1
|
Lambert J, Jørgensen HF. Epigenetic regulation of vascular smooth muscle cell phenotypes in atherosclerosis. Atherosclerosis 2025; 401:119085. [PMID: 39709233 DOI: 10.1016/j.atherosclerosis.2024.119085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024]
Abstract
Vascular smooth muscle cells (VSMCs) in adult arteries maintain substantial phenotypic plasticity, which allows for the reversible cell state changes that enable vascular remodelling and homeostasis. In atherosclerosis, VSMCs dedifferentiate in response to lipid accumulation and inflammation, resulting in loss of their characteristic contractile state. Recent studies showed that individual, pre-existing VSMCs expand clonally and can acquire many different phenotypes in atherosclerotic lesions. The changes in gene expression underlying this phenotypic diversity are mediated by epigenetic modifications which affect transcription factor access and thereby gene expression dynamics. Additionally, epigenetic mechanisms can maintain cellular memory, potentially facilitating reversion to the contractile state. While technological advances have provided some insight, a comprehensive understanding of how VSMC phenotypes are governed in disease remains elusive. Here we review current literature in light of novel insight from studies at single-cell resolution. We also discuss how lessons from epigenetic studies of cellular regulation in other fields could help in translating the potential of targeting VSMC phenotype conversion into novel therapies in cardiovascular disease.
Collapse
Affiliation(s)
- Jordi Lambert
- Section of Cardiorespiratory Medicine, University of Cambridge, VPD Heart and Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB, UK.
| | - Helle F Jørgensen
- Section of Cardiorespiratory Medicine, University of Cambridge, VPD Heart and Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB, UK.
| |
Collapse
|
2
|
Brown SD, Klimi E, Bakker WAM, Beqqali A, Baker AH. Non-coding RNAs to treat vascular smooth muscle cell dysfunction. Br J Pharmacol 2025; 182:246-280. [PMID: 38773733 DOI: 10.1111/bph.16409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/19/2024] [Accepted: 03/14/2024] [Indexed: 05/24/2024] Open
Abstract
Vascular smooth muscle cell (vSMC) dysfunction is a critical contributor to cardiovascular diseases, including atherosclerosis, restenosis and vein graft failure. Recent advances have unveiled a fascinating range of non-coding RNAs (ncRNAs) that play a pivotal role in regulating vSMC function. This review aims to provide an in-depth analysis of the mechanisms underlying vSMC dysfunction and the therapeutic potential of various ncRNAs in mitigating this dysfunction, either preventing or reversing it. We explore the intricate interplay of microRNAs, long-non-coding RNAs and circular RNAs, shedding light on their roles in regulating key signalling pathways associated with vSMC dysfunction. We also discuss the prospects and challenges associated with developing ncRNA-based therapies for this prevalent type of cardiovascular pathology. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
MESH Headings
- Animals
- Humans
- Cardiovascular Diseases/drug therapy
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- RNA, Untranslated/pharmacology
- RNA, Untranslated/therapeutic use
Collapse
Affiliation(s)
- Simon D Brown
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Eftychia Klimi
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | - Abdelaziz Beqqali
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Andrew H Baker
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
3
|
Panduga S, Vasishta S, Subramani R, Vincent S, Mutalik S, Joshi MB. Epidrugs in the clinical management of atherosclerosis: Mechanisms, challenges and promises. Eur J Pharmacol 2024; 980:176827. [PMID: 39038635 DOI: 10.1016/j.ejphar.2024.176827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Atherosclerosis is a complex and multigenic pathology associated with significant epigenetic reprogramming. Traditional factors (age, sex, obesity, hyperglycaemia, dyslipidaemia, hypertension) and non-traditional factors (foetal indices, microbiome alteration, clonal hematopoiesis, air pollution, sleep disorders) induce endothelial dysfunction, resulting in reduced vascular tone and increased vascular permeability, inflammation and shear stress. These factors induce paracrine and autocrine interactions between several cell types, including vascular smooth muscle cells, endothelial cells, monocytes/macrophages, dendritic cells and T cells. Such cellular interactions lead to tissue-specific epigenetic reprogramming regulated by DNA methylation, histone modifications and microRNAs, which manifests in atherosclerosis. Our review outlines epigenetic signatures during atherosclerosis, which are viewed as potential clinical biomarkers that may be adopted as new therapeutic targets. Additionally, we emphasize epigenetic modifiers referred to as 'epidrugs' as potential therapeutic molecules to correct gene expression patterns and restore vascular homeostasis during atherosclerosis. Further, we suggest nanomedicine-based strategies involving the use of epidrugs, which may selectively target cells in the atherosclerotic microenvironment and reduce off-target effects.
Collapse
Affiliation(s)
- Sushma Panduga
- Department of Biochemistry, Palamur Biosciences Private Limited, Hyderabad, 500026, Telangana, India; PhD Program, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ramamoorthy Subramani
- Department of Biochemistry, Palamur Biosciences Private Limited, Hyderabad, 500026, Telangana, India
| | - Sthevaan Vincent
- Department of Pathology, Palamur Biosciences Private Limited, Hyderabad, 500026, Telangana, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
4
|
Gasecka A, Błażejowska E, Pluta K, Gajewska M, Rogula S, Filipiak KJ, Kochman J, Siller-Matula JM, Postuła M, Eyileten C. Ticagrelor downregulates the expression of proatherogenic and proinflammatory miR125-b compared to clopidogrel: A randomized, controlled trial. Int J Cardiol 2024; 406:132073. [PMID: 38643804 DOI: 10.1016/j.ijcard.2024.132073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Platelet P2Y12 antagonist ticagrelor reduces cardiovascular mortality after acute myocardial infarction (AMI) compared to clopidogrel, but the underlying mechanism is unknown. Because activated platelets release proatherogenic and proinflammatory microRNAs, including miR-125a, miR-125b and miR-223, we hypothesized that the expression of these miRNAs is lower on ticagrelor, compared to clopidogrel. OBJECTIVES We compared miR-125a, miR-125b and miR-223 expression in plasma of patients after AMI treated with ticagrelor or clopidogrel. METHODS After percutaneous coronary intervention on acetylsalicylic acid and clopidogrel, 60 patients with first AMI were randomized to switch to ticagrelor or to continue with clopidogrel. Plasma expression of miR-223, miR-125a-5p, miR-125b was measured using quantitative polymerase chain reaction at baseline and after 72 h and 6 months of treatment with ticagrelor or clopidogrel in patients and one in 30 healthy volunteers. Multiple electrode aggregometry using ADP test was used to determine platelet reactivity in response to P2Y12 inhibitors. RESULTS Expression of miR-125b was higher in patients with AMI 72 h and 6 months, compared to healthy volunteers (p = 0.001), whereas expression of miR-125a-5p and miR-223 were comparable. In patients randomized to ticagrelor, expression of miR-125b decreased at 72 h (p = 0.007) and increased back to baseline at 6 months (p = 0.005). Expression of miR-125a-5p and miR-223 was not affected by the switch from clopidogrel to ticagrelor. CONCLUSIONS Ticagrelor treatment leads to lower plasma expression of miR-125b after AMI, compared to clopidogrel. Higher expression of miR-125b might explain recurrent thrombotic events and worse clinical outcomes in patients treated with clopidogrel, compared to ticagrelor.
Collapse
Affiliation(s)
- Aleksandra Gasecka
- 1(st) Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland.
| | - Ewelina Błażejowska
- 1(st) Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Kinga Pluta
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Gajewska
- 1(st) Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Sylwester Rogula
- 1(st) Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof J Filipiak
- Maria Sklodowska-Curie Medical Academy in Warsaw, Warsaw, Poland; Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Janusz Kochman
- 1(st) Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | | | - Marek Postuła
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Lee SY, Chao CT, Han DS, Chiang CK, Hung KY. A combined circulating microRNA panel predicts the risk of vascular calcification in community-dwelling older adults with age strata differences. Arch Gerontol Geriatr 2024; 120:105333. [PMID: 38262252 DOI: 10.1016/j.archger.2024.105333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Older adults have a higher risk of developing vascular calcification (VC). Circulating miRNAs can be potential risk indicators. However, prior studies used single miRNA mostly, whereas miRNA panels were rarely evaluated. We aimed to examine whether a miRNA panel outperformed each miRNA alone, and analyzed whether advanced age affected VC risk predictive performance offered by the miRNA panel. METHODS We prospectively enrolled older adults (age ≥65 years) during their annual health checkup in 2017, and examined their VC severity followed by analyzing sera for VC regulatory miRNAs (miR-125b-5p, miR-125b-3p, and miR-378a-3p). We used multiple regression analyses to determine associations between each miRNA or a 3-combind panel and VC risk, followed by area under the receiver-operating-characteristics curve (AUROC) analysis. Participants were further divided to those of 65-75 and ≥75 years for comparison. RESULTS From 199 older adults screened, 169 (median age, 73.3 years) with available calcification assessment were analyzed, among whom 74.6 % having VC. Those with VC had significantly lower circulating miR-125b-5p, miR-125b-3p, and miR-378a-3p levels than those without. Regression analyses showed that the 3-combined miRNA panel exhibited significant associations with VC risk, with significantly higher AUROC than those of models based on individual miRNA. Importantly, in those ≥75 years, the miRNA-predicted risk of VC was more prominent than that in the 65-75 years group. CONCLUSION A miRNA panel for VC risk prediction might outperform individual miRNA alone in older adults, and advanced age modified the association between circulating miRNAs and the risk of VC.
Collapse
Affiliation(s)
- Szu-Ying Lee
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital Yunlin branch, Yunlin County, Taiwan; Division of Nephrology, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Ter Chao
- Division of Nephrology, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan City, Taiwan.
| | - Der-Sheng Han
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital BeiHu Branch, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Integrative diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuan-Yu Hung
- Division of Nephrology, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| |
Collapse
|
6
|
Zhu B, Wu H, Li KS, Eisa-Beygi S, Singh B, Bielenberg DR, Huang W, Chen H. Two sides of the same coin: Non-alcoholic fatty liver disease and atherosclerosis. Vascul Pharmacol 2024; 154:107249. [PMID: 38070759 DOI: 10.1016/j.vph.2023.107249] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 02/03/2024]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) and atherosclerosis remain high, which is primarily due to widespread adoption of a western diet and sedentary lifestyle. NAFLD, together with advanced forms of this disease such as non-alcoholic steatohepatitis (NASH) and cirrhosis, are closely associated with atherosclerotic-cardiovascular disease (ASCVD). In this review, we discussed the association between NAFLD and atherosclerosis and expounded on the common molecular biomarkers underpinning the pathogenesis of both NAFLD and atherosclerosis. Furthermore, we have summarized the mode of function and potential clinical utility of existing drugs in the context of these diseases.
Collapse
Affiliation(s)
- Bo Zhu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Hao Wu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Kathryn S Li
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Shahram Eisa-Beygi
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Bandana Singh
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, United States of America
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
7
|
Siracusa C, Carino A, Carabetta N, Manica M, Sabatino J, Cianflone E, Leo I, Strangio A, Torella D, De Rosa S. Mechanisms of Cardiovascular Calcification and Experimental Models: Impact of Vitamin K Antagonists. J Clin Med 2024; 13:1405. [PMID: 38592207 PMCID: PMC10932386 DOI: 10.3390/jcm13051405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
Cardiovascular calcification is a multifactorial and complex process involving an array of molecular mechanisms eventually leading to calcium deposition within the arterial walls. This process increases arterial stiffness, decreases elasticity, influences shear stress events and is related to an increased risk of morbidity and mortality associated with cardiovascular disease. In numerous in vivo and in vitro models, warfarin therapy has been shown to cause vascular calcification in the arterial wall. However, the exact mechanisms of calcification formation with warfarin remain largely unknown, although several molecular pathways have been identified. Circulating miRNA have been evaluated as biomarkers for a wide range of cardiovascular diseases, but their exact role in cardiovascular calcification is limited. This review aims to describe the current state-of-the-art research on the impact of warfarin treatment on the development of vascular calcification and to highlight potential molecular targets, including microRNA, within the implicated pathways.
