1
|
Wu Y, Yang J, Xu G, Chen X, Qu X. Integrated analysis of single-cell and bulk RNA sequencing data reveals prognostic characteristics of lysosome-dependent cell death-related genes in osteosarcoma. BMC Genomics 2024; 25:379. [PMID: 38632516 PMCID: PMC11022332 DOI: 10.1186/s12864-024-10283-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Tumor cells exhibit a heightened susceptibility to lysosomal-dependent cell death (LCD) compared to normal cells. However, the role of LCD-related genes (LCD-RGs) in Osteosarcoma (OS) remains unelucidated. This study aimed to elucidate the role of LCD-RGs and their mechanisms in OS using several existing OS related datasets, including TCGA-OS, GSE16088, GSE14359, GSE21257 and GSE162454. RESULTS Analysis identified a total of 8,629 DEGs1, 2,777 DEGs2 and 21 intersection genes. Importantly, two biomarkers (ATP6V0D1 and HDAC6) linked to OS prognosis were identified to establish the prognostic model. Significant differences in risk scores for OS survival were observed between high and low-risk cohorts. Additionally, scores of dendritic cells (DC), immature DCs and γδT cells differed significantly between the two risk cohorts. Cell annotations from GSE162454 encompassed eight types (myeloid cells, osteoblastic OS cells and plasma cells). ATP6V0D1 was found to be significantly over-expressed in myeloid cells and osteoclasts, while HDAC6 was under-expressed across all cell types. Moreover, single-cell trajectory mapping revealed that myeloid cells and osteoclasts differentiated first, underscoring their pivotal role in patients with OS. Furthermore, ATP6V0D1 expression progressively decreased with time. CONCLUSIONS A new prognostic model for OS, associated with LCD-RGs, was developed and validated, offering a fresh perspective for exploring the association between LCD and OS.
Collapse
Affiliation(s)
- Yueshu Wu
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning province, 116011, Dalian, Liaoning, PR China
| | - Jun Yang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning province, 116011, Dalian, Liaoning, PR China
| | - Gang Xu
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning province, 116011, Dalian, Liaoning, PR China
| | - Xiaolin Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, No. 76, Linjiang Road, Yuzhong District, 400010, Chongqing, China.
| | - Xiaochen Qu
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning province, 116011, Dalian, Liaoning, PR China.
| |
Collapse
|
2
|
van der Hoorn IAE, Martynova E, Subtil B, Meek J, Verrijp K, Textor J, Flórez-Grau G, Piet B, van den Heuvel MM, de Vries IJM, Gorris MAJ. Detection of dendritic cell subsets in the tumor microenvironment by multiplex immunohistochemistry. Eur J Immunol 2024; 54:e2350616. [PMID: 37840200 DOI: 10.1002/eji.202350616] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/17/2023]
Abstract
Dendritic cells (DCs) are essential in antitumor immunity. In humans, three main DC subsets are defined: two types of conventional DCs (cDC1s and cDC2s) and plasmacytoid DCs (pDCs). To study DC subsets in the tumor microenvironment (TME), it is important to correctly identify them in tumor tissues. Tumor-derived DCs are often analyzed in cell suspensions in which spatial information about DCs which can be important to determine their function within the TME is lost. Therefore, we developed the first standardized and optimized multiplex immunohistochemistry panel, simultaneously detecting cDC1s, cDC2s, and pDCs within their tissue context. We report on this panel's development, validation, and quantitative analysis. A multiplex immunohistochemistry panel consisting of CD1c, CD303, X-C motif chemokine receptor 1, CD14, CD19, a tumor marker, and DAPI was established. The ImmuNet machine learning pipeline was trained for the detection of DC subsets. The performance of ImmuNet was compared with conventional cell phenotyping software. Ultimately, frequencies of DC subsets within several tumors were defined. In conclusion, this panel provides a method to study cDC1s, cDC2s, and pDCs in the spatial context of the TME, which supports unraveling their specific roles in antitumor immunity.
Collapse
Affiliation(s)
- Iris A E van der Hoorn
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Evgenia Martynova
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Data Science, Institute for Computing and Information Sciences, Radboud University, Nijmegen, the Netherlands
| | - Beatriz Subtil
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jelena Meek
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Kiek Verrijp
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Division of Immunotherapy, Oncode Institute, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Johannes Textor
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Data Science, Institute for Computing and Information Sciences, Radboud University, Nijmegen, the Netherlands
| | - Georgina Flórez-Grau
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Berber Piet
- Department of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michel M van den Heuvel
- Department of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - I Jolanda M de Vries
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mark A J Gorris
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Division of Immunotherapy, Oncode Institute, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
3
|
Li P, Jia L, Bian X, Tan S. Application of Engineered Dendritic Cell Vaccines in Cancer Immunotherapy: Challenges and Opportunities. Curr Treat Options Oncol 2023; 24:1703-1719. [PMID: 37962824 DOI: 10.1007/s11864-023-01143-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 11/15/2023]
Abstract
OPINION STATEMENT The primary objective of this study is to evaluate the effectiveness of cancer vaccines containing genetically modified dendritic cells (DCs) in inducing transformational immune responses. This paper sheds considerable light on DCs' function in advancing treatment techniques. This objective is achieved by thoroughly analyzing the many facets of DCs and their strategic integration into cancer treatment. Due to their role as immune response regulators, DCs can potentially enhance cancer treatment strategies. DCs have the potential to revolutionize immunotherapy, as shown by a comprehensive analysis of their numerous characteristics. The review deftly transitions from examining the fundamentals of preclinical research to delving into the complexities of clinical implementation while acknowledging the inherent challenges in translating DC vaccine concepts into tangible progress. The analysis also emphasizes the potential synergistic outcomes that can be achieved by combining DC vaccines with established pharmaceuticals, thereby emphasizing the importance of employing a holistic approach to enhance treatment efficacy. Despite the existence of transformative opportunities, advancement is hindered by several obstacles. The exhaustive analysis of technical complexities, regulatory dynamics, and upcoming challenges provides valuable insights for overcoming obstacles requiring strategic navigation to incorporate DC vaccines successfully. This document provides a comprehensive analysis of the developments in DC-based immunotherapy, concentrating on its potential to transform cancer therapy radically.
Collapse
Affiliation(s)
- Ping Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Linan Jia
- Department of Urology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Xiaobo Bian
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang110004, China
| | - Shutao Tan
- Department of Urology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
4
|
Paudel S, Mishra N, Agarwal R. Phytochemicals as Immunomodulatory Molecules in Cancer Therapeutics. Pharmaceuticals (Basel) 2023; 16:1652. [PMID: 38139779 PMCID: PMC10746110 DOI: 10.3390/ph16121652] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Phytochemicals are natural plant-derived products that provide significant nutrition, essential biomolecules, and flavor as part of our diet. They have long been known to confer protection against several diseases via their anti-inflammatory, immune-regulatory, anti-microbial, and several other properties. Deciphering the role of phytochemicals in the prevention, inhibition, and treatment of cancer-unrestrained cell proliferation due to the loss of tight regulation on cell growth and replication-has been the focus of recent research. Particularly, the immunomodulatory role of phytochemicals, which is pivotal in unchecked cell proliferation and metastasis, has recently been studied extensively. The immune system is a critical component of the tumor microenvironment, and it plays essential roles in both preventing and promoting oncogenesis. Immunomodulation includes stimulation, amplification, or inactivation of some stage(s) of the immune response. Phytochemicals and their products have demonstrated immune regulation, such as macrophage migration, nitric oxide synthase inhibition, lymphocyte, T-cell, and cytokine stimulation, natural killer cell augmentation, and NFκB, TNF, and apoptosis regulation. There is a dearth of extensive accounts of the immunomodulatory effects of phytochemicals in cancer; thus, we have compiled these effects with mechanistic aspects of dietary phytochemicals in cancer, highlighting promising candidates and ongoing clinical trials on immunotherapeutic strategies to mitigate oncogenesis.
Collapse
Affiliation(s)
| | | | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.P.); (N.M.)
| |
Collapse
|
5
|
Ouyang Y, Yu M, Liu T, Suo M, Qiao J, Wang L, Li N. An Activated Dendritic-Cell-Related Gene Signature Indicative of Disease Prognosis and Chemotherapy and Immunotherapy Response in Colon Cancer Patients. Int J Mol Sci 2023; 24:15959. [PMID: 37958942 PMCID: PMC10647347 DOI: 10.3390/ijms242115959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Abstract
Accumulating evidence has underscored the prognostic value of tumor-infiltrating immune cells in the tumor microenvironment of colon cancer (CC). In this retrospective study, based on publicly available transcriptome profiles and clinical data from the Gene Expression Omnibus and The Cancer Genome Atlas databases, we derived and verified an activated dendritic cell (aDC)-related gene signature (aDCRS) for predicting the survival outcomes and chemotherapy and immunotherapy response of CC patients. We quantified the infiltration abundance of 22 immune cell subtypes via the "CIBERSORT" R script. Univariate Cox proportional hazards (PHs) regression was used to identify aDC as the most robust protective cell type for CC prognosis. After selecting differentially expressed genes (DEGs) significantly correlated with aDC infiltration, we performed univariate Cox-PH regression, LASSO regression, and stepwise multivariate Cox-PH regression successively to screen out prognosis-related genes from selected DEGs for constructing the aDCRS. Receiver operating characteristic (ROC) curves and Kaplan-Meier (KM) analysis were employed to assess the discriminatory ability and risk-stratification capacity. The "oncoPredict" package, Cancer Treatment Response gene signature DataBase, and Tumor Immune Dysfunction and Exclusion algorithm were utilized to estimate the practicability of the aDCRS in predicting response to chemotherapy and immune checkpoint blockade. Gene set enrichment analysis and single-cell RNA sequencing analysis were also implemented. Furthermore, an aDCRS-based nomogram was constructed and validated via ROC curves, calibration plots and decision curve analysis. In conclusion, aDCRS and an aDCRS-based nomogram will facilitate precise prognosis prediction and individualized therapeutic interventions, thus improving the survival outcomes of CC patients in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Liqiang Wang
- School of Medicine, Nankai University, Tianjin 300071, China; (Y.O.); (M.Y.); (T.L.); (M.S.); (J.Q.)
| | - Na Li
- School of Medicine, Nankai University, Tianjin 300071, China; (Y.O.); (M.Y.); (T.L.); (M.S.); (J.Q.)
| |
Collapse
|
6
|
Łazarczyk A, Streb J, Glajcar A, Streb-Smoleń A, Hałubiec P, Wcisło K, Laskowicz Ł, Hodorowicz-Zaniewska D, Szpor J. Dendritic Cell Subpopulations Are Associated with Prognostic Characteristics of Breast Cancer after Neoadjuvant Chemotherapy-An Observational Study. Int J Mol Sci 2023; 24:15817. [PMID: 37958800 PMCID: PMC10648319 DOI: 10.3390/ijms242115817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer (BC) is the most prevalent malignancy in women and researchers have strived to develop optimal strategies for its diagnosis and management. Neoadjuvant chemotherapy (NAC), which reduces tumor size, risk of metastasis and patient mortality, often also allows for a de-escalation of breast and axillary surgery. Nonetheless, complete pathological response (pCR) is achieved in no more than 40% of patients who underwent NAC. Dendritic cells (DCs) are professional antigen-presenting cells present in the tumor microenvironment. The multitude of their subtypes was shown to be associated with the pathological and clinical characteristics of BC, but it was not evaluated in BC tissue after NAC. We found that highe r densities of CD123+ plasmacytoid DCs (pDCs) were present in tumors that did not show pCR and had a higher residual cancer burden (RCB) score and class. They were of higher stage and grade and more frequently HER2-negative. The density of CD123+ pCDs was an independent predictor of pCR in the studied group. DC-LAMP+ mature DCs (mDCs) were also related to characteristics of clinical relevance (i.e., pCR, RCB, and nuclear grade), although no clear trends were identified. We conclude that CD123+ pDCs are candidates for a novel biomarker of BC response to NAC.
