1
|
Wu J, Xu J, Zhang M, Zhong J, Gao W, Wu M. Chondrocyte Mitochondrial Quality Control: A Novel Insight into Osteoarthritis and Cartilage Regeneration. Adv Wound Care (New Rochelle) 2025. [PMID: 40248893 DOI: 10.1089/wound.2024.0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025] Open
Abstract
Significance: Osteoarthritis (OA), one of the most prevalent joint diseases affecting more than 240 million people, strongly influences human health and reduces life quality. This review aims to fill the current research gap regarding the application and potential of mitochondrial quality control (MQC) based therapies in the treatment of OA, thereby providing guidance for future research and clinical practice. Recent Advances: Chondrocytes respond to the inflammatory microenvironment via an array of signaling pathways and thus are critical in cartilage degeneration and OA progression. Mitochondria, as an important metabolic center in chondrocytes, play a vital role in responding to inflammatory stimuli. Multiple MQC mechanisms, including mitochondrial antioxidant defense, mitochondrial protein quality control, mitochondrial DNA repair, mitochondrial dynamics, mitophagy, and mitochondrial biogenesis, sustain mitochondrial homeostasis under pathological conditions. Critical Issues: Despite extensive OA research, effective therapies remain limited. Elucidating MQC mechanisms in disease progression and post-traumatic cartilage repair is crucial. While preclinical studies demonstrate potential, clinical translation requires addressing protocol standardization, patient stratification, and long-term efficacy, as well as safety validation. Future Directions: Future research should focus on developing personalized MQC-based OA therapies guided by biomarker profiling and signaling pathway modulation. However, translational challenges persist, particularly regarding pervasive off-target effects, inadequate OA-specific targeting capacity, interpatient heterogeneity, and reliable evaluation of long-term therapeutic efficacy. Strategic prioritization of OA-specific MQC targets coupled with delivery system optimization may significantly improve both clinical translatability and therapeutic outcomes.
Collapse
Affiliation(s)
- Jinni Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
| | - Jiawen Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
| | - Menghan Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
| | - Jiahui Zhong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
| | - Weijin Gao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
| | - Mengjie Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
2
|
Ni R, Cao T, Ji X, Peng A, Zhang Z, Fan GC, Stathopulos P, Chakrabarti S, Su Z, Peng T. DNA damage-inducible transcript 3 positively regulates RIPK1-mediated necroptosis. Cell Death Differ 2025; 32:306-319. [PMID: 39362992 PMCID: PMC11802725 DOI: 10.1038/s41418-024-01385-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024] Open
Abstract
DNA damage-inducible transcript 3 (DDIT3) is a well-known transcription factor that regulates the expression of apoptosis-related genes for promoting apoptosis during endoplasmic reticulum stress. Here, we report an unrecognized role of DDIT3 in facilitating necroptosis. DDIT3 directly binds and competitively prevents the p38 MAPK-MK2 interaction and thereby blocking MK2 activation while stimulating p38 MAPK activation. This blockage of MK2 activation initially prevents RIPK1 phosphorylation at Ser320 (inactivation), subsequently relieving its suppression of RIPK1 activation. Consequently, p38 MAPK facilitates RIPK1 phosphorylation at Ser166 (activation) through DDIT3 phosphorylation-related mechanisms, leading to necroptosis. Mechanistically, a 10-amino acid segment (Glu19-Val28) within DDIT3's N-terminus is identified to account for its pro-necroptotic function. In vivo studies demonstrate that forced expression of DDIT3 induces necroptosis, whereas deletion of DDIT3 alleviates necroptosis in mouse hearts under stress. These findings shed light on a novel regulatory mechanism by which DDIT3 promotes RIPK1 activation and subsequent necroptosis.
Collapse
Affiliation(s)
- Rui Ni
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada
| | - Ting Cao
- Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, China
| | - Xiaoyun Ji
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada
| | - Angel Peng
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada
| | - Zhuxu Zhang
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada
- Department of Medicine, Western University, London, ON, N6A 5W9, Canada
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Peter Stathopulos
- Department of Physiology and Pharmacology, Western University, London, ON, N6A 5C1, Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Tianqing Peng
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada.
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada.
- Department of Medicine, Western University, London, ON, N6A 5W9, Canada.
| |
Collapse
|
3
|
Hecht JT, Veerisetty AC, Hossain MG, Patra D, Carrer M, Chiu F, Relic D, Jafar-nejad P, Posey KL. Loss of CHOP Prevents Joint Degeneration and Pain in a Mouse Model of Pseudoachondroplasia. Int J Mol Sci 2024; 26:16. [PMID: 39795874 PMCID: PMC11720453 DOI: 10.3390/ijms26010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025] Open
Abstract
Pseudoachondroplasia (PSACH), a severe dwarfing condition characterized by impaired skeletal growth and early joint degeneration, results from mutations in cartilage oligomeric matrix protein (COMP). These mutations disrupt normal protein folding, leading to the accumulation of misfolded COMP in chondrocytes. The MT-COMP mouse is a murine model of PSACH that expresses D469del human COMP in response to doxycycline and replicates the PSACH chondrocyte and clinical pathology. The basis for the mutant-COMP pathology involves endoplasmic reticulum (ER) stress signaling through the PERK/eIF2α/CHOP pathway. C/EBP homologous protein (CHOP), in conjunction with a TNFα inflammatory process, upregulates mTORC1, hindering autophagy clearance of mutant COMP protein. Life-long joint pain/degeneration diminishes quality of life, and treatments other than joint replacements are urgently needed. To assess whether molecules that reduce CHOP activity should be considered as a potential treatment for PSACH, we evaluated MT-COMP mice with 50% CHOP (MT-COMP/CHOP+/-), antisense oligonucleotide (ASO)-mediated CHOP knockdown, and complete CHOP ablation (MT-COMP/CHOP-/-). While earlier studies demonstrated that loss of CHOP in MT-COMP mice reduced intracellular retention, inflammation, and growth plate chondrocyte death, we now show that it did not normalize limb growth. ASO treatment reduced CHOP mRNA by approximately 60%, as measured by RT-qPCR, but did not improve limb length similar to MT-COMP/CHOP+/-. Interestingly, both 50% genetic reduction and complete loss of CHOP alleviated pain, while total ablation of CHOP in MT-COMP mice was necessary to preserve joint health. These results indicate that (1) CHOP reduction therapy is not an effective strategy for improving limb length and (2) pain and chondrocyte pathology are more responsive to intervention than the prevention of joint damage.
Collapse
Affiliation(s)
- Jacqueline T. Hecht
- Department of Pediatrics, McGovern Medical School UTHealth, Houston, TX 77030, USA; (J.T.H.); (A.C.V.); (M.G.H.); (F.C.)
- School of Dentistry, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Alka C. Veerisetty
- Department of Pediatrics, McGovern Medical School UTHealth, Houston, TX 77030, USA; (J.T.H.); (A.C.V.); (M.G.H.); (F.C.)
| | - Mohammad G. Hossain
- Department of Pediatrics, McGovern Medical School UTHealth, Houston, TX 77030, USA; (J.T.H.); (A.C.V.); (M.G.H.); (F.C.)
| | - Debabrata Patra
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Michele Carrer
- Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA; (M.C.); (D.R.); (P.J.)
| | - Frankie Chiu
- Department of Pediatrics, McGovern Medical School UTHealth, Houston, TX 77030, USA; (J.T.H.); (A.C.V.); (M.G.H.); (F.C.)
| | - Dorde Relic
- Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA; (M.C.); (D.R.); (P.J.)
| | - Paymaan Jafar-nejad
- Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA; (M.C.); (D.R.); (P.J.)
| | - Karen L. Posey
- Department of Pediatrics, McGovern Medical School UTHealth, Houston, TX 77030, USA; (J.T.H.); (A.C.V.); (M.G.H.); (F.C.)
| |
Collapse
|
4
|
Yang C, Dong W, Wang Y, Dong X, Xu X, Yu X, Wang J. DDIT3 aggravates TMJOA cartilage degradation via Nrf2/HO-1/NLRP3-mediated autophagy. Osteoarthritis Cartilage 2024; 32:921-937. [PMID: 38719085 DOI: 10.1016/j.joca.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/10/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVE DNA damage-inducible transcript 3 (DDIT3), as a downstream transcription factor of endoplasmic reticulum stress, is reported to regulate chondrogenic differentiation under physiological and pathological state. However, the specific involvement of DDIT3 in the degradation of condylar cartilage of temporomandibular joint osteoarthritis (TMJOA) is unclarified. DESIGN The expression patterns of DDIT3 in condylar cartilage from monosodium iodoacetate-induced TMJOA mice were examined to uncover the potential role of DDIT3 in TMJOA. The Ddit3 knockout (Ddit3-/-) mice and their wildtype littermates (Ddit3+/+) were used to clarify the effect of DDIT3 on cartilage degradation. Primary condylar chondrocytes and ATDC5 cells were applied to explore the mechanisms of DDIT3 on autophagy and extracellular matrix (ECM) degradation in chondrocytes. The autophagy inhibitor chloroquine (CQ) was used to determine the effect of DDIT3-inhibited autophagy in vivo. RESULTS DDIT3 were highly expressed in condylar cartilage from TMJOA mice. Ddit3 knockout alleviated condylar cartilage degradation and subchondral bone loss, compared with their wildtype littermates. In vitro study demonstrated that DDIT3 exacerbated ECM degradation in chondrocytes induced by TNF-α through inhibiting autophagy. The intraperitoneal injection of CQ further confirmed that Ddit3 knockout alleviated cartilage degradation in TMJOA through activating autophagy in vivo. CONCLUSIONS Our findings identified the crucial role of DDIT3-inhibited autophagy in condylar cartilage degradation during the development of TMJOA.
