1
|
Alsaedi AQ, Nader MA, El-Kashef DH, Abdelmageed ME. Mangiferin mitigates dexamethasone-induced insulin resistance in rats: insight into vascular dysfunction and hepatic steatosis. Front Pharmacol 2025; 16:1572758. [PMID: 40406487 PMCID: PMC12095298 DOI: 10.3389/fphar.2025.1572758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/08/2025] [Indexed: 05/26/2025] Open
Abstract
Aim Insulin resistance (IR) is a hazard to human health in which peripheral insulin-target organs, like the liver, become less sensitive to normal levels of insulin. Dexamethasone (DEX)-induced IR is a distinct model of IR. Hence, the present study investigates the efficacy of mangiferin (Mang) in the reversal of DEX-induced IR in the livers and aortas of rats. Main methods Rats were randomly assigned into six groups: control (CTRL), Mang, DEX, and three pretreated groups (received Mang 25 mg/kg, 50 mg/kg, or 100 mg/kg, orally for 14 days, with DEX (1 mg/kg) injected from day 8 to day 14). On day 15, serum, liver, and aorta tissues were obtained and examined using biochemical, histological, and immunohistochemical assessments. Key findings Mang administration attenuated DEX-induced IR, evidenced by decreased oral glucose tolerance test (OGTT) and fasting serum insulin levels, in addition to improving the DEX-induced hepatic and aortic histopathological alterations. Additionally, Mang attenuated DEX-induced alterations in liver function parameters and improved serum lipid profiles, oxidative stress, and antioxidant biomarkers. Mang also markedly increased hepatic and aortic levels of insulin receptor substrate 1 (IRS1), protein kinase B (AKT), AMP-activated protein kinase (AMPK), and peroxisome proliferator-activated receptor-gamma (PPAR-γ) levels. Mang reduced hepatic and aortic tumor necrosis factor-alpha (TNF-α), forkhead box protein O1 (FOXO-1), hepatic NOD-like receptor family pyrin domain-containing 3 (NLRP3), phosphoenol pyruvate carboxy kinase (PEPCK), and glucose 6-phosphatase (G6Pase). Mang elevated hepatic glycogen synthase kinase3 (GSK3α) and glycogen synthase (GS2) levels. Furthermore, Mang ameliorated aortic expression levels of endothelin-1 (ET-1), vascular cell adhesion molecule-1 (VCAM), c-Jun N-terminal kinase (JNK), nuclear factor kappa B (NF-κB), and vascular endothelial growth factor (VEGF) and increased endothelial nitric oxide synthase (eNOS) and prostacyclin (PGI2) levels. Conclusion Mang administration could confer hepato- and vasculo-protective activity via its hypolipidemic, hepatoprotective, anti-inflammatory, and antioxidant efficacy.
Collapse
Affiliation(s)
- Abdullah Q. Alsaedi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Quality and Output Control, Branch of Ministry of Health, Madinah, Saudi Arabia
| | - Manar A. Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, Egypt
| | - Dalia H. El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Marwa E. Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, Egypt
| |
Collapse
|
2
|
Abu-Alghayth MH, Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Papadakis M, Bahaa MM, Afifi M, Al-Farga A, Wahsh E, Batiha GES. Atheroprotective role of vinpocetine: an old drug with new indication. Inflammopharmacology 2024; 32:3669-3678. [PMID: 39141151 PMCID: PMC11550280 DOI: 10.1007/s10787-024-01529-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/22/2024] [Indexed: 08/15/2024]
Abstract
Endothelial dysfunction is considered one of the main causes of atherosclerosis and elevated blood pressure. Atherosclerosis (AS) formation is enhanced by different mechanisms including cytokine generation, vascular smooth muscle cell proliferation, and migration. One of the recent treatment toward endothelial dysfunction is vinpocetine (VPN). VPN is an ethyl apovincaminate used in the management of different cerebrovascular disorders and endothelial dysfunction through inhibition of atherosclerosis formation. VPN is a potent inhibitor of phosphodiesterase enzyme 1 (PDE1) as well it has anti-inflammatory and antioxidant effects through inhibition of the expression of nuclear factor kappa B (NF-κB). VPN has been shown to be effective against development and progression of AS. However, the underlying molecular mechanism was not fully clarified. Consequently, objective of the present narrative review was to clarify the mechanistic role of VPN in AS. Most of pro-inflammatory cytokines released from macrophages are inhibited by the action of VPN via NF-κB-dependent mechanism. VPN blocks monocyte adhesion and migration by inhibiting the expression of pro-inflammatory cytokines. As well, VPN is effective in reducing oxidative stress, a cornerstone in the pathogenesis of AS, through inhibition of NF-κB and PDE1. VPN promotes plaque stability and prevent erosion and rupture of atherosclerotic plaque. In conclusion, VPN through mitigation of inflammatory and oxidative stress with plaque stability effects could be effective agent in the management of endothelial dysfunction through inhibition of atherosclerosis mediators.
Collapse
Affiliation(s)
- Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, 67714, Bisha, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Athanasios Alexiou
- University Centre for Research and Development, Chandigarh University, Chandigarh-Ludhiana highway, Mohali, Punjab, India
- Department of Research and Development, Funogen, 11741, Athens, Greece
- Department of Research and Development, AFNP Med, 1030, Vienna, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Mostafa M Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Mohammed Afifi
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Ammar Al-Farga
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Eman Wahsh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Arish Campus, Arish, 45511, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
3
|
Xu MY, Xu JJ, Kang LJ, Liu ZH, Su MM, Zhao WQ, Wang ZH, Sun L, Xiao JB, Evans PC, Tian XY, Wang L, Huang Y, Liang XM, Weng JP, Xu SW. Urolithin A promotes atherosclerotic plaque stability by limiting inflammation and hypercholesteremia in Apolipoprotein E-deficient mice. Acta Pharmacol Sin 2024; 45:2277-2289. [PMID: 38886550 PMCID: PMC11489441 DOI: 10.1038/s41401-024-01317-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/16/2024] [Indexed: 06/20/2024]
Abstract
Urolithin A (UroA), a dietary phytochemical, is produced by gut bacteria from fruits rich in natural polyphenols ellagitannins (ETs). The efficiency of ETs metabolism to UroA in humans depends on gut microbiota. UroA has shown a variety of pharmacological activities. In this study we investigated the effects of UroA on atherosclerotic lesion development and stability. Apolipoprotein E-deficient (ApoE-/-) mice were fed a high-fat and high-cholesterol diet for 3 months to establish atherosclerosis model. Meanwhile the mice were administered UroA (50 mg·kg-1·d-1, i.g.). We showed that UroA administration significantly decreased diet-induced atherosclerotic lesions in brachiocephalic arteries, macrophage content in plaques, expression of endothelial adhesion molecules, intraplaque hemorrhage and size of necrotic core, while increased the expression of smooth muscle actin and the thickness of fibrous cap, implying features of plaque stabilization. The underlying mechanisms were elucidated using TNF-α-stimulated human endothelial cells. Pretreatment with UroA (10, 25, 50 μM) dose-dependently inhibited TNF-α-induced endothelial cell activation and monocyte adhesion. However, the anti-inflammatory effects of UroA in TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) were independent of NF-κB p65 pathway. We conducted RNA-sequencing profiling analysis to identify the differential expression of genes (DEGs) associated with vascular function, inflammatory responses, cell adhesion and thrombosis in UroA-pretreated HUVECs. Human disease enrichment analysis revealed that the DEGs were significantly correlated with cardiovascular diseases. We demonstrated that UroA pretreatment mitigated endothelial inflammation by promoting NO production and decreasing YAP/TAZ protein expression and TEAD transcriptional activity in TNF-α-stimulated HUVECs. On the other hand, we found that UroA administration modulated the transcription and cleavage of lipogenic transcription factors SREBP1/2 in the liver to ameliorate cholesterol metabolism in ApoE-/- mice. This study provides an experimental basis for new dietary therapeutic option to prevent atherosclerosis.
Collapse
Affiliation(s)
- Meng-Yun Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230000, China
| | - Jing-Jing Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230000, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Li-Jing Kang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Zheng-Hong Liu
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230000, China
| | - Mei-Ming Su
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230000, China
| | - Wen-Qi Zhao
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230000, China
| | - Zhi-Hua Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230000, China
| | - Lu Sun
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230000, China
| | - Jian-Bo Xiao
- Universidade de Vigo, Department of Analytical and Food Chemistry, Faculty of Sciences, Ourense, 32004, Spain
| | - Paul C Evans
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Xiao-Yu Tian
- School of Biomedical Sciences, Heart and Vascular Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Xin-Miao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116000, China.
| | - Jian-Ping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230000, China.
| | - Suo-Wen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230000, China.
| |
Collapse
|
4
|
Zhao ML, Liang C, Jiang WW, Zhang M, Guan H, Hong Z, Zhu D, Shang AQ, Yu CJ, Zhang ZR. Inhibition of CTLA-4 accelerates atherosclerosis in hyperlipidemic mice by modulating the Th1/Th2 balance via the NF-κB signaling pathway. Heliyon 2024; 10:e37278. [PMID: 39319153 PMCID: PMC11419858 DOI: 10.1016/j.heliyon.2024.e37278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Objective Though an increased risk of atherosclerosis is associated with anti-CTLA-4 antibody therapy, the underlying mechanisms remain unclear. Methods C57BL/6 mice were treated with anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) antibody twice a week for 4 weeks, after being injected with AAV8-PCSK9 and fed a Paigen diet (PD). The proportion of aortic plaque and lipid accumulation were assessed using Oil Red O staining, while the morphology of atherosclerotic lesions was analyzed with hematoxylin and eosin staining. Collagen content was evaluated through Picrosirius Red (PSR) staining, while inflammatory cell infiltration was examined with immunofluorescence staining. CD4+ T cells secreting IFN-γ and IL-4, which represent Th1 and Th2 cells respectively, were detected by flow cytometry and real-time PCR. Protein levels of p-IκBα, IκBα, p-p65, and p65 were determined by Western blot. Results Inhibiting CTLA-4 exacerbated PD-induced plaque progression and promoted CD4+ T cell infiltration in the aortic root. The anti-CTLA-4 antibody promoted CD4+ T cell differentiation toward the Th1 type, as indicated by an increase in the Th1/Th2 ratio. Compared to the anti-IgG group, treatment with anti-CTLA-4 antibody significantly elevated the protein levels of p-IκBα and p-p65, as well as the mRNA levels of TNF-α, IL-6, ICAM-1, and VCAM-1. Inhibiting the NF-κB signaling pathway attenuated the overall pathological phenotype induced by the anti-CTLA-4 antibody treatment. Conclusion Anti-CTLA-4 treatment promotes the progression of atherosclerosis by activating NF-κB signaling and modulating the Th1/Th2 balance. Our results provide a rationale for preventing and/or treating atherosclerosis accelerated by anti-CTLA-4 antibody therapy in cancer patients.
Collapse
Affiliation(s)
- Ming-Luan Zhao
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
| | - Chen Liang
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
- Departments of Cardiology and Pharmacy, HMU Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorders and Cancer-related Cardiovascular Diseases, Harbin, 150081, China
| | - Wei-Wei Jiang
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
| | - Mei Zhang
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
| | - Hong Guan
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
| | - Zi Hong
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
| | - Di Zhu
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
| | - An-Qi Shang
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
| | - Chang-Jiang Yu
- Departments of Cardiology and Pharmacy, HMU Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorders and Cancer-related Cardiovascular Diseases, Harbin, 150081, China
| | - Zhi-Ren Zhang
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
- Departments of Cardiology and Pharmacy, HMU Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorders and Cancer-related Cardiovascular Diseases, Harbin, 150081, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), HMU, Harbin, 150081, China
| |
Collapse
|
5
|
Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Batiha GES. Possible role of LCZ696 in atherosclerosis: new inroads and perspective. Mol Cell Biochem 2024; 479:1895-1908. [PMID: 37526794 DOI: 10.1007/s11010-023-04816-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/15/2023] [Indexed: 08/02/2023]
Abstract
LCZ696 blocks both angiotensin receptor type 1 (ATR1) and neprilysin (NEP), which are intricate in the degradation of natriuretic peptides (NPs) and other endogenous peptides. It has been shown NEP inhibitors and LCZ696 could be effectively in the management of atherosclerosis (AS). However, the underlying mechanism of LCZ696 in AS is needed to be clarified entirely. Hence, this review is directed to reconnoiter the mechanistic role of LCZ696 in AS. The anti-inflammatory role of LCZ696 is related to the inhibition of transforming growth factor beta (TGF-β)-activated kinase 1 (TAK) and nod-like receptor pyrin 3 receptor (NLRP3) inflammasome. Moreover, LCZ696, via inhibition of pro-inflammatory cytokines, oxidative stress, apoptosis and endothelial dysfunction can attenuate the development and progression of AS. In conclusion, LCZ696 could be effective in the management of AS through modulation of inflammatory and oxidative signaling. Preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, Baghdad, Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AL Beheira, Egypt.
| |
Collapse
|
6
|
Alshehri AA, Al-Kuraishy HM, Al-Gareeb AI, Jawad SF, Khawagi WY, Alexiou A, Papadakis M, Assiri AA, Elhadad H, El-Saber Batiha G. The anti-inflammatory properties of vinpocetine mediates its therapeutic potential in management of atherosclerosis. J Inflamm (Lond) 2024; 21:19. [PMID: 38858751 PMCID: PMC11165849 DOI: 10.1186/s12950-024-00394-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/15/2024] [Indexed: 06/12/2024] Open
Abstract
Atherosclerosis (AS) formation is enhanced by different mechanisms including cytokine generation, vascular smooth muscle cell proliferation, and migration. One of the recent treatments towards endothelial dysfunction and AS is Vinpocetine (VPN). VPN is a potent inhibitor of phosphodiesterase enzyme 1 (PDE-1) and has anti-inflammatory and antioxidant effects through inhibition the expression of nuclear factor kappa B (NF-κB). VPN has been shown to be effective against the development and progression of AS. However, the underlying molecular mechanism was not fully clarified. Consequently, objective of the present review was to discuss the mechanistic role of VPN in the pathogenesis AS. Most of pro-inflammatory cytokines that released from macrophages are inhibited by action of VPN through NF-κB-dependent mechanism. VPN blocks monocyte adhesion and migration by constraining the expression and action of pro-inflammatory cytokines. As well, VPN is effective in reducing of oxidative stress a cornerstone in the pathogenesis of AS through inhibition of NF-κB and PDE1. VPN promotes plaque stability and prevents the erosion and rupture of atherosclerotic plaque. In conclusion, VPN through mitigation of inflammatory and oxidative stress, and improvement of plaque stability effects could be effective agent in the management of AS.