Collapse
Affiliation(s)
- Agnieszka Łazarczyk
- Department of Pathomorphology, Jagiellonian University Medical College, 31-501 Cracow, Poland (J.S.)
| | - Joanna Streb
- Department of Oncology, Jagiellonian University Medical College, 31-501 Cracow, Poland
- University Centre of Breast Disease, University Hospital, 31-501 Cracow, Poland
| | - Anna Glajcar
- Department of Pathomorphology, University Hospital, 30-688 Cracow, Poland
| | - Anna Streb-Smoleń
- Department of Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 31-115 Cracow, Poland
| | - Przemysław Hałubiec
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 31-530 Cracow, Poland
| | - Kacper Wcisło
- Department of Pathomorphology, Jagiellonian University Medical College, 31-501 Cracow, Poland (J.S.)
- Department of Pathomorphology, University Hospital, 30-688 Cracow, Poland
| | - Łukasz Laskowicz
- Clinical Department of Gynecology and Gynecological Oncology, University Hospital, 30-688 Cracow, Poland
| | - Diana Hodorowicz-Zaniewska
- General, Oncological and Gastrointestinal Surgery, Jagiellonian University Medical College, 31-501 Cracow, Poland;
- Department of General Surgery, University Hospital, 31-501 Cracow, Poland
| | - Joanna Szpor
- Department of Pathomorphology, Jagiellonian University Medical College, 31-501 Cracow, Poland (J.S.)
- University Centre of Breast Disease, University Hospital, 31-501 Cracow, Poland
- Department of Pathomorphology, University Hospital, 30-688 Cracow, Poland
| |
Collapse
|
7
|
Molina OE, LaRue H, Simonyan D, Hovington H, Têtu B, Fradet V, Lacombe L, Toren P, Bergeron A, Fradet Y. High infiltration of CD209 + dendritic cells and CD163 + macrophages in the peritumor area of prostate cancer is predictive of late adverse outcomes. Front Immunol 2023; 14:1205266. [PMID: 37435060 PMCID: PMC10331466 DOI: 10.3389/fimmu.2023.1205266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/09/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Prostate cancer (PCa) shows considerable variation in clinical outcomes between individuals with similar diseases. The initial host-tumor interaction as assessed by detailed analysis of tumor infiltrating immune cells within the primary tumor may dictate tumor evolution and late clinical outcomes. In this study, we assessed the association between clinical outcomes and dendritic cell (DC) or macrophage (MΦ) tumor infiltration as well as with expression of genes related to their functions. Methods Infiltration and localization of immature DC, mature DC, total MΦ and M2-type MΦ was analyzed by immunohistochemistry in 99 radical prostatectomy specimens from patients with 15.5 years median clinical follow-up using antibodies against CD209, CD83, CD68 and CD163, respectively. The density of positive cells for each marker in various tumor areas was determined. In addition, expression of immune genes associated with DC and MΦ was tested in a series of 50 radical prostatectomy specimens by Taqman Low-Density Array with similarly long follow-up. Gene expression was classified as low and high after unsupervised hierarchical clustering. Numbers and ratio of positive cells and levels of gene expression were correlated with endpoints such as biochemical recurrence (BCR), need for definitive androgen deprivation therapy (ADT) or lethal PCa using Cox regression analyses and/or Kaplan-Meier curves. Results Positive immune cells were observed in tumor, tumor margin, and normal-like adjacent epithelium areas. CD209+ and CD163+ cells were more abundant at the tumor margin. Higher CD209+/CD83+ cell density ratio at the tumor margin was associated with higher risk of ADT and lethal PCa while higher density of CD163+ cells in the normal-like adjacent epithelium was associated with a higher risk of lethal PCa. A combination of 5 genes expressed at high levels correlated with a shorter survival without ADT and lethal PCa. Among these five genes, expression of IL12A and CD163 was correlated to each other and was associated with shorter survival without BCR and ADT/lethal PCa, respectively. Conclusion A higher level of infiltration of CD209+ immature DC and CD163+ M2-type MΦ in the peritumor area was associated with late adverse clinical outcomes.
Collapse
Affiliation(s)
- Oscar Eduardo Molina
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - Hélène LaRue
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - David Simonyan
- Plateforme de Recherche Clinique et Évaluative, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Hélène Hovington
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - Bernard Têtu
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - Vincent Fradet
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Département de Chirurgie de l’Université Laval, Québec, QC, Canada
| | - Louis Lacombe
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Département de Chirurgie de l’Université Laval, Québec, QC, Canada
| | - Paul Toren
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Département de Chirurgie de l’Université Laval, Québec, QC, Canada
| | - Alain Bergeron
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Département de Chirurgie de l’Université Laval, Québec, QC, Canada
| | - Yves Fradet
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Département de Chirurgie de l’Université Laval, Québec, QC, Canada
| |
Collapse
|
8
|
Corry SM, McCorry AM, Lannagan TR, Leonard NA, Fisher NC, Byrne RM, Tsantoulis P, Cortes-Lavaud X, Amirkhah R, Redmond KL, McCooey AJ, Malla SB, Rogan E, Sakhnevych S, Gillespie MA, White M, Richman SD, Jackstadt RF, Campbell AD, Maguire S, McDade SS, Longley DB, Loughrey MB, Coleman HG, Kerr EM, Tejpar S, Maughan T, Leedham SJ, Small DM, Ryan AE, Sansom OJ, Lawler M, Dunne PD. Activation of innate-adaptive immune machinery by poly(I:C) exposes a therapeutic vulnerability to prevent relapse in stroma-rich colon cancer. Gut 2022; 71:2502-2517. [PMID: 35477539 PMCID: PMC9664095 DOI: 10.1136/gutjnl-2021-326183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/12/2022] [Indexed: 12/08/2022]
Abstract
OBJECTIVE Stroma-rich tumours represent a poor prognostic subtype in stage II/III colon cancer (CC), with high relapse rates and limited response to standard adjuvant chemotherapy. DESIGN To address the lack of efficacious therapeutic options for patients with stroma-rich CC, we stratified our human tumour cohorts according to stromal content, enabling identification of the biology underpinning relapse and potential therapeutic vulnerabilities specifically within stroma-rich tumours that could be exploited clinically. Following human tumour-based discovery and independent clinical validation, we use a series of in vitro and stroma-rich in vivo models to test and validate the therapeutic potential of elevating the biology associated with reduced relapse in human tumours. RESULTS By performing our analyses specifically within the stroma-rich/high-fibroblast (HiFi) subtype of CC, we identify and validate the clinical value of a HiFi-specific prognostic signature (HPS), which stratifies tumours based on STAT1-related signalling (High-HPS v Low-HPS=HR 0.093, CI 0.019 to 0.466). Using in silico, in vitro and in vivo models, we demonstrate that the HPS is associated with antigen processing and presentation within discrete immune lineages in stroma-rich CC, downstream of double-stranded RNA and viral response signalling. Treatment with the TLR3 agonist poly(I:C) elevated the HPS signalling and antigen processing phenotype across in vitro and in vivo models. In an in vivo model of stroma-rich CC, poly(I:C) treatment significantly increased systemic cytotoxic T cell activity (p<0.05) and reduced liver metastases (p<0.0002). CONCLUSION This study reveals new biological insight that offers a novel therapeutic option to reduce relapse rates in patients with the worst prognosis CC.
Collapse
Affiliation(s)
- Shania M Corry
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Amy Mb McCorry
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | | | - Niamh A Leonard
- Lambe Institute for Translational Research, College of Medicine Nursing and Health Sciences, National University of Ireland, Galway, Ireland
- Discipline of Pharmacology & Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | - Natalie C Fisher
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Ryan M Byrne
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | | | | | - Raheleh Amirkhah
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Keara L Redmond
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Aoife J McCooey
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Sudhir B Malla
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Emily Rogan
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Svetlana Sakhnevych
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Michael A Gillespie
- Cancer Research UK, Beatson Institute for Cancer Research, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Mark White
- Cancer Research UK, Beatson Institute for Cancer Research, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Susan D Richman
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Rene-Filip Jackstadt
- Cancer Research UK, Beatson Institute for Cancer Research, Glasgow, UK
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH) and Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrew D Campbell
- Cancer Research UK, Beatson Institute for Cancer Research, Glasgow, UK
| | - Sarah Maguire
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Simon S McDade
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Daniel B Longley
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Maurice B Loughrey
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
- Cellular Pathology, Belfast Health and Social Care Trust, Belfast, UK
- Centre for Public Health, Queens University Belfast, Belfast, UK
| | - Helen G Coleman
- Centre for Public Health, Queens University Belfast, Belfast, UK
| | - Emma M Kerr
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Sabine Tejpar
- Digestive Oncology Unit, University Ospital Gasthuisberg, Leuven, Belgium
| | | | - Simon J Leedham
- Wellcome Trust Centre Human Genetics, University of Oxford, Oxford, UK
| | - Donna M Small
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Aideen E Ryan
- Lambe Institute for Translational Research, College of Medicine Nursing and Health Sciences, National University of Ireland, Galway, Ireland
- Discipline of Pharmacology & Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | - Owen J Sansom
- Cancer Research UK, Beatson Institute for Cancer Research, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Mark Lawler
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Philip D Dunne
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| |
Collapse
|
9
|
Dendritic Cells: The Long and Evolving Road towards Successful Targetability in Cancer. Cells 2022; 11:cells11193028. [PMID: 36230990 PMCID: PMC9563837 DOI: 10.3390/cells11193028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Dendritic cells (DCs) are a unique myeloid cell lineage that play a central role in the priming of the adaptive immune response. As such, they are an attractive target for immune oncology based therapeutic approaches. However, targeting these cells has proven challenging with many studies proving inconclusive or of no benefit in a clinical trial setting. In this review, we highlight the known and unknown about this rare but powerful immune cell. As technologies have expanded our understanding of the complexity of DC development, subsets and response features, we are now left to apply this knowledge to the design of new therapeutic strategies in cancer. We propose that utilization of these technologies through a multiomics approach will allow for an improved directed targeting of DCs in a clinical trial setting. In addition, the DC research community should consider a consensus on subset nomenclature to distinguish new subsets from functional or phenotypic changes in response to their environment.
Collapse
|
10
|
Sadeghi Najafabadi SA, Bolhassani A, Aghasadeghi MR. Tumor cell-based vaccine: an effective strategy for eradication of cancer cells. Immunotherapy 2022; 14:639-654. [PMID: 35481358 DOI: 10.2217/imt-2022-0036] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Whole tumor cell-based vaccines include all potential antigen-rich cell lysates to target a specific type of tumor without the need to find the best antigen candidate in protein- or peptide-based vaccines. Preparation of whole tumor cell lysates inducing cell death and inactivating immunosuppressive cytokine secretion from the tumor cells is highly enviable. Generally, modified whole tumor cells, tumor cell-derived exosomes, autologous tumor cell-derived ribonucleic acid, and personalized mutanome-derived tumor antigen are promising immunotherapeutic approaches. Autologous dendritic cells loaded with tumor-associated antigens also induce the generation of immunological memory and antitumor response as an effective method for the treatment of cancer. The present review briefly describes tumor cell-based vaccines as a promising strategy for eradication of cancer cells.