Collapse
Affiliation(s)
- Chiara Siracusa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Annarita Carino
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Nicole Carabetta
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Marzia Manica
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Jolanda Sabatino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (J.S.); (I.L.); (A.S.); (D.T.)
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (J.S.); (I.L.); (A.S.); (D.T.)
| | - Antonio Strangio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (J.S.); (I.L.); (A.S.); (D.T.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (J.S.); (I.L.); (A.S.); (D.T.)
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| |
Collapse
|
8
|
Fernández-Villabrille S, Martín-Carro B, Martín-Vírgala J, Rodríguez-Santamaria MDM, Baena-Huerta F, Muñoz-Castañeda JR, Fernández-Martín JL, Alonso-Montes C, Naves-Díaz M, Carrillo-López N, Panizo S. Novel Biomarkers of Bone Metabolism. Nutrients 2024; 16:605. [PMID: 38474734 DOI: 10.3390/nu16050605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Bone represents a metabolically active tissue subject to continuous remodeling orchestrated by the dynamic interplay between osteoblasts and osteoclasts. These cellular processes are modulated by a complex interplay of biochemical and mechanical factors, which are instrumental in assessing bone remodeling. This comprehensive evaluation aids in detecting disorders arising from imbalances between bone formation and reabsorption. Osteoporosis, characterized by a reduction in bone mass and strength leading to heightened bone fragility and susceptibility to fractures, is one of the more prevalent chronic diseases. Some epidemiological studies, especially in patients with chronic kidney disease (CKD), have identified an association between osteoporosis and vascular calcification. Notably, low bone mineral density has been linked to an increased incidence of aortic calcification, with shared molecules, mechanisms, and pathways between the two processes. Certain molecules emerging from these shared pathways can serve as biomarkers for bone and mineral metabolism. Detecting and evaluating these alterations early is crucial, requiring the identification of biomarkers that are reliable for early intervention. While traditional biomarkers for bone remodeling and vascular calcification exist, they suffer from limitations such as low specificity, low sensitivity, and conflicting results across studies. In response, efforts are underway to explore new, more specific biomarkers that can detect alterations at earlier stages. The aim of this review is to comprehensively examine some of the emerging biomarkers in mineral metabolism and their correlation with bone mineral density, fracture risk, and vascular calcification as well as their potential use in clinical practice.
Collapse
Affiliation(s)
- Sara Fernández-Villabrille
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Beatriz Martín-Carro
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Julia Martín-Vírgala
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | | | - Francisco Baena-Huerta
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Juan Rafael Muñoz-Castañeda
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Nephrology Service, Reina Sofia University Hospital, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain
| | - José Luis Fernández-Martín
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Cristina Alonso-Montes
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Manuel Naves-Díaz
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Natalia Carrillo-López
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Sara Panizo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| |
Collapse
|
9
|
Mirderikvand A, Shahsavari G, Moayyed Kazemi A, Ahmadpour F, Yalameha B. Correlation of MicroRNA-125b, Sirtuin, and Signal Transducer and Activator of Transcription 3 with Biochemical Parameters and Risk Factors in Atherosclerosis Patients. Rep Biochem Mol Biol 2024; 12:631-642. [PMID: 39086582 PMCID: PMC11288231 DOI: 10.61186/rbmb.12.4.631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/23/2024] [Indexed: 08/02/2024]
Abstract
Background Atherosclerosis (AS) is an inflammatory disease linked to vascular events, with dysregulation of microRNA (miR)-125b, contributing to cardiovascular disease pathogenesis. Moreover, there is evidence of the involvement of signal transducer and activator of transcription 3 (STAT3) and sirtuin 6 (SIRT6) in AS. This study aimed to survey the expression levels of miR-125b, STAT3, and SIRT6 in the peripheral blood mononuclear cells (PBMCs) of AS patients and controls, and to find their correlations with biochemical parameters and risk factors. Methods This study included blood samples from 45 controls and 45 AS patients, with PBMCs isolated using Ficoll solution. Expression levels of miR-125b, STAT3, and SIRT6 were determined via quantitative Real Time-PCR. Results The findings revealed a significant increase in miR-125b levels in patients compared to controls (P = 0.017). However, alterations in STAT3 and SIRT6 expression were not significant (P> 0.05). There was no substantial relationship between miR-125b and STAT3 (P = 0.522) or SIRT6 (P = 0.88). miR-125b showed a significant relationship with atherogenic indexes and creatinine (P<0.05), while the association of SIRT6 with HDL and creatinine was significant (P<0.05). STAT3 exhibited high diagnostic power for identifying individuals at risk of heart disease and hypertension (P<0.05). Conclusion STAT3 can serve as a valuable biomarker for detecting AS and AS-related risk factors. miR-125b and SIRT6 may be associated with AS lipid metabolism. However, further studies with larger sample sizes are recommended to mechanistically elucidate the association of these genes.
Collapse
Affiliation(s)
- Atefeh Mirderikvand
- Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Gholamreza Shahsavari
- Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Alireza Moayyed Kazemi
- Department of Internal Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Fatemeh Ahmadpour
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Banafsheh Yalameha
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Schwarz A, Hernandez L, Arefin S, Sartirana E, Witasp A, Wernerson A, Stenvinkel P, Kublickiene K. Sweet, bloody consumption - what we eat and how it affects vascular ageing, the BBB and kidney health in CKD. Gut Microbes 2024; 16:2341449. [PMID: 38686499 PMCID: PMC11062370 DOI: 10.1080/19490976.2024.2341449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
In today's industrialized society food consumption has changed immensely toward heightened red meat intake and use of artificial sweeteners instead of grains and vegetables or sugar, respectively. These dietary changes affect public health in general through an increased incidence of metabolic diseases like diabetes and obesity, with a further elevated risk for cardiorenal complications. Research shows that high red meat intake and artificial sweeteners ingestion can alter the microbial composition and further intestinal wall barrier permeability allowing increased transmission of uremic toxins like p-cresyl sulfate, indoxyl sulfate, trimethylamine n-oxide and phenylacetylglutamine into the blood stream causing an array of pathophysiological effects especially as a strain on the kidneys, since they are responsible for clearing out the toxins. In this review, we address how the burden of the Western diet affects the gut microbiome in altering the microbial composition and increasing the gut permeability for uremic toxins and the detrimental effects thereof on early vascular aging, the kidney per se and the blood-brain barrier, in addition to the potential implications for dietary changes/interventions to preserve the health issues related to chronic diseases in future.
Collapse
Affiliation(s)
- Angelina Schwarz
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Leah Hernandez
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Samsul Arefin
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elisa Sartirana
- Department of Translational Medicine, Nephrology and Kidney Transplantation Unit, University of Piemonte Orientale, Novara, Italy
| | - Anna Witasp
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annika Wernerson
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Karolina Kublickiene
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Al-Rawaf HA, Gabr SA, Iqbal A, Alghadir AH. MicroRNAs as potential biopredictors for premenopausal osteoporosis: a biochemical and molecular study. BMC Womens Health 2023; 23:481. [PMID: 37689658 PMCID: PMC10493018 DOI: 10.1186/s12905-023-02626-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Circulating micro-RNAs have been proposed as a new type of biomarker in several diseases, particularly those related to bone health. They have shown great potential due to their feasibility and simplicity of measurement in all body fluids, especially urine, plasma, and serum. AIM This study aimed to evaluate the expression of a set of mRNAs, namely miR-21, miR-24, mir-100, miR-24a, miR-103-3p, and miR-142-3p. Their proposed roles in the progression of osteoporosis were identified using a real-time polymerase chain reaction (RT-PCR) analysis in premenopausal women. In addition, their correlations with osteocalcin (OC), bone-specific alkaline phosphatase (BAP), and deoxypyridinoline (DPD) bone markers were explored. METHODS A total of 85 healthy premenopausal women aged 25-50 years old were included in this study. Based on a DXA scan (Z-score) analysis and calcaneus broadband ultrasound attenuation scores (c-BUAs), measured via quantitative ultrasound (QUS), the subjects were classified into three groups: normal group (n = 25), osteopenia (n = 30), and osteoporosis (n = 30). Real-time-PCR and immunoassay analyses were performed to determine miRNA expression levels and serum OC, s-BAP, and DPD, respectively, as biomarkers of bone health. RESULTS Among the identified miRNAs, only miR-21, miR-24, and mir-100 were significantly upregulated and increased in the serum of patients with osteopenia and osteoporosis, and miR-24a, miR-103-3p, and miR-142-3p were downregulated and significantly decreased in osteoporosis. Both upregulated and downregulated miRNAs were significantly correlated with BMD, c-BUA, OC, s-BAP, and DPD. CONCLUSION A group of circulating miRNAs was shown to be closely correlated with the parameters BMD, c-BUA, OC, s-BAP, and DPD, which are traditionally used for bone-health measurements. They could be identified as non-invasive biomarkers in premenopausal patients with osteoporosis. More studies with large sample sizes are recommended to estimate the mechanistic role of miRNAs in osteoporosis pathogenesis and to provide evidence for the use of these miRNAs as a non-invasive method of diagnosing clinical osteoporosis, especially in premenopausal patients.
Collapse
Affiliation(s)
- Hadeel A. Al-Rawaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433 Saudi Arabia
| | - Sami A. Gabr
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433 Saudi Arabia
| | - Amir Iqbal
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433 Saudi Arabia
| | - Ahmad H. Alghadir
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433 Saudi Arabia
| |
Collapse
|
12
|
Bakhshian Nik A, Kaiser K, Sun P, Khomtchouk BB, Hutcheson JD. Altered Caveolin-1 Dynamics Result in Divergent Mineralization Responses in Bone and Vascular Calcification. Cell Mol Bioeng 2023; 16:299-308. [PMID: 37811003 PMCID: PMC10550882 DOI: 10.1007/s12195-023-00779-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/08/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Though vascular smooth muscle cells adopt an osteogenic phenotype during pathological vascular calcification, clinical studies note an inverse correlation between bone mineral density and arterial mineral-also known as the calcification paradox. Both processes are mediated by extracellular vesicles (EVs) that sequester calcium and phosphate. Calcifying EV formation in the vasculature requires caveolin-1 (CAV1), a membrane scaffolding protein that resides in membrane invaginations (caveolae). Of note, caveolin-1-deficient mice, however, have increased bone mineral density. We hypothesized that caveolin-1 may play divergent roles in calcifying EV formation from vascular smooth muscle cells (VSMCs) and osteoblasts (HOBs). Methods Primary human coronary artery VSMCs and osteoblasts were cultured for up to 28 days in an osteogenic media. CAV1 expression was knocked down using siRNA. Methyl β-cyclodextrin (MβCD) and a calpain inhibitor were used, respectively, to disrupt and stabilize the caveolar domains in VSMCs and HOBs. Results CAV1 genetic variation demonstrates significant inverse relationships between bone-mineral density (BMD) and coronary artery calcification (CAC) across two independent epidemiological cohorts. Culture in osteogenic (OS) media increased calcification in HOBs and VSMCs. siRNA knockdown of CAV1 abrogated VSMC calcification with no effect on osteoblast mineralization. MβCD-mediated caveolae disruption led to a 3-fold increase of calcification in VSMCs treated with osteogenic media (p < 0.05) but hindered osteoblast mineralization (p < 0.01). Conversely, stabilizing caveolae by calpain inhibition prevented VSMC calcification (p < 0.05) without affecting osteoblast mineralization. There was no significant difference in CAV1 content between lipid domains from HOBs cultured in OS and control media. Conclusion Our data indicate fundamental cellular-level differences in physiological and pathophysiological mineralization mediated by CAV1 dynamics. This is the first study to suggest that divergent mechanisms in calcifying EV formation may play a role in the calcification paradox. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00779-7.