Collapse
Affiliation(s)
- Chang Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Yan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xiaofei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xiaoxiao Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xijie Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jiawei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
5
|
Posey KL. Curcumin and Resveratrol: Nutraceuticals with so Much Potential for Pseudoachondroplasia and Other ER-Stress Conditions. Biomolecules 2024; 14:154. [PMID: 38397390 PMCID: PMC10886985 DOI: 10.3390/biom14020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Natural products with health benefits, nutraceuticals, have shown considerable promise in many studies; however, this potential has yet to translate into widespread clinical use for any condition. Notably, many drugs currently on the market, including the first analgesic aspirin, are derived from plant extracts, emphasizing the historical significance of natural products in drug development. Curcumin and resveratrol, well-studied nutraceuticals, have excellent safety profiles with relatively mild side effects. Their long history of safe use and the natural origins of numerous drugs contrast with the unfavorable reputation associated with nutraceuticals. This review aims to explore the nutraceutical potential for treating pseudoachondroplasia, a rare dwarfing condition, by relating the mechanisms of action of curcumin and resveratrol to molecular pathology. Specifically, we will examine the curcumin and resveratrol mechanisms of action related to endoplasmic reticulum stress, inflammation, oxidative stress, cartilage health, and pain. Additionally, the barriers to the effective use of nutraceuticals will be discussed. These challenges include poor bioavailability, variations in content and purity that lead to inconsistent results in clinical trials, as well as prevailing perceptions among both the public and medical professionals. Addressing these hurdles is crucial to realizing the full therapeutic potential of nutraceuticals in the context of pseudoachondroplasia and other health conditions that might benefit.
Collapse
Affiliation(s)
- Karen L Posey
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| |
Collapse
|
6
|
Hecht JT, Chiu F, Veerisetty A, Hossain M, Posey KL. Matrix in Medicine: Health Consequences of Mutant Cartilage Oligomeric Matrix Protein and its relationship to abnormal growth and to joint degeneration. Matrix Biol 2023; 119:101-111. [PMID: 37001593 DOI: 10.1016/j.matbio.2023.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/10/2023] [Accepted: 03/24/2023] [Indexed: 04/01/2023]
Abstract
Cartilage oligomeric matrix protein (COMP), an extracellular matrix protein, has been shown to enhance proliferation and mechanical integrity in the matrix, supporting functions of the growth plate and articular cartilage. Mutations in COMP cause pseudoachondroplasia (PSACH), a severe dwarfing condition associated with premature joint degeneration and significant lifelong joint pain. The MT (mutant)-COMP mouse mimics PSACH with decreased limb growth, early joint degeneration and pain. Ablation of endoplasmic reticulum stress CHOP signaling eliminated pain and prevented joint degeneration. The health effects of mutant COMP are discussed in relation to cellular/chondrocyte stress in the growth plate, articular cartilage and nearby tissues, and the implications for therapeutic approaches. There are many similarities between osteoarthritis and mutant-COMP protein-induced joint degeneration, suggesting that the relevance of findings in the joints may extend beyond PSACH to idiopathic primary OA.
Collapse
|
7
|
Hecht JT, Veerisetty AC, Hossain MG, Chiu F, Posey KL. CurQ+, a Next-Generation Formulation of Curcumin, Ameliorates Growth Plate Chondrocyte Stress and Increases Limb Growth in a Mouse Model of Pseudoachondroplasia. Int J Mol Sci 2023; 24:ijms24043845. [PMID: 36835255 PMCID: PMC9959842 DOI: 10.3390/ijms24043845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/18/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Mutations in cartilage oligomeric matrix protein (COMP) causes protein misfolding and accumulation in chondrocytes that compromises skeletal growth and joint health in pseudoachondroplasia (PSACH), a severe dwarfing condition. Using the MT-COMP mice, a murine model of PSACH, we showed that pathological autophagy blockage was key to the intracellular accumulation of mutant-COMP. Autophagy is blocked by elevated mTORC1 signaling, preventing ER clearance and ensuring chondrocyte death. We demonstrated that resveratrol reduces the growth plate pathology by relieving the autophagy blockage allowing the ER clearance of mutant-COMP, which partially rescues limb length. To expand potential PSACH treatment options, CurQ+, a uniquely absorbable formulation of curcumin, was tested in MT-COMP mice at doses of 82.3 (1X) and 164.6 mg/kg (2X). CurQ+ treatment of MT-COMP mice from 1 to 4 weeks postnatally decreased mutant COMP intracellular retention, inflammation, restoring both autophagy and chondrocyte proliferation. CurQ+ reduction of cellular stress in growth plate chondrocytes dramatically reduced chondrocyte death, normalized femur length at 2X 164.6 mg/kg and recovered 60% of lost limb growth at 1X 82.3 mg/kg. These results indicate that CurQ+ is a potential therapy for COMPopathy-associated lost limb growth, joint degeneration, and other conditions involving persistent inflammation, oxidative stress, and a block of autophagy.
Collapse
Affiliation(s)
- Jacqueline T. Hecht
- Department of Pediatrics, McGovern Medical School at UTHealth Houston, Houston, TX 77030, USA
- School of Dentistry, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Alka C. Veerisetty
- Department of Pediatrics, McGovern Medical School at UTHealth Houston, Houston, TX 77030, USA
| | - Mohammad G. Hossain
- Department of Pediatrics, McGovern Medical School at UTHealth Houston, Houston, TX 77030, USA
| | - Frankie Chiu
- Department of Pediatrics, McGovern Medical School at UTHealth Houston, Houston, TX 77030, USA
| | - Karen L. Posey
- Department of Pediatrics, McGovern Medical School at UTHealth Houston, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
8
|
Cai S, Quan S, Yang G, Zeng X, Wang X, Ye C, Li H, Wang G, Zeng X, Qiao S. DDIT3 regulates key enzymes in the methionine cycle and flux during embryonic development. J Nutr Biochem 2023; 111:109176. [PMID: 36220527 DOI: 10.1016/j.jnutbio.2022.109176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
One-carbon metabolism is a key metabolic network that integrates nutritional signals with embryonic development. However, the response of one-carbon metabolism to methionine status and the regulatory mechanisms are poorly understood. Herein, we found that methionine supplementation during pregnancy significantly increased fetal number and average fetal weight. In addition, methionine modulated one-carbon metabolism primarily through 2 metabolic enzymes, cystathionine β-synthase (CBS) and methionine adenosyltransferase 2A (MAT2A), which were significantly increased in fetal liver tissues and porcine trophoblast (pTr) cells in response to proper methionine supplementation. CBS and MAT2A overexpression enhanced the DNA synthesis in pTr cells. More importantly, we identified a transcription factor, DNA damage-inducible transcript 3 (DDIT3), that was the primary regulator of CBS and MAT2A, which bound directly to promoters and negatively regulated the expression of CBS and MAT2A. Taken together, our findings identified that DDIT3 targeting CBS and MAT2A was a novel regulatory pathway that mediated cellular one-carbon metabolism in response to methionine signal and provided promising targets to improve pregnancy health.
Collapse
Affiliation(s)
- Shuang Cai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Shuang Quan
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Guangxin Yang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Xinyu Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Changchuan Ye
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Huan Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Gang Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China.
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Cui X, Li C, Wei Z, Meng H, Zhang F, Liu Y, Wu C, Yang S. DDIT3 Governs Milk Production Traits by Targeting IL-6 to Induce Apoptosis in Dairy Cattle. AGRICULTURE 2022; 13:117. [DOI: 10.3390/agriculture13010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The mechanisms of modulating milk production traits remain largely unknown. Based on our previous RNA-seq, DDIT3 was presumed as a novel, promising candidate gene for regulating milk protein and fat traits in dairy cattle. To further detect the genetic effect of DDIT3 and its potential molecular mechanisms in regulating milk production traits in dairy cattle, here, we performed a genotype-phenotype association study. Two SNPs, g.-1194 C>T and g.-128 C>T, were significantly associated with MY (p = 0.0063), FY (p = 0.0001) and PY (p = 0.0216), respectively. A luciferase assay demonstrated that the allele T of g.-128 C>T increased the promoter activity by binding the HSF2, while allele C did not. To further reveal the molecular regulatory mechanisms, the DDIT3-knockdown MAC-T cells were established. It was observed that DDIT3 silencing could induce apoptosis and increase the number of PI-positive cells. Meanwhile, DDIT3 silencing led to increased expression of inflammatory markers, such as IL-6, IL6R, IL1B, IL7R, IL1RL2, IL1A, STAT1-5, MYC, IGFBP4, and IGFBP5, and especially for IL-6 (log2FC = 4.22; p = 3.49 × 10−112). Additionally, compared with the control group, increased lipid accumulation was found in the DDIT3-knockdown MAC-T cells. Thus, our results proved that lower expression of DDIT3 could result in increased lipid accumulation and apoptosis via up-regulating the expression of IL-6. These findings provided clues about the regulatory mechanisms of milk production traits in dairy cattle.