Collapse
Affiliation(s)
| | - Azam Bolhassani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, 1316943551, Tehran, Iran
| | | |
Collapse
|
11
|
Plesca I, Müller L, Böttcher JP, Medyouf H, Wehner R, Schmitz M. Tumor-associated human dendritic cell subsets: phenotype, functional orientation, and clinical relevance. Eur J Immunol 2022; 52:1750-1758. [PMID: 35106759 DOI: 10.1002/eji.202149487] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 11/09/2022]
Abstract
Dendritic cells (DCs) play a pivotal role in orchestrating innate and adaptive antitumor immunity. Activated DCs can produce large amounts of various proinflammatory cytokines, initiate T cell responses, and exhibit direct cytotoxicity against tumor cells. They also efficiently enhance the antitumoral properties of natural killer cells and T lymphocytes. Based on these capabilities, immunogenic DCs promote tumor elimination and are associated with improved survival of patients. Furthermore, they can essentially contribute to the clinical efficacy of immunotherapeutic strategies for cancer patients. However, depending on their intrinsic properties and the tumor microenvironment, DCs can be rendered dysfunctional and mediate tolerance by producing immunosuppressive cytokines and activating regulatory T cells. Such tolerogenic DCs can foster tumor progression and are linked to poor prognosis of patients. Here, we focus on recent studies exploring the phenotype, functional orientation, and clinical relevance of tumor-infiltrating conventional DC1, conventional DC2, plasmacytoid DCs, and monocyte-derived DCs in translational and clinical settings. In addition, recent findings demonstrating the influence of DCs on the efficacy of immunotherapeutic strategies are summarized. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ioana Plesca
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Luise Müller
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Jan P Böttcher
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Hind Medyouf
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,Frankfurt Cancer Institute, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rebekka Wehner
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
12
|
Yu J, Sun H, Cao W, Song Y, Jiang Z. Research progress on dendritic cell vaccines in cancer immunotherapy. Exp Hematol Oncol 2022; 11:3. [PMID: 35074008 PMCID: PMC8784280 DOI: 10.1186/s40164-022-00257-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/16/2022] [Indexed: 12/13/2022] Open
Abstract
Dendritic cell (DC) vaccines induce specific immune responses that can selectively eliminate target cells. In recent years, many studies have been conducted to explore DC vaccination in the treatment of hematological malignancies, including acute myeloid leukemia and myelodysplastic syndromes, as well as other nonleukemia malignancies. There are at least two different strategies that use DCs to promote antitumor immunity: in situ vaccination and canonical vaccination. Monocyte-derived DCs (mo-DCs) and leukemia-derived DCs (DCleu) are the main types of DCs used in vaccines for AML and MDS thus far. Different cancer-related molecules such as peptides, recombinant proteins, apoptotic leukemic cells, whole tumor cells or lysates and DCs/DCleu containing a vaster antigenic repertoire with RNA electroporation, have been used as antigen sources to load DCs. To enhance DC vaccine efficacy, new strategies, such as combination with conventional chemotherapy, monospecific/bispecific antibodies and immune checkpoint-targeting therapies, have been explored. After a decade of trials and tribulations, much progress has been made and much promise has emerged in the field. In this review we summarize the recent advances in DC vaccine immunotherapy for AML/MDS as well as other nonleukemia malignancies.
Collapse
Affiliation(s)
- Jifeng Yu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan International Joint Laboratory of Nuclear Protein Gene Regulation, Henan University College of Medicine, Kaifeng, 475004, Henan, China
| | - Hao Sun
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Weijie Cao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yongping Song
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China.
| | - Zhongxing Jiang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
13
|
Deng J, Fleming JB. Inflammation and Myeloid Cells in Cancer Progression and Metastasis. Front Cell Dev Biol 2022; 9:759691. [PMID: 35127700 PMCID: PMC8814460 DOI: 10.3389/fcell.2021.759691] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
To date, the most immunotherapy drugs act upon T cell surface proteins to promote tumoricidal T cell activity. However, this approach has to date been unsuccessful in certain solid tumor types including pancreatic, prostate cancer and glioblastoma. Myeloid-related innate immunity can promote tumor progression through direct and indirect effects on T cell activity; improved understanding of this field may provide another therapeutic avenue for patients with these tumors. Myeloid cells can differentiate into both pro-inflammatory and anti-inflammatory mature form depending upon the microenvironment. Most cancer type exhibit oncogenic activating point mutations (ex. P53 and KRAS) that trigger cytokines production. In addition, tumor environment (ex. Collagen, Hypoxia, and adenosine) also regulated inflammatory signaling cascade. Both the intrinsic and extrinsic factor driving the tumor immune microenvironment and regulating the differentiation and function of myeloid cells, T cells activity and tumor progression. In this review, we will discuss the relationship between cancer cells and myeloid cells-mediated tumor immune microenvironment to promote cancer progression and immunotherapeutic resistance. Furthermore, we will describe how cytokines and chemokines produced by cancer cells influence myeloid cells within immunosuppressive environment. Finally, we will comment on the development of immunotherapeutic strategies with respect to myeloid-related innate immunity.
Collapse
Affiliation(s)
- Jenying Deng
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jason B. Fleming
- H. Lee Moffitt Cancer Center, Department of Gastrointestinal Oncology, Tampa, FL, United States
- *Correspondence: Jason B. Fleming,
| |
Collapse
|
14
|
Costa AC, Santos JMO, Gil da Costa RM, Medeiros R. Impact of immune cells on the hallmarks of cancer: A literature review. Crit Rev Oncol Hematol 2021; 168:103541. [PMID: 34801696 DOI: 10.1016/j.critrevonc.2021.103541] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/15/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022] Open
Abstract
Tumor-infiltrating immune cells (TIICs) are critical players in the tumor microenvironment, modulating cancer cell functions. TIICs are highly heterogenic and plastic and may either suppress cancers or provide support for tumor growth. A wide range of studies have shed light on how tumor-associated macrophages, dendritic cells, neutrophils, mast cells, natural killer cells and lymphocytes contribute for the establishment of several hallmarks of cancer and became the basis for successful immunotherapies. Many of those TIICs play pivotal roles in several hallmarks of cancer. This review contributes to elucidate the multifaceted roles of immune cells in cancer development, highlighting molecular components that constitute promising therapeutic targets. Additional studies are needed to clarify the relation between TIICs and hallmarks such as enabling replicative immortality, evading growth suppressors, sustaining proliferative signaling, resisting cell death and genome instability and mutation, to further explore their therapeutic potential and improve the outcomes of cancer patients.
Collapse
Affiliation(s)
- Alexandra C Costa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal.
| | - Joana M O Santos
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal.
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; Postgraduate Programme in Adult Health (PPGSAD), Department of Morphology, Federal University of Maranhão (UFMA), and UFMA University Hospital (HUUFMA), 65080-805, São Luís, Brazil.
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal; Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072, Porto, Portugal; CEBIMED, Faculty of Health Sciences of the Fernando Pessoa University, 4249-004, Porto, Portugal; Research Department of the Portuguese League Against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-177, Porto, Portugal.
| |
Collapse
|
15
|
Mao M, Ling H, Lin Y, Chen Y, Xu B, Zheng R. Construction and Validation of an Immune-Based Prognostic Model for Pancreatic Adenocarcinoma Based on Public Databases. Front Genet 2021; 12:702102. [PMID: 34335699 PMCID: PMC8318842 DOI: 10.3389/fgene.2021.702102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Background Pancreatic adenocarcinoma (PAAD) is a highly lethal and aggressive tumor with poor prognoses. The predictive capability of immune-related genes (IRGs) in PAAD has yet to be explored. We aimed to explore prognostic-related immune genes and develop a prediction model for indicating prognosis in PAAD. Methods The messenger (m)RNA expression profiles acquired from public databases were comprehensively integrated and differentially expressed genes were identified. Univariate analysis was utilized to identify IRGs that related to overall survival. Whereafter, a multigene signature in the Cancer Genome Atlas cohort was established based on the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Moreover, a transcription factors regulatory network was constructed to reveal potential molecular processes in PAAD. PAAD datasets downloaded from the Gene Expression Omnibus database were applied for the validations. Finally, correlation analysis between the prognostic model and immunocyte infiltration was investigated. Results Totally, 446 differentially expressed immune-related genes were screened in PAAD tissues and normal tissues, of which 43 IRGs were significantly related to the overall survival of PAAD patients. An immune-based prognostic model was developed, which contained eight IRGs. Univariate and multivariate Cox regression revealed that the risk score model was an independent prognostic indicator in PAAD (HR > 1, P < 0.001). Besides, the sensitivity of the model was evaluated by the receiver operating characteristic curve analysis. Finally, immunocyte infiltration analysis revealed that the eight-gene signature possibly played a pivotal role in the status of the PAAD immune microenvironment. Conclusion A novel prognostic model based on immune genes may serve to characterize the immune microenvironment and provide a basis for PAAD immunotherapy.
Collapse
Affiliation(s)
- Miaobin Mao
- The Graduate School, Fujian Medical University, Fuzhou, China.,Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Union Clinical Medicine College, Fujian Medical University, Fuzhou, China
| | - Hongjian Ling
- The Graduate School, Fujian Medical University, Fuzhou, China.,Union Clinical Medicine College, Fujian Medical University, Fuzhou, China
| | - Yuping Lin
- The Graduate School, Fujian Medical University, Fuzhou, China.,Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Union Clinical Medicine College, Fujian Medical University, Fuzhou, China
| | - Yanling Chen
- Department of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Benhua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Union Clinical Medicine College, Fujian Medical University, Fuzhou, China.,College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.,School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Rong Zheng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Union Clinical Medicine College, Fujian Medical University, Fuzhou, China.,College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.,School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
16
|
Nishimura J, Deguchi S, Tanaka H, Yamakoshi Y, Yoshii M, Tamura T, Toyokawa T, Lee S, Muguruma K, Ohira M. Induction of Immunogenic Cell Death of Esophageal Squamous Cell Carcinoma by 5-Fluorouracil and Cisplatin. In Vivo 2021; 35:743-752. [PMID: 33622867 DOI: 10.21873/invivo.12315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Neoadjuvant chemotherapy (NAC) using 5-FU (5-fluorouracil)/CDDP (cisplatin) is a standard therapy for stage II/III thoracic esophageal squamous cell carcinoma (ESCC) in Japan. The aim of this study was to investigate whether 5-FU/CDDP could induce immunogenic cell death in ESCC cell lines. MATERIALS AND METHODS Tumor samples for immunohistochemistry were obtained from 50 patients (mean age=63.1 years) with pathological stage 0-IVa ESCC who underwent NAC followed by surgery. Cell lines T.T and KYSE30 were used for the in vitro experiments. RESULTS The concentrations of HMGB1 were elevated in the cell line supernatants treated with 5-FU/CDDP. 5-FU/CDDP treated dendritic cells (DCs) showed a mature phenotype, and enhanced T cell proliferation capacity. In addition, mature DCs were observed in surgical specimens with a histological response after treatment with 5-FU/CDDP chemotherapy. CONCLUSION 5-FU/CDDP could induce immunogenic cell death in the tumor microenvironment of ESCC.