Collapse
Affiliation(s)
- Amirala Bakhshian Nik
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, EC 2612, Miami, FL 33174 USA
| | - Katherine Kaiser
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, EC 2612, Miami, FL 33174 USA
| | - Patrick Sun
- Department of BioHealth Informatics, Luddy School of Informatics, Computing, and Engineering, Indiana University, 535 W Michigan St, IT 477, Indianapolis, IN 46202 USA
| | - Bohdan B. Khomtchouk
- Department of BioHealth Informatics, Luddy School of Informatics, Computing, and Engineering, Indiana University, 535 W Michigan St, IT 477, Indianapolis, IN 46202 USA
- Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, IN USA
- Center for Computational Biology & Bioinformatics, Indiana University School of Medicine, Indianapolis, IN USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN USA
| | - Joshua D. Hutcheson
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, EC 2612, Miami, FL 33174 USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL USA
| |
Collapse
|
13
|
Fernández-Villabrille S, Martín-Carro B, Martín-Vírgala J, Alonso-Montes C, Fernández-Fernández A, Martínez-Salgado C, Fernández-Martín JL, Naves-Díaz M, Cannata-Andía JB, Carrillo-López N, Panizo S. Phosphorus May Induce Phenotypic Transdifferentiation of Vascular Smooth Muscle Cells through the Reduction of microRNA-145. Nutrients 2023; 15:2918. [PMID: 37447244 DOI: 10.3390/nu15132918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Phosphorus is a vital element for life found in most foods as a natural component, but it is also one of the most used preservatives added during food processing. High serum phosphorus contributes to develop vascular calcification in chronic kidney disease; however, it is not clear its effect in a population without kidney damage. The objective of this in vivo and in vitro study was to investigate the effect of high phosphorus exposure on the aortic and serum levels of miR-145 and its effect on vascular smooth muscle cell (VSMCs) changes towards less contractile phenotypes. The study was performed in aortas and serum from rats fed standard and high-phosphorus diets, and in VSMCs exposed to different concentrations of phosphorus. In addition, miR-145 silencing and overexpression experiments were carried out. In vivo results showed that in rats with normal renal function fed a high P diet, a significant increase in serum phosphorus was observed which was associated to a significant decrease in the aortic α-actin expression which paralleled the decrease in aortic and serum miR-145 levels, with no changes in the osteogenic markers. In vitro results using VSMCs corroborated the in vivo findings. High phosphorus first reduced miR-145, and afterwards α-actin expression. The miR-145 overexpression significantly increased α-actin expression and partially prevented the increase in calcium content. These results suggest that miR-145 could be an early biomarker of vascular calcification, which could give information about the initiation of the transdifferentiation process in VSMCs.
Collapse
Affiliation(s)
- Sara Fernández-Villabrille
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain
| | - Beatriz Martín-Carro
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain
| | - Julia Martín-Vírgala
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain
| | - Cristina Alonso-Montes
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain
| | | | - Carlos Martínez-Salgado
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José L Fernández-Martín
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain
| | - Manuel Naves-Díaz
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Jorge B Cannata-Andía
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain
- Department of Medicine, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Natalia Carrillo-López
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain
| | - Sara Panizo
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain
| |
Collapse
|
14
|
Ding N, Lv Y, Su H, Wang Z, Kong X, Zhen J, Lv Z, Wang R. Vascular calcification in CKD: New insights into its mechanisms. J Cell Physiol 2023; 238:1160-1182. [PMID: 37269534 DOI: 10.1002/jcp.31021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/28/2023] [Indexed: 06/05/2023]
Abstract
Vascular calcification (VC) is a common complication of chronic kidney disease (CKD) and contributes to an increased risk of cardiovascular morbidity and mortality. However, effective therapies are still unavailable at present. It has been well established that VC associated with CKD is not a passive process of calcium phosphate deposition, but an actively regulated and cell-mediated process that shares many similarities with bone formation. Additionally, numerous studies have suggested that CKD patients have specific risk factors and contributors to the development of VC, such as hyperphosphatemia, uremic toxins, oxidative stress and inflammation. Although research efforts in the past decade have greatly improved our knowledge of the multiple factors and mechanisms involved in CKD-related VC, many questions remain unanswered. Moreover, studies from the past decade have demonstrated that epigenetic modifications abnormalities, such as DNA methylation, histone modifications and noncoding RNAs, play an important role in the regulation of VC. This review seeks to provide an overview of the pathophysiological and molecular mechanisms of VC associated with CKD, mainly focusing on the involvement of epigenetic modifications in the initiation and progression of uremic VC, with the aim to develop promising therapies for CKD-related cardiovascular events in the future.
Collapse
Affiliation(s)
- Nannan Ding
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaodong Lv
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Hong Su
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ziyang Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xianglei Kong
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Junhui Zhen
- Department of Pathology, Shandong University, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
15
|
Bakhshian Nik A, Ng HH, Ashbrook SK, Sun P, Iacoviello F, Shearing PR, Bertazzo S, Mero D, Khomtchouk BB, Hutcheson JD. Epidermal growth factor receptor inhibition prevents vascular calcifying extracellular vesicle biogenesis. Am J Physiol Heart Circ Physiol 2023; 324:H553-H570. [PMID: 36827229 PMCID: PMC10042607 DOI: 10.1152/ajpheart.00280.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/02/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
Chronic kidney disease (CKD) increases the risk of cardiovascular disease, including vascular calcification, leading to higher mortality. The release of calcifying extracellular vesicles (EVs) by vascular smooth muscle cells (VSMCs) promotes ectopic mineralization of vessel walls. Caveolin-1 (CAV1), a structural protein in the plasma membrane, plays a major role in calcifying EV biogenesis in VSMCs. Epidermal growth factor receptor (EGFR) colocalizes with and influences the intracellular trafficking of CAV1. Using a diet-induced mouse model of CKD followed by a high-phosphate diet to promote vascular calcification, we assessed the potential of EGFR inhibition to prevent vascular calcification. Furthermore, we computationally analyzed 7,651 individuals in the Multi-Ethnic Study of Atherosclerosis (MESA) and Framingham cohorts to assess potential correlations between coronary artery calcium and single-nucleotide polymorphisms (SNPs) associated with elevated serum levels of EGFR. Mice with CKD developed widespread vascular calcification, associated with increased serum levels of EGFR. In both the CKD mice and human VSMC culture, EGFR inhibition significantly reduced vascular calcification by mitigating the release of CAV1-positive calcifying EVs. EGFR inhibition also increased bone mineral density in CKD mice. Individuals in the MESA and Framingham cohorts with SNPs associated with increased serum EGFR exhibit elevated coronary artery calcium. Given that EGFR inhibitors exhibit clinical safety and efficacy in other pathologies, the current data suggest that EGFR may represent an ideal target to prevent pathological vascular calcification in CKD.NEW & NOTEWORTHY Here, we investigate the potential of epidermal growth factor receptor (EGFR) inhibition to prevent vascular calcification, a leading indicator of and contributor to cardiovascular morbidity and mortality. EGFR interacts and affects the trafficking of the plasma membrane scaffolding protein caveolin-1. Previous studies reported a key role for caveolin-1 in the development of specialized extracellular vesicles that mediate vascular calcification; however, no role of EGFR has been reported. We demonstrated that EGFR inhibition modulates caveolin-1 trafficking and hinders calcifying extracellular vesicle formation, which prevents vascular calcification. Given that EGFR inhibitors are clinically approved for other indications, this may represent a novel therapeutic strategy for vascular calcification.
Collapse
Affiliation(s)
- Amirala Bakhshian Nik
- Department of Biomedical Engineering, Florida International University, Miami, Florida, United States
| | - Hooi Hooi Ng
- Department of Biomedical Engineering, Florida International University, Miami, Florida, United States
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States
| | - Sophie K Ashbrook
- Department of Biomedical Engineering, Florida International University, Miami, Florida, United States
| | - Patrick Sun
- Department of BioHealth Informatics, Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, Indiana, United States
| | - Francesco Iacoviello
- Department of Chemical Engineering, University College London, London, United Kingdom
| | - Paul R Shearing
- Department of Chemical Engineering, University College London, London, United Kingdom
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Deniel Mero
- Dock Therapeutics, Inc., Middletown, Delaware, United States
| | - Bohdan B Khomtchouk
- Department of BioHealth Informatics, Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, Indiana, United States
- Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Joshua D Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, Florida, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States
| |
Collapse
|
16
|
Li GJ, Yang QH, Yang GK, Yang G, Hou Y, Hou LJ, Li ZX, Du LJ. MiR-125b and SATB1-AS1 might be shear stress-mediated therapeutic targets. Gene 2023; 857:147181. [PMID: 36623676 DOI: 10.1016/j.gene.2023.147181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
The aim of the study was to explore the potential molecular mechanism associated with shear stress on abdominal aortic aneurysm (AAA) progression. This study performed RNA sequencing on AAA patients (SQ), AAA patients after endovascular aneurysm repair (EVAR, SH), and normal controls (NC). Furthermore, we identified the differentially expressed microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNA (cirRNAs) and constructed competing endogenous RNA (ceRNA) networks. Finally, 164 differentially expressed miRNAs, 179 co-differentially expressed lncRNAs, and 440 co-differentially expressed circRNAs among the three groups were obtained. The differentially expressed miRNAs mainly enriched in 325 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Target genes associated with co-differentially expressed genes among the group of SH, SQ, and NC mainly enriched in 66 KEGG pathways. LncRNA-miRNA-mRNA interactions, including 15 lncRNAs, 63 miRNAs and 57 mRNAs, was constructed. CircRNA-miRNA-mRNA ceRNA network included 79 circRNAs, 21 miRNAs, and 49 mRNAs. Among them, KLRC2 and CSTF1, targeted by miR-125b, participated in cell-mediated immunity regulation. MiR-320-related circRNAs and SATB1-AS1 serving as the sponge of miRNAs, such as has-circ-0129245, has-circ-0138746, and has-circ-0139786, were hub genes in ceRNA network. In conclusion, AAA patients might be benefit from EVAR based on various pathways and some molecules, such as miR-125b and SATB1-AS1, related with shear stress.
Collapse
Affiliation(s)
- Guo-Jian Li
- Department of Vascular Surgery, Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan, China
| | - Qiong-Hui Yang
- Department of Pharmaceutical, The Third People's Hospital of Yunnan Province, Kunming 650011, Yunnan, China
| | - Guo-Kai Yang
- Department of Vascular Surgery, Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan, China
| | - Guang Yang
- Department of Radiology, the First People's Hospital of Anning, China
| | - Yi Hou
- Department of Vascular Surgery, Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan, China
| | - Li-Juan Hou
- Department of Vascular Surgery, Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan, China
| | - Zhao-Xiang Li
- Department of Vascular Surgery, Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan, China
| | - Ling-Juan Du
- Department of Vascular Surgery, Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan, China.
| |
Collapse
|
17
|
Škrlec I. Circadian system microRNAs - Role in the development of cardiovascular diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:225-267. [PMID: 37709378 DOI: 10.1016/bs.apcsb.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Circadian rhythm regulates numerous physiological processes, and disruption of the circadian clock can lead to cardiovascular disease. Cardiovascular disease is the leading cause of morbidity and mortality worldwide. Small non-coding RNAs, microRNAs (miRNAs), are involved in regulating gene expression, both those important for the cardiovascular system and key circadian clock genes. Epigenetic mechanisms based on miRNAs are essential for fine-tuning circadian physiology. Indeed, some miRNAs depend on circadian periodicity, others are under the influence of light, and still others are under the influence of core clock genes. Dysregulation of miRNAs involved in circadian rhythm modulation has been associated with inflammatory conditions of the endothelium and atherosclerosis, which can lead to coronary heart disease and myocardial infarction. Epigenetic processes are reversible through their association with environmental factors, enabling innovative preventive and therapeutic strategies for cardiovascular disease. Here, is a review of recent findings on how miRNAs modulate circadian rhythm desynchronization in cardiovascular disease. In the era of personalized medicine, the possibility of treatment with miRNA antagomirs should be time-dependent to correspond to chronotherapy and achieve the most significant efficacy.