Collapse
Affiliation(s)
- Abdullah A Alshehri
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Al Huwaya, Taif, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Jabir ibn Hayyan Medical University, PO.Box13, Al-Ameer Qu./Najaf, Iraq
| | - Sabrean F Jawad
- Department of Pharmacy, Al-Mustaqbal University College, Hillah, Babylon, 51001, Iraq
| | - Wael Y Khawagi
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Al Huwaya, Taif, Saudi Arabia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, Wien, 1030, Austria
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, 11741, Greece
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Universityof Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Abdullah A Assiri
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University Abha, Abha, Saudi Arabia
| | - Heba Elhadad
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt
| |
Collapse
|
7
|
Aslan A, Ari Yuka S. Therapeutic peptides for coronary artery diseases: in silico methods and current perspectives. Amino Acids 2024; 56:37. [PMID: 38822212 PMCID: PMC11143054 DOI: 10.1007/s00726-024-03397-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Many drug formulations containing small active molecules are used for the treatment of coronary artery disease, which affects a significant part of the world's population. However, the inadequate profile of these molecules in terms of therapeutic efficacy has led to the therapeutic use of protein and peptide-based biomolecules with superior properties, such as target-specific affinity and low immunogenicity, in critical diseases. Protein‒protein interactions, as a consequence of advances in molecular techniques with strategies involving the combined use of in silico methods, have enabled the design of therapeutic peptides to reach an advanced dimension. In particular, with the advantages provided by protein/peptide structural modeling, molecular docking for the study of their interactions, molecular dynamics simulations for their interactions under physiological conditions and machine learning techniques that can work in combination with all these, significant progress has been made in approaches to developing therapeutic peptides that can modulate the development and progression of coronary artery diseases. In this scope, this review discusses in silico methods for the development of peptide therapeutics for the treatment of coronary artery disease and strategies for identifying the molecular mechanisms that can be modulated by these designs and provides a comprehensive perspective for future studies.
Collapse
Affiliation(s)
- Ayca Aslan
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Esenler, Istanbul, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, Istanbul, Turkey
| | - Selcen Ari Yuka
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Esenler, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, Istanbul, Turkey.
| |
Collapse
|
8
|
Xing Z, Zhen Y, Chen J, Du M, Li D, Liu R, Zheng J. KPNA2 Silencing, Regulated by E3 Ubiquitin Ligase FBXW7, Alleviates Endothelial Dysfunction and Inflammation Through Inhibiting the Nuclear Translocation of p65 and IRF3: A Possible Therapeutic Approach for Atherosclerosis. Inflammation 2023; 46:2071-2088. [PMID: 37432596 DOI: 10.1007/s10753-023-01863-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023]
Abstract
Atherosclerosis (AS), characterized by a maladaptive inflammatory response, is one of the most common causes of death among the elderly. Karyopherin subunit alpha 2 (KPNA2), a member of the nuclear transport protein family, has been reported to play a pro-inflammatory role in various pathological processes by regulating the nuclear translocation of pro-inflammatory transcription factors. However, the function of KPNA2 in AS remains unknown. ApoE-/- mice were fed high-fat diets for 12 weeks to establish an AS mice model. Human umbilical vein endothelial cells (HUVECs) were treated with lipopolysaccharide (LPS) to establish an AS cell model. We found that KPNA2 was upregulated in the aortic roots of atherosclerotic mice and LPS-stimulated cells. KPNA2 knockdown inhibited LPS-induced secretion of pro-inflammatory factors and monocyte-endothelial adhesion in HUVECs, whereas KPNA2 overexpression exerted the opposite effects. p65 and interferon regulatory factor 3 (IRF3), the transcription factors known to regulate the transcription of pro-inflammatory genes, interacted with KPNA2, and their nuclear translocations were blocked following KPNA2 silencing. Furthermore, we found that KPNA2 protein level was decreased by E3 ubiquitin ligase F-box and WD repeat domain containing 7 (FBXW7), which was downregulated in the atherosclerotic mice. FBXW7 overexpression induced ubiquitination with subsequent proteasomal degradation of KPNA2. Meanwhile, the effects of KPNA2 deficiency on atherosclerotic lesions were further confirmed by in vivo experiments. Taken together, our study indicates that KPNA2 downregulation, regulated by FBXW7, may alleviate endothelial dysfunction and related inflammation in the progression of AS by suppressing the nuclear translocation of p65 and IRF3.
Collapse
Affiliation(s)
- Zeyu Xing
- Department of Radiology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, Liaoning, People's Republic of China
| | - Yanhua Zhen
- Department of Radiology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, Liaoning, People's Republic of China
| | - Jie Chen
- Department of Radiology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, Liaoning, People's Republic of China
| | - Mingyang Du
- Department of Radiology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, Liaoning, People's Republic of China
| | - Dongdong Li
- Department of Radiology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, Liaoning, People's Republic of China
| | - Ruyin Liu
- Department of Radiology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, Liaoning, People's Republic of China
| | - Jiahe Zheng
- Department of Radiology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, Liaoning, People's Republic of China.
| |
Collapse
|
9
|
Zhou H, Li X, Rana M, Cornelius JF, Khan D, Muhammad S. mTOR Inhibitor Rapalink-1 Prevents Ethanol-Induced Senescence in Endothelial Cells. Cells 2023; 12:2609. [PMID: 37998344 PMCID: PMC10670449 DOI: 10.3390/cells12222609] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
The cardiovascular risk factors, including smoking, ethanol, and oxidative stress, can induce cellular senescence. The senescent cells increase the expression and release of pro-inflammatory molecules and matrix metalloproteinase (MMPs). These pro-inflammatory molecules and MMPs promote the infiltration and accumulation of inflammatory cells in the vascular tissue, exacerbating vascular tissue inflammation. MMPs damage vascular tissue by degenerating the extracellular matrix. Consequently, these cellular and molecular events promote the initiation and progression of cardiovascular diseases. We used Rapalink-1, an mTOR inhibitor, to block ethanol-induced senescence. Rapalink-1 inhibited oxidative-stress-induced DNA damage and senescence in endothelial cells exposed to ethanol. It attenuated the relative protein expression of senescence marker P21 and improved the relative protein expression of DNA repair protein KU70 and aging marker Lamin B1. It inhibited the activation of NF-κB, MAPKs (P38 and ERK), and mTOR pathway proteins (mTOR, 4EBP-1, and S6). Moreover, Rapalink-1 suppressed ethanol-induced mRNA expression of ICAM-1, E-selectin, MCP-1, IL-8, MMP-2, and TIMP-2. Rapalink-1 also reduced the relative protein expression of MMP-2. In summary, Rapalink-1 prevented senescence, inhibited pro-inflammatory pathway activation, and ameliorated pro-inflammatory molecule expression and MMP-2.
Collapse
Affiliation(s)
- Huakang Zhou
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany (S.M.)
| | - Xuanchen Li
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany (S.M.)
| | - Majeed Rana
- Department of Oral and Maxillofacial Surgery, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jan Frederick Cornelius
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany (S.M.)
| | - Dilaware Khan
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany (S.M.)
| | - Sajjad Muhammad
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany (S.M.)
- Department of Neurosurgery, University Hospital Helsinki, Topeliuksenkatu 5, 00260 Helsinki, Finland
- Department of Neurosurgery, King Edward Medical University, Lahore 54000, Pakistan
| |
Collapse
|
10
|
Hussain MS, Afzal O, Gupta G, Altamimi ASA, Almalki WH, Alzarea SI, Kazmi I, Kukreti N, Gupta S, Sulakhiya K, Singh SK, Dua K. Probing the links: Long non-coding RNAs and NF-κB signalling in atherosclerosis. Pathol Res Pract 2023; 249:154773. [PMID: 37647827 DOI: 10.1016/j.prp.2023.154773] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease that involves the accumulation of lipids and immune cells in the arterial wall. NF-kB signaling is a key regulator of inflammation and is known to play a critical role in atherosclerosis. Recent studies have shown that lncRNAs can regulate NF-kB and contribute to the development and progression of atherosclerosis. Preliminary findings reveal significant alterations in the expression of specific lncRNAs in atherosclerotic lesions compared to healthy arterial tissue. Experimental evidence suggests that these dysregulated lncRNAs can influence the NF-kB pathway. By unravelling the crosstalk between lncRNAs and NF-kB signaling, this review aims to enhance our understanding of the molecular mechanisms underlying atherosclerosis. Identifying novel therapeutic targets and diagnostic markers may lead to developing interventions and management strategies for this prevalent cardiovascular disease. This review summarizes the current knowledge on the role of lncRNAs in NF-kB signaling in atherosclerosis and highlights their potential as therapeutic targets for this disease.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura 302017, Jaipur, India; Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | | | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Indore, Madhya Pradesh, India
| | - Kunjbihari Sulakhiya
- Neuro Pharmacology Research Laboratory (NPRL), Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
11
|
González‐López P, Álvarez‐Villarreal M, Ruiz‐Simón R, López‐Pastor AR, de Ceniga MV, Esparza L, Martín‐Ventura JL, Escribano Ó, Gómez‐Hernández A. Role of miR-15a-5p and miR-199a-3p in the inflammatory pathway regulated by NF-κB in experimental and human atherosclerosis. Clin Transl Med 2023; 13:e1363. [PMID: 37605307 PMCID: PMC10442475 DOI: 10.1002/ctm2.1363] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) prevalence has significantly increased in the last decade and atherosclerosis development is the main trigger. MicroRNAs (miRNAs) are non-coding RNAs that negatively regulate gene expression of their target and their levels are frequently altered in CVDs. METHODS By RT-qPCR, we analysed miR-9-5p, miR-15a-5p, miR-16-5p and miR-199a-3p levels in aorta from apolipoprotein knockout (ApoE-/- ) mice, an experimental model of hyperlipidemia-induced atherosclerosis, and in human aortic and carotid atherosclerotic samples. By in silico studies, Western blot analysis and immunofluorescence studies, we detected the targets of the altered miRNAs. RESULTS Our results show that miR-15a-5p and miR-199a-3p are significantly decreased in carotid and aortic samples from patients and mice with atherosclerosis. In addition, we found an increased expression in targets of both miRNAs that participate in the inflammatory pathway of nuclear factor kappa B (NF-κB), such as IKKα, IKKβ and p65. In human vein endothelial cells (HUVECs) and vascular smooth muscle cells (VSMCs), the overexpression of miR-15a-5p or miR-199a-3p decreased IKKα, IKKβ and p65 protein levels as well as NF-κB activation. On the other hand, miR-15a-5p and miR-199a-3p overexpression reduced ox-LDL uptake and the inflammation regulated by NF-κB in VSMCs. Moreover, although miR-15a-5p and miR-199a-3p were significantly increased in exosomes from patients with advanced carotid atherosclerosis, only in the ROC analyses for miR-15a-5p, the area under the curve was 0.8951 with a p value of .0028. CONCLUSIONS Our results suggest that the decrease of miR-199a-3p and miR-15a-5p in vascular samples from human and experimental atherosclerosis could be involved in the NF-κB activation pathway, as well as in ox-LDL uptake by VSMCs, contributing to inflammation and progression atherosclerosis. Finally, miR-15a-5p could be used as a novel diagnostic biomarker for advanced atherosclerosis.