Collapse
Affiliation(s)
- Junya Nishimura
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Sota Deguchi
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Tanaka
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yoshihito Yamakoshi
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Mami Yoshii
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tatsuro Tamura
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Toyokawa
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shigeru Lee
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kazuya Muguruma
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaichi Ohira
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
17
|
Dendritic Cells Are Associated with Prognosis and Survival in Breast Cancer. Diagnostics (Basel) 2021; 11:diagnostics11040702. [PMID: 33919875 PMCID: PMC8070803 DOI: 10.3390/diagnostics11040702] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
Dendritic cells (DCs) constitute a part of the tumour microenvironment, but we are still far from understanding their complex role in immune response to the tumour. This study aimed to investigate the density of DCs expressing CD1a, CD83, CD123, DC-LAMP3 (CD208) and DC-SIGN (CD209) in breast cancer. The correlations between DC density and molecular subtype of breast cancer, its hormone receptor status, spatial location and their associations with clinical and pathological prognostic factors were evaluated. We have shown that intratumoural CD1a+ cells were significantly associated with progression-free survival. For LAMP3+ and CD123+ DCs, higher cell densities were associated with non-luminal as compared to luminal cancer phenotype. In contrast, dense CD83+ DC infiltrate was observed in luminal tumours. The number of CD1a+ DCs in both locations was the highest in luminal B/HER2+ cancers. The highest positive cell count of LAMP3+ cells was observed in the triple-negative subtype in both locations. We found higher numbers of LAMP3+ DCs both intratumourally and at the invasive margin, as well as CD123+ DCs intratumourally in tumours with negative expression of oestrogen or progesterone receptors. Our study demonstrates associations between DC subpopulations and histological and clinical characteristics, as well as molecular subtypes in breast carcinoma.
Collapse
|
18
|
Profiles of immune cell infiltration in head and neck squamous carcinoma. Biosci Rep 2021; 40:222105. [PMID: 32095823 PMCID: PMC7042147 DOI: 10.1042/bsr20192724] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 01/20/2020] [Accepted: 02/12/2020] [Indexed: 12/15/2022] Open
Abstract
Tumor immune infiltration cells (TIICs) are highly heterogeneous, not only in different cancer subtypes but also within different cancer regions. We conducted the Cell-type Identification using Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) method. We assessed the relative proportions of 22 TIICs in HNSC using publicly available TCGA transcriptional datasets, analyzed the proportions of TIICs between HNSC tissues and normal tissues, along with accompanying clinicopathological data, and the impact of TIICs on clinical outcome. After the filter criteria, a total of 395 patients were included in the analysis. We found significant differences in naïve B cells, monocytes, resting mast cells, activated mast cells, CD8+ T cells, and M0 macrophages between HNSC tissues and adjacent non-cancer tissues. We also found that some TIIC subgroups were significantly associated with clinical parameters. Moreover, the patients with low Tregs fraction had worse OS and DFS than those with high Tregs fraction. However, low M0 macrophages fraction was associated with better OS and DFS in HNSC patients. Moreover, Tregs and M0 macrophages are likely to be important determinants of prognosis, which may serve as a potential immunotherapy target for HNSC. Then, we screened the immune-related differentially expressed genes (DEGs), performed the GO and KEGG enrichment analysis, constructed the protein–protein interaction network, and screened the prognosis-related hub genes in HNSC. However, further clinical investigation and basic experiments are needed to validate our results, and uncover the molecular mechanisms interlinking TIICs in HNSC and their roles in prognosis and therapy.
Collapse
|
19
|
Yang J, Zhou X, Liu X, Ling Z, Ji F. Role of the Gastric Microbiome in Gastric Cancer: From Carcinogenesis to Treatment. Front Microbiol 2021; 12:641322. [PMID: 33790881 PMCID: PMC8005548 DOI: 10.3389/fmicb.2021.641322] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/22/2021] [Indexed: 01/10/2023] Open
Abstract
The development of sequencing technology has expanded our knowledge of the human gastric microbiome, which is now known to play a critical role in the maintenance of homeostasis, while alterations in microbial community composition can promote the development of gastric diseases. Recently, carcinogenic effects of gastric microbiome have received increased attention. Gastric cancer (GC) is one of the most common malignancies worldwide with a high mortality rate. Helicobacter pylori is a well-recognized risk factor for GC. More than half of the global population is infected with H. pylori, which can modulate the acidity of the stomach to alter the gastric microbiome profile, leading to H. pylori-associated diseases. Moreover, there is increasing evidence that bacteria other than H. pylori and their metabolites also contribute to gastric carcinogenesis. Therefore, clarifying the contribution of the gastric microbiome to the development and progression of GC can lead to improvements in prevention, diagnosis, and treatment. In this review, we discuss the current state of knowledge regarding changes in the microbial composition of the stomach caused by H. pylori infection, the carcinogenic effects of H. pylori and non-H. pylori bacteria in GC, as well as the potential therapeutic role of gastric microbiome in H. pylori infection and GC.
Collapse
Affiliation(s)
- Jinpu Yang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaosun Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Klarquist JS, Janssen EM. Melanoma-infiltrating dendritic cells: Limitations and opportunities of mouse models. Oncoimmunology 2021; 1:1584-1593. [PMID: 23264904 PMCID: PMC3525613 DOI: 10.4161/onci.22660] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The infiltration of melanoma lesions by dendritic cells (DCs) has been suggested to play a tumorigenic role due to the capacity of DCs to induce tumor tolerance and promote angiogenesis as well as metastasis. However, it has also been shown that tumor-infiltrating DCs (TIDCs) induce antitumor responses and hence may be targeted in cost-effective therapeutic approaches to obtain patient-specific DCs that present relevant tumor antigens, without the need for ex vivo DC expansion or tumor antigen identification. Unfortunately, little is known about the composition, nature and function of TIDCs found in human melanoma. The development of mouse melanoma models has greatly contributed to the molecular understanding of melanoma immunology in mice, but many questions on TIDCs remain unanswered. Here, we discuss current knowledge about melanoma TIDCs in various mouse models with regard to their translational potential and clinical relevance.
Collapse
Affiliation(s)
- Jared S Klarquist
- Division of Cellular and Molecular Immunology; Cincinnati Children's Hospital Research Foundation; University of Cincinnati College of Medicine; Cincinnati, OH USA
| | | |
Collapse
|
21
|
Harari A, Graciotti M, Bassani-Sternberg M, Kandalaft LE. Antitumour dendritic cell vaccination in a priming and boosting approach. Nat Rev Drug Discov 2020; 19:635-652. [PMID: 32764681 DOI: 10.1038/s41573-020-0074-8] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
Abstract
Mobilizing antitumour immunity through vaccination potentially constitutes a powerful anticancer strategy but has not yet provided robust clinical benefits in large patient populations. Although major hurdles still exist, we believe that currently available strategies for vaccines that target dendritic cells or use them to present antitumour antigens could be integrated into existing clinical practice using prime-boost approaches. In the priming phase, these approaches capitalize on either standard treatment modalities to trigger in situ vaccination and release tumour antigens or vaccination with dendritic cells loaded with tumour lysates or patient-specific neoantigens. In a second boost phase, personalized synthetic vaccines specifically boost T cells that were triggered during the priming phase. This immunotherapy approach has been enabled by the substantial recent improvements in dendritic cell vaccines. In this Perspective, we discuss these improvements, highlight how the prime-boost approach can be translated into clinical practice and provide solutions for various anticipated hurdles.
Collapse
Affiliation(s)
- Alexandre Harari
- Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Michele Graciotti
- Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Lana E Kandalaft
- Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland. .,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
22
|
Kremenovic M, Rombini N, Chan AA, Gruber T, Bäriswyl L, Lee DJ, Schenk M. Characterization of a Myeloid Activation Signature that Correlates with Survival in Melanoma Patients. Cancers (Basel) 2020; 12:E1431. [PMID: 32486450 PMCID: PMC7352688 DOI: 10.3390/cancers12061431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/31/2022] Open
Abstract
Understanding the cellular interactions within the tumor microenvironment (TME) of melanoma paved the way for novel therapeutic modalities, such as T cell-targeted immune checkpoint inhibitors (ICI). However, only a limited fraction of patients benefits from such therapeutic modalities, highlighting the need for novel predictive and prognostic biomarkers. As myeloid cells orchestrate the tumor-specific immune response and influence the efficacy of ICI, assessing their activation state within the TME is of clinical relevance. Here, we characterized a myeloid activation (MA) signature, comprising the three genes Cxcl11, Gbp1, and Ido1, from gene expression data of human myeloid cells stimulated with poly(I:C) or cGAMP. This MA signature positively correlated to overall survival in melanoma. In addition, increased expression of the MA signature was observed in melanoma patients responding to ICI (anti-PD-1), as compared to non-responders. Furthermore, the MA signature was validated in the murine B16F10 melanoma model where it was induced and associated with decreased tumor growth upon intratumoral administration of poly(I:C) and cGAMP. Finally, we were able to visualize co-expression of the MA signature genes in myeloid cells of human melanoma tissues using RNAscope in situ hybridization. In conclusion, the MA signature indicates the activation state of myeloid cells and represents a prognostic biomarker for the overall survival in melanoma patients.
Collapse
Affiliation(s)
- Mirela Kremenovic
- Institute of Pathology, Experimental Pathology, University of Bern, 3008 Bern, Switzerland; (M.K.); (N.R.); (T.G.); (L.B.))
| | - Nives Rombini
- Institute of Pathology, Experimental Pathology, University of Bern, 3008 Bern, Switzerland; (M.K.); (N.R.); (T.G.); (L.B.))
| | - Alfred A. Chan
- Division of Dermatology, Department of Medicine, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA; (A.A.C.); (D.J.L.)
| | - Thomas Gruber
- Institute of Pathology, Experimental Pathology, University of Bern, 3008 Bern, Switzerland; (M.K.); (N.R.); (T.G.); (L.B.))
| | - Lukas Bäriswyl
- Institute of Pathology, Experimental Pathology, University of Bern, 3008 Bern, Switzerland; (M.K.); (N.R.); (T.G.); (L.B.))
| | - Delphine J. Lee
- Division of Dermatology, Department of Medicine, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA; (A.A.C.); (D.J.L.)
| | - Mirjam Schenk
- Institute of Pathology, Experimental Pathology, University of Bern, 3008 Bern, Switzerland; (M.K.); (N.R.); (T.G.); (L.B.))
| |
Collapse
|
23
|
Khandia R, Munjal A. Interplay between inflammation and cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 119:199-245. [DOI: 10.1016/bs.apcsb.2019.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Gastroenteropancreatic neuroendocrine neoplasms and inflammation: A complex cross-talk with relevant clinical implications. Crit Rev Oncol Hematol 2019; 146:102840. [PMID: 31918344 DOI: 10.1016/j.critrevonc.2019.102840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/21/2019] [Accepted: 11/23/2019] [Indexed: 02/07/2023] Open
Abstract
Neuroendocrine neoplasms (NENs) are a group of tumors originating from the neuroendocrine system. They mainly occur in the digestive system and the respiratory tract. It is well-know a strict interaction between neuroendocrine system and inflammation, which can play an important role in NEN carcinogenesis. Inflammatory mediators, which are produced by the tumor microenvironment, can favor cancer induction and progression, and can promote immune editing. On the other hand, a balanced immune system represents a relevant step in cancer prevention through the elimination of dysplastic and cancer cells. Therefore, an inflammatory response may be both pro- and anti-tumorigenic. In this review, we provide an overview concerning the complex interplay between inflammation and gastroenteropancreatic NENs, focusing on the tumorigenesis and clinical implications in these tumors.