Collapse
Affiliation(s)
- Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.
| |
Collapse
|
18
|
Eyileten C, Skrobucha A, Starczyński M, Boszko M, Jarosz-Popek J, Fitas A, Filipiak KJ, Kochman J, Huczek Z, Rymuza B, Wilimski R, Kuśmierczyk M, Siller-Matula JM, Postula M, Gąsecka A. Expression of miR-223 to predict outcomes after transcatheter aortic valve implantation. Cardiol J 2022; 31:111-123. [PMID: 36200549 PMCID: PMC10919566 DOI: 10.5603/cj.a2022.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Transcatheter aortic valve implantation (TAVI) is an established treatment for aortic stenosis (AS) in patients at increased surgical risk. Up to 29% of patients annually experience major adverse cardiac and cerebrovascular events (MACCE) after TAVI. MicroRNAs (miRNA) are currently widely investigated as novel cardiovascular biomarkers. The aim of this study was to determine the influence of TAVI on the expressions of selected miRNAs associated with platelet function (miR-125a-5p, miR-125b and miR-223), and evaluate the predictive value of these miRNAs for MACCE in 65 patients undergoing TAVI. METHODS Venous blood samples for miRNA expression analysis were collected 1 day before TAVI and at hospital discharge. The expression of miR-223, miR-125a-5p, miR-125b was evaluated in platelet-depleted plasma. RESULTS The expression of miR-223 and miR-125b increased after TAVI, compared to the measurement before (p = 0.020, p = 0.003, respectively). Among 63 patients discharged from the hospital, 18 patients experienced MACCE (29%) during the median 15 months of observation. Baseline low miR-223 expression was a predictor of MACCE in univariate Cox regression analysis (hazard ratio [HR]: 2.71, 95% confidence interval [CI]: 1.04-7.01; p = 0.041). After inclusion of covariates, age, gender (male), New York Heart Association class and diabetes into the multivariate Cox regression model, miR-223 did not reach statistical significance (HR: 2.56, 95% CI: 0.79-8.33; p = 0.118). CONCLUSIONS To conclude, miR-223 might improve risk stratification after TAVI. Further studies are required to confirm the clinical applicability of this promising biomarker.
Collapse
Affiliation(s)
- Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology, Medical University of Warsaw, Poland
| | - Alicja Skrobucha
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland
| | - Miłosz Starczyński
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland
| | - Maria Boszko
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland
| | - Joanna Jarosz-Popek
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology, Medical University of Warsaw, Poland
| | - Alex Fitas
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology, Medical University of Warsaw, Poland
| | - Krzysztof J Filipiak
- Department of Clinical Sciences, Maria Sklodowska-Curie Medical Academy, Warsaw, Poland
| | - Janusz Kochman
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland
| | - Zenon Huczek
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland
| | - Bartosz Rymuza
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland
| | - Radosław Wilimski
- Department of Cardiac Surgery, Medical University of Warsaw, Poland.
| | | | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology, Medical University of Warsaw, Poland
- Department of Cardiology, Medical University of Vienna, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology, Medical University of Warsaw, Poland
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland
| |
Collapse
|
19
|
Zou D, Yang P, Liu J, Dai F, Xiao Y, Zhao A, Huang N. Exosome-Loaded Pro-efferocytic Vascular Stent with Lp-PLA 2-Triggered Release for Preventing In-Stent Restenosis. ACS NANO 2022; 16:14925-14941. [PMID: 36066255 DOI: 10.1021/acsnano.2c05847] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The efferocytosis defect is regarded as a pivotal event of atherosclerosis. The failure to clear apoptotic cells in atherosclerotic plaques under vascular stents causes a failure to resolve the inflammation underneath. However, efferocytosis repair is still confined to nonstenting therapeutics. Here, we identified a pro-efferocytotic agent and accordingly developed a bioresponsive pro-efferocytotic vascular stent aimed for poststenting healing. Exosomes derived from mesenchymal stem cells were found to be able to regulate efferocytosis via SLC2a1, STAT3/RAC1, and CD300a pathways and modulate foam cell formation processes through a CD36-mediated pathway. Pro-efferocytotic exosomes were encapsulated into liposome-based multivesicular chambers and grafted onto vascular stents. The multivesicular vesicles were able to release exosomes under the Lp-PLA2 environment. Compared to bare metal stents, exosome-stents in the presence of Lp-PLA2 enhanced the ratio of apoptotic cell clearance and reduced the neointimal thickness in the mal-efferocytotic rat model. Overall, we identified a pro-efferocytic agent─exosomes that are able to regulate target cells via multiple signaling pathways and are good candidates to serve complex pathological environments, and this bioresponsive pro-efferocytotic vascular stent is an attractive approach for prevention of poststenting complications.
Collapse
Affiliation(s)
- Dan Zou
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Ping Yang
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Jianan Liu
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Fanfan Dai
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Yangyang Xiao
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Ansha Zhao
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Nan Huang
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| |
Collapse
|
20
|
Analysis of miRNA Associated with Coronary Artery Calcification. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3708547. [PMID: 35924109 PMCID: PMC9343195 DOI: 10.1155/2022/3708547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022]
Abstract
Cardiovascular diseases seriously endanger human physical and mental health and life safety, to investigate correlation between miR-let-7b and miR-29b and coronary artery calcification of various patients. At present, real-time fluorescence quantitative PCR (qRT-PCR) was used to detect the expression levels of plasma miR-let-7b and miR-29b in patients with coronary artery calcification and noncoronary artery calcification and to analyze whether the expression levels of miR-let-7b and miR-29b were different between the two groups. It was shown that there was no significant difference in the expression of miR-let-7d-3p between the two groups. But the expression of miR-29b in the observation group was significantly lower than that in the control group. Taken together, miR-29b might be a risk factor for coronary artery calcification and may be a marker for early diagnosis of coronary artery calcification.
Collapse
|
21
|
Carrillo-López N, Panizo S, Arcidiacono MV, de la Fuente S, Martínez-Arias L, Ottaviano E, Ulloa C, Ruiz-Torres MP, Rodríguez I, Cannata-Andía JB, Naves-Díaz M, Dusso AS. Vitamin D Treatment Prevents Uremia-Induced Reductions in Aortic microRNA-145 Attenuating Osteogenic Differentiation despite Hyperphosphatemia. Nutrients 2022; 14:2589. [PMID: 35807767 PMCID: PMC9268464 DOI: 10.3390/nu14132589] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
In chronic kidney disease, systemic inflammation and high serum phosphate (P) promote the de-differentiation of vascular smooth muscle cells (VSMC) to osteoblast-like cells, increasing the propensity for medial calcification and cardiovascular mortality. Vascular microRNA-145 (miR-145) content is essential to maintain VSMC contractile phenotype. Because vitamin D induces aortic miR-145, uremia and high serum P reduce it and miR-145 directly targets osteogenic osterix in osteoblasts, this study evaluated a potential causal link between vascular miR-145 reductions and osterix-driven osteogenic differentiation and its counter-regulation by vitamin D. Studies in aortic rings from normal rats and in the rat aortic VSMC line A7r5 exposed to calcifying conditions corroborated that miR-145 reductions were associated with decreases in contractile markers and increases in osteogenic differentiation and calcium (Ca) deposition. Furthermore, miR-145 silencing enhanced Ca deposition in A7r5 cells exposed to calcifying conditions, while miR-145 overexpression attenuated it, partly through increasing α-actin levels and reducing osterix-driven osteogenic differentiation. In mice, 14 weeks after the induction of renal mass reduction, both aortic miR-145 and α-actin mRNA decreased by 80% without significant elevations in osterix or Ca deposition. Vitamin D treatment from week 8 to 14 fully prevented the reductions in aortic miR-145 and attenuated by 50% the decreases in α-actin, despite uremia-induced hyperphosphatemia. In conclusion, vitamin D was able to prevent the reductions in aortic miR-145 and α-actin content induced by uremia, reducing the alterations in vascular contractility and osteogenic differentiation despite hyperphosphatemia.
Collapse
Grants
- PI11/00259, PI13/00497, PI14/01452, PI16/00637, PI17/02181, PI19/00532, PI20/00753 Instituto de Salud Carlos III
- RD16/0009/0017 Retic REDinREN
- RICORS2040 (Kidney Disease)
- GRUPIN14-028, IDI-2018-000152, IDI-2021-000080 Fondo Europeo de Desarrollo Regional (FEDER), Plan de Ciencia, Tecnología e Innovación 2013-2017 y 2018-2022 del Principado de Asturias
- Proyectos Luis Hernando (2019 and 2021) Fundación Renal
Collapse
Affiliation(s)
- Natalia Carrillo-López
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (L.M.-A.); (E.O.); (C.U.); (I.R.); (M.N.-D.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
| | - Sara Panizo
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (L.M.-A.); (E.O.); (C.U.); (I.R.); (M.N.-D.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
| | | | - Sandra de la Fuente
- Division of Experimental Nephrology, IRB Lleida, 25198 Lleida, Spain; (M.V.A.); (S.d.l.F.)
| | - Laura Martínez-Arias
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (L.M.-A.); (E.O.); (C.U.); (I.R.); (M.N.-D.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
| | - Emerenziana Ottaviano
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (L.M.-A.); (E.O.); (C.U.); (I.R.); (M.N.-D.)
| | - Catalina Ulloa
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (L.M.-A.); (E.O.); (C.U.); (I.R.); (M.N.-D.)
| | - María Piedad Ruiz-Torres
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Departamento de Biología de Sistemas, Universidad de Alcalá, 28801 Alcalá de Henares, Spain;
| | - Isabel Rodríguez
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (L.M.-A.); (E.O.); (C.U.); (I.R.); (M.N.-D.)
| | - Jorge B. Cannata-Andía
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (L.M.-A.); (E.O.); (C.U.); (I.R.); (M.N.-D.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Departamento de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Manuel Naves-Díaz
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (L.M.-A.); (E.O.); (C.U.); (I.R.); (M.N.-D.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
| | - Adriana S. Dusso
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (N.C.-L.); (S.P.); (L.M.-A.); (E.O.); (C.U.); (I.R.); (M.N.-D.)
- Division of Experimental Nephrology, IRB Lleida, 25198 Lleida, Spain; (M.V.A.); (S.d.l.F.)
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
22
|
Wu YY, Shan SK, Lin X, Xu F, Zhong JY, Wu F, Duan JY, Guo B, Li FXZ, Wang Y, Zheng MH, Xu QS, Lei LM, Ou-Yang WL, Tang KX, Li CC, Ullah MHE, Yuan LQ. Cellular Crosstalk in the Vascular Wall Microenvironment: The Role of Exosomes in Vascular Calcification. Front Cardiovasc Med 2022; 9:912358. [PMID: 35677687 PMCID: PMC9168031 DOI: 10.3389/fcvm.2022.912358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/02/2022] [Indexed: 07/20/2023] Open
Abstract
Vascular calcification is prevalent in aging, diabetes, chronic kidney disease, cardiovascular disease, and certain genetic disorders. However, the pathogenesis of vascular calcification is not well-understood. It has been progressively recognized that vascular calcification depends on the bidirectional interactions between vascular cells and their microenvironment. Exosomes are an essential bridge to mediate crosstalk between cells and organisms, and thus they have attracted increased research attention in recent years. Accumulating evidence has indicated that exosomes play an important role in cardiovascular disease, especially in vascular calcification. In this review, we introduce vascular biology and focus on the crosstalk between the different vessel layers and how their interplay controls the process of vascular calcification.
Collapse
Affiliation(s)
- Yun-Yun Wu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Yu Zhong
- Department of Nuclear Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Yue Duan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Min Lei
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Lu Ou-Yang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ke-Xin Tang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chang-Chun Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Muhammad Hasnain Ehsan Ullah
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Du M, Espinosa-Diez C, Liu M, Ahmed IA, Mahan S, Wei J, Handen AL, Chan SY, Gomez D. miRNA/mRNA co-profiling identifies the miR-200 family as a central regulator of SMC quiescence. iScience 2022; 25:104169. [PMID: 35465051 PMCID: PMC9018390 DOI: 10.1016/j.isci.2022.104169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 12/14/2022] Open
Abstract
miRNAs are versatile regulators of smooth muscle cell (SMC) fate and behavior in vascular development and disease. Targeted loss-of-function studies have established the relevance of specific miRNAs in controlling SMC differentiation or mediating phenotypic modulation. Our goal was to characterize SMC miRNAome and its contribution to transcriptome changes during phenotypic modulation. Small RNA sequencing revealed that dedifferentiation led to the differential expression of over 50 miRNAs in cultured SMC. miRNA/mRNA comparison predicted that over a third of SMC transcript expression was regulated by differentially expressed miRNAs. Our screen identified the miR-200 cluster as highly downregulated during dedifferentiation. miR-200 maintains SMC quiescence and represses proliferation, migration, and neointima formation, in part by targeting Quaking, a central SMC phenotypic switching mediator. Our study unraveled the substantial contribution of miRNAs in regulating the SMC transcriptome and identified the miR-200 cluster as a pro-quiescence mechanism and a potential inhibitor of vascular restenosis.