Collapse
Affiliation(s)
- Xiaogang Cui
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi Provincial Key Laboratory for Major Infectious Disease Response, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Changqing Li
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Zhangqi Wei
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Hangting Meng
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi Provincial Key Laboratory for Major Infectious Disease Response, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Fengfeng Zhang
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi Provincial Key Laboratory for Major Infectious Disease Response, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Yue Liu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi Provincial Key Laboratory for Major Infectious Disease Response, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Changxin Wu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi Provincial Key Laboratory for Major Infectious Disease Response, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Shaohua Yang
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Cartilage Oligomeric Matrix Protein, Diseases, and Therapeutic Opportunities. Int J Mol Sci 2022; 23:ijms23169253. [PMID: 36012514 PMCID: PMC9408827 DOI: 10.3390/ijms23169253] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cartilage oligomeric matrix protein (COMP) is an extracellular matrix (ECM) glycoprotein that is critical for collagen assembly and ECM stability. Mutations of COMP cause endoplasmic reticulum stress and chondrocyte apoptosis, resulting in rare skeleton diseases. The bouquet-like structure of COMP allows it to act as a bridging molecule that regulates cellular phenotype and function. COMP is able to interact with many other ECM components and binds directly to a variety of cellular receptors and growth factors. The roles of COMP in other skeleton diseases, such as osteoarthritis, have been implied. As a well-established biochemical marker, COMP indicates cartilage turnover associated with destruction. Recent exciting achievements indicate its involvement in other diseases, such as malignancy, cardiovascular diseases, and tissue fibrosis. Here, we review the basic concepts of COMP and summarize its novel functions in the regulation of signaling events. These findings renew our understanding that COMP has a notable function in cell behavior and disease progression as a signaling regulator. Interestingly, COMP shows distinct functions in different diseases. Targeting COMP in malignancy may withdraw its beneficial effects on the vascular system and induce or aggravate cardiovascular diseases. COMP supplementation is a promising treatment for OA and aortic aneurysms while it may induce tissue fibrosis or cancer metastasis.
Collapse
|
11
|
Yu X, Xu X, Dong W, Yang C, Luo Y, He Y, Jiang C, Wu Y, Wang J. DDIT3/CHOP mediates the inhibitory effect of ER stress on chondrocyte differentiation by AMPKα-SIRT1 pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119265. [PMID: 35381294 DOI: 10.1016/j.bbamcr.2022.119265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Endoplasmic reticulum (ER) stress is an evolutionarily conserved cellular stress response related to multiple diseases, including temporomandibular joint (TMJ) cartilage-related diseases. Recent studies have indicated that DDIT3/CHOP (a downstream transcription factor of ER stress) is an important effector in mediating ER stress to inhibit chondrogenesis. However, the underlying mechanism by which DDIT3 regulates chondrogenesis remains unclear. In this study, tunicamycin (an ER stress agonist)-induced ER stress inhibited chondrocyte differentiation and matrix synthesis in vitro and led to an osteoarthritis-like phenotype in mouse TMJ cartilage. Meanwhile, DDIT3 expression in chondrocytes was robustly upregulated. Loss-of-function experiments validated the inhibiting effect of DDIT3 on chondrocyte differentiation and matrix synthesis. Mechanistically, the inhibiting effect was attributed to the direct and indirect regulatory effect of DDIT3 on SIRT1 (sirtuin1, silent mating type information regulation protein type 1, a member of NAD+ dependent class III histone deacetylases). On one hand, DDIT3 directly promoted the transcription of SIRT1. On the other hand, DDIT3 indirectly increased the expression of SIRT1 by promoting AMPKα phosphorylation and activation. Furthermore, activation of AMPKα or SIRT1 with the corresponding agonist AICAR or resveratrol in the DDIT3-knockdown cells partially restored the inhibiting effect of DDIT3 on chondrocyte differentiation and matrix synthesis. Collectively, these novel findings indicate that DDIT3 regulates the inhibitory effect of ER stress on chondrocyte differentiation and matrix synthesis partially via the AMPKα-SIRT1 pathway. A thorough understanding of ER stress in regulating chondrocyte homeostasis and its role in the onset of osteoarthritis may be promising to develop therapeutic targets and prevent condyle cartilage destruction.
Collapse
Affiliation(s)
- Xijie Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xiaoxiao Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Dong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Chang Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Yao Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Ying He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Chenxi Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Yanru Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jiawei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
12
|
Liang H, Hou Y, Pang Q, Jiang Y, Wang O, Li M, Xing X, Zhu H, Xia W. Clinical, Biochemical, Radiological, Genetic and Therapeutic Analysis of Patients with COMP Gene Variants. Calcif Tissue Int 2022; 110:313-323. [PMID: 34709441 DOI: 10.1007/s00223-021-00920-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022]
Abstract
Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia type 1 (MED1) are two rare skeletal disorders caused by cartilage oligomeric matrix protein (COMP) variants. This study aims to analyze the genotype and phenotype of patients with COMP variants. Clinical information for 14 probands was collected; DNA was extracted from blood for COMP variant detection. Clinical manifestations and radiology scoring systems were established to evaluate the severity of each patient's condition. Serum COMP levels in PSACH patients and healthy subjects were measured. Thirty-nine patients were included, along with 12 PSACH probands and two MED1 probands. Disproportionate short stature, waddling gait, early-onset osteoarthritis and skeletal deformities were the most common features. The height Z-score of PSACH patients correlated negatively with age at evaluation (r = - 0.603, p = 0.01) and the clinical manifestation score (r = - 0.556, p = 0.039). Over 50% of the PSACH patients were overweight/obese. The median serum COMP level in PSACH patients was 16.75 ng/ml, which was significantly lower than that in healthy controls (98.53 ng/ml; p < 0.001). The condition of MED1 patients was better than that of PSACH patients. Four novel variants of COMP were detected: c.874T>C, c.1123_1134del, c.1531G>A, and c.1576G>T. Height Z-scores and serum COMP levels were significantly lower in patients carrying mutations located in calmodulin-like domains 6, 7, and 8. As the two phenotypes overlap to different degrees, PSACH and MED1 are suggested to combine to produce "spondyloepiphyseal dysplasia, COMP type". Clinical manifestations and radiology scoring systems, serum COMP levels and genotype are important for evaluating patient condition severity.
Collapse
Affiliation(s)
- Hanting Liang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Yanfang Hou
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Qianqian Pang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Yan Jiang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Ou Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Mei Li
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Xiaoping Xing
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Weibo Xia
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
13
|
Joint Degeneration in a Mouse Model of Pseudoachondroplasia: ER Stress, Inflammation, and Block of Autophagy. Int J Mol Sci 2021; 22:ijms22179239. [PMID: 34502142 PMCID: PMC8431545 DOI: 10.3390/ijms22179239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/18/2021] [Indexed: 01/05/2023] Open
Abstract
Pseudoachondroplasia (PSACH), a short limb skeletal dysplasia associated with premature joint degeneration, is caused by misfolding mutations in cartilage oligomeric matrix protein (COMP). Here, we define mutant-COMP-induced stress mechanisms that occur in articular chondrocytes of MT-COMP mice, a murine model of PSACH. The accumulation of mutant-COMP in the ER occurred early in MT-COMP articular chondrocytes and stimulated inflammation (TNFα) at 4 weeks, and articular chondrocyte death increased at 8 weeks while ER stress through CHOP was elevated by 12 weeks. Importantly, blockage of autophagy (pS6), the major mechanism that clears the ER, sustained cellular stress in MT-COMP articular chondrocytes. Degeneration of MT-COMP articular cartilage was similar to that observed in PSACH and was associated with increased MMPs, a family of degradative enzymes. Moreover, chronic cellular stresses stimulated senescence. Senescence-associated secretory phenotype (SASP) may play a role in generating and propagating a pro-degradative environment in the MT-COMP murine joint. The loss of CHOP or resveratrol treatment from birth preserved joint health in MT-COMP mice. Taken together, these results indicate that ER stress/CHOP signaling and autophagy blockage are central to mutant-COMP joint degeneration, and MT-COMP mice joint health can be preserved by decreasing articular chondrocyte stress. Future joint sparing therapeutics for PSACH may include resveratrol.
Collapse
|
14
|
Hecht JT, Veerisetty AC, Wu J, Coustry F, Hossain MG, Chiu F, Gannon FH, Posey KL. Primary Osteoarthritis Early Joint Degeneration Induced by Endoplasmic Reticulum Stress Is Mitigated by Resveratrol. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1624-1637. [PMID: 34116024 DOI: 10.1016/j.ajpath.2021.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 01/11/2023]
Abstract
Increasing numbers of people are living with osteoarthritis (OA) due to aging and obesity, creating an urgent need for effective treatment and preventions. Two top risk factors for OA, age and obesity, are associated with endoplasmic reticulum (ER) stress. The I-ERS mouse, an ER stress-driven model of primary OA, was developed to study the role of ER stress in primary OA susceptibility. The I-ERS mouse has the unique ability to induce ER stress in healthy adult articular chondrocytes and cartilage, driving joint degeneration that mimics early primary OA. In this study, ER stress-induced damage occurred gradually and stimulated joint degeneration with OA characteristics including increased matrix metalloproteinase activity, inflammation, senescence, chondrocyte death, decreased proteoglycans, autophagy block, and gait dysfunction. Consistent with human OA, intense exercise hastened and increased the level of ER stress-induced joint damage. Notably, loss of a critical ER stress response protein (CHOP) largely ameliorated ER stress-stimulated OA outcomes including preserving proteoglycan content, reducing inflammation, and relieving autophagy block. Resveratrol diminished ER stress-induced joint degeneration by decreasing CHOP, TNFα, IL-1β, MMP-13, pS6, number of TUNEL-positive chondrocytes, and senescence marker p16 INK4a. The finding, that a dietary supplement can prevent ER stressed-induced joint degeneration in mice, provides a preclinical foundation to potentially develop a prevention strategy for those at high risk to develop OA.