Collapse
|
25
|
Barak AF, Lewinsky H, Perpinial M, Huber V, Radomir L, Kramer MP, Sever L, Wolf Y, Shapiro M, Herishanu Y, Jung S, Becker-Herman S, Shachar I. Bone marrow dendritic cells support the survival of chronic lymphocytic leukemia cells in a CD84 dependent manner. Oncogene 2019; 39:1997-2008. [PMID: 31772329 DOI: 10.1038/s41388-019-1121-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 11/09/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a malignancy of mature B lymphocytes. The microenvironment of the CLL cells is a vital element in the regulation of the survival of these malignant cells. CLL cell longevity is dependent on external signals, originating from cells in their microenvironment including secreted and surface-bound factors. Dendritic cells (DCs) play an important part in tumor microenvironment, but their role in the CLL bone marrow (BM) niche has not been studied. We show here that CLL cells induce accumulation of bone marrow dendritic cells (BMDCs). Depletion of this population attenuates disease expansion. Our results show that the support of the microenvironment is partly dependent on CD84, a cell surface molecule belonging to the Signaling Lymphocyte Activating Molecule (SLAM) family of immunoreceptors. Our results suggest a novel therapeutic strategy whereby eliminating BMDCs or blocking the CD84 expressed on these cells may reduce the tumor load.
Collapse
Affiliation(s)
- Avital F Barak
- Department of Immunology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Hadas Lewinsky
- Department of Immunology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Michal Perpinial
- Department of Immunology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Victoria Huber
- Department of Immunology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Lihi Radomir
- Department of Immunology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Mattias P Kramer
- Department of Immunology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Lital Sever
- Department of Immunology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yochai Wolf
- Department of Immunology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Mika Shapiro
- Department of Hematology, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yair Herishanu
- Department of Hematology, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | - Idit Shachar
- Department of Immunology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
26
|
Nishimura J, Tanaka H, Yamakoshi Y, Hiramatsu S, Tamura T, Toyokawa T, Muguruma K, Maeda K, Hirakawa K, Ohira M. Impact of tumor-infiltrating LAMP-3 dendritic cells on the prognosis of esophageal squamous cell carcinoma. Esophagus 2019; 16:333-344. [PMID: 30968254 DOI: 10.1007/s10388-019-00669-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 03/28/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Dendritic cells (DCs) are the most potent antigen-presenting cells to induce cytotoxic T lymphocytes in the tumor environment. After acquiring antigens, DCs undergo maturation and their expression of MHC and co-stimulation molecules are enhanced, along with lysosome-associated membrane glycoprotein 3 (LAMP-3), which is a specific marker of mature DCs. In general, mature DCs are usually considered to be immunostimulatory in the cancer microenvironment. In addition, it is known that tumor-infiltrating lymphocytes (TILs) are associated with a good prognosis in esophageal squamous cell carcinoma (ESCC). However, few studies have targeted the interaction between DCs and TILs in the local immunity of ESCC. We investigated the localization of mature DCs within ESCC tissue and their relationship to TILs as well as the clinical outcome. METHODS We evaluated 80 ESCC patients who underwent surgical treatment without preoperative treatment, using immunohistochemistry with LAMP-3 and CD8. RESULTS The results showed that LAMP-3 DCs were predominantly observed in the peritumoral area. Intratumoral CD8 T cells were found to be associated with a favorable prognosis, and the number of infiltrating LAMP-3 DCs was correlated with the number of intratumoral CD8 T cells. CONCLUSION At the local tumor site, mature LAMP-3 DCs might be associated with increasing tumor infiltrating CD8 T cells.
Collapse
Affiliation(s)
- Junya Nishimura
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Abenoku, Osaka, Japan
| | - Hiroaki Tanaka
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Abenoku, Osaka, Japan.
| | - Yoshihito Yamakoshi
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Abenoku, Osaka, Japan
| | - Soichiro Hiramatsu
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Abenoku, Osaka, Japan
| | - Tatsuro Tamura
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Abenoku, Osaka, Japan
| | - Takahiro Toyokawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Abenoku, Osaka, Japan
| | - Kazuya Muguruma
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Abenoku, Osaka, Japan
| | - Kiyoshi Maeda
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Abenoku, Osaka, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Abenoku, Osaka, Japan
| | - Masaichi Ohira
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Abenoku, Osaka, Japan
| |
Collapse
|
27
|
Ling Z, Shao L, Liu X, Cheng Y, Yan C, Mei Y, Ji F, Liu X. Regulatory T Cells and Plasmacytoid Dendritic Cells Within the Tumor Microenvironment in Gastric Cancer Are Correlated With Gastric Microbiota Dysbiosis: A Preliminary Study. Front Immunol 2019; 10:533. [PMID: 30936882 PMCID: PMC6433099 DOI: 10.3389/fimmu.2019.00533] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/27/2019] [Indexed: 12/26/2022] Open
Abstract
Substantial evidence indicates that gastric microbiota dysbiosis, immune system dysfunction especially immune escape are critical for gastric cancer (GC) occurrence and progression. As two important elements of tumor microenvironment (TME), the relationship between gastric microbiota and tumor-immune microenvironment is still unclear. Our present study aimed to explore the correlation between gastric mucosal microbiota in different microhabitats and its corresponding gastric immunosuppressive cells such as regulatory T cells (Tregs) and plasmacytoid dendritic cells (pDCs) in the TME. A cohort of 64 GC patients without preoperative chemotherapy was enrolled retrospectively, and 60 normal, 61 peritumoral and 59 tumoral tissues were obtained for gastric mucosal microbiota analysis and immunohistochemistry analysis. From different microhabitats, BDCA2+pDCs and Foxp3+Tregs were observed positively correlated, and increased in tumoral and peritumoral tissues compared to normal ones. The diversity, composition and function of gastric mucosal microbiota also changed more significantly in tumoral tissues than those in normal and peritumoral ones. With pearson's correlation analysis, we found that several non-abundant genera such as Stenotrophomonas and Selenomonas were positively correlated with BDCA2+pDCs and Foxp3+Tregs, respectively, while Comamonas and Gaiella were negatively correlated with BDCA2+pDCs and Foxp3+ Tregs, respectively. The increased BDCA2+pDCs and Foxp3+Tregs might be modulated by gastric mucosal microbiota, both participated in the immunosuppression microenvironment of GC, which might provide evidence to establish new strategies in antitumor therapy targeting on gastric microbiota.
Collapse
Affiliation(s)
- Zongxin Ling
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, China
| | - Li Shao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, China
| | - Xia Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, China
| | - Yiwen Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, China
| | - Chongxian Yan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, China
| | - Ying Mei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, China
| | - Xiaosun Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, China
| |
Collapse
|
28
|
Wefers C, Duiveman-de Boer T, Yigit R, Zusterzeel PLM, van Altena AM, Massuger LFAG, De Vries IJM. Survival of Ovarian Cancer Patients Is Independent of the Presence of DC and T Cell Subsets in Ascites. Front Immunol 2019; 9:3156. [PMID: 30687337 PMCID: PMC6336918 DOI: 10.3389/fimmu.2018.03156] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/21/2018] [Indexed: 01/05/2023] Open
Abstract
Ascites is a prominent feature of ovarian cancer and could serve as liquid biopsy to assess the immune status of patients. Tumor-infiltrating T lymphocytes are correlated with improved survival in ovarian cancer. To investigate whether immune cells in ascites are associated with patient outcome, we analyzed the amount of dendritic cell (DC) and T cell subsets in ascites from ovarian cancer patients diagnosed with high-grade serous cancer (HGSC). Ascites was collected from 62 HGSC patients prior to chemotherapy. Clinicopathological, histological and follow-up data from patients were collected. Ascites-derived immune cells were isolated using density-gradient centrifugation. The presence of myeloid DCs (BDCA-1+, BDCA-3+, CD16+), pDCs (CD123+BDCA-2+), and T cells (CD4+, CD8+) was analyzed using flow cytometry. Complete cytoreduction, response to primary treatment and chemosensitivity were associated with improved patient outcome. In contrast, immune cells in ascites did not significantly correlate with patient survival. However, we observed a trend toward improved outcome for patients having low percentages of CD4+ T cells. Furthermore, we assessed the expression of co-stimulatory and co-inhibitory molecules on T cells and non-immune cells in 10 ascites samples. PD-1 was expressed by 30% of ascites-derived T cells and PD-L1 by 50% of non-immune cells. However, the percentage of DC and T cell subsets in ascites was not directly correlated to the survival of HGSC patients.
Collapse
Affiliation(s)
- Christina Wefers
- Department of Tumor Immunology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
- Department of Obstetrics and Gynecology, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Tjitske Duiveman-de Boer
- Department of Tumor Immunology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Refika Yigit
- Department of Tumor Immunology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
- Department of Obstetrics and Gynecology, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Petra L. M. Zusterzeel
- Department of Obstetrics and Gynecology, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Anne M. van Altena
- Department of Obstetrics and Gynecology, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Leon F. A. G. Massuger
- Department of Obstetrics and Gynecology, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - I. Jolanda M. De Vries
- Department of Tumor Immunology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| |
Collapse
|
29
|
Basudhar D, Bharadwaj G, Somasundaram V, Cheng RYS, Ridnour LA, Fujita M, Lockett SJ, Anderson SK, McVicar DW, Wink DA. Understanding the tumour micro-environment communication network from an NOS2/COX2 perspective. Br J Pharmacol 2019; 176:155-176. [PMID: 30152521 PMCID: PMC6295414 DOI: 10.1111/bph.14488] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Recent findings suggest that co-expression of NOS2 and COX2 is a strong prognostic indicator in triple-negative breast cancer patients. These two key inflammation-associated enzymes are responsible for the biosynthesis of NO and PGE2 , respectively, and can exert their effect in both an autocrine and paracrine manner. Impairment of their physiological regulation leads to critical changes in both intra-tumoural and intercellular communication with the immune system and their adaptation to the hypoxic tumour micro-environment. Recent studies have also established a key role of NOS2-COX2 in causing metabolic shift. This review provides an extensive overview of the role of NO and PGE2 in shaping communication between the tumour micro-environment composed of tumour and immune cells that in turn favours tumour progression and metastasis. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- Debashree Basudhar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Gaurav Bharadwaj
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Veena Somasundaram
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Robert Y S Cheng
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Lisa A Ridnour
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Mayumi Fujita
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChiba‐kenJapan
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Stephen K Anderson
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Daniel W McVicar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - David A Wink
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| |
Collapse
|
30
|
Fu C, Jiang A. Dendritic Cells and CD8 T Cell Immunity in Tumor Microenvironment. Front Immunol 2018; 9:3059. [PMID: 30619378 PMCID: PMC6306491 DOI: 10.3389/fimmu.2018.03059] [Citation(s) in RCA: 397] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
Dendritic cells (DCs) play a central role in the regulation of the balance between CD8 T cell immunity vs. tolerance to tumor antigens. Cross-priming, a process which DCs activate CD8 T cells by cross-presenting exogenous antigens, plays a critical role in generating anti-tumor CD8 T cell immunity. However, there are compelling evidences now that the tumor microenvironment (TME)-mediated suppression and modulation of tumor-infiltrated DCs (TIDCs) impair their function in initiating potent anti-tumor immunity and even promote tumor progression. Thus, DC-mediated cross-presentation of tumor antigens in tumor-bearing hosts often induces T cell tolerance instead of immunity. As tumor-induced immunosuppression remains one of the major hurdles for cancer immunotherapy, understanding how DCs regulate anti-tumor CD8 T cell immunity in particular within TME has been under intensive investigation. Recent reports on the Batf3-dependent type 1 conventional DCs (cDC1s) in anti-tumor immunity have greatly advanced our understanding on the interplay of DCs and CD8 T cells in the TME, highlighted by the critical role of CD103+ cDC1s in the cross-priming of tumor antigen-specific CD8 T cells. In this review, we will discuss recent advances in anti-tumor CD8 T cell cross-priming by CD103+ cDC1s in TME, and share perspective on future directions including therapeutic applications and memory CD8 T cell responses.