Collapse
Affiliation(s)
- Mingyuan Du
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Cristina Espinosa-Diez
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mingjun Liu
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ibrahim Adeola Ahmed
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sidney Mahan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jianxin Wei
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Adam L Handen
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Stephen Y Chan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Delphine Gomez
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
24
|
Witten A, Martens L, Schäfer AC, Troidl C, Pankuweit S, Vlacil AK, Oberoi R, Schieffer B, Grote K, Stoll M, Markus B. Monocyte subpopulation profiling indicates CDK6-derived cell differentiation and identifies subpopulation-specific miRNA expression sets in acute and stable coronary artery disease. Sci Rep 2022; 12:5589. [PMID: 35379829 PMCID: PMC8979987 DOI: 10.1038/s41598-022-08600-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/09/2022] [Indexed: 12/20/2022] Open
Abstract
Coronary artery disease (CAD) is a long-lasting inflammatory disease characterized by monocyte migration into the vessel wall leading to clinical events like myocardial infarction (MI). However, the role of monocyte subsets, especially their miRNA-driven differentiation in this scenario is still in its infancy. Here, we characterized monocyte subsets in controls and disease phenotypes of CAD and MI patients using flow cytometry and miRNA and mRNA expression profiling using RNA sequencing. We observed major differences in the miRNA profiles between the classical (CD14++CD16−) and nonclassical (CD14+CD16++) monocyte subsets irrespective of the disease phenotype suggesting the Cyclin-dependent Kinase 6 (CDK6) to be an important player in monocyte maturation. Between control and MI patients, we found a set of miRNAs to be differentially expressed in the nonclassical monocytes and targeting CCND2 (Cyclin D2) that is able to enhance myocardial repair. Interestingly, miRNAs as miR-125b playing a role in vascular calcification were differentially expressed in the classical subset in patients suffering from CAD and not MI in comparison to control samples. In conclusion, our study describes specific peculiarities of monocyte subset miRNA expression in control and diseased samples and provides basis to further functional analysis and to identify new cardiovascular disease treatment targets.
Collapse
|
25
|
Vascular Pathobiology: Atherosclerosis and Large Vessel Disease. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Bielska A, Niemira M, Bauer W, Sidorkiewicz I, Szałkowska A, Skwarska A, Raczkowska J, Ostrowski D, Gugała K, Dobrzycki S, Krętowski A. Serum miRNA Profile in Diabetic Patients With Ischemic Heart Disease as a Promising Non-Invasive Biomarker. Front Endocrinol (Lausanne) 2022; 13:888948. [PMID: 35663309 PMCID: PMC9157821 DOI: 10.3389/fendo.2022.888948] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
The increasing morbidity and mortality of type 2 diabetic mellitus (T2DM) patients with ischemic heart disease (IHD) highlight an urgent need to identify early biomarkers, which would help to predict individual risk of development of IHD. Here, we postulate that circulating serum-derived micro RNAs (miRNAs) may serve as potential biomarkers for early IHD diagnosis and support the identification of diabetic individuals with a predisposition to undergo IHD. We obtained serum samples from T2DM patients either with IHD or IHD-free and analysed the expression levels of 798 miRNAs using the NanoString nCounter technology platform. The prediction of the putative miRNAs targets was performed using the Ingenuity Pathway Analysis (IPA) software. Gene Ontology (GO) analysis was used to identify the biological function and signalling pathways associated with miRNA target genes. Hub genes of protein-protein interaction (PPI) network were identified by STRING database and Cytotoscape tool. Receiver operating characteristic (ROC) analysis was used to assess the diagnostic value of identified miRNAs. Real-time quantitative polymerase chain reaction (qRT-PCR) was used for nCounter platform data validation. Our data showed that six miRNAs (miR-615-3p, miR-3147, miR-1224-5p, miR-5196-3p, miR-6732-3p, and miR-548b-3p) were significantly upregulated in T2DM IHD patients compared to T2DM patients without IHD. Further analysis indicated that 489 putative target genes mainly affected the endothelin-1 signalling pathway, glucocorticoid biosynthesis, and apelin cardiomyocyte signalling pathway. All tested miRNAs showed high diagnostic value (AUC = 0.779 - 0.877). Taken together, our research suggests that circulating miRNAs might have a crucial role in the development of IHD in diabetic patients and may be used as a potential biomarker for early diagnosis.
Collapse
Affiliation(s)
- Agnieszka Bielska
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
- *Correspondence: Agnieszka Bielska,
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Witold Bauer
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Anna Szałkowska
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Anna Skwarska
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Justyna Raczkowska
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Damian Ostrowski
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Kamil Gugała
- Department of Invasive Cardiology, Medical University of Białystok, Białystok, Poland
| | - Sławomir Dobrzycki
- Department of Invasive Cardiology, Medical University of Białystok, Białystok, Poland
| | - Adam Krętowski
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
27
|
Leptidis S, Papakonstantinou E, Diakou KI, Pierouli K, Mitsis T, Dragoumani K, Bacopoulou F, Sanoudou D, Chrousos GP, Vlachakis D. Epitranscriptomics of cardiovascular diseases (Review). Int J Mol Med 2022; 49:9. [PMID: 34791505 PMCID: PMC8651226 DOI: 10.3892/ijmm.2021.5064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
RNA modifications have recently become the focus of attention due to their extensive regulatory effects in a vast array of cellular networks and signaling pathways. Just as epigenetics is responsible for the imprinting of environmental conditions on a genetic level, epitranscriptomics follows the same principle at the RNA level, but in a more dynamic and sensitive manner. Nevertheless, its impact in the field of cardiovascular disease (CVD) remains largely unexplored. CVD and its associated pathologies remain the leading cause of death in Western populations due to the limited regenerative capacity of the heart. As such, maintenance of cardiac homeostasis is paramount for its physiological function and its capacity to respond to environmental stimuli. In this context, epitranscriptomic modifications offer a novel and promising therapeutic avenue, based on the fine‑tuning of regulatory cascades, necessary for cardiac function. This review aimed to provide an overview of the most recent findings of key epitranscriptomic modifications in both coding and non‑coding RNAs. Additionally, the methods used for their detection and important associations with genetic variations in the context of CVD were summarized. Current knowledge on cardiac epitranscriptomics, albeit limited still, indicates that the impact of epitranscriptomic editing in the heart, in both physiological and pathological conditions, holds untapped potential for the development of novel targeted therapeutic approaches in a dynamic manner.
Collapse
Affiliation(s)
- Stefanos Leptidis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Kalliopi Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Thanasis Mitsis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Flora Bacopoulou
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Despina Sanoudou
- Fourth Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, 'Attikon' Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George P. Chrousos
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London WC2R 2LS, UK
| |
Collapse
|
28
|
Bartsch B, Goody PR, Hosen MR, Nehl D, Mohammadi N, Zietzer A, Düsing P, Pfeifer A, Nickenig G, Jansen F. NcRNAs in Vascular and Valvular Intercellular Communication. Front Mol Biosci 2021; 8:749681. [PMID: 34805273 PMCID: PMC8602872 DOI: 10.3389/fmolb.2021.749681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/23/2021] [Indexed: 12/05/2022] Open
Abstract
Non-coding RNAs have been shown to be important biomarkers and mediators of many different disease entities, including cardiovascular (CV) diseases like atherosclerosis, aneurysms, and valvulopathies. Growing evidence suggests a central role of ncRNAs as regulators of different pathological pathways involved in endothelial dysfunction, cardiovascular inflammation, cell differentiation, and calcification. This review will discuss the role of protein-bound and extracellular vesicular-bound ncRNAs as biomarkers of vascular and valvular diseases, their role as intercellular communicators, and regulators of disease pathways and also highlights possible treatment strategies.
Collapse
Affiliation(s)
- Benedikt Bartsch
- Department of Internal Medicine II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | - Philip Roger Goody
- Department of Internal Medicine II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | - Mohammed Rabiul Hosen
- Department of Internal Medicine II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | - Denise Nehl
- Department of Internal Medicine II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | - Neda Mohammadi
- Institute of Pharmacology and Toxicology, University Hospital Bonn, Bonn, Germany
| | - Andreas Zietzer
- Department of Internal Medicine II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | - Philip Düsing
- Department of Internal Medicine II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital Bonn, Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | - Felix Jansen
- Department of Internal Medicine II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
29
|
Cannata-Andía JB, Carrillo-López N, Messina OD, Hamdy NAT, Panizo S, Ferrari SL, on behalf of the International Osteoporosis Foundation (IOF) Working Group on Bone and Cardiovascular Diseases. Pathophysiology of Vascular Calcification and Bone Loss: Linked Disorders of Ageing? Nutrients 2021; 13:3835. [PMID: 34836090 PMCID: PMC8623966 DOI: 10.3390/nu13113835] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023] Open
Abstract
Vascular Calcification (VC), low bone mass and fragility fractures are frequently observed in ageing subjects. Although this clinical observation could be the mere coincidence of frequent age-dependent disorders, clinical and experimental data suggest that VC and bone loss could share pathophysiological mechanisms. Indeed, VC is an active process of calcium and phosphate precipitation that involves the transition of the vascular smooth muscle cells (VSMCs) into osteoblast-like cells. Among the molecules involved in this process, parathyroid hormone (PTH) plays a key role acting through several mechanisms which includes the regulation of the RANK/RANKL/OPG system and the Wnt/ß-catenin pathway, the main pathways for bone resorption and bone formation, respectively. Furthermore, some microRNAs have been implicated as common regulators of bone metabolism, VC, left ventricle hypertrophy and myocardial fibrosis. Elucidating the common mechanisms between ageing; VC and bone loss could help to better understand the potential effects of osteoporosis drugs on the CV system.
Collapse
Affiliation(s)
- Jorge B. Cannata-Andía
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.)
| | - Natalia Carrillo-López
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.)
| | - Osvaldo D. Messina
- Investigaciones Reumatológicas y Osteológicas (IRO), Buenos Aires 1114, Argentina;
| | - Neveen A. T. Hamdy
- Center for Bone Quality, Division Endocrinology, Department of Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Sara Panizo
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.)
| | - Serge L. Ferrari
- Service and Laboratory of Bone Diseases, Department of Medicine, Faculty of Medicine, Geneva University Hospital, 1211 Geneva, Switzerland;
| | | |
Collapse
|
30
|
He L, Xu J, Bai Y, Zhang H, Zhou W, Cheng M, Zhang D, Zhang L, Zhang S. MicroRNA-103a regulates the calcification of vascular smooth muscle cells by targeting runt-related transcription factor 2 in high phosphorus conditions. Exp Ther Med 2021; 22:1036. [PMID: 34373722 PMCID: PMC8343701 DOI: 10.3892/etm.2021.10468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Vascular calcification, such as atherosclerosis, is a serious complication of chronic kidney disease that is characterized by tunica media calcification, and has gained increasing attention from researchers. The commonly observed association between vascular calcification and osteoporosis suggests a link between bone and vascular disorders. As microRNAs (miRNAs) have a wide range of gene regulation functions, such as cell proliferation, apoptosis, stress and transdifferentiation, the current study aimed to determine whether miRNAs play a vital role in the calcification and osteoblastic differentiation of rat thoracic aorta vascular smooth muscle cells (VSMCs). Gene expression analysis was performed on seven miRNAs (miR-29a, -30b, -103a, -125b, -133a, -143 and -211) that maybe potentially involved in the differentiation of smooth muscle cells into osteoblastic cells. The results showed that the levels of miR-29a, -30b, -103a, -125b and -143 were markedly reduced in the VSMC calcification model, particularly miR-103a, whereas runt-related transcription factor 2 (RUNX2) expression was increased. Furthermore, it was found that the expression of RUNX2 was significantly decreased following the upregulation of miR-103a, and that the expression of RUNX2 was significantly increased by downregulating miR-103a in VSMCs. Therefore, it was concluded that miR-103a plays a notable role in the transdifferentiation of the VSMCs in high phosphorus-induced calcification by targeting the regulation of RUNX2, and may therefore constitute a new target for the diagnosis and treatment of vascular calcification.