Collapse
Affiliation(s)
- Paula González‐López
- Hepatic and Vascular Diseases Laboratory. Biochemistry and Molecular Biology Department, School of PharmacyComplutense University of MadridMadridSpain
| | - Marta Álvarez‐Villarreal
- Hepatic and Vascular Diseases Laboratory. Biochemistry and Molecular Biology Department, School of PharmacyComplutense University of MadridMadridSpain
| | - Rubén Ruiz‐Simón
- Hepatic and Vascular Diseases Laboratory. Biochemistry and Molecular Biology Department, School of PharmacyComplutense University of MadridMadridSpain
| | - Andrea R. López‐Pastor
- Hepatic and Vascular Diseases Laboratory. Biochemistry and Molecular Biology Department, School of PharmacyComplutense University of MadridMadridSpain
| | - Melina Vega de Ceniga
- Department of Angiology and Vascular SurgeryHospital of Galdakao‐UsansoloGaldakaoBizkaiaSpain
- Biocruces Bizkaia Health Research InstituteBarakaldoBizkaiaSpain
| | - Leticia Esparza
- Department of Angiology and Vascular SurgeryHospital of Galdakao‐UsansoloGaldakaoBizkaiaSpain
- Biocruces Bizkaia Health Research InstituteBarakaldoBizkaiaSpain
| | | | - Óscar Escribano
- Hepatic and Vascular Diseases Laboratory. Biochemistry and Molecular Biology Department, School of PharmacyComplutense University of MadridMadridSpain
| | - Almudena Gómez‐Hernández
- Hepatic and Vascular Diseases Laboratory. Biochemistry and Molecular Biology Department, School of PharmacyComplutense University of MadridMadridSpain
| |
Collapse
|
12
|
Yang XF, Liu X, Yan XY, Shang DJ. Effects of frog skin peptide temporin-1CEa and its analogs on ox-LDL induced macrophage-derived foam cells. Front Pharmacol 2023; 14:1139532. [PMID: 37021059 PMCID: PMC10067733 DOI: 10.3389/fphar.2023.1139532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/08/2023] [Indexed: 03/22/2023] Open
Abstract
Purpose: Atherosclerosis is one of the most important pathological foundations of cardiovascular and cerebrovascular diseases with high morbidity and mortality. Studies have shown that macrophages play important roles in lipid accumulation in the vascular wall and thrombosis formation in atherosclerotic plaques. This study aimed to explore the effect of frog skin antimicrobial peptides (AMPs) temporin-1CEa and its analogs on ox-LDL induced macrophage-derived foam cells.Methods: CCK-8, ORO staining, and intracellular cholesterol measurements were used to study cellular activity, lipid droplet formation and cholesterol levels, respectively. ELISA, real-time quantitative PCR, Western blotting and flow cytometry analysis were used to study the expression of inflammatory factors, mRNA and proteins associated with ox-LDL uptake and cholesterol efflux in macrophage-derived foam cells, respectively. Furthermore, the effects of AMPs on inflammation signaling pathways were studied.Results: Frog skin AMPs could significantly increase the cell viability of the ox-LDL-induced foaming macrophages and decrease the formation of intracellular lipid droplets and the levels of total cholesterol and cholesterol ester (CE). Frog skin AMPs inhibited foaming formation by reducing the protein expression of CD36, which regulates ox-LDL uptake but had no effect on the expression of efflux proteins ATP binding cassette subfamily A/G member 1 (ABCA1/ABCG1). Then, decreased mRNA expression of NF-κB and protein expression of p-NF-κB p65, p-IκB, p-JNK, p-ERK, p-p38 and the release of TNF-α and IL-6 occurred after exposure to the three frog skin AMPs.Conclusion: Frog skin peptide temporin-1CEa and its analogs can improve the ox-LDL induced formation of macrophage-derived foam cells, in addition, inhibit inflammatory cytokine release through inhibiting the NF-κB and MAPK signaling pathways, thereby inhibiting inflammatory responses in atherosclerosis.
Collapse
Affiliation(s)
- Xue-Feng Yang
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
- School of Basic Medical Sciences, Department of Physiology, Jinzhou Medical University, Jinzhou, China
| | - Xin Liu
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - Xiao-Yi Yan
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - De-Jing Shang
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
- *Correspondence: De-Jing Shang,
| |
Collapse
|
13
|
Modulation of Endothelial Function by TMAO, a Gut Microbiota-Derived Metabolite. Int J Mol Sci 2023; 24:ijms24065806. [PMID: 36982880 PMCID: PMC10054148 DOI: 10.3390/ijms24065806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Endothelial function is essential in the maintenance of systemic homeostasis, whose modulation strictly depends on the proper activity of tissue-specific angiocrine factors on the physiopathological mechanisms acting at both single and multi-organ levels. Several angiocrine factors take part in the vascular function itself by modulating vascular tone, inflammatory response, and thrombotic state. Recent evidence has outlined a strong relationship between endothelial factors and gut microbiota-derived molecules. In particular, the direct involvement of trimethylamine N-oxide (TMAO) in the development of endothelial dysfunction and its derived pathological outcomes, such as atherosclerosis, has come to light. Indeed, the role of TMAO in the modulation of factors strictly related to the development of endothelial dysfunction, such as nitric oxide, adhesion molecules (ICAM-1, VCAM-1, and selectins), and IL-6, has been widely accepted. The aim of this review is to present the latest studies that describe a direct role of TMAO in the modulation of angiocrine factors primarily involved in the development of vascular pathologies.
Collapse
|
14
|
Pan Y, Feng X, Song W, Zhou X, Zhou Z, Chen G, Shen T, Zhang X. Effects and Potential Mechanism of Zhuyu Pill Against Atherosclerosis: Network Pharmacology and Experimental Validation. Drug Des Devel Ther 2023; 17:597-612. [PMID: 36866196 PMCID: PMC9970883 DOI: 10.2147/dddt.s398808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Atherosclerosis (AS) is an immunoinflammatory disease associated with dyslipidemia. Zhuyu Pill (ZYP) is a classic Chinese herbal compound that has been shown to exhibit anti-inflammatory and lipid-lowering effects on AS in our previous studies. However, the underlying mechanisms by which ZYP ameliorates atherosclerosis have not yet been fully investigated. In this study, network pharmacology and in vivo experiments were conducted to explore the underlying pharmacological mechanisms of ZYP on ameliorating AS. METHODS The active ingredients of ZYP were acquired from our previous study. The putative targets of ZYP relevant to AS were obtained from TCMSP, SwissTargetPrediction, STITCH, DisGeNET, and GeneCards databases. Protein-protein interactions (PPI) network, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted using the Cytoscape software. Furthermore, in vivo experiments were carried out for target validation in apolipoprotein E (ApoE) -/- mice. RESULTS Animal experiments revealed that ZYP ameliorated AS mainly through lowering blood lipids, alleviating vascular inflammation, and decreasing the levels of vascular cell adhesion molecule-1 (VCAM1), intercellular adhesion molecule-1 (ICAM1), monocyte chemotactic protein-1 (MCP-1), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α). Additionally, the results of Real-Time quantitative PCR revealed that ZYP inhibited the gene expressions of mitogen-activated protein kinase (MAPK) p38, extracellular regulated protein kinases (ERK), c-Jun N-terminal kinase (JNK), and nuclear factor kappa-B (NF-κB) p65. The Immunohistochemistry and Western blot assays showed the inhibitory effect of ZYP on the proteins level of p38, p-p38, p65, and p-p65. CONCLUSION This study has provided valuable evidence on the pharmacological mechanisms of action of ZYP in ameliorating AS that will be useful for forming the rationale of future research studying the cardio-protection and anti-inflammation effects of ZYP.
Collapse
Affiliation(s)
- Yingying Pan
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xianrong Feng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Wei Song
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xin Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Zhen Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Gaoyang Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiaobo Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
15
|
Huang Z, Guo S, Fu C, Zhou W, Stalin A, Zhang J, Liu X, Jia S, Wu C, Lu S, Li B, Wu Z, Tan Y, Fan X, Cheng G, Mou Y, Wu J. Identification of molecular mechanisms underlying the therapeutic effects of Xintong granule in coronary artery disease by a network pharmacology and molecular docking approach. Medicine (Baltimore) 2022; 101:e29829. [PMID: 35801781 PMCID: PMC9259182 DOI: 10.1097/md.0000000000029829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Coronary artery disease (CAD) is a cardiovascular disease characterized by atherosclerosis, angiogenesis, thrombogenesis, inflammation, etc. Xintong granule (XTG) is considered a practical therapeutic strategy in China for CAD. Although its therapeutic role in CAD has been reported, the molecular mechanisms of XTG in CAD have not yet been explored. A network pharmacology approach including drug-likeness (DL) evaluation, oral bioavailability (OB) prediction, protein-protein interaction (PPI) network construction and analysis, and Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses was used to predict the active ingredients, potential targets, and molecular mechanisms of XTG associated with the treatment of CAD. Molecular docking analysis was performed to investigate the interactions between the active compounds and the underlying targets. Fifty-one active ingredients of XTG and 294 CAD-related targets were screened for analysis. Gene Ontology enrichment analysis showed that the therapeutic targets of XTG in CAD are mainly involved in blood circulation and vascular regulation. KEGG pathway analysis indicated that XTG intervenes in CAD mainly through the regulation of fluid shear stress and atherosclerosis, the AGE-RAGE signaling pathway in diabetic complications, and the relaxin signaling pathway. Molecular docking analysis showed that each key active ingredient (quercetin, luteolin, kaempferol, stigmasterol, resveratrol, fisetin, gamma-sitosterol, and beta-sitosterol) of XTG can bind to the core targets of CAD (AKT1, JUN, RELA, MAPK8, NFKB1, EDN1, and NOS3). The present study revealed the CAD treatment-related active ingredients, underlying targets, and potential molecular mechanisms of XTG acting by regulating fluid shear stress and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications, and relaxin signaling pathway.
Collapse
Affiliation(s)
- Zhihong Huang
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Siyu Guo
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Changgeng Fu
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Zhou
- China-Japan Friendship Hospital, Beijing, China
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingyuan Zhang
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinkui Liu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shanshan Jia
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chao Wu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shan Lu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Bingbing Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhishan Wu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Tan
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaotian Fan
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guoliang Cheng
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Shandong Lunan Pharmaceutical Group Co. Ltd., Linyi, China
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yanfang Mou
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Shandong Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Jiarui Wu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Jiarui Wu (e-mail: )
| |
Collapse
|
16
|
Chai H, Qu H, He S, Song L, Yang Y, Huang H, Shi D. Zedoarondiol inhibits atherosclerosis by regulating monocyte migration and adhesion via CXCL12/CXCR4 pathway. Pharmacol Res 2022; 182:106328. [PMID: 35772647 DOI: 10.1016/j.phrs.2022.106328] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
Atherosclerosis (AS) is an essential pathological changes of ischemic cardio-cerebrovascular disease, and monocyte migration and adhesion to endothelial cells are the critical pathological process in AS. Our previous studies demonstrated a beneficial effect of zedoarondiol in AS, but whether the mechanism is associated with monocyte migration and adhesion to endothelial cells remains unclear. In this study, we investigated whether the anti-atherosclerotic effects of zedoarondiol were associated with decreasing migration and adhesion of monocytes. The oil red O staining demonstrated that zedoarondiol ameliorated AS plaques in en face aorta and aortic root of apolipoprotein E gene knocked (apoE-/-) mice. In vitro, zedoarondiol decreased human monocytic macrophage-like cell line (THP-1) monocytes migration and adhesion to endothelial cells. Single-cell RNA sequencing analysis (scRNA-seq) in mice indicated that zedoarondiol decreased monocytes adhesion to endothelial cells by regulating CXC chemokine ligand 12/CXC chemokine receptor 4 (CXCL12/CXCR4) pathway, which was verified by Western blot of THP-1 monocytes;zedoarondiol also decreased the expressions of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT) and nuclear factor-kappa B (NF/κB), the downstream proteins of CXCL12/CXCR4 pathway. In conclusion, zedoarondiol ameliorated AS plaque and inhibited monocyte migration and adhesion to endothelial cells via regulating CXCL12/CXCR4 pathway, suggesting that zedoarondiol might be a new promising drug for AS.
Collapse
Affiliation(s)
- Hua Chai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Hua Qu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Shan He
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Lei Song
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yu Yang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hongbo Huang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
17
|
Lin X, Yuen M, Yuen T, Yuen H, Wang M, Peng Q. Regulatory Effect of Sea-Buckthorn Procyanidins on Oxidative Injury HUVECs. Front Nutr 2022; 9:850076. [PMID: 35656158 PMCID: PMC9152354 DOI: 10.3389/fnut.2022.850076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
As society develops and aging populations increase, the incidence of arteriosclerosis, a seriously harmful cardiovascular disease (CVD) which mostly results from endothelial cellular oxidative damage, has continuously risen. Procyanidins from sea-buckthorn is a powerful antioxidant, although its protective effect on the cardiovascular system is not yet clearly understand. In this study, oxidative damaged HUVECs induced by palmitate acid (PA) were used as a model and the regulatory effect of procyanidins from sea-buckthorn (SBP) on HUVECs were investigated. The results showed SBP can be used for 12 h by HUVECs and had no detective cytotoxicity to them under 400 μg/L. Also, different concentrations of SBP can increase mitochondrial membrane potential and NO level and decrease LDH leakage in a dose-effect relationship, indicating SBP can improve oxidative damage. In addition, western blots and qPCR results showed SBP regulation on oxidative injured HUVECs is probably through p38MAPK/NF-κB signal pathway. This study revealed the molecular mechanism of procyanidins in decreasing endothelial oxidative damage, providing a theoretical foundation for further research on natural bioactive compounds to exert antioxidant activity in the body and prevent and improve cardiovascular diseases.