Collapse
Affiliation(s)
- Chunmei Fu
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Aimin Jiang
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
31
|
Valdes-Mora F, Handler K, Law AMK, Salomon R, Oakes SR, Ormandy CJ, Gallego-Ortega D. Single-Cell Transcriptomics in Cancer Immunobiology: The Future of Precision Oncology. Front Immunol 2018; 9:2582. [PMID: 30483257 PMCID: PMC6240655 DOI: 10.3389/fimmu.2018.02582] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Cancer is a heterogeneous and complex disease. Tumors are formed by cancer cells and a myriad of non-cancerous cell types that together with the extracellular matrix form the tumor microenvironment. These cancer-associated cells and components contribute to shape the progression of cancer and are deeply involved in patient outcome. The immune system is an essential part of the tumor microenvironment, and induction of cancer immunotolerance is a necessary step involved in tumor formation and growth. Immune mechanisms are intimately associated with cancer progression, invasion, and metastasis; as well as to tumor dormancy and modulation of sensitivity to drug therapy. Transcriptome analyses have been extensively used to understand the heterogeneity of tumors, classifying tumors into molecular subtypes and establishing signatures that predict response to therapy and patient outcomes. However, the classification of the tumor cell diversity and specially the identification of rare populations has been limited in these transcriptomic analyses of bulk tumor cell populations. Massively-parallel single-cell RNAseq analysis has emerged as a powerful method to unravel heterogeneity and to study rare cell populations in cancer, through unsupervised sampling and modeling of transcriptional states in single cells. In this context, the study of the role of the immune system in cancer would benefit from single cell approaches, as it will enable the characterization and/or discovery of the cell types and pathways involved in cancer immunotolerance otherwise missed in bulk transcriptomic information. Thus, the analysis of gene expression patterns at single cell resolution holds the potential to provide key information to develop precise and personalized cancer treatment including immunotherapy. This review is focused on the latest single-cell RNAseq methodologies able to agnostically study thousands of tumor cells as well as targeted single-cell RNAseq to study rare populations within tumors. In particular, we will discuss methods to study the immune system in cancer. We will also discuss the current challenges to the study of cancer at the single cell level and the potential solutions to the current approaches.
Collapse
Affiliation(s)
- Fatima Valdes-Mora
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Kristina Handler
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Andrew M K Law
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Robert Salomon
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Samantha R Oakes
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Christopher J Ormandy
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - David Gallego-Ortega
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
32
|
Schlitzer A, Zhang W, Song M, Ma X. Recent advances in understanding dendritic cell development, classification, and phenotype. F1000Res 2018; 7. [PMID: 30345015 PMCID: PMC6173131 DOI: 10.12688/f1000research.14793.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2018] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) play an essential role in the induction of adaptive immune responses against infectious agents and in the generation of tolerance to self-antigens. In this mini-review, we summarize new evidence suggesting that the tissue of residence significantly shapes the last developmental steps of DCs into locally adapted cellular entities, enabling them to perform tissue-specific tasks while maintaining the core DC properties. We also discuss recent advances that have highlighted DCs’ rather complex phenotypic and functional heterogeneity in the tumor microenvironment, based on their physical characteristics, such as activation status, maturity, and polarization, illustrating a key role for DCs in the induction of anti-tumor immunity.
Collapse
Affiliation(s)
| | - Wei Zhang
- Shanghai Institute of Cancer Research, Shanghai, China
| | - Mei Song
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.,Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
33
|
Vatner RE, Janssen EM. STING, DCs and the link between innate and adaptive tumor immunity. Mol Immunol 2017; 110:13-23. [PMID: 29273394 PMCID: PMC6768428 DOI: 10.1016/j.molimm.2017.12.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/30/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023]
Abstract
Cancer and the immune system are intimately related. Much of the bulk of tumors is comprised of stromal leukocytes with immune functions, which serve to both promote and inhibit tumor growth, invasion and metastasis. The T lymphocytes of the adaptive immune system are essential for tumor immunity, and these T cells are generated by cross-priming against tumor associated antigens. Dendritic cells (DCs) are essential in this process, serving as the cellular link between innate and adaptive immunity. As a prerequisite for priming of adaptive immune responses, DCs must take up tumor antigens, process them and present them in the context of the major histocompatibility complex (MHC). DCs also serve as sensors of innate activation signals from cancer that are necessary for their activation and effective priming of cancer specific T cells. Here we discuss the role of DCs in the sensing of cancer and in priming the adaptive response against tumors. Furthermore, we present the essential role of the Stimulator of Interferon Genes (STING) signaling pathway in producing type I interferons (IFNs) that are essential in this process.
Collapse
Affiliation(s)
- Ralph E Vatner
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7038, Cincinnati, OH 45229, United States; Department of Radiation Oncology, University of Cincinnati College of Medicine, 234 Goodman Street, ML 0757, Cincinnati, OH 45267, United States.
| | - Edith M Janssen
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7038, Cincinnati, OH 45229, United States
| |
Collapse
|
34
|
Schupp J, Krebs FK, Zimmer N, Trzeciak E, Schuppan D, Tuettenberg A. Targeting myeloid cells in the tumor sustaining microenvironment. Cell Immunol 2017; 343:103713. [PMID: 29129292 DOI: 10.1016/j.cellimm.2017.10.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 12/24/2022]
Abstract
Myeloid cells are the most abundant cells in the tumor microenvironment (TME). The tumor recruits and modulates endogenous myeloid cells to tumor-associated macrophages (TAM), dendritic cells (DC), myeloid-derived suppressor cells (MDSC) and neutrophils (TAN), to sustain an immunosuppressive environment. Pathologically overexpressed mediators produced by cancer cells like granulocyte-macrophage colony-stimulating- and vascular endothelial growth factor induce myelopoiesis in the bone marrow. Excess of myeloid cells in the blood, periphery and tumor has been associated with tumor burden. In cancer, myeloid cells are kept at an immature state of differentiation to be diverted to an immunosuppressive phenotype. Here, we review human myeloid cells in the TME and the mechanisms for sustaining the hallmarks of cancer. Simultaneously, we provide an introduction into current and novel therapeutic approaches to redirect myeloid cells from a cancer promoting to a rather inflammatory, cancer inhibiting phenotype. In addition, the role of platelets for tumor promotion is discussed.
Collapse
Affiliation(s)
- Jonathan Schupp
- Department of Dermatology, University Medical Center, Mainz, Germany
| | - Franziska K Krebs
- Department of Dermatology, University Medical Center, Mainz, Germany; German Cancer Consortium (DKTK), partner site Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Niklas Zimmer
- Department of Dermatology, University Medical Center, Mainz, Germany
| | - Emily Trzeciak
- The Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
35
|
Presurgical weight loss affects tumour traits and circulating biomarkers in men with prostate cancer. Br J Cancer 2017; 117:1303-1313. [PMID: 28881355 PMCID: PMC5672928 DOI: 10.1038/bjc.2017.303] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/27/2017] [Accepted: 08/09/2017] [Indexed: 01/11/2023] Open
Abstract
Background: Obesity is associated with aggressive prostate cancer. To explore whether weight loss favourably affects tumour biology and other outcomes, we undertook a presurgical trial among overweight and obese men with prostate cancer. Methods: This single-blinded, two-arm randomised controlled trial explored outcomes of a presurgical weight loss intervention (WLI) that promoted ∼1 kg per week loss via caloric restriction and increased physical activity (PA). Forty overweight/obese men with clinically confirmed prostate cancer were randomised to the WLI presurgery or to a control arm; changes in weight, body composition, quality-of-life, circulating biomarkers, gene expression, and immunohistochemical markers in tumour and benign prostatic tissue were evaluated. Results: The study period averaged 50 days. Mean (s.d.) change scores for the WLI vs control arms were as follows: weight: −4.7 (3.1) kg vs −2.2 (4.4) kg (P=0.0508); caloric intake: −500 (636) vs −159 (600) kcal per day (P=0.0034); PA: +0.9 (3.1) vs +1.7 (4.6) MET-hours per day (NS); vitality: +5.3 (7.l4) vs −1.8 (8.1) (P=0.0491); testosterone: +55.1 (86.0) vs −48.3 (203.7) ng dl−1 (P=0.0418); sex hormone-binding globulin: +14.0 (14.6) vs +1.8 (7.6) nmol l−1 (P=0.0023); and leptin: −2.16 (2.6) vs −0.03 (3.75) (P=0.0355). Follow-up Ki67 was significantly higher in WLI vs control arms; median (interquartile range): 5.0 (2.5,10.0) vs 0.0 (0.0,2.5) (P=0.0061) and several genes were upregulated, for example, CTSL, GSK3B, MED12, and LAMC2. Conclusions: Intentional weight loss shows mixed effects on circulating biomarkers, tumour gene expression, and proliferative markers. More study is needed before recommending weight loss, in particular rapid weight loss, among men with prostate cancer.
Collapse
|
36
|
Dyduch G, Tyrak KE, Glajcar A, Szpor J, Okoń K. CD207+/langerin positive dendritic cells in invasive and in situ cutaneous malignant melanoma. Postepy Dermatol Alergol 2017; 34:233-239. [PMID: 28670252 PMCID: PMC5471378 DOI: 10.5114/ada.2017.67845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/22/2016] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Dendritic cells are crucial for cutaneous immune response. Their role in melanoma progression is however a matter of controversy. MATERIAL AND METHODS The number of dendritic cells within epidermis and in peri- and intratumoral location was analyzed using CD207 immunostain in 17 cases of in situ and 25 case of invasive melanoma. RESULTS Average peritumoral CD207+ cells count was 22.88 for all cases, 17.94 for in situ lesions and 26.24 for invasive cases. Average epidermal CD207+ cells count was 164.47 for all cases, 183.00 for in situ lesions and 150.78 - for invasive cases. In case of invasive melanomas, peritumoral CD207+ cells count was positively correlated with Breslow stage (R = 0.59) mitotic activity within the tumor (R = 0.62). Invasive cases with regression showed higher intratumoral and epidermal CD207+ cells count than the ones without (275.00 vs. 95.32 and 173.20 vs. 148.35) but lower peritumoral CD207+ cells count (17.60 vs. 27.26). Invasive cases with ulceration showed higher intratumoral and peritumoral CD207+ cells count than the ones without ulceration (220.08 vs. 55.67 and 44.17 vs. 9.69). CONCLUSIONS CD207+ cells play a role in both progression and regression of melanoma but their exact role needs further studies.