Collapse
Affiliation(s)
- Jacqueline T Hecht
- Department of Pediatrics, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas; McGovern Medical School, School of Dentistry, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas
| | - Alka C Veerisetty
- Department of Pediatrics, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas
| | - Juliana Wu
- Department of Pediatrics, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas; Department of BioSciences, Rice University, Houston, Texas
| | - Francoise Coustry
- Department of Pediatrics, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas
| | - Mohammad G Hossain
- Department of Pediatrics, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas
| | - Frankie Chiu
- Department of Pediatrics, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas
| | - Francis H Gannon
- Departments of Pathology & Immunology and Orthopedic Surgery, Baylor College of Medicine, Houston, Texas
| | - Karen L Posey
- Department of Pediatrics, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas.
| |
Collapse
|
15
|
Yang C, Xu X, Dong X, Yang B, Dong W, Luo Y, Liu X, Wu Y, Wang J. DDIT3/CHOP promotes autophagy in chondrocytes via SIRT1-AKT pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119074. [PMID: 34087318 DOI: 10.1016/j.bbamcr.2021.119074] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/09/2021] [Accepted: 05/27/2021] [Indexed: 01/18/2023]
Abstract
Endoplasmic reticulum (ER) stress can initiate autophagy via unfolded protein response (UPR). As a key downstream gene of UPR, DDIT3/CHOP is expressed in chondrocytes. However, the regulation mechanism of DDIT3/CHOP on autophagy in chondrocytes remains unclear. In this study, the expression levels of autophagic markers Beclin1 and LC3B were found to decrease while p62 increase in the tibial growth plate and costal primary chondrocytes from DDIT3/CHOP KO mice. In vitro, overexpressing DDIT3/CHOP induced autophagy in ATDC5 chondrocytes, displaying an elevated immunofluorescence signal of LC3B and elevated numbers of autophagosomes and autolysosomes. Analysis of the gain- and loss-of-function indicated that the protein level of Beclin1 and the ratio of LC3BII/I increased in DDIT3/CHOP overexpression cells, whereas decreased in DDIT3/CHOP knockdown cells. The decreased level of p62 and additional accumulation of LC3BII caused by chloroquine (CQ) further indicated that DDIT3/CHOP enhanced autophagic flux. Mechanistically, we found that DDIT3/CHOP binds directly to the promoter of SIRT1 to promote its expression by CHIP, qRT-PCR, and Western blot analysis. In addition, SIRT1 enhanced autophagic activity in ATDC5 cells, and inhibition or activation of SIRT1 partially reversed the effect of overexpressing or downregulating DDIT3/CHOP on autophagy. Furthermore, AKT signaling was found to be responsible for DDIT3/CHOP-regulated autophagy in ATDC5 cells. SIRT1 knockdown reversed the effect of DDIT3/CHOP overexpression on AKT signaling. In conclusion, our data clarifies that DDIT3/CHOP promotes autophagy in ATDC5 chondrocytes through the SIRT1-AKT pathway. These results were also confirmed in the primary chondrocytes.
Collapse
Affiliation(s)
- Chang Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Xiaoxiao Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Xiaofei Dong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Beining Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Wei Dong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Yao Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Xiayi Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Yanru Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Jiawei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China.
| |
Collapse
|
16
|
Hecht JT, Coustry F, Veerisetty AC, Hossain MG, Posey KL. Resveratrol Reduces COMPopathy in Mice Through Activation of Autophagy. JBMR Plus 2021; 5:e10456. [PMID: 33778324 PMCID: PMC7990140 DOI: 10.1002/jbm4.10456] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
Misfolding mutations in cartilage oligomeric matrix protein (COMP) cause it to be retained within the endoplasmic reticulum (ER) of chondrocytes, stimulating a multitude of damaging cellular responses including ER stress, inflammation, and oxidative stress, which ultimately culminates in the death of growth plate chondrocytes and pseudoachondroplasia (PSACH). Previously, we demonstrated that an antioxidant, resveratrol, substantially reduces the intracellular accumulation of mutant-COMP, dampens cellular stress, and lowers the level of growth plate chondrocyte death. In addition, we showed that resveratrol reduces mammalian target of rapamycin complex 1 (mTORC1) signaling, suggesting a potential mechanism. In this work, we investigate the role of autophagy in treatment of COMPopathies. In cultured chondrocytes expressing wild-type COMP or mutant-COMP, resveratrol significantly increased the number of Microtubule-associated protein 1A/1B-light chain 3 (LC3) vesicles, directly demonstrating that resveratrol-stimulated autophagy is an important component of the resveratrol-driven mechanism responsible for the degradation of mutant-COMP. Moreover, pharmacological inhibitors of autophagy suppressed degradation of mutant-COMP in our established mouse model of PSACH. In contrast, blockage of the proteasome did not substantially alter resveratrol clearance of mutant-COMP from growth plate chondrocytes. Mechanistically, resveratrol increased SIRT1 and PP2A expression and reduced MID1 expression and activation of phosphorylated protein kinase B (pAKT) and mTORC1 signaling in growth plate chondrocytes, allowing clearance of mutant-COMP by autophagy. Importantly, we show that optimal reduction in growth plate pathology, including decreased mutant-COMP retention, decreased mTORC1 signaling, and restoration of chondrocyte proliferation was attained when treatment was initiated between birth to 1 week of age in MT-COMP mice, translating to birth to approximately 2 years of age in children with PSACH. These results clearly demonstrate that resveratrol stimulates clearance of mutant-COMP by an autophagy-centric mechanism. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical SchoolThe University of Texas Health Science Center at Houston (UTHealth)HoustonTXUSA
- UTHealth School of DentistryHoustonTXUSA
| | - Francoise Coustry
- Department of Pediatrics, McGovern Medical SchoolThe University of Texas Health Science Center at Houston (UTHealth)HoustonTXUSA
| | - Alka C Veerisetty
- Department of Pediatrics, McGovern Medical SchoolThe University of Texas Health Science Center at Houston (UTHealth)HoustonTXUSA
| | | | - Karen L Posey
- Department of Pediatrics, McGovern Medical SchoolThe University of Texas Health Science Center at Houston (UTHealth)HoustonTXUSA
| |
Collapse
|
17
|
Dennis EP, Greenhalgh-Maychell PL, Briggs MD. Multiple epiphyseal dysplasia and related disorders: Molecular genetics, disease mechanisms, and therapeutic avenues. Dev Dyn 2020; 250:345-359. [PMID: 32633442 DOI: 10.1002/dvdy.221] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022] Open
Abstract
For the vast majority of the 6000 known rare disease the pathogenic mechanisms are poorly defined and there is little treatment, leading to poor quality of life and high healthcare costs. Genetic skeletal diseases (skeletal dysplasias) are archetypal examples of rare diseases that are chronically debilitating, often life-threatening and for which no treatments are currently available. There are more than 450 unique phenotypes that, although individually rare, have an overall prevalence of at least 1 per 4000 children. Multiple epiphyseal dysplasia (MED) is a clinically and genetically heterogeneous disorder characterized by disproportionate short stature, joint pain, and early-onset osteoarthritis. MED is caused by mutations in the genes encoding important cartilage extracellular matrix proteins, enzymes, and transporter proteins. Recently, through the use of various cell and mouse models, disease mechanisms underlying this diverse phenotypic spectrum are starting to be elucidated. For example, ER stress induced as a consequence of retained misfolded mutant proteins has emerged as a unifying disease mechanisms for several forms of MED in particular and skeletal dysplasia in general. Moreover, targeting ER stress through drug repurposing has become an attractive therapeutic avenue.
Collapse
Affiliation(s)
- Ella P Dennis
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle Upon Tyne, UK
| | | | - Michael D Briggs
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle Upon Tyne, UK
| |
Collapse
|
18
|
Burger A, Roosenboom J, Hossain M, Weinberg SM, Hecht JT, Posey KL. Mutant COMP shapes growth and development of skull and facial structures in mice and humans. Mol Genet Genomic Med 2020; 8:e1251. [PMID: 32347019 PMCID: PMC7336729 DOI: 10.1002/mgg3.1251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/13/2020] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Cartilage oligomeric matrix protein (COMP) is an important extracellular matrix protein primarily functioning in the musculoskeletal tissues and especially endochondral bone growth. Mutations in COMP cause the skeletal dysplasia pseudoachondroplasia (PSACH) that is characterized by short limbs and fingers, joint laxity, and abnormalities but a striking lack of skull and facial abnormalities. METHODS This study examined both mice and humans to determine how mutant-COMP affects face and skull growth. RESULTS Mutant COMP (MT-COMP) mice were phenotypically distinct. Snout length and skull height were diminished in MT-COMP mouse and the face more closely resembled younger controls. Three-dimensional facial measurements of PSACH faces showed widely spaced eyes, reduced lower facial height, and decreased nasal protrusion, which correlated with a more juvenile appearing face. Neither MT-COMP mice nor PSACH individuals show midface hypoplasia usually associated with abnormal endochondral bone growth. MT-COMP mice do show delayed endochondral and membranous skull ossification that normalizes with age. CONCLUSION Therefore, mutant-COMP affects both endochondral and intramembranous bones of the skull resulting in a reduction of the nose and lower facial height in mice and humans, in addition to its well-defined role in the growth plate chondrocytes.