Collapse
Affiliation(s)
- Ximeng Lin
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | | | | | | | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qiang Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
18
|
Tian JJ, Levy M, Zhang X, Sinnott R, Maddela R. Counteracting Health Risks by Modulating Homeostatic Signaling. Pharmacol Res 2022; 182:106281. [PMID: 35661711 DOI: 10.1016/j.phrs.2022.106281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
Homeostasis was initially conceptualized by Bernard and Cannon around a century ago as a steady state of physiological parameters that vary within a certain range, such as blood pH, body temperature, and heart rate1,2. The underlying mechanisms that maintain homeostasis are explained by negative feedbacks that are executed by the neuronal, endocrine, and immune systems. At the cellular level, homeostasis, such as that of redox and energy steady state, also exists and is regulated by various cell signaling pathways. The induction of homeostatic mechanism is critical for human to adapt to various disruptive insults (stressors); while on the other hand, adaptation occurs at the expense of other physiological processes and thus runs the risk of collateral damages, particularly under conditions of chronic stress. Conceivably, anti-stress protection can be achieved by stressor-mimicking medicinals that elicit adaptive responses prior to an insult and thereby serve as health risk countermeasures; and in situations where maladaptation may occur, downregulating medicinals could be used to suppress the responses and prevent subsequent pathogenesis. Both strategies are preemptive interventions particularly suited for individuals who carry certain lifestyle, environmental, or genetic risk factors. In this article, we will define and characterize a new modality of prophylactic intervention that forestalls diseases via modulating homeostatic signaling. Moreover, we will provide evidence from the literature that support this concept and distinguish it from other homeostasis-related interventions such as adaptogen, hormesis, and xenohormesis.
Collapse
Affiliation(s)
- Junqiang J Tian
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA.
| | - Mark Levy
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| | - Xuekai Zhang
- Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing100029, China; US Center for Chinese Medicine, 14801 Physicians lane, 171 A 2nd Floor, #281, Rockville MD 20850, USA
| | - Robert Sinnott
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| | - Rolando Maddela
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| |
Collapse
|
19
|
Cyclic-AMP Increases Nuclear Actin Monomer Which Promotes Proteasomal Degradation of RelA/p65 Leading to Anti-Inflammatory Effects. Cells 2022; 11:cells11091414. [PMID: 35563720 PMCID: PMC9101168 DOI: 10.3390/cells11091414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
The second messenger, cAMP has potent immunosuppressive and anti-inflammatory actions. These have been attributed, in part, to the ability of cAMP-induced signals to interfere with the function of the proinflammatory transcription factor Nuclear Factor-kappa B (NF-κB). However, the mechanisms underlying the modulation of NF-κB activity by cAMP remain unclear. Here we demonstrate an important role for cAMP-mediated increase in nuclear actin monomer levels in inhibiting NF-κB activity. Elevated cAMP or forced expression of a nuclear localised polymerisation defective actin mutant (NLS-ActinR62D) inhibited basal and TNFα induced mRNA levels of NF-κB-dependent genes and NF-κB-dependent reporter gene activity. Elevated cAMP or NLS-ActinR62D did not affect NF-κB nuclear translocation but did reduce total cellular and nuclear RelA/p65 levels. Preventing the cAMP-induced increase in nuclear actin monomer, either by expressing a nuclear localised active mutant of the actin polymerising protein mDIA, silencing components of the nuclear actin import complex IPO9 and CFL1 or overexpressing the nuclear export complex XPO6, rescued RelA/p65 levels and NF-κB reporter gene activity in forskolin-stimulated cells. Elevated cAMP or NLS-ActinR62D reduced the half-life of RelA/p65, which was reversed by the proteasome inhibitor MG132. Accordingly, forskolin stimulated association of RelA/p65 with ubiquitin affinity beads, indicating increased ubiquitination of RelA/p65 or associated proteins. Taken together, our data demonstrate a novel mechanism underlying the anti-inflammatory effects of cAMP and highlight the important role played by nuclear actin in the regulation of inflammation.
Collapse
|
20
|
Li L, Liu S, Tan J, Wei L, Wu D, Gao S, Weng Y, Chen J. Recent advance in treatment of atherosclerosis: Key targets and plaque-positioned delivery strategies. J Tissue Eng 2022; 13:20417314221088509. [PMID: 35356091 PMCID: PMC8958685 DOI: 10.1177/20417314221088509] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of vascular wall, is a progressive pathophysiological process with lipids oxidation/depositing initiation and innate/adaptive immune responses. The coordination of multi systems covering oxidative stress, dysfunctional endothelium, diseased lipid uptake, cell apoptosis, thrombotic and pro-inflammatory responding as well as switched SMCs contributes to plaque growth. In this circumstance, inevitably, targeting these processes is considered to be effective for treating atherosclerosis. Arriving, retention and working of payload candidates mediated by targets in lesion direct ultimate therapeutic outcomes. Accumulating a series of scientific studies and clinical practice in the past decades, lesion homing delivery strategies including stent/balloon/nanoparticle-based transportation worked as the potent promotor to ensure a therapeutic effect. The objective of this review is to achieve a very brief summary about the effective therapeutic methods cooperating specifical targets and positioning-delivery strategies in atherosclerosis for better outcomes.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Sainan Liu
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Jianying Tan
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Lai Wei
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Dimeng Wu
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Shuai Gao
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Yajun Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| |
Collapse
|
21
|
Matrix metalloproteinase 9 a potential major player connecting atherosclerosis and osteoporosis in high fat diet fed rats. PLoS One 2021; 16:e0244650. [PMID: 33571214 PMCID: PMC7877768 DOI: 10.1371/journal.pone.0244650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 12/14/2020] [Indexed: 01/19/2023] Open
Abstract
Background Cardiovascular diseases (CVD) represent one of the major sequelae of obesity. On the other hand, the relationship between bone diseases and obesity remains unclear. An increasing number of biological and epidemiological studies suggest the presence of a link between atherosclerosis and osteoporosis, however, the precise molecular pathways underlying this close association remain poorly understood. The present work thus aimed to study Matrix Metalloproteinase 9 (MMP-9), as a proposed link between atherosclerosis and osteoporosis in high fat diet fed rats. Methods and findings 40 rats were randomly divided into 4 groups: control, untreated atherosclerosis group, atherosclerotic rats treated with carvedilol (10mg/kg/d) and atherosclerotic rats treated with alendronate sodium (10mg/kg/d). After 8 weeks, blood samples were collected for estimation of Lipid profile (Total cholesterol, HDL, TGs), inflammatory markers (IL-6, TNF-α, CRP and NO) and Bone turnover markers (BTMs) (Alkaline phosphatase, osteocalcin and pyridinoline). Rats were then euthanized and the aortas and tibias were dissected for histological examination and estimation of MMP-9, N-terminal propeptide of type I procollagen (PINP), C-terminal telopeptide of type I collagen (CTX) and NF-kB expression. Induction of atherosclerosis via high fat diet and chronic stress induced a significant increase in BTMs, inflammatory markers and resulted in a state of dyslipidaemia. MMP-9 has also shown to be significantly increased in the untreated atherosclerosis rats and showed a significant correlation with all measured parameters. Interestingly, Carvedilol and bisphosphonate had almost equal effects restoring the measured parameters back to normal, partially or completely. Conclusion MMP-9 is a pivotal molecule that impact the atherogenic environment of the vessel wall. A strong cross talk exists between MMP-9, cytokine production and macrophage function. It also plays an important regulatory role in osteoclastogenesis. So, it may be a key molecule in charge for coupling CVD and bone diseases in high fat diet fed rats. Therefore, we suggest MMP-9 as a worthy molecule to be targeted pharmacologically in order to control both conditions simultaneously. Further studies are needed to support, to invest and to translate this hypothesis into clinical studies and guidelines.
Collapse
|
22
|
Mei F, Duan Z, Chen M, Lu J, Zhao M, Li L, Shen X, Xia G, Chen S. Effect of a high-collagen peptide diet on the gut microbiota and short-chain fatty acid metabolism. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104278] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
23
|
Karunakaran D, Nguyen MA, Geoffrion M, Vreeken D, Lister Z, Cheng HS, Otte N, Essebier P, Wyatt H, Kandiah JW, Jung R, Alenghat FJ, Mompeon A, Lee R, Pan C, Gordon E, Rasheed A, Lusis AJ, Liu P, Matic LP, Hedin U, Fish JE, Guo L, Kolodgie F, Virmani R, van Gils JM, Rayner KJ. RIPK1 Expression Associates With Inflammation in Early Atherosclerosis in Humans and Can Be Therapeutically Silenced to Reduce NF-κB Activation and Atherogenesis in Mice. Circulation 2020; 143:163-177. [PMID: 33222501 DOI: 10.1161/circulationaha.118.038379] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chronic activation of the innate immune system drives inflammation and contributes directly to atherosclerosis. We previously showed that macrophages in the atherogenic plaque undergo RIPK3 (receptor-interacting serine/threonine-protein kinase 3)-MLKL (mixed lineage kinase domain-like protein)-dependent programmed necroptosis in response to sterile ligands such as oxidized low-density lipoprotein and damage-associated molecular patterns and that necroptosis is active in advanced atherosclerotic plaques. Upstream of the RIPK3-MLKL necroptotic machinery lies RIPK1 (receptor-interacting serine/threonine-protein kinase 1), which acts as a master switch that controls whether the cell undergoes NF-κB (nuclear factor κ-light-chain-enhancer of activated B cells)-dependent inflammation, caspase-dependent apoptosis, or necroptosis in response to extracellular stimuli. We therefore set out to investigate the role of RIPK1 in the development of atherosclerosis, which is driven largely by NF-κB-dependent inflammation at early stages. We hypothesize that, unlike RIPK3 and MLKL, RIPK1 primarily drives NF-κB-dependent inflammation in early atherogenic lesions, and knocking down RIPK1 will reduce inflammatory cell activation and protect against the progression of atherosclerosis. METHODS We examined expression of RIPK1 protein and mRNA in both human and mouse atherosclerotic lesions, and used loss-of-function approaches in vitro in macrophages and endothelial cells to measure inflammatory responses. We administered weekly injections of RIPK1 antisense oligonucleotides to Apoe-/- mice fed a cholesterol-rich (Western) diet for 8 weeks. RESULTS We find that RIPK1 expression is abundant in early-stage atherosclerotic lesions in both humans and mice. Treatment with RIPK1 antisense oligonucleotides led to a reduction in aortic sinus and en face lesion areas (47.2% or 58.8% decrease relative to control, P<0.01) and plasma inflammatory cytokines (IL-1α [interleukin 1α], IL-17A [interleukin 17A], P<0.05) in comparison with controls. RIPK1 knockdown in macrophages decreased inflammatory genes (NF-κB, TNFα [tumor necrosis factor α], IL-1α) and in vivo lipopolysaccharide- and atherogenic diet-induced NF-κB activation. In endothelial cells, knockdown of RIPK1 prevented NF-κB translocation to the nucleus in response to TNFα, where accordingly there was a reduction in gene expression of IL1B, E-selectin, and monocyte attachment. CONCLUSIONS We identify RIPK1 as a central driver of inflammation in atherosclerosis by its ability to activate the NF-κB pathway and promote inflammatory cytokine release. Given the high levels of RIPK1 expression in human atherosclerotic lesions, our study suggests RIPK1 as a future therapeutic target to reduce residual inflammation in patients at high risk of coronary artery disease.
Collapse
Affiliation(s)
- Denuja Karunakaran
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.).,Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia (D.K., N.O., P.E., E.G.)
| | - My-Anh Nguyen
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.).,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada (M.-A.N., K.J.R.)
| | - Michele Geoffrion
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.)
| | - Dianne Vreeken
- Leiden University Medical Center, The Netherlands (D.V., J.M.v.G.)
| | - Zachary Lister
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.)
| | - Henry S Cheng
- Toronto General Research Hospital Institute, University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C.)
| | - Nicola Otte
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia (D.K., N.O., P.E., E.G.)
| | - Patricia Essebier
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia (D.K., N.O., P.E., E.G.)
| | - Hailey Wyatt
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.)
| | - Joshua W Kandiah
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.)
| | - Richard Jung
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.)
| | - Francis J Alenghat
- Cardiology, Department of Medicine, University of Chicago, IL (F.J.A., J.E.F.)
| | - Ana Mompeon
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.)
| | - Richard Lee
- Cardiovascular Antisense Drug Discovery Group, Ionis Pharmaceuticals, Carlsbad, CA (R.L.)
| | - Calvin Pan
- David Geffen School of Medicine, University of California Los Angeles (C.P., A.J.L.)
| | - Emma Gordon
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia (D.K., N.O., P.E., E.G.)
| | - Adil Rasheed
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.)
| | - Aldons J Lusis
- David Geffen School of Medicine, University of California Los Angeles (C.P., A.J.L.)
| | - Peter Liu
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.)
| | - Ljubica Perisic Matic
- Vascular Surgery Division, Department of Molecular Medicine and Surgery, Karolinska Institute, Sweden (L.P.M.)
| | | | - Jason E Fish
- Cardiology, Department of Medicine, University of Chicago, IL (F.J.A., J.E.F.)
| | - Liang Guo
- CVPath Institute Inc., Gaithersburg, MD (L.G., F.K., R.V.)
| | - Frank Kolodgie
- CVPath Institute Inc., Gaithersburg, MD (L.G., F.K., R.V.)
| | - Renu Virmani
- CVPath Institute Inc., Gaithersburg, MD (L.G., F.K., R.V.)
| | | | - Katey J Rayner
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.).,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada (M.-A.N., K.J.R.)
| |
Collapse
|
24
|
Opazo-Ríos L, Plaza A, Sánchez Matus Y, Bernal S, Lopez-Sanz L, Jimenez-Castilla L, Carpio D, Droguett A, Mezzano S, Egido J, Gomez-Guerrero C. Targeting NF-κB by the Cell-Permeable NEMO-Binding Domain Peptide Improves Albuminuria and Renal Lesions in an Experimental Model of Type 2 Diabetic Nephropathy. Int J Mol Sci 2020; 21:ijms21124225. [PMID: 32545818 PMCID: PMC7352510 DOI: 10.3390/ijms21124225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic nephropathy (DN) is a multifactorial disease characterized by hyperglycemia and close interaction of hemodynamic, metabolic and inflammatory factors. Nuclear factor-κB (NF-κB) is a principal matchmaker linking hyperglycemia and inflammation. The present work investigates the cell-permeable peptide containing the inhibitor of kappa B kinase γ (IKKγ)/NF-κB essential modulator (NEMO)-binding domain (NBD) as therapeutic option to modulate inflammation in a preclinical model of type 2 diabetes (T2D) with DN. Black and tan, brachyuric obese/obese mice were randomized into 4 interventions groups: Active NBD peptide (10 and 6 µg/g body weight); Inactive mutant peptide (10 µg/g); and vehicle control. In vivo/ex vivo fluorescence imaging revealed efficient delivery of NBD peptide, systemic biodistribution and selective renal metabolization. In vivo administration of active NBD peptide improved albuminuria (>40% reduction on average) and kidney damage, decreased podocyte loss and basement membrane thickness, and modulated the expression of proinflammatory and oxidative stress markers. In vitro, NBD blocked IKK-mediated NF-κB induction and target gene expression in mesangial cells exposed to diabetic-like milieu. These results constitute the first nephroprotective effect of NBD peptide in a T2D mouse model that recapitulates the kidney lesions observed in DN patients. Targeting IKK-dependent NF-κB activation could be a therapeutic strategy to combat kidney inflammation in DN.