Collapse
Affiliation(s)
- Grzegorz Dyduch
- Chair of Pathomorphology, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna E Tyrak
- II Chair of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Glajcar
- Chair of Pathomorphology, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Szpor
- Chair of Pathomorphology, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Okoń
- Chair of Pathomorphology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
37
|
Tang M, Diao J, Cattral MS. Molecular mechanisms involved in dendritic cell dysfunction in cancer. Cell Mol Life Sci 2017; 74:761-776. [PMID: 27491428 PMCID: PMC11107728 DOI: 10.1007/s00018-016-2317-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/15/2016] [Accepted: 07/21/2016] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DC) play a pivotal role in the tumor microenvironment (TME). As the primary antigen-presenting cells in the tumor, DCs modulate anti-tumor responses by regulating the magnitude and duration of infiltrating cytotoxic T lymphocyte responses. Unfortunately, due to the immunosuppressive nature of the TME, as well as the inherent plasticity of DCs, tumor DCs are often dysfunctional, a phenomenon that contributes to immune evasion. Recent progresses in our understanding of tumor DC biology have revealed potential molecular targets that allow us to improve tumor DC immunogenicity and cancer immunotherapy. Here, we review the molecular mechanisms that drive tumor DC dysfunction. We discuss recent advances in our understanding of tumor DC ontogeny, tumor DC subset heterogeneity, and factors in the tumor microenvironment that affect DC recruitment, differentiation, and function. Finally, we describe potential strategies to optimize tumor DC function in the context of cancer therapy.
Collapse
Affiliation(s)
- Michael Tang
- Toronto General Hospital Research Institute, University Health Network, Peter Munk Building, 11-173, 585 University Ave., Toronto, ON, M5G 2N2, Canada
| | - Jun Diao
- Toronto General Hospital Research Institute, University Health Network, Peter Munk Building, 11-173, 585 University Ave., Toronto, ON, M5G 2N2, Canada
| | - Mark S Cattral
- Toronto General Hospital Research Institute, University Health Network, Peter Munk Building, 11-173, 585 University Ave., Toronto, ON, M5G 2N2, Canada.
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2N2, Canada.
| |
Collapse
|
38
|
Melanomas and Dysplastic Nevi Differ in Epidermal CD1c+ Dendritic Cell Count. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6803756. [PMID: 28331853 PMCID: PMC5346357 DOI: 10.1155/2017/6803756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/30/2017] [Accepted: 02/06/2017] [Indexed: 12/16/2022]
Abstract
Background. Dendritic cells could be involved in immune surveillance of highly immunogenic tumors such as melanoma. Their role in the progression melanocytic nevi to melanoma is however a matter of controversy. Methods. The number of dendritic cells within epidermis, in peritumoral zone, and within the lesion was counted on slides immunohistochemically stained for CD1a, CD1c, DC-LAMP, and DC-SIGN in 21 of dysplastic nevi, 27 in situ melanomas, and 21 invasive melanomas. Results. We found a significant difference in the density of intraepidermal CD1c+ cells between the examined lesions; the mean CD1c cell count was 7.00/mm2 for invasive melanomas, 2.94 for in situ melanomas, and 13.35 for dysplastic nevi. The differences between dysplastic nevi and melanoma in situ as well as between dysplastic nevi and invasive melanoma were significant. There was no correlation in number of positively stained cells between epidermis and dermis. We did not observe any intraepidermal DC-LAMP+ cells neither in melanoma in situ nor in invasive melanoma as well as any intraepidermal DC-SIGN+ cells in dysplastic nevi. Conclusion. It was shown that the number of dendritic cells differs between dysplastic nevi, in situ melanomas, and invasive melanomas. This could eventually suggest their participation in the development of melanoma.
Collapse
|
39
|
Tuettenberg A, Steinbrink K, Schuppan D. Myeloid cells as orchestrators of the tumor microenvironment: novel targets for nanoparticular cancer therapy. Nanomedicine (Lond) 2016; 11:2735-2751. [DOI: 10.2217/nnm-2016-0208] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Macrophages, myeloid-derived suppressor cells and tolerogenic dendritic cells are central players of a heterogeneous myeloid cell population, with the ability to suppress innate and adaptive immune responses and thus to promote tumor growth. Their influx and local proliferation are mainly induced by the cancers themselves, and their numbers in the tumor microenvironment and the peripheral blood correlate with decreased survival. Therapeutic targeting these innate immune cells, either aiming at their elimination or polarization toward tumor suppressive cells is an attractive novel approach to control tumor progression and block metastasis. We review the current understanding of cancer immunology including immune surveillance and immune editing in the context of these prominent innate suppressor cells, and their targetability by nanoparticular immunotherapy with small molecules or siRNA.
Collapse
Affiliation(s)
- Andrea Tuettenberg
- Department of Dermatology & Research Center for Immunotherapy (FZI) University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Kerstin Steinbrink
- Department of Dermatology & Research Center for Immunotherapy (FZI) University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology & Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Inagaki Y, Hookway E, Williams KA, Hassan AB, Oppermann U, Tanaka Y, Soilleux E, Athanasou NA. Dendritic and mast cell involvement in the inflammatory response to primary malignant bone tumours. Clin Sarcoma Res 2016; 6:13. [PMID: 27482375 PMCID: PMC4968446 DOI: 10.1186/s13569-016-0053-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022] Open
Abstract
Background A chronic inflammatory cell infiltrate is commonly seen in response to primary malignant tumours of bone. This is known to contain tumour-associated macrophages (TAMs) and lymphocytes; dendritic cells (DCs) and mast cells (MCs) have also been identified but whether these and other inflammatory cells are seen commonly in specific types of bone sarcoma is uncertain. Methods In this study we determined the nature of the inflammatory cell infiltrate in 56 primary bone sarcomas. Immunohistochemistry using monoclonal antibodies was employed to assess semiquantitatively CD45+ leukocyte infiltration and the extent of the DC, MC, TAM and T and B lymphocyte infiltrate. Results The extent of the inflammatory infiltrate in individual sarcomas was very variable. A moderate or heavy leukocyte infiltrate was more commonly seen in conventional high-grade osteosarcoma, undifferentiated pleomorphic sarcoma and giant cell tumour of bone (GCTB) than in Ewing sarcoma, chordoma and chondrosarcoma. CD14+/CD68+ TAMs and CD3+ T lymphocytes were the major components of the inflammatory cell response but (DC-SIGN/CD11c+) DCs were also commonly noted when there was a significant TAM and T lymphocyte infiltrate. MCs were identified mainly at the periphery of sarcomas, including the osteolytic tumour-bone interface. Discussion Our findings indicate that, although variable, some malignant bone tumours (e.g. osteosarcoma, GCTB) are more commonly associated with a pronounced inflammatory cell infiltrate than others (e.g. chondrosarcoma. Ewing sarcoma); the infiltrate is composed mainly of TAMs but includes a significant DC, T lymphocyte and MC infiltrate. Conclusion Tumours that contain a heavy inflammatory cell response, which includes DCs, TAMs and T lymphocytes, may be more amenable to immunomodulatory therapy. MCs are present mainly at the tumour edge and are likely to contribute to osteolysis and tumour invasion.
Collapse
Affiliation(s)
- Y Inagaki
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7HE UK ; Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Japan
| | - E Hookway
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7HE UK
| | - K A Williams
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7HE UK
| | - A B Hassan
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7HE UK
| | - U Oppermann
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7HE UK
| | - Y Tanaka
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Japan
| | - E Soilleux
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7HE UK
| | - N A Athanasou
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7HE UK
| |
Collapse
|
41
|
Nayama M, Collinet P, Salzet M, Vinatier D. [Immunological aspects of ovarian cancer: Therapeutic perspectives]. ACTA ACUST UNITED AC 2016; 45:1020-1036. [PMID: 27320132 DOI: 10.1016/j.jgyn.2016.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 05/07/2016] [Accepted: 05/13/2016] [Indexed: 01/09/2023]
Abstract
Ovarian cancer is recognized by the immunological system of its host. Initially, it is effective to destroy and eliminate the cancer. But gradually, resistant tumor cells more aggressive and those able to protect themselves by inducing immune tolerance will be selected. Immunotherapy to be effective should consider both components of immune response with an action on cytotoxic immune effectors and action on tolerance mechanisms. The manipulations of the immune system should be cautious, because the immune effects are not isolated. A theoretically efficient handling may simultaneously cause an adverse effect which was not envisaged and could neutralize the benefits of treatment. Knowledge of tolerance mechanisms set up by the tumor is for the clinician a prerequisite before they prescribe these treatments. For each cancer, the knowledge of its immunological status is a prerequisite to propose adapted immunological therapies.
Collapse
Affiliation(s)
- M Nayama
- Service de gynécologie obstétrique, maternité Issaka-Gazoby, BP 10975, Niamey, Niger
| | - P Collinet
- CHU de Lille, 59000 Lille, France; Département universitaire de gynécologie obstétrique, université Nord-de-France, 59045 Lille cedex, France
| | - M Salzet
- EA 4550, IFR 147, laboratoire PRISM : protéomique, réponse inflammatoire, spectrométrie de Masse, université Lille 1, bâtiment SN3, 1(er) étage, 59655 Villeneuve d'Ascq cedex, France
| | - D Vinatier
- CHU de Lille, 59000 Lille, France; EA 4550, IFR 147, laboratoire PRISM : protéomique, réponse inflammatoire, spectrométrie de Masse, université Lille 1, bâtiment SN3, 1(er) étage, 59655 Villeneuve d'Ascq cedex, France; Département universitaire de gynécologie obstétrique, université Nord-de-France, 59045 Lille cedex, France.
| |
Collapse
|
42
|
Martin Lluesma S, Wolfer A, Harari A, Kandalaft LE. Cancer Vaccines in Ovarian Cancer: How Can We Improve? Biomedicines 2016; 4:biomedicines4020010. [PMID: 28536377 PMCID: PMC5344251 DOI: 10.3390/biomedicines4020010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 12/11/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is one important cause of gynecologic cancer-related death. Currently, the mainstay of ovarian cancer treatment consists of cytoreductive surgery and platinum-based chemotherapy (introduced 30 years ago) but, as the disease is usually diagnosed at an advanced stage, its prognosis remains very poor. Clearly, there is a critical need for new treatment options, and immunotherapy is one attractive alternative. Prophylactic vaccines for prevention of infectious diseases have led to major achievements, yet therapeutic cancer vaccines have shown consistently low efficacy in the past. However, as they are associated with minimal side effects or invasive procedures, efforts directed to improve their efficacy are being deployed, with Dendritic Cell (DC) vaccination strategies standing as one of the more promising options. On the other hand, recent advances in our understanding of immunological mechanisms have led to the development of successful strategies for the treatment of different cancers, such as immune checkpoint blockade strategies. Combining these strategies with DC vaccination approaches and introducing novel combinatorial designs must also be considered and evaluated. In this review, we will analyze past vaccination methods used in ovarian cancer, and we will provide different suggestions aiming to improve their efficacy in future trials.
Collapse
Affiliation(s)
- Silvia Martin Lluesma
- Center of Experimental Therapeutics, Ludwig Center for Cancer Res, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.
| | - Anita Wolfer
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.
| | - Alexandre Harari
- Center of Experimental Therapeutics, Ludwig Center for Cancer Res, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.
| | - Lana E Kandalaft
- Center of Experimental Therapeutics, Ludwig Center for Cancer Res, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
43
|
Clausen BE, Stoitzner P. Functional Specialization of Skin Dendritic Cell Subsets in Regulating T Cell Responses. Front Immunol 2015; 6:534. [PMID: 26557117 PMCID: PMC4617171 DOI: 10.3389/fimmu.2015.00534] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DC) are a heterogeneous family of professional antigen-presenting cells classically recognized as most potent inducers of adaptive immune responses. In this respect, Langerhans cells have long been considered to be prototypic immunogenic DC in the skin. More recently this view has considerably changed. The generation of in vivo cell ablation and lineage tracing models revealed the complexity of the skin DC network and, in particular, established the existence of a number of phenotypically distinct Langerin+ and negative DC populations in the dermis. Moreover, by now we appreciate that DC also exert important regulatory functions and are required for the maintenance of tolerance toward harmless foreign and self-antigens. This review summarizes our current understanding of the skin-resident DC system in the mouse and discusses emerging concepts on the functional specialization of the different skin DC subsets in regulating T cell responses. Special consideration is given to antigen cross-presentation as well as immune reactions toward contact sensitizers, cutaneous pathogens, and tumors. These studies form the basis for the manipulation of the human counterparts of the murine DC subsets to promote immunity or tolerance for the treatment of human disease.