Collapse
Affiliation(s)
- Lei He
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, Hebei 050011, P.R. China
| | - Jinsheng Xu
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, Hebei 050011, P.R. China
| | - Yaling Bai
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, Hebei 050011, P.R. China
| | - Huiran Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, Hebei 050011, P.R. China
| | - Wei Zhou
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, Hebei 050011, P.R. China
| | - Meijuan Cheng
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, Hebei 050011, P.R. China
| | - Dongxue Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, Hebei 050011, P.R. China
| | - Lu Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, Hebei 050011, P.R. China
| | - Shenglei Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
31
|
Childs BG, Zhang C, Shuja F, Sturmlechner I, Trewartha S, Fierro Velasco R, Baker D, Li H, van Deursen JM. Senescent cells suppress innate smooth muscle cell repair functions in atherosclerosis. NATURE AGING 2021; 1:698-714. [PMID: 34746803 PMCID: PMC8570576 DOI: 10.1038/s43587-021-00089-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Senescent cells (SNCs) degenerate the fibrous cap that normally prevents atherogenic plaque rupture, a leading cause of myocardial infarction and stroke. Here we explored the underlying mechanism using pharmacological or transgenic approaches to clear SNCs in the Ldlr -/- mouse model of atherosclerosis. SNC clearance reinforced fully deteriorated fibrous caps in highly advanced lesions, as evidenced by restored vascular smooth muscle cell (VSMC) numbers, elastin content, and overall cap thickness. We found that SNCs inhibit VSMC promigratory phenotype switching in the first interfiber space of the arterial wall directly beneath atherosclerotic plaque, thereby limiting lesion entry of medial VSMCs for fibrous cap assembly or reinforcement. SNCs do so by antagonizing IGF-1 through the secretion of insulin-like growth factor-binding protein 3 (Igfbp3). These data indicate that the intermittent use of senolytic agents or IGFBP-3 inhibition in combination with lipid lowering drugs may provide therapeutic benefit in atherosclerosis.
Collapse
Affiliation(s)
- Bennett G. Childs
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester MN, United States
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester MN, United States
| | - Fahad Shuja
- Division of Vascular and Endovascular Surgery, Mayo Clinic, Rochester MN, United States
| | - Ines Sturmlechner
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester MN, United States
- Molecular Genetics Section, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Shawn Trewartha
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester MN, United States
| | - Raul Fierro Velasco
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester MN, United States
| | - Darren Baker
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester MN, United States
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester MN, United States
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester MN, United States
| | - Jan M. van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester MN, United States
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester MN, United States
- Correspondence:
| |
Collapse
|
32
|
Lin F, Zhang S, Liu X, Wu M. RETRACTED: Mouse bone marrow derived mesenchymal stem cells-secreted exosomal microRNA-125b-5p suppresses atherosclerotic plaque formation via inhibiting Map4k4. Life Sci 2021; 274:119249. [PMID: 33652034 DOI: 10.1016/j.lfs.2021.119249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/16/2021] [Accepted: 01/25/2021] [Indexed: 02/08/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figs. 2D and 4E, which appear to have the same eyebrow shaped phenotype as many other publications tabulated here (https://docs.google.com/spreadsheets/d/149EjFXVxpwkBXYJOnOHb6RhAqT4a2llhj9LM60MBffM/edit#gid=0). The journal requested the corresponding author comment on these concerns and provide the raw data. However the authors were not able to satisfactorily fulfil this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Feng Lin
- Department of Cardiology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518000, Guangdong, China.
| | - Suihao Zhang
- Department of Cardiology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518000, Guangdong, China
| | - Xia Liu
- Department of Cardiology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518000, Guangdong, China
| | - Meishan Wu
- Department of Cardiology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518000, Guangdong, China
| |
Collapse
|
33
|
Filipska I, Winiarska A, Knysak M, Stompór T. Contribution of Gut Microbiota-Derived Uremic Toxins to the Cardiovascular System Mineralization. Toxins (Basel) 2021; 13:toxins13040274. [PMID: 33920096 PMCID: PMC8070663 DOI: 10.3390/toxins13040274] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) affects more than 10% of the world population and leads to excess morbidity and mortality (with cardiovascular disease as a leading cause of death). Vascular calcification (VC) is a phenomenon of disseminated deposition of mineral content within the media layer of arteries preceded by phenotypic changes in vascular smooth muscle cells (VSMC) and/or accumulation of mineral content within the atherosclerotic lesions. Medial VC results in vascular stiffness and significantly contributes to increased cardio-vascular (CV) morbidity, whereas VC of plaques may rather increase their stability. Mineral and bone disorders of CKD (CKD-MBD) contribute to VC, which is further aggravated by accumulation of uremic toxins. Both CKD-MBD and uremic toxin accumulation affect not only patients with advanced CKD (glomerular filtration rate (GFR) less than 15 mL/min/1.72 m2, end-stage kidney disease) but also those on earlier stages of a disease. The key uremic toxins that contribute to VC, i.e., p-cresyl sulphate (PCS), indoxyl sulphate (IS) and trimethylamine-N-oxide (TMAO) originate from bacterial metabolism of gut microbiota. All mentioned toxins promote VC by several mechanisms, including: Transdifferentiation and apoptosis of VSMC, dysfunction of endothelial cells, oxidative stress, interaction with local renin–angiotensin–aldosterone system or miRNA profile modification. Several attractive methods of gut microbiota manipulations have been proposed in order to modify their metabolism and to limit vascular damage (and VC) triggered by uremic toxins. Unfortunately, to date no such method was demonstrated to be effective at the level of “hard” patient-oriented or even clinically relevant surrogate endpoints.
Collapse
|
34
|
Qin Z, Liao R, Xiong Y, Jiang L, Li J, Wang L, Han M, Sun S, Geng J, Yang Q, Zhang Z, Li Y, Du H, Su B. A narrative review of exosomes in vascular calcification. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:579. [PMID: 33987277 DOI: 10.21037/atm-20-7355] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Vascular calcification (VC) is the abnormal deposition of calcium, phosphorus, and other minerals in the vessel wall and can be commonly observed in diabetes, chronic kidney disease, and chronic inflammatory disease. It is closely associated with mortality from cardiovascular events. Traditionally, calcification is considered as a degenerative disease associated with the aging process, while increasing evidence has shown that the occurrence and development of calcification is an active biological process, which is highly regulated by multiple factors. The molecular mechanisms of VC have not yet been fully elucidated. Exosomes, as important transporters of substance transport and intercellular communication, have been shown to participate in VC. The regulation of VC by exosomes involves a number of complex biological processes, which occur through a variety of interaction mechanisms. However, the specific role and mechanism of exosomes in the process of VC are still not fully understood and require further study. This review will briefly describe the roles of exosomes in the process of VC including in the promotion of extracellular mineral deposits, induction of phenotypic conversion of vascular smooth muscle cells (VSMCs), transport of microRNA between cells, and regulation on autophagy and oxidative stress, with the aim of providing novel ideas for the clinical diagnosis and treatment of VC.
Collapse
Affiliation(s)
- Zheng Qin
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Ruoxi Liao
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Yuqin Xiong
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Luojia Jiang
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Jiameng Li
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Liya Wang
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Mei Han
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Si Sun
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Jiwen Geng
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Qinbo Yang
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Zhuyun Zhang
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Yupei Li
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.,Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, China
| | - Heyue Du
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Baihai Su
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Han Y, Zhang J, Huang S, Cheng N, Zhang C, Li Y, Wang X, Liu J, You B, Du J. MicroRNA-223-3p inhibits vascular calcification and the osteogenic switch of vascular smooth muscle cells. J Biol Chem 2021; 296:100483. [PMID: 33647318 PMCID: PMC8039724 DOI: 10.1016/j.jbc.2021.100483] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 11/20/2022] Open
Abstract
Vascular calcification is the ectopic deposition of calcium hydroxyapatite minerals in arterial wall, which involves the transdifferentiation of vascular smooth muscle cells (VSMCs) toward an osteogenic phenotype. However, the underlying molecular mechanisms regulating the VSMC osteogenic switch remain incompletely understood. In this study, we examined the roles of microRNAs (miRNAs) in vascular calcification. miRNA-seq transcriptome analysis identified miR-223-3p as a candidate miRNA in calcified mouse aortas. MiR-223-3p knockout aggravated calcification in both medial and atherosclerotic vascular calcification models. Further, RNA-seq transcriptome analysis verified JAK-STAT and PPAR signaling pathways were upregulated in both medial and atherosclerotic calcified aortas. Overlapping genes in these signaling pathways with predicted target genes of miR-223-3p derived from miRNA databases, we identified signal transducer and activator of transcription 3 (STAT3) as a potential target gene of miR-223-3p in vascular calcification. In vitro experiments showed that miR-223-3p blocked interleukin-6 (IL-6)/STAT3 signaling, thereby preventing the osteogenic switch and calcification of VSMCs. In contrast, overexpression of STAT3 diminished the effect of miR-223-3p. Taken together, the results indicate a protective role of miR-223-3p that inhibits both medial and atherosclerotic vascular calcification by regulating IL-6/STAT3 signaling-mediated VSMC transdifferentiation.
Collapse
Affiliation(s)
- Yingchun Han
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Jichao Zhang
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Shan Huang
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China; School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Naixuan Cheng
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China; School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Congcong Zhang
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yulin Li
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Xiaonan Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Jinghua Liu
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Bin You
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Jie Du
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.
| |
Collapse
|
36
|
Düsing P, Zietzer A, Goody PR, Hosen MR, Kurts C, Nickenig G, Jansen F. Vascular pathologies in chronic kidney disease: pathophysiological mechanisms and novel therapeutic approaches. J Mol Med (Berl) 2021; 99:335-348. [PMID: 33481059 PMCID: PMC7900031 DOI: 10.1007/s00109-021-02037-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease (CVD) is a major cause of death in patients with chronic kidney disease (CKD). Both conditions are rising in incidence as well as prevalence, creating poor outcomes for patients and high healthcare costs. Recent data suggests CKD to be an independent risk factor for CVD. Accumulation of uremic toxins, chronic inflammation, and oxidative stress have been identified to act as CKD-specific alterations that increase cardiovascular risk. The association between CKD and cardiovascular mortality is markedly influenced through vascular alterations, in particular atherosclerosis and vascular calcification (VC). While numerous risk factors promote atherosclerosis by inducing endothelial dysfunction and its progress to vascular structural damage, CKD affects the medial layer of blood vessels primarily through VC. Ongoing research has identified VC to be a multifactorial, cell-mediated process in which numerous abnormalities like mineral dysregulation and especially hyperphosphatemia induce a phenotype switch of vascular smooth muscle cells to osteoblast-like cells. A combination of pro-calcifying stimuli and an impairment of inhibiting mechanisms like fetuin A and vitamin K-dependent proteins like matrix Gla protein and Gla-rich protein leads to mineralization of the extracellular matrix. In view of recent studies, intercellular communication pathways via extracellular vesicles and microRNAs represent key mechanisms in VC and thereby a promising field to a deeper understanding of the involved pathomechanisms. In this review, we provide an overview about pathophysiological mechanisms connecting CKD and CVD. Special emphasis is laid on vascular alterations and more recently discovered molecular pathways which present possible new therapeutic targets.