Collapse
Affiliation(s)
- Lucas Opazo-Ríos
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, 5090000 Valdivia, Chile; (L.O.-R.); (A.P.) (Y.S.M.); (D.C.); (A.D.); (S.M.)
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (S.B.); (L.L.-S.); (L.J.-C.); (J.E.)
| | - Anita Plaza
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, 5090000 Valdivia, Chile; (L.O.-R.); (A.P.) (Y.S.M.); (D.C.); (A.D.); (S.M.)
| | - Yenniffer Sánchez Matus
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, 5090000 Valdivia, Chile; (L.O.-R.); (A.P.) (Y.S.M.); (D.C.); (A.D.); (S.M.)
| | - Susana Bernal
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (S.B.); (L.L.-S.); (L.J.-C.); (J.E.)
| | - Laura Lopez-Sanz
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (S.B.); (L.L.-S.); (L.J.-C.); (J.E.)
| | - Luna Jimenez-Castilla
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (S.B.); (L.L.-S.); (L.J.-C.); (J.E.)
| | - Daniel Carpio
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, 5090000 Valdivia, Chile; (L.O.-R.); (A.P.) (Y.S.M.); (D.C.); (A.D.); (S.M.)
| | - Alejandra Droguett
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, 5090000 Valdivia, Chile; (L.O.-R.); (A.P.) (Y.S.M.); (D.C.); (A.D.); (S.M.)
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, 5090000 Valdivia, Chile; (L.O.-R.); (A.P.) (Y.S.M.); (D.C.); (A.D.); (S.M.)
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (S.B.); (L.L.-S.); (L.J.-C.); (J.E.)
| | - Carmen Gomez-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (S.B.); (L.L.-S.); (L.J.-C.); (J.E.)
- Correspondence: or
| |
Collapse
|
25
|
IMM-H007, a novel small molecule inhibitor for atherosclerosis, represses endothelium inflammation by regulating the activity of NF-κB and JNK/AP1 signaling. Toxicol Appl Pharmacol 2019; 381:114732. [DOI: 10.1016/j.taap.2019.114732] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022]
|
26
|
Hawiger J, Zienkiewicz J. Decoding inflammation, its causes, genomic responses, and emerging countermeasures. Scand J Immunol 2019; 90:e12812. [PMID: 31378956 PMCID: PMC6883124 DOI: 10.1111/sji.12812] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/03/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022]
Abstract
Inflammation is the mechanism of diseases caused by microbial, autoimmune, allergic, metabolic and physical insults that produce distinct types of inflammatory responses. This aetiologic view of inflammation informs its classification based on a cause‐dependent mechanism as well as a cause‐directed therapy and prevention. The genomic era ushered in a new understanding of inflammation by highlighting the cell's nucleus as the centre of the inflammatory response. Exogenous or endogenous inflammatory insults evoke genomic responses in immune and non‐immune cells. These genomic responses depend on transcription factors, which switch on and off a myriad of inflammatory genes through their regulatory networks. We discuss the transcriptional paradigm of inflammation based on denying transcription factors’ access to the nucleus. We present two approaches that control proinflammatory signalling to the nucleus. The first approach constitutes a novel intracellular protein therapy with bioengineered physiologic suppressors of cytokine signalling. The second approach entails control of proinflammatory transcriptional cascades by targeting nuclear transport with a cell‐penetrating peptide that inhibits the expression of 23 out of the 26 mediators of inflammation along with the nine genes required for metabolic responses. We compare these emerging anti‐inflammatory countermeasures to current therapies. The transcriptional paradigm of inflammation offers nucleocentric strategies for microbial, autoimmune, metabolic, physical and other types of inflammation afflicting millions of people worldwide.
Collapse
Affiliation(s)
- Jacek Hawiger
- Immunotherapy Program at Vanderbilt University School of Medicine, Nashville, TN, USA.,Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jozef Zienkiewicz
- Immunotherapy Program at Vanderbilt University School of Medicine, Nashville, TN, USA.,Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN, USA
| |
Collapse
|
27
|
LI TT, WANG ZB, LI Y, CAO F, YANG BY, KUANG HX. The mechanisms of traditional Chinese medicine underlying the prevention and treatment of atherosclerosis. Chin J Nat Med 2019; 17:401-412. [DOI: 10.1016/s1875-5364(19)30048-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Indexed: 02/07/2023]
|
28
|
Gene variants in the NF-KB pathway (NFKB1, NFKBIA, NFKBIZ) and risk for early-onset coronary artery disease. Immunol Lett 2019; 208:39-43. [PMID: 30902734 DOI: 10.1016/j.imlet.2019.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/13/2019] [Accepted: 02/01/2019] [Indexed: 02/06/2023]
Abstract
The nuclear-factor kappa-beta (NF-KB) is a driver of inflammation, and plays an important role in the pathogenesis of atherosclerosis and coronary artery disease (CAD). Early-onset CAD is defined as a coronary ischaemic episode at an age ≤55 years, and in our population was strongly associated with male sex and smoking. Our aim was to determine whether common variants in three NF-KB genes were associated with early-onset CAD. We studied 609 patients with early-onset CAD and 423 healthy controls, all male. Allele and genotype frequencies for the NFKB1 rs28362491 (-94 delATTG) and NFKBIA rs8904 were not significantly different between the two groups. For the NFKBIZ rs3217713, the deletion allele was significantly more frequent in the patients than in controls (0.27 vs. 0.22; p = 0.004). Deletion-carriers were more frequent in the patients (p < 0.001), with an OR = 1.48 (95%CI = 1.15-1.90). We performed a multiple logistic regression (linear generalized model) with smoking, hypercholesterolemia, type 2 diabetes, hypertension, and the rs3217713 deletion carriers remained significantly associated with early-onset CAD (p = 0.01). In our population, the NFKBIZ variant was an independent risk factor for developing early-onset CAD.
Collapse
|
29
|
NF-κB-responsive miR-155 induces functional impairment of vascular smooth muscle cells by downregulating soluble guanylyl cyclase. Exp Mol Med 2019; 51:1-12. [PMID: 30765689 PMCID: PMC6376011 DOI: 10.1038/s12276-019-0212-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) play an important role in maintaining vascular function. Inflammation-mediated VSMC dysfunction leads to atherosclerotic intimal hyperplasia and preeclamptic hypertension; however, the underlying mechanisms are not clearly understood. We analyzed the expression levels of microRNA-155 (miR-155) in cultured VSMCs, mouse vessels, and clinical specimens and then assessed its role in VSMC function. Treatment with tumor necrosis factor-α (TNF-α) elevated miR-155 biogenesis in cultured VSMCs and vessel segments, which was prevented by NF-κB inhibition. MiR-155 expression was also increased in high-fat diet-fed ApoE−/− mice and in patients with atherosclerosis and preeclampsia. The miR-155 levels were inversely correlated with soluble guanylyl cyclase β1 (sGCβ1) expression and nitric oxide (NO)-dependent cGMP production through targeting the sGCβ1 transcript. TNF-α-induced miR-155 caused VSMC phenotypic switching, which was confirmed by the downregulation of VSMC-specific marker genes, suppression of cell proliferation and migration, alterations in cell morphology, and NO-induced vasorelaxation. These events were mitigated by miR-155 inhibition. Moreover, TNF-α did not cause VSMC phenotypic modulation and limit NO-induced vasodilation in aortic vessels of miR-155−/− mice. These findings suggest that NF-κB-induced miR-155 impairs the VSMC contractile phenotype and NO-mediated vasorelaxation by downregulating sGCβ1 expression. These data suggest that NF-κB-responsive miR-155 is a novel negative regulator of VSMC functions by impairing the sGC/cGMP pathway, which is essential for maintaining the VSMC contractile phenotype and vasorelaxation, offering a new therapeutic target for the treatment of atherosclerosis and preeclampsia. The overexpression of a microRNA molecule adversely affects the functioning of vascular smooth muscle cells (VSMCs) and may contribute to the development of artherosclerosis and preeclampsia. The interactions between VSMCs and the cells lining blood vessels (endothelium) are crucial for maintaining the healthy phenotype and relaxation of blood vessels. Disruption to these interactions via inflammation, for example, can trigger serious vascular diseases. Young-Myeong Kim at Kangwon National University, Chungcheon, South Korea, and co-workers demonstrated that expression levels of a microRNA-155 are elevated in patients with artherosclerosis and preeclampsia, while an enzyme found in VSMCs called soluble guanylyl cyclase is considerably reduced. Using human and mice tissues, the team showed that miR-155 impairs the contractile phenotype and relaxation of VSMCs by reducing guanylyl cyclase expression. Their findings may inform new therapies for vascular diseases.
Collapse
|
30
|
Kosyna FK, Depping R. Controlling the Gatekeeper: Therapeutic Targeting of Nuclear Transport. Cells 2018; 7:cells7110221. [PMID: 30469340 PMCID: PMC6262578 DOI: 10.3390/cells7110221] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 12/11/2022] Open
Abstract
Nuclear transport receptors of the karyopherin superfamily of proteins transport macromolecules from one compartment to the other and are critical for both cell physiology and pathophysiology. The nuclear transport machinery is tightly regulated and essential to a number of key cellular processes since the spatiotemporally expression of many proteins and the nuclear transporters themselves is crucial for cellular activities. Dysregulation of the nuclear transport machinery results in localization shifts of specific cargo proteins and associates with the pathogenesis of disease states such as cancer, inflammation, viral illness and neurodegenerative diseases. Therefore, inhibition of the nuclear transport system has future potential for therapeutic intervention and could contribute to the elucidation of disease mechanisms. In this review, we recapitulate clue findings in the pathophysiological significance of nuclear transport processes and describe the development of nuclear transport inhibitors. Finally, clinical implications and results of the first clinical trials are discussed for the most promising nuclear transport inhibitors.
Collapse
Affiliation(s)
- Friederike K Kosyna
- Institute of Physiology, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.
| | - Reinhard Depping
- Institute of Physiology, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.