Collapse
Affiliation(s)
- Alexander Burger
- Center for Craniofacial ResearchUTHealth School of DentistryHoustonTXUSA
| | | | - Mohammad Hossain
- Department of PediatricsMcGovern Medical SchoolThe University of Texas Health Science Center at Houston (UTHealth)HoustonTXUSA
| | - Seth M. Weinberg
- Department of Oral BiologyUniversity of PittsburghPittsburghPAUSA
- Department of Human GeneticsUniversity of PittsburghPittsburghPAUSA
- Department of AnthropologyUniversity of PittsburghPittsburghPAUSA
| | - Jacqueline T. Hecht
- Center for Craniofacial ResearchUTHealth School of DentistryHoustonTXUSA
- Department of PediatricsMcGovern Medical SchoolThe University of Texas Health Science Center at Houston (UTHealth)HoustonTXUSA
| | - Karen L. Posey
- Department of PediatricsMcGovern Medical SchoolThe University of Texas Health Science Center at Houston (UTHealth)HoustonTXUSA
| |
Collapse
|
19
|
Posey KL, Coustry F, Veerisetty AC, Hossain MG, Gambello MJ, Hecht JT. Novel mTORC1 Mechanism Suggests Therapeutic Targets for COMPopathies. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:132-146. [PMID: 30553437 DOI: 10.1016/j.ajpath.2018.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/20/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023]
Abstract
Cartilage oligomeric matrix protein (COMP) is a large, multifunctional extracellular protein that, when mutated, is retained in the rough endoplasmic reticulum (ER). This retention elicits ER stress, inflammation, and oxidative stress, resulting in dysfunction and death of growth plate chondrocytes. While identifying the cellular pathologic mechanisms underlying the murine mutant (MT)-COMP model of pseudoachondroplasia, increased midline-1 (MID1) expression and mammalian target of rapamycin complex 1 (mTORC1) signaling was found. This novel role for MID1/mTORC1 signaling was investigated since treatments shown to repress the pathology also reduced Mid1/mTORC1. Although ER stress-inducing drugs or tumor necrosis factor α (TNFα) in rat chondrosarcoma cells increased Mid1, oxidative stress did not, establishing that ER stress- or TNFα-driven inflammation alone is sufficient to elevate MID1 expression. Since MID1 ubiquitinates protein phosphatase 2A (PP2A), a negative regulator of mTORC1, PP2A was evaluated in MT-COMP growth plate chondrocytes. PP2A was decreased, indicating de-repression of mTORC1 signaling. Rapamycin treatment in MT-COMP mice reduced mTORC1 signaling and intracellular retention of COMP, and increased proliferation, but did not change inflammatory markers IL-16 and eosinophil peroxidase. Lastly, mRNA from tuberous sclerosis-1/2-null mice brain tissue exhibiting ER stress had increased Mid1 expression, confirming the relationship between ER stress and MID1/mTORC1 signaling. These findings suggest a mechanistic link between ER stress and MID1/mTORC1 signaling that has implications extending to other conditions involving ER stress.
Collapse
Affiliation(s)
- Karen L Posey
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas.
| | - Francoise Coustry
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| | - Alka C Veerisetty
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| | - Mohammad G Hossain
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| | - Michael J Gambello
- Human Genetics and Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas; School of Dentistry, University of Texas Health Science Center, Houston, Texas
| |
Collapse
|
20
|
Fischbach F, Nedelcu J, Leopold P, Zhan J, Clarner T, Nellessen L, Beißel C, van Heuvel Y, Goswami A, Weis J, Denecke B, Schmitz C, Hochstrasser T, Nyamoya S, Victor M, Beyer C, Kipp M. Cuprizone-induced graded oligodendrocyte vulnerability is regulated by the transcription factor DNA damage-inducible transcript 3. Glia 2018; 67:263-276. [PMID: 30511355 DOI: 10.1002/glia.23538] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 12/28/2022]
Abstract
Oligodendrocytes are integral to efficient neuronal signaling. Loss of myelinating oligodendrocytes is a central feature of many neurological diseases, including multiple sclerosis (MS). The results of neuropathological studies suggest that oligodendrocytes react with differing sensitivity to toxic insults, with some cells dying early during lesion development and some cells being resistant for weeks. This proposed graded vulnerability has never been demonstrated but provides an attractive window for therapeutic interventions. Furthermore, the biochemical pathways associated with graded oligodendrocyte vulnerability have not been well explored. We used immunohistochemistry and serial block-face scanning electron microscopy (3D-SEM) to show that cuprizone-induced metabolic stress results in an "out of phase" degeneration of oligodendrocytes. Although expression induction of stress response transcription factors in oligodendrocytes occurs within days, subsequent oligodendrocyte apoptosis continues for weeks. In line with the idea of an out of phase degeneration of oligodendrocytes, detailed ultrastructural reconstructions of the axon-myelin unit demonstrate demyelination of single internodes. In parallel, genome wide array analyses revealed an active unfolded protein response early after initiation of the cuprizone intoxication. In addition to the cytoprotective pathways, the pro-apoptotic transcription factor DNA damage-inducible transcript 3 (DDIT3) was induced early in oligodendrocytes. In advanced lesions, DDIT3 was as well expressed by activated astrocytes. Toxin-induced oligodendrocyte apoptosis, demyelination, microgliosis, astrocytosis, and acute axonal damage were less intense in the Ddit3-null mutants. This study identifies DDIT3 as an important regulator of graded oligodendrocyte vulnerability in a MS animal model. Interference with this stress cascade might offer a promising therapeutic approach for demyelinating disorders.
Collapse
Affiliation(s)
- Felix Fischbach
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany
| | - Julia Nedelcu
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany
| | - Patrizia Leopold
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany
| | - Jiangshan Zhan
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany
| | - Tim Clarner
- Faculty of Medicine, RWTH Aachen University, Institute of Neuroanatomy, Aachen, Germany
| | - Lara Nellessen
- Faculty of Medicine, RWTH Aachen University, Institute of Neuroanatomy, Aachen, Germany
| | - Christian Beißel
- Faculty of Medicine, RWTH Aachen University, Institute of Neuroanatomy, Aachen, Germany
| | - Yasemin van Heuvel
- Faculty of Medicine, RWTH Aachen University, Institute of Neuroanatomy, Aachen, Germany
| | - Anand Goswami
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
| | - Bernd Denecke
- Interdisciplinary Center for Clinical Research Aachen (IZKF Aachen), RWTH Aachen University, Aachen, Germany
| | - Christoph Schmitz
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany
| | - Tanja Hochstrasser
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany
| | - Stella Nyamoya
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany.,Faculty of Medicine, RWTH Aachen University, Institute of Neuroanatomy, Aachen, Germany
| | - Marion Victor
- Faculty of Medicine, RWTH Aachen University, Institute of Neuroanatomy, Aachen, Germany
| | - Cordian Beyer
- Faculty of Medicine, RWTH Aachen University, Institute of Neuroanatomy, Aachen, Germany
| | - Markus Kipp
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany.,Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
21
|
Wang C, Tan Z, Niu B, Tsang KY, Tai A, Chan WCW, Lo RLK, Leung KKH, Dung NWF, Itoh N, Zhang MQ, Chan D, Cheah KSE. Inhibiting the integrated stress response pathway prevents aberrant chondrocyte differentiation thereby alleviating chondrodysplasia. eLife 2018; 7:37673. [PMID: 30024379 PMCID: PMC6053305 DOI: 10.7554/elife.37673] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/05/2018] [Indexed: 12/16/2022] Open
Abstract
The integrated stress response (ISR) is activated by diverse forms of cellular stress, including endoplasmic reticulum (ER) stress, and is associated with diseases. However, the molecular mechanism(s) whereby the ISR impacts on differentiation is incompletely understood. Here, we exploited a mouse model of Metaphyseal Chondrodysplasia type Schmid (MCDS) to provide insight into the impact of the ISR on cell fate. We show the protein kinase RNA-like ER kinase (PERK) pathway that mediates preferential synthesis of ATF4 and CHOP, dominates in causing dysplasia by reverting chondrocyte differentiation via ATF4-directed transactivation of Sox9. Chondrocyte survival is enabled, cell autonomously, by CHOP and dual CHOP-ATF4 transactivation of Fgf21. Treatment of mutant mice with a chemical inhibitor of PERK signaling prevents the differentiation defects and ameliorates chondrodysplasia. By preventing aberrant differentiation, titrated inhibition of the ISR emerges as a rationale therapeutic strategy for stress-induced skeletal disorders.