Collapse
Affiliation(s)
- Philip Düsing
- Heart Center, Department of Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Andreas Zietzer
- Heart Center, Department of Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Philip Roger Goody
- Heart Center, Department of Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Mohammed Rabiul Hosen
- Heart Center, Department of Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Georg Nickenig
- Heart Center, Department of Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Felix Jansen
- Heart Center, Department of Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
37
|
Chao CT, Han DS, Huang JW. Circulating microRNA-125b Levels Are Associated With the Risk of Vascular Calcification in Healthy Community-Dwelling Older Adults. Front Cardiovasc Med 2021; 8:624313. [PMID: 33693036 PMCID: PMC7937626 DOI: 10.3389/fcvm.2021.624313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/28/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Vascular calcification (VC) is a subclinical manifestation of vascular disease burden among older adults, conferring an elevated mortality risk. Biomarkers capable of detecting and risk-stratifying VC associated with advanced age remains unavailable, impeding our effort to provide optimal care to geriatric patients. Objectives: In this study, we aimed to investigate whether circulating miR-125b served as a potential indicator for VC in relatively healthy older adults. Methods: Community-dwelling older adults (age ≥65) were prospectively recruited during 2017, followed by clinical features documentation and VC rating based on aortic arch calcification (AAC) and abdominal aortic calcification (AbAC). Multiple logistic regression was done to evaluate the relationship between circulating miR-125b levels, VC presence and severity, followed by selecting the optimal cutoff point for VC diagnosis. Results: A total of 343 relatively healthy older adults (median age, 73.8 years; 40% male; 59.8% having AAC) were enrolled, with a median circulating miR-125b level of 0.012 (interquartile range, 0.003–0.037). Those with more severe AAC had progressively decreasing miR-125b levels (p<0.001). Multiple regression analyses showed that having higher miR-125b levels based on the median value were associated with a substantially lower risk of AAC [odds ratio (OR) 0.022, 95% confidence interval (CI) 0.011–0.044] compared to those having lower ones. An optimal cutoff of miR-125b for identifying AAC in older adults was 0.008, with a sensitivity and specificity of 0.86 and 0.80, respectively. Similar findings were obtained when using AbAC as the endpoint. Conclusions: We found that miR-125b serves as an independent indicator for VC in relatively healthy older adults, and may potentially be linked with VC pathophysiology.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital BeiHu Branch, Taipei, Taiwan.,Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan.,Geriatric and Community Medicine Research Center, National Taiwan University Hospital BeiHu Branch, Taipei, Taiwan
| | - Der-Sheng Han
- Geriatric and Community Medicine Research Center, National Taiwan University Hospital BeiHu Branch, Taipei, Taiwan.,Department of Rehabilitation and Physical Medicine, National Taiwan University Hospital BeiHu Branch, Taipei, Taiwan
| | - Jenq-Wen Huang
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| |
Collapse
|
38
|
Li Y, Sun W, Saaoud F, Wang Y, Wang Q, Hodge J, Hui Y, Yin S, Lessner SM, Kong X, Fan D. MiR155 modulates vascular calcification by regulating Akt-FOXO3a signalling and apoptosis in vascular smooth muscle cells. J Cell Mol Med 2020; 25:535-548. [PMID: 33210462 PMCID: PMC7810936 DOI: 10.1111/jcmm.16107] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/13/2020] [Accepted: 11/01/2020] [Indexed: 12/17/2022] Open
Abstract
microRNA‐155 (miR155) is pro‐atherogenic; however, its role in vascular calcification is unknown. In this study, we aim to examine whether miR155 regulates vascular calcification and to understand the underlying mechanism. Quantitative real‐time PCR showed that miR155 is highly expressed in human calcific carotid tissue and positively correlated with the expression of osteogenic genes. Wound‐healing assay and TUNEL staining showed deletion of miR155 inhibited vascular smooth muscle cell (VSMC) migration and apoptosis. miR155 deficiency attenuated calcification of cultured mouse VSMCs and aortic rings induced by calcification medium, whereas miR155 overexpression promoted VSMC calcification. Compared with wild‐type mice, miR155−/− mice showed significant resistance to vitamin D3 induced vascular calcification. Protein analysis showed that miR155 deficiency alleviated the reduction of Rictor, increased phosphorylation of Akt at S473 and accelerated phosphorylation and degradation of FOXO3a in cultured VSMCs and in the aortas of vitamin D3‐treated mice. A PI3K inhibitor that suppresses Akt phosphorylation increased, whereas a pan‐caspase inhibitor that suppresses apoptosis reduced VSMC calcification; and both inhibitors diminished the protective effects of miR155 deficiency on VSMC calcification. In conclusion, miR155 deficiency attenuates vascular calcification by increasing Akt phosphorylation and FOXO3a degradation, and thus reducing VSMC apoptosis induced by calcification medium.
Collapse
Affiliation(s)
- Yong Li
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Wei Sun
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA.,Department of Cardiology and Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fatma Saaoud
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Yuzhen Wang
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Quanyi Wang
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Johnie Hodge
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Yvonne Hui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Sophia Yin
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Susan M Lessner
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Xiangqing Kong
- Department of Cardiology and Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
39
|
Wang SS, Wang C, Chen H. MicroRNAs are critical in regulating smooth muscle cell mineralization and apoptosis during vascular calcification. J Cell Mol Med 2020; 24:13564-13572. [PMID: 33089928 PMCID: PMC7754013 DOI: 10.1111/jcmm.16005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 02/01/2023] Open
Abstract
Vascular calcification refers to the pathological deposition of calcium and phosphate minerals into the vasculature. It is prevalent in atherosclerosis, ageing, type 2 diabetes mellitus and chronic kidney disease, thus, increasing morbidity and mortality from these conditions. Vascular calcification shares similar mechanisms with bone mineralization, with smooth muscle cells playing a critical role in both processes. In the last decade, a variety of microRNAs have been identified as key regulators for the differentiation, phenotypic switch, proliferation, apoptosis, cytokine production and matrix deposition in vascular smooth muscle cells during vascular calcification. Therefore, this review mainly discusses the roles of microRNAs in the pathophysiological mechanisms of vascular calcification in smooth muscle cells and describes several interventions against vascular calcification by regulating microRNAs. As the exact mechanisms of calcification remain not fully elucidated, having a better understanding of microRNA involvement in vascular calcification may give impetus to development of novel therapeutics for the control and treatment of vascular calcification.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Department of Cardiology, Zhejiang Provincial Key Lab of Cardiovascular Disease Diagnosis and Treatment, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Wang
- Department of Cardiology, Zhejiang Provincial Key Lab of Cardiovascular Disease Diagnosis and Treatment, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Han Chen
- Department of Cardiology, Zhejiang Provincial Key Lab of Cardiovascular Disease Diagnosis and Treatment, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
40
|
Ryu J, Ahn Y, Kook H, Kim YK. The roles of non-coding RNAs in vascular calcification and opportunities as therapeutic targets. Pharmacol Ther 2020; 218:107675. [PMID: 32910935 DOI: 10.1016/j.pharmthera.2020.107675] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
Vascular calcification (VC) is characterized by an accumulation of calcium phosphate crystals inside the vessel wall. VC is often associated with diabetes, chronic kidney disease (CKD), atherosclerosis, and cardiovascular disease (CVD). Even though the number of patients with VC remains prevalent, there are still no approved therapies for the treatment of VC. Since the pathogenesis of VC is diverse and involves multiple factors and mechanisms, it is critical to reveal the novel mechanisms involved in VC. Although protein-coding RNAs involved in VC have been extensively studied, the roles of non-coding RNAs (ncRNAs) are not yet fully understood. The field of ncRNAs has recently received attention, and accumulating evidence from studies in VC suggests that ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play an important role in the regulation of VC. NcRNAs can modulate VC by acting as promoters or inhibitors and may be useful in the clinical diagnosis and treatment of VC. In this article, we review and discuss ncRNAs that regulate VC and present the therapeutic implications of these ncRNAs.
Collapse
Affiliation(s)
- Juhee Ryu
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Youngkeun Ahn
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Cardiology, Cardiovascular Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hyun Kook
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.
| | - Young-Kook Kim
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.
| |
Collapse
|
41
|
Chen J, Zhou Y, Liu S, Li C. Biomechanical signal communication in vascular smooth muscle cells. J Cell Commun Signal 2020; 14:357-376. [PMID: 32780323 DOI: 10.1007/s12079-020-00576-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Biomechanical stresses are closely associated with cardiovascular development and diseases. In vivo, vascular smooth muscle cells are constantly stimulated by biomechanical factors caused by increased blood pressure leading to the non-specific activation of cell transmembrane proteins. Thus, various intracellular signal molecules are simultaneously activated via signaling cascades, which are closely related to alterations in the differentiation, phenotype, inflammation, migration, pyroptosis, calcification, proliferation, and apoptosis of vascular smooth muscle cells. Meanwhile, mechanical stress-induced miRNAs and epigenetics modification on vascular smooth muscle cells play critical roles as well. Eventually, the overall pathophysiology of the cells is altered, resulting in the development of many major clinical diseases, including hypertension, atherosclerosis, grafted venous atherosclerosis, and aneurysm, among others. In this paper, important advances in mechanical signal communication in vascular smooth muscle cells are reviewed.
Collapse
Affiliation(s)
- Jingbo Chen
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Zhou
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuying Liu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Chaohong Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
42
|
Kanakis I, Alameddine M, Scalabrin M, van 't Hof RJ, Liloglou T, Ozanne SE, Goljanek-Whysall K, Vasilaki A. Low protein intake during reproduction compromises the recovery of lactation-induced bone loss in female mouse dams without affecting skeletal muscles. FASEB J 2020; 34:11844-11859. [PMID: 32652768 DOI: 10.1096/fj.202001131r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
Lactation-induced bone loss occurs due to high calcium requirements for fetal growth but skeletal recovery is normally achieved promptly postweaning. Dietary protein is vital for fetus and mother but the effects of protein undernutrition on the maternal skeleton and skeletal muscles are largely unknown. We used mouse dams fed with normal (N, 20%) or low (L, 8%) protein diet during gestation and lactation and maintained on the same diets (NN, LL) or switched from low to normal (LN) during a 28 d skeletal restoration period post lactation. Skeletal muscle morphology and neuromuscular junction integrity was not different between any of the groups. However, dams fed the low protein diet showed extensive bone loss by the end of lactation, followed by full skeletal recovery in NN dams, partial recovery in LN and poor bone recovery in LL dams. Primary osteoblasts from low protein diet fed mice showed decreased in vitro bone formation and decreased osteogenic marker gene expression; promoter methylation analysis by pyrosequencing showed no differences in Bmpr1a, Ptch1, Sirt1, Osx, and Igf1r osteoregulators, while miR-26a, -34a, and -125b expression was found altered in low protein fed mice. Therefore, normal protein diet is indispensable for maternal musculoskeletal health during the reproductive period.
Collapse
Affiliation(s)
- Ioannis Kanakis
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Moussira Alameddine
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Mattia Scalabrin
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Rob J van 't Hof
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Triantafillos Liloglou
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, UK
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Katarzyna Goljanek-Whysall
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.,Department of Physiology, School of Medicine, NUI Galway, Galway, Ireland
| | - Aphrodite Vasilaki
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| |
Collapse
|
43
|
Folate deficiency promotes differentiation of vascular smooth muscle cells without affecting the methylation status of regulated genes. Biochem J 2020; 476:2769-2795. [PMID: 31530711 DOI: 10.1042/bcj20190275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 01/10/2023]
Abstract
Elevated serum homocysteine, an intermediate of cellular one-carbon metabolism, is an independent risk factor for cardiovascular disease (CVD). Folate deficiency increases serum homocysteine and may contribute to CVD progression. Vascular smooth muscle cells (VSMCs) regulate vascular contractility, but also contribute to repair processes in response to vascular injury. Nutritional deficiencies, like folate deficiency, are thought to impact on this phenotypic plasticity, possibly by epigenetic mechanisms. We have investigated the effect of folate deficiency on VSMCs in two cell culture systems representing early and late stages of smooth muscle cells differentiation. We find that folate deficiency promotes differentiation towards a more contractile phenotype as indicated by increased expression of respective marker genes. However, microarray analysis identified markers of striated muscle as the predominant gene expression change elicited by folate deficiency. These changes are not merely a reflection of cell cycle arrest, as foetal calf serum restriction or iron deficiency do not replicate the gene expression changes observed in response to folate deficiency. Folate deficiency only has a marginal effect on global DNA methylation. DNA methylation of CpG islands associated with genes regulated by folate deficiency remains unaffected. This supports our earlier findings in a mouse model system which also did not show any changes in global DNA methylation in response to folate and vitamin B6/B12 deficiency. These data suggest that folate deficiency enhances the expression of smooth muscle marker gene expression, promotes a shift towards a skeletal muscle phenotype, and does not regulate gene expression via DNA methylation.