| |
Collapse
|
31
|
Wang P, Liu Z, Zhang X, Li J, Sun L, Ju Z, Li J, Chan P, Liu GH, Zhang W, Song M, Qu J. CRISPR/Cas9-mediated gene knockout reveals a guardian role of NF-κB/RelA in maintaining the homeostasis of human vascular cells. Protein Cell 2018; 9:945-965. [PMID: 29968158 PMCID: PMC6208479 DOI: 10.1007/s13238-018-0560-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/08/2018] [Indexed: 12/12/2022] Open
Abstract
Vascular cell functionality is critical to blood vessel homeostasis. Constitutive NF-κB activation in vascular cells results in chronic vascular inflammation, leading to various cardiovascular diseases. However, how NF-κB regulates human blood vessel homeostasis remains largely elusive. Here, using CRISPR/Cas9-mediated gene editing, we generated RelA knockout human embryonic stem cells (hESCs) and differentiated them into various vascular cell derivatives to study how NF-κB modulates human vascular cells under basal and inflammatory conditions. Multi-dimensional phenotypic assessments and transcriptomic analyses revealed that RelA deficiency affected vascular cells via modulating inflammation, survival, vasculogenesis, cell differentiation and extracellular matrix organization in a cell type-specific manner under basal condition, and that RelA protected vascular cells against apoptosis and modulated vascular inflammatory response upon tumor necrosis factor α (TNFα) stimulation. Lastly, further evaluation of gene expression patterns in IκBα knockout vascular cells demonstrated that IκBα acted largely independent of RelA signaling. Taken together, our data reveal a protective role of NF-κB/RelA in modulating human blood vessel homeostasis and map the human vascular transcriptomic landscapes for the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Ping Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqian Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Liang Sun
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jian Li
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China
| | - Piu Chan
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Guang-Hui Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
- Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Weiqi Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
32
|
Lazaro I, Lopez-Sanz L, Bernal S, Oguiza A, Recio C, Melgar A, Jimenez-Castilla L, Egido J, Madrigal-Matute J, Gomez-Guerrero C. Nrf2 Activation Provides Atheroprotection in Diabetic Mice Through Concerted Upregulation of Antioxidant, Anti-inflammatory, and Autophagy Mechanisms. Front Pharmacol 2018; 9:819. [PMID: 30108504 PMCID: PMC6080546 DOI: 10.3389/fphar.2018.00819] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
Interactive relationships between metabolism, inflammation, oxidative stress, and autophagy in the vascular system play a key role in the pathogenesis of diabetic cardiovascular disease. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a stress-sensitive guarantor of cellular homeostasis, which cytoprotective contributions extend beyond the antioxidant defense. We investigated the beneficial effects and underlying mechanisms of the Nrf2 inducer tert-butyl hydroquinone (tBHQ) on diabetes-driven atherosclerosis. In the experimental model of streptozotocin-induced diabetes in apolipoprotein E-deficient mice, treatment with tBHQ increased Nrf2 activity in macrophages and vascular smooth muscle cells within atherosclerotic lesions. Moreover, tBHQ significantly decreased the size, extension and lipid content of atheroma plaques, and attenuated inflammation by reducing lesional macrophages (total number and M1/M2 phenotype balance), foam cell size and chemokine expression. Atheroprotection was accompanied by both systemic and local antioxidant effects, characterized by lower levels of superoxide anion and oxidative DNA marker 8-hydroxy-2'-deoxyguanosine, reduced expression of NADPH oxidase subunits, and increased antioxidant capacity. Interestingly, tBHQ treatment upregulated the gene and protein expression of autophagy-related molecules and also enhanced autophagic flux in diabetic mouse aorta. In vitro, Nrf2 activation by tBHQ suppressed cytokine-induced expression of pro-inflammatory and oxidative stress genes, altered macrophage phenotypes, and promoted autophagic activity. Our results reinforce pharmacological Nrf2 activation as a promising atheroprotective approach in diabetes, according to the plethora of cytoprotective mechanisms involved in the resolution of inflammation and oxidative stress, and restoring autophagy.
Collapse
Affiliation(s)
- Iolanda Lazaro
- Renal, Vascular and Diabetes Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Laura Lopez-Sanz
- Renal, Vascular and Diabetes Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Susana Bernal
- Renal, Vascular and Diabetes Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Ainhoa Oguiza
- Renal, Vascular and Diabetes Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Carlota Recio
- Renal, Vascular and Diabetes Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Ana Melgar
- Renal, Vascular and Diabetes Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Luna Jimenez-Castilla
- Renal, Vascular and Diabetes Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Jesus Egido
- Renal, Vascular and Diabetes Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Julio Madrigal-Matute
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, New York City, NY, United States
| | - Carmen Gomez-Guerrero
- Renal, Vascular and Diabetes Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| |
Collapse
|
33
|
Puar YR, Shanmugam MK, Fan L, Arfuso F, Sethi G, Tergaonkar V. Evidence for the Involvement of the Master Transcription Factor NF-κB in Cancer Initiation and Progression. Biomedicines 2018; 6:biomedicines6030082. [PMID: 30060453 PMCID: PMC6163404 DOI: 10.3390/biomedicines6030082] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is responsible for the regulation of a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. At the same time, this transcription factor can control the expression of a plethora of genes that promote tumor cell proliferation, survival, metastasis, inflammation, invasion, and angiogenesis. The aberrant activation of this transcription factor has been observed in several types of cancer and is known to contribute to aggressive tumor growth and resistance to therapeutic treatment. Although NF-κB has been identified to be a major contributor to cancer initiation and development, there is evidence revealing its role in tumor suppression. This review briefly highlights the major mechanisms of NF-κB activation, the role of NF-κB in tumor promotion and suppression, as well as a few important pharmacological strategies that have been developed to modulate NF-κB function.
Collapse
Affiliation(s)
- Yu Rou Puar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Lu Fan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6009, Australia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Vinay Tergaonkar
- Institute of Molecular and Cellular Biology (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
- Centre for Cancer Biology (University of South Australia and SA Pathology), Adelaide, SA 5000, Australia.
| |
Collapse
|
34
|
Cheng G, Tang X, Zhang J. Hepatocyte growth factor exerts beneficial effects on mice with type II diabetes‑induced chronic renal failure via the NF‑κB pathway. Mol Med Rep 2018; 18:3389-3396. [PMID: 30066918 DOI: 10.3892/mmr.2018.9297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/13/2017] [Indexed: 11/06/2022] Open
Abstract
Type II diabetes is associated with a low quality of life and inflammation, and is often accompanied by varying degrees of chronic renal failure. Chronic renal failure is considered one of the most important factors that aggravates diabetes and contributes to renal insufficiency in patients with diabetes though cellular fibrosis. It has previously been reported that hepatocyte growth factor (HGF) serves extensive biological roles, and is a multifunctional antifibrotic factor that is involved in kidney development, acute injury and regeneration. The present study aimed to investigate whether HGF exerts beneficial effects on type II diabetes‑induced chronic renal failure in a mouse model. Plasma concentration levels of HGF, tumor necrosis factor (TNF)‑α, monocyte chemoattractant protein (MCP)‑1, interleukin (IL)‑1 and IL‑6 were analyzed prior to and following treatment with HGF. Blood urea nitrogen, plasma creatinine concentrations, and electrolyte, total serum protein, parathyroid hormone and C‑reactive protein levels were analyzed by ELISA. The mechanism underlying the effects of the HGF‑mediated signaling pathway was also investigated in mice with type II diabetes‑induced chronic renal failure. Histological analysis was used to determine the therapeutic effects of HGF on mice with type II diabetes‑induced chronic renal failure. The results indicated that HGF exhibited lower plasma concentrations in mice with type II diabetes‑induced chronic renal failure compared with in healthy mice. In addition, treatment with HGF relieved chronic renal failure via inhibition of inflammation. The results indicated that TNF‑α, MCP‑1 and IL‑1 serum concentration levels were downregulated following treatment with HGF. Conversely, IL‑6 and vascular endothelial growth factor concentration was increased in the HGF‑treated mice compared with in the control mice. The results also demonstrated that HGF treatment downregulated the expression of nuclear factor (NF)‑κB molecules, and target molecules C‑C motif chemokine ligand (Ccl)2, Ccl5, intercellular adhesion molecule 1 and TNF‑α. The present study demonstrated that HGF markedly improved renal failure induced by type II diabetes in a mouse model; histological analyses revealed that renal cell injury was improved following treatment with HGF. In conclusion, these results suggested that HGF may exert beneficial effects on type II diabetes‑induced chronic renal failure via regulation of the NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Guiming Cheng
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Xun Tang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Jun Zhang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
35
|
Hao S, Yan Y, Huang W, Gai F, Wang J, Liu L, Wang C. C-phycocyanin reduces inflammation by inhibiting NF-κB activity through downregulating PDCD5 in lipopolysaccharide-induced RAW 264.7 macrophages. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
36
|
Zhen R, Yang J, Wang Y, Li Y, Chen B, Song Y, Ma G, Yang B. Hepatocyte growth factor improves bone regeneration via the bone morphogenetic protein‑2‑mediated NF‑κB signaling pathway. Mol Med Rep 2018; 17:6045-6053. [PMID: 29436622 DOI: 10.3892/mmr.2018.8559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/03/2017] [Indexed: 11/05/2022] Open
Abstract
Bone regeneration is an important process associated with the treatment of osteonecrosis, which is caused by various factors. Hepatocyte growth factor (HGF) is an active biological factor that has multifunctional roles in cell biology, life sciences and clinical medicine. It has previously been suggested that bone morphogenetic protein (BMP)‑2 exerts beneficial roles in bone formation, repair and angiogenesis in the femoral head. The present study aimed to investigate the benefits and molecular mechanisms of HGF in bone regeneration. The viability of osteoblasts and osteoclasts were studied in vitro. In addition, the expression levels of tumor necrosis factor (TNF)‑α, monocyte chemotactic protein (MCP)‑1, interleukin (IL)‑1 and IL‑6 were detected in a mouse fracture model following treatment with HGF. The expression and activity of nuclear factor (NF)‑κB were also analyzed in osteocytes post‑treatment with HGF. Histological analysis was used to determine the therapeutic effects of HGF on mice with fractures. The migration and differentiation of osteoblasts and osteoclasts were investigated in HGF‑incubated cells. Furthermore, angiogenesis and BMP‑2 expression were analyzed in the mouse fracture model post‑treatment with HGF. The results indicated that HGF regulates the cell viability of osteoblasts and osteoclasts, and also balanced the ratio between osteoblasts and osteoclasts. In addition, HGF decreased the serum expression levels of TNF‑α, MCP‑1, IL‑1 and IL‑6 in experimental mice. The results of a mechanistic analysis demonstrated that HGF upregulated p65, IκB kinase‑β and IκBα expression in osteoblasts from experimental mice. In addition, the expression levels of vascular endothelial growth factor, BMP‑2 receptor, receptor activator of NF‑κB ligand and macrophage colony‑stimulating factor were upregulated by HGF, which may effectively promote blood vessel regeneration, and contribute to the formation and revascularization of tissue‑engineered bone. Furthermore, HGF promoted BMP‑2 expression and enhanced angiogenesis at the fracture location. These results suggested that HGF treatment may significantly promote bone regeneration in a mouse fracture model. In conclusion, these results indicated that HGF is involved in bone regeneration, angiogenesis and the balance between osteoblasts and osteoclasts, thus suggesting that HGF may be considered a potential agent for the treatment of fractures via the promotion of bone regeneration through regulation of the BMP‑2‑mediated NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Ruixin Zhen
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| | - Jianing Yang
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| | - Yu Wang
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| | - Yubo Li
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| | - Bin Chen
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| | - Youxin Song
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| | - Guiyun Ma
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| | - Bo Yang
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
37
|
Song D, Fang G, Mao SZ, Ye X, Liu G, Miller EJ, Greenberg H, Liu SF. Selective inhibition of endothelial NF-κB signaling attenuates chronic intermittent hypoxia-induced atherosclerosis in mice. Atherosclerosis 2018; 270:68-75. [PMID: 29407890 DOI: 10.1016/j.atherosclerosis.2018.01.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 01/07/2018] [Accepted: 01/18/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Chronic intermittent hypoxia (CIH) exposure causes atherosclerosis, although the underlying mechanisms are poorly understood. This study defines the role of endothelial intrinsic NF-κB signaling in the atherogenic response to CIH. METHODS We created ApoE-ECI-κBmt mice that are deficient in the apolipoprotein E gene (ApoE-/-) and overexpress an I-κBα mutant (I-κBmt) selectively in endothelial cells. ApoE-/- and ApoE-ECI-κBmt mice were fed a normal chow diet (NCD) or high cholesterol diet (HCD) and exposed to sham or CIH, and atherosclerotic lesions were quantified. RESULTS CIH exposure activated NF-κB in aortas, and induced the expression of endothelial-specific and NF-κB-dependent genes, E-selectin and vascular cell adhesion molecule (VCAM)-1, in the aortas and hearts. Endothelial I-κBmt overexpression in ApoE-ECI-κBmt mice significantly inhibited CIH-induced NF-κB activity, and suppressed E-selectin and VCAM-1 expressions, confirming endothelial NF-κB inhibition in ApoE-ECI-κBmt mice. ApoE-/- mice, on NCD, developed mild atherosclerotic lesions spontaneously, and developed advanced and larger areas of atherosclerotic plaques when exposed to CIH. ApoE-/- mice also developed advanced atherosclerotic lesions when fed an HCD alone. The HCD-induced atherosclerotic plaques became more advanced, and plaque area was doubled in mice exposed to HCD + CIH. Endothelial I-κBmt overexpression in ApoE-ECI-κBmt mice attenuated spontaneously developed atherosclerotic lesions, abrogated CIH-induced atherosclerosis and mitigated CIH-mediated facilitation of HCD-induced atherosclerosis. CONCLUSIONS These results suggest that endothelial intrinsic NF-kB signaling may play a pivotal role in CIH-induced atherosclerosis.