Collapse
Affiliation(s)
- Cheng Wang
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Zhijia Tan
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Ben Niu
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Kwok Yeung Tsang
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Andrew Tai
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Wilson C W Chan
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Rebecca L K Lo
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Keith K H Leung
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Nelson W F Dung
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Nobuyuki Itoh
- Graduate School of Pharmaceutical Sciences, University of Kyoto, Kyoto, Japan
| | - Michael Q Zhang
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, United States.,MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Danny Chan
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
22
|
Shazeeb MS, Cox MK, Gupta A, Tang W, Singh K, Pryce CT, Fogle R, Mu Y, Weber WD, Bangari DS, Ying X, Sabbagh Y. Skeletal Characterization of the Fgfr3 Mouse Model of Achondroplasia Using Micro-CT and MRI Volumetric Imaging. Sci Rep 2018; 8:469. [PMID: 29323153 PMCID: PMC5765052 DOI: 10.1038/s41598-017-18801-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/18/2017] [Indexed: 01/16/2023] Open
Abstract
Achondroplasia, the most common form of dwarfism, affects more than a quarter million people worldwide and remains an unmet medical need. Achondroplasia is caused by mutations in the fibroblast growth factor receptor 3 (FGFR3) gene which results in over-activation of the receptor, interfering with normal skeletal development leading to disproportional short stature. Multiple mouse models have been generated to study achondroplasia. The characterization of these preclinical models has been primarily done with 2D measurements. In this study, we explored the transgenic model expressing mouse Fgfr3 containing the achondroplasia mutation G380R under the Col2 promoter (Ach). Survival and growth rate of the Ach mice were reduced compared to wild-type (WT) littermates. Axial skeletal defects and abnormalities of the sternebrae and vertebrae were observed in the Ach mice. Further evaluation of the Ach mouse model was performed by developing 3D parameters from micro-computed tomography (micro-CT) and magnetic resonance imaging (MRI). The 3-week-old mice showed greater differences between the Ach and WT groups compared to the 6-week-old mice for all parameters. Deeper understanding of skeletal abnormalities of this model will help guide future studies for evaluating novel and effective therapeutic approaches for the treatment of achondroplasia.
Collapse
Affiliation(s)
- Mohammed Salman Shazeeb
- Global Bioimaging Department, Translational In-vivo Models, Sanofi R&D Global Research Platform, 49 New York Avenue, Framingham, MA, 01701, United States
| | - Megan K Cox
- Rare Diseases, Sanofi, 49 New York Avenue, Framingham, MA, 01701, USA
| | - Anurag Gupta
- Global Bioimaging Department, Translational In-vivo Models, Sanofi R&D Global Research Platform, 49 New York Avenue, Framingham, MA, 01701, United States
| | - Wen Tang
- Rare Diseases, Sanofi, 49 New York Avenue, Framingham, MA, 01701, USA
| | - Kuldeep Singh
- Global Discovery Pathology, Translational In-vivo Models, Sanofi R&D Global Research Platform, 5 The Mountain Road, Framingham, MA, 01701, USA
| | - Cynthia T Pryce
- Translational Sciences, Sanofi R&D Global Research Platform, 49 New York avenue, Framingham, MA, 01701, United States
| | - Robert Fogle
- Global Bioimaging Department, Translational In-vivo Models, Sanofi R&D Global Research Platform, 49 New York Avenue, Framingham, MA, 01701, United States
| | - Ying Mu
- Global Bioimaging Department, Translational In-vivo Models, Sanofi R&D Global Research Platform, 49 New York Avenue, Framingham, MA, 01701, United States
| | - William D Weber
- Translational Sciences, Sanofi R&D Global Research Platform, 49 New York avenue, Framingham, MA, 01701, United States
| | - Dinesh S Bangari
- Global Discovery Pathology, Translational In-vivo Models, Sanofi R&D Global Research Platform, 5 The Mountain Road, Framingham, MA, 01701, USA
| | - Xiaoyou Ying
- Global Bioimaging Department, Translational In-vivo Models, Sanofi R&D Global Research Platform, 49 New York Avenue, Framingham, MA, 01701, United States.
| | - Yves Sabbagh
- Rare Diseases, Sanofi, 49 New York Avenue, Framingham, MA, 01701, USA.
| |
Collapse
|
23
|
Mutant cartilage oligomeric matrix protein (COMP) compromises bone integrity, joint function and the balance between adipogenesis and osteogenesis. Matrix Biol 2018; 67:75-89. [PMID: 29309831 DOI: 10.1016/j.matbio.2017.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/23/2017] [Accepted: 12/27/2017] [Indexed: 12/23/2022]
Abstract
Mutations in COMP (cartilage oligomeric matrix protein) cause severe long bone shortening in mice and humans. Previously, we showed that massive accumulation of misfolded COMP in the ER of growth plate chondrocytes in our MT-COMP mouse model of pseudoachondroplasia (PSACH) causes premature chondrocyte death and loss of linear growth. Premature chondrocyte death results from activation of oxidative stress and inflammation through the CHOP-ER pathway and is reduced by removing CHOP or by anti-inflammatory or antioxidant therapies. Although the mutant COMP chondrocyte pathologic mechanism is now recognized, the effect of mutant COMP on bone quality and joint health (laxity) is largely unknown. Applying multiple analytic approaches, we describe a novel mechanism by which the deleterious consequences of mutant COMP retention results in upregulation of miR-223 disturbing the adipogenesis - osteogenesis balance. This results in reduction in bone mineral density, bone quality, mechanical strength and subchondral bone thickness. These, in addition to abnormal patterns of ossification at the ends of the femoral bones likely contribute to precocious osteoarthritis (OA) of the hips and knees in the MT-COMP mouse and PSACH. Moreover, joint laxity is compromised by abnormally thin ligaments. Altogether, these novel findings align with the PSACH phenotype of delayed ossification and bone age, extreme joint laxity and joint erosion, and extend our understanding of the underlying processes that affect bone in PSACH. These results introduce a novel finding that miR-223 is involved in the ossification defect in MT-COMP mice making it a therapeutic target.
Collapse
|
24
|
Posey KL, Hecht JT. Novel therapeutic interventions for pseudoachondroplasia. Bone 2017; 102:60-68. [PMID: 28336490 PMCID: PMC6168010 DOI: 10.1016/j.bone.2017.03.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/28/2017] [Accepted: 03/20/2017] [Indexed: 12/31/2022]
Abstract
Pseudoachondroplasia (PSACH), a severe short-limbed dwarfing condition, is associated with life-long joint pain and early onset osteoarthritis. PSACH is caused by mutations in cartilage oligomeric matrix protein (COMP), a pentameric matricellular protein expressed primarily in cartilage and other musculoskeletal tissues. Mutations in COMP diminish calcium binding and as a result perturb protein folding and export to the extracellular matrix. Mutant COMP is retained in the endoplasmic reticulum (ER) of growth plate chondrocytes resulting in massive intracellular COMP retention. COMP trapped in the ER builds an intracellular matrix network that may prevent the normal cellular clearance mechanisms. We have shown that accumulation of intracellular matrix in mutant-COMP (MT-COMP) mice stimulates intense unrelenting ER stress, inflammation and oxidative stress. This cytotoxic stress triggers premature death of growth plate chondrocytes limiting long-bone growth. Here, we review the mutant COMP pathologic mechanisms and anti-inflammatory/antioxidant therapeutic approaches to reduce ER stress. In MT-COMP mice, aspirin and resveratrol both dampen the mutant COMP chondrocyte phenotype by decreasing intracellular accumulation, chondrocyte death and inflammatory marker expression. This reduction in chondrocyte stress translates into an improvement in long-bone growth in the MT-COMP mice. Our efforts now move to translational studies targeted at reducing the clinical consequences of MT-COMP and painful sequelae associated with PSACH.
Collapse
Affiliation(s)
- Karen L Posey
- McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States.
| | - Jacqueline T Hecht
- McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States; School of Dentistry University of Texas Heath, Houston, TX, United States
| |
Collapse
|
25
|
Posey KL, Coustry F, Veerisetty AC, Hossain M, Gattis D, Booten S, Alcorn JL, Seth PP, Hecht JT. Antisense Reduction of Mutant COMP Reduces Growth Plate Chondrocyte Pathology. Mol Ther 2017; 25:705-714. [PMID: 28162960 DOI: 10.1016/j.ymthe.2016.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 11/28/2016] [Accepted: 12/25/2016] [Indexed: 01/25/2023] Open
Abstract
Mutations in cartilage oligomeric matrix protein cause pseudoachondroplasia, a severe disproportionate short stature disorder. Mutant cartilage oligomeric matrix protein produces massive intracellular retention of cartilage oligomeric matrix protein, stimulating ER and oxidative stresses and inflammation, culminating in post-natal loss of growth plate chondrocytes, which compromises linear bone growth. Treatments for pseudoachondroplasia are limited because cartilage is relatively avascular and considered inaccessible. Here we report successful delivery and treatment using antisense oligonucleotide technology in our transgenic pseudoachondroplasia mouse model. We demonstrate delivery of human cartilage oligomeric matrix protein-specific antisense oligonucleotides to cartilage and reduction of cartilage oligomeric matrix protein expression, which largely alleviates pseudoachondroplasia growth plate chondrocyte pathology. One antisense oligonucleotide reduced steady-state levels of cartilage oligomeric matrix protein mRNA and dampened intracellular retention of mutant cartilage oligomeric matrix protein, leading to a reduction of inflammatory markers and cell death and partial restoration of proliferation. This novel and exciting work demonstrates that antisense-based therapy is a viable approach for treating pseudoachondroplasia and other human cartilage disorders.