Collapse
|
44
|
Li C, Zhang S, Chen X, Ji J, Yang W, Gui T, Gai Z, Li Y. Farnesoid X receptor activation inhibits TGFBR1/TAK1-mediated vascular inflammation and calcification via miR-135a-5p. Commun Biol 2020; 3:327. [PMID: 32581266 PMCID: PMC7314757 DOI: 10.1038/s42003-020-1058-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 06/08/2020] [Indexed: 01/06/2023] Open
Abstract
Chronic inflammation plays a crucial role in vascular calcification. However, only a few studies have revealed the mechanisms underlying the development of inflammation under high-phosphate conditions in chronic kidney disease (CKD) patients. Here, we show that inflammation resulting from the activation of the TGFBR1/TAK1 pathway is involved in calcification in CKD rats or osteogenic medium-cultured human aortic smooth muscle cells (HASMCs). Moreover, miR-135a-5p is demonstrated to be a key regulator of the TGFBR1/TAK1 pathway, which has been reported to be decreased in CKD rats. We further reveal that farnesoid X receptor (FXR) activation increases miR-135a-5p expression, thereby inhibiting the activation of the TGFBR1/TAK1 pathway, ultimately resulting in the attenuation of vascular inflammation and calcification in CKD rats. Our findings provide advanced insights into the mechanisms underlying the development of inflammation in vascular calcification, and evidence that FXR activation could serve as a therapeutic strategy for retarding vascular calcification in CKD patients.
Collapse
MESH Headings
- Animals
- Aorta/cytology
- Calcinosis/genetics
- Calcinosis/metabolism
- Cells, Cultured
- Female
- Humans
- MAP Kinase Kinase Kinases/genetics
- MAP Kinase Kinase Kinases/metabolism
- Male
- MicroRNAs/genetics
- Muscle, Smooth, Vascular/cytology
- Osteogenesis
- Rats, Wistar
- Receptor, Transforming Growth Factor-beta Type I/genetics
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Renal Insufficiency, Chronic/etiology
- Renal Insufficiency, Chronic/pathology
- Vasculitis/genetics
- Vasculitis/metabolism
- Vasculitis/pathology
Collapse
Affiliation(s)
- Chao Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, 8032, Switzerland
| | - Shijun Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiaoqing Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jingkang Ji
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wenqing Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ting Gui
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhibo Gai
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, 8032, Switzerland.
| | - Yunlun Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China.
| |
Collapse
|
45
|
Yoshiko Y, Minamizaki T. Emerging roles of microRNAs as extracellular vesicle cargo secreted from osteoblasts. J Oral Biosci 2020; 62:228-234. [PMID: 32535286 DOI: 10.1016/j.job.2020.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Extracellular vesicles (EVs) have come into the spotlight as messengers, delivering cargo for cell-cell communication. Concomitantly, increasing attention has been focused on microRNAs (miRNAs) as EV cargo. Besides their well-known role in extracellular matrix mineralization, whether matrix vesicles (MVs) - which are in a broad sense a class of EV - also deliver miRNAs to regulate the function of recipient cells remains unclear. HIGHLIGHT We recently found that MVs budding from osteoblasts contain many miRNAs that can be transferred to the bone matrix. Of these, miR-125b was released into the bone marrow microenvironment during bone resorption, where it targeted the transcriptional repressor Prdm1 in osteoclast precursors, resulting in increased expression of anti-osteoclastogenic factors and suppression of osteoclastogenesis, thereby increasing bone mass in mice. CONCLUSION Beyond their well-established action in bone mineralization, MVs play a role in the transport of miRNAs from osteoblasts into the bone matrix. Similar to the miR-125b axis in osteoclastogenesis, it seems likely that other miRNAs that accumulate in bone via MV transport may also act as mediators of cell-cell communication in the skeletal system.
Collapse
Affiliation(s)
- Yuji Yoshiko
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Tomoko Minamizaki
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
46
|
Roles of Histone Acetylation Modifiers and Other Epigenetic Regulators in Vascular Calcification. Int J Mol Sci 2020; 21:ijms21093246. [PMID: 32375326 PMCID: PMC7247359 DOI: 10.3390/ijms21093246] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular calcification (VC) is characterized by calcium deposition inside arteries and is closely associated with the morbidity and mortality of atherosclerosis, chronic kidney disease, diabetes, and other cardiovascular diseases (CVDs). VC is now widely known to be an active process occurring in vascular smooth muscle cells (VSMCs) involving multiple mechanisms and factors. These mechanisms share features with the process of bone formation, since the phenotype switching from the contractile to the osteochondrogenic phenotype also occurs in VSMCs during VC. In addition, VC can be regulated by epigenetic factors, including DNA methylation, histone modification, and noncoding RNAs. Although VC is commonly observed in patients with chronic kidney disease and CVD, specific drugs for VC have not been developed. Thus, discovering novel therapeutic targets may be necessary. In this review, we summarize the current experimental evidence regarding the role of epigenetic regulators including histone deacetylases and propose the therapeutic implication of these regulators in the treatment of VC.
Collapse
|
47
|
Abstract
Over the last decades, the association between vascular calcification (VC) and all-cause/cardiovascular mortality, especially in patients with high atherogenic status, such as those with diabetes and/or chronic kidney disease, has been repeatedly highlighted. For over a century, VC has been noted as a passive, degenerative, aging process without any treatment options. However, during the past decades, studies confirmed that mineralization of the arteries is an active, complex process, similar to bone genesis and formation. The main purpose of this review is to provide an update of the existing biomarkers of VC in serum and develop the various pathogenetic mechanisms underlying the calcification process, including the pivotal roles of matrix Gla protein, osteoprotegerin, bone morphogenetic proteins, fetuin-a, fibroblast growth-factor-23, osteocalcin, osteopontin, osteonectin, sclerostin, pyrophosphate, Smads, fibrillin-1 and carbonic anhydrase II.
Collapse
|
48
|
Zhang XT, Sun M, Zhang L, Dai YK, Wang F. The potential function of miR-135b-mediated JAK2/STAT3 signaling pathway during osteoblast differentiation. Kaohsiung J Med Sci 2020; 36:673-681. [PMID: 32319222 DOI: 10.1002/kjm2.12217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/31/2020] [Accepted: 03/23/2020] [Indexed: 11/09/2022] Open
Abstract
MC3T3-E1 cells were divided into Blank, miR-135b mimics, miR-135b inhibitors, AG490, and miR-135b inhibitors + AG490 groups. Cell viability was determined by MTT, alkaline phosphatase (ALP) activity by the corresponding kit, and mineralization by alizarin red staining. Furthermore, miR-135b, osteoblast-specific genes, and JAK2/STAT3 were detected through quantitative real-time polymerase chain reaction and Western blotting. MiR-135b downregulation was identified with increased JAK2 during osteoblast differentiation. JAK2 was confirmed as a target gene of miR-135b by dual-luciferase reporter assay. MC3T3-E1 cells in both miR-135b mimics and AG490 groups manifested decrease in cell viability, ALP activity, and mineralized nodes, as well as reductions in osteoblast-specific genes and proteins of JAK2, p-JAK2, and p-STAT3, but increase in cell apoptosis. However, opposite changes of the above factors were shown in cells from miR-135b inhibitors group. Notably, AG490 could reverse promotion effects of miR-135b inhibitors on osteoblast differentiation. Inhibiting miR-135b could activate the JAK2/STAT3 signaling pathway, thereby improving the cell viability and promoting the osteoblast differentiation.
Collapse
Affiliation(s)
- Xiang-Tao Zhang
- Department of Orthopedics, The No.1 Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Min Sun
- Department of Neonatology, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Li Zhang
- The second Department of Orthopedics, The Third Hospital of Hebei Medical University & You Yi Branch, Shijiazhuang, Hebei, China
| | - Yi-Ke Dai
- The first Department of Arthrosis, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fei Wang
- The first Department of Arthrosis, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
49
|
Jacques C, Tesfaye R, Lavaud M, Georges S, Baud’huin M, Lamoureux F, Ory B. Implication of the p53-Related miR-34c, -125b, and -203 in the Osteoblastic Differentiation and the Malignant Transformation of Bone Sarcomas. Cells 2020; 9:cells9040810. [PMID: 32230926 PMCID: PMC7226610 DOI: 10.3390/cells9040810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
The formation of the skeleton occurs throughout the lives of vertebrates and is achieved through the balanced activities of two kinds of specialized bone cells: the bone-forming osteoblasts and the bone-resorbing osteoclasts. Impairment in the remodeling processes dramatically hampers the proper healing of fractures and can also result in malignant bone diseases such as osteosarcoma. MicroRNAs (miRNAs) are a class of small non-coding single-strand RNAs implicated in the control of various cellular activities such as proliferation, differentiation, and apoptosis. Their post-transcriptional regulatory role confers on them inhibitory functions toward specific target mRNAs. As miRNAs are involved in the differentiation program of precursor cells, it is now well established that this class of molecules also influences bone formation by affecting osteoblastic differentiation and the fate of osteoblasts. In response to various cell signals, the tumor-suppressor protein p53 activates a huge range of genes, whose miRNAs promote genomic-integrity maintenance, cell-cycle arrest, cell senescence, and apoptosis. Here, we review the role of three p53-related miRNAs, miR-34c, -125b, and -203, in the bone-remodeling context and, in particular, in osteoblastic differentiation. The second aim of this study is to deal with the potential implication of these miRNAs in osteosarcoma development and progression.
Collapse
|
50
|
Della Bella E, Menzel U, Basoli V, Tourbier C, Alini M, Stoddart MJ. Differential Regulation of circRNA, miRNA, and piRNA during Early Osteogenic and Chondrogenic Differentiation of Human Mesenchymal Stromal Cells. Cells 2020; 9:cells9020398. [PMID: 32050423 PMCID: PMC7072123 DOI: 10.3390/cells9020398] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
The goal of the present study is to identify the differential expression of circular RNA (circRNA), miRNA, and piwi-interacting RNA (piRNA) after lineage commitment towards osteo- and chondrogenesis of human bone marrow mesenchymal stromal cells (hMSCs). The cells were maintained for 7 days in either osteogenic or chondrogenic medium. RNA sequencing was performed to assess the expression of miRNA and piRNA, while RNA hybridization arrays were used to identify which circRNA were differentially expressed. qPCR validation of a selection of targets for both osteogenic and chondrogenic differentiation was carried out. The differential expression of several circRNA, miRNA, and piRNA was identified and validated. The expression of total and circular isoforms of FKBP5 was upregulated both in osteo- and chondrogenesis and it was influenced by the presence of dexamethasone. ZEB1, FADS2, and SMYD3 were also identified as regulated in differentiation and/or by dexamethasone. In conclusion, we have identified a set of different non-coding RNAs that are differentially regulated in early osteogenic and chondrogenic differentiation, paving the way for further investigation to understand how dexamethasone controls the expression of those genes and what their function is in MSC differentiation.
Collapse
Affiliation(s)
- Elena Della Bella
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (E.D.B.); (U.M.); (V.B.); (C.T.); (M.A.)
| | - Ursula Menzel
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (E.D.B.); (U.M.); (V.B.); (C.T.); (M.A.)
| | - Valentina Basoli
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (E.D.B.); (U.M.); (V.B.); (C.T.); (M.A.)
| | - Céline Tourbier
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (E.D.B.); (U.M.); (V.B.); (C.T.); (M.A.)
- Department of Cranio-Maxiofacial Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79085 Freiburg, Germany
| | - Mauro Alini
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (E.D.B.); (U.M.); (V.B.); (C.T.); (M.A.)
| | - Martin J. Stoddart
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (E.D.B.); (U.M.); (V.B.); (C.T.); (M.A.)
- Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79106 Freiburg, Germany
- Correspondence:
| |
Collapse
|