Collapse
Affiliation(s)
- Dongmei Song
- The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China; Center for Pulmonary, Critical Care and Sleep Medicine, The Feinstein Institute for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
| | - Guoqiang Fang
- Center for Pulmonary, Critical Care and Sleep Medicine, The Feinstein Institute for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Sun-Zhong Mao
- Center for Pulmonary, Critical Care and Sleep Medicine, The Feinstein Institute for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Xiaobing Ye
- Center for Pulmonary, Critical Care and Sleep Medicine, The Feinstein Institute for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Gang Liu
- Center for Pulmonary, Critical Care and Sleep Medicine, The Feinstein Institute for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Edmund J Miller
- Center for Pulmonary, Critical Care and Sleep Medicine, The Feinstein Institute for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Harly Greenberg
- Center for Pulmonary, Critical Care and Sleep Medicine, The Feinstein Institute for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Shu Fang Liu
- The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China; Center for Pulmonary, Critical Care and Sleep Medicine, The Feinstein Institute for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
| |
Collapse
|
38
|
Zhang Y, Liu Z, Zhou M, Liu C. Therapeutic effects of fibroblast growth factor‑21 against atherosclerosis via the NF‑κB pathway. Mol Med Rep 2018; 17:1453-1460. [PMID: 29257234 PMCID: PMC5780083 DOI: 10.3892/mmr.2017.8100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 04/19/2017] [Indexed: 12/21/2022] Open
Abstract
Fibroblast growth factor‑21 (FGF‑21) is a pleiotropic protein predominantly secreted in the liver, adipose tissue and pancreas. It has been reported that the metabolic hormone effects of FGF‑21 on energy metabolism are essential for human vascular endothelial cells. The aim of the present study was to investigate the therapeutic effects and the underlying primary mechanism of FGF‑21 on atherosclerosis in a rat model induced by vitamin D3 and a high fat diet. The rats with atherosclerosis were randomly divided into vehicle (PBS; negative control), FGF‑21 (6 mg/kg/d) and atorvastatin (6 mg/kg/d; positive control) groups (n=40 in each group). The rats with atherosclerosis received continuous drug or PBS administration via intravenous injection for a treatment period of 30 days, following which all animals were sacrificed. The expression levels of FGF‑21 were determined prior to and following treatment with the drug or PBS. Alterations in ultrastructure and histopathology in vascular endothelial cells were examined, and the expression of nuclear transcription factor kappa B (NF‑κB) and levels of blood lipids in the thoracic aorta tissues were also determined. The results showed that typical atheromatous plaques formed, and the mRNA and protein expression levels of FGF‑21 were lower in the vascular endothelial cells of the rats with atherosclerosis, compared with the normal rats. FGF‑21 significantly reduced blood lipids and glucose in the rats with atherosclerosis, compared with those in the PBS and atorvastatin groups (P<0.01). The expression levels of Rho kinase and NF‑κB were significantly lower in the FGF‑21 group, compared with the normal control group (P<0.01). Statistically significant differences were found in atheromatous plaques and inflammatory factors in the FGF‑21 group, compared with the PBS and atorvastatin groups (P<0.01). In conclusion, FGF‑21 significantly downregulated the levels of blood lipids, Rho kinase and NF‑κB, which contributed to atherosclerosis therapy in the model rats and indicated the potential mechanisms against atherosclerosis in the model rats.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Zhao Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Changjian Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
39
|
Li J, Lei HT, Cao L, Mi YN, Li S, Cao YX. Crocin alleviates coronary atherosclerosis via inhibiting lipid synthesis and inducing M2 macrophage polarization. Int Immunopharmacol 2017; 55:120-127. [PMID: 29248792 DOI: 10.1016/j.intimp.2017.11.037] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/06/2017] [Accepted: 11/27/2017] [Indexed: 12/15/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease arising from an imbalance in lipid levels and the accumulation of cholesterol-laden macrophages in the artery wall. Crocin is an active ingredient of Crocus sativus L. This study established a rat coronary atherosclerosis model induced by vitamin D3 (VD3), to explore the effect of Crocin on lipid metabolism, macrophage polarization and the activity of inflammatory proteins. The results revealed that Crocin decreased blood lipid levels by decreasing the levels of endothelin (ET), total cholesterol (TC), triglyceridelow (TG) and low-density lipoprotein cholesterol (LDL-c), elevating the level of high-density lipoprotein cholesterin (HDL-c). Crocin also inhibited lipogenesis by suppressing the expression of lipogenesis-related proteins and elevating lipid catabolism-related proteins. Moreover, Crocin effectively alleviated inflammation by suppressing the expression of pro-inflammatory cytokines and increasing levels of anti-inflammatory cytokines. We further found that Crocin promoted macrophage polarization to the M2 phenotype by reducing M1 markers (CD40+ and CD11c+) and elevating M2 markers (CD68+ and CD206+). Finally, Crocin strongly inhibited the expression of NF-κB p65 and its translocation into the nucleus. Crocin partially counteracted nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 expression and the nuclei accumulation caused by NF-κB p65 overexpression. Taken together, our research indicated that Crocin inhibited lipogenesis and alleviated the inflammation in a VD3-induced rat coronary atherosclerosis model by promoting M2 macrophage polarization and maybe by inhibiting NF-κB p65 nuclear translocation. This study implicates Crocin as a potential therapeutic strategy for coronary atherosclerosis.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China; Department of Traditional Chinese Medicine, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, China
| | - Hong-Tao Lei
- Department of Neonatal, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, China
| | - Lei Cao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Yan-Ni Mi
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Sen Li
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Yong-Xiao Cao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
40
|
Nirwana I, Rachmadi P, Rianti D. Potential of pomegranate fruit extract ( Punica granatum Linn.) to increase vascular endothelial growth factor and platelet-derived growth factor expressions on the post-tooth extraction wound of Cavia cobaya. Vet World 2017; 10:999-1003. [PMID: 28919696 PMCID: PMC5591492 DOI: 10.14202/vetworld.2017.999-1003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/01/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Pomegranates fruit extracts have several activities, among others, anti-inflammatory, antibacterial, and antioxidants that have the main content punicalagin and ellagic acid. Pomegranate has the ability of various therapies through different mechanisms. Vascular endothelial growth factor (VEGF) function was to form new blood vessels produced by various cells one of them was macrophages. Platelet-derived growth factor (PDGF) was a growth factor proven chemotactic, increased fibroblast proliferation and collagen matrix production. In addition, VEGF and PDGF synergize in their ability to vascularize tissues. The PDGF function was to stabilize and regulate maturation of new blood vessels. Activities of pomegranate fruit extract were observed by measuring the increased of VEGF and PDGF expression as a marker of wound healing process. AIM To investigate the potential of pomegranate extracts on the tooth extraction wound to increase the expression of VEGF and PDGF on the 4th day of wound healing process. MATERIALS AND METHODS This study used 12 Cavia cobaya, which were divided into two groups, namely, the provision of 3% sodium carboxymethyl cellulose and pomegranate extract. The 12 C. cobaya would be executed on the 4th day, the lower jaw of experimental animals was taken, decalcified about 30 days. The expression of VEGF and PDGF was examined using immunohistochemical techniques. The differences of VEGF and PDGF expression were evaluated statistically using t-test. RESULTS Statistically analysis showed that there were significant differences between control and treatment groups (p<0.05). CONCLUSION Pomegranate fruit extract administration increased VEGF and PDGF expression on post-tooth extraction wound.
Collapse
Affiliation(s)
- Intan Nirwana
- Department of Dental Material, Faculty of Dental Medicine, Universitas Airlangga, Jl. Mayjen Prof. Dr. Moestopo No 47 Surabaya, Jawa Timur, 60132, Indonesia
| | - Priyawan Rachmadi
- Department of Dental Material, Faculty of Dental Medicine, Universitas Airlangga, Jl. Mayjen Prof. Dr. Moestopo No 47 Surabaya, Jawa Timur, 60132, Indonesia
| | - Devi Rianti
- Department of Dental Material, Faculty of Dental Medicine, Universitas Airlangga, Jl. Mayjen Prof. Dr. Moestopo No 47 Surabaya, Jawa Timur, 60132, Indonesia
| |
Collapse
|
41
|
Song D, Fang G, Greenberg H, Liu SF. Chronic intermittent hypoxia exposure-induced atherosclerosis: a brief review. Immunol Res 2016; 63:121-30. [PMID: 26407987 DOI: 10.1007/s12026-015-8703-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Obstructive sleep apnea (OSA) is highly prevalent in the USA and is recognized as an independent risk factor for atherosclerotic cardiovascular disease. Identification of atherosclerosis risk factor attributable to OSA may provide opportunity to develop preventive measures for cardiovascular risk reduction. Chronic intermittent hypoxia (CIH) is a prominent feature of OSA pathophysiology and may be a major mechanism linking OSA to arteriosclerosis. Animal studies demonstrated that CIH exposure facilitated high-cholesterol diet (HCD)-induced atherosclerosis, accelerated the progression of existing atherosclerosis, and induced atherosclerotic lesions in the absence of other atherosclerosis risk factors, demonstrating that CIH is an independent causal factor of atherosclerosis. Comparative studies revealed major differences between CIH-induced and the classic HCD-induced atherosclerosis. Systemically, CIH was a much weaker inducer of atherosclerosis. CIH and HCD differentially activated inflammatory pathways. Histologically, CIH-induced atherosclerotic plaques had no clear necrotic core, contained a large number of CD31+ endothelial cells, and had mainly elastin deposition, whereas HCD-induced plaques had typical necrotic cores and fibrous caps, contained few endothelial cells, and had mainly collagen deposition. Metabolically, CIH caused mild, but HCD caused more severe dyslipidemia. Mechanistically, CIH did not, but HCD did, cause macrophage foam cell formation. NF-κB p50 gene deletion augmented CIH-induced, but not HCD-induced atherosclerosis. These differences reflect the intrinsic differences between the two types of atherosclerosis in terms of pathological nature and underlying mechanisms and support the notion that CIH-induced atherosclerosis is a new paradigm that differs from the classic HCD-induced atherosclerosis.
Collapse
Affiliation(s)
- Dongmei Song
- Centers for Heart and Lung Research, and Pulmonary, Critical Care and Sleep Medicine, The Feinstein Institute for Medical Research, Hofstra North Shore-LIJ School of Medicine, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Guoqiang Fang
- Centers for Heart and Lung Research, and Pulmonary, Critical Care and Sleep Medicine, The Feinstein Institute for Medical Research, Hofstra North Shore-LIJ School of Medicine, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Harly Greenberg
- Centers for Heart and Lung Research, and Pulmonary, Critical Care and Sleep Medicine, The Feinstein Institute for Medical Research, Hofstra North Shore-LIJ School of Medicine, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Shu Fang Liu
- Centers for Heart and Lung Research, and Pulmonary, Critical Care and Sleep Medicine, The Feinstein Institute for Medical Research, Hofstra North Shore-LIJ School of Medicine, 350 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
42
|
Zhu C, Ling Q, Cai Z, Wang Y, Zhang Y, Hoffmann PR, Zheng W, Zhou T, Huang Z. Selenium-Containing Phycocyanin from Se-Enriched Spirulina platensis Reduces Inflammation in Dextran Sulfate Sodium-Induced Colitis by Inhibiting NF-κB Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5060-5070. [PMID: 27223481 DOI: 10.1021/acs.jafc.6b01308] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Selenium (Se) plays an important role in fine-tuning immune responses. Inflammatory bowel disease (IBD) involves hyperresponsive immunity of the digestive tract, and a low Se level might aggravate IBD progression; however, the beneficial effects of natural Se-enriched diets on IBD remain unknown. Previously, we developed high-yield Se-enriched Spirulina platensis (Se-SP) as an excellent organic nutritional Se source. Here we prepared Se-containing phycocyanin (Se-PC) from Se-SP and observed that Se-PC administration effectively reduced the extent of colitis in mouse induced by dextran sulfate sodium. Supplementation with Se-PC resulted in significant protective effects, including mitigation of body weight loss, bloody diarrhea, and colonic inflammatory damage. The anti-inflammatory effects of Se-PC supplementation were found to involve modulation of cytokines, including IL-6, TNF-α, MCP-1, and IL-10. Mechanistically, Se-PC inhibited the activation of macrophages by suppressing the nuclear translocation of NF-κB, which is involved in the transcription of these pro-inflammatory cytokines. These results together suggest potential benefits of Se-PC as a functional Se supplement to reduce the symptoms of IBD.
Collapse
Affiliation(s)
- Chenghui Zhu
- College of Pharmacy, Jinan University , Guangzhou 510632, Guangdong Province, China
| | - Qinjie Ling
- Department of Biotechnology, School of Life Science and Technology, Jinan University , Guangzhou 510632, Guangdong Province, China
| | - Zhihui Cai
- Department of Biotechnology, School of Life Science and Technology, Jinan University , Guangzhou 510632, Guangdong Province, China
| | - Yun Wang
- Department of Biotechnology, School of Life Science and Technology, Jinan University , Guangzhou 510632, Guangdong Province, China
| | - Yibo Zhang
- Department of Biotechnology, School of Life Science and Technology, Jinan University , Guangzhou 510632, Guangdong Province, China
| | - Peter R Hoffmann
- Department of Biotechnology, School of Life Science and Technology, Jinan University , Guangzhou 510632, Guangdong Province, China
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii , Honolulu, Hawaii 96813, United States
| | - Wenjie Zheng
- Department of Chemistry, School of Life Science and Technology, Jinan University , Guangzhou 510632, Guangdong Province, China
| | - Tianhong Zhou
- Department of Biotechnology, School of Life Science and Technology, Jinan University , Guangzhou 510632, Guangdong Province, China
| | - Zhi Huang
- Department of Biotechnology, School of Life Science and Technology, Jinan University , Guangzhou 510632, Guangdong Province, China
| |
Collapse
|
43
|
Chen Y, Zhao H, Ren X. Estrogen and progestogen inhibit NF-κB in atherosclerotic tissues of ovariectomized ApoE (-/-) mice. Climacteric 2016; 19:357-63. [PMID: 27138353 DOI: 10.3109/13697137.2016.1167867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES To determine the effects of estrogen and progestogen treatment on atherosclerotic inflammation and vascular remodeling. METHODS Atherosclerosis was induced by feeding ovariectomized ApoE (-/-) mice a cholesterol-rich diet. Estrogen and progestogen were supplied as estradiol valerate (E2V, orally, 0.07 mg/kg/day) and dydrogesterone (DG, orally, 0.2 mg/kg/day), respectively, for 8 weeks. Levels of the vascular inflammatory marker nuclear factor kappa B (NF-κB) and arterial remodeling marker matrix metalloproteinase 9 (MMP-9) were examined. Estrogen receptor (ER) involvement was analyzed by treating with antagonists. RESULTS E2V and DG treatment reduced NF-κB mRNA and protein levels in atherosclerotic tissue from ovariectomized ApoE (-/-) mice, and the difference in expression trended towards statistical significance. Moreover, treatment with the ERβ-specific antagonist significantly increased NF-κB mRNA and protein levels in both the E2V treatment group and the E2V and DG combined treatment group (p < 0.05), suggesting that E2V inhibits NF-κB overexpression in atherosclerotic tissue through ERβ-mediated signaling. However, E2V and DG co-treatment did not significantly affect MMP-9 mRNA or protein expression in atherosclerotic tissue. Introduction of ER antagonists to E2V and DG co-treatment still did not significantly affect MMP-9 expression. CONCLUSION E2V and DG treatment may inhibit arterial inflammation by regulating ERβ-related signaling pathways.