Collapse
Affiliation(s)
- Karen L Posey
- Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA.
| | - Francoise Coustry
- Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Alka C Veerisetty
- Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Mohammad Hossain
- Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Danielle Gattis
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Sheri Booten
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Joseph L Alcorn
- Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Punit P Seth
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| |
Collapse
|
26
|
Yu M, Yi SQ, Wu YR, Sun HL, Song FF, Wang JW. Ddit3 suppresses the differentiation of mouse chondroprogenitor cells. Int J Biochem Cell Biol 2016; 81:156-163. [DOI: 10.1016/j.biocel.2016.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 11/06/2016] [Accepted: 11/10/2016] [Indexed: 12/14/2022]
|
27
|
Abstract
Introduction: Genetic skeletal diseases (GSDs) are a diverse and complex group of rare genetic conditions that affect the development and homeostasis of the skeleton. Although individually rare, as a group of related diseases, GSDs have an overall prevalence of at least 1 per 4,000 children. There are currently very few specific therapeutic interventions to prevent, halt or modify skeletal disease progression and therefore the generation of new and effective treatments requires novel and innovative research that can identify tractable therapeutic targets and biomarkers of these diseases. Areas covered: Remarkable progress has been made in identifying the genetic basis of the majority of GSDs and in developing relevant model systems that have delivered new knowledge on disease mechanisms and are now starting to identify novel therapeutic targets. This review will provide an overview of disease mechanisms that are shared amongst groups of different GSDs and describe potential therapeutic approaches that are under investigation. Expert opinion: The extensive clinical variability and genetic heterogeneity of GSDs renders this broad group of rare diseases a bench to bedside challenge. However, the evolving hypothesis that clinically different diseases might share common disease mechanisms is a powerful concept that will generate critical mass for the identification and validation of novel therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Michael D Briggs
- Newcastle University, Institute of Genetic Medicine, International Centre for Life , Central Parkway, Newcastle-upon-Tyne, NE1 3BZ, UK
| | - Peter A Bell
- Newcastle University, Institute of Genetic Medicine, International Centre for Life , Newcastle-upon-Tyne, NE1 3BZ, UK
| | - Michael J Wright
- Newcastle University, Institute of Genetic Medicine, International Centre for Life , Newcastle-upon-Tyne, NE1 3BZ, UK
| | - Katarzyna A Pirog
- Newcastle University, Institute of Genetic Medicine, International Centre for Life , Newcastle-upon-Tyne, NE1 3BZ, UK
| |
Collapse
|
28
|
BRIGGS MICHAELD, BELL PETERA, PIROG KATARZYNAA. The utility of mouse models to provide information regarding the pathomolecular mechanisms in human genetic skeletal diseases: The emerging role of endoplasmic reticulum stress (Review). Int J Mol Med 2015; 35:1483-92. [PMID: 25824717 PMCID: PMC4432922 DOI: 10.3892/ijmm.2015.2158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/30/2015] [Indexed: 11/22/2022] Open
Abstract
Genetic skeletal diseases (GSDs) are an extremely diverse and complex group of rare genetic diseases that primarily affect the development and homeostasis of the osseous skeleton. There are more than 450 unique and well-characterised phenotypes that range in severity from relatively mild to severe and lethal forms. Although individually rare, as a group of related genetic diseases, GSDs have an overall prevalence of at least 1 per 4,000 children. Qualitative defects in cartilage structural proteins result in a broad spectrum of both recessive and dominant GSDs. This review focused on a disease spectrum resulting from mutations in the non-collagenous glycoproteins, cartilage oligomeric matrix protein (COMP) and matrilin-3, which together cause a continuum of phenotypes that are amongst the most common autosomal dominant GSDs. Pseudoachondroplasia (PSACH) and autosomal dominant multiple epiphyseal dysplasia (MED) comprise a disease spectrum characterised by varying degrees of disproportionate short stature, joint pain and stiffness and early-onset osteoarthritis. Over the past decade, the generation and deep phenotyping of a range of genetic mouse models of the PSACH and MED disease spectrum has allowed the disease mechanisms to be characterised in detail. Moreover, the generation of novel phenocopies to model specific disease mechanisms has confirmed the importance of endoplasmic reticulum (ER) stress and reduced chondrocyte proliferation as key modulators of growth plate dysplasia and reduced bone growth. Finally, new insight into related musculoskeletal complications (such as myopathy and tendinopathy) has also been gained through the in-depth analysis of targeted mouse models of the PSACH-MED disease spectrum.
Collapse
Affiliation(s)
- MICHAEL D. BRIGGS
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| | - PETER A. BELL
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| | - KATARZYNA A. PIROG
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
29
|
Posey KL, Coustry F, Veerisetty AC, Hossain M, Alcorn JL, Hecht JT. Antioxidant and anti-inflammatory agents mitigate pathology in a mouse model of pseudoachondroplasia. Hum Mol Genet 2015; 24:3918-28. [PMID: 25859006 DOI: 10.1093/hmg/ddv122] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/07/2015] [Indexed: 12/22/2022] Open
Abstract
Pseudoachondroplasia (PSACH), a severe short-limb dwarfing condition, results from mutations that cause misfolding of the cartilage oligomeric matrix protein (COMP). Accumulated COMP in growth plate chondrocytes activates endoplasmic reticulum stress, leading to inflammation and chondrocyte death. Using a MT-COMP mouse model of PSACH that recapitulates the molecular and clinical PSACH phenotype, we previously reported that oxidative stress and inflammation play important and unappreciated roles in PSACH pathology. In this study, we assessed the ability of antioxidant and anti-inflammatory agents to affect skeletal and cellular pathology in our mouse model of PSACH. Treatment of MT-COMP mice with aspirin or resveratrol from birth to P28 decreased mutant COMP intracellular retention and chondrocyte cell death, and restored chondrocyte proliferation. Inflammatory markers associated with cartilage degradation and eosinophils were present in the joints of untreated juvenile MT-COMP mice, but were undetectable in treated mice. Most importantly, these treatments resulted in significantly increased femur length. This is the first and only therapeutic approach shown to mitigate both the chondrocyte and long-bone pathology of PSACH in a mouse model and suggests that reducing inflammation and oxidative stress early in the disease process may be a novel approach to treat this disorder.
Collapse
Affiliation(s)
- Karen L Posey
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX, USA and
| | - Francoise Coustry
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX, USA and
| | - Alka C Veerisetty
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX, USA and
| | - Mohammad Hossain
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX, USA and
| | - Joseph L Alcorn
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX, USA and
| | - Jacqueline T Hecht
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX, USA and Shriners Hospital for Children, Houston, TX, USA
| |
Collapse
|
30
|
Abstract
Growth plate is a specialized cartilaginous structure that mediates the longitudinal growth of skeletal bones. It consists of ordered zones of chondrocytes that secrete an extracellular matrix (ECM) composed of specific types of collagens and proteoglycans. Several heritable human skeletal dysplasias are caused by mutations in these ECM components and this review focuses on the roles of type II, IX, X, and XI collagens, aggrecan, matrilins, perlecan, and cartilage oligomeric matrix protein in the growth plate as deduced from human disease phenotypes and mouse models. Substantial advances have been achieved in deciphering the interaction networks and individual roles of these components in the construction of the growth plate ECM. Furthermore, ER stress and other cellular responses have been identified as key downstream effects of the ECM mutations contributing to abnormal growth plate development. The next challenge is to utilize the molecular level knowledge for the development of potential therapeutics.
Collapse
Affiliation(s)
- Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, PO Box 5000, FIN-90014, Oulu, Finland,
| |
Collapse
|
31
|
Acharya C, Yik JHN, Kishore A, Van Dinh V, Di Cesare PE, Haudenschild DR. Cartilage oligomeric matrix protein and its binding partners in the cartilage extracellular matrix: interaction, regulation and role in chondrogenesis. Matrix Biol 2014; 37:102-11. [PMID: 24997222 DOI: 10.1016/j.matbio.2014.06.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/05/2014] [Accepted: 06/05/2014] [Indexed: 10/25/2022]
Abstract
Thrombospondins (TSPs) are widely known as a family of five calcium-binding matricellular proteins. While these proteins belong to the same family, they are encoded by different genes, regulate different cellular functions and are localized to specific regions of the body. TSP-5 or Cartilage Oligomeric Matrix Protein (COMP) is the only TSP that has been associated with skeletal disorders in humans, including pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED). The pentameric structure of COMP, the evidence that it interacts with multiple cellular proteins, and the recent reports of COMP acting as a 'lattice' to present growth factors to cells, inspired this review of COMP and its interacting partners. In our review, we have compiled the interactions of COMP with other proteins in the cartilage extracellular matrix and summarized their importance in maintaining the structural integrity of cartilage as well as in regulating cellular functions.
