF11 (AAV9-GDF11) or human IgG1 Fc-fused GDF11 propeptide (AAV9-GDF11Pro-Fc-1) to study the effects of GDF11 overexpression or blockade on skeletal muscle growth and function in vivo. After intravenous administration of AAV9-GDF11 into neonatal C57BL/6J mice, we observed sustained limb muscle growth inhibition along with reductions in forelimb grip strength and treadmill running endurance at 16 weeks. Conversely, treatment with AAV9-GDF11Pro-Fc-1 led to increased limb muscle mass and forelimb grip strength after 28 weeks, although a difference in the total body mass/muscle mass ratio was not observed between treatment and control groups. In sum, our results suggest GDF11 overexpression has an inhibitory effect on skeletal muscle growth.
Collapse
Affiliation(s)
- Quan Jin
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chunping Qiao
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jianbin Li
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Juan Li
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiao Xiao
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
48
|
Past, Present, and Future Perspective of Targeting Myostatin and Related Signaling Pathways to Counteract Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:153-206. [DOI: 10.1007/978-981-13-1435-3_8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Butterfield RJ, Dunn DM, Hu Y, Johnson K, Bönnemann CG, Weiss RB. Transcriptome profiling identifies regulators of pathogenesis in collagen VI related muscular dystrophy. PLoS One 2017; 12:e0189664. [PMID: 29244830 PMCID: PMC5731705 DOI: 10.1371/journal.pone.0189664] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/29/2017] [Indexed: 11/30/2022] Open
Abstract
Objectives The collagen VI related muscular dystrophies (COL6-RD), Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM) are among the most common congenital muscular dystrophies and are characterized by distal joint laxity and a combination of distal and proximal joint contractures. Inheritance can be dominant negative (DN) or recessive depending on the type and location of the mutation. DN mutations allow incorporation of abnormal chains into secreted tetramers and are the most commonly identified mutation type in COL6-RD. Null alleles (nonsense, frameshift, and large deletions) do not allow incorporation of abnormal chains and act recessively. To better define the pathways disrupted by mutations in collagen VI, we have used a transcriptional profiling approach with RNA-Seq to identify differentially expressed genes in COL6-RD individuals from controls. Methods RNA-Seq allows precise detection of all expressed transcripts in a sample and provides a tool for quantification of expression data on a genomic scale. We have used RNA-Seq to identify differentially expressed genes in cultured dermal fibroblasts from 13 COL6-RD individuals (8 dominant negative and 5 null) and 6 controls. To better assess the transcriptional changes induced by abnormal collagen VI in the extracellular matrix (ECM); we compared transcriptional profiles from subjects with DN mutations and subjects with null mutations to transcriptional profiles from controls. Results Differentially expressed transcripts between COL6-RD and control fibroblasts include upregulation of ECM components and downregulation of factors controlling matrix remodeling and repair. DN and null samples are differentiated by downregulation of genes involved with DNA replication and repair in null samples. Conclusions Differentially expressed genes identified here may help identify new targets for development of therapies and biomarkers to assess the efficacy of treatments.
Collapse
Affiliation(s)
- Russell J. Butterfield
- University of Utah, Departments of Pediatrics and Neurology, Salt Lake City, Utah, United States of America
- * E-mail:
| | - Diane M. Dunn
- University of Utah, Department of Human Genetics, Salt Lake City, Utah, United States of America
| | - Ying Hu
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, United States of America
| | - Kory Johnson
- Bioinformatics section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, United States of America
| | - Carsten G. Bönnemann
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, United States of America
| | - Robert B. Weiss
- University of Utah, Department of Human Genetics, Salt Lake City, Utah, United States of America
| |
Collapse
|
50
|
Ishida J, Springer J. Reply to letter to the editor “suramin against myostatin signaling may be considered to intervene in female patients with advanced heart failure”. Int J Cardiol 2017; 247:48. [DOI: 10.1016/j.ijcard.2017.06.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 10/18/2022]
|