Collapse
Affiliation(s)
- Y Chen
- a Department of Gynecology and Obstetrics , Beijing Friendship Hospital, Capital Medical University , Beijing , China
| | - H Zhao
- b Core Facilities Center , Capital Medical University , Beijing , China
| | - X Ren
- c Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing , China
| |
Collapse
|
44
|
Wang Y, Cao J, Fan Y, Xie Y, Xu Z, Yin Z, Gao L, Wang C. Artemisinin inhibits monocyte adhesion to HUVECs through the NF-κB and MAPK pathways in vitro. Int J Mol Med 2016; 37:1567-75. [PMID: 27122190 PMCID: PMC4866958 DOI: 10.3892/ijmm.2016.2579] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 04/12/2016] [Indexed: 12/15/2022] Open
Abstract
The adhesion of monocytes to human umbilical vein endothelial cells (HUVECs) plays a crucial role in the initiation of atherosclerosis. Intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) are two important molecules involved in the adhesion of monocytes to HUVECs. Previous studies have suggested that artemisinin, apart from an anti-malarial agent, also has other effects. In the present study, we found that artemisinin significantly decreased the adhesion of monocytes to tumor necrosis factor-α (TNF-α)-stimulated HUVECs in a dose-dependent manner and suppressed the mRNA and protein level of ICAM-1 and VCAM-1 in the TNF-α-stimulated HUVECs. In addition, the nuclear factor-κB (NF-κB) inhibitor, Bay 11-7082, and mitogen-activated protein kinase (MAPK) inhibitors (SB203580 and U0126) respectively reduced the adhesion of monocytes to TNF-α-stimulated HUVECs, and suppressed ICAM-1 and VCAM-1 expression in TNF-α stimulated HUVECs. Moreover, artemisinin impeded the activation of the NF-κB and MAPK signaling pathways. Furthermore, Bay 11-7082 significantly decreased the phosphorylation of levels extracellular signal-regulated protein kinase (ERK)1/2, p38 and c-Jun N-terminal kinase (JNK). Taken together, the findings of our study indicated that artemisinin blocked monocyte adhesion to TNF-α-stimulated to HUVECs by downregulating ICAM-1 and VCAM-1 expression in the TNF-α-stimulated HUVECs. Artemisinin may thus have potential for use in the protection against the early development of atherosclerotic lesions.
Collapse
Affiliation(s)
- Yue Wang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Jiatian Cao
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Yuqi Fan
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Yushui Xie
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Zuojun Xu
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Zhaofang Yin
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Lin Gao
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Changqian Wang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
45
|
Rao VH, Rai V, Stoupa S, Subramanian S, Agrawal DK. Tumor necrosis factor-α regulates triggering receptor expressed on myeloid cells-1-dependent matrix metalloproteinases in the carotid plaques of symptomatic patients with carotid stenosis. Atherosclerosis 2016; 248:160-9. [PMID: 27017522 DOI: 10.1016/j.atherosclerosis.2016.03.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the relationship between increased triggering receptor expressed on myeloid cells (TREM)-1 and plaque stability in atherosclerotic carotid stenosis. METHODS The mRNA transcripts and protein for TREM-1, MMP-1, MMP-9, collagen type I (COL1A1) and collagen type III (COL3A1) were analyzed by qPCR and immunofluorescence in both tissues and VSMCs isolated from atherosclerotic carotid plaques of symptomatic and asymptomatic patients with carotid stenosis. RESULTS The TREM-1, MMP-1 and MMP-9 mRNA transcripts were significantly increased (TREM-1, p < 0.01; MMP-1, p < 0.01 and MMP-9, p < 0.001) while COL1A1 and COL3A1 mRNA transcripts were decreased (p < 0.001) in VSMCs isolated from carotid plaques of symptomatic (S) than asymptomatic (AS) patients. Stimulation of cells with TNF-α further increased the mRNA transcripts of TREM-1, MMPs, COL1A1 and COL3A1. Modulation of TREM-1 by treatment with TREM-1 decoy receptor rTREM-1/Fc, and either TREM-1 antibodies or TREM-1 siRNA attenuated the TNF-α-induced expression of MMP-1 and MMP-9 (p < 0.01) and COL1A1 and COL3A1 (p < 0.01) in S compared to AS VSMCs isolated from carotid plaques. Inhibition of NF-kB (BAY 11-7085), JNK (SP600125) and PI3K (LY294002) signaling pathways decreased the expression of TREM-1 (p < 0.01), MMP-1 (p < 0.001) and MMP-9 (p < 0.01) in TNF-α-treated VSMCs isolated from S carotid plaques compared to AS patients. CONCLUSION Increased expression of TREM-1 in S compared to AS patients involving MMP-1 and MMP-9 suggest a potential role of TREM-1 in plaque destabilization. Selective blockade of TREM-1 may contribute to the development of new therapies and promising targets for stabilizing vulnerable atherosclerotic plaques.
Collapse
Affiliation(s)
- Velidi H Rao
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Vikrant Rai
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Samantha Stoupa
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Saravanan Subramanian
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA.
| |
Collapse
|
46
|
Lazaro I, Oguiza A, Recio C, Mallavia B, Madrigal-Matute J, Blanco J, Egido J, Martin-Ventura JL, Gomez-Guerrero C. Targeting HSP90 Ameliorates Nephropathy and Atherosclerosis Through Suppression of NF-κB and STAT Signaling Pathways in Diabetic Mice. Diabetes 2015; 64:3600-13. [PMID: 26116697 DOI: 10.2337/db14-1926] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/20/2015] [Indexed: 11/13/2022]
Abstract
Heat shock proteins (HSPs) are induced by cellular stress and function as molecular chaperones that regulate protein folding. Diabetes impairs the function/expression of many HSPs, including HSP70 and HSP90, key regulators of pathological mechanisms involved in diabetes complications. Therefore, we investigated whether pharmacological HSP90 inhibition ameliorates diabetes-associated renal damage and atheroprogression in a mouse model of combined hyperglycemia and hyperlipidemia (streptozotocin-induced diabetic apolipoprotein E-deficient mouse). Treatment of diabetic mice with 17-dimethylaminoethylamino-17-demethoxygeldanamycin (DMAG, 2 and 4 mg/kg, 10 weeks) improved renal function, as evidenced by dose-dependent decreases in albuminuria, renal lesions (mesangial expansion, leukocyte infiltration, and fibrosis), and expression of proinflammatory and profibrotic genes. Furthermore, DMAG significantly reduced atherosclerotic lesions and induced a more stable plaque phenotype, characterized by lower content of lipids, leukocytes, and inflammatory markers, and increased collagen and smooth muscle cell content. Mechanistically, the renoprotective and antiatherosclerotic effects of DMAG are mediated by the induction of protective HSP70 along with inactivation of nuclear factor-κB (NF-κB) and signal transducers and activators of transcription (STAT) and target gene expression, both in diabetic mice and in cultured cells under hyperglycemic and proinflammatory conditions. In conclusion, HSP90 inhibition by DMAG restrains the progression of renal and vascular damage in experimental diabetes, with potential implications for the prevention of diabetes complications.
Collapse
Affiliation(s)
- Iolanda Lazaro
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Ainhoa Oguiza
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Carlota Recio
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Beñat Mallavia
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Julio Madrigal-Matute
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY
| | - Julia Blanco
- Department of Pathology, Hospital Clinico San Carlos, Madrid, Spain
| | - Jesus Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Jose-Luis Martin-Ventura
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Carmen Gomez-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| |
Collapse
|
47
|
Kivelä AM, Huusko J, Ylä-Herttuala S. Prospect and progress of gene therapy in treating atherosclerosis. Expert Opin Biol Ther 2015; 15:1699-712. [PMID: 26328616 DOI: 10.1517/14712598.2015.1084282] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Despite considerable improvements in therapies, atherosclerotic cardiovascular diseases remain the leading cause of death worldwide. Therefore, in addition to current treatment options, new therapeutic approaches are still needed. AREAS COVERED In this review, novel gene and RNA interference-based therapy approaches and promising target genes for treating atherosclerosis are addressed. In addition, relevant animal models for the demonstration of the efficacy of different gene therapy applications, and current progress toward more efficient, targeted and safer gene transfer vectors are reviewed. EXPERT OPINION Atherosclerosis represents a complex multifactorial disease that is dependent on the interplay between lipoprotein metabolism, cellular reactions and inflammation. Recent advances and novel targets, especially in the field of RNA interference-based therapies, are very promising. However, it should be noted that the modulation of a particular gene is not as clearly associated with a complex polygenic disease as it is in the case of monogenic diseases. A deeper understanding of molecular mechanisms of atherosclerosis, further progress in vector development and the demonstration of treatment efficacy in relevant animal models will be required before gene therapy of atherosclerosis meets its clinical reality.
Collapse
Affiliation(s)
- Annukka M Kivelä
- a 1 University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine , Kuopio, Finland +358 403 552 075 ;
| | - Jenni Huusko
- a 1 University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine , Kuopio, Finland +358 403 552 075 ;
| | - Seppo Ylä-Herttuala
- a 1 University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine , Kuopio, Finland +358 403 552 075 ; .,b 2 Science Service Center , Kuopio, Finland.,c 3 Kuopio University Hospital, Gene Therapy Unit , Kuopio, Finland
| |
Collapse
|
48
|
Kim SM, Lee CW, Kim BY, Jung YS, Eo SK, Park YC, Kim K. 27-Oxygenated cholesterol induces expression of CXCL8 in macrophages via NF-κB and CD88. Biochem Biophys Res Commun 2015; 463:1152-8. [DOI: 10.1016/j.bbrc.2015.06.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/10/2015] [Indexed: 01/07/2023]
|
49
|
Yu XH, Zheng XL, Tang CK. Nuclear Factor-κB Activation as a Pathological Mechanism of Lipid Metabolism and Atherosclerosis. Adv Clin Chem 2015; 70:1-30. [PMID: 26231484 DOI: 10.1016/bs.acc.2015.03.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall with lipid-laden lesions, involving a complex interaction between multiple different cell types and cytokine networks. Inflammatory responses mark all stages of atherogenesis: from lipid accumulation in the intima to plaque formation and eventual rupture. One of the most important regulators of inflammation is the transcription factor nuclear factor-κB (NF-κB), which is activated through the canonical and noncanonical pathways in response to various stimuli. NF-κB has long been regarded as a proatherogenic factor, because it is implicated in multiple pathological processes during atherogenesis, including foam cell formation, vascular inflammation, proliferation of vascular smooth muscle cells, arterial calcification, and plaque progression. In contrast, inhibition of NF-κB signaling has been shown to protect against atherosclerosis. This chapter aims to discuss recent progress on the roles of NF-κB in lipid metabolism and atherosclerosis and also to highlight its potential therapeutic benefits.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Key Laboratory for Atherosclerology of Hunan Province, Molecular Target New Drug Discovery and Cooperative Innovation Center of Hunan Province, Life Science Research Center, University of South China, Hengyang, PR China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Health Sciences Center, Calgary, Alberta, Canada
| | - Chao-Ke Tang
- Key Laboratory for Atherosclerology of Hunan Province, Molecular Target New Drug Discovery and Cooperative Innovation Center of Hunan Province, Life Science Research Center, University of South China, Hengyang, PR China.
| |
Collapse
|
50
|
Buckley ML, Ramji DP. The influence of dysfunctional signaling and lipid homeostasis in mediating the inflammatory responses during atherosclerosis. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1498-510. [PMID: 25887161 DOI: 10.1016/j.bbadis.2015.04.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/25/2015] [Accepted: 04/08/2015] [Indexed: 12/14/2022]
Abstract
Atherosclerosis, the underlying cause of myocardial infarction and thrombotic cerebrovascular events, is responsible for the majority of deaths in westernized societies. Mortality from this disease is also increasing at a marked rate in developing countries due to the acquisition of a westernized lifestyle accompanied with elevated rates of obesity and diabetes. Atherosclerosis is recognized as a chronic inflammatory disorder associated with lipid accumulation and the development of fibrotic plaques within the walls of medium and large arteries. A range of immune cells, such as macrophages and T-lymphocytes, through the action of various cytokines, such as interleukins-1 and -33, transforming growth factor-β and interferon-γ, orchestrates the inflammatory response in this disease. The disease is also characterized by marked dysfunction in lipid homeostasis and signaling pathways that control the inflammatory response. This review will discuss the molecular basis of atherosclerosis with particular emphasis on the roles of the immune cells and cytokines along with the dysfunctional lipid homeostasis and cell signaling associated with this disease.
Collapse
Affiliation(s)
- Melanie L Buckley
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Dipak P Ramji
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK.
| |
Collapse
|