Collapse
Affiliation(s)
- Chitrangada Acharya
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Jasper H N Yik
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Ashleen Kishore
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Victoria Van Dinh
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Paul E Di Cesare
- Department of Orthopaedics and Rehabilitation, New York Hospital Queens, New York, NY 11355, USA
| | - Dominik R Haudenschild
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| |
Collapse
|
32
|
Posey KL, Alcorn JL, Hecht JT. Pseudoachondroplasia/COMP - translating from the bench to the bedside. Matrix Biol 2014; 37:167-73. [PMID: 24892720 PMCID: PMC4209947 DOI: 10.1016/j.matbio.2014.05.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/19/2014] [Accepted: 05/19/2014] [Indexed: 12/31/2022]
Abstract
Pseudoachondroplasia (PSACH) is a skeletal dysplasia characterized by disproportionate short stature, small hands and feet, abnormal joints and early onset osteoarthritis. PSACH is caused by mutations in thrombospondin-5 (TSP-5, also known as cartilage oligomeric matrix protein or COMP), a pentameric extracellular matrix protein primarily expressed in chondrocytes and musculoskeletal tissues. The thrombospondin gene family is composed of matricellular proteins that associate with the extracellular matrix (ECM) and regulate processes in the matrix. Mutations in COMP interfere with calcium-binding, protein conformation and export to the extracellular matrix, resulting in inappropriate intracellular COMP retention. This accumulation of misfolded protein is cytotoxic and triggers premature death of chondrocytes during linear bone growth, leading to shortened long bones. Both in vitro and in vivo models have been employed to study the molecular processes underlying development of the PSACH pathology. Here, we compare the strengths and weaknesses of current mouse models of PSACH and discuss how the resulting phenotypes may be translated to clinical therapies.
Collapse
Affiliation(s)
- Karen LaShea Posey
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX 77030, USA.
| | - Joseph L Alcorn
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Jacqueline T Hecht
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX 77030, USA; Shriners Hospital for Children, Houston, TX 77030, USA
| |
Collapse
|
33
|
Patterson SE, Dealy CN. Mechanisms and models of endoplasmic reticulum stress in chondrodysplasia. Dev Dyn 2014; 243:875-93. [DOI: 10.1002/dvdy.24131] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 12/14/2022] Open
Affiliation(s)
- Sara E. Patterson
- Center for Regenerative Medicine and Skeletal Development; Department of Reconstructive Sciences; University of Connecticut Health Center; Farmington Connecticut
| | - Caroline N. Dealy
- Center for Regenerative Medicine and Skeletal Development; Department of Reconstructive Sciences; University of Connecticut Health Center; Farmington Connecticut
- Center for Regenerative Medicine and Skeletal Development; Department of Orthopedic Surgery; University of Connecticut Health Center; Farmington Connecticut
| |
Collapse
|
34
|
Piróg KA, Irman A, Young S, Halai P, Bell PA, Boot-Handford RP, Briggs MD. Abnormal chondrocyte apoptosis in the cartilage growth plate is influenced by genetic background and deletion of CHOP in a targeted mouse model of pseudoachondroplasia. PLoS One 2014; 9:e85145. [PMID: 24558358 PMCID: PMC3928032 DOI: 10.1371/journal.pone.0085145] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/23/2013] [Indexed: 11/18/2022] Open
Abstract
Pseudoachondroplasia (PSACH) is an autosomal dominant skeletal dysplasia caused by mutations in cartilage oligomeric matrix protein (COMP) and characterised by short limbed dwarfism and early onset osteoarthritis. Mouse models of PSACH show variable retention of mutant COMP in the ER of chondrocytes, however, in each case a different stress pathway is activated and the underlying disease mechanisms remain largely unknown. T585M COMP mutant mice are a model of moderate PSACH and demonstrate a mild ER stress response. Although mutant COMP is not retained in significant quantities within the ER of chondrocytes, both BiP and the pro-apoptotic ER stress-related transcription factor CHOP are mildly elevated, whilst bcl-2 levels are decreased, resulting in increased and spatially dysregulated chondrocyte apoptosis. To determine whether the abnormal chondrocyte apoptosis observed in the growth plate of mutant mice is CHOP-mediated, we bred T585M COMP mutant mice with CHOP-null mice to homozygosity, and analysed the resulting phenotype. Although abnormal apoptosis was alleviated in the resting zone following CHOP deletion, the mutant growth plates were generally more disorganised. Furthermore, the bone lengths of COMP mutant CHOP null mice were significantly shorter at 9 weeks of age when compared to the COMP mutant mice, including a significant difference in the skull length. Overall, these data demonstrate that CHOP-mediated apoptosis is an early event in the pathobiology of PSACH and suggest that the lack of CHOP, in conjunction with a COMP mutation, may lead to aggravation of the skeletal phenotype via a potentially synergistic effect on endochondral ossification.
Collapse
Affiliation(s)
- Katarzyna A. Piróg
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
- * E-mail: (KAP); (MDB)
| | - Andreja Irman
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Siobhan Young
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Poonam Halai
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Peter A. Bell
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Raymond P. Boot-Handford
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Michael D. Briggs
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
- * E-mail: (KAP); (MDB)
| |
Collapse
|
35
|
Posey KL, Coustry F, Veerisetty AC, Liu P, Alcorn JL, Hecht JT. Chondrocyte-specific pathology during skeletal growth and therapeutics in a murine model of pseudoachondroplasia. J Bone Miner Res 2014; 29:1258-68. [PMID: 24194321 PMCID: PMC4075045 DOI: 10.1002/jbmr.2139] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/24/2013] [Accepted: 11/01/2013] [Indexed: 11/10/2022]
Abstract
Mutations in the gene encoding cartilage oligomeric matrix protein (COMP) cause pseudoachondroplasia (PSACH), a severe dwarfing condition. Pain, a significant complication, has generally been attributed to joint abnormalities and erosion and early onset osteoarthritis. Previously, we found that the inflammatory-related transcripts were elevated in growth plate and articular cartilages, indicating that inflammation plays an important role in the chondrocyte disease pathology and may contribute to the overall pain sequelae. Here, we describe the effects of D469-delCOMP expression on the skeleton and growth plate chondrocytes with the aim to define a treatment window and thereby reduce pain. Consistent with the human PSACH phenotype, skeletal development of D469del-COMP mice was normal and similar to controls at birth. By postnatal day 7 (P7), the D469del-COMP skeleton, limbs, skull and snout were reduced and this reduction was progressive during postnatal growth, resulting in a short-limbed dwarfed mouse. Modulation of prenatal and postnatal expression of D469del-COMP showed minimal retention/cell death at P7 with some retention/cell death by P14, suggesting that earlier treatment intervention at the time of PSACH diagnosis may produce optimal results. Important and novel findings were an increase in inflammatory proteins generally starting at P21 and that exercise exacerbates inflammation. These observations suggest that pain in PSACH may be related to an intrinsic inflammatory process that can be treated symptomatically and is not related to early joint erosion. We also show that genetic ablation of CHOP dampens the inflammatory response observed in mice expressing D469del-COMP. Toward identifying potential treatments, drugs known to decrease cellular stress (lithium, phenylbutyric acid, and valproate) were assessed. Interestingly, all diminished the chondrocyte pathology but had untoward outcomes on mouse growth, development, and longevity. Collectively, these results define an early treatment window in which chondrocytes can be salvaged, thereby potentially increasing skeletal growth and decreasing pain.
Collapse
Affiliation(s)
- Karen L Posey
- Department of Pediatrics, University of Texas Medical School at Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
36
|
Siegelin MD. Utilization of the cellular stress response to sensitize cancer cells to TRAIL-mediated apoptosis. Expert Opin Ther Targets 2012; 16:801-17. [PMID: 22762543 DOI: 10.1517/14728222.2012.703655] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is a promising death ligand who has received significant attention due to its specific anti-cancer activity. Recently, a number of clinical trials involving either recombinant soluble TRAIL or agonistic death receptor (DR) antibodies have even been initiated. One major caveat in TRAIL-based anti-cancer therapies is that a considerable number of cancer cells are notorious resistant to apoptosis induction by TRAIL. Overcoming this primary or secondary evolved resistance is an utmost important goal of present cancer research. The current literature suggests that TRAIL resistance is mediated by a number of endogenous factors. AREAS COVERED According to recent research, stress-related transcription factors have acquired a pivotal role in the sensitization of highly resistant cancer cells, for example, pancreatic cancer and glioblastoma cells, to TRAIL-mediated cell death. Out of this transcription factor family, C/EBP-homologous protein (CHOP) is linked to the control of DR-mediated apoptosis by modulation of several apoptotic and anti-apoptotic factors. Stress responses in certain organelles, such as endoplasmic reticulum (ER) and mitochondria, are potent inductors of CHOP expression. This report focuses on the influence of stress responses on endogenous or acquired resistance to extrinsic apoptosis in tumor cells and summarizes recent findings and results. The Medline and ClinicalTrials database with key words were used for this review. EXPERT OPINION A potential novel treatment strategy for highly treatment-resistant tumors is the induction of a cellular stress response in cancer cells. The induction of an organelle-related stress response, such as nuclear, ER and mitochondrial stress, leads to a dramatic sensitization of a broad variety of cancer cells of different tumor entities to the apoptotic ligand, TRAIL. Importantly, non-neoplastic cells are not sensitized to TRAIL-mediated cell death through the unfolded protein response in most instances, suggesting that this treatment is not only of high efficacy, but even more less of unwanted toxicity in patients.
Collapse
Affiliation(s)
- Markus David Siegelin
- Department of Pathology & Cell Biology, Columbia University College of Physicians & Surgeons, 630 W. 168th Street, VC14-239, New York, NY 10032, USA.
| |
Collapse
|