Collapse
Affiliation(s)
- Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Patrizia Stoitzner
- Department of Dermatology and Venereology, Division of Experimental Dermatology, Medical University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
44
|
Boyle ST, Faulkner JW, McColl SR, Kochetkova M. The chemokine receptor CCR6 facilitates the onset of mammary neoplasia in the MMTV-PyMT mouse model via recruitment of tumor-promoting macrophages. Mol Cancer 2015; 14:115. [PMID: 26047945 PMCID: PMC4464622 DOI: 10.1186/s12943-015-0394-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/29/2015] [Indexed: 01/02/2023] Open
Abstract
Background The expression of the chemokine receptor CCR6 has been previously correlated with higher grades and stages of breast cancer and decreased relapse-free survival. Also, its cognate chemokine ligand CCL20 has been reported to induce proliferation of cultured human breast epithelial cells. Methods To establish if CCR6 plays a functional role in mammary tumorigenesis, a bigenic MMTV-PyMT CCR6-null mouse was generated and mammary tumor development was assessed. Levels of tumor-infiltrating immune cells within tumor-bearing mammary glands from MMTV-PyMT Ccr6WT and Ccr6−/− mice were also analyzed. Results Deletion of CCR6 delayed tumor onset, significantly reduced the extent of initial hyperplastic outgrowth, and decreased tumor incidence in PyMT transgenic mice. CCR6 was then shown to promote the recruitment of pro-tumorigenic macrophages to the tumor site, facilitating the onset of neoplasia. Conclusions This study delineated for the first time a role for CCR6 in the development of breast cancer, and demonstrated a critical function for this receptor in maintaining the pro-tumorigenic cancer microenvironment. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0394-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah T Boyle
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Jessica W Faulkner
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Shaun R McColl
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Centre for Molecular Pathology, University of Adelaide, Adelaide, South Australia, Australia
| | - Marina Kochetkova
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
45
|
Malietzis G, Lee GH, Jenkins JT, Bernardo D, Moorghen M, Knight SC, Al-Hassi HO. Prognostic Value of the Tumour-Infiltrating Dendritic Cells in Colorectal Cancer: A Systematic Review. ACTA ACUST UNITED AC 2015; 22:9-14. [DOI: 10.3109/15419061.2015.1036859] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
46
|
Whole Tumor Antigen Vaccines: Where Are We? Vaccines (Basel) 2015; 3:344-72. [PMID: 26343191 PMCID: PMC4494356 DOI: 10.3390/vaccines3020344] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 12/19/2022] Open
Abstract
With its vast amount of uncharacterized and characterized T cell epitopes available for activating CD4+ T helper and CD8+ cytotoxic lymphocytes simultaneously, whole tumor antigen represents an attractive alternative source of antigens as compared to tumor-derived peptides and full-length recombinant tumor proteins for dendritic cell (DC)-based immunotherapy. Unlike defined tumor-derived peptides and proteins, whole tumor lysate therapy is applicable to all patients regardless of their HLA type. DCs are essentially the master regulators of immune response, and are the most potent antigen-presenting cell population for priming and activating naïve T cells to target tumors. Because of these unique properties, numerous DC-based immunotherapies have been initiated in the clinics. In this review, we describe the different types of whole tumor antigens that we could use to pulse DCs ex vivo and in vivo. We also discuss the different routes of delivering whole tumor antigens to DCs in vivo and activating them with toll-like receptor agonists.
Collapse
|
47
|
Tran Janco JM, Lamichhane P, Karyampudi L, Knutson KL. Tumor-infiltrating dendritic cells in cancer pathogenesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:2985-91. [PMID: 25795789 PMCID: PMC4369768 DOI: 10.4049/jimmunol.1403134] [Citation(s) in RCA: 336] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) play a pivotal role in the tumor microenvironment, which is known to affect disease progression in many human malignancies. Infiltration by mature, active DCs into the tumors confers an increase in immune activation and recruitment of disease-fighting immune effector cells and pathways. DCs are the preferential target of infiltrating T cells. However, tumor cells have means of suppressing DC function or of altering the tumor microenvironment in such a way that immune-suppressive DCs are recruited. Advances in understanding these changes have led to promising developments in cancer-therapeutic strategies targeting tumor-infiltrating DCs to subdue their immunosuppressive functions and enhance their immune-stimulatory capacity.
Collapse
Affiliation(s)
| | - Purushottam Lamichhane
- Department of Immunology, Mayo Clinic, Rochester, MN 55906; and Cancer Vaccines and Immune Therapies Program, Vaccine and Gene Therapy Institute, Port St. Lucie, FL 34987
| | - Lavakumar Karyampudi
- Cancer Vaccines and Immune Therapies Program, Vaccine and Gene Therapy Institute, Port St. Lucie, FL 34987
| | - Keith L Knutson
- Department of Immunology, Mayo Clinic, Rochester, MN 55906; and Cancer Vaccines and Immune Therapies Program, Vaccine and Gene Therapy Institute, Port St. Lucie, FL 34987
| |
Collapse
|
48
|
Pusztaszeri MP, Faquin WC, Sadow PM. Tumor-Associated Inflammatory Cells in Thyroid Carcinomas. Surg Pathol Clin 2014; 7:501-14. [PMID: 26837551 DOI: 10.1016/j.path.2014.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The complex interactions between immune cells and tumor cells in cancer play a major role in tumor development and subsequent patient outcomes. Different types of tumor-associated inflammatory cells (TAICs), such as dendritic cells, macrophages, lymphocytes, and mast cells, have been recognized for many years in several tumors; however, the role of TAICs in cancer is still not completely understood. This review article focuses on the major types of TAICs, including their general role in cancer and, more specifically, their role and distribution in thyrocyte-derived carcinomas.
Collapse
Affiliation(s)
- Marc P Pusztaszeri
- Department of Pathology, Geneva University Hospital, 1 Michel-Servet St, Geneva, GE 1211, Switzerland.
| | - William C Faquin
- Department of Pathology, Massachusetts General Hospital, Warren 219, 55 Fruit Street, Boston, MA 02114, USA; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Peter M Sadow
- Department of Pathology, Massachusetts General Hospital, Warren 219, 55 Fruit Street, Boston, MA 02114, USA; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| |
Collapse
|
49
|
Zhang Z, Li W, Procissi D, Li K, Sheu AY, Gordon AC, Guo Y, Khazaie K, Huan Y, Han G, Larson AC. Antigen-loaded dendritic cell migration: MR imaging in a pancreatic carcinoma model. Radiology 2014; 274:192-200. [PMID: 25222066 DOI: 10.1148/radiol.14132172] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE To test the following hypotheses in a murine model of pancreatic cancer: (a) Vaccination with antigen-loaded iron-labeled dendritic cells reduces T2-weighted signal intensity at magnetic resonance (MR) imaging within peripheral draining lymph nodes ( LN lymph node s) and (b) such signal intensity reductions are associated with tumor size changes after dendritic cell vaccination. MATERIALS AND METHODS The institutional animal care and use committee approved this study. Panc02 cells were implanted into the flanks of 27 C57BL/6 mice bilaterally. After tumors reached 10 mm, cell viability was evaluated, and iron-labeled dendritic cell vaccines were injected into the left hind footpad. The mice were randomly separated into the following three groups (n = 9 in each): Group 1 was injected with 1 million iron-labeled dendritic cells; group 2, with 2 million cells; and control mice, with 200 mL of phosphate-buffered saline. T1- and T2-weighted MR imaging of labeled dendritic cell migration to draining LN lymph node s was performed before cell injection and 6 and 24 hours after injection. The signal-to-noise ratio ( SNR signal-to-noise ratio ) of the draining LN lymph node s was measured. One-way analysis of variance ( ANOVA analysis of variance ) was used to compare Prussian blue-positive dendritic cell measurements in LN lymph node s. Repeated-measures ANOVA analysis of variance was used to compare in vivo T2-weighted SNR signal-to-noise ratio LN lymph node measurements between groups over the observation time points. RESULTS Trypan blue assays showed no significant difference in mean viability indexes (unlabeled vs labeled dendritic cells, 4.32% ± 0.69 [standard deviation] vs 4.83% ± 0.76; P = .385). Thirty-five days after injection, the mean left and right flank tumor sizes, respectively, were 112.7 mm(2) ± 16.4 and 109 mm(2) ± 24.3 for the 1-million dendritic cell group, 92.2 mm(2) ± 9.9 and 90.4 mm(2) ± 12.8 for the 2-million dendritic cell group, and 193.7 mm(2) ± 20.9 and 189.4 mm(2) ± 17.8 for the control group (P = .0001 for control group vs 1-million cell group; P = .00007 for control group vs 2-million cell group). There was a correlation between postinjection T2-weighted SNR signal-to-noise ratio decreases in the left popliteal LN lymph node 24 hours after injection and size changes at follow-up for tumors in both flanks (R = 0.81 and R = 0.76 for left and right tumors, respectively). CONCLUSION MR imaging approaches can be used for quantitative measurement of accumulated iron-labeled dendritic cell-based vaccines in draining LN lymph node s. The amount of dendritic cell-based vaccine in draining LN lymph node s correlates well with observed protective effects.
Collapse
Affiliation(s)
- Zhuoli Zhang
- From the Department of Radiology (Z.Z., W.L., D.P., K.L., A.Y.S., A.C.G., Y.G., A.C.L.), Robert H. Lurie Comprehensive Cancer Center (Z.Z., K.K., A.C.L.), and Department of Biomedical Engineering (A.C.L.), Northwestern University, 737 N Michigan Ave, 16th Floor, Chicago, IL 60611; Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (Z.Z., Y.H., A.C.L.); and Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China (G.H.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bakdash G, Schreurs I, Schreibelt G, Tel J. Crosstalk between dendritic cell subsets and implications for dendritic cell-based anticancer immunotherapy. Expert Rev Clin Immunol 2014; 10:915-26. [PMID: 24758519 DOI: 10.1586/1744666x.2014.912561] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dendritic cells (DCs) are a family of professional antigen-presenting cells that have an indispensable role in the initiation of innate and adaptive immune responses against pathogens and tumor cells. The DC family is very heterogeneous. Two main types of naturally occurring DCs circulate in peripheral blood, each with its unique phenotypic and functional characteristics: myeloid DCs and plasmacytoid. There is an ample number of studies that have focused on the bi-directional crosstalk between DCs and natural killer cells or T cells. However, the crosstalk among the different DC subsets, in the context of infectious diseases and cancer, has until now not received much attention. Here, we review all available literature that has dealt with the crosstalk between plasmacytoid and myeloid DCs and the potential mode of action. Emphasis will be given to the therapeutic potential of the combination of DC subsets for DC-based immunotherapy.
Collapse
Affiliation(s)
- Ghaith Bakdash
- Department of Tumor Immunology, Radboud University Medical Centre and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|